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Abstract 

Evolutionary Algorithm (EA) possesses several characteristics that are desirable to solve 

real world optimization problems up to a required level of satisfaction. Multiobjective 

Evolutionary Algorithms (MOEAs) are designed with regard to two common goals, fast 

and reliable convergence to the Pareto set and a good distribution of solutions along the 

front. In his work, evolutionary algorithms based approaches for multi-objective 

optimization have been studied. The particle swarm optimization has been studied in 

detail. The Particle Swarm Optimization (PSO) is a stochastic, population-based 

algorithm for search and optimization from a multidimensional space. 

In this dissertation, multi-objective particle swarm optimization has been implemented 

for two problem domains. The first problem domain is: designing and optimizing the 

micro-/millimeter wave components, in this optimal design of two microstrip antenna, 

(proximity coupled dual-frequency and compact triple-band) and the optimized design of 

non- linear tapper has been presented. The second problem domain is: association rule 

mining, in this rules have been generated for two market basket type database (randomly 

generated and Mondrian foodmart dataset) using multi-objective particle swarm 

optimization. We have also parallelized the multi-objective particle swarm optimization 

on GPU for benchmark problem (DTLZ6) and real life problem (association rule mining) 

and the speed up in running time for both the problems have been presented. 

The code for optimization is implemented on MATLAB 2006b, and we have used the 

EM simulator 1E3D for antenna design. 	The experimental platform used for 

parallelization is based on Intel(R) Xeon(R) CPU E5420 @ 2.50 GHz, 2.49 GHz, 16.0 

GB RAM, NVIDIA Quadro FX 3700, and Windows XP (x64), and we have used visual 

studio 2005 for the sequential and parallelization code. 
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Chapter 1 	 Introduction 

1.1 General Introduction 
For the past few decades, engineering design and optimization [I] have been important 

areas of research. Its goal is not only to achieve a feasible design, but also to achieve the 

design objectives. In engineering design activities, the design objective could be to 

minimize the cost of production or to maximize the efficiency of production. When 

multiple objectives are present, the optimization problem is called a multi-objective 

optimization (MO) problem. An optimization algorithm is a procedure which is executed 

iteratively by comparing various solutions till the optimum or a satisfactory solution is 

found [1]. 

A significant portion of research and application in the field of optimization considers a 

single objective, although most real-world problems involve several objectives which 

conflicts with each other (such as simultaneously minimizing the cost of fabrication and 

maximizing product reliability). Since no one solution can be termed as an optimum 

solution to multiple conflicting objectives, the resulting multi-objective optimization 

problem (MOP) resorts to a number of trade-off optimal solutions [2]. 

Classical optimization methods can at best find one solution in one simulation run and are 

susceptible to the shape of the Pareto front. So, these methods are inconvenient to solve 

multi-objective optimization problems. 

The evolutionary algorithm (EA) [3] stands for a class of stochastic optimization methods 

that simulate the process of natural evolution. EA overcomes the issues of classical 

mathematical programming techniques. They can simultaneously deal with a set of 

possible solutions which allows us to find several members of the Pareto optimal set in a 

single run of the algorithm and they are less susceptible to the shape or continuity ofthe  

Pareto front [4]. 

Multi-objective Evolutionary Algorithms (MOEA) have become increasingly popular in 

a wide variety of applications engineering, industrial, scientific [4, 5]. MOEAs are used 

in engineering applications like Aerodynamic Design Optimization, electromagnetic 
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Chapter 1: Introduction 

devices optimization, optimizing groundwater monitoring networks, city and regional 

planning; in scientific applications like medicines (for medical image processing, 

computer-aided diagnosis, treatment planning, and data mining etc), to identify 

interesting qualitative features in biological sequences; in industrial applications like 

Supply Chain Management, cellular manufacturing, design of fluid power systems etc. 

Various MOEA's have been proposed during the last two decades. Genetic Algorithm is 

one of the most famous methods and used frequently in Evolution computation field. 

There also exist many bio-inspired heuristics for multi-objective optimization and 

different evolution-based multi-objective evolutionary algorithm. The most important 

among them are the particle swarm optimization (PSO) and differential evolution, whose 

use has become increasingly popular in multi-objective optimization. 

In this work PSO technique is used for optimization. PSO [6] is one form of swarm 

intelligence inspired by social behavior of bird flocking or fish schooling. The PSO 

system consists of population (swarm) of potential solutions called particles. Each 

particle in the swarm adjusts its position in the search space based on the best position it 

has found so far as well as the position of the known best-fit particle of the entire swarm, 

and finally converges to the global best point ofthe whole search space. 

In recent years, PSO has been used increasingly as an effective technique for solving 

complex and difficult optimization problems in practice. PSO has been successfully 

applied to problems such as function optimization, artificial neural network training, 

fuzzy system control, blind source separation, machine learning and so on. 

Compared to genetic algorithm, PSO has the advantage of easy implementation and has 

few parameters to adjust, while maintaining strong abilities of convergence and global 

search. 

In spite of those advantages, PSO still needs a long time to find solutions for large scale 

problems, as it requires a large number of fitness evaluations, which are usually done in a 

sequential way on CPU. A promising approach to overcome this limitation is to 

parallelize these algorithms [7]. 
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Chapter 1: Introduction 

In recent years, Graphics Processing Unit (GPU) which has traditionally been a graphics-

centric workshop has shifted its attention to the non-graphics and general-purpose 

computing applications. Because of its parallel computing mechanism and fast  float-

point operation, GPU has shown great advantages in scientific computing fields. 

In order to perform general-purpose computing on GPU more easily and conveniently, 

some platforms have been developed, such as Brook GPU (Stanford University), CUDA 

(Compute Unified Device Architecture, NVIDIA Corporation) [8]. These platforms have 

greatly simplified programming on GPU. 

1.2 Motivation 
Evolutionary algorithm offers various advantages for the design applications, which are 

as follows: 

• The requirement/necessity of the exclusive domain specific knowledge is reduced. 

• These methods are adaptive and scalable, so, they can be applied to the design 

applications of many engineering disciplines. 

• They can handle many design constraints, variables and objectives, 

simultaneously.  

• They can avoid the chance of getting the local optima. 

• They can easily be interfaced with electromagnetic (EM) simulators, due to which 

the laborious task of optimizing design parameters can be converted to computer 

simulations. 

Due to the above advantages and enormous interest for PSO in latest research, we have 

worked on multi-objective particle swarm optimization (MOPSO) in this dissertation 

work. 

1.3 Problem Statement 
The problem undertaken in this dissertation can be divided as: 

• To study the evolutionary algorithms for multi-objective optimization. 

• To use Particle Swarm Optimization (PSO) for optimization of micro/millimeter 

wave components and data mining problem. 

3 



Chapter 1: Introduction 

• To parallelize the optimized benchmark (DTLZ6) and data mining problems on 

CUDA for reducing the computation time. 

The problems that we have taken for optimization are, proximity coupled dual-frequency 

microstrip antenna, compact triple-band microstrip antenna, nonlinear taper and 

association rule mining. 

1.4 Organization of the Report 
The organization of this dissertation report is as follows: 

Chapter 2 gives the basics of evolutionary algorithm and its approaches for multi-

objective optimization. Further this chapter discusses the particle swarm optimization 

and its techniques for multi-objective optimization. The algorithm for multi-objective 

particle swarm optimization, that we have used for our implementation in other chapters 

have also been presented in this chapter. 

Chapter 3 discusses the multi-core architecture of CUDA programming environment, 

which we have been used in this dissertation work. 

Chapter 4 starts with the brief introduction of association rule mining and then give 

multi-objective particle swarm optimization approach for rule mining. 

Chapter 5 starts with the brief introduction of microstrip antenna and then gives the 

optimal design for three problems using multi-objective particle swarm optimization. 

Chapter 6 describes the parallel implementation of multi-objective particle swarm 

optimization and compares the performance for benchmark problem (DTLZ6) and real 

life problem (association rule mining) on CPU and GPU. 

Chapter 7 concludes the dissertation report and gives suggestion for future work. 
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Chapter 2 Evolutionary Algorithm Based Approaches for 
Solving Multi-Objective Problem (MOP) 

21 Concept of Evolutionary Algorithm 
An Evolutionary algorithm is characterized by three features: 

1. A set of solution candidates. 

2. A mating selection process is performed on this set 

3. Several solutions maybe combined in terms ofrecombination to generate new 

solutions. 

The solution candidates are called individuals and the set of solution candidates is called 

the population. Each individual represents the encoded form of possible solution, i.e., a 

decision vector, to the problem at hand. 

The mating selection process usually consists of two stages: fitness assignment and 

sampling. In the first stage, the individuals in the current population are evaluated in the 

objective space and then assigned a scalar value, the fitness, reflecting their quality. 

Afterwards, the mating pool is created by random sampling from the population 

according to the fitness values. 

Then, the variation operators are applied to the mating pool. With EAs, there are usually 

two of them, namely the recombination and the mutation operator. 	Finally, 

environmental or survivor selection determines which individuals of the population (we 

can use the latter set as the new population or can combine both sets and deterministically 

choose the best individuals for survival) and the modified mating pool form the new 

population [3]. The general scheme of Evolutionary Algorithm is shown as a flow chart 

in Figure 2.1. 

Multi-objective Evolutionary algorithm (MOEA) can yield a whole set of potential 

solutions, which are all optimal in some sense. The two fundamental goals in MOEA 

design are - guiding the search towards the Pareto set and keeping a diverse set of non-

dominated solutions. 

5 



Chapter 2: Evolutionary algorithm based approaches for solving MOP 

The first goal is assigning scalar fitness values to the individuals in the presence of 

multiple optimization criteria. The second goal concerns selection in general as we want 

to avoid that the population contains mostly identical solutions (with respect to the 

objective space and the decision space). Finally, a third issue which addresses both of the 

above goals is elitism, i.e., the question of how to prevent non-dominated solutions from 

being lost. 

Initialization 

Termination 

Parent Selection 

Population 

Survivor Selection 

Parents 

Recombination 
Mutation 

Offspring 

Figure 2.1: The general scheme of Evolutionary Algorithm as a flow chart [9] 

2.2 Multi-Objective Optimization 
Multi-objective optimization problem (MOP) is defined as follows: 

M inimizing/maximizing m objectives. 

Find: x = (xi, x2... x„) 

Min/ Max: y = F (x) = (x),f2( - )... fin (-)) 

Subject to: g f  (x) 	j = 0, 1, 2 ...k 

h1 (X) = 0; 1= 0, I, 2 ...e 

Where n is the number of design variables, in the number of objective functions, k the 

number of inequality constraints, and e is the number of equality constraints. x == (xi, 

x2... x,„) EX is an n-dimensional decision variable vector and X is the decision variable 

space. y = 	y2... yn) E Y is an m-dimensional objective vector and Y is the objective 

space. 

A decision vector u EX is said to strictly dominate another decision vector ij EX 

denoted by ii -< 5, if and only if (iff) V i E {I, ...m}: fi (u) 	(v) and jE {1, ...m}: 

fi (u)<f,(1)). A decision vector x EX is said to be Pa reto optimal with respect to X if 

6 



Chapter 2: Evolutionary algorithm based approaches for solving MOP 

there is no other decision vector that dominates in in X. The set of all Pareto optimal 

solutions in the decision variable space is called Pareto optimal set and the 

corresponding set of objective vector is called Pareto optimal front. The example of 
Pareto front for bi-objective space is shown in Figure 2.2. 

Figure 2.2: Example of a bi-objective space (f1, f2). We assume a minimization prob. 
The Pareto front is the boundary between the points P1 and P2 of the feasible set F. 

2.3 Classification of Multi-objective Evolutionary Algorithm 
There are several possble ways to classify MOEAs. The following classification is 

based on the type of selection mechanism adopted as given by Carlos A. Coello in [5]: 

1. Aggregating Functions 
2. Population-based Approaches 

3. Pareto-based Approaches 

2.3.1 Aggregating Functions 
The most straightforward approach to deal with multi-objective problems is to combine 

them into a single scalar value (e.g., adding them together). These techniques are known 

as "aggregating functions", because they combine (or "aggregate") all the objectives of 
the problem into a single one. Aggregating functions are underestimated by MOEA 

researchers mainly because of the limitation of linear aggregating functions (ie., they 
cannot generate non-convex portions of the Pareto front regardless of the weight 

combination used). 

7 



Chapter 2: Evolutionary algorithm based approaches for solving MOP 

2.3.2 Population based Approaches 
In this approach, the population of an EA is used to diversify the search, but the concept 

of Pareto dominance is not directly incorporated into the selection process. The classical 

example of this sort of approach is the Vector Evaluated Genetic Algorithm (VEGA), 

proposed by Schaffer. VEGA basically consists of a simple genetic algorithm with a 

modified selection mechanism. At each generation, a number of sub-populations are 

generated by performing proportional selection according to each objective function in 

turn. Thus, for a problem with k objectives, k sub-populations of size M/k each are 

generated (assuming a total population size of Al). These sub-populations are then 

shuffled together to obtain a new population of size M, on which the genetic algorithm 

applies the crossover and mutation operators. 

VEGA has several problems, from which the most serious is that its selection scheme is 

opposed to the concept of Pareto dominance. For example, there is an individual that 

encodes a good compromise solution for all the objectives (i.e., a Pareto optimal 

solution), but it is not the best in any of them, it will be discarded. Schaffer suggested 

some heuristics to deal with this problem. One interesting aspect of VEGA is that despite 

its drawbacks it remains in current use by some researchers mainly because it is 

appropriate for problems in which we want the selection process to be biased and in 

which we have to deal with a large number ofobjectives. 

2.3.3 Pareto based Approaches 
In this approaches, we consider MOEAs that incorporate the concept ofPareto optimality 

in their selection mechanism. A wide variety of Pareto-based MOEAs have been 

proposed in the last few years. Some of the Pareto-based approaches of Genetic 

Algorithm (GA) as given by Carlos A. Coello in [5, 101 are as follows: 

1. Goldberg's Pareto Ranking: Goldberg [11] suggested moving the population 

toward Pareto Front, by using a selection mechanism that favors solutions that are 

non-dominated with respect to the current population. The basic idea is to find the set 

of individuals in the population that Pareto non-dominated by the rest of the 

population. These individuals are then assigned the highest rank and eliminated from 
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further contention. Another set of Pareto non-dominated individuals are determined 

from the remaining population and are assigned the next highest rank. This process 

continues until the population is suitably ranked. He also suggested the use of some 

kind of niching technique to keep the GA from converging to a single point on the 

Pareto Front. 

2. Multi-Objective Genetic Algorithm (MOGA): Fonseca and Fleming [12] proposed 

a ranking approach different from Goldberg's scheme. In this case, each individual in 

the population is ranked based on how many other points dominate them. All the 

non-dominated individuals in the population are assigned the same rank as 1 and 

obtain the same fitness, so that they all have the same probability of being selected. 

MOGA uses a niche-formation method in order to diversify the population. 

3. Non-dominated Sorting Genetic Algorithm (NSGA): This method was proposed 

by Srinivas and Deb [13], and is based on several layers of classifications of the 

individuals as suggested by Goldberg [11]. Before selection is performed, the 

population is ranked on the basis of non-domination: all non-dominated individuals 

are classified into one category with a dummy fitness value, which is proportional to 

the population size, to provide an equal reproductive potential for these individuals. 

An offshoot of this approach, the NSGA-II [14], uses elitism and a crowded 

comparison operator that ranks the population based on both Pareto dominance and 

region density. This crowded comparison operator makes the NSGA-II considerably 

faster than its predecessor while producing very good results. 

4. Niched Pareto Genetic Algorithm (NPGA): Horn and Nafpliotis [15] proposed a 

tournament selection based on Pareto dominance. Two members of the population 

are chosen at random and they are each compared to a subset of the population. If 

one is non-dominated and the other is not, then the non-dominated one is selected. If 

there is a tie (both are either dominated or non-dominated), then fitness sharing 

decides the tourney results. 

The Genetic Algorithm based on different approaches has been discussed above. There 

also exist many bio-inspired heuristics for multi-objective optimization and different 
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Chapter 2: Evolutionary algorithm based approaches for solving MOP 

evolution-based multi-objective evolutionary algorithm. The most important among 

them are the particle swarm optimization (PSO) and differential evolution. However, 

other bio-inspired algorithms such as artificial immune systems and ant colony 

optimization have also been used to solve multi-objective optimization problems. 

2.4 Particle Swarm Optimization (PSO) 
Particle swarm optimization (PSO) is a population based stochastic optimization 

technique developed by Eberhart and Kennedy [6], inspired by social behavior of bird 

flocking or fish schooling. The high convergence speed and relative simplicity of PSO 

motivate researchers to solve multi-objective problems by using PSO. 

The PSO system consists of a population (swarm) of potential solutions called particles, 

fly through the problem space by following the current optimum particles. Each particle 

maintains a memory which helps it in keeping the track of its coordinates in the problem 

space which are associated with the best solution (fitness) it has achieved so far. 

Particle Swarm has two operators: Velocity update and Position update. During each 

generation, each particle is accelerated toward the particles previous best position and the 

global best position. 

2.4.1 PSO: Algorithm 
PSO is initialized with a group of random particles (solutions) and then searches for 

optima by updating generations. Each particle has a position .7G= (xi, x2 	and a 

velocity V = 	v2  ....V D) in a variable space. In generation t+1, the velocity and the 

position are updated as follows: 

t±t 	 t 	t 	 t 	t 
Vid = W V id  ± 	--id± C2 r p - id 	 gd — gd 

1-1-1 	1 	1+1 

Xid 	v , 

where i={1, 	NJ and N is the population size, d={1, 	0/and D is the dimension of 

search space, CO is the inertia weight, ci and c2 are two positive constants, ri and r2 are 

(1)  

(2)  

10 



Chapter 2: Evolutionary algorithm based approaches for solving MOP 

random values in the range [0, 1], Ad is the personal best of the particle i in generation t, 

Pt  gd is the global best of population in generation t. 

The performance of each particle is evaluated according to a pre-defined fitness function, 

which is related to the problem concerned. 

2.5 Multi-Objective Particle Swarm Optimization (MOPSO) 
Particle Swarm optimization (PSO) [6] was originally designed for solving single 

objective optimization problems. The initial population of particles is initialized with 

random solutions. For every generation, each solution moves toward the global Pareto 

front by updating its velocity, the best solution a particle has achieved so far and follows 

the best solution achieved among the population of solutions. 

2.5.1 Some Techniques 
PSO-based multi-objective optimization has following technique to get local best particle 

or global particle as given in [16]: 

1. Aggregating method: Parsopoules K E [17] first took PSO solving Multi-

objective problem using fixed weight, adaptive weight and vector evaluation 

method. Weighted-vector method often can't get appropriate weights for special 

optimization problem. Vector evaluation method always couldn't provide 

satisfied solutions for Multi-objective Optimization (MO) problems. 

2. Pareto-based method: Ray T and Liew K M [18] combined Pareto dominance 

with PSO to solve multi-objective problems. They got a set of elitist solutions by 

Pareto-dominance, from which a global optimal particle was chosen by roulette. 

The approach uses a nearest neighbor density estimator to promote diversity. 

3. Sigma method: Mestaghim S [19] selected global best particle (or local best 

particle) according to the distance between current solutions and archive 

solutions. Sigma method began with the initialization of a number of solutions. 

If difference between fitness of the initial solutions was small, it would lead to 

selection press inadequate and PSO algorithm convergence slowly. 

4. Dynamic neighborhood method: Hu X and Eberhart R [20] defined one of 

objective as optimization objective, other objective as fixed objective. Each 

11 
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particle has different neighbors in each generation. This method is sensitive about 

the order of optimization objective and neighbor objective. 

5. Multi-population method: Konstantinos E.Parsopoulos et at [21] divided 

population into many subpopulations, and each subpopulation executes PSO 

independently according to one of the objective function. Every subpopulation 

exchange information with each other to obtain Pareto-optimal solution. Great 

number o fpartic les increased computational time. 
6. Li [22] incorporated the main mechanisms of NSGA-II into PSO. In his 

algorithm, the population of the particles was combined with the personal best 

position, and the best was selected from this new population to compose the next 

population. 

7. C.R. Raquel, Prospero C. Naval, Jr. [23] incorporated the concept of crowding 

distance into PSO and the distribution of non-dominated solutions was improved 

on the Pareto front. 

In this work, the extended algorithm of the single-objective PSO to handle multi-

objective optimization problems is implemented. 

2.5.2 Algorithm 

Stepl. Initialize population size, the archive size and the maximum number of iterations 

according to the problem concerned. The positions are initialized randomly and 

velocities are initialized to zero. 

Step2. The particles are evaluated for all the objectives of the problem. The non-

dominated particles (i.e. Pareto optimal solutions) are stored in the archive. The initial 

value of the personal best (pbest) for each particle is equal to its initial position and the 

global best (gbest) is initialized to the best particle in the population. 

Step3. Repeat for each iteration 

a) Randomly select global best from the archive. 

b) Update the new velocity and position of the particles according to equations (1) & 

(2). 

12 
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c) If particles position goes beyond the boundaries, then it is reintegrated by having 

the decision variable take the value of its corresponding lower or upper boundary 

and its velocity is multiplied by -1 so that it searches in the opposite direction. 

d) Compute fitness values of the newly generated swarm. 

e) Insert all new non-dominated solution in population into the archive if they are 

not dominated by any of the stored solutions. All dominated solutions in the 
archive by the new solution are removed from the archive. 

f) Update the personal best solution of each particle in population. The personal 

best is chosen as the best solution among its new position and its personal best. 

g) Increment iteration counter by one. 

Step4. Until maximum number of iterations are reached. 

In this algorithm the mechanism of crowding distance and mutation can be incorporated. 

The crowding distance computation can be used on global best selection and in the 

deletion method of an external archive of non-dominated solutions. The crowding 

distance mechanism together with a mutation operator maintains the diversity of non-

dominated solutions in the external archive and results in better convergence towards the 

Pareto front [23]. 

The crowding distance value of a solution provides an estimate of the density of solutions 

surrounding that solution. Crowding distance is calculated by first sorting the set of 

solutions in ascending objective function values. The crowding distance value of a 

particular solution is the average distance of its two neighboring solutions. 

13 
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Multicore architecture is the solution for the ever growing demand of more and more 

computational power. As the trend is growing in the market more and more varieties of 

multicore chips are developed. In this work we have used NVidia CUDA architecture to 

attain performance improvement over sequential machines. Let us see this architecture in 

detail. 

3i GPU 
The GPU refers to the commodity off-the-shelf 3D Graphics Processing Units, which are 

specifically designed to be extremely fast at processing large graphics data sets for 

rendering tasks. General purpose computing on the GPU is an active area of research. 

The programmable GPU has evolved into a highly parallel, multithreaded; many core 

processor with tremendous computational horsepower and very high memory bandwidth. 

Its capabilities have increased dramatically in the past few years and the current 

generation of GPUs has higher floating point performance than the most powerful 

(multicore) CPUs [8]. 

The reason behind the discrepancy in floating-point capability between the CPU and the 

GPU is that the GPU is specialized for compute-intensive, highly parallel computation 

and therefore designed such that more transistors are devoted to data processing rather 

than data caching and flow control, as schematically illustrated by Figure 3.1. More 

specifically, the GPU is well suited to address problems that can be expressed as data 

parallel computations [8]. 

The GPU contains hundreds of cores that work great for parallel implementation. The 

programming is done in SIMD style where same code is worked on different data 

locations. Until recently a graphics API was needed to code on GPUs which made 

coding for non graphics oriented calculations tough. Trying to work around this 

limitation nVidia released CUDA which allows GPUs to be programmed using a 

variation ofC. 

14 
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CPU 6PU 
Figure 3.1: Transistor division in CPU and GPU [8] 

3.2 CUDA 
CUDA (or Compute Unified Device Architecture) is a parallel programming model and 

software environment developed by Nvidia [8]. It was designed as a middle-ware to 

allow application software that transparently scales its parallelism on GPU. The core 

concepts involved with CUDA are a hierarchy of thread groups, shared memories, and 

barrier synchronization. The thread hierarchy allows user to divide his task in a similar 

hierarchy, where coarse sub-problems can be solved independently and finer pieces that 

can be solved cooperatively in parallel using shared memory. CUDA achieves all this 

using a minimal extension to C thus maintaining a low learning curve for programmers 

already familiar with the standard programming language. 

3.3 Programming Model 
CUDA extends C by allowing the programmer to define C functions, called kernels, that, 

when called, are executed N times in parallel by N different CUDA threads, as opposed 

to only once like regular C functions. 

A kernel is defined using the _global declaration specifier and the number of CUDA 

threads for each call is specified using a new <<<...>>> syntax: 

// Kernel definition 
global 	 void vecAdd(float* A, float* B, float* C) 

{ 

int i = threadIdx.x; 
C[i] = A[i] + B[i]; 
}  
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in.t main ( ) 
{ 
// Kernel invocation 
vecAdd<<<1, N>>>(A, B, C); 

Each of the threads that execute a kernel is given a unique thread ID that is accessible 

within the kernel through the built-in threadIclx variable. In the above kernel defmition, 

each of the threads that execute vecAdd() performs one pair-wise addition. 

3.3.1 Thread Hierarchy 

The batch of threads that executes the Kernel is organized as a grid of thread blocks, so 

that the total number of threads is equal to the number of threads per block times the 

number of blocks. These multiple blocks are organized into a one-dimensional or two-

dimensional grid of thread blocks as illustrated by Figure 3.2. 

Threads within a block can cooperate among themselves by sharing data through some 

shared memory and synchronizing their execution to coordinate memory accesses. Such 

synchronization is possible by means of a programming primitive syncthreads() as 

exposed by CUDA API. This serves as barrier synchronization. The number of threads 

per block is restricted by the limited memory resources ofa processor core. On NVIDIA 

Testa architecture, a thread block may contain up to 512 threads. 

Each thread is identified by its thread ID. The index ofa thread and its thread ID relate to 

each other in a straightforward way: For a one-dimensional block, they are the same; for 

a two-dimensional block of size (Dx, Dy), the thread ID ofa thread of index (x, y) is (x + 

y Dx); for a three dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of 

index (x, y, z) is (x + y Dx + z Dx Dy). 

In addition to the variable threadIdx, CUDA also have a few other built- in variables 

namely gridDim, blockIdx and blockDim. The gridDim gives the dimension of grid, i.e 

the number of blocks within the grid. The blockIdx variable gives the index of the 

thread's parent block within the grid, and blockDim which gives the number of threads 

per block. The gridDim and blockDim are being supplied in the call to kernel as the first 

and second parameter respectively, to the <<->>> syntax. 

16 
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Figure 3.2: Thread Hierarchy in CUDA [8] 

3.3.2 Memory Hierarchy 

CUDA threads may access data from multiple memory spaces during their execution as 
illustrated by Figure 3.3. Each thread has a private local memory. Each thread block has 

a shared memory visible to all threads of the block and with the same lifetime as the 

block. Finally, all threads have access to the same global memory. There are also two 
additional read-only memory spaces accessible by all threads: the constant and texture 

memory spaces. The global, constant, and texture memory spaces are persistent across 
kernel launches by the same application. In this work, we have used local, shared and 

global memory for our implementation. 

Memory management at runtime on the GPU RAM is done using CUDA API 
equivalents. The general procedure is to allocate memory on both host and device RAM, 

using cudaMalloc function call for the device memory. The data contents are copied 

from host memory to device memory using cudaMemcpy function. Writing data directly 
onto device memory from CPU code is not possible. The kernel calls are then made to do 
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appropriate processing on the data. The processed data contents are copied back from the 

device to the host using cudaMemcpy function. 

Fiugre.3.3: Memory Model of CUDA 

3.4 GPU Architecture 
The Tesla architecture is one of the architectures of Nvidia which support CUDA. It is 

built around a scalable array of multi-threaded Streaming Multiprocessors (SMs). When 

a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are 

enumerated and distributed to multiprocessors with available execution capacity. The 

threads of a thread block execute concurrently on one multiprocessor. As thread blocks 

terminate, new blocks are launched on the vacated multiprocessors. 

A multiprocessor consists of eight Scalar Processor (SP) cores, two special function units 

for transcendentals, a multithreaded instruction unit, and on-chip shared memory. The 

multiprocessor creates, manages, and executes concurrent threads in hardware with zero 

scheduling overhead. 

18 
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To manage hundreds of threads running several different programs, the multiprocessor 

employs a new architecture we call SIMT (single-instruction, multiple-thread). The 
multiprocessor maps each thread to one scalar processor core, and each scalar thread 

executes independently with its own instruction address and register state. The 
multiprocessor SIMT unit creates, manages, schedules, and executes threads in groups of 

32 parallel threads called warps. Individual threads composing a SIMT warp start 

together at the same program address but are otherwise free to branch and execute 

independently. 

Device Memory 

Figure 3.4: GPU Hardware model [8] 
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When a multiprocessor is given one or more thread blocks to execute, it splits them into 

warps that get scheduled by the SIMT unit. The way a block is split into warps is always 
the same; each warp contains threads of consecutive, increasing thread IDs with the first 

warp containing thread 0. Every instruction issue time, the SIMT unit selects a warp that 
is ready to execute and issues the next instruction to the active threads of the warp. A 

warp executes one common instruction at a time, so full efficiency is realized when all 32 

threads of a warp agree on their execution path. If threads of a warp diverge via a data 
dependent conditional branch, the warp serially executes each branch path taken; 

disabling threads that are not on that path, and when all paths complete, the threads 
converge back to the same execution path. Branch divergence occurs only within a warp; 

different warps execute independently regardless of whether they are executing common 

or disjointed code paths. The GPU hardware model is shown in Figure 3.4. 
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4.1 Introduction 
With the rapid growth in size and number of available databases, mining for knowledge, 

regularities or high-level information from data became essential to support decision-

making and predict future behavior [24, 25]. Data mining techniques, used for achieving 
the above goals, can be classified into the following categories: classification, clustering, 

association rule mining, sequential pattern analysis, prediction, data visualization etc. [24, 
25, 26]. 

Association rule mining is one of the important tasks of data mining intended towards 

decision support. It is the process of finding some relations among the attributes/attribute 

values of a huge database. These relationships can be represented as an lF—THEN 

statement. IF <some conditions are satisfied> THEN <predict some values of other 

attribute(s)>. The conditions associated in the IF part is termed as Antecedent, 'A' and 
those with the THEN part is called the Consequent, 'C'. So, symbolically we can 

represent this relation as A---)C and each such relationship that holds between the 

attributes of records in a database fulfilling some criteria are termed as an association 
rule. 

The association rule mining first discovers all the frequent patterns (set of items) and then 

constructs the rules from such patterns. Commonly used example is in market basket 

analysis, where an association rule A—C means if consumer buys the set of items A, then 
he/she probably also buys items C. These items are typically called as itemsets. 

Different optimization methods for association rule mining have been proposed [27, 28]. 

The process is too resource-consuming, especially when there is not enough available 

physical memory for the whole database. A solution to encounter this problem is to use 
evolutionary algorithms, which reduce both cost and time of rule discovery. 

Many existing algorithms visualize rule-mining as single objective problem, in which 

they try to measure the quality of generated rule by considering only one evaluation 
criterion, i.e., confidence factor or predictive accuracy. This criterion evaluates the rule 
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depending on the number of occurrence of the rule in the entire database, and can have 

certain limitations. 

1. The generated rule may have a large number of attributes involved in the rule 

thereby making it difficult to understand. 

2. These algorithms may extract some rules from the data that can be easily 

predicted by the user. 

3. These algorithms do not give any importance towards the rare events, i.e., 

interesting rules. 

In this dissertation work, we have visualized association rule-mining as multi-objective 

problem and has taken four objectives to evaluate/visualize the rules as in [29], Support, 

Confidence, Comprehensibility and Interestingness. 

42 Problem Statement 
We have used multi-objective particle swarm optimization (MOPSO) algorithm, which is 

defined in chapter 2, for mining the rules of market basket dataset. Market basket dataset 

consist of data/ transactions generated as a result of customer purchases of items from a 

supermarket. Our objective is to minimize the time for obtaining the rules. 

4.2 MOPSO Approach in Rule Mining 
Evolutionary multiobjective (EMO) techniques in rule mining can be roughly categorized 

into two approaches [30]. In one approach, each rule is evaluated according to multiple 

rule evaluation criteria such as support and confidence. An EMO algorithm is used to 

search for Pareto-optimal rules. In the other approach, each rule set is evaluated 

according to multiple rule set evaluation criteria such as accuracy and complexity. An 

EMO algorithm is used to search for Pareto-optimal rule sets. 

In this chapter, we have considered the first approach for rule mining. Each particle of 

the swarm represents the rule, 	and each dimension, d of the particle represents each 

attribute/item of the dataset respectively [29, 31]. Firstly, all particle positions are 

initialized for D-dimension space with the random generation of values from 0 to 3, 

where each value in the particle/ rule, A-,C is represented as: 
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The attribute is in the antecedent (A) part of the rule, if the value is 0 

The attribute is in the consequent (C) part of the rule, if the value is 3 

The attribute does not exists in the rule, if the value is for 2 

With the above random generation of particle position values, we will obtain the values 

for the particles in D-dimension space. So, if the dataset has 6 attributes (A, B, C, D, E, 

F), then the particle sequence in 6-dimension space can be (0, 1, 3, 0, 2, 1), which would 

mean 	For each rule/particle, the database is scanned to count the support (A), 

support(C), support (AuC), and four objectives Support, Confidence, Comprehensibility 

and Interestingness are calculated as: 

Support = (support (AuC)) / (n) 

Confidence = (support (AuC)) / (support (A)) 

Comprehensibility = log (1+ no of attribute(C)) / log (1+ total no of attribute) 

Interestingness = (Confidence) * ((support (AuC) / (support(C))) * (1-Support) 

where n is number of records in the dataset, no of attribute (A) is the number of attributes 

in the particle which are Antecedent (A), total no of attribute is the number of attributes 

in the particle which are either Antecedent (A) or Consequent (C). The algorithm for 

support count in fitness function of MOPSO is shown below. 

Algorithm for Support Counting in MOPS 0 

Input: An association rule (particle) A—*C 

Output: Support count of antecedent, consequent and the rule 

1: for each transaction T in database 
4: if (antecedent occurs in T) 
5: increment antecedent support 
6: end if 
7: end for 
8: Use same algorithm to count the support of consequent (C) and the whole rule (AuC) 

Then the best particles (Pareto set) found based on the fitness function, which is the 

problem's objective function (i.e. based on above four objectives), are inserted in the 

archive. After that, the iterative process initiates. The particle's velocity and position, on 
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the next iteration, are calculated by the equations (1) and (2), as mentioned in chapter 2, 

but with the slight modification due to boundary conditions (the dimension values ofeach 

particle should be within (0,3)). The modified form of equations (1) and (2) are shown 

below as equation (3) and (4) respectively. 

t+ I 	, 	, 	I 

v„, =la) vd  + Ci(p Xid)+  C2(p  -gd))%4 	  

1+1 it 	\ \ 0/04 

Xi d - k.k•X  id V id " 

where w-/ and c/ = c2 = 2. As an example, let's consider the particle position as (0, 1, 

3, 0, 2, 1), initial velocity (0,0,0,0,0,0), particle's best position (0, 1, 3, 0, 2, 1) and global 

best particle position as (0,0,1,3,2,1), then its modified velocity and positions in next 

iteration is: 

v = ((O, 0, 0, 0, 0, 0) + 2 x ((0, 1, 3, 0, 2, 1) - (0, 1, 3, 0, 2, 1)) + 2 x ((0, 0, 1, 3, 2, 1)- 

(0, 1, 3, 0, 2, 1))) % 4 

v = (0, 2, 0, 2, 0, 0) 

x = ((0, 1, 3, 0, 2, 1) + (0, 2, 0, 2, 0, 0)) % 4 

x = (0, 3, 3, 2, 2, 1) 

Then the fitness function of the new particle (0, 3, 3, 2, 2, 1), is calculated on the basis of 

four objectives and algorithm proceeds in the same manner as mentioned in chapter-2 till 

the stopping criteria is reached. 

Total number of comparisons in this method is the number of transactions in dataset 

multiplied by the number of itemsets generated by MOPSO. 

Number of contrasts = transactions x itemsets.  

In the above method, to evaluate each association rule A-*C, the database is repeatedly 

scanned to compare to the whole database with A, B, and AuB itemsets. Number of 

comparisons for each itemset is equal to number of transactions. To reduce the number 

of comparisons and running time, we can apply clustering on database. 

(3)  

(4)  
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If an itemsets occurs in a transaction, then minimum size of the transaction is the size of 

itemset. In the other words, to count the support count ofan itemset, it must be compared 

with transactions, having their size greater or equal to the itemset [32]. In this method, an 

extra phase is processed before rule generations as shown below. 

Algorithm for Clustering database [32] 

Input: Data table containing D attributes/ columns where each column contains true 
(item occurs in transaction) or false (items does not occur in transaction). 

Output: D arrays/tables where each array/table represents a cluster (Cluster_Table(s) 
represents the cluster, whose itemset size is's', where s = (1, 2 ...D}). 

1: for each transaction T in database 
2: s = number of items (true values) in T 
3: Add T to Cluster Table(s) 
4: end for 

Second step is to change the support counting of the above method. The MOPSO scans 

the whole transactions; while the C luster Based MOPSO (CB-MOPSO) prevents some 

unnecessary comparisons. The algorithm for support count in CB-MOPSO is shown 

below. 

Algorithm for Support Counting in CB-MOPSO [32] 

Input: An association rule A-->C 

Output: Support count of antecedent, consequent and the rule 

1: s = number of items in antecedent (A) 
2: for k = s to Max size_of transactions 
3: for each transaction T in C luster_Tab le(k ) 
4: if (antecedent occurs in T) 
5: increment antecedent support 
6: end if 
7: end for 
8: end for 
9: Use same algorithm to count the support of consequent (13) and the whole rule (AuB) 

Suppose f(i) as number of generated itemsets having their size (number of items) equal to 

i. s(i) is the size of cluster(i) (i.e. the number of transaction in ithcluster). Number of 
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comparisons for each itemset is shown in Equation (2). So, the total number of 

comparisons is: 

TotalContrasts= 

OR 

D D 
f (i) Is(j) 

1=1 j=i 

D 
TotalContn2sts= >2 s(i) E f(j) 

j=1 

where D represents no. of attributes/ items/ columns in the database. 

4.3 Results 
We have implemented and compared the results of MOPSO and CB-MOPSO for rule 

mining on two datasets: 

• A randomly generated dataset 

• Mondrian Foodmart dataset [33] 

hi randomly generated dataset, we have generated 40,000 records with 40 attributes. In 

Mondrian foodmart dataset [33] we have 5,546 data records with 70 attributes, we have 

taken only consumable items as attributes. We have taken swam size as 1000 and 

number of iterations as 100, number of rules generated in randomly generated and 

Mondrian foodmart dataset with each case MOPSO and CB-MOPSO, is shown in Table 

4.1. 

TABLE.4.1 NUMBER OF RULES GENERATED IN RANDOMLY GENERATED AND MONDRIAN 
FOODMART DATASET WITH MOPSO AND CB-MOPSO 

Dataset Algorithm No. of 
records 

No. of 
attributes 

Swarm 
size 

No. of 
iteration 

No. of rules 
generated 

Randomly 
generated 

MOPSO 40, 40,000 40 
1000 100 

119 
CB-MOSO 108 

Mondrian 
foodmart 

MOPSO 5,546 70 20 
CB-MOPSO 18 

We can see from Table 4.1, that number of rules generated in each case MOPSO and CB-

MOPSO are approximately same. The difference in number of rule generated is due to 

the random generation ofparticles. 
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We have compared the results of MOPSO and CB-MOPSO on the basis of speedup and 

comparisons decrease, as shown in Table 4.2 and Table 4.3. The speedup and 

comparisons decrease are defined as: 

Speedup= (avg.time(MOPS0)- avg. time (CB-MOPSO)) 
	  (5) (avg. time (MOP S 0)) 

(avg.totalcomp.(MOPS0)- totalcomp.(CB-MOPSO)) Comparisondecrease=  

	

	 (6) (avg. total c omparison(MOPSO)) 

Table 4.2 and Table 4.3 shows the results from running both methods in randomly 

generated dataset and Mondrian foodmart dataset. The speed up has varied from 9.07% 

for randomly generated dataset to 73.74% for Mondrian foodmart dataset, this shows that 

speed up is greatly affected by the distribution of clusters. 

TABLE.4.2 COMPARISON OF CBMOPSOAND MOPSOPERFORMANCE ON RANDOMLY 
GENERATED DATASETS 

Algorithm Avg. . demset size Avg. time Avg. total 
comparison Speed up Comparisions 

decrease 
MOPSO 

20.19 
161976.3 4,000,000,000 

9.07 44.7 CB-MOPSO 147282.5 2,210,676,643 

TABLE.4.3 COMPARISON OF CBMOPSOAND MOPSOPERFORMANCE ON MONDRIAN 
FOODMART DATASETS 

Algorithm Avg. 
itemset size Avg. time Avg. total 

comparison Speed up Comparisions 
decrease 

MOPSO 
35.01 

28225.44 554600 000 5 	9 73.74 98.19 CB-MOPSO 7411.219 10,009,708 
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components 

The antenna designs are carried out using commercially available electromagnetic (EM) 

simulation tools. The latest EM simulator use conventional optimization methods for 

optimization of design parameters. The difficulties with these local search methods are 

that they require a proper initial guess; otherwise the chances of getting local optimum 

solutions are very high. Moreover, they can handle only a few numbers of design 

parameter and design constraint. 

Evolutionary optimization methods such as genetic algorithms (GAs) and particle swarm 

optimization (PSO) have been successfully used to solve electromagnetic problems; as 

these methods can be easily interfaced with EM simulators [34]. (Due to which the 

laborious task of optimizing design parameters can be converted to computer 

simulations) 

Particle swarm optimization (PSO) has been introduced into the EM community in [35, 

36]. The enormous interest in applying PSO technique to antenna designs is evident due 

to the wide range of practical problems that can be solved by this novel, nature-inspired, 

evolutionary algorithm [37]. PSO technique is easy to implement and has a few 

parameters to adjust, while maintaining strong abilities ofconvergence and global search. 

5.1 Microstrip Antenna 
Applications that require low-profile, light weight, easily manufactured, inexpensive, 

conformable antennas often use some form of a microstrip radiator. The microstrip 

antenna (MSA) [38] is a resonant structure that consists of a dielectric substrate 

sandwiched between a metallic conducting patch and a ground plane. The MSA is 

commonly excited using a microstrip edge feed or a coaxial probe. The patch is 

generally made up of metal like copper, gold etc. which can take any shape. The 

canonical forms of the MSA are the rectangular and circular patch MSAs. The 

rectangular patch antenna in Figure 5.1 is fed using a microstrip edge feed and the 

circular patch antenna is fed using a coaxial probe. 

28 



Chapter 5: MOPSO for designing micro-/millimeter wave components 

Figure.5.1 Rectangular patch antenna using a microstrip edge feed and the circular 
patch antenna using a coaxial probe feed. 

For a good antenna performance, a thick dielectric substrate having a low dielectric 
constant is desirable since this provides better efficiency, larger bandwidth and better 

radiation. However, such a configuration leads to a larger antenna size. In order to 

design a compact microstrip patch antenna, higher dielectric constants must be used 

which are less efficient and result in narrower bandwidth. Hence a compromise must be 

reached between antenna dimension and antenna performance. 

5.2 Experiments 
In this chapter, we have presented the design and optimization of specific micro-

/millimeter wave components using MOPSO. For this, we have taken three problems: 

1. Design of Proximity Coupled Dual-Frequency Microstrip Antenna, to obtain the 

frequency response at GPS (1.575 GHz) and Bluetooth (2.4 GHz — 2.484 GHz) 

frequency bands of wireless communication with minimum return loss and 

maximum bandwidth [39]. 

2. Design of compact triple-band Microstrip Antenna, to obtain the frequency 

response at GSM (-900 MHz) and WLAN (-2A GHz and —5.2 GHz). The design 

optimization has been carried out to obtain the minimum return loss at all three 

bands and maximize bandwidth for the first band. 

3. The design and optimization of a nonlinear taper for a 200 KW, long-pulse strat-

up gyrotron at 170 GHz has been chosen for this study. The operating mode is 

TE24s. The design optimization has been carried out to give the maximum 
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transmission in the operating mode with very less mode conversion. This gyrotron 

will serve as a start-up gyrotron for ITER or ITER- like machines. 

In this work, MATLAB is used for implementation. In the design of antenna using PSO 

algorithm, the fitness function of PSO is interfaced with the EM simulator (IE3D). In 

this implementation, IE3D is invoked in the iterative loop of the optimization algorithm. 

The geometry is simulated for each particle using the IE3D in command (batch mode), in 

each iteration. After the simulation is over the resultant .sp file is interpreted and return 

loss, sii parameter values for the desired frequencies, fi  are obtained from it and the 

bandwidth (BW) of the desired frequencies is calculated by reading the .sp file to get fi 

andfh. 

BW = fh  (fh>fi  and sit = -10 db) — f (<f i  and slj = -10 db) 

By applying MOPSO for designing microstrip antenna, we can obtain the class of 

optimum deigns (Pareto front). And we can choose the proper antenna of our interest 

among this class. We can also use the resulted Pareto front to study the trade-offbetween 

different objectives considered in optimization. 

The MOPSO algorithm defined in chapter 2 is used in this chapter for the design and 

optimization ofproblems. In equation (1), inertia weight is taken as 0.4 and cl=c2=1. 

5.2.1 Optimal Design of Proximity Coupled Dual-Frequency Microstrip 
Antenna for Wireless Communications 

I. Antenna Design 
In proximity coupled (also known as electromagnetically coupled) microstrip antenna 

configuration, the radiating patch, fabricated on a dielectric substrate, is excited by a 

microstrip line on another substrate, as shown in Figure 5.2. The microstrip patch 

fabricated on dielectric substrate consists of two square sections of unequal patch 

dimensions, as shown in Fig 5.3 and this patch is proximity coupled at the common 

corner of the two patch sections by a microstrip line which is excited by a co-axial 

connector. The dimensions of the two sections of the patch were adjusted to obtain two 
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operating frequencies, GPS (Global Positioning Satellite System) (1.575) and Bluetooth 

(2.4-2.484) frequency bands with sufficient bandwidths. 

In this work, IE3D software is used for designing and simulating the microstrip antenna. 

IE3D simulating software developed by Zeeland Software Inc., USA) is a full wave 

electromagnetic simulation for the microwave and millimeter wave integrated circuits. 

Microstrip Patch 

Ground Plane Microstrip Feed 
Line 

Figure.5.2: Proximity Coupled Microstrip Antenna [39] 

Figure.5.3: Antenna Geometry of the Dual-Frequency Proximity Coupled Microstrip 
Antenna [39] 
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The design specifications for Dual-Frequency Proximity Coupled Micro strip Antenna are 

mentioned in Table 5.1. 

TABLE 5.1 DESIGN SPECIFICATIONS FOR DUAL-FREQUENCY PROXIMITY COUPLED 
MICRO STRIP ANTENNA 

Design Specifications Value 
Bandwidth (GPS) 20 MHz(1.575 GHz) 

Bandwidth (Bluetooth) 84 MHz (2.4-2A84 GHz) 

The optimization is aimed to achieve two objective functions: minimum return loss and 

maximum bandwidth over the operating band (GPS and Bluetooth). 

The objective functions are as follows: 

1) The corresponding fitness function, funci for return loss used here is quite similar to 

[40], which is as follows: 

2 
Awl = —( 	x sll(i)  + 

i=1 —313  

1, if S11 (t):5_ —10 dB, 
G, = 

0, if S11 (0 > —10 dB, 

2) The corresponding fitness function, func2 for bandwidth is as follows: 

2 	1.0 .func2  = 	w. x 	  
i =1 I BW(i) +1.0 

i=/and 2 for GPS (1.575GHz) and Bluetooth (2.4-2.484GHz) band respectively. Iv, is the 

weighting value, which has been selected after a number of preliminary runs, given as: 

w1=0.4 and w2=0.6, sit is the return loss and BW is the bandwidth for the frequency 
band. 

II. Results 

The simulation is run for 100 iterations with 25 particles. The range of values selected 

for the simulation is shown in the Table 5.2: 
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Chapter 5: MOPSO for designing micro-/millimeter wave components 

TABLE 5.2 RANGE OF DESIGN PARAMETERS FOR DUAL-FREQUENCY PROXIMITY COUPLED 
MICROSTRIP ANTENNA 

Design Parameter Range 
Dimension of square patch (Section I) [25.0, 32.0] mm 
Dimension of square patch (Section II) [40.0 46.0] mm 

Stub length [4.0 7.5] mm 
Length of microstrip feed line 90 0 mm (constant) 

The optimized results using PSO is shown here, by considering only one fitness function, 

funci. The PSO algorithm has certainly created an optimal dual band antenna which has 

the fallowing geometry parameters shown in Table 5.3: 

TABLE 5.3 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR DUAL-FREQUENCY 
PROXIMITY COUPLED MICROSTRIP ANTENNA USING PSO 

Design Parameter Optimized value 
Dimension of square patch (Section I) 27.61 mm 
Dimension of square patch (Section II) 43.46 mm 

Stub length 4.059698 mm 

The progress of the PSO routine as a function of the number of iterations is shown in 

Figure 5.4. The optimal design of proximity coupled dual-frequency microstrip antenna 

has reached after 84 iterations. 

Figure 5.4: Fitness of the best-designed antenna during the progress of the PSO 
algorithm for the optimal design of Proximity Coupled Microstrip Antenna 

33 



Chapter 5: MOPSO for designing micro-/millimeter wave components 

Figure 5.5 shows the simulation frequency response of the return loss for the proposed 

antenna. The simulation result shows the two excited resonant modes at frequencies 
1.572 and 2.421, which are the same as those we put in the fitness function of the PSO 

process. 
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Figure 5.5: Return losses against frequency of Dual-Frequency Proximity Coupled 
Microstrip Antenna using PSO 

The simulated result shows that, PSO has optimized the performance of given microstrip 
antenna, as we have obtained return loss, sii as: 

sii = -48.99 db for Bluetooth 

slz = -40.83 db for GPS 

The bandwidth obtained at two frequency bands through simulation result is: 

BW = 25MHz (1.561-1.586) for GPS 

BW = 50MHz (2.399-2.449) for Bluetooth 
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By applying PSO, we have obtained minimum return loss, but the obtained bandwidth is 

less than the required bandwidth, which can have adverse effect after the fabrication; i.e. 

it is possible that we may not obtain the resonance at the band which has less bandwidth. 

So to overcome this problem, we have applied MOPSO for designing microstrip antenna 

for two objectives return loss and bandwidth. 

In this work, we have shown one of the Pareto optimal solutions we have obtained using 

MOPSO-CD [23] in figure 5.6, for designing and optimizing Proximity Coupled Dual-

Frequency microstrip antenna for two objectives, minimum return loss and maximum 

bandwidth, and the optimized value of design parameters for this Pareto optimal solution 

is shown in Table 5.4. 

TABLE 5.4 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR DUAL-FREQUENCY 
PROXIMITY COUPLED MICROSTRIP ANTENNA USING MOPSO 

Design Para meter Optimized value 

Dimension  of square patch (Section I) 27.5 mm 

Dimension of square patch (Section II) 43.7 mm 

Stub length 4.0 mm 

The simulation result shows the two excited resonant modes at frequencies 1.574 and 

2.428 with return loss, sll as: 

sn = -34.68 db for Bluetooth 
sii = -28.19 db for GPS 

The bandwidth obtained at these two frequency bands through MOPSO simulation result 

is: 

GPS —30MHz (1.561-1.589) 

Bluetooth — 80MHz (2.39-2.47) 

The bandwidth obtained for two bands (GPS and Bluetooth) through MOPSO is 

approximately equal to the required bandwidth, i.e we have obtained the required results 

using MOPSO. The Pareto front showing the trade-off between the two objectives, fund 

35 



• Pa reto front 

0 

0.975 	0.98 	0.985 	0.99 	0.995 
Pte 

Chapter 5: MOPSO for designing micro-/millimeter  wave components 

and func2 for obtaining optimal design of dual-frequency proximity coupled microstrip 

antenna using MOPSO is shown in Figure 5.7 

1 	1.25 	1.5 	1.75 	2 	n5 	2.5 	2.75 
	

3 

Frequency (GHz) 

Figure 5.6: Return losses against frequency of Dual-Frequency Proximity Coupled 
Microstrip Antenna using MOPSO 

Figure.5.7: Pareto front of Dual-Frequency Proximity Coupled Microstrip Antenna 
using MOPSO for the two objective functions (funci and func2) 
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5.2.2 Optimal Design of Compact Triple-Band Microstrip Antenna to 
obtain the frequency response at GSM and WLAN 

L Antenna Design 

The antenna design of compact triple-band microstrip antenna was available in CST 
simulator. But for our work, the antenna design is required in IE3D simulator, as we have 

interfaced the MOPSO code with the IE3D simulator. So, we have designed the antenna 

geometry in IE3D simulator. 

The design specifications for Dual-Frequency Proximity Coupled Microstrip Antenna are 
mentioned in Table 5.5. 

TABLE 5.5 DESIGN SPECIFICATIONS FOR COMPACT TRIPLE-BAND MICROSTRIP ANTENNA 

Design Specifications Value 

Bandwidth (GSM) 70 MHz (890-960 MHz) 
Bandwidth (WLAN system 

in 2.4 GHz band) 84 MHz (2.4-2.484 GHz) 

Bandwidth (WLAN system 
in 5.2 GHz band) 200 MHz (5.150-5.350 GHz) 

For obtaining triple band behaviour of the antenna U-slots have been used. As the 

frequencies that are required are very widely spaced from each other we require a 

dielectric substrate with low dielectric constant and higher thickness. Hence foam having 
dielectric constant of 1.18 and a thickness of 2.59 cm has been used as a dielectric 

material. We have used the shorting wall to reduce the size of patch. 

Two U-s lots make three current paths and hence the patch resonates at three frequencies 

but the shorting wall that is used here shorts the current in one path. Hence three U-slots 

have been used to obtain triple band behaviour. Coaxial cable is used as the feeding 
method. The antenna geometry is shown ifFigure 5.8. 

The parameters used for optimization of the design are listed out in Table 5.6. We can 

see from above Table 5.6, that we have 4 constant and 11 variables. So, particles of 

swarm have 11-dimensional space. 
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SS 

Figure.5.8: Structure of the Compact Triple-Band Microstrip Antenna 

TABLE 5.6 DIFFERENT PARAMETERS OF THE LAYOUT OF COMPACT TRIPLE-BAND 
MICROSTRIP ANTENNA 

Parameter Name Description Range of values 
fc Centre of feed point [0.0 , 8.0] 
ss Side of substrate 23.0(constant) 
IP Length of patch 21.0(constant) 

wp Width of patch 21.0(constant) 
sh Length of shorting wall 10.0(constant) 

shp Position of shorting wall [7.0, 10.0] 
rlx X coordinate of corner of outer slot [15.0, 20.0] 
rly Y coordinate of corner of outer slot [16.0, 19.0] 
r2 Lower corner of outer slot [15.0, 17.0] 

slx X coordinate of corner of middle slot [0.0, 5.0] 
sly Y coordinate of corner of middle slot [11.0, 15.0] 
s2 Lower corner of middle slot [8.0, 13.0] 
tlx X coordinate of corner of inner slot [0.0, 3.0] 
tl y Y coordinate of corner of inner slot [6.0, 9.0] 
t2 Lower corner of inner slot [3.0, 6.0] 

The optimization is aimed to achieve two objective functions• minimum return loss and 
maximum bandwidth over the operating bands (GSM and WLAN). 
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The objective functions are as follows: 

1) The corresponding fitness function, f1 for return loss used here is quite similar to [40], 

which is as follows: 

funci  = 	wi 	:30  +Gi )  
i=1 

1, ifS11 (1)<-10 dB, 
= 

0, if 	(t)> —10 dB, 

2) The corresponding fitness function, f2 for bandwidth is as follows: 

1.0 font 	BW(i •=1)+1.0 

2 and 3 for (GSM; 890-960 MHz) and wireless local area network (WLAN) systems 
in the 2.4 GHz (2400-2484 MHz) and 5.2 GHz (5150-5350 MHz) bands respectively. 

wi is the weighting value, which has been selected after a number of preliminary runs, 

given as: w1=0.4, w2-0.3 and w3=0.3, sli is the return loss and BW is the bandwidth for 

the frequency band. 

II. Results 

The Figure 5.9 shows that result obtained for compact triple band using MOPSO. We 
can see that the results obtained are not very good. The reason for this is; we have 

designed the CST design in IE3D simulator, and IE3D simulator is unable to simulate the 

design of compact triple band properly. The IE3D simulator has split the geometry into 

number of small geometries, due to which the geometry has not simulated in the required 

manner. 

The above optimization takes lot of time, as the geometry is very complex, as tens of 
minutes is consumed in the single IE3D simulator call. So, it is required to parallelize the 

optimization o f antenna design. 

3 	s1 1 (i) 
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Figure 5.9: Return losses against frequency of Compact Triple-Band Microstrip 
Antenna using MOPSO 

5.2.3 Design and optimization of a nonlinear taper for a 200 KW, long-
pulse strat-up gyrotron at 170 GHz 

Gyrotron output system consists of an output taper which connects the interaction region 

with the main waveguide system, a quasi-optical mode converter, and the RF window. 
The nonlinear taper should provide a perfect match between interaction region and the 

output waveguide with negligible mode conversion [41]. 

In our work, we have used a raised cosine taper profile as it yields less mode conversion 
than the other tapers. A schematic diagram of a raised-cosine taper considered in this 

work is shown in Figure 5.10. 

The scattering matrix method is very fast and accurate for taper analysis. The analysis of 
taper was carried out using a dedicated scattering matrix code [42]. The tapered parts 

were divided lice a flight of stairs as shown in Figure 5.10. The scattering coefficient of 

each step was calculated by using a dedicated scattering matrix code. The scattering 
matrix code is invoked iteratively from the optimization loop of PSO algorithm, for each 

particle. 
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z0 
Figure 5.10: The raised-cosine taper profile 

The design specifications of non- linear taper are mentioned in Table 5.7. 

TABLE 5.7 DESIGN SPECIFICATIONS FOR NON-LINEAR TAPER 

Design Specifications Value 
frequency 170 GHz 

power 200 KW 
operating mode TE24,8 

taper profile raised-cosine 

The objective of the non-linear taper design for 170 GHz, 200 KW, CW gyrotrons is to 

obtain maximum transmission coefficient (s21-parameter). The s21 is obtained for the 
TE24,8 operating mode from the output.dat file generated by the the scattering matrix 

code. 
The objective function is: 

fund = S2  (TE24,8  ) 

I. Results 

In this work, the design optimization of raised cosine taper for 170 GHz, 200 KW, CW 

gyrotrons has been carried out to give the maximum transmission in the operating mode 
(TE24,8) with very less mode conversion, using PSO. The design parameters for non-

linear tapper are radius of taper at input end (7.1), radius of taper at output end (r2), length 
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of taper (L), number of sections (N) and gamma (y). The simulation is run for 100 

iterations with 10 particles. The range of design parameters considered for the simulation 

are mentioned in Table 5.8. 

TABLE 5.8 RANGE OF DESIGN PARAMETERS FOR RAISED COSINE TAPER FOR 170 GHZ, 
200 KW, CW GYROTRONS 

Design Parameter Range 
L [100, 150] mm 
ri 16.27 mm (constant) 
r2 17.039 mm (constant) 
N [50, 500] 
7 [0.1, 1.0] 

The optimized value of design parameters 1, n and y is shown in. Table 5.9, which gives 

maximum the transmission coefficient (s21) in the operating mode (TE24,8), with very less 

mode conversion, using PSO. 

TABLE 5.9 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR RAISED COSINE TAPER FOR 
170 GHZ, 200 KW, CW GYROTRONS 

Design Pa ra meter Optimized value 
L 100 mm 
N 480 

I' 0.559 
S21 (1E24,8) 99.0267 

On varying the radius of taper at output end (r2) with the other design parameters, we 

have obtained maximum transmission coefficient (s2i) in the operating mode (TE24,8), with 

very less mode conversion, using PSO 

Range of r2 = [16.5, 22.5] mm 

The optimized value o f des ign parameters 1, n and y is shown in Table 5.10. 

TABLE 5.10 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR RAISED COSINE TAPER FOR 
170 GHZ, 200 KW, CW GYROTRONS WITH VARYING RADIUS OF TAPER AT OUTPUT END 

Design Parameter Optimized value 
L 100 mm 
N 479 
Y 0.67 
r2 21.71 

s21 (TE24,8) 99.4385 
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Chapter 5: MOPSO for designing micro-/millimeter wave components.  

We have also observed the effects of varying gamma parameter on the taper synthesis 
and the transmission coefficient. The effect of the gamma parameter is shown in Figure 
5.11. 

Figure 5.11: Contours of raised-cosine taper showing the effect of parameter 
gamma (y) (L=100, N=480, r2=17.039 mm) 
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PSO has the advantage of easy implementation, while maintaining strong abilities of 

convergence and global search. In spite of those advantages, PSO still needs a long time 

to find solutions for large scale problems, such as problems with large dimensions and 

problems which need a large swarm population for searching in the solution space. The 

main reason for this is that the optimizing process of PSO requires a large number of 

fitness evaluations, which are usually done in a sequential way on CPU, so the 

computation task can be very heavy and thus running speed of PSO may be quite slow 

[43]. A promising approach to overcome this limitation is to parallelize these algorithms. 

6.2 Implementation of MOPSO on GPU 
The difference between a CPU function and a GPU kernel is that execution of the kernel 

should be parallelized. So we must design the parallelization methods for all the sub-

processes of optimizing by MOPSO. In this section, we present a model for 

implementing parallel MOPSO (MOPSO -CD) on GPU. 

The model is illustrated in Figure 6.1. In this model, the most computationally intensive 

part, fitness function evaluation, compute velocity are performed on GPU in parallel i.e. 

synchronously for each particle of the swarm. For this, firstly the data is transferred from 

CPU to GPU, then the threads are created in CUDA which is equal to the number of 

particle N, and then the computations within the iterative process are performed on GPU. 

Sub-processes within the iteration are parallelized. For all the sub-processes, the iteration 

is only applied to dimension index d = (1, 2..., D) while on CPU, it should also be 

applied to the particle index/ = (1, 2 ...N), where N is population size. The reason is that 

the arithmetical operation to all the N data in dimension d is done in parallel 

(synchronously) on GPU. In the same dimension d (d= 1....D), the position, velocity and 

fitness of all particles are updated in parallel. The general parallelized algorithm for all 

the sub-processes is illustrated in Algorithm below. The sub-process, Update Archive 
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cannot be parallelized, as each particle in the swarm population has to be checked 

sequentially for non-dominance criteria. 

Initialize the position 
and velocity for all j 

Compute fitness values of all j for all 
objectives. Non-dominated particles 
are stored in archive. Initialize pbest 
of each particle and gbest particle. 

4,  
Transport data from 

CPU to GPU 

Loop until max iteration 

Compute the crowding distance values of each non-
dominated solution in the archive A, sort the non-
dominated solutions in A in descending crowding 

distance values, randomly select the global best from 
a specified top portion ofthe sorted A 

Update velocity and position ofeach particle 

Maintain particles position. 

Compute fitness values of all particles 

Update pbest of each particle 

Update archive with new non-dominated particles 

Transport data back to CPU 

Figure.6.1: Parallel Implementation of MOPSO on CUDA 

The mechanism of crowding distance (for replacing solutions in the archive with new 

solutions, when archive is full.) and mutation can be added to the above algorithm for 
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maintaining the diversity of non-dominated solutions and to better convergence towards 

the Pareto front. 

General Algorithm for all parallelized sub-process on CUDA 

Step!. Initialize - set the 'block size' and 'grid size', with the number o f threads equaling 
to the number ofparticles N. 

Step2. For each dimension d do 
> Map all threads to the N position values one-to- one 
> Load N data from global to shared memory 

// Do operations to thread j (j 	synchronously 
Apply sub-process operation to all N data in parallel (for fitness function, fitness 
value corresponding to each objective is calculated) 

➢ Store the results 
End for 

A. Data Organization 
CUDA offers global memory to share data among different kernels. The global memory 

only allows the allocation of one dimensional array, so only one-dimensional array are 
used here for storing data, including the position, velocity and fitness values of all the 
particles. 

Let us assume that the problem has D variables/dimension and F objectives, and the 
swarm population is N. So, the array of position and velocity is represented with the 
length of D*N, and fitness with the length of F*N. An array X of length D*N which is 
used to store the position value of the particles, can be seen in the Figure 6.2. 
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N  

    

           

xl 

 

xl x2 

 

x2 

  

xD 

 

xD 

           

Figure.6.2: Representing individuals on global memory 

The same variables from all individuals are grouped and form a tile of N values in the 

global memory [44]. On the other hand, the efficiency of accessing the same variables of 
all individuals in parallel will be reduced, if an individual is mapped to D consecutive 

locations, because the simultaneous memory accesses cannot be coalesced and multiple 
memory transactions are required. 
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But these one dimensional arrays should be logically seen as a two-dimensional array Y. 

An element with the index of (i, j) in Y corresponds to the element in X with the index 
j) where i-th is the dimension of the j-th particle in the swarm. So, the array of 

position and velocity is represented with the length of D*N, and fitness with the length of 
F*N. 

B. Random Number Generation 

During the process of optimization, MOPSO needs lots of random numbers for velocity 

updating. As random numbers generation on GPU is very tricky, so we have rather 

generated random numbers on CPU and transport them to GPU. However the data 

transportation between GPU and CPU is quite time consuming, so we do not want to 

transfer them to GPU, during each iteration ofMOPSO. 

To resolve this problem we have generated M (M >>D*N) random numbers on CPU 
before running MOPSO. Then they are transported to GPU once and stored in an array R 

on the global memory. When the velocity updating is carried through, we just pass two 
random integer numbers P 1 ,P2 from CPU to GPU, then 2*D*N numbers can be drawn 
from array R starting at R(P 1) and R(P2), respectively. 

6.3 Experiments 
The experimental platform used is based on Intel(R) Xeon(R) CPU E5420 @ 2.50 GHz, 
2.49 GHz, 16.0 GB RAM, NVIDIA Quadro FX 3700, and Windows XP (x64). 

In this chapter, we have compared the CPU and GPU implementation results of following 

problems: 

1. MOPSO on benchmark function DTLZ6 [23], which is the minimization problem 

with 3 objectives and 22 variables. 

2. MOPSO for rule mining, the problem has 4 objectives for maximization. 

We have called the MOPSO run on CPU and GPU as CPU-MOPSO and GPU-MOPSO 

respectively. The Speedup is defined as the times that GPU-MOPSO runs faster than 
CPU-MOPSO. 
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= TCPU -MOPSO  
TGPU — MOPSO 	  (7) 

where 7 is speedup, Mpu_mcopso and TCPU-MOPso is the time taken by GPU-MOPSO and 

CPU-MOPSO respectively. 

6.3.1 Results of MOPSO on benchmark function DTLZ6 

To optimize the function DTLZ6 we have taken the number of iterations as 2000 and the 
size of population, defined as N is varied from 100 to 2000 in this run. The Result of 

DTLZ6 on CPU-MOPSO and GPU-MOPSO is shown in Table 6.1. 

The running time and speedup versus population size is shown in Figure 6.3 and Figure 

6.4 respectively. We can see from the Figure 6.3 that the running time of GPU-1 PSO 
and CPU-IIPSO is proportional to the swarm population, namely the time increase 
linearly with swarm population, keeping the other parameters constant. And the figure 
6.4 shows that the speed up increases with swarm population 

TABLE.6.1: RESULT OF DTLZ6 ON CPU-MOPSO AND GPU-MOPSO 

N TG PU-MOPSO  TC PU-MOPSO Y 
100 3.7820 4.5310 1.1980 
500 8.7650 22.6250 2.5812 - 
1000 16.0310 48.7970 3.04391 
1500 21.0160 75.6559  3.5999 
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Figure.6.3: Running Time and Swarm Population for benchmark problem (DTLZ6) 
using MOPSO on CPU and GPU 
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Figure.6.4: Speedup and Swarm Population for benchmark problem (DTLZ6) using 
MOPSO 

6.3.2 Results of MOPSO for rule mining 

In this we have generated the rules for mondrian foodmart dataset. The description of 

mondrian foodmart dataset is provide in chapter 5, it has 70 attributes and 5576 number 
of records. We have taken the number of iterations as 100 and the size of population, 
defined as N is varied from 500 to 2000 in this run. The result of Mondrian foodmart 
dataset on CPU-MOPSO and GPU-MOPSO is shown in Table 6.2. 

TABLE.6.2: RESULT OF MONDRIAN FOODMART DATASET ON CPU-MOPSO AND GPU- 
MOPSO 

' N TcPU-MOPSO TGPU-MOrso Y 
100 6.941 3.203 2.167 
500 14.818 6.359 2.3302 
1000 30.657 11.344 2.7024 
1500 46.698 15.516 3.01 

The running time and speedup versus population size is shown in Figure 6.5 and Figure 

6.6 respectively. We can see from the Figure 6.5 that the running time of GPU-dtPSO 
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and CPU-ISPSO is proportional to the swarm population, namely the time increase 

linearly with swarm population, keeping the other parameters constant. And the figure 

6.6 shows that the obtained speed up is almost constant with swarm population. 
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Figure.6.5: Running Time and Swarm Population for association rule mining using 
MOPSO on CPU and GPU 
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Figure.6.6: Speedup and Swarm Population for association rule mining using 
MOPSO 
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Chapter 7 	 Conclusion and Future Work 

7.1. Conclusion 
In this dissertation, we have applied multi-objective particle swarm optimization 

(MOPSO) algorithm in two real-life domains; data mining (for association rule mining) 

and micro-/millimeter wave (for optimized design of microstrip antenna). 

We have used MOPSO for rule generation in market basket dataset. In this we have also 

added an extra step before rule generation step, for clustering the dataset according to 

itemset size and has called it cluster based — MOPSO (CB-MOPSO). In our proposed 
work, we have shown that CB-MOPSO gives more optimized results compared to 

MOPSO. As the number of rules generated in CB-MOPSO is same as in MOPSO, but in 
much less time. 

We have used particle swarm optimization algorithm (PSO) for the design and 

optimization of micro-/millimeter wave components; we have optimized the design of 

two microstrip antenna (Proximity Coupled Dual-Frequency for wireless communication 
and compact triple band microstrip antenna for GSM and WLAN) and nonlinear tapper 

for a 1.0-1.3 MW, long-pulse strat-up gyrotron at 127.5 GHz. We have optimized the 
performance of microstrip antenna and nonlinear tapper by choosing the most appropriate 

configuration parameters. We have also shown that, by applying particle swarm 

optimization in microstrip antenna design to obtain the minimum return loss, we have 

comprised the bandwidth. So, to take into account both bandwidth and return loss (and 

some other objectives), we should use MOPSO for designing and optimizing the 
microstrip antenna. 

The implementation of MOPSO (for benchmark (DTLZ6) and rule mining problem) on 

GPU based on the software platform of CUDA from NVIDIA Corporation is also 
presented in this work. GPU-MOPSO has the following features: the running time of 

GPU-MOPSO is greatly shortened over CPU-MOPSO, the running time and swarm 

population size take a linear relationship, swarm population can be very large, and the 

larger the population is, the faster GPU-MOPSO runs than CPU-MOPSO. 
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Chapter 7: Conclusion  and future work 

72 Future Work 
In our proposed work, the geometry of compact triple band microstrip antenna is very 
complex. And it took number of days to simulate the microstrip antenna using EM 

simulator (IE3D. The optimization algorithm has to trigger the solver (IE3D) thousands 

of times during its run. The single call of IE3D can take few seconds to half an hour to 
simulate the geometry of microstrip antenna, depending on the complexity of geometry. 

The future scopes to the present work are stated as below: 

• Implementation of MOPSO for design optimization of microstrip antenna on 

multi-core architecture (Due to the limited memory of NVIDIA graphics card, 
antenna design may not be carried out on CUDA environment. Antenna design 

requires huge file transfer from CPU to GPU.) 

• MOPSO can be applied for the design problems of other engineering disciplines. 

• Different Evolutionary algorithms (bacterial foraging optimization, ant colony 

optimization, differential evolution) can be applied on presented problems. It 

would be useful to compare the results with MOPSO. 

• More computation intensive applications can be parallelized using CUDA 

environment. 
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