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ABSTRACT

Reaching time plays an important role for the multi-coupled system like robot
manipulator to achievéd the minimum reaching time various method has been suggested.
Variable structure ls.ystem with sliding mode is one of the technique. Fuzzy controlled

switching surface minimizes thie reaching time up to distinct level.

Instead of using conventional sliding mode controller having linear time varying
switching surface, if fuzzy logic is used to regulate the. switching surface, the reaching
time. of the system trajectory is shorter than in the fixed method and having better

performance than the conventional method in reaching time.

In this disser;cation the fuzzy cgntrollef is used to regulate the S\;vitching surface
and its perfo.rmance' is comp.a.red with ﬁied switching surface. The proposed FLC is
.desi'gned using. a very simple control rule base and most natural and unbiased
membership function (symmetrical triangles with equal bases and 50%, overlap with

neighboring MFS)
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‘CHAPTER - 1

INTRODUCTION

1.1 INTRODUCTION -

Conventional model based control has the advantage -that ome can prove
optimality and stability; however, there are difficulties in dealing with non-linear,

dynamic and ill-understood processes which are commori in real world.

Variables structure‘system (VSC) [1,3,6] with sliding mode ha-s different structure
on both sides of sliding surface is the major practical technology that is widely used .i’n,
the control of Robbtic,manipulator [10], large scale control system, general non-linear
co‘ntrol system [5], robust rr;otion control, flexible structure control of space.craft. 1t has
lieen recogn_ize& as a powerfil design technique suitable for complex. and» non—lineér

system with complicated interaction and unicertainties.

Sliding mode (SM) controller with fixed 'slid'ing. surface has the following
characteristics (i) Robust stability (ii) Linearisation (iii) Order reduction. However it
become sensitive to parameter uncertainties and noise disturbances in the reaching phase.

The design of sliding surface is therefore one of the factor in thi_a system performance.



To eliminate the system sensitivity in reaching phase, various methods Have been
suggested, (i) High gain feedback was used to 1niﬂi1nize the reachiﬁg phase, uqfoxttunately
this may cause sensitive to' vtimodelled dynamics and chattering wﬁich is undesirable in
physical systerﬁ, (i) A time varying sliding surface was proposed to remove the reaching
phase by imposing a constrains that initial error be zero in tracking control and (iif) The
system trajectory moved on the Sliding_ surface from arbitrary - initial points, fécing_
problem that the reaching time to an equilibrium point increase and sensitivity against

disturbances.

Sliding mode controller with fuzzy sliding surface was proposed ‘and tested for

robotic manipulator by Takagi T. and Sugeno M. in 1998 [6].

Fuzzy logic controller (FLC's) have been suggested as a promising alternative
approach for designing the sliding surface, especially those that are tivo complex for
anélysis by conventional fechni_gue. The éffective co;ltrol étra’tegies that the human
operator learn through his experience or by using comfnoﬁ sense can oftén be expressed
as a set of c_onditiorf?action rules (cailedvfuzzy rules), which describe condition about'the
process state using linguistic .terms (ie. fﬁzzy séts such as low, medium, high, slightly
posftive) and recommended contrql action using Iinguistiﬁ terms s'uch ag increase slightly

or decrease moderately.’
An example of such a rule is the given below :

IF error is small negative AND changg of ervor is big positive or medium positive

THEN decrease the stream flow slightly.



Since B.H. Mamdani introduced the concept of fuzzy logic.control in 1974, which
was stfohgly motivated by theory of fuzzy sets developed by L.N. Zadeh [2]. Takagi. T
and Sugeno.M. have done the:various works in the field of fuzzy sliding mode controller
and. identification of systems.. FLC-based systems have proven to be superior in
performa_nce to conventional systems in areas such as brocess control, automatic train
opérating systems, artiflcial intelligence, advances in. computer hardware technology
supporting fiizzy contro] héve resulted in numerous comﬁlercial FLC applications such as

washing machines, Vacuum cleaners, air conditioner etc.

Compared to conventional techniqué, FLC offérs three impbrtant‘ béneﬁté, first,
developing a FLC is cheaper than developing a model based on. other controller with
equivalent performances,‘ secdnd Fl,.C;s aré more robust then conventional SM cﬁntroller
bccﬁusg At}vley can impréve_ the performance. Third, FLC's are customizable, since it is

easier to understand and ‘modify their rule. -

A major limitation of fuzzy control is the lack of a systematic methodology for
developing»ﬁizzy rules. A set of fuzzy rules often needs to the-manually adjusted on trial

and error basis before it reaches the desired level of performance.

Multi-coupled system like robot manipulator where the output of one is linked
with the input to other the reaching time is important, to reduce the reaching time the
structure of the system is varied called VSC and, if the systems's trajectory always

pointed toward the sliding surface then the system has sliding mode.
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Fig.1.1 : Schematic diagram of controlléd process



In this dissertation the sliding mode controller is simulated  with fuzzy sliding

surface, which improved the chattering and decrease the feaching time of the system.
1.2 STATEMENT OF PROBLEM

The process chosen to investigate is a double integrator plant with variable
structure as shown in fig.1.1. The structure of the. system is change such-that the moving
representative point -of the system is constrained to move along a predetermined

switching surface.
The state space representation of the system is given by

).(1 =kX7_

X, =ku
u == -2sgn (x3) Xz - 4%,

{: +1 when S(x,,x,) > 0

sgn(xa)y_ —1 when S(x,,x,) <0

The time varying sliding surface is defined by
S(Xl_, Xz) =x;+ 7\,)(2 .

" The slope A of the switching line is regulated by the fuzzy controller to obtain the

fuzzy switching surface:



The problem addressed in this dissertation is to compare the performance
(reaching time) of the SM controller with fixed and fuzzy sliding surface. The gain of the

system is varied and performance is compared.
1.3 ORGANIZATION OF DISSERTATION
Including this introductory chapter, which gives a brief description about the

fuzzy control and its application, the dissertation is organised as follows :

In the second chapter important terms and definition about the fuzzy set theory

are discussed, which are the back bone of fuzzy control.

The third chapter describes the general structure of fuzzy controller. Design

parameters of different module of fuzzy control have been discussed in this chapter.

Chapter 4 discusses the design consideration used in the dissertation for fuzzy

controller, process and SM controller. It also discusses the detail of software.

Chapter 5 discusses the simulation results obtained and compares the responses

for fuzzy and SM controllers.

Chapter 6 concludes the dissertation.



1.4  LITERATURE REVIEW

Variable structure system (VSC) theory was developed during last 30 years

exclusively in USSR. Utkin (1977, 78) developed the theory of VSC with sliding mode.

The basic mathematical ideas of non-linear system with discontinuous right hand
side comes from theory deQelo};éd by Fillipov (1960). In SMC, the moving
representative poinf of the syvstem is constrained to move along a predetermined
switching surface Itkin (1976). The desigﬁ of switching surfaces completely determine
the performéncevof the system. The robustness of VSC can be improved by shortening

the time required to attain the sliding mode.

Young, et al. (1977) used the high gain feedback to speed up the reaching phase.
This may cause sensitive to unmodelled dynamics and chattering. Slotine J.J. and Sastry,
S.S. (1983) suggested a time varying switching surface, facing problems that reaching -

time to an equilibrium point increases and also sensitivity against disturbance increases.

Sliding mode controller with fuzzy sliding surface is designed by Takagi T. and

Sugeno M. (1998), which has better performance than conventional SM controller. -



CHAPTER -2

FUZZY SE‘TS : MATHEMATICS OF FUZZY CONTROL

2.1 INTRODUCTION

Fuzzy set ’dleor}" was developed in 1965 by Lofti Zadeh of the University of
California in Berkeley [2]. This approach is useful to solve the typically complex

problem which are after left to deal with human being.

Fuzzy set theory ié based on ordin‘ary set fheory (classical set theory) and -
becomes identical with it in tﬁé limiting case where the properties béing dealt with_the
'crisp’. As with ordinary sets, fuzzy set are defined over some universe discoinrse, which
might be a population of people, a set of .possible m’éasurement values, a range of

possible output voltage, or otherwise depending on the problem.
22 FUZZY SETS

In fuzzy set theory, ‘normal' set is called crisp set, in order to distinguish them
from fuzzy set let C be a crisp seis defined on the universe U, then for any element u of
U, either u € C oru ¢ C. In fuzzy set théory this property is generalized, therefore in

fuzzy set F, it is not necessary that eitheru € Foru ¢ F.-



The charact.eristicsﬁmction of a crisp set assign a value of either 1 or 0 to each
individual in the universal set, thereby discriminaﬁng bet_\ix_/een members and nonmembers
of the crisp set Qndér lconsideration. This function can be generalized such that the values
assigns to the e;lement of the universal set fall within a"speciﬁed range and indicate the
membership grade of these element in the set in“c'lues_tion. Larger values denote higher,
degree of set membership, -Su§11 a function is. called a membership function, and the set

defined by it a fuzzy set.

The most commonly used of values of rhembership function is the unit interval
[0, 1]. In this case each membership function maps element of a given universal set X,

which is always a crisp set, into real member in [0, 1].

Two distinct notation are most commonly embloyed in the literature to denote

membership function of a.fuzzy set A is denpted by Ha that is
_umX——)[Q, 17
In the othér one the.ﬁ.mction is denoted by A and has form
Al X 510, 1]
Definition : The membership function pF of a fuzzy ’seF F is a function

pe: U—1{0, 1]



So, every element” u from U has a membership degree ur(u)e[0,1].F is completely

_ determined by the set of tupies V
F = {(u, ur@)) | u € U}

2.2.1 Properties of Fuzzy Sets .

Let A and B be fuzzy sets defined respéctively on the universe X and Y and let R

be a fuzzy relation defined as X x Y.

() . Support: The support of a fuzzy set A is the crisp set that contains all elements of

A with non zero membership degreé denoted by S(A) mathematically defined as
S(A) = {u & X | pa(u) > 0}

The support of fuzzy set is an interval

(ii) Width - The width of a convex fuzzy set A with support set-S(A).is defined as;
Width(A) = sup (S(A)) - inf (S(A))

sup and int. denote the mathematical operations supremum and infimum. They are

defined as,

a=sup(A)iff Vi €A x<soand Ve >0 3, €A x>a-€,

B=inf(A)iff VicA: x2Band Ve > 03 A x<Pte

10



for the fiizzy sét A with membership function A(x : o, B, v). Its support set is

S(A)=[a,7] its width is width (A)=y-o left width (A)=B—a,_ right width (Ay=y-B.

. (iii)  Nucleus : The nuclevs of a fuzzy set A is the crisp set that contains all values with

. membership degree formally, mathematically defined as
nucleus (A) = fu € X | pa() =1}
If there is only one point with membership degree equal to 1, then this point is
- called the peak value of A
The nucleus is the interval [20,24], the supports is interval [18,26].
(iv) Hcight : The height of a fuzzy set A is equal to the largest membership degree pia
mathematically - . - -

hgt(A) = sup pa ()
uEx

A fuzzy set is normal if hgt(A)=1 and subnormal if hgt(A) < 1

) Convexity : A fuzzy set-is convex if its membership function does not contain

‘dips' this means that the membership function is for example, increasing,

decreasing or bell shaped. Mathematically a ﬁxzzy set is convex if and only if

11
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(i)

()

Vxy e XV Ae[0,1]: pa (x + (1-1).y) 2 min (ua (%), Ha(y))

Fig.2.1 show a convex and concave function.

Operations of Fuzzy Sets

» Equality :

Two fuzzy sets are equal (A=B) if and only if

Vx €8 © pa(s) = usx)

Subset :

A is a subset of B (A < B) if and only if

_ V x €X: pax) < pe(®)

Union :

Union of two fuzzy sets A and B is given by

X €X' paun(x) = max (1aG), pa(s))

" diagrammatic representation of union is given in fig.2.2.

- Intersection :

* Intersection of two fuzzy sets A and B is given by

13
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Fig. 2.2 : Union of fuzzy sets A and B.

Fig. 2.3 : Intersection of fuzzy sets A and B

Fig. 2.4 : Com]ilement of fuzzy set A

14



-V x eX: pans(x) min (1a(x), Le(x))
Diagrammé.tic representation of intersection is given in fig.2.3.
)  Complement:
Complement of a fuzzy-set A is given by
CVxeX:pwak) = 1-palx) .

' Diagrammatic representation of complemen‘ﬁ is given in fig.2.4

2.2.3 Fuzzy Proposition

Approximate 'réa.soning is used to represent and reason with kﬁowledge expressed
_in atomic primitives, which are expressgd in a natural lanéuage.form, example,

"Error has th{e value négative big"

.- The above n‘atural language exbression is rewritten as

"Error has the prq_pert); of being negative big"

Symﬁoliqally it is written as s _
e is NB

where 'is' stands for "has the property of being"..

15



The 'meaning' of the symbolic expression "E is NB" helps us decide the degree to

which this symbolic expression is satisfied given a specific physical value of error.

“Based on the notion of atomic fuzzy proposition and linguistic connective such as
and ', 'or', 'not' and 'TF-THEN', one can form more fuzzy proposition called compound

fuzzy proposition e.g.

Xis A and X is B,

Xis AorXisB,

X isnot A _ ‘

Xis'Aand X isnot B)yor Xis C
(if X is A than X is B, etc. ‘

" 'and' = conjunction  'or' = disconjunction 'not' = negation

(i) - Conjunction : ’{m(l: !
If A and B are two fuzzy set deﬁned over universe of discours_e U if p or q be the
following two atomic fuzzy proposition P : "X is.A" and q : "X is B" then conjunction

{A) 1s defined as

Symbolic Meaning

Xis A, qurR
Xis B, : ugor§
S~ XisAnB " UanR OT AnB -

16



(i)  Disconjunction ' or' :

To disconjunction (W) is given by for the same fuzzy set and fuzzy preposition:

Symbofié ' Meaning

Xis A, Ha Or A
Xis B, s “ppor B
L XisAUB ) . Haug Or AuUB

(i)  Negation 'not':

The negation "X" is not A of a fuzzy preposition "X is A" is given by

Symbolic Meaning
Xis A, Ua Or A

S Xis A N S HA or A

17
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Fig.3.1 : The structure of FKBC
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CHAPTER - 3.

FUZZY CONTROLLER AN OVERVIEW

Fig.3.1 shows.the general structure of fuzzy knowledge base controller (FKBC).

As illustrated in figure. It consists of the following components,

e - TFuzzification module
s Knowledge base
. Inference

s Defuzzification module

31 FUZZIFICATION MODULE

The fuzzification model (FM) pérforms the following functions [4]: -

3.1.1 FM-F1

This module performs the scale transformation (i.e. input normalization) which
maps the physical values of the current process state variables into a normalized universe

of discourse (normalized domain). When a non-normalized domain is used then there is

no nced of FM-F1.

19



3.1.2 FM-F2

This module converts the normalized values from above to the fuzzy sets ie. it
convert a point wise (crisp), current values of a process state variable into a fuzzy set.
“The choice of fuzzification strategy is determined by the type of the inference

engine or rule ﬁring.
32 KNOWLEDGE BASE

The basic function of the data base is to provide the necessary information %r the
proper functioning‘of' the fuzzification module, the rule base; and the defuzzification

module, This information includes [2] :

. Fuzzy sets representing the meaning of the lingui'stic valués of the process
| state and control output variable.

. Physical ciomains and their normalized- ﬁounterpans together with the

_ normalizé,tion/deno.rmalization_ (scaliﬁg) factors. The knowledge base of a

FKBC consists of a data base and rule base.

3.2.1 Data Base

The design parameter of the data base includes :

. Choice of membership functions

’ Choice of scaling factors.

20



For example, a PI like fuzzy controller can be expressed as

Naw Au(k) =F (N, e(k)), Na . Aek))
Where
N., and Ny, are the'scaling factors for e, Ae and Au respectively.

The basic aj)proabhes' for the determination of the scaling factor is heuristic and

formal. The performance criteria are

e Desired value of overshoot
. Desired rise time
. Desired amplitude of oscillation

3.2.2 Rule Base

The desi.'gn patrameter of the rule base include

.. Choice of process state and control output-variables

. Choice of the content of thé rule antecedent and the rule consequent

»  Choice of term sets for the process state and coﬁfrol output variables. .
. Derivation of the set of rules |

21



(i) Choice of membership function

Let the -physical domain of e, Ae, Au, be g, Ae, Au where e(error), Ae(change of

error) are input variables and Au(change in control) is output variable of fuzzy controller.

The meaning or interﬁretation of a particularlinguistic value LX of linguisti)c;’!
variable x is given by a fuzzy set EX or ppx defined on the domadin (universe ‘of

discourse) x of x as
EX=pix= [ pux(x)/x.

Now suppose that E = cAE = cAU = {NB, NM, NS, ZE, PS, PM, PB} i.e. the
term sets contzzlininf;r the linguistic values for the three lingu.isti,c- variable are the same. In
this case there is neéd tol define twenty.olne 1némber§hip function representing the
meaning of each linguistic vglue from the above térm set on the respective domain g, Ag
and Au. For cémputational efficiency ‘and efficient use of hle_mory, "a uniform
représentatic;n of the mefnbership functions is required. .The uniform repfesentation can
be achie,ved by empl.oy'ing' memBership ﬁmctioné with uniform shavpe and parametric,

functional definition.

The most popular choices for the shape of thé membership function include
triangular, trapezoidal and bell-shaped ﬁmctiéns;These choices can be explained by the

ease with which a parametric, functional description of the membership function can be

22
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Figure 3.2 The fuzzy sets NB, NM, NS, ZO, PS, PM and PBon the domain |6, G).
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obtained, stored with minimal use of memory and manipulated efficiently by the

inference engine.

The »paraméfric, ﬁmctignal description of triangular shaped membership function
is the most economic one, This exp]ains the predominant use of this type of membership
function. After Sélecting fh‘é shape of the membership fuﬁction, egch element of the term
set is mépped on the doméin of the corresponding linguistic.variablé. for example, this

mapping in the case of e and e=[-6,6] would be as shown in fig.3.2.

(i) Choice of scaling factor

The- use of normalized domain (universe of discourse) requires a -scale
transformation, which maps the physical values of the process state variable into a
normalized domain. This is called. input normalization, also 6utput denormalization maps

the normalized value of the control output variable into their respective physical domain.

The scaling factors which déscribe the particular input normalization and output

denormalization play a role similar to that.of the gain coefficient in a conventional

controller.

They are utmost importance with respect to controller performance and stability
related issues ie. they are the source of possible instabilities, oscillation problem and

deteriorated damping effect.

24



) . Choice of variable and content of rules

Depending upon the type of controller to be designed P, PD, PI or PID like FKBC
the choicé of variables are process states and control cutput as well as the content of the

rule antecedent and rule consequent for each of the rules.”

The various notations used as

e . error, denoted by‘e, ’

° change of error, denoted by Ae or &

. Sum of errors, denoted by Se

. Change of ;ontrol outp\.;t, denotcci by Au or u

e Control output, denoted by u

The analogy with a conventional controller we have

elK] = v - Y]
Aefk] = e[X] - e[k-1]

Au[K] = uflk] - ulk-1]
where yp stands for set point and k is the sampling time

Here some choices of variable and content of rules for various controllers are

discussed.

25



PD like FKBC

The conventional PD controller can be expressed by
u=Kp.e+Kp. e.

Kp and Kp are proportional and differential gains

Then a PD like FKBC consist of rules is give below :

IF e[k] is < property symbol > AND Ae[k] is< property symbol > THEN u[k] is

. <property symbol >

i

|

i when <property symbol> is the symbolic representation of linguistic variables.
|

I

\

PI like FKBC
" The conventional PI controller can be expressed by
u=Kp. e+KI.Jedt

where Kp and K; are proportional and integral constant gain coetficient. Derivative of the

above is given by

u=kp.e+K.¢e

26



Then the fu_le for FKBC has the form

IF ¢ is <Property symbol> AND De is <Property symbol> THEN Du is

%Propeny symbo-1>‘ B |

f-like FKBC
The symbolic representation of a rule for a P-like FKBC is given as
IF e is <Property symbolﬁ. THEN .u is ,<Pfop¢rty éym;01> i

PID ‘likc FKBC ; .
The eciggtion qescriping a conventional PID controller is given as
u.=Kp etkp. & ;FKIJ;edt
TheA symbolic repres.ent.ation of the rules of a lP.ID;lik'e FKBC.is

"IF e is <Property symbol> AND De is <Property symbol> AND Se is <Property

symbol) '

THEN u is <Property symbol>

27



(ii) Choice of term set

Tfhe term set &X‘_ o_f a linguistic variable X is described as consisting of a finite
number of vert.Jally (linguistically) expressed values which X can take. The linguistic
value, member§ of _the term set, are expressed as tuplés of the form <value sign, value
magnitude>, e.g. <positive 'big>, <negative big>, <negétive small< etc., the value sign
component of such a tuple takes on either one of the following two va}ues, posifive or
neg&tive. The value magnitﬁ'de component can take on any number of linguistically

expressed magnitude, e.g. '{cho, stmall, medium, big} or {zero, small, big}.
(iii) . Derivation of rules

There are three major approaches to the derivation of the rules of the FKBC

> Approach 1 -"This approach is the one that is most widely used today. It is
based on the derivation of rules from the experience-based knowledge of the

process operator or control engineer,

» Approach 2 . This. approach uses a linguistic d'escripti.on, viewed as a fuzzy

model of the process under control to derive the set of rules of a: FKBC.
» Appro(ich 3 : This approach, relies on th'ev existence of a conventional

process model usuvally a non-linear one. A well developed formal technique

which uses a "fuzzy" version .of the sliding mode control.
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33 INFERENCE ENGINE

- The inference engine or rule firing can be of two basic types [2] :

() - Composition based inference

1

In this. ;case_,'wthe fuzzy relation vreprésenting. the meaning of each individual
rule are aggreéated into ane ﬁlzzy relati‘on describing the meaning of‘ the overall set of
rules_. Then inferehce or firing with this 'fuzzy relation is performed via the operation
composition betwiaén the fuzz_iﬁed crisp input and the'ﬁlzzy-'felation representing. the

meaning of the overall set of rules. As a result of the composition one obtains the

fuzzy set describing the fuzzy value of the overall control output.

(ii) - Individual rule based inference

In this cé.se, ﬁfst' each single rule is fired. This firing can be simply described by
(a) computing the degree of“ match between the crisp inpﬁt and the fuzzy sets describing
'the rﬁeaning of the ruIe. antecedent and (b) "Clipping" ,. the fuzzy set describiﬁg the‘
meaning of the rﬁle.conséqﬁent to the degree to which the rule antecedent has been
matched by the crisp input finally the clipped values of . thé control éutpﬁt of each

rule are aggregated.,- thus forming the value of the overall control.

3.4 DEFUZZIFICATION MODULE

The function of defuzzification Module (DM) are as follows [2, 4] :
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341 DM-F1

It pérforms the so called defuzzification which converts the set of modified

control output value into a single point wise values.

342 DM-F2

It performs the output denormalization which maps the pointwise value of the
control output on to its physical domain. DM-F2 is not needed if non normalized domain
are used. The design parameter of defuzzification module the choice of defuzzification

method.
There are many defuzzification methods. They are

o Center of area/gravity deﬁlzziﬁcation
(i) Center of sums defuzzification

(iii) . Center of larggst area defuzziﬁcation
(iv)  First of maximum defuzzification

(v)  Middle of maximum defuzzification

(vi)  Height defuzzification

Among the above the important one is center of gravity method.
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Fig.3.3 : A graphical representation of the centre of area defuzzification method
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Center of gravity method

This is the best known defuzzification method, in 'descrete case (ui={u, us,...,ui}).

This results in

iui:u"u ()

u¥ = d=L

pITHCN!

So this method determines the centre of the area below the combined membérship

function. Fig.3.3 shows the operation in graphiéal way.
35 FUZZY CONTROLLER OPERATION AN OVVERVIEW

Let for any s_ystein the fuzzy set for error and error derivative shown in fig.3.4 and
fuzzy associative memory are shown in fig.3.5.

Let normalized error and érror change = 0,6 and 0.8

Ist Step : Find the fuzzy set for error and error derivative,

fuzzy sets for error 4and 5

fuzzy sets for error change = 4and 5

Tnd Step : Find the height corresponding to each fuzzy set as shown in fig.3.6.
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Fig.3.4+ Fuzzy sets for error, error
derivative and control

52

11 2 | 2 NS - 2
ZE -3

21 2| 24 2| 2|3 | BS -4
PB -5

Fig.3.5 : Fuzzy associated memory

05 105 1 05 : 1

Fig.3.6 : Finding the height of fuzzy sets
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Ird Step : Compare the heights of the above fuzzy set _’resuItS'

ai[j] compare bi[j]
minf1] = 024 ‘
minf2] = 0.6
min[3] = 0.2

min[4]=0.2
IVth Step : Find the-fuzzy set to be fired
iden[k] = fam [a1[i]] [22[j]]

we gef
. iden[1] = 4,A
iden[2]=5"
iden[3] - 5

iden[4] =5

Vth Step : Arrange the above value by comparing to each other, we gfaf

Jiden[1]=4, iden[2]=4, iden[3]=4, iden[4]=5

min[1] = 0.4, min[2] =0.2, min[3] =04, min[4]=0.2
VIth Step : By center of gravity method
min[k] * a[3][4] = 0.5x 0.4

min[k] * a[3][4] = 0.5 x 0.2
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l ‘Crisp r Fuzzy

[F
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PLPD,PID :
=

[ | o

Shdxﬁg Mode . SUGENO
Control

State Cont

Predictive

Control with . Predictive
Boundaries

T

Obseryer

Fig.3.7 : An "Open scheme™ of systems and controllers
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min[k] * a[3][:4] =05x02

min[k] * a[3][4]='"1x 0.2

0.5%0.4302+0.550.2+1%0.2 _ 02+0.1+0.1+02
04+02+02+02 1

Control valueu=

Control value (u) = 0.6
3.6 NON-LINEAR FUZ'ZYVCONTROL

The analytic functions in models of linear and non-linear system operate on
the domain of crisp reals. In addition, we have the class of fuzzy systems whose models,
in general, are algebraic mapping from the domain of crisp reals into a pre-

sp.ec;iﬁved domain of fuzzy reals.

The class of controller can be divided into linear, non-linear, and fuzzy

knowledge base controllers.
Fig.3.7 shows an "open scheme" of systems and controllers. ST

The controller mentioned above uses two major knowledge's sources. The
process opérators or contro! engineers heuristic knowledge about the process and/or-

controller. In this case the model of the process/controller is described in terms of
production rules. -

or if then rules only.
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The . non . flizzy model of the process (e.g. the phase plane of a second order

system)

The general control law design principals are the same as in the case of crisp

linear and non-linear systems.’

L Stability analysis
2. ,Pexférrr-lance 'an‘alysis according to selected criteria
3. Rebustness analysis = concerning parameter ﬂﬁcﬁiations, - model
uncéﬁainties. V

General design rules for designing the controller of ‘structure 3.1

1. Qualitative (symbolic) design of if than rules

-

Defining the linguistic term set for the process -state and control output
variables and the corresponding membership functions describing the meaning of the ‘

element of these term sets.

Formulation of the set of IF THEN rules

2. Quantitative design of scaling or normalisation factor this include the

following steps.

s . Testing the- system to be controlled with respect to controllably and

obse'rvability‘
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e Analysis of ‘the operating points and operation area of the crisp. process
states, process outputs, and control variables.

e Utilization of design methods with origins in non-linear system theory
3.6.1 Sliding Mode FKBC

For a large class of non-linear systems FKBC are designed with respect to
phase plaﬁe determined by error e and change of error vé:_ with _"respect to the states x zmd’
x[3,7]. A ﬁ.lzzy valué for the éon‘grol variable is determined accor;iing to fuzzy values of
error and change of error. The ger;eral ap'prvoacrh to contro{ design is tﬁe.diviéion of the
pllas;e plane-into two semi planes by means of a switching line. Within tile semi pla;11es
posij:ive and negative control outputs are produced, The magnitude of the control output

depends-on the distarice of the state vector from the switching line.

For a specific class of non-linear systems there is an appropriate robust control
method called sliding mode control. The sliding mode control is espécially appropriate
for the tracking control of. robot manipulator and also for motor whose mechanical

load change over a wide range [2]

Let - x™=f{x1) + u+d

where

X =% X1,.,x0)T
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Furthermore, let Af,d and x4™ have upper bound with known value F ,Dandv:

|af] < F(x, t), ld| < DEx,; x¢

v

The control problem is to obtain the state X for tracking a desired state xq in -

the presence of model uncertalmtxes and disturbances with the trackmg error
e=x-x4= (e, &,..,e"NT
a stable switchiﬁg surface is defined as follows

S(x,t)' =0

S(x,t) = (d/dt + x)“" e x 20
Sufﬂc;ent condition for the Behaviour of slidin.g mode is
%g( ‘(xt)s ‘nls} .n'ZOA
To achieve the sliding mode we choose u so that
u=(-f -1&)-kGx,1), sgns) with K(x,1) >0
where (—f‘ -Aé) ié a comp.ensation term and second term is “the controller.

"To avoid drastic changes of the control variables we substitute the function

sgn(s) by sat(s/$) where
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—— Kmax
et
\_e :
T T
sgn(u)= -1 P
sé +0 ~-Kmax ——
sgn(w=1 s +¢ §=0
Fig.3.8 : Sliding mode principle with boundary liyer
e
NS ‘
PS NM NB ' NB
PS NZ " NS
- Ps NS
PM PZ "NB
- - e
PB PM N )
PZ NS
: -4
PB PB NZ
PSN \— switching line
PB PB  PB PM PS\

Fig. 3.9 : Rules in the normalized phase pl:fue
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L ifx <1
satx) = {sgn(s) if |x1 >1

As shown in .ﬁg.3.8, and the rules in the normalized phase plane is shown in

. fig.3.9. The wofking principle of a FKBC can be represented by

u= "kﬁlu(e, ®, 7") Sgl’l(S) .
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Fig.4.1 : Fuzzy controlled plant
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/ : . . .
- . CHAPTER -4 -

/. " DESIGN CONSIDERATIONS

41 FUZZY CONTROLLER

e .

The fuzzy controller developed in this dissertation is to regulate the switching line

M

having error, e[i]=xi[i] and change of error Ae[i]=xo[i]=%[i] as the input variables and

pulil=puli]-u[(i-1] which is the change in slope is the output variable as shown in fig.4.1
and i is the sampling time.
The membership >ﬁ_m'ction used for error(e), errc_si' change (Ae) and change of )
control (Au) are the most ‘natural and unbiased membership function i.e. symmetric
friangle with equal bases and 50% overlap with the neighboring membership function

as this provide significantly less reaching time. The term set of e, Ae and Au contains

five members, ie. . = : .
Loc
{NB, NS, ZE, PS, PB}
where
NB = bNegative big

NS Negative small
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NS

-1

-0.5 -0 0.5 . 1
Merhbership _fimctians used in the fﬁzzy sets describix_)g e, de, dn

Fig.4.2 : Memberships of fuzzy sets used in the control rules

Growp | [0
Group 2 %

~Group 3

Group 4

Gfouﬁ S

Fig.4.3 : Rule base
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= Zero

Positive small

i

~Positive big

These five membership® functions are distributed over the normalized domain

(universe of discdursé) [-1,1] as shown in fig.4.2. Membership function used in the

fuzzy sets,,déscribing e, de, du:

Rule base for the fuzzy controller is shown in fig.43. The 25 entries of the
table are the change of controller output (Au) of fuzzy controller from the table

justification of the rules can be given as follows : +

Group-1:
In this group of rules both error and error derivative are nearby equal i.e. either ’

they are positive or negative equal or the error and error derivative are very close to

switching line so control is almost zero.

Group-2 :

I

In this group the érror and error derivative are above the switching line but not

too away from it so the. control required are negative small. The control required

below the switching line are always negative.



Fig.4.4 : Schematic diagram of controlled process
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Group-3 : -
In this group the error and error derivative are above the switching line and far

from the switching line and the control required is negative big.

Group-4 :
In this group the error and error derivative are below the switching line but not

far from it and the control required is positive small. . 2

Group-5

In this group the error and error derivative are below the switching line and far

from switching line so control i positive big.

42  PROCESS

The second order dynamical system shown in fig.4.4.

X 1= sz -
_ 4.1)
X 2= ku
On simplification this gives
X1 = kxo
@2

X 2 = = -2kxz sgn(xa) - 4koxy,



The state space representation is given by

X, | |0 k X,
Xz]— -4k -2Zksgn(x,) | | x,

Taking k to be unity the dynamical equation becomes

%] [o 1 X,
L‘(z -4 —28gn(x2)J X,

If the switch is at the upper position the dynamical equation
X1=Xz

)kz = =-4X1 —2)(2
and

5&1+2).(1+4X1=0

The two states are

xi[t] = " (c1 cosbt + c2 sinbt)

x2[t] = e [c2 ((acosbt) + beos(bt)) + ¢l ((bsin(bt) - asin(bt))]

where a and b are real and imaginary part of complex conjugate pole.
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Ifthe switch is at lower position the dynamical equation becomes
®1-2%;+4x,=0 ' _ “4.9)
and the solution is giv.en by eqn.4.7 and 4.8.

The two state varia‘.bles found in the above section are used to find the slope of
switching line at evefy instant of time. Depending upon the location of the two state
variables 'Ehe slope "of ‘the. sWitching line is decided by thé location with respect to
different side of switching liné. Once the trajectory interéects the switéhing line, the

system is continuously changes its structure to attain the sliding mpde.
43  DESCRIPTION OF SOFTWATE
.The software developed in C language. Some of its details are :
Fuzzy ctrl |
. This function takes tbe normalized i'nput of error and error chanée as input and

- gives fuzzy sets of change of control (height) i.e. this function performs all the operations

of fuzzy controller except normalization and denormalization.
Normal

This function takes error and error change at every sampling interval as input and

convert them to normalized form between [-1, 1].
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Heighr
This function determines the height of tuzzy sets for crisp error and error change

in rule firing.

Search

This function is a sub-function of fuzzy ctrl and determines the fuzzy sets for

crisp input of error and error change i.e. it helps in determining rule firing.

Arrangevals

This function helps in defuzzitication. It helps tor including maximum height of

output clipped fuzzy sets, it two or more rules results in same output {uzzy set.

Fuzzgraph

This function draws the response of the fuzzy controlled system on the screen.

248413
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4.4  FLOW CHARTS

START

Read imtial points, system gain.system
parameter, boundary value .

[ Calculate constants

Calculate error e[i] and
error change defi]

Calculate new constants

Caclculate error efi] and
error change de[i]

Fig.4.5 : Flow diagram of sliding mode control with fixed sliding surface
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-

Read half base. width and mid points of the triangular membership
functions of error, error change and change of control

Read gain, initial points, normalization factor of error, error derivative,
" control, boundary layers, systems parameter

Calculate constants|

[ /2
I Calculate error and error changel

- LC'alculate new constants—l
|

. S )
lCaclculate error & error c1_1a_ngeJ

é[

is .
iF+(puli] * defi])
<0

YES

Fig.4.6 : Flow diagram of sliding mode control with fuzzy sliding surface
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Find the input fuzzy set for
error and error change

Calculate their membership
values

‘Find the output fuzzy set for each combination
of input fuzzy set from rule base which are firing

Find the firing grade which
is minimum for each firing rule

Clip the output fuzzy set with
firing grade for each firing rule

Combine the clipped output fuzzy
set using disconjunction

Defuzzify the aggregated output fuzzy
_set using centre of gravity method

Fig.4.7 : Flow dingram of fuzz_ctrl subroutine
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CHAPTER - 5

RESULTS AND DISCUSSIONS

EEROR DERIVATIVE

5.1 RESULTS

Response of system at initial tuning for fuzzy surface

0o
ne = 200
nde = 200 .
m = 5
pl = -100
p2 = -120
t = 0.036000
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* Response of system at initial tuning for ﬁxe'd' surface

ERROR DERIVATIVE

100 X -5’0 50
ne =. 200
nde = 200 504
m = 5
pl = -100
p2 = -120
t = 0.089000
] 100 4

B

- Graph2
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ERROR DERIVATIVE

150

i

Effect of varying initial conditions

.ne = 200
nde = 200

m =5

t = 0.13000

Graph 3 : Response of system having fuzzy surface with p1=180, p2=190
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ERROR DERIVATIVE

150

100

A0

Effect of varying initial conditions

ne = 200
) nde = 200
m = 5 .
t = 0.089000
0 100 1=

Graph 4 : Response of system having fixed surface with p1=180, p2=100
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ERROR DERIVATIVE

120

Effect of varying initial conditions

20

ne = 200
‘nde = 200

m = 5 )
t- =" 0:015000

ERROR

Graph 5 : Response of system having fuzzy surface with p1=180, p2=100
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ERROR DERIVATIVE

Effect of varying initial conditions

10
L ne = 200
_100' nde =- 200

m. = 5,

t° = 0.089000
0
a0

ERFROR

Graph 6 : Response of system having fixed surface with p1=180, p2=100
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ERROR DERIVATIVE

- Effect of varying boundary value

=
am ne = 200
nde- = 200
: m = 5
t = 0.604999
10 .

ERROR

* Graphk 7 : Response of system having fuzzy surface with C5=5
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ERROR DERIVATIVE

-Effect of varying boundary value

ne = _260
nde 200

g
B

I
Lh

t = 1204

Graph 8 : Response of system havihg fixed surface with C5=5

61



Effect of varying system gain

ERROR DERIVATIVE

ne = 200

nde 200 . 404
m 5 . .

t = (.363000 . 0

=120 4

ERROR

Graph 9 : Response of system having fuzzy surface with K=1.1
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ERROR DERIVATIVE

Effect of varying syStem gain

-1D <10 80 &0 40 0 2D

ne = 200

ERROR

"Graph 10 : Response of system hﬁving fixed surface with K=1.1
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52  DISCUSSIONS

Initially the parameters of the process i.e. gain (K), feedback gain and switched

gain is taken as 1, + 2 and 4 respectively.

By Nyquist stability criterion, process gain K was calculated for stability: The
system is stable when the position of switch is at positive and unstable when the position

of switch is at negative,

With the above value we found that both the systems i.e. with fixed.and fuzz&r
surface exist sliding mode and the tirr-le require to a@tair.l the ‘s‘.lidi:ng mode is less in the
case of fuzzy surface. At the above tuning the normalizéd phas; plane is taken up to limit
200 i.e. ne=200, nde=200, the maxirhum angié of rotation of fuzzy surface is choos_er’x as

33° negative and positive with respect to fixed switching time.

After the above tuning the system parameter is changed keeping scaling factors of
fiizzy controller control. Following are the observation from the graph obtained after

simulation :

@) ' Graph’ 3 4,.'5, 6 shows the response of system 'with fixed and fuzzy
surfaces from these ﬁgures we can see that the sliding mode can exists at
every initial cqnditions in the riormalized phase plane. Depending .upon
the initial conditions the slope of Ith‘e fuzzy surface is high or less.

(2) Grapl'l 7 and 8 show the effect of varyiﬁg the boundary layer. The time

required to reach the equilibrium point increases and both the systems
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(3

attain the_. sl_iding mode. The time reciuire to attain the equilibrium points
ére 1.204 and 0.604999 fespectively for fixed and fuzzy surfaces.

Grapth énd 10 show the effect of /varyi‘ng the systems gain K. From these
grap-hs we can observe that the chattg:ring‘ is increases in both the case but

the chattering is less in fuzzy surface then fixed surface.
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- CHAPTER - 6

CONCLUSIONS

From the responses obtained by simulating the second order system with fixed
and fuzzy sliding surfaces, involving the variable structire, we-conclude that the system
having fuzzy surface reqﬁ-iré _le;s time to- attain the slidil;g mode at every iﬁitial .
conditions than fixed sliding surface. That is the system having fuzzy sliding surface is
more superior than fixed surface. From grapl; 9 and 10 we conclude that if thc;, gain of the
system is increased the chatteﬁng is increase. Also from _gréph 7 and 8 we observe that

iﬁcreasing the boundary layer the time requires to reach the equilibrium points increases.

In this dissertation we have used triangular membership function for regulating
the switching surface. In future work, the system can be simulated with bell-shaped:
membership function, which can smooth the fuzzy _surféce and can get better result than

triangular membership function.

66



REFERENCES

Choi, S., Chear, C. and Park, D., "Moving switching. surface for fobust control of

second order variable structure system", Int. J. Control, 1993, 58(1), pp.229-245.

D. Driankov, M. Reinfrank, "An induction to fuzzy control", Narosa Publication,

2nd Edition, 1997,

"Decarlo, R.A., Zak, S.K. and Matthews, G.P., "Variable structure control of nori-

linear multivariable-sys_tems : atutorial", Proc. JEEE, 1988, pp.212-232.
- George J. Ktu/BO Yuan, "Fuzzy sets and fuzzy logic", Prentice Hall, 1977.

Gao, W. and Hung, J.C., "Variable structure control of non-linear systems : a new

approach", IEEE Trans. Industrial Electronics, 1993, 40(1), pp.45-55.

Heejinlee,'Eu'nta;ikimh Yung-Jinkang Mignonparks, "Design- of a sliding- mode
controller with fuzzy sliding surfaces", IEEE Proc. Control Theory Appli.,

’ 1498
Vol.145, No.5, September, pp.411-418.

‘Hung, I.Y., Gao, W. and Gao, J.C., "Variable st.ructufé.lcontrol : a survey", IEEE

Trans, _Ii}_iiiﬁstrial Electronics, 1993, 40(1), pp.2-22.

Ishigame, A., Furukawa, T. and Kawambto, S., "Sliding mode controller design
based on fuzzy inference for non-linear systems”, IEEE Trans. Industrial

Electronics, 1993, 40(1), pp.64-70.

67



10.

11.

Moinuddin, "Design of robotic manipulator”, Ph.D. Thesis Department of E'& C,

UOR, Roorkeé, India, 1993, pp.8-35.

Slotine J.J. and Sastry, §.S., "Tracking control of non-linear systems using sliding
surface with application to robot manipulator", Int. Journal of Control, 1983,

38(2), pp.465-492. . -

Timothy J: Ross, “"Fuzzy logic with engineering application", Mec-Graw Hill

Publication, 1997.

68



APPENDIX

/*PROGRAM FOR SLIDING MODE.- CONTRO WITH
FIXED AND FUZZY SLIDING SURFACES*/

#include<stdio.h>

#include<stdlib.h>

#include<graphics.h>

#include<conio.h>

#include<math.h>

#include<dos.h>

#define SIZE 25

#define STEP .005-

int iden[5],all3],a2([3],fam(6) [6];

float a(4][6],b[4])([6]),c[4]([6]),min[5],noxrmale, normalde,

float normalu, denormalu,pl,pZ

void main{void}

{

intvd z,choice; -
‘int FsS; :

float k,kL,i,3j,pl,p2,p3,p4,cl,c2,c3,c4,c5,w=0,v=0, rxl, lxl P9, L,8, sl,
float tl,t2,t3; . .

float 3

e[SIZE],de([SIZE] ,ne{SI%E],nde[SIZE), du[SIZE] nu[SIZE] x1[SIZE],x2[SIZE]
,X3[SIZE],x4({STIZE],pulSIZE] ,ku(SIZE];

extérn int fam(6] (6] ;

extern float al[4]1[6]1,b[4]1[61,c[4]116]1;

float normale=200,normalde=200, normalu=5,denormalu;

float normal (float; flecat):;

float fuzzctrl in{float, float),/*FUNCTIONS DEFINITION*/

void fuzzgraph (float): ] o 7
FILE *Pl;

Pl= fcpen("cZ dat”,"w");

afl][1]1=-1.0;a[l]1[2]=-0.5;a{1]1[3]1=0.0;a([1](41=0.5;2a[1]1(5]=1.0;
al2][11=-1.0;a{2][2)=-0.5;a[2][3]=0.0:a([2][4])=0.5;a[2])[5]=1.0;
a[3](11=~1.0;a(3][2]=-0.5;a[3][3]=0.0;a[3][41=0.5;a{3]1[5]=1.0;
b[1](L]=0.5;b[11{2]=0.5;b[1]1(3]1=0.5;b[1][4]1=0.5;b[1][51=0.5;
B[2)[1]1=0.5;b[2]1(2]=0.5;b[2][3]=0.5;b[2][4]=0.5;b[2][5]=0.5;
b[3]{1]=0.5;b(3])(2]=0.5;b[3]1(3]1=0.5;b([3] [4]1=0.5;b{3]1([5]1=0.5;

fam[1] [1]=5; fam[1] [2]=5; fam[1] [3]1=5;fam([1] (4]=4;fam[1] [5]1=3:
fam[2] [1]1=5;fam[2] [2]=4;fam[2] [3]=4;fam[2] [4)=3;fam[2] [5]=2;
fam[3] [1]=4; fam[3] [2]=4;fam[3] [3)=3;fam[3][4])=2; fam[3] [5]=2;
fam(4]1[1]1=5;fam{4] [2]1=3;fam{4](3]=2;fam[4] [4]=2;fam{4] [5]=1;
fam(5] [1]1=3;fam[5]) [2]=2; fam([5] {3)=1;fam[5] [4])=1;fam([5] [5])=1;

/*INPUT VARIABLES EN?ERING*/

printf ("FIXED SURFACE=1 \nFUZZY SURFACE=0\n");
scanf {"%d", &FSS) ; ’

printf ("initpl\n");

scanf{"%£f", &pl);

printf ("initp2\n"};



scanf ("$£", &p2};
printf ("p=");
scanf ("$£", &p) ;
printf ("g=");
scanf ("%£", &q) ;

printf (“"r=");
scanf ("$f", &x);’
printf ("k="};

scanf ("$£", ¢k) ;/*GAIN*/

/* CALCULATION BEGINS HERE */
1=k*k;

s=-{g*q- (4*p*r*kl));

sl=sqgrt(s);

rxl=q/ (2*p*kl);

ixl={sl/ (2*p*kl}));

/*LOOP STARTED HERE*/

if (FSS5==0) {
nu[0)=fuzzctrl 1n(p1/normale p2/normalde) ;

if(nu{0]<0}
pu[O]——l*(nu[O]*normalu!,
else

) pu[O]—(nu[O]*Z 5)/normalu ]
else pul0]=1;

c5=. 1 /*BOUNDARY VALUE*/

cl=pl;

c2—(p2+p1)/1x1,

do .

{

cl=pl; )

c2={p24pl) /ixl;

for(i=0;i<STIZE;1+=3TEP)

{

x1[(i}=({cl*exp (- rxl*l)*cos(lxl*l))+(52*exp( rxl*i)*sin(ixl*i)));

eli)=x1(i]; ¢

nelil=normal{eli], normale),

x2[il=(exp (- rxl*l)*((cl*(-rxl)*cos(ixl*i))+(c2*ix1fcos(ixl*i))
) +(cl* (=rx1) *sin(ixl*i)) - {ixl*c2*sin(ixl1*i))));

de(il=x2({i];

ndel[i)=ncrmal (de[i],normalde) ;

nuli}=fuzzctrl in(ne[il,ndel[il]);

dufil=normalu*nu(i];

wr=du[i];

fprint£f(P1, "%f\t%f\n",e[l] de(i]):

/*printf("$£;$E\n", e[i],de[i]); */.

1f((e[1]+(pu[l]*de[1]))> c5)

continue;

else

p3=x1[i];

pé=x2[i};

tl=i;

break;

}

c3=p3;

cd=(p4d-p3)/ixl;



for (j=0.0;3<SIZE; J+=STEP)
{

elj1=x3[31; _
nel[jl=normal{el[j],normale) ;
x4 [j1=(exp (rxl*j)* ((c3* (rxl) *cos (ix1*j} )+ (cd*ixl*cos (ix1*]j})
+(03*(rx1)*51n(lxl*]))—(1x1* 4*sin(1xl*j)))),
de[jl=x4[j];
nde[j]=normal (de[j],normalde};
nu{jl=fuzzctrl_in{neljl,ndel[]jl);
duljl=normalu*nul(jl;
vi+=duljl;
fprintf (P1, "$E\L%f\n", E[jJ deljl):
if((e[J1+{ pU[OJ*dE[J] ))<e5)
centinue;
else
pl=x3[jl;
p2=x413l:
t2=5;
break;
}
} : .
whlle((xl[l])l&&x2[1]<l)Il(x3[j]>l)&&(x4[j]<1));
t3= (tl+t2),pr1ntf("t3 $£",t3) ;getch();
fclose(P1);
fuzzgraph(SIZE);
}
/*FUZZYCONTROLLER SUBROUTINE*/
float fuzzctrl in(float c,float d)
{ . B
extern int iden(5],al[3],a2([3],fam[6][6];
extern float min{5],a[4][6],k[4]1[6]; -
int i,3,1,k:
float error,error_change,suml, sum2,p,u;
float membl[3],memb2[3]; )
void search(float,flcat,float all (6], £float b[](6],int, /int);
float height{float, float a{]l[6],float b[][6],int,int);
-void arrangevals (veid) ;
error=c;
error_change=d;
. search(error,error_change,a,b,1,2);
for (i=Ll;i<=1;i++)
{
1=all(il;
£(1==0)
membl[1]=0.0;
else
membl{i]=height{error,a,b,1,1};
nembl{2]=1-membl([1l];
} .
for{i=1;i<=1;i++)
{ -
1=a2({i];
if (1==0)
memb2 [1j=0.0;
else
memb2 [i]=height (error_change,a,b,1,1) ;"

x3[j]=((c3*exp(rxl*j)*cos(ixl*j))+[c4*exp(rxlfj)*sin(ixl*j)));



memb2[2]= —memb2[1],

}

if (membl([1]>=memb2(1])
mln[l]~memb2[1],

else

mln[l]—memhltl],

if (membl[1]>=memb2(2])
min{2]=memb2[2];

else

min{2}=membl({1];

if (membl [2]>=memb2 [1})
mln[3]—memb2[1],

else

min[3]=menbl[2];

if (membl[2]>memb2[2])
min{4]=memb2[2];

else

min{4]=membl[2];

k=0;-
for (i=1;i<=2;i++)
( . N
for (j=1l;j<=2;3++)
{ .
++k;
lf((al[l])&&(aZD])‘—O)
iden{k]=fam[al(i)][a2[31]1;
}
! ,
/*defuzzification starts here*/
arrangevals ()}
suml=0.,0;
sum2=0.0;
for (k=1;k<=4; k++)
{
1f (k==1}

suml+—a[3][lden[k]]*mln[k],
sum2+=min (k] :
Yoo
else
{
. if(iden[k]==iden|k~1})
{
suml+=a[3] [iden[k] ] *min(k];
sum2+=minfk]:
}
{ .
p={min[k]>min[k-11)?minl[k] :min(k-1]; :
- suml+=(af3] [iden[k]]*p) - a[3][1den[k]]*mln[k 11;
sum2+=p-min[k];
}
} /*printf ("suml=%f sum2=%f",suml, sum2);*/
S} u={suml/sum2}; if{uw>liu=1;
regturn{u);

)



void search(float vl ,float v2‘,float al[]ll6),float b[][6],int n ,int m
) ’ '
{
extern int all[3],a2([3];
int i,]j,flag;
j=0, flag=0;
for(i=l;ig=5;i++)
{
if (i==l&&vl<a[l][1])
{ .
flag=1;
break;
] .
1f (i==5&&v1>a[1l] [5]
{ .
flag=2;
break;
) . .
if((vi>(alnl[i]l-bln] [i]})&&(vi<=(aln] [i]+b[n] [i]}}){
++3;
al{jl=i;
]
) '
if (flag==1)
{
al[l]l=1;
alf2]=2;
}
if (flag==2)
(
alll]=5;
all[2]=4;
}
flag=0;
3=07
for(i=L1;i<=5;i++) -
{
if(i==1g&v2<al2] [1]}
{
flag=l;
break;
}
if (i==5&&v2>a(21[5])
{
flag=2;
break; .
] .
if((v2>(alm] [L]-b(m] [i]))&&(v2<=(a(m] (i1+b(m] [i]1)}}
{++37
a2{jl=i;
)
}
if(flag==1){
a2[1)=1;
a2[2]=2;

}
if (flag==2) {



a2[1)=5;
a2[2)=4;
Yo
return;
} ' : '
" float height (float var,flecat a(](6],float b[]{6),int n,int m)
( .
float t,max; -
if((n==l&&var<afm) [n}) ] (n==5&&var>a{m] [(n}]}))
return(l);: .
else if((n==2&&var<a[m] [(n])[[ (n==4&&var>a[m] [n]))
return(0); ' .
else
{
if(var>0.0)
t=- (var+a[m] [n]);
else
t=(var-a[m] [n]).;-
t=(t/b[m] [nl);

1£{(1-t)>0)
max=1-t;
else maxr=t-1;
=} if(max>.5)
max=l-max;
return (max) ;
b
void arrangevals{void)
{
int i,73;
float temp, templ;
extern int iden[5]):
extern float minf51;
for(i=l;i<=4;i++)
for(j=i+l;j<=4;:j++)
if{iden{i}>iden(]]})
{ i )
temp=iden(i];
iden[il=iden(j]:
~ iden[j]=temp;
}
for (i=1;i<=4;i++)
- for (j=i+1:j<=4;J++)
if(min(i]l>min{4])
[ .
templ=min{i];
min{i)=min{3j);:
min(j}=templ;
¥
return;
} . .
flqat normal (flecat dn, float dnf)
{
float non;
non=dn/dnf;
return (non) ;

}



void fuzzgraph (float size)

{

float e[320],de(320),x1[320],x2[320];
float 1i,3:;

FILE *P1l;

int gd=DETECT,gm,x%,Vy:

initgraph (&gd, &gm, "c\\tc\\prog\\tc\\bgi");
x=getmaxx () ;

y=getmaxy.();

setcolox (WHITE) ;

Pl=fopen("c2.dat", "x");
for(i=0.0;i<=size;i+=STEP})

{ ’ . o
fscanf (P1l, "$E\tY£\n", &e (i), &de[i] )
putpixel { (x/2+e[i]), {y/2-de[i]) ,WHEITE):
/*putpixel ((i*10), (240+e(i]),WHITE) ;*/
line (0,v/2,%,y/2);

/*1ine(0,0,0,y);*/

line({x/2,0,%x/2,y); ‘
rectangle’(10,10,100,80).; "

outtextxry (19,20, "ne=200");
outtextxy (19,30, "'nde=200"} ;

cuttextxy (19,40, "nu=2");

outtextxy (19,50, "k=1"};

outtextxy (19,60, "t=");

}

getch ()

]
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