
MULTI-OBJECTIVE OPTIMIZATION USING
EVOLUTIONARY ALGORITHMS FOR COMPUTATION

INTENSIVE APPLICATIONS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

By
DIVYA GOEL

cassTRAL
0. 4 G.tb b3 b "1"/

zr ACC No 	

Dits 2°C to

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

Candidate Declaration

I hereby declare that the work being presented in the dissertation report titled "Multi-

Objective Optimization using Evolutionary Algorithms for Computation Intensive

Applications" in partial fulfillment of the requirement for the award of the degree of

Master of Technology in Computer Science and Engineering, submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, is an authentic record of my own work carried out under the guidance of Dr

Rajdeep N iyogi and Dr M.V.Kartikeyan in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee. I have not submitted the matter

embodied in this dissertation report for the award of any other degree.

Dated: 3 . 6, l 0

Place: ITT Roorkee.

Divya Goel

Certificate

This is to certify that above statements made by the candidate are correct to the best of

our knowledge and belief

Dated: 3 	1D

Place: IIT Roorkee.

\Vc%
Dr Rajdeep Niyogi 	 Dr. M.V.Ka rtikeya

Assistant Professor, 	 Professor,

Department of Electronics 	 Department of Electronics

and Computer Engineering. 	 and Computer Engineering.

Acknowledgements

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity.

It is my privilege to express my deep sense of gratitude and indebtedness to my guide Dr.

Rajdeep Niyogi whose invaluable guidance, constant motivation, patience and

enthusiasm were immensely helpful in carrying out this work. I am very grateful to my

co-guide Dr. M.V.Kartikeyan, for his guidance and direction, immense encouragement

and moral support to work in micro-/ millimeter wave domain. I am also very thankful to

Dr. Ankush Mittal for encouraging me to work on this field, and for guiding me from

time to time to proceed in the right direction. Special thanks to Dr. S. N. Sinha, Head of

ECE Department, for facilitating the necessary requirements to carry out our work and

for supporting us at critical juncture during the thesis submission.

I would also like to thank Dr. Narendra Chauhan for his constant support, without which

I am sure my work might have hit a dead end, my colleague Ragini Jain for helping me a

lot throughout my dissertation work and Mr. Ashwini Arya for his kind help in report

writing.

I also acknowledge the computer center, Indian Institute of Technology Roorkee and

NVIDIA Corporation, for the use of NVIDIA graphics card resource that has contributed

to this research.

I take this opportunity to extend my sincere thanks to all my friends at IIT Roorkee for

the constant support throughout my stay here. I am highly grateful to my parents and my

brother for their love and blessings which always motivated me to work better. Finally I

thank god for being kind to me and driving me through this journey.

(Divya Goel)

ii

Abstract

Evolutionary Algorithm (EA) possesses several characteristics that are desirable to solve

real world optimization problems up to a required level of satisfaction. Multiobjective

Evolutionary Algorithms (MOEAs) are designed with regard to two common goals, fast

and reliable convergence to the Pareto set and a good distribution of solutions along the

front. In his work, evolutionary algorithms based approaches for multi-objective

optimization have been studied. The particle swarm optimization has been studied in

detail. The Particle Swarm Optimization (PSO) is a stochastic, population-based

algorithm for search and optimization from a multidimensional space.

In this dissertation, multi-objective particle swarm optimization has been implemented

for two problem domains. The first problem domain is: designing and optimizing the

micro-/millimeter wave components, in this optimal design of two microstrip antenna,

(proximity coupled dual-frequency and compact triple-band) and the optimized design of

non- linear tapper has been presented. The second problem domain is: association rule

mining, in this rules have been generated for two market basket type database (randomly

generated and Mondrian foodmart dataset) using multi-objective particle swarm

optimization. We have also parallelized the multi-objective particle swarm optimization

on GPU for benchmark problem (DTLZ6) and real life problem (association rule mining)

and the speed up in running time for both the problems have been presented.

The code for optimization is implemented on MATLAB 2006b, and we have used the

EM simulator 1E3D for antenna design. 	The experimental platform used for

parallelization is based on Intel(R) Xeon(R) CPU E5420 @ 2.50 GHz, 2.49 GHz, 16.0

GB RAM, NVIDIA Quadro FX 3700, and Windows XP (x64), and we have used visual

studio 2005 for the sequential and parallelization code.

iii

Table of contents

3.3.2 Memory Hierarchy 	 17

3.4 GPU Architecture 	 18

Chapter 4 MOPSO for Association Rule Mining 	 21

4.1 Introduction 	 21

4.2 Problem Statement 	 22

4.2 MOPSO Approach in Rule Mining 	 22

4.3 Results 	 26

Chapter 5 MOPSO for designing micro-/millimeter wave components 	 28

5.1 Microstrip Antenna 	 28

5.2 Experiments 	 29

5.2.1 Optimal Design of Proximity Coupled Dual-Frequency Microstrip Antenna for

Wireless Communications 	 30

5.2.2 Optimal Design of Compact Triple-Band Microstrip Antenna to obtain the frequency

response at GSM WIAN 	 37

5.2.3 Design and optimization of a nonlinear taper for a 1.0-1.3 MW, long-pulse strat-up

gyrotron at 127.5 G Hz 	 40

Chapter 6 Parallelization of MOPSO on GPU 	 44

6.2 Implementation of MOPSO on GPU 	 44

6.3 Experiments 	 47

6.3.1 Results of MOPSO on benchmark function DTLZ6 	 48

6.3.2 Results of MOPSO for rule mining 	 49

Chapter 7 Conclusion and Future Work 	 51

7.1 Conclusion 	 51

7.2 Future Work 	 52

References 	 53

List of Figure

Figure 2.1: The general scheme of Evolutionary Algorithm as a flow chart [9] 	6
Figure 2.2: Example of a bi-objective space (ft, f2). We assume a minimization prob.

The Pareto front is the boundary between the points P1 and P2 of the
feasible set F. 	 7

Figure 3.1: Transistor division in CPU and GPU [8] 	 15
Figure 3.2: Thread Hierarchy in CUDA [8] 	 17
Fiugre.3.3: Memory Model of CUDA. 	18
Figure 3.4: GPU Hardware model [8] 	 19

Figure.5.1 The rectangular patch antenna using a microstrip edge feed and the
circular patch antenna using a coaxial probe feed 	 29

Figure.5.2: Proximity Coupled Microstrip Antenna [39] 	 31
Figure.5.3: Antenna Geometry of the Dual-Frequency Proximity Coupled Microstrip

Antenna [39] 	 31
Figure 5.4: Fitness of the best-designed antenna during the progress of the PSO

algorithm for the optimal design of Proximity Coupled Microstrip
Antenna 	 33

Figure 5.5: Return losses against frequency of Dual-Frequency Proximity Coupled
Microstrip Antenna using PSO 	 34

Figure 5.6: Return losses against frequency of Dual-Frequency Proximity Coupled
Microstrip Antenna using MOPSO 	 36

Figure.5.7: Pareto front of Dual-Frequency Proximity Coupled Microstrip Antenna
using MOPSO for the two objective functions (funci and func2) 	36

Figure.5.8: Structure of the Compact Triple-Band Microstrip Antenna 	38
Figure 5.9: Return losses against frequency of Compact Triple-Band Microstrip

Antenna using MOPSO 	 40
Figure 5.10: The raised-cosine taper profile 	 41
Figure 5.11: Contours of raised-cosine taper showing the effect of parameter

gamma (y) (L=100, N=480, r2=17.039 mm) 	 43

Figure.6.1: Parallel Implementation of MOPSO on CUDA 	 45
Figure.6.2: Representing individuals on global memory 	 46
Figure.6.3: Running Time and Swarm Population for benchmark problem (DTLZ6)

using MOPSO on CPU and GPU 	 49
Figure.6.4: Speedup and Swarm Population for benchmark problem (DTLZ6) using

MOPSO 	 49

vi

List of Figure

Figure.6.5: Running Time and Swarm Population for association rule mining using
MOPSO on CPU and GPU 	 50
Figure.6.6: Speedup and Swarm Population for association rule mining using
MOPSO 	 50

vii

List of Table

Table.4.1 number of rules generated in randomly generated and Mondrian
foodmart dataset with mopso and cb-mopso 	 26

Table.4.2 Comparison of CBMOPSOand MOPSOperformance on randomly generated
datasets 	 27

Table.4.3 Comparison of CBMOIVO and MOPSOperformance on Mondrian foodmart
datasets 	 27

Table 5.1 design specifications for Dual-Frequency Proximity Coupled Microstrip
Antenna 	 32

Table 5.2 Range of design parameters for Dual-Frequency Proximity Coupled
Microstrip Antenna 	33

Table 5.3 optimized value of design parameters for Dual-Frequency Proximity
Coupled Microstrip Antenna using PSO 	 33

Table 5.4 optimized value of design parameters for Dual-Frequency Proximity
Coupled Microstrip Antenna using moPSO 	 35

Table 5.5 design specifications for Compact Triple-Band Microstrip Antenna 	37
Table 5.6 Different parameters of the layout of compact triple-band microstrip

antenna 	 38
Table 5.7 design specifications for non-linear taper 	 41
Table 5.8 Range of design parameters for raised cosine taper for 170 GHz, 200 KW,

CW gyrotrons 	 42
Table 5.9 optimized value of design parameters for raised cosine taper for 170 GHz,

200 KW, CW gyrotrons 	 42
Table 5.10 optimized value of design parameters for raised cosine taper for 170

GHz, 200 KW, CW gyrotrons with varying radius of taper at output end
	 42

Table.6.1: Result of DTLZ6 on CPU-MOPSO and GPU-MOPSO 	 48
Table.6.2: Result of Mondrian foodmart dataset on CPU-MOPSO and GPU-MOPSO 49

viii

Chapter 1 	 Introduction

1.1 General Introduction
For the past few decades, engineering design and optimization [I] have been important

areas of research. Its goal is not only to achieve a feasible design, but also to achieve the

design objectives. In engineering design activities, the design objective could be to

minimize the cost of production or to maximize the efficiency of production. When

multiple objectives are present, the optimization problem is called a multi-objective

optimization (MO) problem. An optimization algorithm is a procedure which is executed

iteratively by comparing various solutions till the optimum or a satisfactory solution is

found [1].

A significant portion of research and application in the field of optimization considers a

single objective, although most real-world problems involve several objectives which

conflicts with each other (such as simultaneously minimizing the cost of fabrication and

maximizing product reliability). Since no one solution can be termed as an optimum

solution to multiple conflicting objectives, the resulting multi-objective optimization

problem (MOP) resorts to a number of trade-off optimal solutions [2].

Classical optimization methods can at best find one solution in one simulation run and are

susceptible to the shape of the Pareto front. So, these methods are inconvenient to solve

multi-objective optimization problems.

The evolutionary algorithm (EA) [3] stands for a class of stochastic optimization methods

that simulate the process of natural evolution. EA overcomes the issues of classical

mathematical programming techniques. They can simultaneously deal with a set of

possible solutions which allows us to find several members of the Pareto optimal set in a

single run of the algorithm and they are less susceptible to the shape or continuity ofthe

Pareto front [4].

Multi-objective Evolutionary Algorithms (MOEA) have become increasingly popular in

a wide variety of applications engineering, industrial, scientific [4, 5]. MOEAs are used

in engineering applications like Aerodynamic Design Optimization, electromagnetic

1

Chapter 1: Introduction

devices optimization, optimizing groundwater monitoring networks, city and regional

planning; in scientific applications like medicines (for medical image processing,

computer-aided diagnosis, treatment planning, and data mining etc), to identify

interesting qualitative features in biological sequences; in industrial applications like

Supply Chain Management, cellular manufacturing, design of fluid power systems etc.

Various MOEA's have been proposed during the last two decades. Genetic Algorithm is

one of the most famous methods and used frequently in Evolution computation field.

There also exist many bio-inspired heuristics for multi-objective optimization and

different evolution-based multi-objective evolutionary algorithm. The most important

among them are the particle swarm optimization (PSO) and differential evolution, whose

use has become increasingly popular in multi-objective optimization.

In this work PSO technique is used for optimization. PSO [6] is one form of swarm

intelligence inspired by social behavior of bird flocking or fish schooling. The PSO

system consists of population (swarm) of potential solutions called particles. Each

particle in the swarm adjusts its position in the search space based on the best position it

has found so far as well as the position of the known best-fit particle of the entire swarm,

and finally converges to the global best point ofthe whole search space.

In recent years, PSO has been used increasingly as an effective technique for solving

complex and difficult optimization problems in practice. PSO has been successfully

applied to problems such as function optimization, artificial neural network training,

fuzzy system control, blind source separation, machine learning and so on.

Compared to genetic algorithm, PSO has the advantage of easy implementation and has

few parameters to adjust, while maintaining strong abilities of convergence and global

search.

In spite of those advantages, PSO still needs a long time to find solutions for large scale

problems, as it requires a large number of fitness evaluations, which are usually done in a

sequential way on CPU. A promising approach to overcome this limitation is to

parallelize these algorithms [7].

2

Chapter 1: Introduction

In recent years, Graphics Processing Unit (GPU) which has traditionally been a graphics-

centric workshop has shifted its attention to the non-graphics and general-purpose

computing applications. Because of its parallel computing mechanism and fast float-

point operation, GPU has shown great advantages in scientific computing fields.

In order to perform general-purpose computing on GPU more easily and conveniently,

some platforms have been developed, such as Brook GPU (Stanford University), CUDA

(Compute Unified Device Architecture, NVIDIA Corporation) [8]. These platforms have

greatly simplified programming on GPU.

1.2 Motivation
Evolutionary algorithm offers various advantages for the design applications, which are

as follows:

• The requirement/necessity of the exclusive domain specific knowledge is reduced.

• These methods are adaptive and scalable, so, they can be applied to the design

applications of many engineering disciplines.

• They can handle many design constraints, variables and objectives,

simultaneously.

• They can avoid the chance of getting the local optima.

• They can easily be interfaced with electromagnetic (EM) simulators, due to which

the laborious task of optimizing design parameters can be converted to computer

simulations.

Due to the above advantages and enormous interest for PSO in latest research, we have

worked on multi-objective particle swarm optimization (MOPSO) in this dissertation

work.

1.3 Problem Statement
The problem undertaken in this dissertation can be divided as:

• To study the evolutionary algorithms for multi-objective optimization.

• To use Particle Swarm Optimization (PSO) for optimization of micro/millimeter

wave components and data mining problem.

3

Chapter 1: Introduction

• To parallelize the optimized benchmark (DTLZ6) and data mining problems on

CUDA for reducing the computation time.

The problems that we have taken for optimization are, proximity coupled dual-frequency

microstrip antenna, compact triple-band microstrip antenna, nonlinear taper and

association rule mining.

1.4 Organization of the Report
The organization of this dissertation report is as follows:

Chapter 2 gives the basics of evolutionary algorithm and its approaches for multi-

objective optimization. Further this chapter discusses the particle swarm optimization

and its techniques for multi-objective optimization. The algorithm for multi-objective

particle swarm optimization, that we have used for our implementation in other chapters

have also been presented in this chapter.

Chapter 3 discusses the multi-core architecture of CUDA programming environment,

which we have been used in this dissertation work.

Chapter 4 starts with the brief introduction of association rule mining and then give

multi-objective particle swarm optimization approach for rule mining.

Chapter 5 starts with the brief introduction of microstrip antenna and then gives the

optimal design for three problems using multi-objective particle swarm optimization.

Chapter 6 describes the parallel implementation of multi-objective particle swarm

optimization and compares the performance for benchmark problem (DTLZ6) and real

life problem (association rule mining) on CPU and GPU.

Chapter 7 concludes the dissertation report and gives suggestion for future work.

4

Chapter 2 Evolutionary Algorithm Based Approaches for
Solving Multi-Objective Problem (MOP)

21 Concept of Evolutionary Algorithm
An Evolutionary algorithm is characterized by three features:

1. A set of solution candidates.

2. A mating selection process is performed on this set

3. Several solutions maybe combined in terms ofrecombination to generate new

solutions.

The solution candidates are called individuals and the set of solution candidates is called

the population. Each individual represents the encoded form of possible solution, i.e., a

decision vector, to the problem at hand.

The mating selection process usually consists of two stages: fitness assignment and

sampling. In the first stage, the individuals in the current population are evaluated in the

objective space and then assigned a scalar value, the fitness, reflecting their quality.

Afterwards, the mating pool is created by random sampling from the population

according to the fitness values.

Then, the variation operators are applied to the mating pool. With EAs, there are usually

two of them, namely the recombination and the mutation operator. 	Finally,

environmental or survivor selection determines which individuals of the population (we

can use the latter set as the new population or can combine both sets and deterministically

choose the best individuals for survival) and the modified mating pool form the new

population [3]. The general scheme of Evolutionary Algorithm is shown as a flow chart

in Figure 2.1.

Multi-objective Evolutionary algorithm (MOEA) can yield a whole set of potential

solutions, which are all optimal in some sense. The two fundamental goals in MOEA

design are - guiding the search towards the Pareto set and keeping a diverse set of non-

dominated solutions.

5

Chapter 2: Evolutionary algorithm based approaches for solving MOP

The first goal is assigning scalar fitness values to the individuals in the presence of

multiple optimization criteria. The second goal concerns selection in general as we want

to avoid that the population contains mostly identical solutions (with respect to the

objective space and the decision space). Finally, a third issue which addresses both of the

above goals is elitism, i.e., the question of how to prevent non-dominated solutions from

being lost.

Initialization

Termination

Parent Selection

Population

Survivor Selection

Parents

Recombination
Mutation

Offspring

Figure 2.1: The general scheme of Evolutionary Algorithm as a flow chart [9]

2.2 Multi-Objective Optimization
Multi-objective optimization problem (MOP) is defined as follows:

M inimizing/maximizing m objectives.

Find: x = (xi, x2... x„)

Min/ Max: y = F (x) = (x),f2(-)... fin (-))

Subject to: g f (x) 	j = 0, 1, 2 ...k

h1 (X) = 0; 1= 0, I, 2 ...e

Where n is the number of design variables, in the number of objective functions, k the

number of inequality constraints, and e is the number of equality constraints. x == (xi,

x2... x,„) EX is an n-dimensional decision variable vector and X is the decision variable

space. y = 	y2... yn) E Y is an m-dimensional objective vector and Y is the objective

space.

A decision vector u EX is said to strictly dominate another decision vector ij EX

denoted by ii -< 5, if and only if (iff) V i E {I, ...m}: fi (u) 	(v) and jE {1, ...m}:

fi (u)<f,(1)). A decision vector x EX is said to be Pa reto optimal with respect to X if

6

Chapter 2: Evolutionary algorithm based approaches for solving MOP

there is no other decision vector that dominates in in X. The set of all Pareto optimal

solutions in the decision variable space is called Pareto optimal set and the

corresponding set of objective vector is called Pareto optimal front. The example of
Pareto front for bi-objective space is shown in Figure 2.2.

Figure 2.2: Example of a bi-objective space (f1, f2). We assume a minimization prob.
The Pareto front is the boundary between the points P1 and P2 of the feasible set F.

2.3 Classification of Multi-objective Evolutionary Algorithm
There are several possble ways to classify MOEAs. The following classification is

based on the type of selection mechanism adopted as given by Carlos A. Coello in [5]:

1. Aggregating Functions
2. Population-based Approaches

3. Pareto-based Approaches

2.3.1 Aggregating Functions
The most straightforward approach to deal with multi-objective problems is to combine

them into a single scalar value (e.g., adding them together). These techniques are known

as "aggregating functions", because they combine (or "aggregate") all the objectives of
the problem into a single one. Aggregating functions are underestimated by MOEA

researchers mainly because of the limitation of linear aggregating functions (ie., they
cannot generate non-convex portions of the Pareto front regardless of the weight

combination used).

7

Chapter 2: Evolutionary algorithm based approaches for solving MOP

2.3.2 Population based Approaches
In this approach, the population of an EA is used to diversify the search, but the concept

of Pareto dominance is not directly incorporated into the selection process. The classical

example of this sort of approach is the Vector Evaluated Genetic Algorithm (VEGA),

proposed by Schaffer. VEGA basically consists of a simple genetic algorithm with a

modified selection mechanism. At each generation, a number of sub-populations are

generated by performing proportional selection according to each objective function in

turn. Thus, for a problem with k objectives, k sub-populations of size M/k each are

generated (assuming a total population size of Al). These sub-populations are then

shuffled together to obtain a new population of size M, on which the genetic algorithm

applies the crossover and mutation operators.

VEGA has several problems, from which the most serious is that its selection scheme is

opposed to the concept of Pareto dominance. For example, there is an individual that

encodes a good compromise solution for all the objectives (i.e., a Pareto optimal

solution), but it is not the best in any of them, it will be discarded. Schaffer suggested

some heuristics to deal with this problem. One interesting aspect of VEGA is that despite

its drawbacks it remains in current use by some researchers mainly because it is

appropriate for problems in which we want the selection process to be biased and in

which we have to deal with a large number ofobjectives.

2.3.3 Pareto based Approaches
In this approaches, we consider MOEAs that incorporate the concept ofPareto optimality

in their selection mechanism. A wide variety of Pareto-based MOEAs have been

proposed in the last few years. Some of the Pareto-based approaches of Genetic

Algorithm (GA) as given by Carlos A. Coello in [5, 101 are as follows:

1. Goldberg's Pareto Ranking: Goldberg [11] suggested moving the population

toward Pareto Front, by using a selection mechanism that favors solutions that are

non-dominated with respect to the current population. The basic idea is to find the set

of individuals in the population that Pareto non-dominated by the rest of the

population. These individuals are then assigned the highest rank and eliminated from

Chapter 2: Evolutionary algorithm based approaches for solving MOP

further contention. Another set of Pareto non-dominated individuals are determined

from the remaining population and are assigned the next highest rank. This process

continues until the population is suitably ranked. He also suggested the use of some

kind of niching technique to keep the GA from converging to a single point on the

Pareto Front.

2. Multi-Objective Genetic Algorithm (MOGA): Fonseca and Fleming [12] proposed

a ranking approach different from Goldberg's scheme. In this case, each individual in

the population is ranked based on how many other points dominate them. All the

non-dominated individuals in the population are assigned the same rank as 1 and

obtain the same fitness, so that they all have the same probability of being selected.

MOGA uses a niche-formation method in order to diversify the population.

3. Non-dominated Sorting Genetic Algorithm (NSGA): This method was proposed

by Srinivas and Deb [13], and is based on several layers of classifications of the

individuals as suggested by Goldberg [11]. Before selection is performed, the

population is ranked on the basis of non-domination: all non-dominated individuals

are classified into one category with a dummy fitness value, which is proportional to

the population size, to provide an equal reproductive potential for these individuals.

An offshoot of this approach, the NSGA-II [14], uses elitism and a crowded

comparison operator that ranks the population based on both Pareto dominance and

region density. This crowded comparison operator makes the NSGA-II considerably

faster than its predecessor while producing very good results.

4. Niched Pareto Genetic Algorithm (NPGA): Horn and Nafpliotis [15] proposed a

tournament selection based on Pareto dominance. Two members of the population

are chosen at random and they are each compared to a subset of the population. If

one is non-dominated and the other is not, then the non-dominated one is selected. If

there is a tie (both are either dominated or non-dominated), then fitness sharing

decides the tourney results.

The Genetic Algorithm based on different approaches has been discussed above. There

also exist many bio-inspired heuristics for multi-objective optimization and different

9

Chapter 2: Evolutionary algorithm based approaches for solving MOP

evolution-based multi-objective evolutionary algorithm. The most important among

them are the particle swarm optimization (PSO) and differential evolution. However,

other bio-inspired algorithms such as artificial immune systems and ant colony

optimization have also been used to solve multi-objective optimization problems.

2.4 Particle Swarm Optimization (PSO)
Particle swarm optimization (PSO) is a population based stochastic optimization

technique developed by Eberhart and Kennedy [6], inspired by social behavior of bird

flocking or fish schooling. The high convergence speed and relative simplicity of PSO

motivate researchers to solve multi-objective problems by using PSO.

The PSO system consists of a population (swarm) of potential solutions called particles,

fly through the problem space by following the current optimum particles. Each particle

maintains a memory which helps it in keeping the track of its coordinates in the problem

space which are associated with the best solution (fitness) it has achieved so far.

Particle Swarm has two operators: Velocity update and Position update. During each

generation, each particle is accelerated toward the particles previous best position and the

global best position.

2.4.1 PSO: Algorithm
PSO is initialized with a group of random particles (solutions) and then searches for

optima by updating generations. Each particle has a position .7G= (xi, x2 	and a

velocity V = 	v2 V D) in a variable space. In generation t+1, the velocity and the

position are updated as follows:

t±t 	 t 	t 	 t 	t
Vid = W V id ± 	--id± C2 r p - id 	 gd — gd

1-1-1 	1 	1+1

Xid 	v ,

where i={1, 	NJ and N is the population size, d={1, 	0/and D is the dimension of

search space, CO is the inertia weight, ci and c2 are two positive constants, ri and r2 are

(1)

(2)

10

Chapter 2: Evolutionary algorithm based approaches for solving MOP

random values in the range [0, 1], Ad is the personal best of the particle i in generation t,

Pt gd is the global best of population in generation t.

The performance of each particle is evaluated according to a pre-defined fitness function,

which is related to the problem concerned.

2.5 Multi-Objective Particle Swarm Optimization (MOPSO)
Particle Swarm optimization (PSO) [6] was originally designed for solving single

objective optimization problems. The initial population of particles is initialized with

random solutions. For every generation, each solution moves toward the global Pareto

front by updating its velocity, the best solution a particle has achieved so far and follows

the best solution achieved among the population of solutions.

2.5.1 Some Techniques
PSO-based multi-objective optimization has following technique to get local best particle

or global particle as given in [16]:

1. Aggregating method: Parsopoules K E [17] first took PSO solving Multi-

objective problem using fixed weight, adaptive weight and vector evaluation

method. Weighted-vector method often can't get appropriate weights for special

optimization problem. Vector evaluation method always couldn't provide

satisfied solutions for Multi-objective Optimization (MO) problems.

2. Pareto-based method: Ray T and Liew K M [18] combined Pareto dominance

with PSO to solve multi-objective problems. They got a set of elitist solutions by

Pareto-dominance, from which a global optimal particle was chosen by roulette.

The approach uses a nearest neighbor density estimator to promote diversity.

3. Sigma method: Mestaghim S [19] selected global best particle (or local best

particle) according to the distance between current solutions and archive

solutions. Sigma method began with the initialization of a number of solutions.

If difference between fitness of the initial solutions was small, it would lead to

selection press inadequate and PSO algorithm convergence slowly.

4. Dynamic neighborhood method: Hu X and Eberhart R [20] defined one of

objective as optimization objective, other objective as fixed objective. Each

11

Chapter 2: Evolutionary algorithm based approaches for solving MOP

particle has different neighbors in each generation. This method is sensitive about

the order of optimization objective and neighbor objective.

5. Multi-population method: Konstantinos E.Parsopoulos et at [21] divided

population into many subpopulations, and each subpopulation executes PSO

independently according to one of the objective function. Every subpopulation

exchange information with each other to obtain Pareto-optimal solution. Great

number o fpartic les increased computational time.
6. Li [22] incorporated the main mechanisms of NSGA-II into PSO. In his

algorithm, the population of the particles was combined with the personal best

position, and the best was selected from this new population to compose the next

population.

7. C.R. Raquel, Prospero C. Naval, Jr. [23] incorporated the concept of crowding

distance into PSO and the distribution of non-dominated solutions was improved

on the Pareto front.

In this work, the extended algorithm of the single-objective PSO to handle multi-

objective optimization problems is implemented.

2.5.2 Algorithm

Stepl. Initialize population size, the archive size and the maximum number of iterations

according to the problem concerned. The positions are initialized randomly and

velocities are initialized to zero.

Step2. The particles are evaluated for all the objectives of the problem. The non-

dominated particles (i.e. Pareto optimal solutions) are stored in the archive. The initial

value of the personal best (pbest) for each particle is equal to its initial position and the

global best (gbest) is initialized to the best particle in the population.

Step3. Repeat for each iteration

a) Randomly select global best from the archive.

b) Update the new velocity and position of the particles according to equations (1) &

(2).

12

Chapter 2: Evolutionary algorithm based approaches for solving MOP

c) If particles position goes beyond the boundaries, then it is reintegrated by having

the decision variable take the value of its corresponding lower or upper boundary

and its velocity is multiplied by -1 so that it searches in the opposite direction.

d) Compute fitness values of the newly generated swarm.

e) Insert all new non-dominated solution in population into the archive if they are

not dominated by any of the stored solutions. All dominated solutions in the
archive by the new solution are removed from the archive.

f) Update the personal best solution of each particle in population. The personal

best is chosen as the best solution among its new position and its personal best.

g) Increment iteration counter by one.

Step4. Until maximum number of iterations are reached.

In this algorithm the mechanism of crowding distance and mutation can be incorporated.

The crowding distance computation can be used on global best selection and in the

deletion method of an external archive of non-dominated solutions. The crowding

distance mechanism together with a mutation operator maintains the diversity of non-

dominated solutions in the external archive and results in better convergence towards the

Pareto front [23].

The crowding distance value of a solution provides an estimate of the density of solutions

surrounding that solution. Crowding distance is calculated by first sorting the set of

solutions in ascending objective function values. The crowding distance value of a

particular solution is the average distance of its two neighboring solutions.

13

Chapter 3 	 nVidia CUDA architecture

Multicore architecture is the solution for the ever growing demand of more and more

computational power. As the trend is growing in the market more and more varieties of

multicore chips are developed. In this work we have used NVidia CUDA architecture to

attain performance improvement over sequential machines. Let us see this architecture in

detail.

3i GPU
The GPU refers to the commodity off-the-shelf 3D Graphics Processing Units, which are

specifically designed to be extremely fast at processing large graphics data sets for

rendering tasks. General purpose computing on the GPU is an active area of research.

The programmable GPU has evolved into a highly parallel, multithreaded; many core

processor with tremendous computational horsepower and very high memory bandwidth.

Its capabilities have increased dramatically in the past few years and the current

generation of GPUs has higher floating point performance than the most powerful

(multicore) CPUs [8].

The reason behind the discrepancy in floating-point capability between the CPU and the

GPU is that the GPU is specialized for compute-intensive, highly parallel computation

and therefore designed such that more transistors are devoted to data processing rather

than data caching and flow control, as schematically illustrated by Figure 3.1. More

specifically, the GPU is well suited to address problems that can be expressed as data

parallel computations [8].

The GPU contains hundreds of cores that work great for parallel implementation. The

programming is done in SIMD style where same code is worked on different data

locations. Until recently a graphics API was needed to code on GPUs which made

coding for non graphics oriented calculations tough. Trying to work around this

limitation nVidia released CUDA which allows GPUs to be programmed using a

variation ofC.

14

Chapter 3: nVidia CUDA architecutre

CPU 6PU
Figure 3.1: Transistor division in CPU and GPU [8]

3.2 CUDA
CUDA (or Compute Unified Device Architecture) is a parallel programming model and

software environment developed by Nvidia [8]. It was designed as a middle-ware to

allow application software that transparently scales its parallelism on GPU. The core

concepts involved with CUDA are a hierarchy of thread groups, shared memories, and

barrier synchronization. The thread hierarchy allows user to divide his task in a similar

hierarchy, where coarse sub-problems can be solved independently and finer pieces that

can be solved cooperatively in parallel using shared memory. CUDA achieves all this

using a minimal extension to C thus maintaining a low learning curve for programmers

already familiar with the standard programming language.

3.3 Programming Model
CUDA extends C by allowing the programmer to define C functions, called kernels, that,

when called, are executed N times in parallel by N different CUDA threads, as opposed

to only once like regular C functions.

A kernel is defined using the _global declaration specifier and the number of CUDA

threads for each call is specified using a new <<<...>>> syntax:

// Kernel definition
global 	 void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;
C[i] = A[i] + B[i];
}

Chapter 3: nVidia CUDA architecutre

in.t main ()
{
// Kernel invocation
vecAdd<<<1, N>>>(A, B, C);

Each of the threads that execute a kernel is given a unique thread ID that is accessible

within the kernel through the built-in threadIclx variable. In the above kernel defmition,

each of the threads that execute vecAdd() performs one pair-wise addition.

3.3.1 Thread Hierarchy

The batch of threads that executes the Kernel is organized as a grid of thread blocks, so

that the total number of threads is equal to the number of threads per block times the

number of blocks. These multiple blocks are organized into a one-dimensional or two-

dimensional grid of thread blocks as illustrated by Figure 3.2.

Threads within a block can cooperate among themselves by sharing data through some

shared memory and synchronizing their execution to coordinate memory accesses. Such

synchronization is possible by means of a programming primitive syncthreads() as

exposed by CUDA API. This serves as barrier synchronization. The number of threads

per block is restricted by the limited memory resources ofa processor core. On NVIDIA

Testa architecture, a thread block may contain up to 512 threads.

Each thread is identified by its thread ID. The index ofa thread and its thread ID relate to

each other in a straightforward way: For a one-dimensional block, they are the same; for

a two-dimensional block of size (Dx, Dy), the thread ID ofa thread of index (x, y) is (x +

y Dx); for a three dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of

index (x, y, z) is (x + y Dx + z Dx Dy).

In addition to the variable threadIdx, CUDA also have a few other built- in variables

namely gridDim, blockIdx and blockDim. The gridDim gives the dimension of grid, i.e

the number of blocks within the grid. The blockIdx variable gives the index of the

thread's parent block within the grid, and blockDim which gives the number of threads

per block. The gridDim and blockDim are being supplied in the call to kernel as the first

and second parameter respectively, to the <<->>> syntax.

16

Chapter 3: nVidia CUDA architecutre

Figure 3.2: Thread Hierarchy in CUDA [8]

3.3.2 Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their execution as
illustrated by Figure 3.3. Each thread has a private local memory. Each thread block has

a shared memory visible to all threads of the block and with the same lifetime as the

block. Finally, all threads have access to the same global memory. There are also two
additional read-only memory spaces accessible by all threads: the constant and texture

memory spaces. The global, constant, and texture memory spaces are persistent across
kernel launches by the same application. In this work, we have used local, shared and

global memory for our implementation.

Memory management at runtime on the GPU RAM is done using CUDA API
equivalents. The general procedure is to allocate memory on both host and device RAM,

using cudaMalloc function call for the device memory. The data contents are copied

from host memory to device memory using cudaMemcpy function. Writing data directly
onto device memory from CPU code is not possible. The kernel calls are then made to do

17

111 t7k

was

Chapter 3: nVidia CUDA architecutre

appropriate processing on the data. The processed data contents are copied back from the

device to the host using cudaMemcpy function.

Fiugre.3.3: Memory Model of CUDA

3.4 GPU Architecture
The Tesla architecture is one of the architectures of Nvidia which support CUDA. It is

built around a scalable array of multi-threaded Streaming Multiprocessors (SMs). When

a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are

enumerated and distributed to multiprocessors with available execution capacity. The

threads of a thread block execute concurrently on one multiprocessor. As thread blocks

terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor consists of eight Scalar Processor (SP) cores, two special function units

for transcendentals, a multithreaded instruction unit, and on-chip shared memory. The

multiprocessor creates, manages, and executes concurrent threads in hardware with zero

scheduling overhead.

18

'11 Device
Hum

Processor I 	Processor 2 • 4 '4 Processor M

Chapter 3: nVidia CUDA architecutre

To manage hundreds of threads running several different programs, the multiprocessor

employs a new architecture we call SIMT (single-instruction, multiple-thread). The
multiprocessor maps each thread to one scalar processor core, and each scalar thread

executes independently with its own instruction address and register state. The
multiprocessor SIMT unit creates, manages, schedules, and executes threads in groups of

32 parallel threads called warps. Individual threads composing a SIMT warp start

together at the same program address but are otherwise free to branch and execute

independently.

Device Memory

Figure 3.4: GPU Hardware model [8]

19

Chapter 3: nVidia CUDA architecutre

When a multiprocessor is given one or more thread blocks to execute, it splits them into

warps that get scheduled by the SIMT unit. The way a block is split into warps is always
the same; each warp contains threads of consecutive, increasing thread IDs with the first

warp containing thread 0. Every instruction issue time, the SIMT unit selects a warp that
is ready to execute and issues the next instruction to the active threads of the warp. A

warp executes one common instruction at a time, so full efficiency is realized when all 32

threads of a warp agree on their execution path. If threads of a warp diverge via a data
dependent conditional branch, the warp serially executes each branch path taken;

disabling threads that are not on that path, and when all paths complete, the threads
converge back to the same execution path. Branch divergence occurs only within a warp;

different warps execute independently regardless of whether they are executing common

or disjointed code paths. The GPU hardware model is shown in Figure 3.4.

20

Chapter 4 	 MOPSO for Association Rule Mining

4.1 Introduction
With the rapid growth in size and number of available databases, mining for knowledge,

regularities or high-level information from data became essential to support decision-

making and predict future behavior [24, 25]. Data mining techniques, used for achieving
the above goals, can be classified into the following categories: classification, clustering,

association rule mining, sequential pattern analysis, prediction, data visualization etc. [24,
25, 26].

Association rule mining is one of the important tasks of data mining intended towards

decision support. It is the process of finding some relations among the attributes/attribute

values of a huge database. These relationships can be represented as an lF—THEN

statement. IF <some conditions are satisfied> THEN <predict some values of other

attribute(s)>. The conditions associated in the IF part is termed as Antecedent, 'A' and
those with the THEN part is called the Consequent, 'C'. So, symbolically we can

represent this relation as A---)C and each such relationship that holds between the

attributes of records in a database fulfilling some criteria are termed as an association
rule.

The association rule mining first discovers all the frequent patterns (set of items) and then

constructs the rules from such patterns. Commonly used example is in market basket

analysis, where an association rule A—C means if consumer buys the set of items A, then
he/she probably also buys items C. These items are typically called as itemsets.

Different optimization methods for association rule mining have been proposed [27, 28].

The process is too resource-consuming, especially when there is not enough available

physical memory for the whole database. A solution to encounter this problem is to use
evolutionary algorithms, which reduce both cost and time of rule discovery.

Many existing algorithms visualize rule-mining as single objective problem, in which

they try to measure the quality of generated rule by considering only one evaluation
criterion, i.e., confidence factor or predictive accuracy. This criterion evaluates the rule

21

Chapter 4: MOPSO for rule mining

depending on the number of occurrence of the rule in the entire database, and can have

certain limitations.

1. The generated rule may have a large number of attributes involved in the rule

thereby making it difficult to understand.

2. These algorithms may extract some rules from the data that can be easily

predicted by the user.

3. These algorithms do not give any importance towards the rare events, i.e.,

interesting rules.

In this dissertation work, we have visualized association rule-mining as multi-objective

problem and has taken four objectives to evaluate/visualize the rules as in [29], Support,

Confidence, Comprehensibility and Interestingness.

42 Problem Statement
We have used multi-objective particle swarm optimization (MOPSO) algorithm, which is

defined in chapter 2, for mining the rules of market basket dataset. Market basket dataset

consist of data/ transactions generated as a result of customer purchases of items from a

supermarket. Our objective is to minimize the time for obtaining the rules.

4.2 MOPSO Approach in Rule Mining
Evolutionary multiobjective (EMO) techniques in rule mining can be roughly categorized

into two approaches [30]. In one approach, each rule is evaluated according to multiple

rule evaluation criteria such as support and confidence. An EMO algorithm is used to

search for Pareto-optimal rules. In the other approach, each rule set is evaluated

according to multiple rule set evaluation criteria such as accuracy and complexity. An

EMO algorithm is used to search for Pareto-optimal rule sets.

In this chapter, we have considered the first approach for rule mining. Each particle of

the swarm represents the rule, 	and each dimension, d of the particle represents each

attribute/item of the dataset respectively [29, 31]. Firstly, all particle positions are

initialized for D-dimension space with the random generation of values from 0 to 3,

where each value in the particle/ rule, A-,C is represented as:

22

Chapter 4: MOPSO for rule mining

The attribute is in the antecedent (A) part of the rule, if the value is 0

The attribute is in the consequent (C) part of the rule, if the value is 3

The attribute does not exists in the rule, if the value is for 2

With the above random generation of particle position values, we will obtain the values

for the particles in D-dimension space. So, if the dataset has 6 attributes (A, B, C, D, E,

F), then the particle sequence in 6-dimension space can be (0, 1, 3, 0, 2, 1), which would

mean 	For each rule/particle, the database is scanned to count the support (A),

support(C), support (AuC), and four objectives Support, Confidence, Comprehensibility

and Interestingness are calculated as:

Support = (support (AuC)) / (n)

Confidence = (support (AuC)) / (support (A))

Comprehensibility = log (1+ no of attribute(C)) / log (1+ total no of attribute)

Interestingness = (Confidence) * ((support (AuC) / (support(C))) * (1-Support)

where n is number of records in the dataset, no of attribute (A) is the number of attributes

in the particle which are Antecedent (A), total no of attribute is the number of attributes

in the particle which are either Antecedent (A) or Consequent (C). The algorithm for

support count in fitness function of MOPSO is shown below.

Algorithm for Support Counting in MOPS 0

Input: An association rule (particle) A—*C

Output: Support count of antecedent, consequent and the rule

1: for each transaction T in database
4: if (antecedent occurs in T)
5: increment antecedent support
6: end if
7: end for
8: Use same algorithm to count the support of consequent (C) and the whole rule (AuC)

Then the best particles (Pareto set) found based on the fitness function, which is the

problem's objective function (i.e. based on above four objectives), are inserted in the

archive. After that, the iterative process initiates. The particle's velocity and position, on

23

Chapter 4: MOPSO for rule mining

the next iteration, are calculated by the equations (1) and (2), as mentioned in chapter 2,

but with the slight modification due to boundary conditions (the dimension values ofeach

particle should be within (0,3)). The modified form of equations (1) and (2) are shown

below as equation (3) and (4) respectively.

t+ I 	, 	, 	I

v„, =la) vd + Ci(p Xid)+ C2(p -gd))%4 	

1+1 it 	\ \ 0/04

Xi d - k.k•X id V id "

where w-/ and c/ = c2 = 2. As an example, let's consider the particle position as (0, 1,

3, 0, 2, 1), initial velocity (0,0,0,0,0,0), particle's best position (0, 1, 3, 0, 2, 1) and global

best particle position as (0,0,1,3,2,1), then its modified velocity and positions in next

iteration is:

v = ((O, 0, 0, 0, 0, 0) + 2 x ((0, 1, 3, 0, 2, 1) - (0, 1, 3, 0, 2, 1)) + 2 x ((0, 0, 1, 3, 2, 1)-

(0, 1, 3, 0, 2, 1))) % 4

v = (0, 2, 0, 2, 0, 0)

x = ((0, 1, 3, 0, 2, 1) + (0, 2, 0, 2, 0, 0)) % 4

x = (0, 3, 3, 2, 2, 1)

Then the fitness function of the new particle (0, 3, 3, 2, 2, 1), is calculated on the basis of

four objectives and algorithm proceeds in the same manner as mentioned in chapter-2 till

the stopping criteria is reached.

Total number of comparisons in this method is the number of transactions in dataset

multiplied by the number of itemsets generated by MOPSO.

Number of contrasts = transactions x itemsets.

In the above method, to evaluate each association rule A-*C, the database is repeatedly

scanned to compare to the whole database with A, B, and AuB itemsets. Number of

comparisons for each itemset is equal to number of transactions. To reduce the number

of comparisons and running time, we can apply clustering on database.

(3)

(4)

24

Chapter 4: MOPSO for rule mining

If an itemsets occurs in a transaction, then minimum size of the transaction is the size of

itemset. In the other words, to count the support count ofan itemset, it must be compared

with transactions, having their size greater or equal to the itemset [32]. In this method, an

extra phase is processed before rule generations as shown below.

Algorithm for Clustering database [32]

Input: Data table containing D attributes/ columns where each column contains true
(item occurs in transaction) or false (items does not occur in transaction).

Output: D arrays/tables where each array/table represents a cluster (Cluster_Table(s)
represents the cluster, whose itemset size is's', where s = (1, 2 ...D}).

1: for each transaction T in database
2: s = number of items (true values) in T
3: Add T to Cluster Table(s)
4: end for

Second step is to change the support counting of the above method. The MOPSO scans

the whole transactions; while the C luster Based MOPSO (CB-MOPSO) prevents some

unnecessary comparisons. The algorithm for support count in CB-MOPSO is shown

below.

Algorithm for Support Counting in CB-MOPSO [32]

Input: An association rule A-->C

Output: Support count of antecedent, consequent and the rule

1: s = number of items in antecedent (A)
2: for k = s to Max size_of transactions
3: for each transaction T in C luster_Tab le(k)
4: if (antecedent occurs in T)
5: increment antecedent support
6: end if
7: end for
8: end for
9: Use same algorithm to count the support of consequent (13) and the whole rule (AuB)

Suppose f(i) as number of generated itemsets having their size (number of items) equal to

i. s(i) is the size of cluster(i) (i.e. the number of transaction in ithcluster). Number of

25

Chapter 4: MOPSO for rule mining

comparisons for each itemset is shown in Equation (2). So, the total number of

comparisons is:

TotalContrasts=

OR

D D
f (i) Is(j)

1=1 j=i

D
TotalContn2sts= >2 s(i) E f(j)

j=1

where D represents no. of attributes/ items/ columns in the database.

4.3 Results
We have implemented and compared the results of MOPSO and CB-MOPSO for rule

mining on two datasets:

• A randomly generated dataset

• Mondrian Foodmart dataset [33]

hi randomly generated dataset, we have generated 40,000 records with 40 attributes. In

Mondrian foodmart dataset [33] we have 5,546 data records with 70 attributes, we have

taken only consumable items as attributes. We have taken swam size as 1000 and

number of iterations as 100, number of rules generated in randomly generated and

Mondrian foodmart dataset with each case MOPSO and CB-MOPSO, is shown in Table

4.1.

TABLE.4.1 NUMBER OF RULES GENERATED IN RANDOMLY GENERATED AND MONDRIAN
FOODMART DATASET WITH MOPSO AND CB-MOPSO

Dataset Algorithm No. of
records

No. of
attributes

Swarm
size

No. of
iteration

No. of rules
generated

Randomly
generated

MOPSO 40, 40,000 40
1000 100

119
CB-MOSO 108

Mondrian
foodmart

MOPSO 5,546 70 20
CB-MOPSO 18

We can see from Table 4.1, that number of rules generated in each case MOPSO and CB-

MOPSO are approximately same. The difference in number of rule generated is due to

the random generation ofparticles.

26

Chapter 4: MOPSO for rule mining

We have compared the results of MOPSO and CB-MOPSO on the basis of speedup and

comparisons decrease, as shown in Table 4.2 and Table 4.3. The speedup and

comparisons decrease are defined as:

Speedup= (avg.time(MOPS0)- avg. time (CB-MOPSO))
	 (5) (avg. time (MOP S 0))

(avg.totalcomp.(MOPS0)- totalcomp.(CB-MOPSO)) Comparisondecrease=

	

	 (6) (avg. total c omparison(MOPSO))

Table 4.2 and Table 4.3 shows the results from running both methods in randomly

generated dataset and Mondrian foodmart dataset. The speed up has varied from 9.07%

for randomly generated dataset to 73.74% for Mondrian foodmart dataset, this shows that

speed up is greatly affected by the distribution of clusters.

TABLE.4.2 COMPARISON OF CBMOPSOAND MOPSOPERFORMANCE ON RANDOMLY
GENERATED DATASETS

Algorithm Avg. . demset size Avg. time Avg. total
comparison Speed up Comparisions

decrease
MOPSO

20.19
161976.3 4,000,000,000

9.07 44.7 CB-MOPSO 147282.5 2,210,676,643

TABLE.4.3 COMPARISON OF CBMOPSOAND MOPSOPERFORMANCE ON MONDRIAN
FOODMART DATASETS

Algorithm Avg.
itemset size Avg. time Avg. total

comparison Speed up Comparisions
decrease

MOPSO
35.01

28225.44 554600 000 5 	9 73.74 98.19 CB-MOPSO 7411.219 10,009,708

27

Chapter 5 MOPSO for designing micro-/millimeter wave
components

The antenna designs are carried out using commercially available electromagnetic (EM)

simulation tools. The latest EM simulator use conventional optimization methods for

optimization of design parameters. The difficulties with these local search methods are

that they require a proper initial guess; otherwise the chances of getting local optimum

solutions are very high. Moreover, they can handle only a few numbers of design

parameter and design constraint.

Evolutionary optimization methods such as genetic algorithms (GAs) and particle swarm

optimization (PSO) have been successfully used to solve electromagnetic problems; as

these methods can be easily interfaced with EM simulators [34]. (Due to which the

laborious task of optimizing design parameters can be converted to computer

simulations)

Particle swarm optimization (PSO) has been introduced into the EM community in [35,

36]. The enormous interest in applying PSO technique to antenna designs is evident due

to the wide range of practical problems that can be solved by this novel, nature-inspired,

evolutionary algorithm [37]. PSO technique is easy to implement and has a few

parameters to adjust, while maintaining strong abilities ofconvergence and global search.

5.1 Microstrip Antenna
Applications that require low-profile, light weight, easily manufactured, inexpensive,

conformable antennas often use some form of a microstrip radiator. The microstrip

antenna (MSA) [38] is a resonant structure that consists of a dielectric substrate

sandwiched between a metallic conducting patch and a ground plane. The MSA is

commonly excited using a microstrip edge feed or a coaxial probe. The patch is

generally made up of metal like copper, gold etc. which can take any shape. The

canonical forms of the MSA are the rectangular and circular patch MSAs. The

rectangular patch antenna in Figure 5.1 is fed using a microstrip edge feed and the

circular patch antenna is fed using a coaxial probe.

28

Chapter 5: MOPSO for designing micro-/millimeter wave components

Figure.5.1 Rectangular patch antenna using a microstrip edge feed and the circular
patch antenna using a coaxial probe feed.

For a good antenna performance, a thick dielectric substrate having a low dielectric
constant is desirable since this provides better efficiency, larger bandwidth and better

radiation. However, such a configuration leads to a larger antenna size. In order to

design a compact microstrip patch antenna, higher dielectric constants must be used

which are less efficient and result in narrower bandwidth. Hence a compromise must be

reached between antenna dimension and antenna performance.

5.2 Experiments
In this chapter, we have presented the design and optimization of specific micro-

/millimeter wave components using MOPSO. For this, we have taken three problems:

1. Design of Proximity Coupled Dual-Frequency Microstrip Antenna, to obtain the

frequency response at GPS (1.575 GHz) and Bluetooth (2.4 GHz — 2.484 GHz)

frequency bands of wireless communication with minimum return loss and

maximum bandwidth [39].

2. Design of compact triple-band Microstrip Antenna, to obtain the frequency

response at GSM (-900 MHz) and WLAN (-2A GHz and —5.2 GHz). The design

optimization has been carried out to obtain the minimum return loss at all three

bands and maximize bandwidth for the first band.

3. The design and optimization of a nonlinear taper for a 200 KW, long-pulse strat-

up gyrotron at 170 GHz has been chosen for this study. The operating mode is

TE24s. The design optimization has been carried out to give the maximum

29

Chapter 5: MOPSO for designing micro-/millimeter wave components

transmission in the operating mode with very less mode conversion. This gyrotron

will serve as a start-up gyrotron for ITER or ITER- like machines.

In this work, MATLAB is used for implementation. In the design of antenna using PSO

algorithm, the fitness function of PSO is interfaced with the EM simulator (IE3D). In

this implementation, IE3D is invoked in the iterative loop of the optimization algorithm.

The geometry is simulated for each particle using the IE3D in command (batch mode), in

each iteration. After the simulation is over the resultant .sp file is interpreted and return

loss, sii parameter values for the desired frequencies, fi are obtained from it and the

bandwidth (BW) of the desired frequencies is calculated by reading the .sp file to get fi

andfh.

BW = fh (fh>fi and sit = -10 db) — f (<f i and slj = -10 db)

By applying MOPSO for designing microstrip antenna, we can obtain the class of

optimum deigns (Pareto front). And we can choose the proper antenna of our interest

among this class. We can also use the resulted Pareto front to study the trade-offbetween

different objectives considered in optimization.

The MOPSO algorithm defined in chapter 2 is used in this chapter for the design and

optimization ofproblems. In equation (1), inertia weight is taken as 0.4 and cl=c2=1.

5.2.1 Optimal Design of Proximity Coupled Dual-Frequency Microstrip
Antenna for Wireless Communications

I. Antenna Design
In proximity coupled (also known as electromagnetically coupled) microstrip antenna

configuration, the radiating patch, fabricated on a dielectric substrate, is excited by a

microstrip line on another substrate, as shown in Figure 5.2. The microstrip patch

fabricated on dielectric substrate consists of two square sections of unequal patch

dimensions, as shown in Fig 5.3 and this patch is proximity coupled at the common

corner of the two patch sections by a microstrip line which is excited by a co-axial

connector. The dimensions of the two sections of the patch were adjusted to obtain two

30

Substt•ate
for Patch

Substrate for Line

II

Microstrip feed line on the
lower substrate

Coaxial
connector

Microstrip patch on the
upper substrate

Chapter 5: MOPSO for designing micro-/millimeter wave components

operating frequencies, GPS (Global Positioning Satellite System) (1.575) and Bluetooth

(2.4-2.484) frequency bands with sufficient bandwidths.

In this work, IE3D software is used for designing and simulating the microstrip antenna.

IE3D simulating software developed by Zeeland Software Inc., USA) is a full wave

electromagnetic simulation for the microwave and millimeter wave integrated circuits.

Microstrip Patch

Ground Plane Microstrip Feed
Line

Figure.5.2: Proximity Coupled Microstrip Antenna [39]

Figure.5.3: Antenna Geometry of the Dual-Frequency Proximity Coupled Microstrip
Antenna [39]

31

Chapter 5: MOPSO for designing micro-/millimeter wave components

The design specifications for Dual-Frequency Proximity Coupled Micro strip Antenna are

mentioned in Table 5.1.

TABLE 5.1 DESIGN SPECIFICATIONS FOR DUAL-FREQUENCY PROXIMITY COUPLED
MICRO STRIP ANTENNA

Design Specifications Value
Bandwidth (GPS) 20 MHz(1.575 GHz)

Bandwidth (Bluetooth) 84 MHz (2.4-2A84 GHz)

The optimization is aimed to achieve two objective functions: minimum return loss and

maximum bandwidth over the operating band (GPS and Bluetooth).

The objective functions are as follows:

1) The corresponding fitness function, funci for return loss used here is quite similar to

[40], which is as follows:

2
Awl = —(x sll(i) +

i=1 —313

1, if S11 (t):5_ —10 dB,
G, =

0, if S11 (0 > —10 dB,

2) The corresponding fitness function, func2 for bandwidth is as follows:

2 	1.0 .func2 = 	w. x 	
i =1 I BW(i) +1.0

i=/and 2 for GPS (1.575GHz) and Bluetooth (2.4-2.484GHz) band respectively. Iv, is the

weighting value, which has been selected after a number of preliminary runs, given as:

w1=0.4 and w2=0.6, sit is the return loss and BW is the bandwidth for the frequency
band.

II. Results

The simulation is run for 100 iterations with 25 particles. The range of values selected

for the simulation is shown in the Table 5.2:

32

4 7,

1 7 8 9 12 13 20 21 47 48 64 65 74 7577 78 79 80 84 85'92
Iterations

Chapter 5: MOPSO for designing micro-/millimeter wave components

TABLE 5.2 RANGE OF DESIGN PARAMETERS FOR DUAL-FREQUENCY PROXIMITY COUPLED
MICROSTRIP ANTENNA

Design Parameter Range
Dimension of square patch (Section I) [25.0, 32.0] mm
Dimension of square patch (Section II) [40.0 46.0] mm

Stub length [4.0 7.5] mm
Length of microstrip feed line 90 0 mm (constant)

The optimized results using PSO is shown here, by considering only one fitness function,

funci. The PSO algorithm has certainly created an optimal dual band antenna which has

the fallowing geometry parameters shown in Table 5.3:

TABLE 5.3 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR DUAL-FREQUENCY
PROXIMITY COUPLED MICROSTRIP ANTENNA USING PSO

Design Parameter Optimized value
Dimension of square patch (Section I) 27.61 mm
Dimension of square patch (Section II) 43.46 mm

Stub length 4.059698 mm

The progress of the PSO routine as a function of the number of iterations is shown in

Figure 5.4. The optimal design of proximity coupled dual-frequency microstrip antenna

has reached after 84 iterations.

Figure 5.4: Fitness of the best-designed antenna during the progress of the PSO
algorithm for the optimal design of Proximity Coupled Microstrip Antenna

33

Chapter 5: MOPSO for designing micro-/millimeter wave components

Figure 5.5 shows the simulation frequency response of the return loss for the proposed

antenna. The simulation result shows the two excited resonant modes at frequencies
1.572 and 2.421, which are the same as those we put in the fitness function of the PSO

process.

dB[S(1.1)]

73

0
-5

-10
-15
-20
-25
-30
-35
-40
-45
-50

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Frequency (GHz)

Figure 5.5: Return losses against frequency of Dual-Frequency Proximity Coupled
Microstrip Antenna using PSO

The simulated result shows that, PSO has optimized the performance of given microstrip
antenna, as we have obtained return loss, sii as:

sii = -48.99 db for Bluetooth

slz = -40.83 db for GPS

The bandwidth obtained at two frequency bands through simulation result is:

BW = 25MHz (1.561-1.586) for GPS

BW = 50MHz (2.399-2.449) for Bluetooth

34

Chapter 5; MOPSO for designing micro-/millimeter wave components

By applying PSO, we have obtained minimum return loss, but the obtained bandwidth is

less than the required bandwidth, which can have adverse effect after the fabrication; i.e.

it is possible that we may not obtain the resonance at the band which has less bandwidth.

So to overcome this problem, we have applied MOPSO for designing microstrip antenna

for two objectives return loss and bandwidth.

In this work, we have shown one of the Pareto optimal solutions we have obtained using

MOPSO-CD [23] in figure 5.6, for designing and optimizing Proximity Coupled Dual-

Frequency microstrip antenna for two objectives, minimum return loss and maximum

bandwidth, and the optimized value of design parameters for this Pareto optimal solution

is shown in Table 5.4.

TABLE 5.4 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR DUAL-FREQUENCY
PROXIMITY COUPLED MICROSTRIP ANTENNA USING MOPSO

Design Para meter Optimized value

Dimension of square patch (Section I) 27.5 mm

Dimension of square patch (Section II) 43.7 mm

Stub length 4.0 mm

The simulation result shows the two excited resonant modes at frequencies 1.574 and

2.428 with return loss, sll as:

sn = -34.68 db for Bluetooth
sii = -28.19 db for GPS

The bandwidth obtained at these two frequency bands through MOPSO simulation result

is:

GPS —30MHz (1.561-1.589)

Bluetooth — 80MHz (2.39-2.47)

The bandwidth obtained for two bands (GPS and Bluetooth) through MOPSO is

approximately equal to the required bandwidth, i.e we have obtained the required results

using MOPSO. The Pareto front showing the trade-off between the two objectives, fund

35

• Pa reto front

0

0.975 	0.98 	0.985 	0.99 	0.995
Pte

Chapter 5: MOPSO for designing micro-/millimeter wave components

and func2 for obtaining optimal design of dual-frequency proximity coupled microstrip

antenna using MOPSO is shown in Figure 5.7

1 	1.25 	1.5 	1.75 	2 	n5 	2.5 	2.75
	

3

Frequency (GHz)

Figure 5.6: Return losses against frequency of Dual-Frequency Proximity Coupled
Microstrip Antenna using MOPSO

Figure.5.7: Pareto front of Dual-Frequency Proximity Coupled Microstrip Antenna
using MOPSO for the two objective functions (funci and func2)

36

Chapter 5: MOPSO for designing microlmillimeter wave components

5.2.2 Optimal Design of Compact Triple-Band Microstrip Antenna to
obtain the frequency response at GSM and WLAN

L Antenna Design

The antenna design of compact triple-band microstrip antenna was available in CST
simulator. But for our work, the antenna design is required in IE3D simulator, as we have

interfaced the MOPSO code with the IE3D simulator. So, we have designed the antenna

geometry in IE3D simulator.

The design specifications for Dual-Frequency Proximity Coupled Microstrip Antenna are
mentioned in Table 5.5.

TABLE 5.5 DESIGN SPECIFICATIONS FOR COMPACT TRIPLE-BAND MICROSTRIP ANTENNA

Design Specifications Value

Bandwidth (GSM) 70 MHz (890-960 MHz)
Bandwidth (WLAN system

in 2.4 GHz band) 84 MHz (2.4-2.484 GHz)

Bandwidth (WLAN system
in 5.2 GHz band) 200 MHz (5.150-5.350 GHz)

For obtaining triple band behaviour of the antenna U-slots have been used. As the

frequencies that are required are very widely spaced from each other we require a

dielectric substrate with low dielectric constant and higher thickness. Hence foam having
dielectric constant of 1.18 and a thickness of 2.59 cm has been used as a dielectric

material. We have used the shorting wall to reduce the size of patch.

Two U-s lots make three current paths and hence the patch resonates at three frequencies

but the shorting wall that is used here shorts the current in one path. Hence three U-slots

have been used to obtain triple band behaviour. Coaxial cable is used as the feeding
method. The antenna geometry is shown ifFigure 5.8.

The parameters used for optimization of the design are listed out in Table 5.6. We can

see from above Table 5.6, that we have 4 constant and 11 variables. So, particles of

swarm have 11-dimensional space.

37

Chapter 5: MOPSO for designing micro-/millimeter wave components

SS

Figure.5.8: Structure of the Compact Triple-Band Microstrip Antenna

TABLE 5.6 DIFFERENT PARAMETERS OF THE LAYOUT OF COMPACT TRIPLE-BAND
MICROSTRIP ANTENNA

Parameter Name Description Range of values
fc Centre of feed point [0.0 , 8.0]
ss Side of substrate 23.0(constant)
IP Length of patch 21.0(constant)

wp Width of patch 21.0(constant)
sh Length of shorting wall 10.0(constant)

shp Position of shorting wall [7.0, 10.0]
rlx X coordinate of corner of outer slot [15.0, 20.0]
rly Y coordinate of corner of outer slot [16.0, 19.0]
r2 Lower corner of outer slot [15.0, 17.0]

slx X coordinate of corner of middle slot [0.0, 5.0]
sly Y coordinate of corner of middle slot [11.0, 15.0]
s2 Lower corner of middle slot [8.0, 13.0]
tlx X coordinate of corner of inner slot [0.0, 3.0]
tl y Y coordinate of corner of inner slot [6.0, 9.0]
t2 Lower corner of inner slot [3.0, 6.0]

The optimization is aimed to achieve two objective functions• minimum return loss and
maximum bandwidth over the operating bands (GSM and WLAN).

38

Chapter 5: MOPSO for designing micro-/millimeter wave components

The objective functions are as follows:

1) The corresponding fitness function, f1 for return loss used here is quite similar to [40],

which is as follows:

funci = 	wi 	:30 +Gi)
i=1

1, ifS11 (1)<-10 dB,
=

0, if 	(t)> —10 dB,

2) The corresponding fitness function, f2 for bandwidth is as follows:

1.0 font 	BW(i •=1)+1.0

2 and 3 for (GSM; 890-960 MHz) and wireless local area network (WLAN) systems
in the 2.4 GHz (2400-2484 MHz) and 5.2 GHz (5150-5350 MHz) bands respectively.

wi is the weighting value, which has been selected after a number of preliminary runs,

given as: w1=0.4, w2-0.3 and w3=0.3, sli is the return loss and BW is the bandwidth for

the frequency band.

II. Results

The Figure 5.9 shows that result obtained for compact triple band using MOPSO. We
can see that the results obtained are not very good. The reason for this is; we have

designed the CST design in IE3D simulator, and IE3D simulator is unable to simulate the

design of compact triple band properly. The IE3D simulator has split the geometry into

number of small geometries, due to which the geometry has not simulated in the required

manner.

The above optimization takes lot of time, as the geometry is very complex, as tens of
minutes is consumed in the single IE3D simulator call. So, it is required to parallelize the

optimization o f antenna design.

3 	s1 1 (i)

39

Chapter 5: MOPSO for designing micro-/millimeter wave components

dB[S(t1)]

0

-10

-20

-30

-40

-50

-60

-70
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Frequency (GHz)

Figure 5.9: Return losses against frequency of Compact Triple-Band Microstrip
Antenna using MOPSO

5.2.3 Design and optimization of a nonlinear taper for a 200 KW, long-
pulse strat-up gyrotron at 170 GHz

Gyrotron output system consists of an output taper which connects the interaction region

with the main waveguide system, a quasi-optical mode converter, and the RF window.
The nonlinear taper should provide a perfect match between interaction region and the

output waveguide with negligible mode conversion [41].

In our work, we have used a raised cosine taper profile as it yields less mode conversion
than the other tapers. A schematic diagram of a raised-cosine taper considered in this

work is shown in Figure 5.10.

The scattering matrix method is very fast and accurate for taper analysis. The analysis of
taper was carried out using a dedicated scattering matrix code [42]. The tapered parts

were divided lice a flight of stairs as shown in Figure 5.10. The scattering coefficient of

each step was calculated by using a dedicated scattering matrix code. The scattering
matrix code is invoked iteratively from the optimization loop of PSO algorithm, for each

particle.

40

Chapter 5: MOPSO for designing micro-/millimeter wave components

z0
Figure 5.10: The raised-cosine taper profile

The design specifications of non- linear taper are mentioned in Table 5.7.

TABLE 5.7 DESIGN SPECIFICATIONS FOR NON-LINEAR TAPER

Design Specifications Value
frequency 170 GHz

power 200 KW
operating mode TE24,8

taper profile raised-cosine

The objective of the non-linear taper design for 170 GHz, 200 KW, CW gyrotrons is to

obtain maximum transmission coefficient (s21-parameter). The s21 is obtained for the
TE24,8 operating mode from the output.dat file generated by the the scattering matrix

code.
The objective function is:

fund = S2 (TE24,8)

I. Results

In this work, the design optimization of raised cosine taper for 170 GHz, 200 KW, CW

gyrotrons has been carried out to give the maximum transmission in the operating mode
(TE24,8) with very less mode conversion, using PSO. The design parameters for non-

linear tapper are radius of taper at input end (7.1), radius of taper at output end (r2), length

41

Chapter 5: MOPSO for designing micro-/millimeter wave components

of taper (L), number of sections (N) and gamma (y). The simulation is run for 100

iterations with 10 particles. The range of design parameters considered for the simulation

are mentioned in Table 5.8.

TABLE 5.8 RANGE OF DESIGN PARAMETERS FOR RAISED COSINE TAPER FOR 170 GHZ,
200 KW, CW GYROTRONS

Design Parameter Range
L [100, 150] mm
ri 16.27 mm (constant)
r2 17.039 mm (constant)
N [50, 500]
7 [0.1, 1.0]

The optimized value of design parameters 1, n and y is shown in. Table 5.9, which gives

maximum the transmission coefficient (s21) in the operating mode (TE24,8), with very less

mode conversion, using PSO.

TABLE 5.9 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR RAISED COSINE TAPER FOR
170 GHZ, 200 KW, CW GYROTRONS

Design Pa ra meter Optimized value
L 100 mm
N 480

I' 0.559
S21 (1E24,8) 99.0267

On varying the radius of taper at output end (r2) with the other design parameters, we

have obtained maximum transmission coefficient (s2i) in the operating mode (TE24,8), with

very less mode conversion, using PSO

Range of r2 = [16.5, 22.5] mm

The optimized value o f des ign parameters 1, n and y is shown in Table 5.10.

TABLE 5.10 OPTIMIZED VALUE OF DESIGN PARAMETERS FOR RAISED COSINE TAPER FOR
170 GHZ, 200 KW, CW GYROTRONS WITH VARYING RADIUS OF TAPER AT OUTPUT END

Design Parameter Optimized value
L 100 mm
N 479
Y 0.67
r2 21.71

s21 (TE24,8) 99.4385

42

17.1 1

17

16.9 r

16.8

gamma= 0.1(x21= 39.5549)
gamma=0.3(s21=97.4443)
gamma= 0.5(x21=98.9609)

-- gamma= O. 7(s21= 98.9891)
- gannma= 0.9(s21= 98.9453)

16.7

16.6

16.5

16.4

16.3

16.2

16.1 	
0 10 20 30 40 50 60 70 80 90 100

Chapter 5: MOPSO for designing micro-/millimeter wave components.

We have also observed the effects of varying gamma parameter on the taper synthesis
and the transmission coefficient. The effect of the gamma parameter is shown in Figure
5.11.

Figure 5.11: Contours of raised-cosine taper showing the effect of parameter
gamma (y) (L=100, N=480, r2=17.039 mm)

43

Chapter 6 	 Parallelization of MOPSO on GPU

PSO has the advantage of easy implementation, while maintaining strong abilities of

convergence and global search. In spite of those advantages, PSO still needs a long time

to find solutions for large scale problems, such as problems with large dimensions and

problems which need a large swarm population for searching in the solution space. The

main reason for this is that the optimizing process of PSO requires a large number of

fitness evaluations, which are usually done in a sequential way on CPU, so the

computation task can be very heavy and thus running speed of PSO may be quite slow

[43]. A promising approach to overcome this limitation is to parallelize these algorithms.

6.2 Implementation of MOPSO on GPU
The difference between a CPU function and a GPU kernel is that execution of the kernel

should be parallelized. So we must design the parallelization methods for all the sub-

processes of optimizing by MOPSO. In this section, we present a model for

implementing parallel MOPSO (MOPSO -CD) on GPU.

The model is illustrated in Figure 6.1. In this model, the most computationally intensive

part, fitness function evaluation, compute velocity are performed on GPU in parallel i.e.

synchronously for each particle of the swarm. For this, firstly the data is transferred from

CPU to GPU, then the threads are created in CUDA which is equal to the number of

particle N, and then the computations within the iterative process are performed on GPU.

Sub-processes within the iteration are parallelized. For all the sub-processes, the iteration

is only applied to dimension index d = (1, 2..., D) while on CPU, it should also be

applied to the particle index/ = (1, 2 ...N), where N is population size. The reason is that

the arithmetical operation to all the N data in dimension d is done in parallel

(synchronously) on GPU. In the same dimension d (d= 1....D), the position, velocity and

fitness of all particles are updated in parallel. The general parallelized algorithm for all

the sub-processes is illustrated in Algorithm below. The sub-process, Update Archive

44

Chapter 6: Parallelization of MOPSO on GPU

cannot be parallelized, as each particle in the swarm population has to be checked

sequentially for non-dominance criteria.

Initialize the position
and velocity for all j

Compute fitness values of all j for all
objectives. Non-dominated particles
are stored in archive. Initialize pbest
of each particle and gbest particle.

4,
Transport data from

CPU to GPU

Loop until max iteration

Compute the crowding distance values of each non-
dominated solution in the archive A, sort the non-
dominated solutions in A in descending crowding

distance values, randomly select the global best from
a specified top portion ofthe sorted A

Update velocity and position ofeach particle

Maintain particles position.

Compute fitness values of all particles

Update pbest of each particle

Update archive with new non-dominated particles

Transport data back to CPU

Figure.6.1: Parallel Implementation of MOPSO on CUDA

The mechanism of crowding distance (for replacing solutions in the archive with new

solutions, when archive is full.) and mutation can be added to the above algorithm for

45

Chapter 6: Parallelization of MOPSO on GPU

maintaining the diversity of non-dominated solutions and to better convergence towards

the Pareto front.

General Algorithm for all parallelized sub-process on CUDA

Step!. Initialize - set the 'block size' and 'grid size', with the number o f threads equaling
to the number ofparticles N.

Step2. For each dimension d do
> Map all threads to the N position values one-to- one
> Load N data from global to shared memory

// Do operations to thread j (j 	synchronously
Apply sub-process operation to all N data in parallel (for fitness function, fitness
value corresponding to each objective is calculated)

➢ Store the results
End for

A. Data Organization
CUDA offers global memory to share data among different kernels. The global memory

only allows the allocation of one dimensional array, so only one-dimensional array are
used here for storing data, including the position, velocity and fitness values of all the
particles.

Let us assume that the problem has D variables/dimension and F objectives, and the
swarm population is N. So, the array of position and velocity is represented with the
length of D*N, and fitness with the length of F*N. An array X of length D*N which is
used to store the position value of the particles, can be seen in the Figure 6.2.

N

N

xl

xl x2

x2

xD

xD

Figure.6.2: Representing individuals on global memory

The same variables from all individuals are grouped and form a tile of N values in the

global memory [44]. On the other hand, the efficiency of accessing the same variables of
all individuals in parallel will be reduced, if an individual is mapped to D consecutive

locations, because the simultaneous memory accesses cannot be coalesced and multiple
memory transactions are required.

46

Chapter 6: Parallelization of MOPSO on GPU

But these one dimensional arrays should be logically seen as a two-dimensional array Y.

An element with the index of (i, j) in Y corresponds to the element in X with the index
j) where i-th is the dimension of the j-th particle in the swarm. So, the array of

position and velocity is represented with the length of D*N, and fitness with the length of
F*N.

B. Random Number Generation

During the process of optimization, MOPSO needs lots of random numbers for velocity

updating. As random numbers generation on GPU is very tricky, so we have rather

generated random numbers on CPU and transport them to GPU. However the data

transportation between GPU and CPU is quite time consuming, so we do not want to

transfer them to GPU, during each iteration ofMOPSO.

To resolve this problem we have generated M (M >>D*N) random numbers on CPU
before running MOPSO. Then they are transported to GPU once and stored in an array R

on the global memory. When the velocity updating is carried through, we just pass two
random integer numbers P 1 ,P2 from CPU to GPU, then 2*D*N numbers can be drawn
from array R starting at R(P 1) and R(P2), respectively.

6.3 Experiments
The experimental platform used is based on Intel(R) Xeon(R) CPU E5420 @ 2.50 GHz,
2.49 GHz, 16.0 GB RAM, NVIDIA Quadro FX 3700, and Windows XP (x64).

In this chapter, we have compared the CPU and GPU implementation results of following

problems:

1. MOPSO on benchmark function DTLZ6 [23], which is the minimization problem

with 3 objectives and 22 variables.

2. MOPSO for rule mining, the problem has 4 objectives for maximization.

We have called the MOPSO run on CPU and GPU as CPU-MOPSO and GPU-MOPSO

respectively. The Speedup is defined as the times that GPU-MOPSO runs faster than
CPU-MOPSO.

47

Chanter 6: Parallelization of MOPSO on GPU

= TCPU -MOPSO
TGPU — MOPSO 	 (7)

where 7 is speedup, Mpu_mcopso and TCPU-MOPso is the time taken by GPU-MOPSO and

CPU-MOPSO respectively.

6.3.1 Results of MOPSO on benchmark function DTLZ6

To optimize the function DTLZ6 we have taken the number of iterations as 2000 and the
size of population, defined as N is varied from 100 to 2000 in this run. The Result of

DTLZ6 on CPU-MOPSO and GPU-MOPSO is shown in Table 6.1.

The running time and speedup versus population size is shown in Figure 6.3 and Figure

6.4 respectively. We can see from the Figure 6.3 that the running time of GPU-1 PSO
and CPU-IIPSO is proportional to the swarm population, namely the time increase
linearly with swarm population, keeping the other parameters constant. And the figure
6.4 shows that the speed up increases with swarm population

TABLE.6.1: RESULT OF DTLZ6 ON CPU-MOPSO AND GPU-MOPSO

N TG PU-MOPSO TC PU-MOPSO Y
100 3.7820 4.5310 1.1980
500 8.7650 22.6250 2.5812 -
1000 16.0310 48.7970 3.04391
1500 21.0160 75.6559 3.5999

CPU-DTLZ6

ti
m

e
e

la
ps

ed
 in

 s
e

cs

160

140

120

100

80

60

40

20

0

100 500 1000 1500 2000
population size

48

Chapter 6: Parallelization of MOPSO on GPU

Figure.6.3: Running Time and Swarm Population for benchmark problem (DTLZ6)
using MOPSO on CPU and GPU

4.5
4

3.5
3

0.
3 :3

•

2.5
as
w

•

2
In

1.5
1

0.5
0

100 500 1000 1500 2000
population size

Figure.6.4: Speedup and Swarm Population for benchmark problem (DTLZ6) using
MOPSO

6.3.2 Results of MOPSO for rule mining

In this we have generated the rules for mondrian foodmart dataset. The description of

mondrian foodmart dataset is provide in chapter 5, it has 70 attributes and 5576 number
of records. We have taken the number of iterations as 100 and the size of population,
defined as N is varied from 500 to 2000 in this run. The result of Mondrian foodmart
dataset on CPU-MOPSO and GPU-MOPSO is shown in Table 6.2.

TABLE.6.2: RESULT OF MONDRIAN FOODMART DATASET ON CPU-MOPSO AND GPU-
MOPSO

' N TcPU-MOPSO TGPU-MOrso Y
100 6.941 3.203 2.167
500 14.818 6.359 2.3302
1000 30.657 11.344 2.7024
1500 46.698 15.516 3.01

The running time and speedup versus population size is shown in Figure 6.5 and Figure

6.6 respectively. We can see from the Figure 6.5 that the running time of GPU-dtPSO

49

Chanter 6: Parallelization of MOPSO on GPU

and CPU-ISPSO is proportional to the swarm population, namely the time increase

linearly with swarm population, keeping the other parameters constant. And the figure

6.6 shows that the obtained speed up is almost constant with swarm population.

500
	

1000 	1500
	

2000
Population site

Figure.6.5: Running Time and Swarm Population for association rule mining using
MOPSO on CPU and GPU

35

3

a 25

T.- 2

'0415

1

0.5

0 	

500 	1000 	1500 	2000

population silo

Figure.6.6: Speedup and Swarm Population for association rule mining using
MOPSO

50

Chapter 7 	 Conclusion and Future Work

7.1. Conclusion
In this dissertation, we have applied multi-objective particle swarm optimization

(MOPSO) algorithm in two real-life domains; data mining (for association rule mining)

and micro-/millimeter wave (for optimized design of microstrip antenna).

We have used MOPSO for rule generation in market basket dataset. In this we have also

added an extra step before rule generation step, for clustering the dataset according to

itemset size and has called it cluster based — MOPSO (CB-MOPSO). In our proposed
work, we have shown that CB-MOPSO gives more optimized results compared to

MOPSO. As the number of rules generated in CB-MOPSO is same as in MOPSO, but in
much less time.

We have used particle swarm optimization algorithm (PSO) for the design and

optimization of micro-/millimeter wave components; we have optimized the design of

two microstrip antenna (Proximity Coupled Dual-Frequency for wireless communication
and compact triple band microstrip antenna for GSM and WLAN) and nonlinear tapper

for a 1.0-1.3 MW, long-pulse strat-up gyrotron at 127.5 GHz. We have optimized the
performance of microstrip antenna and nonlinear tapper by choosing the most appropriate

configuration parameters. We have also shown that, by applying particle swarm

optimization in microstrip antenna design to obtain the minimum return loss, we have

comprised the bandwidth. So, to take into account both bandwidth and return loss (and

some other objectives), we should use MOPSO for designing and optimizing the
microstrip antenna.

The implementation of MOPSO (for benchmark (DTLZ6) and rule mining problem) on

GPU based on the software platform of CUDA from NVIDIA Corporation is also
presented in this work. GPU-MOPSO has the following features: the running time of

GPU-MOPSO is greatly shortened over CPU-MOPSO, the running time and swarm

population size take a linear relationship, swarm population can be very large, and the

larger the population is, the faster GPU-MOPSO runs than CPU-MOPSO.

51

Chapter 7: Conclusion and future work

72 Future Work
In our proposed work, the geometry of compact triple band microstrip antenna is very
complex. And it took number of days to simulate the microstrip antenna using EM

simulator (IE3D. The optimization algorithm has to trigger the solver (IE3D) thousands

of times during its run. The single call of IE3D can take few seconds to half an hour to
simulate the geometry of microstrip antenna, depending on the complexity of geometry.

The future scopes to the present work are stated as below:

• Implementation of MOPSO for design optimization of microstrip antenna on

multi-core architecture (Due to the limited memory of NVIDIA graphics card,
antenna design may not be carried out on CUDA environment. Antenna design

requires huge file transfer from CPU to GPU.)

• MOPSO can be applied for the design problems of other engineering disciplines.

• Different Evolutionary algorithms (bacterial foraging optimization, ant colony

optimization, differential evolution) can be applied on presented problems. It

would be useful to compare the results with MOPSO.

• More computation intensive applications can be parallelized using CUDA

environment.

52

References

[1]. K. Deb, Optimization for engineering design: algorithms and examples,
N.Delhi : PHI, 2000.

[2]. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John
Wiley & Sons, 2001.

[3]. Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. "A Tutorial on Evolutionary
Multiobjective Optimization". In Xavier Gandibleux et al., editor, Metaheuristics
for Multiobjective Optimisation, pages 3-37, Berlin, 2004. Springer. Lecture
Notes in Economics and Mathematical Systems Vol. 535.

[4]. Carlos A. Coello Coello, "Twenty Years of Evolutionary Multi-Objective
Optimization": A Historical View of the Field, IEEE Computational Intelligence
Magazine, 2006.

[5]. Carlos A. Coello Coello and Gary B. Lamont, editors. "Applications of Multi-
objective Evolutionary Algorithms. World Scientific, Singapore", 2004. ISBN
981-256-106-4.

[6]. J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, 1995, 1942-1948.

[7]. You Zhou and Ying Tan. "GPU-based Parallel Particle Swarm Optimization.
Evolutionary Computation, 2009. CEC'09". IEEE Congress on 18-21 May 2009
Page(s):1493 — 1500.

[8]. NVIDIA Corporation: NVIDIA CUDA compute unified device architecture
programming guide. NVIDIA Corporation, Jan 2007 (CUDA programming Guide
2.0.

[9]. Eiben, A. E.; Smith, J. E. Introduction to Evolutionary Computing. Springer, Cap.
2, 2003, 15-35. ISBN: 3-540-40184-9. Available at:
<http ://www.cs. vu. n1/%7Egusz/ecbook/Eibe n- S mith-Intro2EC-Ch2.pdf>.
Accessed on: 03 Apr 2005.

[10]. Carlos A. Coello Coello. "A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques". Knowledge and Information Systems.
An International Journal, 1(3):269-308, August 1999.

[11] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

[12] Carlos M. Fonseca and Peter J. Fleming. "Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization". In Stephanie Forrest,

References

editor, Proceedingsof the Fifth International Conference on Genetic Algorithms,
pages 416-423, San Mateo, California, 1993. University of Illinois at Urbana-
Champaign, Morgan Kauffman Publishers.

[13] N. Srinivas and Kalyanmoy Deb. "Multiobjective Optimization Using
Nondominated Sorting in Genetic Algorithms". Evolutionary Computation,
2(3) :22 I-248, Fall 	1994.

[14] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-11. IEEE Transactions on
Evolutionary Computation, 6(2):182-197, April 2002.

[15] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. "A Niched Pareto
Genetic Algorithm for Multiobjective Optimization". In Proceedings of the First
IEEE Conference on Evolutionary Computation, IEEE World Congress on
Computational Intelligence, volume 1, pages 82-87, Piscataway, New Jersey,
June 1994. IEEE Service Center.

[16]. YI Hong-Xia, XIAO Liu, LIU Pu-Kun, "Intelligent Algorithms for solving
multiobjective optimization problems", WiCOM'08 4th international conference
on 12-14 Oct, 2008, pages 1-5.

[17] Parsopoules K E, Vrahatis M N,"Particle Swarm Optimization Method in
Multiobjetive Problems [A],"Proceedings ACM Symposium on Applied
Computing[C]. 2002. 603-607.

[18]. T. Ray, K.M. Liew, A swarm metaphor for multiobjective design optimization,
Engineering Optimization 34 (2) (2002) 141-153.

[19]. Mostaghim S, Teich J, "Strategies for Finding Local Guides in Multi-objective
Particle Swarm Optimization(MOPSO)[A], "Proceedings of the IEEE Swarm
Inteligence Symposium [C].2003.26-33.

[20]. Hu X, Eberhart R,"Multiobjective Optimization Using Dynamic Neighborhod
Particle Swarm Optimization [A]," Proceedings of the IEEE Congress on
Evolutionary Computation[C]. 2002.

[21]. Konstantinos E. Parsopoulos, Dimitris K. Tasoulis, and Michael N.Vrahatis.
Multiobjective optimization using parallel vector evaluated particle swarm
optimization. In Proceedings of the IASTED International Conference on
Artificial Intelligence and Applications (MA 2004), volume 2, pages 823-828,
Innsbruck, Austria, February 2004. ACTA Press.

[22]. X. Li, "A nondominated sorting particle swarm optimizer for multiobjective
optimization", Proceedings of the Conference on Genetic and Evolutionary
Computation, vol. 2723, Springer, Berlin, Germany, 2003, pp. 37-48.

54

References

[23]. C.R. Raquel, Prospero C. Naval, Jr., "An effective use of crowding distance in
multi- objective particle swarm optimization", in: Proceedings of the Conference
on Genetic and Evolutionary Computation, ACM Press, New York,NY, USA,
2005, pp. 257-264.

[24] M.J. Berry, G. Linoff, Data Mining Techniques for Marketing, Sales and
Customer Support, John Wiley and Sons, New York, 1997.

[25] M.S. Chen, J. Han, P.S. Yu, Data mining an overview from a database
perspective, IEEE Transactions on Knowledge and Data Engineering 6 (1996)
866-883.

[26]. K.J. Cios, W. Pedrycz, R.W. Swiniarski, "Data Miming Methods for Knowledge
Discovery", Kluwer Academic Publishers, Boston, MA (2000)

[27] R. Agrawal, T. Imielitiski,A. Swami, "Mining association rules between sets of
items in large databases", Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, p.207-216, May 25-28, Washington, D.C.,
United States (1993)

[28] R. Agrawal , R Srikant, "Fast Algorithms for Mining Association Rules in Large
Databases ", Proceedings of the 20th International Conference on Very Large
Data Bases, p.487-499, September 12-15 (1994)

[29]. B. Dehuri, A. Ghosh, "Muti Objective Association Rule Mining Using Genetic
Algorithm", Information Sciences, Volume 163, pp: 123-133 (2004)

[30] Ishibuchi, H., Kuwajima, I., Nojima, Y.: Multiobjective Association Rule Mining_
In: Proceedings of the PPSN Workshop on Multiobjective Problem Solving from
Nature (2006)

[31]. Augusto de Almeida Prado G. Tor'acio, "Multiobjective Particle Swarm
Optimization in Classification-Rule Learning", C.A. Coello Coello et at (Eds.):
Swarm Intel. for Multi-objective Prob., SCI 242, pp. 37-64, Springer-Verlag
Berlin Heidelberg 2009

[32]. Ali Hadian, Mandi Nasiri, Behrouz Minaei-Bidgoli, " Clustering Based Multi-
Objective Rule Mining using Genetic Algorithm", International Journal of
Digital Content Technology and its Applications Volume 4, Number 1, February
2010

[33] http://sourceforge.net/projects/mondrian

[34]. Chauhan, N.C., "Soft Computing Techniques for Design Applications In
Microwave Domain," Ph.D Thesis, Indian Institute of Technology-Roorkee,
India, 2009.

55

References

[35]. J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in
e lectro magnetics," IEEE Transactions on Antennas and Propagation, vol. 52, no.
2, pp. 397-407, 2004.

[36]. Y. Rahmat-Samii, D. Gies, and J. Robinson, 'Particle swarm optimization (PSO):
a novel paradigm for antenna designs," The Radio Science Bulletin, vol. 305, pp.
14-22, 2003.

[37]. Nanbo Jin and Yahya Rahmat-Samii, 'Particle Swarm Optimization for Antenna
Designs in Engineering Electromagnetic", Journal of Artificial Evolution and
Applications, Volume 2008, Article ID 728929, 10 pages.

[38]. Carver, K. R., Mink, J. W. "Microstrip Antenna Technology". IEEE transactions
on Antennas and Propagation, v. AP-29, Jan. 1981, pp. 2-24.

[39]. Jibendu Sekhar Roy and Milind Thomas, "Investigations on A New Proximity
Coupled Dual-Frequency Microstrip Antenna for Wireless Communication",
Milcrotalasna revija, 2007, voL 13, br. 1, str. 12-15.

[40] W.C. Liu, "Optimal Design of Dual band CPW-fed G-shaped monopole antenna
for WLAN application," Progress In Electromagnetic Research, PIER 74, 2007,
21-38.

[41] M.V. Kartikeyan, E. Boric, and M. Thumm, Gyrotrons - High Power Microwave
and Millimeter Wave Technology. Springer-Verlag, Berlin-Heidelberg, Germany,
(2004).

[42] D. Wagner, M. Thumm, G. Gantenbein, W. Kasperek, and T. Idehara, "Analysis
of a complete gyrotrons oscillator using the scattering matrix description". Int. J.
Infrared and Millimeter Waves, voL 19, no. 2, (1998).

[43]. You Zhou and Ying Tan. "GPU-based Parallel Particle Swarm Optimization.
Evolutionary Computation,2009. CEC'09". IEEE Congress on 18-21 May 2009
Page(s):1493 —1500.

[44]. Man Leung Wong. 'Parallel multi-objective evolutionary algorithms on graphics
processing units". In GECCO '09: Proceedings of the I lth annual conference
companion on Genetic and evolutionary computation conference, pages 2515-2
522, New York, NY, USA, 2009. ACM.

56

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

