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ABSTRACT 

Reaching time plays an important role for the multi-coupled system like robot 

manipulator to achieved the minimum reaching time various method has been suggested. 

Variable structure system with sliding mode is one of the technique. Fuzzy controlled 

switching surface minimizes the reaching time up to distinct level. 

Instead of using conventional sliding mode controller having linear time varying 

switching surface, if fuzzy logic is used to regulate the. switching surface, the reaching 

.time of the system trajectory is shorter than in the fixed method and having better 

performance than the conventional method in reaching time. 

In this dissertation the fuzzy controller is used to regulate the switching surface 

and its performance is compared with fixed switching surface. The proposed PLC is 

designed using a very simple control rule base and most natural and unbiased 

membership function (symmetrical triangles with equal bases and 50%, overlap with 

neighboring MFS) 
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CHAPTER-1 

INTRODUCTION 

1.1 INTRODUCTION 

Conventional model based control has the advantage that one can prove 

optimality and stability; however, there are difficulties in dealing with non-linear, 

dynamic and ill-understood processes which are common in real world. 

Variables structure system (VSC) [1,3,6] with sliding mode has different structure 

on both sides of sliding surface is the major practical technology that is widely used in 

the control of Robotic manipulator [10], large scale control system, general non-linear 

control system [5], robust motion control, flexible structure control of spacecraft. It has 

Been recognized as a powerful design technique suitable for complex and non-linear 

system with complicated interaction and uncertainties. 

Sliding mode (SM) controller with fixed sliding, surface has the following 

characteristics (i) Robust stability (ii) Linearisation (iii) Order reduction. However it 

become sensitive to parameter uncertainties and noise disturbances in the reaching phase. 

The design of sliding surface is therefore one of the factor in the system performance. 
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To eliminate the system sensitivity in reaching phase, various methods have been 

suggested, (i) High gain feedback was used to minimize the reaching phase, unfortunately 

this may cause sensitive to unmodelled dynamics and chattering which is undesirable in 

physical system, (ii) A time varying sliding surface was proposed to remove the reaching 

phase by imposing a constrains that initial error be zero in tracking control and (iii) The 

system trajectory moved on the sliding surface from arbitrary• initial points, facing 

problem that the reaching time to an equilibrium point increase and sensitivity against 

disturbances. 

Sliding mode controller with fuzzy sliding surface was proposed and tested for 

robotic manipulator b, Takagi T. and Sugeno M. in 1998 [6]. 

Fuzzy logic controller (FLC's) have been suggested as a promising alternative 

approach for designing the sliding surface, especially those that are two complex for 

analysis by conventional technique. The effective control strategies that the human 

operator learn through his experience or by using common sense can often be expressed 

as a set of condition-action rules (called fuzzy rules), which describe condition about the 

process state using linguistic terms (i.e. fuzzy sets such as low, medium, high, slightly 

positive) and recommended control action using linguistic terms such as increase slightly 

or decrease moderately. 

An example of such a rule is the given below: 

IF error is small negative AND change of error is big positive or medium positive 

THEN decrease the stream flow slightly. 
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Since E.H. Mamdani introduced the concept of fuzzy logic control in 1974, which 

was strongly motivated by theory of fuzzy sets developed by L.N. Zadeh [2]. Takagi. T 

and Sugeno M. have done the various works in the field of fuzzy sliding mode controller 

and identification of systems. FLC-based systems have proven to be superior in 

performance to conventional systems in areas such as process control, automatic train 

operating systems, artificial intelligence, advances in computer hardware technology 

supporting fuzzy control have resulted in numerous commercial FLC applications such as 

washing machines, Vacuum cleaners, air conditioner etc.. 

Compared to conventional technique, FLC offers three important benefits, first, 

developing a FLC is cheaper than developing a model based on other controller with 

equivalent performances, second FLC's are more robust then conventional SM controller 

because they can improve the performance. Third, FLC's are customizable, since it is 

easier to understand and modify their rule. 

A major limitation of fuzzy control is the lack of a systematic methodology for 

developing fuzzy rules. A set of fuzzy rules often needs to the manually adjusted on trial 

and error basis before it reaches the desired level of performance. 

Multi-coupled system like robot manipulator where the output of one is linked 

with the input to other the reaching time is important, to reduce the reaching time the 

structure of the system is varied called VS.0 and, if the systems's trajectory always 

pointed toward the sliding surface then the system has sliding mode. 
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M, put 

Fig.1.1 : Schematic diagram of controlled process 
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In this dissertation the sliding mode controller is simulated with fuzzy sliding 

surface, which improved the chattering and decrease the reaching time of the system. 

1.2 STATEMENT OF PROBLEM 

The process chosen to investigate is a double integrator plant with variable 

structure as shown in fig. 1.1. The structure of the system is change such that the moving 

representative point -of the system is constrained to move along a predetermined 

switching surface. 

The state space representation of the system is given by 

x = 1Cx2 

x 2  =ku 

u = _ -2sgn (x2) xz. - 4x1 

=+1 when S(x„x2)> 0 
sgn(xz) 

=-1 when S(x1 ,x2 ) < 0 

The time varying sliding surface is defined by 

S(xl, xz) = xl + ?,x2 

The slope 2, of the switching line is regulated by the fuzzy controller to obtain the 

fuzzy switching surface: 
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The problem addressed in this dissertation is to compare the performance 

(reaching time) of the SM controller with fixed and fuzzy sliding surface. The gain of the 

system is varied and performance is compared. 

1.3 ORGANIZATION OF DISSERTATION 

Including this introductory chapter, which gives a brief description about the 

fuzzy control and its application, the dissertation is organised as follows 

In the second chapter important terms and definition about the fuzzy set theory 

are discussed, which are the back bone of fuzzy control. 

The third chapter describes the general structure of fuzzy controller. Design 

parameters of different module of fuzzy control have been discussed in this chapter. 

Chapter 4 discusses the design consideration used in the dissertation for fuzzy 

controller, process and SM controller. It also discusses the detail of software. 

Chapter 5 discusses the simulation results obtained and compares the responses 

for fuzzy and SM controllers. 

Chapter 6 concludes the dissertation. 
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1.4 LITERATURE REVIEW 

Variable structure system (VSC) theory was developed during last 30 years 

exclusively in USSR. Utkin (1977, 78) developed the theory of VSC with sliding mode. 

The basic mathematical ideas of non-linear system with discontinuous right hand 

side comes from theory developed by Fillipov (1960). In SMC, the moving 

representative point of the system is constrained to move along a predetermined 

switching surface Itkin (1976). The design of switching surfaces completely determine 

the performance of the system. The robustness of VSC can be improved by shortening 

the time required toattain the sliding mode. 

Young, et al. (1977) used the high gain feedback to speed up the reaching phase. 

This may cause sensitive to unmodelled dynamics and chattering. Slotine J.J. and Sastry, 

S.S. (1983) suggested a time varying switching surface, facing problems that reaching 

time to an equilibrium point increases and also sensitivity against disturbance increases. 

Sliding mode controller with fuzzy sliding surface is designed by Takagi T. and 

Sugeno M. (1998), which has better performance than conventional SM controller. 
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CHAPTER-2 

FUZZY SETS : MATHEMATICS OF FUZZY CONTROL 

2.1 INTRODUCTION 

Fuzzy set theory was developed in 1965 by Lofti Zadeh of the University of 

California in Berkeley [2]. This approach is useful to solve the typically complex 

problem which are after left to deal with human being. 

Fuzzy set theory is based on ordinary set theory (classical set theory) and 

becomes identical with it in the limiting case where the properties being dealt with the 

'crisp'. As with ordinary sets, fuzzy set are defined over some universe discourse, which 

might be a population of people, a set of possible measurement values, a range of 

possible output voltage, or otherwise depending on the problem. 

2.2 FUZZY SETS •  

In fuzzy set theory, 'normal set is called crisp set, in order to distinguish them 

from fuzzy set let C be a crisp sets. defined on the universe U, then for any element u of 

U, either u n C or u 0 C. In fuzzy set theory this property is generalized, therefore in 

fuzzy set F, it is not necessary that either u E F or u e F. 
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The characteristics function of a crisp set assign a value of either I or 0 to each 

individual in the universal set, thereby discriminating between members and nonmembers 

of the crisp set under consideration. This function can be generalized such that the values 

assigns to the element of the universal set fall within a specified range and indicate the 

membership grade of these element in the set in question. Larger values denote higher. 

degree of set membership. Such a function is called a membership function, and the set 

defined by it afuzzy set. 

The .most commonly used of values of membership function is the unit interval 

[0, 1]. In this case each membership function maps element of a given universal set X. 

which is always a crisp set, into real member in [0, 1] 

Two distinct notation are most commonly employed in the literature to denote 

membership function of a fuzzy set A is denoted by µA that is 

µA  : X —> [0, 11 

In the other one the function is denoted by A and has form 

A:X—*[0, 1] 

Definition : The membership function µF of a fuzzy setF is a function 

lip: U-[0,1] 
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So, every element u from U has a membership degree µr(u)E[0,1].F is completely 

determined by the set of tuples 

F = {(u, µF(U))  I  u a U}. 

2.2.1 Properties of Fuzzy Sets . 

Let A and B be fuzzy sets defined respectively on the universe X and Y and let R 

be a fuzzy relation defined as X x Y. 

(i) Support : The support of a fuzzy set A is the crisp set that contains all elements of 

A with non zero membership degree denoted by S(A) mathematically defined as 

S(A) = {u E X I l-LA(u) > 0} 

The support of fuzzy set is an interval 

(ii) Width : The width of a convex fuzzy set A with support set S(A).is defined as, 

Width(A) = sup (S(A)) - inf (S(A)) 

sup and int. denote the mathematical operations supremum and infimum. They are 

defined as, 

a=sup(A)iffV,EA:x<a and VE>0F, EA:x>a-E, 

=inf(A) iffy EA: x>_(3 and Va>0E,; A: x<p-F-E 
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for the fuzzy set A with membership function A(x : a, f3, y). Its support set is 

S(A)=[a,y] its width is width (A)=y-a left width (A)=(3-a, right width (A)=y-(1. 

(iii) Nucleus: The nucleus of a fuzzy set A is the crisp set that contains all values with 

membership degree formally, mathematically defined as 

nucleus(A)= {u E XI. µA(u)= 1} 

If there is only one point with membership degree equal to 1, then this point is 

called the peak value of A 

The nucleus is the interval [20,24], the supports is interval [18,26]. 

(iv) Height: The height of a fuzzy set A is equal to the largest membership degree µ,a 

mathematically 

hgt(A) = sup PA  (u) 
u G x 

A fuzzy set is normal if hgt(A)=1 and subnormal if hgt(A) < 1. 

(v) Convexity : A fuzzy set is convex if its membership function does not contain 

'dips this means that the membership function is for example, increasing, 

decreasing or bell shaped. Mathematically a fuzzy set is convex if and only if 



µ 

Fig. 2.1 : An example of convex and a non convex (cancave) fuzzy set 
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Vx,y u X `d ? e [0, 11 : µA (X.x + (l.-2).y) >_ min (µA (x), RACY)) 

Fig.2.1 show a convex and concave function. 

2.2.2 Operations of Fuzzy Sets 

(i) . Equality: 

Two fuzzy sets are equal (A=B) if and only if 

V E S : IIA(X) = 

(ii) Subset: 

A is a subset of B (A c B) if and only if 

V x EX : µA(X) 5 i (x) 

(iii) Union: 

Union of two fuzzy sets A and B is given by 

V X EX : F.IAUB(x) = max (~..LA(x), lxo(x)) 

diagrammatic representation of union is given in fig.2.2. 

(iv) Intersection: 

Intersection of two fuzzy sets A and B is given by 
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II 

0 x 

Fig. 2.2 : Union of fuzzy sets A and B. 

µ 

1 

n x 

Fig. 2.3 . Intersection of fuzzy sets A and B 

µ 

0 

0 x 

Fig.. 2.4 : Complement of fuzzy set A 
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V x aX : lLA„B(x) min (µA(x), µn(x)) 

Diagrammatic representation of intersection is given in fig.2.3. 

(v) 	Complement: 

Complement of a fuzzy set A is given by 

V X.EX : .CA(X) = 1-PA(X)  

Diagrammatic representation of complement is given in fig.2.4 

2.2.3 Fuzzy Proposition 

Approximate reasoning is used to represent and reason with knowledge expressed 

in atomic primitives, which are expressed in a natural language form, example, 

"Error has the value negative big" 

The above natural language expression is rewritten as 

"Error has the property of being negative big" 

Symbolically it is written as 

eisNB 

where is stands for "has the property of being". 
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The meaning' of the symbolic expression "E is NB" helps us decide the degree to 

which this symbolic expression is satisfied given a specific physical value of error. 

Based on the notion of atomic fuzzy proposition and linguistic connective such as 

'and ', 'or', 'not' and 'IF-THEN, one can form more fuzzy proposition called compound 

fuzzy proposition e.g. 

X is A and X is B, 

X is A or X is B, 

XisnotA 

(X isAandXisnotB)orXisC 

if X is A than X is B, etc. 

'and' = conjunction 'or' = disconjunction 'not' = negation 

(i) 	Conjunction: 'anrl' 

If A and B.  are two.fuzzy set defined over universe of discourse U if p or q be the 

following two atomic fuzzy proposition P : "X is.A" and q : "X is B" then conjunction 

(A) is defined as 

Symbolic Meaning 

X is A, µA or A 

XisB, µaor B 

.XisAr B 	 . µ,tenorAnB 
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(ii) 	Disconjunction 'or':  

To disconjunction (v) is given by for the same fuzzy set and fuzzy preposition: 

Symbolic Meaning 

X is A, µA  or A 

XisB, µB  or B .  

XisALiB JL 	orAUB 

(iii) 	Negation 'not':  

The negation ':X" is not A of a fuzzy preposition "X is A" is given by 

Symbolic Meaning 

XisA, 2A orA 

XisA 11A  or. A' 

17 



Crisp Process State Values 	 Crisp Control Output Values 

-- Computational flow 
—? Informal flow 

Fig.3.1 : The structure of FKBC 
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CHAPTER-3 

FUZZY CONTROLLER AN OVERVIEW 

Fig.3.1 shows.the general structure of fuzzy knowledge base controller (FKBC). 

As illustrated in figure. It consists of the following components, 

• Fuzzification module 

• Knowledge base 

• Inference 

Defuzzification module 

3.1 FUZZIFICATION MODULE 

The fuzzification model (FM) performs the following functions [4]: 

3.1.1 FM-F1 

• This module performs the scale transformation (i.e. input normalization) which 

maps the physical values of the current process state variables into a normalized universe 

of discourse (normalized domain). When a non-normalized domain is used then there is 

no nccd of FM-Fl. 
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3.1.2 FM-F2 

This module converts the normalized values from above to the fuzzy sets i.e. it 

convert a point wise (crisp), current values of a process state variable into a fuzzy set. 

The choice of fuzzification strategy is determined by the type of the inference 

engine or rule firing. 

3.2 KNOWLEDGE BASE 

The basic function of the data base is to provide the necessary information 51r the 

proper functioning of the fuzzification module, the rule base, and the defuzzification 

module. This information includes [2] 

• Fuzzy sets representing the meaning of the linguistic values of the process 

state and control output variable. 

• Physical domains and their normalized counterparts together with the 

normalization/denormalization. (scaling) factors. The knowledge base of a 

FKBC consists of a data base and rule base. 

3.2.1 Data Base 

The design parameter of the data base includes : 

• Choice of membership functions 

• Choice of scaling factors. 
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For example, a PI like fuzzy controller can be expressed as 

Na,, Au(k) = F (Ne  e(k)), Noe  . Ae(k)) 

Where 

N, and Noe  are the scaling factors for e, Ae and Au respectively 

The basic approaches for the determination of the scaling factor is heuristic and 

formal. The performance criteria are 

• Desired value of overshoot 

• Desired rise time 

• Desired amplitude of oscillation 

3.2.2 Rule Base 

The design parameter of the rule base include 

• Choice of process state and control output. variables 

• Choice of the content of the rule antecedent and the rule consequent 

• Choice of term sets for the process state and control output variables. 

• Derivation of the set of rules 

21 



(i) 	Choice of membership function 

Let the physical domain of e, Ae, Au, be a, Ac, Au where e(error), Ae(change of 

error) are input variables and Au(change in control) is output variable of fuzzy controller. 

The meaning or interpretation of a particular linguistic value LX of linguistic 

variable x is given by a fuzzy set LX or µLx defined on the domain (universe of 

discourse) x of x as 

LX =µms= f mx(x) /x. 

Now suppose that aE = 5AE = aAU = {NB, NM, NS, ZE, PS, PM, PB} i.e. the 

term sets containing the linguistic values for the three linguistic variable are the same. In 

this case there is need to define twenty one membership function representing the 

meaning of each linguistic value from the above term set on the respective domain e, As 

and Au. For computational' efficiency 'and efficient use of memory, a uniform 

representation of the membership functions is required. ,The uniform representation can 

be achieved by employing membership functions with uniform shape and parametric, 

functional definition. 

The most popular choices for the shape of the membership function include 

triangular, trapezoidal and bell-shaped functions. These choices can be explained by the 

ease with which a parametric, functional description of the membership function can be 
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2 

I) 

-6 -5 ' -4 -3 -2 -1 0 	1 	2 3 	4 	5 	6 

Figure 3.2 The fuzzy sets N13, NM, NS, ZO, PS, PM and P13 on the domain [-6, 6). 
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obtained, stored with minimal use of memory and manipulated efficiently by the 

inference engine. 

The parametric, functional description of triangular shaped membership function 

is the most economic one. This explains the predominant use of this type of membership 

function. After selecting the shape of the membership function, each element of the term 

set is mapped on the domain of the corresponding linguistic variable. For example, this 

mapping in the case of e and s=[-6,6] would be as shown in fig.3.2. 

(ii) 	Choice of scaling factor 

The use of normalized domain (universe of discourse) requires a scale 

transformation, which maps, the physical values of the process state variable into a 

normalized domain. This is called input normalization, also output denormalization maps 

the normalized value of the.  control output variable into their respective physical domain. 

The scaling factors which describe the particular input normalization and output 

denormalization play a role similar to that of the gain coefficient in a conventional 

controller. 

They are utmost importance with respect to controller performance and stability 

related issues i.e. they are the source of possible instabilities, oscillation problem and 

deteriorated damping effect. 
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(i) 	. Choice of variable and content of rules 

Depending upon the type of controller to be designed P, PD, PI or PID like FKBC 

the choice of variables are process states and control output as well as the content of the 

rule antecedent and rule consequent for each of the rules. 

The various notations used as 

• error, denoted bye, 

® 	change of error, denoted by Ae or e 

• Sum of errors, denoted by Se 

• Change of control output, denoted by Au or u 

• Control,output, denoted by u 

The analogy with a conventional controller we have 

e[k]=y, - y[k] 

Ae[k] = e[k] - e[k-1] 

Au[k] = u[k] - u[k-l} 

where y 1, stands for set point and k is the sampling time 

Here some choices of variable and content of rules for various controllers are 

discussed_ 



PD like FKBC 

The conventional PD controller can be expressed by 

u=Kp. e+Kn. e 

Kp and KD are proportional and differential gains 

Then a PD like FKBC consist of rules is give below : 

IF e[k] is < property symbol > AND Ae[k] is< property symbol > THEN u[k] is 

<property symbol > 

when <property symbol> is the symbolic representation of linguistic variables. 

PI like FKBC 

The conventional PI controller can be expressed by 

u=Kp. e+Ki. J edt 

where K F  and K1 are proportional and integral constant gain coefficient. Derivative of the 

above is given by 

u= kP.e+K1.e 
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Then the rule for FKBC has the form 

IF e is <Property symbol> AND De is <Property symbol> THEN Du is 

<Property symbol> 

P-like FKBC 

The symbolic representation of a rule for a P-like FKBC is given as 

IF e is <Property symbol> THEN u is <Property symbol> 

PID like FKBC 

The equation describing a conventional PID controller is given as 

u=Kr.e+kD.e+KiJedt 

The symbolic representation of the rules of a PID.like FKBC is 

IF e is <Property symbol> AND De is <Property symbol> AND Se is <Property 

symbol) 

THEN u is <Property symbol> 
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(ii) Choice of term set 

The term set 6X of a linguistic variable X is described as consisting of a finite 

number of verbally (linguistically) expressed values which X can take. The linguistic 

value, members of the term set, are expressed as tuples of the form <value sign, value 

magnitude>, e.g. <positive big>, <negative big>, <negative small< etc., the value sign 

component of such a tuple takes on either one of the following two values, positive or 

negative. The value magnitude component can take on any number of linguistically 

expressed magnitude, e:g. (zero, small, medium, big) or (zero, small, big). 

(iii) Derivation of rules 

There are three major approaches to the derivation of the rules of the FKBC 

Approach I : This approach is the one that is most widely used today. It is 

based on the derivation of rules from the experience-based knowledge of the 

process operator or control engineer. 

Approach 2 :. This, approach uses a linguistic description, viewed as a fuzzy 

model of the process under control to derive the set of rules of a FKBC. 

Y 	Approach 3 : This approach, relies on the existence of a conventional 

process model usually a non-linear one. A well developed formal technique 

which uses a "fuzzy" version of the sliding mode control. 
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3.3 INFERENCE ENGINE 

The inference engine or rule firing can be of two basic types [2] : 

(i) 	Composition based inference 

In this case, the fuzzy relation representing the meaning of each individual 

rule are aggregated into one fuzzy relation describing the.  meaning of the overall set of 

rules. Then inference or firing with this fuzzy relation is performed via the operation 

composition between the fuzzified crisp input and the fuzzy relation representing the 

meaning of the overall set of rules. As a result of the composition one obtains the 

fuzzy set describing the fuzzy value of the overall control output. 

(ii) Individual rule based inference 

In this case, first each single rule is fired. This firing can be simply described by 

(a) computing the degree of match between the crisp input and the fuzzy sets describing 

the meaning of the rule antecedent and (b) "Clipping", the fuzzy set describing the 

meaning of the rule.  consequent to the degree to which the rule antecedent has. been 

matched by the crisp input finally the clipped values of the control output of each 

rifle are aggregated, thus forming the value of the overall control. 

3.4 DEFUZZIFICATION MODULE 

The function of defuzzification Module (DM) are as follows [2, 4] : 
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3.4.1 DM-F1 

It performs the so called defuzzification which converts the set of modified 

control output value into a single point wise values. 

3.4.2 DM-F2 

It performs the output denormalization which maps the pointwise value of the 

control output on to its physical domain. DM-F2 is not needed if non normalized domain 

are used. The design parameter of defuzzification module the choice of defuzzification 

method. 

There are many defuzzification methods. They are 

(i) Center of area/gravity defuzzification 

(ii) Center of sums defuzzification 

(iii) Center of largest area defuzzification 

(iv) First of maximum defuzzification 

(v) Middle of maximum defuzzification 

(vi) Height defuzzification 

Among the above the important one is center of gravity method 

30 



Fig.3.3 : A graphical representation of the centre of area defuzzification method 
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Center of gravity method 

This is the best known defuzzification method, in descrete case (u1={ui, u2,...,u}). 

This results in 

~UA(ui) 
u* 

DNu(ui) 

So this method determines the centre of the area below the combined membership 

function. Fig.3.3 shows the operation in graphical way. 

3.5 FUZZY CONTROLLER OPERATION AN OVERVIEW 

Let for any system the fuzzy set for error and error derivative shown in fig.3.4 and 

fuzzy associative memory are shown in fig.3.5. 

Let normalized error and error change = 0.6 and 0.8 

1st Step : Find the fuzzy set for error and error derivative. 

fuzzy sets for error 	= 	4 and 5 

fuzzy sets for error change = 	4 and 5 

Und Step : Find the height corresponding to each fuzzy set as shown in fig.3.6. 
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3 

4 

5 

NB-1 
NS - 2 
ZE - 3 
PS - 4 
PB - 5 

-1 	-0.5 	0 	0.5 	1 

Fig.3,4 : Fuzzy sets for error, error 
derivative and control. 

L 2 3 4 5 

Fig.3.5 : Fuzzy associated memory 

1 	 h=0.6 

h=0.2 	 h=0,4 

0.5 	 1 0.5 	 1 	0.5 	 1 0.5 	 1 

Fig.3.6 : Finding the height of fuzzy sets 
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Mrd Step : Compare the heights of the above fuzzy set results 

ai[j] compare.bi[j] 

min[1] = 0.4 

min[2] = 0.6 

min[3] = 0.2 

min[4] = 0.2 

lVth Step : Find the fuzzy set to be fired 

iden[k] = fam [al[i]] [a2[j]] 

we get 

iden[1] = 4, 

iden[2] = 5 

iden[3] = 5 

iden[4] = 5 

Vth Step : Arrange.the above value by comparing to each other, we get 

iden[1] = 4, iden[2] = 4, iden[3] = 4, iden[4] = 5 

min[1] = 0.4, min[2] 0.2, min[3] = 0.4, min[4] = 0.2 

VIth Step : By center of gravity method 

min[k] * a[3][4] = 0:5 x 0.4 

min[k] * a[3][4] = 0.5 x 0.2 
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Systems. 	 [ Controller 

Crisp 	 Fuzzy 	 Crisp 	 Fuzzy 

Linear 	I Nonlinear 	 Linear 
	I Nonlinear 

PI,PD,PID 

State Cont 

Predictive 

MRAC 

Observer 

Relay 

Multirelay 

Control with 
Boundaries 

PID 

SM 

SUGENO 

Predictive 

.Fig.3.7 : An "Open scheme" of systems and controllers 
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min[k] * a[3][4] = 0.5 x 0.2. 

min[k] * a[3][4] ="=.1 x 0.2 

Control value u = 
 0.5-0.4,0.2+ 0.5-p0.2+ i0.2  _  0.2+0.1+0.1+0.2 

0.4+0.2+0.2+0.2 	 1 

Control value (u) = 0.6 

3.6 NON-LINEAR FUZZY CONTROL 

The analytic functions in models of linear and non-linear system operate on 

the domain of crisp reals. In addition, we have the class.of fuzzy systems whose models, 

in general, are algebraic mapping from the domain of crisp reals into a pre-

specified domain of fuzzy reals. 

The class of controller can be divided into linear, non-linear, and fuzzy 

knowledge base controllers. 

Fig.3.7 shows an :'open scheme" of systems and controllers. 

The controller mentioned above uses two major knowledge's sources. The 

process operators or control engineers heuristic knowledge about the process and/or 

controller. In this.  case the model of the process/controller is described in terms of 

production rules 

or if then rules only. 
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The . non . fuzzy model of the process (e.g. the phase plane of a second order 

system) 

The general control law design principals are the same as in the case of crisp 

linear and non-linear systems. 

1. Stability analysis 

2. ,Performance analysis according to selected criteria 

3. Rebustness analysis concerning parameter fluctuations, model 

uncertainties. 

General design rules for designing the controller of structure 3.1 

1. Qualitative (symbolic) design of if than rules 

Defining the linguistic term set for the process : state and control output 

variables and the corresponding membership functions describing the meaning of the 

element of these term sets. 

Formulation of the set of IF THEN rules 

2. Quantitative design of scaling or normalisation factor this include the 

following steps. 

• Testing the system to be controlled with respect to controllably and 

observability. 
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• Analysis of the operating points and operation area of the crisp, process 

states, process outputs, and control variables. 

• Utilization of design methods with origins in non-linear system theory 

3.6.1 Sliding Mode FKBC 

For a large class of non-linear systems FKBC are designed with respect to 

phase plane determined by error e and change of error e with respect to the states x and 

i [3,7]. A fuzzy value for the control variable is determined according to fuzzy values of 

error and change of error. The general approach to control design is the division of the 

phase plane into two semi planes by means of a switching line. Within the semi planes 

positive and negative control outputs are produced. The magnitude of the control output 

depends on the distance of the state vector from the switching line. 

For a specific class of non-linear systems there is an appropriate robust control 

method called sliding mode control. The sliding mode control is especially appropriate 

for the tracking control of robot manipulator and also for motor whose mechanical 

load change over a wide range [2] 

Let 	x(")  = f(x,t) + u + d 

where 

X = (X, X 1,...,X 
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Furthermore, let Af,d and xd(") have upper bound with known value F, D and v: 

IAfI ~ F(x,t); Idl <D(x,t); Ix (") I < v 

The control problem is to obtain the state x for tracking a desired state xa in 

the presence of model uncertainities and disturbances with the tracking error 

a stable switching surface is defined as follows 

S(x,t) = 0 

S(x,t) _ (d/dt + ~ 	e 	? ? 0 

Sufficient condition for the behaviour of sliding mode is 

1 d 2 
2 df (S (x

't) -'I Isl . 	11>0. 

To achieve the sliding mode we choose u so that 

u = (-f - ?è) - k(x,t), sgn(s) 	with K(x,t) >0 

where (-f - X.e) is a compensation term and second term is the controller. 

To avoid drastic changes of the control variables we substitute the function 

sgn(s) by sat(s/~) where 
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S= +~ 

sgn(u)=1 	s= +4 s=0 

NS 

PS NM NB NB 

•PS NZ NS• 
PS NS 

PM PZ NB 

PB PM  
PZ Tf S 

PB PB NZ 

PS 

PB PB PB PM. PS 

->e 

switching line 

Fig.3.8 : Sliding mode principle with boundary layer 

Fig. 3.9 : Rules in the normalized phase plane 
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fsgn(s) 
x 	if Ix l 	<1 

sat(x) = 
	iflxl >_ 1 

As shown in fig.3.8, and the rules in the normalized phase plane is shown in 

fig.3.9. The working principle of a FKBC can be represented by 

u = -ka,u(e, è,  %) sgn(s) 
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Controller 	 0I' 	 - 

+ 	 Plant 

Fig.4.1 : Fuzzy controlled plant 
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7 
CHAPTER-4 

DESIGN CONSIDERATIONS 

4.1 FUZZY CONTROLLER 

The fuzzy controller developed in this dissertation is to regulate the switching line 

having error, e[i]=xi[i] and change of error Ae[i]=x2[i]=x i[i] as the input variables and 

pu[i]=pu[i]-u[(i-1] which is the change in slope is the output variable as shown in fig.4.1 

and i is the sampling time. 

The membership function used for error(e), error change (se) and change of 

control (Au) are the most natural and unbiased membership function i.e. symmetric 

triangle with equal bases and 50% overlap with the neighboring membership function 

as this provide significantly less reaching time. The term set of e, 4e and Au contains 

five members, i.e. 

{NB, NS, ZE, PS, PB } 

where 

NB = 	Negative big 

NS 	= 	Negative small 
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Membership functions used in the fuzzy sets describing e, de, du 

Fig.4.2 : Memberships of fuzzy sets used in the control rules 
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NS 

ZE 

PS 

PB 

Fig.4.3 : Rule base 
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ZE = Zero 

i if 	PS 	= 	Positive small 

J 	PB 	= 	Positive big 

These five membership functions are distributed over the normalized domain 

(universe of discourse) [-1,1] as shown in fig.4.2. Membership function used in the 

fuzzy sets-describing e, de, du: 

Rule base for the fuzzy ,controller is shown in fig.4.3. The 25 entries of the 

table are the change of controller output (Au) of fuzzy controller from the table 

justification of the rules can be given as follows.: 

Group-1 

In this group of rules both error and error derivative are nearby equal i.e. either 

they are positive or negative equal or the error and error derivative are very close to 

switching line so control is almost zero. 

Group-2: 

In this group the error and error derivative are above the switching line but not 

too away from it so the control required are negative small. The control required 

below the switching line are always negative. 
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put 

Fig.4.4 : Schematic diagram of controlled process 
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Group-3: 

In this group the error and error derivative are above the switching line and far 

from the switching line and the control required is negative big. 

Group-4 

In this group the error and error derivative are below the switching line but not 

far from it and the.control required is positive small. 

Group-5 : 

In this group the error and error derivative are below the switching line and far 

from switching line so control is positive big. 

4.2 PROCESS 

The second order dynamical system shown in fig.4.4. 

XI =kX2 

(4.1) 
X2=ku 

On simplification this gives 

X1 = k02 

(4.2) 
x 2 = _ -2kx2 sgn(x2) - 4kx1, 
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The state space representation is given by 

	

, 	
(4. )) 

_ 	k 	 x, 

L 2] 	-4k -2ks In(x,) 	x2  

Taking k to be unity the dynamical equation becomes 

	

X, 	ro 	1 

	[X211xz 	- 4 - 2sgn(x,) 	x (4.3) 

If the switch is at the upper position the dynamical equation 

X = X2 

(4.5) 
X2 ==-4x1 - 2x2 

and 

X1+2x1 +4x1 =0 	 (4.6) 

The two states are 

x i [t] = e"` (cI cosbt + c2 sinbt) 	 (4.7) 

x2[t] = ea` [c2 ((acosbt) + bcos(bt)) + cl ((bsin(bt) - asin(bt))] 	 (4.8) 

where a and b are real and imaginary part of complex conjugate pole. 
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If the switch is at lower position the dynamical equation becomes 

i 1- 2x1+4x1 =0 	 (4.9) 

and the solution is given by eqn.4.7 and 4.8. 

The two state variables found in the above section are used to find the slope of 

switching line at every instant of time. Depending upon the location of the two state 

variables the slope of the switching line is decided by the location with respect to 

different side of switching line. Once the trajectory intersects the switching line, the 

system is continuously changes its structure to attain the sliding mode. 

4.3 DESCRIPTION OF SOETWATE 

The software developed in C language. Some of its details are: 

Fuzzy ctrl 

This function takes the normalized input of error and error change as input and 

gives fuzzy sets of change of control (height) i.e. this function performs all the operations 

of fuzzy controller except normalization and denormalization. 

Normal 

This function takes error and error change at every sampling interval as input and 

convert them to normalized form between [-1, 1]. 

49 



Height 

This function determines the height of fuzzy sets for crisp error and error change 

in rule firing- 

.Search 

This function is a sub-function of fuzzy ctrl and determines the fuzzy sets for 

crisp input of error and error change i.e. it helps in determining rule firing. 

Arrana evuls 

This function helps in defuzzification, It helps for including maximum height of 

output clipped fuzzy sets, if two or more rules results in same output fuzzy set. 

Fuzzgruptt 

This function draws the response of the fuzzy controlled system on the screen_ 

c-48--F t3 
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4.4 FLOW CHARTS 

Fig.4.5 : Flow diagram of sliding mode control with fixed sliding surface 
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(Read half base width and mid points of the triangular membership 
functions of error. error chance and chance of control 

Read gain, initial points, normalization factor of error, error derivative, 
control, boundary layers, systems parameter 

Calculate constants 

Laicuiate error ann error cnanne 

tic 
(e[i] && de[i]) 	S  Fuzzgraph 

==0 

NO 
pu[i] = fuzz_ctrl 

i ts  * de[i]) NO 
<0 

I Calculate new constants 

I Caciculate error & error chance 

e[i] && Ode[i]) 	Fuzzgraph 	STOP 	i i+step 

I 

Fig.4.6 : Flow diagram of sliding mode control with fuzzy sliding surface 
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START 

Find the input fuzzy set for 
error and error change 

Calculate their membership 
values 

Find the output fuzzy set for each combination 
of input fuzzy set from rule base which are firing 

Find the firing grade which 
is minimum for each firing rule 

Clip the output fuzzy set with 
firing grade for each firing rule 

Combine the clipped output fuzzy 
set using disconjunction 

Deftizzify the aggregated output fuzzy 
set using centre of gravity method 

Return Output 

Fig.4.7 : Flow diagram of fuzz _ctrl subroutine 
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CHAPTER - 5 

RESULTS AND DISCUSSIONS 

5.1 RESULTS 

Response of system at initial tuning for fuzzy surface 
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Graph 1 
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Response of system at initial tuning for fixed surface 

-100 	 sq 	 so 	 1 

ne = 200 
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nu = 5 
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Graph 2 
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Effect of varying initial conditions 

w  

ne = 200 
nde = 200 
to = 5 
t = 0.13000 
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Graph 3 : Response of system having fuzzy surface with p1=180, p2=190 
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Effect of varying initial conditions 
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Graph 4 : Response of system having fixed surface with p1=180, p2=100 
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Effect of varying initial conditions 
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Graph 5 : Response of system having fuzzy surface with p1=180, p2=100 
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Effect of varying initial conditions 
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Graph 6 : Response of system having fixed surface with pl=180, p2=100 
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Iffect of varying boundary value 

Graph 7 : Response of system having fuzzy surface with CS=S 
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Effect of varying boundary value 

zoo ! 
ne = 	200 
nde = 	200 

150 ru = 	5 
t = 	1.204 

1N 

aD 

a0 	 100 	 150 

-50 

_100 

-150 

Graph 8 : Response of system having fixed surface with C5=5 
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Effect of varying system gain 
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Graph 9 : Response of system having fuzzy surface with K=1.1 
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Effect of varying system gain 
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Graph 10 : Response of system having fixed surface with K=1.1 
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5.2 DISCUSSIONS 

Initially the parameters of the process i.e. gain (K), feedback gain and switched 

gain is taken as 1, t 2 and 4 respectively. 

By Nyquist stability criterion, process gain K was calculated for stability: The 

system is stable when the position of switch is at positive and unstable when the position 

of switch is at negative. 

With the above value we found that both the systems i.e. with fixed and fuzzy 

surface exist sliding mode and the time require to attain the sliding mode is less in the 

case of fuzzy surface. At the above tuning the normalized phase plane is taken up to limit 

200 i.e. ne=200, nde=200, the maximum angle of rotation of fuzzy surface is choosen as 

33° negative and positive with respect to fixed switching time. 

After the above tuning the system parameter is changed keeping scaling factors of 

fuzzy controller control. Following are the observation from the graph obtained after 

simulation 

(1) Graph 3, 4, '5, 6 shows the response of system with fixed and fuzzy 

surfaces from these figures we can see that the sliding mode can exists at 

every initial, conditions in the normalized phase plane. Depending upon 

the initial conditions the slope of the fuzzy surface is high or less. 

(2) Graph 7 and 8 show the effect of varying the boundary layer. The time 

required to reach the equilibrium point increases and both the systems 
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attain the sliding mode. The time require to attain the equilibrium points 

are 1.204 and 0.604999 respectively for fixed and fuzzy surfaces_ 

(3) 

	

	Graph 9 and 10 show the effect of varying the systems gain K. From these 

graphs we can observe that the chattering is increases in both the case but 

the chattering is less in fuzzy surface then fixed surface. 
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CHAPTER-6 

CONCLUSIONS 

From the responses obtained by simulating the second order system with fixed 

and fuzzy sliding surfaces, involving the variable structure, we conclude that the system 

having fuzzy surface require less time to attain the sliding mode at every initial 

conditions than fixed sliding surface. That is the system having fuzzy sliding surface is 

more superior than fixed surface. From graph 9 and 10 we conclude that if the gain of the 

system is increased the chattering is increase. Also from graph 7 and 8 we observe that 

increasing the boundary layer the time requires to reach the equilibrium points increases. 

In this dissertation we have used triangular membership function for regulating 

the switching surface. In future work, the system can be simulated with bell-shaped. 

membership function, which can smooth the fuzzy surface and can get better result than 

triangular membership function. 
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APPENDIX 

/*PROGRAM FOR SLIDING MODE CONTRO WITH 
FIXED AND FUZZY SLIDING SURFACES*/ 

#include<stdio.h> 
#include<stdlib.h> 
#include<graphics.h> 
#include<conio.h> 
#include<math.h> 
#include<dos.h> 
#define SIZE 25 
#define STEP .005 
int iden[5],al[3],a2[3],fam[6][6]; 
float a[4][63,b[43[6],c[4][6],min[5],normale,normalde; 
float normalu,denormalu,pl,p2; 

void main(void) 

int d,z,choice;. 
int FSS; 
float k,kl,i,j,pl,p2,p3,p4,cl,c2,c3,c4,c5,w=0,v=0,rxl,ixl,p,q,r,s,sl; 
float tl,t2,t3; 
float 
e[SIZE],de[SIZE],ne[SIZE],nde[SIZE],du[SIZE],nu[SIZE],xl[SIZE],x2[SIZE]. 
,x3[SIZE],x4[SIZE],pu[SIZE],ku[SIZE];  
extern int fam[6][6); 
extern float a[4][6],b[4][6],c[4][6]; 	 - 
float.norma1e=200,normalde=200,normalu=5,denormalu; 
float normal(float;float); 
float fuzzctrl_in(float,float);/*FUNCTIONS DEFINITION*/ 
void fuzzgraph(float); 
FILE *P1; 	- 
P1=fopen("c2.dat","w"); 

all] [l]=-1.0;a[l][2]=-0.5;a[l][3]=0.0;a[l][4]=0.5;a[1][5]=1.0; 
a[2][1]=-1.0;a[2][2]=-0.5;a[2][3]=0.0;a[2][4]=0.5;a[2][5]=1.0; 
a[3][1]=-1.0;a[3][2]=-0.5;a[3][3]=0.0;a[3][4]0.5;a[31[51=1.0; 
b[l][1]=0.5;b[l]"[2]=0.5;b[l][3]=0.5;b[1][4]0.5;b[l][S]0.5; 
b[2][1]=0.5;b[2][2]=0..5;b[2][3]=0.5;b[2][4]=0.5;b[2][5]=0.5; 
b[3][1]=0.5;b[31[2]=0.5;b[3][3]=0.5;b[3][4]=0.5;b[3][5]=0.5; 

fam[l][l]=5;fam[l][2]=5;fam[1][3]=5;fam[l][4]=4;fam(l][5]=3; 
fam[2][l]=5;fam[2][2]=4;fam[2][3]=4;£am[2][4]=3;fam[2][5]=2; 
fam[3][1]=4;fam[3][2]=4;fam[3][3]=3;fam[3][4]=2;fam[3][5]=2; 
fam[4][l]=5;fam[4][2]=3;fam[4][3]=2;fam[4][4]=2;fam[4][5]=1; 
fam[5][1]=3;fam[5][2]=2;fam[5][3]=1;fam[5][4]=l;fam[5][5]=1; 

/*INPUT VARIABLES ENTERING*/ 
printf("FIXED SURFACE=1 \nFUZZY SURFACE=0\n"); 
scanf)'%d",&FSS); 
printf("initpl\n"); 
scanf)'%f",&pl); 
printf("initp2\n"); 



scanf("%f",&p2); 
print£("p="); 

printf("q="); 
scanf("8f",&q)) 
printf("r="); 
scanf("%f",&r); 
printf("k="); 
scanf("%f",&k);/*GAIN*/ 

/* CALCULATION BEGINS HERE */ 
kl=k*k; 
s= (q*q-(4*p*r*k1)); 
sl=sqrt(s); 
rx1=q/(2*p*kl); 
ix1=(sl/(2*p*.kl)); 
/*LOOP STARTED HERE*/ 

if(FSS==O){ 
nu[O]=fuzzctrl_in(pl/normale,p2/normalde); 
if(nu[0]<O) 

pu[0]=-1*(nu[0]*normalu); 
else 
pu[0]=(nu[0]*2.5)/normalu;} 

else pu[0.]=1; 

c5=.'l;/*BOUNDARY VALUE*/ 
c1=p1; 
c2=(p2+pl)/ixl; 
do 
{ 
cl=pl; 
c2=(p2+pl)/ixl; 
for.(i=0;i<SIZE;i+=STEP) 
{ 

xl[i]=((cl*exp(-rxl*i)*cos(ixl*i))+(c2*exp(-rxl*i)*sin(ix1*i))); 
e[i]=xl[i]; 
ne[i]=normal(e[i],normale); 
x2[i]=(exp(-rxl*i)*((cl*(-rxl)*cos(ixl*i))+(c2*ixl*cos(ixl*i)) 

+(cl*(-rxl)*sin(ixl*i))-(ixl*c2*sin(ixl*i)))); 
de[i]=x2[i] 
nde[i)=normal(de[i],normalde); 
nu[i]=fuzzctrl in(ne[i],nde[i]); 
du[il=normalu*nu[i]; 
w+=du[i]; 
fprintf(P1,"$f\t%%f\n",e[i],de[i]); 
/*print£("%f;%f\n",e[i],de[i]); */ 
if((e[i]+(pu[i]*de[i]))>-c5) 
continue; 
else 
p3=xl [.i ] ; 
p4=x2[i]; 
tl=i; 
break; ) 

c3=p3; 
c4=(p4-p3)/ix1; 



for (j=0.0;j<SIZE;j+=STEP) 

x3(jl=((c3*exp(rxl*j)*cos(ixl*j))+(c4*exp(rxl*j)*sin(ixl*j))); 
e[j]=x3[j]; 
ne[j]=normal(e[j],normale); 
x4[j]=(exp(rxl*j)*((c3*(rxl)*cos(ixl*j))+(c4*ixl*cos(ixl*j)) 

+(c3*(rxl)*sin(ixl*j))-(ixl*c4*sin(ixl*j)))); 
de[j]=x4[j]; 
nde[j]=normal(de[j],normalde); 
nut j]=fuzzctrl_in(ne[j],nde[j]); 
du[j]=normalu*nu[j]; 
v+=du[j]; 	 - 
fprintf(P1,"&f\t%f\n",e[j],de[j]); 
i£((e[j]+(pu[0]*de[j]))<cS) 
continue; 
else 
p1=x3[j]; 
p2=x4[j]; 
t2=j; 
break; 

] 

while((xl(i]>l&&x2[i]<l)II(x3[j]>1)&&(x4[j]<l).); 
t3=(tl+t2);printf("t3=%f",t3);getch(); 
fclose(P1); 
fuzzgraph(SIZE); 
} 

/*FUZZYCONTROLLER SUBROUTINE*/ 
float fuzzctrl_in(float c,float d) 
( 
extern int iden[5],al[3],a2[3],fam[6][6]; 
extern float min[5],a[4][6],b[4][6]; 
int i,j,l,k;  
float error,error change,suml,sum2,p,u; 
float membl[3],memb2[3]; 
void search(float,float,float a[][6],float b[][6],int,int); 
float height(float,float a[][6],float b[][6],int,int); 
void arrangevals(void); " 
error=c; 
error change=d; 
search(error,error_change,a,b,1,2); 
for(i=l;i<=l;i++) 

1al(i); 
if(1==0) 
membl(i]=0 .0; 
else 
membl[i] =height (error,a,b,1,1); 
membl[2]=l-membl[I]; 

for(i=l;i<=1;i++) 

1=a2[i]; 
if(1==0) 
memb2[i]=0.0; 
else 
memb2[i]=height(error change, a,b,1,1);" 



memb2 [2] =l-memb2 [1); 

if(membl[l]>=znemb2fl]) 
min[l]=memb2[l]; 
else 
min[1]=memb1(l]; 
if(membl[1]>=memb2(2]) 
min[2]=memb2[21; 
else 
min[23=membl[13 
if(membl[2]>=memb2[1]) 
min[3]=memb2[l]; 
else 
min[3]=membl[2]; 
if(membl[2]>memb2[2]) 
min[4]=memb2[2]; 
else 
min[4]=membl[2]; 

k=0; 
for (i=1.;i<=2;i++) 

for(j=l;j<=2;j++) 

++k; 
if((al[i])&&(a2[j])!=0) 
iden[k]=fam[al[i]][a2[j]]; 
) 
} 

/*defuzzification starts here*/ 
arrangevals() 
sum1=0.0; 
sum2=0.0; 
for k=1;k<=4;k++) 

if(k==l) 

suml+=a[3][iden[k]]*min[k]; 
sum2+=min[k]s 
} 
else 
{ 

if(iden[k]==iden[k-l]); 

suml+=a [3] [iden[k] ] *fnin[k] ; 
sum2+=min[k]; 
} 
{ 

p=(min[k]>min[k-1])?min[k]:min[k-1]; 
suml+=(a[3][iden[k]]*p)-a[3][iden[k]]*min[k-1]; 
sum2+=p-min[k]; 

] /*printf("suml=%f sum2=%f",suml,sum2);*/ 
} u=(suml/sum2); if(u>l)u=1; 
return(u); 
) 



void search(float v1 ,float v2 ,float a[][6],float b[][6],int n ,int m 

extern int al[3],a2[3]; 
int i,j,flag; 	- 
j=0,flag=0; 
for(i1;i<=5;i++) 

if(i=1&&vl<a[1][1]) 
{ 
flag=l; 
break; 

if(i=5&&vl>a[1][5]) 
{ 

flag=2; 
break; 
) 

if((v1>(a[n][i]-b[n][i]))&&(vl<=)a[n][i]+b En] [i])))[ 

al[j]=i; 

if(flag==1) 
{ 

al [1] =1; 
al[2]=2; 
} 

if(flag==2) 

al[i[ 5; 
al[2]=4; 
) 
flag=0; 
j=0; 
for(i=1;i<=5;i++) 

if(i==1&&v2<a[2][1]) 
( 

flag=l; 
break; ) 

if(i5&&v2>a[2][5]) 
( 
flag=2; 
break; 

if ((v2> (a [m] [i] -b [m] [i])) && (v2<=(a [m] [i]+b [m] [i])) 
{++j; 
a2[j]=i; 	 - 

) 

if(flag==1)[ 
a2[1]=1; 
a2[2]=2; 	- 	- 

if(flag==2){ 



a2 [1]=5; 
a2[2]=4; 
) 

return; ) 

float height(float var,float a(][6],float b[][6],int n,int m) 

float t,max; 
if((n==l&&var<a[is][n])II(n==5&&var>a In] [n])) 
return(l); 	- 
else if) (n==2&&var<a[m]In])II(n==4&&var>a[m][n])) 
return (0) 
else 
{ 

if(var>0.0) 
t=-(var+a[m][n]);  
else 
t=(var-a[m][n]);. 
t=(t/b[m][n]); 

if((l-t)>0) 
max=l-t; 
else max=t-1; 

if(max>.5) 
max=l-max; 
return(max); 

} 
void arrangevals(void) 
( 
int i,j; 
float temp,templ; 
extern int iden[5].; 
extern float min[5]; 
for (i=l;i<=4;i++)- 

for(j=i+l;j<=4;j++) 
if(iden[i]>iden[j]) 

[ 

temp=iden[i]; 
iden[i]=iden[j]; 
iden[j]=temp; 

£or(i=1;i<=4;i++) 
for(j=i+l;j<=4;j++) 
if(min[i]>min[j]) 
{ 
templ=min[i]; 
min[i]=min[j]; 
min[j]=templ; ) 

return; } 

float normal(float dn,float dnf) 
{ 
float non; 
non=do/dnf; 
return(non); 
} 



void fuzzgraph(float size) 

fl oat e[320],de[320],xl[320],x2[320]; 
float i,j; 
FILE *P1; 
int gd=DETECT,gm,x,y; 
initgraph(&gd,&gm,"c\\tc\\prog\\tc\\bgi") 
x=getmaxx(); 
y=getmaxy(); 
setcolor(WHITE); 
P1=fopen("c2.dat";"r"); 
for (i=0.0;i<=size;i+=STEP) 
{ 
fscanf(Pl,"-f\t$£\n",&e[i],&de[i]); 
putpixel((x/2+e[i]),(y/2-de[i]),WHITE); 
/*putpixel((i*10),(240+e[i]),WHITE);*/ 
line(O,y/2,x,y/2); 
/*1ine(0,0,0,y);*/ 
line(x/2,0,x/2,y); 
rectangle'(10, 10, 100, 80).; 
outtextxy(19,20,"ne=200"); 
outtextxy(19,30,"nde=200"); 
outtextxy(19,40,"nu=2"); 
outtextxy(19,50, "k=1") ; 
outtextxy(19,60,""t="); 

getch ( ) 
] 
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