
NEURAL NETWORK MODELS FOR
OPTIMAL ROUTING IN COMPUTER NETWORKS

A DISSERTATION

submitted in partial fulfilment of the
requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND TECHNOLOGY

ACHUTA DEVI VENKATA KUMAR

9/71f :
9 ~ - Y u_

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
UNIVERSITY OF ROORKEE

ROORKEE-247 667 (INDIA)

FEBRUARY, 1996

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in the

dissertation entitled "NEURAL NETWORK MODELS FOR OPTIMAL

ROUTING IN COMPUTER NETWORKS", in partial fulfil inent of the

requirement for the award of the degree of MASTER OF TECHNOLOGY

with specialization in COMPUTER SCIENCE AND TECHNOLOGY, University

of Roorkee. 	Roorkee, is an authentic record of my own work carried out

from July 1995 to 	1996 under the guidance of Dr. (Mrs.) KUMKUM

GARG. Professor. Department of Electronics and Computer Engineering,

University of Roorkee, Roorkee.

The matter embodied in this dissertation has not been submitted by the

for other degree.

Date 	 (ACHUTA DEVI VENKATA KUMAR)

Place : Roorkee

This is to certify that the above statement made by the candidate is

correct to the best of my knowledge and belief.

r
Date : 	1 2. 2• q6

(Dr. KUM UM GARG)
Place : Roorkee 	 Professor

Deptt. of Electronics & computer Engg.
University of Roorkee
Roorkee - 247 667 (INDIA)

ACKNOWLEDGEMENT

I am taking this opportunity to express my sincere and heartful

gratitude to Dr. (Mrs.) KUMKUM GARG, Professor, Department of

Electronics and Computer Engineering, University of Roorkee. * Roorkee. for

her valuable guidance and sustained encouragement through out the

dissertation period.

I also owe a lot to my dearest friends for their suggestions and help

during the dissertation period.

Date 	~- ~< k ~`~` ► 	 (ACHUTA DEVI VENKATA KUMAR)

Place : Roorkee

ABSTRACT

The routing of packets from 	source to destination is an important

issue in the design of packet-switched computer networks, where the goal is

to minimize the network wide average time delay. The routing algorithms

rely heavily on the shortest path computations that have to be carried out

in realtime.

This dissertation addresses the application of neural networks to the

optimal routing problem. Three neural network models are compared. Their

performance in giving optimal routes is analysed through simulation results

by selecting three different communication network topologies. The neural

network models compared are Lee-Chang model, Zhang-Thomopoulos model and

Mustafa-Faouzi model, all based on Hopfield neural networks.

All-through Lee-change model gives multiple optimal, suboptimal routes

simultaneously it is not fool proof in giving all optimal routes. But

Mustafa-Faouzi model is found to be giving all optimal routes. The

performance of these models in finding the multiple optimal routes

simultaneously and the conditions there in are analysed through simulation

results. Other factors like divergence problems, computational power

requirement have also been examined.

CONTENTS

• Chapter

INTRODUCTION

1.1 Routing in computer networks

1.2 Why neural 'networks for routing

1.3 Statement of the work

1.4 Organization of the thesis work

NEURAL NETWORKS

2.1 Neuron modeling in artificial neural systems

2.2 Classification of neural networks

2.3 Feedback neural network model

2.4 Hopfield neural network -

2.5 Travelling salesman tour length minimization

NEURAL NETWORK MODELS FOR ROUTING

3.1 Lee-Chang model

3.2 Zhang-Thomopoulos model

3.3 Mustafa-Faouzi model

DESIGN AND IMPLEMENTATION

4.1 - Simulation program data structures

4.2 Simulation program routines

-CONCLUSION

5.1 Discussion of results

5.2 Suggestions for further work

Page No.

1

2

4

4

6

6

9

3.

3

14

16

19

19

23

25

31

31

34

39

39

51

REFERENCES

APPENDIX - I

APPENDIX - II
f

APPENDIX -III

APPENDIX - IV

Software listing

Guidelines for parameter calculation

Incorporation of reliabilities of nodes and dependency

between nodes into Lee-Chang model.

Functions for delay calculation

CHAPTER - 1
INTRODUCTION

1.1 ROUTING IN COMPUTER NETWORKS

The routing 	of packets 	from source 	node 	to destination 	node 	is 	an

important issue 	in the 	design 	of communication network 	consisting 	of

multiple nodes 	and links, 	because it 	affects 	several performance 	measures

of 	interest. The 	objective of 	the 	routing 	algorithm 	is to 	optimize 	some

performance measure such as mean packet delay or network throughput.

Routing can be done in a centralized, distributed or localized manner

[1]. In centralized algorithms, all route choices are made at a central

node, while in distributed algorithms the computation of routes is shared

among the network nodes with information exchanged between the nodes as

necessary. In localized routing algorithms, each node needs to have the

most current network connectivity and computes the routes to all possible

destination nodes based on connectivity information. In order to have the

most current network connectivity, all network nodes broadcast their

connectivity to neighboring nodes.

Centralized routing method requires a special node in the network

which periodically receives information from all other network nodes and

based on this 	global 	information, it 	sets up and updates 	routing tables 	for

all 	nodes. This 	method 	requires high computational 	facilities at 	central

1

control node and also high reliability - of central control node since

failure of the central control node results in the shutdown of the entire

network.

The distributed routing approach can reduce some problems in

centralized routing. In this case each node makes its own routing decisions

based on the local information it receives from its neighboring nodes.

Looping of packets and deadlocks might occur due to inconsistent routing

paths.

In localized routing algorithm, all network nodes broadcast their

network connectivity to neighbors nodes, so that each node can react

quickly to changes in the network, but does incur the communication cost of

broadcasting such changes.

Either centralized, distributed or localized routing algorithms can be

operated in static or adaptive manner. In static routing algorithms, path

used between each origin destination pair is fixed regardless of traffic

conditions and network changes. In adaptive routing algorithms, the paths

used to route new message between origin and destination change

occasionally in response to the traffic conditions and network changes,

i.e. failed links, increase or decrease of link cost.

1.2 WHY NEURAL NETWORKS FOR ROUTING

Neural networks are parallel distributed information processing

systems that consists of non linear processing elements and weighted

2

connections [2]. Each layer in a neural network consists of a collection of

processing elements. Each processing element collects the value from all of

its input connections, performing a predefined mathematical operation and

produces a single output value.

The motivation for the neural networks is from natural neural systems.

Human information processing system ' is composed of many neurons switching

at speeds about a million times slower than computer gates. Yet humans are

more efficient than computers at computationally complex tasks such as

speech understanding, visual recognition etc. Neural networks are designed

to exploit the unique computational power of human brain - parallel

distributed nature of processing. Neural networks offer interesting

alternative solutions to many problems. Routing in computer networks is

one such area.

There are several routing algorithms with different levels of

sophistication and efficiency. The optimality of routing algorithm is a

relative attribute which usually implies efficient use of network resources

so as to optimize a performance measure [Eg. finding optimal paths for data

transmission within a short time so as to satisfy users demand for a faster

servicel. This requires shortest path computations involved in the routing

problem to be carried out in real time. Neural networks are very good

candidates for implementing shortest path computations involved in routing

problem because of potential of the neural network hardware approach [3]

for high computational speed.

3

1.3 STATEMENT OF THE WORK

Given the network topology, and link capacity information, optimal

routing problem requires 	finding 	all possible, optimal paths 	of each source-

destination pair of the network that will minimize the network wide average

delay.

This work addresses the application of neural networks to the optimal

routing problem. Three neural - network models are compared w.r.t. the

quality of solution provided by them. Three different network topologies

are selected for this purpose. Their abilities in finding multiple optimal

paths simultaneously is also analysed through simulation results.

1.4 ORGANIZATION OF THE THESIS WORK

The first chapter provides an introduction to the routing problem

involved in computer networks and discusses the need of neural networks for

routing problem. Statement of the work is given after.

Second chapter deals with the Hopfield neural networks and their

computational power demonstration. Artificial neural network and feedback

neural network model are briefly discussed in this chapter as they are the

fundamentals in Hopfield neural networks.

Third chapter explores the neural network models for routing, and

the advantages and disadvantages of these models. Fourth chapter discusses

the software implementation of the neural network models.

0

Finally in the fifth chapter the results obtained from simulation

are discussed, concluding remarks for the work are simultaneously given.

Some suggestions for further work are also given after.

5

CHAPTER -2
NEURAL NETWORKS

This chapter briefly discusses the details of artificial neural

networks, classification of neural networks, and continuous time feedback

neural network model. Hopfield neural networks are single layer feedback

network models employing batch learning. Their computational power was

first demonstrated by Hopfield and Tank [4] by applying it to Travelling

salesman problem (TSP). In fact, this demonstration is the motivation

behind the neural network models for routing. The details of Hopfield

neural network and its application to TSP are discussed in subsequent

sections of this chapter.

2.1 NEURON MODELING FOR ARTIFICIAL NEURAL SYSTEM.

Every 	neuron 	model 	consists 	of a 	processing 	element with 	synoptic

input 	connections 	and 	a 	single 	output. This single 	output is 	copied 	into

all 	the 	outgoing 	connections 	of 	the 	neuron. The 	signal 	flow of 	neuron

inputs, 	xi 	is 	considered 	to 	be 	unidirectional as 	indicated 	by arrows, 	as 	a

neuron's output signal flow. 	A general neuron symbol 	is shown 	in fig. 	2.1.

This 	symbolic 	representation 	shows 	a set 	of 	weights 	and the 	neuron's

processing 	unit. 	The 	neuron 	output -signal is 	given 	by the 	following

relationship.

0

i,
v

Multiplicative
weights

., 	Synaptic connections

ccssin$ node

Fig. 2.1 General symbol of neuron

n
0=f(WTX) =f 	 w i x i 	 (2.1)

i= I

where, W is the weight vector defined as

W = [W I W2 ... Wn]
T

and X is the input vector defined as

X=[x1 x2 ...xn]T

[Subscript T denotes transposition].

to as an activation function. Its domain

The function f(WTX) is referred

is the set of activation values,

net, of the neuron model. The variable net is defined as a scalar product

of the weight and input vector.

net = WT X
	

(2.2)

7

It is clear-, from (2.1) that the neuron or a processing node performs

the operation of summation of its weight inputs to obtain net. Subsequently
it performs the nonlinear operation f(net) through its activation function.
Typical activation function used is

f(net) = 	2 1 	 (2.3)

Where A > 0 in (2.3) is proportional to the neuron gain determining

the steepness of the continuous function f(net) near net = 0. The
continuous activation function is shown in the fig. 2.2, for various A.

Activation function (2.3) is called bipolar continuous function.

Fig.2.2 Bipolar continuous activation functions of neuron

By shifting and scaling the bipolar activation function defined by

(2.3), unipolar continuous functions can be obtained as :

f(net) = 	I + exp (-x net (2.4)

Given a layer of m neurons, their output values 01, 02, 	Or can be

arranged in a layer's output vector :

0 = [01 02 ... Om]T 	 (2.5)

• Where Oi is the output signal of the ith neuron. The domains of vector

0 are defined in m-dimensional space as follows for i = 1,2, ... m.

(-1 1)m = {O E Rm , Oi E (-1 1)} 	 (2.6)

or

(0, 1)m = {0 E Rm , Oi E (0, l) } 	 (2.7)

for bipolar and unipolar continuous activations defined as in (2.3)

and (2.4) respectively. It is evident that the domain of vector 0 is the

interior of either m-dimensional cube (-1,1)m or of the cube (0,1)m.

Now the artificial neural network can be defined as an inter

connection of neurons as defined in (2. 1) through (2.4) such that neuron

outputs are connected through weights, to all other neurons including

themselves.

2.2 CLASSIFICATION OF NEURAL NETWORKS

Broadly speaking, neural nets can be classified in to two types, feed

forward networks, and feedback networks. In feedforward networks, recall of

information is performed in the feedforward mode or from input towards

output only. Such networks have no memory. Recall in such networks is

instantaneous. Thus past time conditions are irrelevant, for their

computation. Network responds only to its present input. Feedback network

models perform recall computation with feedback operational. These networks

are considered as dynamical systems and a certain time interval is needed

for their recall to be computed. Feedback networks are also called

recurrent. They interact with their input through the output.

Another 	meaning-ful 	basis 	for 	classification is 	to 	differentiate

neural 	networks 	by 	their 	learning 	mode. 	Learning 	in all 	neural 	networks

fall 	into 	three 	groups, 	supervised, 	unsupervised 	and batch. 	Learning 	is

necessary when the information about relationship between input and 	output

is unknown or incomplete, a priori so that no design of a network can be

performed in advance and network requires training in a particular 	learning

mode. 	In 	supervised 	learning 	at each 	instant of time when the input 	is

applied 	the 	desired 	response 	of 	the 	system 	is provided 	by 	the

supervisor/environment. 	The 	distance 	between 	actual 	and 	desired 	response

results 	as 	an 	error 	measure 	and 	is 	used 	to 	correct network 	parameters

(weights) 	externally. 	In 	unsupervised 	mode 	learning 	must 	be 	accomplished

based 	on 	the 	observation 	of responses 	to 	inputs 	since the 	desired 	response

is 	not known previously. 	In batch 	learning 	mode, all network weights are

adjusted 	in 	a 	single 	training 	step. 	Here 	complete 	set 	of 	design 	data 	is

needed 	to 	determine 	weights 	and 	feedback 	information is 	produced 	by 	the

10

o,(1+A)

02(i+ij

is

o„(►+e)

Delay elements

network it self is not involved in developing the network. This learning

technique is also called recording.

2.3 FEEDBACK NEURAL NETWORK MODEL

Here all the neuron outputs are connected back to their inputs as

shown in fig.2.3:

• The essence of closing the feedback
x,(0)

loops is to enable control of output Oi

through output Oi, for j = 1,2,....m. Such
x2(o)

control is especially meaningful if the

present output say 0(t) controls the output

at the following instant 0(t+o). The time o

elapsed between t and t+o is introduced by x•(0)

the delay elements in the feedback loop.

Fig 2.3 Single-layer feed
back network interconnection
scheme

The mapping of 0(t) into 0(t+o) can be written as

O(t+o) = r[W 0(t)] 	 (2.8)

where W is an n x n weight matrix also called connection matrix

11

	

W11
	W2 	... win

	

w21
	w22 ... w2n

w= 	 (2.9)

wm 1 wm2 	wmn

and I' is a non linear matrix operator :

	

f(•) 	0 	... 0

FE.] = 	0 	f(•) 	... 0 	
(2.10)

0 	o 	f()

Here nonlinear activations f(•) on the diagonal of the matrix operator

F operate component wise on the activation values net of each neuron.

The input X(t) is only needed to initialize this network so that 0(0)

= X(0), after that input is removed and the system remains autonomous for

t>0. If the feedback concept is implemented with any infinitesimal delay

between output and input introduced in the feedback loop then the output

vector can be considered to be a continuous time function. As a result

entire network operates in continuous time. An example of one such

elementary delay network is shown in fig. 2.4.

R

+ T~I +

R

C 	I c 	v2

Fig. 2.4 Feedback Connection in continuous tirne network

12

It 	is 	an 	analogy of a simple 	electric 	network 	consisting of resistance

and 	capacitance. 	Here the differential 	equation 	relating 	v2 and 	v 1 	the

output and input voltage respectively is

dv2 v l v2

~t — IBC - RC (2. 1 1)

Continuous time networks employ neurons with continuous activation .

functions. An elementary synaptic connection using delay network given in

fig. 2.4 is shown in figure 2.5.

f

0,

0,

Fig. 2.5 Elementary synaptic connection in continuous-time network.

The resistance Rid serves as a weight from the output of the jth

neuron to the input of the ith neuron using 	finite time interval At,

equation (2.12) can be discretized as

netk+ 1 _ net
At

=~(Ok-net)
J

(2.12)

13

V t 	 Vt 	 V3 	 V*

Fi.g.2.6 Gradient type I4opfield t eura1 MTetwork

The activation of ith neuron at the instant k + 1 can be expressed a:

net + 1 = net + 	(Ok - net)

The contribution to net, by jth neuron is distributed in time

according to (2.13). When n neurons are connected to the 	input of ith

neuron as shown in fig. (2.5) expression (2.13) needs to be computed for

j=1,2...,n and summed.

2.4 HOPFIELD NEURAL NETWORK

Continuous time single layer feedback networks also called Gradient

type networks are generalized Hopfield networks in which the computational

energy decreases continuously in time.

Gradient type networks converge to one of the stable minima in the

state space. The evolution of the system is in the general direction of

negative gradient of the of an energy function. Typically network energy

function is made equivalent to a certain objective (penalty) function that

needs to be minimized.The search for an energy minimum performed by

gradient type network corresponds to the search for a solution of

optimization problem.

The single layer 	feedback 	networks can be 	modeled 	by a 	physical

system. This modeling 	provides 	the link between 	the theory 	and

14

implementation. The model of a gradient-type neural system using electrical

components is shown in the fig.2.6. It consists of a neurons, each mapping

its input voltage u in to output voltage v through the activation

function f(u), which is common static voltage transfer characteristic

(VTC) of the neuron. Any high gain voltage amplifier with saturation could

be used in this model as a replacement for a neuron. Conductance w

connects the output of the jth neuron to the input of ith neuron. The

inverted neuron outputs v i are usually tapped at inverting rather than

noninverting output to avoid negative conductance values w ig connecting in

inhibitory mode, the output of jth neuron to the input of ith neuron. This

network is required to be symmetric w.. = w i i.e. the outputs of neurons

are not connected back to their own inputs. Each neuron receives an

external current (known also as a bias Ii). Now denoting synaptic

connection matrix [w ig] by W. The neuron dynamics [3] of Hopfield network

are described by

du. 	 V.
- = 	 v i _ - +1. 	 (2.14)

1= 1

where Tr is circuit time constant.

For a synaptic connection matrix W, if the gains of the neurons are

sufficiently high then the dynamics of neurons follow a gradient descent of

the quadratic energy function

15

11 	n 	 1l

E = -4 	vi v. - ~ Ii vi 	 (2.15)

i=1 j=1 	i=1

Also, while the state of the neural network evolves inside the N-

dimensional Hypercube defined by vi e {0,1}, the minima of the energy

function (2.15) occurs at 211 corners of this space, only if gain of the

amplifiers is ' very high. In terms of the energy function (2. 15), the

dynamics of ith neuron are described by

du 	ui aE -a- _ - - av
1

(2.16)

2.5 TRAVELLING SALESMAN TOUR LENGTH MINIMIZATION

For solving TSP a suitable objective function has to be formulated to

substitute the energy function.

Travelling salesman problem is minimization of tour length through a

number of cites with only visit in each -city. The network consisting of n

unipolar continuous neurons arranged in an n x n array [matrix], where ith

row in the n x n matrix corresponds to a city Yj, and jth column in the

matrix corresponds to a city position Xi, can be used, to solve the TSP .

Thus, there will be city rows and position columns. Since each city can

only be visited once and no simultaneous visits are allowed, solution

matrix can contain only a single I in each column and a single 1 in each

row. The neuron turned on or with output 1 in the square array of neurons

indicates a particular position of a particular city in the tour..

16

The energy (objective) function to solve the problem is given as

follows :

n n I1 n I1 n

E = A 	 vXi vXj + B 	 vXi vYi
X=l i=1 j=1 	1=1 X=1 Y=1

j ~ i 	 Y * X

n n 2

+C 	 V Xi n +
X=1 i=1

11 	n 	11

	

D 	 dXY vXi (vY, i+ 1 + vY, i-1) 	(2.17)

X=1 Y=1 i=1

Y*X

The A term becomes 0 if the matrix does not contain more than one I in

each row. Similarly the B term restricts the number 1 's in each colun i to

I. C term is required to ensure of that the matrix simply does not contain

all zeros. D term takes into account, the true goal - tour optimization.

The distances between the adjacent cities are summed while computing the

term, and summations are to be as modulo n: So the D term is numerically

equal to the length of the path of the tour.

The resulting weight matrix and bias terms can be obtained by equating

(2.16) with (2.15). The weights and bias currents given as follows

17

w?Xiv 	-2A j = 	 ij)-2B (3ij (I- 6X},)-2C

- 2 D dxy ('i,J+ 1 +)

Where - is kronecker delta function defined as

a i j = 1, for i= j and 	 = 0, for i 	j.

and 	I xi 	2 C N 	 (2.18)

using the weight and bias currents (2.18) and equation (2.14) a system

of non linear differential equations can, be solved for minimization of tour

length in TSP problem.

18

CHAPTER -3
NEURAL NETWORK MODELS

3.1 LEE- CHANG MODEL[51,[6]

Symbols and definitions used in the model are as follows

s : source node

d destination node

h : maximum number of linksof optimal paths from s to d

n : number of nodes in the network topology,

Control vector Uk = [u1 u2 un]T

where 	u 	stands for the ratio 	of 	the 	traffic 	of 	node 	i, 	in 	the kth

position 	of the 	source to destination path. 	uk 	is always between 	0 and 1.

If u 	equals 	1, 	it 	means that all 	the 	traffic will 	be concentrated 	on node

i. 	If 	the 	elements 	of Uk have all 	zeros 	except 	at 	certain 	element 	i, then

it 	represents 	the 	fact that the kth 	position 	of the 	path 	is 	to 	be 	via node

The state is said to convergent iff given, a small tolerance E > 0, the

update of traffic remains within this E-neighborhood, i.e. there are only

small changes in the states of the network. If there is only one source-to-

destination path then one element of Uk will converge to 1 and other

elements to 0. On the other hand if there is more than one optimal soirce-

19

to-destination path, then the elements of Uk will be convergent to the same

.-alues for several different nodes.

The model is arranged in multiple layers, and the number of layers is

equal to the maximum number of nodes in the routing path. The connection

between successive layers is dependent on the connectivity of communication

network.

Neurons in the same layer are not independent. The weight of links

between layers are fixed in this model. The first layer stands for source

node of the path and the last layer stands for the destination node. 	So,

the values 	of 	neurons in the first and 	last layers are 	fixed. The 	output

values of neurons in the intermediate layers are obtained by learning.

During 	the 	training, each 	layer 	gets a forward correction from 	the lower

layer and backward correction 	from upper layer and 	self correction among

neurons in the same layer.

The energy function of this model is given by

11 	 h I2

E=2
UT

j WUj+l +(~)(2) 	ui-1 	 (3.1)
j=1 j=2 i

The first term of energy function 	is 	the 	delay 	time of network. 	The

nxn delay time weighting matrix W is formed by collecting the corresponding

20

delays from each node to every other in the network. The second term

restricts the sum of uJ (i =1,2, , n) in U, constrained to be close to 1.

The weighing factor ' which is a positive constant can be adjusted properly

so that the values of U will converge quickly. To minimize energy

function, differentiating w.r.t. Uk

aE(2) 1 	 i WUk-1 + WUk+l + 2 z en 	uk -1 	(3.2)
k

where ell is an n by I vector with all l's. Because the gradient is in

the direction of maximal change, the vector AUk is set to be proportional

to -aE/aUk with proportional constant c (> 0) :

AUk = - a () 	WUk-1 + WUk+ I + a -d en 1 - uk

k = 2,3,...,n 	 (3.3)

U k(i) 	is defined 	as the 	value of Uk after the ith 	iteration. 	If 	i=0,

initial 	values of vectors Uk(0)'s 	(k = 	1,2,...., h+l) have to be assigned.

Since, 	each layer 	has different properties, the initial 	assignment 	is

divided into five cases as follows :

Case-1 : When k equals 1, 	U1 	is the first vector in the path. 	If node

s 	is picked to be the source node, then sth element of U 1 is set 	to 	1, and

other elements to 0.

21

Case-2 : When k equals h+l, Uh+1 is the last vector in the path. If d

is the destination node the dth element of Uh+ I is set to 1, and other

elements to 0.

Case-3 : When k equals 2, U2 is the second vector in the path. The

values of nodes which are connected to the source node are assigned to be

0. The values of u? which are not connected to the source node are

assigned to be 1 divided by number of links connected to it.

Case-4 : When k equals h, values of Uh are assigned similarly as in

case-3.

Case-5 : When k is not in the four classes above i.e. k = 3.....,h-1.

The values of every element in Uk said to be same except for source and

destination nodes. Since loops are not allowed in this path, the values for

source and destination are set to 0 i.e.

Uk = 0 if i = s,d

1/n otherwise

After the initialization, U k's are updated according to the equation.

U k(i+ 1) =Uk(i)+oUk ,k= 2,3,...,h.

22

This procedure continues until vectors of Uk satisfy the convergence

criterion. This network model 	always converges 	to a stable 	solution.

Proof is given 	in Appendix II. 	The rate of convergence will be improved if

the parameters a and y, in (3.1) are chosen carefully. The information for

reasonable parameters calculation is also given Appendix II.

3.2 ZHANG - THOMOPOULOS MODEL

The neural network model is arranged in a two dimensional array of

size nxn, where n is the total number of nodes in the topology of the

network. The output vxi of neuron at location (x,i) is defined as follows :

1 if node x is the ith node to be visited in the path
v .

 = x1
0 otherwise

The energy function, whose minimization process, moves the neural

network to the stable state (corresponding to the solution) is given by

n-I n n 	 n 11 n

E — 	L 	vik 	vJ k+ l + 	L 	 vik vjk J
k=1 i=1 j=1 	 k=1 i=1 j=1

n n
	2

+ 	14 	L 	v .. -n 	 (3.4)
i=1 j=1

23

Where wij consists of zero cost self loops connecting each node to

itself and very large costs to nonexisting links and proper costs to

corresponding existing links.

In the energy function, A term represents the total cost of the path

from source to destination. The B and C terms are constraints introduced to

force 	the 	neural network 	to 	coverage 	to 	a 	valid 	path. 	The 	B 	term is

minimized 	if each column contains at most a single 1, 	which corresponds to

at most one node visited at a time. The C term ensures that there 	will be

exactly n 	I 's 	in the final solution. 	When combined together, the B and C

term 	ensure that each 	column 	will 	have 	exactly 	a 	single 	1. Here 	in 	this

model, 	for a 	given source 	and 	destination 	pair 	(s,d) 	state 	of 	all 	neurons

located 	in the 	first and last column are 	fixed 	[vs 1 = "dn = 	I 	and 	the

remaining neuron in the first and 	last column are set to 	0], while allowing

the output values of remaining neurons to evolve so as to minimize the

energy function.

The state of (i,j)th neuron, uij can be described by the differential

equation :

n 	n

zJ + 	 T ij ,1 i •vim + l ij
	 (3.5)

1=1 m=1

24

where, Tij,m11 	-A Wim(6n,i+l + 6n,i-1) 	B Sin (l 	o.) - C is the

connection weight between (i,j)th neuron and (m,n)th neuron in the nxn

neuron array obtained by comparing the corresponding coefficients in (3.4)

and (2.15).

Here 5. is the Kronecker delta . function defined as before, also

v = g(ui~) = [1 + tanh(ui~/u0)]/2,

I..
Ii

	C * N (input bias term),

uO = gain factor.

Energy minimization procedure involves solving n2 nonlinear

differential equations. This procedure continues until output of each vii

approaches either 0 or 1, which corresponds to the steady state (it could

be a local minimum).

3.3 MUSTAFA - FAOUZI MODEL 181

This model gives a suitable representation scheme, such that the

shortest path is encoded in the final state of the neural network. The

model is organized in an nxn matrix, with all diagonal elements removed

since they are not needed. Each element in the matrix is represented by a

neuron which is described by double indices (x, i) where row subscript x and

column subscript i denote the node numbers. Therefore, the neural network

25

requires n(n-1) neurons ' and a neuron at - location (x,i) is characterized by

its output vxi, defined as follows:

1, if the are from node x to node i is in the
vxi = 	shortest path

0, otherwise

Also pxi is defined as

1, if the are from node x to node i does not exist
Pxi 	0, otherwise

In addition, the cost of an arc from node x to node i will be denoted by

a finite positive number. For nonexisting arcs this cost is zero.

The suitable energy function, whose minimization process drives the

neural network into its lowest energy state (corresponding to the shortest

path) is given as follows :

n n 	 n n
112

E=-2- 	wxi, vxi +vxi +
x=1 i=1 	 x=1 i=1

i$x 	 i$X

(x,i) 	(d,$) 	(x,1) 	(d,$)

26

H 	n 	n 	2 µ
L vxi 	L vxi 	+

x=1 i=1 i1

i*x 	i#x

Fl n
114

x=1 x=1
x*i

t̀ 5 vxi(1-vxi) + -- (1-vds) (3.6)

The 	111 	term 	minimizes the 	total 	cost of path 	by 	taking 	into 	account

the 	cost 	of 	existing 	links. The 	112 	term 	prevents 	the 	nonexisting 	links

being 	included 	in the chosen path. 	The 113 	term 	is zero for every- node 	in

the solution, 	if the number of incoming arcs equals the number of outgoing

arcs. 	This 	makes 	sure 	that if a 	node is 	entered 	in 	the 	solution 	path, 	it

will also be exited by a path. 	The µ4 term pushes 	the state of the neural
2

network to converge to one of the 21 	-n corners of the Hypercube defined by

Vxi c 	{O,1 }. The µ$ term is zero when the output of the neuron at location

(d,$) 	settles 	to 	1. 	Although the 	link from 	d 	to 	s 	is 	not 	part 	of 	the

solution, 	it 	is 	introduced 	to enforce 	the 	construction 	of path, 	which 	must

originate 	at 	s 	and 	terminate at 	d. 	This makes 	sure 	that 	the 	final 	solution

contains the arc from d to s and therefore both source and destination will

be in the solution.

The final 	solution will always be a loop, with nodes d and s 	included.

This 	loop consists 	of two parts, a directed path 	from 	s to d and an are

0

27

from d to 	s. If there are no zero length loops in the network then 	the µl

and 13 terms will ensure that there will be at most a single 	1 at each row

a'nd at each column. 	This guarantees 	that there 	will 	be one 	to 	one

relationship between the paths and the neural network representations.

Rewriting (2.14), (2.15) and (2.16) in such a way as to take into

account the representation of neurons with double indices, we get

n n du. u .

	

_ ui I + V 	V T xi, . ' v . + Ixi = -uxi - a E (3.7)
YJ 	yj 	 x y=l j=1

j#Y

By substituting (3.6) in (3.7),

neuron (x,i) is readily obtained :

the equation of the motion of the

d

ot— — - uz 1. - 	W xi(1-sxd his) - 	pxi(1-"xd "is)

Fl 	 n

- µ3 ~ (vxy - vyx) + 13 Z (viy - vyi)
y=l y=1
Y~x 	 Y#i

--- (1-2v.) + 7 6xd 8is' V(x,i)E n x n 	1 (3.8)

where S is the Kronecker delta defined as before .

By 	comparing the corresponding 	coefficients in 	(3.6) and 	(2.15) 	the

connection strengths and biases can be derived. They are given as follows :

Txi,yj 	[14 .5xy 6ij µ36xy - µ3aij + µ36 x + 113 6iy 	(3.9)

112
Ix1 = 7 Wxi(1-Sxd his) 	pxi(1-Sxd his)

114 	115
+ 	xd6is (3.10)

The first term in (3.9) represents excitatory self-feedbacks, and the

second and third terms represents local inhibitory connections among the

neurons in the same row and in the same column, respectively. The last two

terms represent excitatory cross-connections among neurons.

This neural network model maps the data represented by link costs and

node connectivity information into biases rather than into neural

interconnections. This is due to the fact that data terms are associated

with linear rather than quadratic expressions in the energy function. Here

the minimization corresponds to solving a system of n(n-1) nonlinear

differential equations, where . the variables are neurons output voltages

vxi's. The efficiency of the model in solving the problem, requires

selection of appropriate values of energy function coefficients. The

general guidelines to select these coefficients are given in Appendix-Il.

r

The neural network models discussed do not have specific names. In

this work the models are referred to, with author names prefixed to them.

The relative merits and demerits of these models are as follows :

The limitation of Lee-Chang model is that it is to be supplied with

number of links between the source destination pair. Also every time,

neural network configuration has to be initialized- before starting it. This

model performance is limited, only by its own drawback, but this model can

be extended successfully to incorporate reliability of nodes and dependency

between nodes in computing the routes. Appendix III discusses the details.

Zhang-Thomopoulos model is formulated to give optimal solution, but

it inherits the inherent drawback in Hopfield network i.e. local minima

problem. In this model also the values of neurons. in first and last column

have to be fixed before starting it. In this model, cost of links is

reflected 	in connection weights between neurons. 	This becomes a problem,

when model, is implemented in hardware because cost of links may change in

real time.

In Mustafa Faouzi model formulation, cost of links is reflected in

bias currents. This proves to be a big advantage for the model. But the

parameters in this model have to be chosen very carefully.

CHAPTER -4
DESIGN AND IMPLEMENTATION

The simul-ation program is written in `C' language and run under UNIX

environment on TATA ELXSI POWER SERIES 3200 SYSTEM. The operating

system is IRIX version of UNIX.

The data structures and subroutines used in the simulation program are

discussed in the following sections.

4.1 Simulation Program Data Structures

SCE 	Specifies the source node

DST 	Specifies the destination node

SIZE : Specifies total number of nodes in .the. communication network

topology.

C[][]: is the link capacity matrix, each element C[i][j]

represents the capacity of the link between -node i -& -node j.

WIT],

c[][1,

cost[if]: are the delay weighting matrices, each of them represents

the delay on the links of the communication network.

31

Result

This structure is used to store route(s) information for a given

source-destination pair. The declaration of the structure is

struct res {

int *ROUTE [];

int RTCNT;

int RTLINKS [1;

float *RTVAL [];

float PREF [];

float RTCOST [];

}

struct res result;

RTCNT : specifies the number of route(s) existing between a

given source-destination pair.

ROUTE : is the list of routes found between a given source

destination pair.

RTLINKS : specifies the number of links in the route(s)

RTCOST : specifies the cost of the route(s)

RTVAL : is used to store the output values of neurons representing

the route(s).

PREF 	: specifies the preference of route(s).

The data structures used in Lee-Chang model 	are as follows:

Iks : specifies the number of links between source and destination.

32

vec :

This data structure is used to represent the control vector. Its

declaration is as follows:

Struct vect }

float ele [];

}'

Struct vect 	*vec[];

ele 	: specifies the value of a neuron in the control vector.

The data structures used in the Zhang-Thomopoulos model and Mustafa-

Faouzi model respectively are as follows:

nnvec [][], no[][] : 	are the neuron output arrays, each

element specifies the output value of the

neuron in a particular position in the

neuron array.

coeff [1{], -nil][] 	: are the neuron input arrays, each

element specifies the input activation

value present at a particular neuron in

the neuron array.

YO, LAMDA 	 : 	Specifies the gain value of neurons.

DT,IT 	 : 	Specifies the difference interval

between successive instants overwhich

neuron output values are computed.

33

Routines

main O : 	main function is used to select a particular neural

network model depending on the settings of constants

MODELI, MODEL2, and MODEL3.

takeip () : 	This function receives source, destination and link

capacity matrix as inputs and computes the delays over

links.

genrand () : This function generates a random number between any

number x (1 > x > 0) and zero.

nnw_energy(): This function computes energy associated with the

neural network model .

The functions , used for Lee-Chang model are as follows:

detlinks(): This function determines the number of links between

source and destination. The link capacity matrix is used

for this purpose. Matrix Cln is checked whether element in

source row and destination column is greater than zero,

if so, m will be the minimum number of links between

source and destination. Here Cm denotes, multiplication

of C itself m times.

creatmem(): This function creates the control vectors. The number of

control vectors created are equal to Iks plus 1.

initvect(): This function initializes the control vectors,

representing the neural network for a particular source

and destination pair.

34

SOURCE ,DESTI NAT ION,PARAMETERS
CAPACITY MATRIX,DELA MATRIX

DETERMINE
No. OF LINES

CREATE
CONTROL UECTORS

INITIALIZE
CONTROL UECTORS

-UPDATE
CONTROL UECTORS -

NO 	IS
CONUERGENC

9

YES

DETERMINE
PATHS

COMPUTE ROUTE
PREFERENCE & COST

STOP.

Fig. 4.1 Flow chart for implementation of
Lee-Chang model.

35

diffcalc(): This function computes changes in control vector at

successive iterations.

update() 	This function uses diffcalc () function to compute

changes in control vectors to update them at successive

iterations. The first and last control vectors are not

updated because changes are not needed in them.

findroutes(): This function determines the routes, from the informat-

ion coded in the converged neural network. It generates

proper combinations using position of elements i-n -control

vectors which are greater than a certain value to

determine the routes.

router l () : This function performs the implementation of Lee-Chang

model using the above functions of -Lee-Chang model as

shown. in fig. 4.1.

The functions used in Zhang-Thomopoulos model are as follows:

initnnw (): This function initializes the output values- of neuron

array.

initcoeff():This function computes the input activation to the neuron

corresponding to the initial output value of neurons.

cal-neuronop(): This function computes the neuron output

values corresponding to the input activations present at

their inputs.

36

SOURCE, DESTINATION, PARAMETERS

CAPACITY MATRIX,DELAY MATRIX

INITIALIZE

NEURON ARRAY

COMPUTE NEURON

INPUT ACTIUATIONS

COMPUTE NEURON

INPUT ACTIUATIONS

IN NEXT ITERATION

COMPUTE

CORRESPONDING

NEURON OUTPUTS

No 	Is

CONVERGE

YES

DETERMINE

PATHS

COMPUTE ROUTE

PREFERENCE & COST

STOP

Fig. 4.2 Flow chart for implementation
of Mustaf a-Faouz i ate !

Zharng-Thomopuu los models .

37

doupdate(): This function implements the relaxation algorithm to

compute neuron input activations at successive time

instants.

findroute():This function picks out the route from source to

destination from the state of converged neural network.

ztrouter(): This function performs the implementation of Zhang-

Thomopoulos model using the above functions for Zhang-

Thomopoulos model as shown in fig.4.2.

Functions used for Mustafa-Faouzi model:

iccal() : This function computes the net input activation of neuron.

findpath():This function determines the route(s) from the

information encoded in the state of converge neural

network.

rtfinder():This function performs the implementation of Mustafa-

Faouzi model using the above function for Mustafa-Faouzi

model as shown in fig.4.2.

pathpref():This function computes the preference and cost of

route(s) found between source- destination pair.

Paracal () ,

Paracheck():These functionscheck the validity of parameters chosen

for Lee-Chang model and Mustafa-Faouzi model respectively.

5

CHAPTER -5
CONCLUSION

5.1 DISCUSSION OF RESULTS :

The three communication network topologies chosen are shown in figs.

5.1, 5.2 and 5.3. In figs 5.1 and 5.2 the number on the arcs indicates the

link capacity. For simulation purpose link cost (delay) '• is assumed to be

inversely proportional to the link capacity. For communication network

topology shown in fig. 5.3 the number on the arcs indicates the link cost

chosen randomly.

The reason for _selecting different sizes of communication networks is

to bring out the divergence problem if there exists any. The reason for

selecting the variable cost conditions is to compare the performance of

Lee-Chang model and Mustafa-Faouzi model, in giving multiple optimal routes

simultaneously.

The parameter set selected [9], [10] for each model is shown in table

5,.1. - How the link cost. (delay) is chosen, in accordance. with link capacity

is also shown in table 5.1.

1: Functions for delay calculations- are given in APPENDIX-W

39

2 	0.60541 	5 0.1709 80.19854 1. 	0.46408 	13

0.15378

1 	0.23273

0 •72845

0.6814

14

0.8635

3 	0.65 831 	6 0.63091 90..0It1 12 	0.11907 	
15

FIG.5.2-NETWORK TOPOLOGY-2 WITH RANDOM LINK COSTS

0.54426
0•87066 0.90737

4 7 11

0'41073 0.58332 0.03981

7 	64 	$ 	64 	9

FIG.5.3-NETWORK TOPOLOGY-3 WITH FIXED
LINK CAPACITIES

64

4 '

64

64

64 64
5

64

64

16

64

16

12

FIG.5.1-NETWORK TOPOLOGYTWITH VARIABLE LINK CAPACITIES

64 	_ 2 	64
	3

In all the three models, the route(s) information will be encoded in

the state of converged neural network. For the topology shown in fig. 5.3,

he -state of neural network models for source - destination pair (1, 8) is

shown in figs. 5.4 (a), 5.4 (b) and 5.4 (c).

Table 5.1

Lee-Chang model Zhang-Thomopoulos Model Mustafa-Faouzi Model

Parameter set 	parameter set parameter set

a = 	0.005 	A = 25 µ = 950

(3 = 30 	 B = 500 112 = 3500

C = 500 113 —3200

N =9.5 114 = 3500

At = 2X10-6 115 = 85

uO = 0.02 At = 10-5

A = 1

Link Link cost Link Link cost Link Link cost

Capacity Chosen Capacity Chosen capacity Chosen

128 0.2 128 2.2 128 0.2

64 0.4 64 2.4 64 0.4

32 0.6 32 2.6 32 0.6

16 0.8 16 2.8 16 0.8

41

SOURCE 1 -- DESTINATION 8

MODEL : Lee-Chang

ROUTE(s) : 1 - 2 - 5 - 8

1 - 4 - 5 - 8

NUMBER OF LINKS : 3

Fig. 5.4(a) STATUS OF CONVERGED NEURAL NETWORK

1 2 3 4

1 1.000000 0.000000 0.000000 0.000000

2 0.000000 0.172443 0.000000 0.000000

3 0.000000 0.000000 0.000000 0.000000

4 0.000000 0.814312 0.000000 0.000000

5 0.000000 0.000000 0.986755 0.000000

6 0.000000 0.000000 0.000000 0.000000

7 0.000000 0.000000 0.000000 0.000000

8 0..000000 0.000000 0.000000 1.000000

9 0.000000 0.000000 0.000000 0.000000

MODEL : Zhang-Thamapoulos

ROUTE(s) : 1 - 4 - 5 - 8

NUMBER OF LINKS : 3

Fig. 5.4(b) STATUS OF CONVERGED NEURAL NETWORK

1 2 3 4 5 6 7 8 9

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0..000

4 0.0000 0.9998 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

5 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.000

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9999 1.0000 1.000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

42

MODEL : Mustofa-Faouzi

ROUTE(s) : 1 - 2 - 5 - 8

1 - 4 - 5 - 8

1 - 4 - 7 - 8

NUMBER OF LINKS : 3

Fig. 5.4(c) STATUS OF CONVERGED NEURAL NETWORK :

1 2 3 4 5 6 7 8 9

1 0.0000 0.2755 0.0000 0.6352 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.2450 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.3541 0.0000 0.2465 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6280 0.0000

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0-.0000 0.0000 0.0000 0.0000 0.0000 0.2712 0.0000

8 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0171 0.0000

43

2

1.5

Cl)
•0

1

0

-

r.~.r%
E

:S%

is f (if

':SS :,N,A ryT jtiS:

Fi; {: r~L
rgqq. f

:.t
i .

0.5

0

Cost of routes
Source : 1 Topology : 3-

2 	3 	4. 5 	6. 7 	8 	9

destination

NL-C Z T M-F

Fig. 5.5 Performance comparision
L-C,Z T,M-F models

Measure : route Cost
44

In Lee-Chang model and Zhang-Thomopoulos model, it can be easily

seen that at any position in path sum of values of neurons representing

that position is equal to one. But this is also satisfied in Mustafa-Faouzi

model.

For all combinations of source-destination pairs in communication

network topology shown in fig. 5.3, all three models are applied. The

following are based on the results obtained.

MODEL 	 % OF CASES IN WHICH OPTIMAL

ROUTES ARE FOUND

Lee-Chang 	 100

Zhang-Thomopoulos 	 69.44

Mustafa-Faouzi 	 t00
A

Taking source 	as I 	and for 	all possible 	destinations 	the 	cost 	of

routes found by the three models are shown in fig. 5.5.

The inherent problem found in Zhang-ThomopouIos model is, the cost of

links is reflected in interconnection weights. So the neurons belonging to

the row which represents the node, having highest number of links

associated with other nodes in the communication network topology are very

highly activated, always. This won't become a problem for small networks.

45

But because of this reason neural network diverges when applied to

communication networks of big size.

It is found that, almost all routes given by Zhang-Thomopoulos model

go through the node 5, [node 5 has more number of links, i.e. (4) connected

to it]. The above mentioned reason is found to be true, when Zhang-

Thomopoulos model is applied to network topology shown in fig. 5.1, in many

cases network is found to be diverging.

For all combinations of source- destination pairs in communication

network topologies shown in fig. 5.1 and fig. 5.2 Lee-Chang model and

Mustafa-Faouzi model are applied. The following are based on the results

obtained.

In all the cases both models converged to valid solutions.

It is found, Lee-Chang model can give simultaneously multiple

optimal, suboptimal routes, differing in their route cost by approximately

5%. But Mustafa-Faouzi model gives multiple optimal routes, only when all

the routes are of equal cost. Because of this performance of Lee-Chang

model is slightly better in some cases when applied to topology shown in

fig. 5.2.

Figs. 5.6 	and 5.7 	show the cost of route (s) found by Lee-

Chang model and Mustafa-Faouzi, when applied to a particular set of source-

destination pairs.

Cost of routes
Source: 13 Topology.: 1

3.

2.5

02

1.5
0

1

0 u i--u i®algal®il_ al • li i f.1i llI

1 2 3 4 5 6 7 3 9 10

destination

EL-C RE -L-c 0 M-F M-F 0 M-F

Fig.. 5.6 Performance comparision
L-C and M-F models

Measure : route cost,multiple routes-

A7

Cost of routes
Source 15 Topology : 2

3

2.5

L-M. -1 1 - 	- I I

-- 	 I

0.5

III 	Mill 	mill 	FMII,l 	mill 	mill 	Mill 	Ell

.1234567.8910

destination

• L-.CLIiL-C El M-F

Fig. 5.7 Performance comparisiOn
L-C and M-F models

Measure : route cost,multiple routes

48 	.. 	 .

In the 	Lee-Chang 	model, 	at any 	particular 	position in 	the path, 	a

node 	is selected such 	that the sum of distance to the node in 	the previous

position in 	the 	path 	and 	the 	distance to 	the 	node 	in 	the next 	position 	in

the path is 	minimum. 	Because of this 	formulation, 	if 	the routes, differ 	in

the 	ith position 	in 	the 	path, they 	won't 	differ 	in (i-1)th, (i+1)th

positions in the path. Hence, Lee-Chang model in general not giving all

existing optimal routes. But Mustafa-Faouzi model gives all the existing,

optimal routes. These statements can be observed in fig. 5.6 	and fig.

5.7

Other Observations :

• Lee-Chang model is converging, in between 75 to 400 iterations. On

average it is taking 225 iterations, 1 sec. of processing power in

TATA ELXSI POWER SERIES 3200 SYSTEM.

• Mustafa-Faouzi model is converging in between 4000-12000 iterations.

On average it is taking 3 minutes of processing power in TATA ELXSI

POWER SERIES 3200 SYSTEM, 9000 iterations to produce route(s).

• Lee-Chang model can be easily extended to take reliability of nodes,

dependency between nodes in the communication network, in to

consideration- while computing the route. But, number of iterations

for convergence, becoming large (approximately 3 to 4 times i.e..

800-900 iterations).

CONCLUDING REMARKS :

Zhang-Thomopoulos model formulation is not suitable for large

communication networks.

Lee-Chang model is more or less suited for software implementation

because the number of neurons in the model changes depending on the number

of links. Computational power requirement of this model is low. Because of

the drawback of this model there may be a chance of crowding over some

links.

Mustafa-Faouzi mode] computational power requirement is very high in

software implementation. This model is highly suitable for hardware

approach. Also this model has the characteristics of ideal routing

algorithm. Parameter selection is a critical matter in this model. The

attractive feature of this model is extraction of all 	existing optimal

routes simultaneously.

5.2 SUGGESTIONS FOR FURTHER WORK

* Neural network models in this work are implemented(tested) for 16

node and 15 node communication network topologies,and maximum

number of links up to 6 or 7 in the routing path. Real life

implementations need testing in much larger communication network

topologies of sizes around or more than 50 . and number of links

in the routing path up to 20 or more. With the help of high

computational facilities, the models can be tested for large

communication networks.

* Hopfield neural networks can be easily modeled by simple

electrical components, and the real potential of the Hopfield

neural networks is in hardware approach. Work towards this

direction can only exploit the abilities of Hopfield neural

networks for routing problem.

51

REFERENCES

1. D. Bertsekas and R. Gallager, Data networks, Prentice-Hall of India,

second edition, 1992.

2. Robert Hecht-Nielsen, Neuro Computing, Addison Wesley Publishing

company, 1990.

3. Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico

Publishers, 1992.

4. D.W. Tank and J.J. Hopfield, "Simple Neural Optimization networks: An

AID converter, signal decision 	circuit, and a linear programming

circuit", IEEE Trans. on Circuits and Systems Vol. CCAS-33, No. 5, pp.

533-541, 1986.

5. Herbert E. Rauch and Theo Winarske, "Neural Networks for Routing

Communication Traffic "IEEE Control systems magazine, pp. 26-31,

April, 1988.

6. Su-Ling Lee and Shyang Chang "Neural Networks for Routing of

communication networks with unreliable components", Vol. 4, No. 5, pp.

854-863. September, 1993.

7. L. Zhang and S.C.A. Thomopoulos , "Neural network implementation of

the shortest path algorithm for traffic routing in communication

networks", Proceedings Int. Joint Conf.on Neural Networks, pp. 2693-

2702, vol. 3, November, 1991.

8. Mustafa K. Mehmet All and Faouzi Kamoun, "Neural Networks for shortest

path computation and routing in computer Networks Vol. 4, No. 6, pp.

941-953, November, 1993.

9. Ouyang Y.C. and Bhatti A.A., "Neural network based routing in computer

communication networks ", IEEE Int. Conf. on system Engineering, pp.

621-624, August, 1990.

10. Davis Jr., Gerald W., "Sensitivity analysis in Neural net solutions",

IEEE Trans. System, Man and Cybernetics, Vol. 19, No. 5, September,

11. A.S. Tannenbaum, computer networks, Prentice-Hall of India, Second

edition, 1988.

#include <stdio.h>
#include < curses.h >
#include < math. h >
#include < signal . h >

/*******************************/
/* GLOBAL VARIABLES 	*/ /********************************/

#define MODELI 0
#define MODEL2 0
#define MODEL3 1

#define MAX 20 	 /* Maximum number of nodes in network */
#define NET SIZE 16 	/* Total number of nodes in the network */
#define RTMAX 8 	 /* Maximum number of routes 	*/

/* Actions in comments
#define STAT ON FILE 0
#define STAT RESDISP 1
#define SIGCTCH 	1
#define AID_PARACAL 0
#define INC DEPD 0
#define INPUTMODE 0
#define OPERMODE I

will be activated if constant is 1 	*!
/* Status of NN ,Route information on file*/
/* Result display on screen 	 */

/* interrupt signal catch 	 */
/* Aid to parameter calculation 	*/

/* Inclusion of dependencies in L-C model */
/* Takes topology inforthation from screen */
/* Takes topology information from file */

int SIZE; 	 /* Size of the network topology */
int C[MAX][MAX]; 	/* Link capacity information 	*I
int SCE,DST; 	/* Source and Destination 	*!

/* Structure to store
struct res{

int *ROUTE[RTMAX];
int RTCNT;
int RTLINKS[RTMAX];
float *RTVAL[RTMAX];
float PREF[RTMAX];
float RTCOST[RTMAX];

};
struct res result;

#define HVAL 10000

result */

/* Route(s) 	 */
/* Number of route(s) 	 */

/* Number of links in the route */
/* Neuron output values

/* Preference of the route(s) 	*/
/* Cost of the route(s) 	*/

int ICNT; 	 /* Number of iterations */

int ran[3] _ {9000,866,30}; /* Seeds for random number generation */

/* Mustafa-Faouzi model Global Variables */

/*. Energy function coefficients 	*/
#define MU 1 950
#define MU2 3500
#define MU3 3200
#define MU4 85
#define MU5 3500

/* Minimum change in neuron output required to continue iterations */
#define DELTAV 0.000001
#define IT 0.00001 	/* Difference time interval */
#define LAMDA 1 	/* Gain 	 */

/* Arrays to store values of Neuron output, input and change in output */
float no[MAX][MAX],ni[MAX][MAX],dno[MAX][MAX];

float cost[MAX][MAX]; 	/* Delay weighting matrix */

/* Lee-Chang model Global Variables */

#define DELTARW 0.00000001

float w[MAX][MAX]; 	/* Delay nformation 	*/
float d[MAX][MAX]; 	/* Dependency information 	*;
float q[MAX]; 	/* Reliability information */
float *dbprod;
int NLIST[MAX];

/* Control Vectors */
struct vect{

float ele[MAX];
};
struct vect *vec[MAX], *newvec[MAX], *dvec[MAX1;

/* Energy function coefficients */
#define THETA 0.8
#define MU 	0.5
#define BETA 0.5
#define ALPHA 0.005
#define GAMMA 30

int lks ; 	/* Number of links between source and destination */

/* Zhang-Thomopoulos model Global Variables */

./* Energy function coefficients 	 */
#define A 25
#define B 500
#define DC 500
#define NN 9.5

/* Mustafa-Faouzi model functions 	*/ /**/

void rtfinder();
void create costmatO;
float iccal(int , 	int);
void findpathO;
void sigcatch_intrO;
void convrg_details(int);
void paracheck();

main()

#if MODELI
takeipO;
router 10;

#endif

#if MODEL2
takeipO;
ztrouter();

#endif

#if MODEL3
takeipO;

rtfinder();
#endif
I

/**/
/* 	Function reads the input information in to array 	*/ /**/

void readmatp(float ab[MAX1[MAX(,int ba[MAX][MAXI, int S)
{
int i,j;
for(i=0;i<SIZE ;i++)
{

printf("row %d elements 1n",i+ 1);
for(j=0;j <SIZE;j++)
{

printf("%d :",j+1);
switch(S)
{
case

scanf(" %f" , &ab[i] [j]);
break;

case 2:
scanf(" %d",&ba[i][j]);
break;

}

/* Minimum change in energy required to continue iterations *i
#define DELTAZT 0.0001

#define DT 0.000002 /* Difference time interval */

. /* Input,output values of neurons 	*/
float nnvec[MAX][MAX],coeff[MAXI[MAX[;

float Y0; 	/* Gain 	 */
float c[MAX][MAX]; /* Link cost information 	*/

/**,
/** 	 FUNCTIONS 	 **/
i***************************************./

void takeip();
void readmatp(float x[][MAX],int y[][MAX], int);
void storematf(char *, int , int);
void readmatf(char *, int , int);
float genrand(int , float);
void pathpref(int);
float nnw_energy(int ,int);
void fres_display();

/* 	Lee-Chang model functions 	*/

void routerl();
void createw(int);
int detlinks(int , int ,int);
int detadj(int ,. int x[][MAX], int);
void createmem(int);
void initO;
void initvect(struct vect *v[],int , int , int);
void vectdisp(struct vect *v[], int , int ,int);
void dbcalc();
float *matmult(float l[][MAX],float b[],float *,int , int ,int);
int diffcalc(int);
void updateO;
void findroutes();

/**/
/* Zhang-Thomopoulos model functions */
/***************************************/

void ztrouter();
void initnnw(int ,int);
void initcoeff();
float icval(int ,int ,int ,int);
float calk(int , int);
void cal_neuronopO;
void doupdate(int);
void findrouteO;
void create_cstmatO;

puts(" 	")

/** * c****** x/
f* 	Function stores array in a file, 	 ';
/* 	always activated after function readmatpO 	*i
/****** ************************ 4 **************************/

void storematf(char *fname, int Sint code)

tnt I, j;
FILE *fptr;
char ch='s';

if((fptr = fopen(fname, "w")) ! = NULL)
{

for(i=O; i<S; i++)
for(j=0; j<S; j++)

switch(code)
{
case 0 :fprintf(fptr,

break;
case I :fprintf(fptr,

break;
case 2 :fprintf(fptr,

break;
case 4 :fprintf(fptr,

break;
}

if(code = = 3)
for(i=0;i <SIZE;i++)

fprintf(fptr,"%f%c',q[i],eh);
fclose(fptr);

}
else

puts("ERROR IN OPENING FILE\n ");

1* 	Function reads array from a file 	 */ /***x/

void readmatf(char *fnarne, int S, int code)
{
int i, j;
FILE *fptr;
char ch =' ';

if((fptr = fopen(fname, "r"))! = NULL)
{

for(i=0; i<=S-1; i++)
for(j =0; j<= S-1; j++)

switch(code)

%d %c",C[i][jl,ch);

%f%c",d[i][j],ch);

.. %f %c",c[il[jj,ch):

" %f%c",cost[i][j],ch);

{
case 0 : fscanf(fptr, " %d %c", &C[i][j],&ch);

break;
case 1: fscanf(fptr," %f%c",&d[i][j],&clh);

break;
case 2: fscanf(fptr," %f%c",&c[i][j],&ch);

break;
case 4 : fscanf(fptr, "%f%c", &cost[iI[JI,&ch);

break;

}
if(code == 3)

for(i =O;i< S
fscanf(fptr,

i++)
"%f%c",&q[i],&ch);

}
else
{

fclose(fptr);

printf("ERROR IN OPENING THE FILE \n\n");
exit(0);

/**** :e***********>k******>k********* ******ie* ** *ac***** *se/

l** 	Function takes Source,Destination,link capacity **!
l** as inputs and computes delay information 	**% /**x********x/

void takeipO
{
int type;

SIZE = NET SIZE;

#if INPUTMODE
readmatp(w,C,type = 1);
storematf("MAT",SIZE,type = 0);
#endif

#if OPERMODE
readmatf("MAT" ,SIZE,type);
#endif

#if MODELI
createw(SIZE);

#endif

#if MODEL2
create costmat();
#if AID PARACAL

paracheck();
exit(0);

#endif

#endif

#if MODEL3
create_cstmatO;

#endif

printf(" ENTER SOURCE : ");
scanf(" %d", &SCE);
if(SCE > SIZE I SCE < 1)
{

printf("Sorry Source does'nt Exist!!\n");
exit(I);

I
printf(" ENTER DESTINATION :
scarf(" %d", &DST);
if(DST > SIZE ! DST < 1)
{

printf("Sorry Destination does'nt Exist!!\n");
exit(l);

return;
I

I***x *****x ******); ***/
/* 	Function implements Lee-Chang model
/* Inputs : Capacity matrix, Source and Destination Nodes */
/* outputs status of NN at different intervals during 	*/
1* 	convergence, route(s), cost of the route(s) 	*/
/************ ****:;:***/

void router 10
{
int count=0,i,k,j;
float ENRGYN,ENRGYO;
FILE *fpt, *f l ;

/* Determining number of links between SCE and DST *i
Iks = detlinks(SIZE,SCE,DST),
printf("SOURCE-- %d....DESTINATION- %d\n",SCE. DST);
printf("NO. OF LINKS- %d", Iks);

/* Creating control vectors 	 *I
creatmem(lks);
initO;

#if INC_DEPD
/* Dependency,reliability information inclusion 	"/
takedg0
dbcalc();

#end if

1* Initializing control vectors 	 `/
initvect(vec,lks,SCE, DST);

#if AID PARACAL
paracal();
exit(1);

#endif

#if STAT ON FILE
f 1 = fopen(" PFILE" ,'w");
fprintf(fl,"SOURCE : %d 	DESTINATION : %d\n\n",SCE,DST);

#endif

ENRGYO = nnw energy(lks,i=1);
printf("\nENTER NO. OF ITERATIONS : ");
scanf(" %d",&ICNT);
while(count <= ICNT)
{

/ Updating control vectors
update();
ENRGYN = nnw_energy(lks, i =1);

#if STAT ON FILE
if(count % 100 = = 0)
{
fprintf(fl,"\n ITERATION NUMBER
for(j =0; j< SIZE; j++)

for(k =0;k <= Iks; k++)
{
if(k == 0) fprintf(f 1, "\n"),
fprintf(f l .1 %6f ", vec[k]- > elelj I);

%d\n",count);

#endif

/* Checking for convergence 	 */
if (count > 100)
if(ENRGYO - ENRGYN < DELTARW) break;
ENRGYO = ENRGYN;

count+ +;

#if STAT ON FILE
fclose(f1);

#endif

/* Determining route(s) information from converged NN */
findroutes();
pathpref(i =1);

return;
}

void takedq()
{
/* Function fills the reliability,dependency information */
int i;

readmatf("DEPD",SIZE,i=1);
readmatf(" REL" ,SIZE, i = 3)
system("clear");
return;

/* Function determines the number of links in the path */
I * 	* 	***, ********************** ******** X*********1

int detlinks(int X , int S, int D)
{
int cl [MAX][MAX],c2[MAX][MAX],c3IMAX][MAX];
int count , i, j,k;

S-=1; D-=1;
X-1; i++)

=X-1; j+

else

count = 1;
if(S = = D) return 0;

else if(cL[S][D] == 1) return count;
while(count <= X)
{
for(i=0; i< SIZE; i++)

for(j =0; j< SIZE ; j++)
{ 	c3[i][j] = 0;

for(k =0; k < SIZE; k++)
c3[i][j] = c3[i][j] I (cl[i][k] & c2[k][j]);

I

for(i=0; i< SIZE; i++)
for(j =0; j< SIZE; j++)

c2[i]L1] = c3[i][J];
if(c2[S][D] == 1) break;
count+ + ;
I

if(count = = X) return -1;
else return + +count;

}

int detadj(int N, int cx[MAX][MAX], lilt S)
{
/* Function determines the number of adjecencies to node N */
int i,j;

i =0;
N-=1;
for(j =0; j< S ; j++)

if((cx[N][j] >0) &&(j!= N))
{

i++;
NLIST[i-1] =j;

}
return i;
}

Function creates the control vectors 	*1 /***/

void creatmern (int links)
{
int 1;

for(i=0; i<= links;i++)
{

vec[i] _ (struct vect *) malloc(sizeof(struct vect));
newvec[i] = (struct vect *) rnalloc(sizeof(struct vect));
dvec[i] = (struct vect *) malloc(sizeof(struct vect));

}
return;
}

/**/
/* 	Function initializes control vectors 	*/

void initvect(struct vect *vp[],int vcnt,int S. int D)
{
int i,j,k;
int adcnt;
char ch;

i=0;
while(i < =vcnt)
{

for(j=0;j < =SIZE-1;j++)
vp[i]->ele[j] =0;

if(i = =0)
{

vp[i]- > ele[S-1] =1;
}
else if(i = =vcnt)
{

vp[i]- > ele[D-1] =1;

else if (i == vcnt -1)
{

adcnt = detadj(D,C,SIZE);
for(j =0;j < adcnt; j + +)
{

k = NLIST[jJ;
vp[i]- > ele[k] = I /(tloat)adcnt;

}

else if(i ==i)
{

adcnt = detadj(S,C,SIZE);
for(j =0; j < adcnt; j + +)
{

k = NLIST[j1;
vp[i]- > ele[k = l/(float)adcnt:

}
}

else
{
for(j=0; j< SIZE; j++)
if(j!= S-1 && j != D-1)

vp[i]- > ele[j] = 1/(float)SIZE;
}

i++;
}
return;
}

void createw(int S)
{
/* Function computes the delays corresponding to existing links */
int i,j;

for(i=0;i<S;i++)
for(j =0; j <-S ;++j)
{

if(C[i][j] = = 0) 	w[i][j] = 10;
else switch(C[i][j])

{
case 128 : w[i][j] = 1;

break;
case 	64 : w[i][jI = 1.3;

break;
case 	32 : w[i j [j j = 1.6;

break;
case 	16 : w[i][j] = 1.9;

break;
}

}
return;
}

void dbcalcO .
{
/* Function computes dbprod 	 *i
inti;

dbprod = (float *) malloc(sizeof(float) * SIZE);
matmult(d,q,dbprod,SIZE,SIZE,i=1);
return;
}

/* Function computes the change in control vector ' /
/** ****/

int diffcalc(int k)
{
int i,j,n=1;
float *dl , *d2;
float l,m,sum,q;

if(k == 0) return -1;

dl = (float *)malloc((sizeof(float))*SIZE);
matmult(w ,newvec[k-l]->ele,dl,SIZE,SIZE,n);
d2 = (float *) malloc((sizeof(float))*SIZE);
matmult(w , newvec[k+ 1]-> ele,d2,SIZE,SIZE,n);
sum =0;
for(i=0;i<SIZE; i++)

sum = sum + newvec[k]->ele[i],
in = ALPHA * GAMMA * (1-sum);
for(i=0;i<SIZE; i++)
{

I = -(0.5) * ALPHA * (dl[il + d2[i]);
#if INC DEPD

q = -(ALPHA) * BETA * dbprod[i]
dvec[k]->ele[i] = l+m+q

#else
dvec[k]- > ele[i] = I +m

#endif
}

return 1;
I

/* Function updates the control vectors 	 */
/***/

void update()
{
int i,j;

for(i=0;i< =lks;i++)
for(j=0;j<SIZE;j++)

newvec[i]->ele[j] = vec[i]->ele[j];
for(i =1; i< Iks; i++)

diffcalc(i);
for(i =1; i < lks; i++)

for(j =0; j< SIZE; j++)
{

if(newvec[i]-> ele[j] > 0 && j H SCE-I && j! = DST-1)
if(dvec[i]->ele[j] > 0)
newvec[i]-> ele[j] = vec[ij-> eleUj + dvec[i]-> ele[j*];
else
newvec[i]->ele[j] = vec[-i]->ele[j] + dyed ji]->ele[jI:
if(newvec[i]- > ele[j] < 0) newvec[i]- > ele[j] =0:

}
for(i=1; i<lks;i++)

for(j=0;j<SIZE;j++)
vec[i]- > ele[j] = newvec[i]->ele[j];

return;
}

void init()

/* Function initializes control vectors to
int i,j;
for(i=O; i<.=1ks; i++)

for(j=0;j<SIZE; j++)
newvec[i]--> ele[j] = vecl i]-> ele[j]

return;
}

zero */

= dvec[i]->ele[j] = 0;

/* Function checks the validity of parameters, 	*/
/* suggests valid ranges of parameters 	 */
/**/

paracal ()

mt i,j;
float limitl,limit2,limit3,limit4;
float gma,alfa, teta, beta, mu, omegal, omegah, gmax,qm in, dqmax:
char ch;
WINDOW *win;

initscr();
win = newwin(18, 70,2,5);
wclear(win);
wattrset(win, A~ALTCHARSET);
box(win, ACS VLINE, ACS_HLINE);
gma = GAMMA;
teta = THETA;
alfa = ALPHA;
mu= MU;
beta = BETA,
mvwprintw(wi-n,2, 10, "PARAMETERS :
mvwprintw(win,2,30,"GAMMA : %f THETA
mvwprintw(win,3,30,"ALPHA : %f 	MU
mvwprintw(win,4,30,BETA : %f 	",beta);

ornegal = 50;
omegah =0;
for(i = 0; i < SIZE;i++)

for(j =0; j< SIZE;j++)

: %f",gma,teta);
%f",alfa,mu);

if(w[i][j] < omegal) omegal = w[i][j];
else if (w[i][j] > omegah) omegah = w[i]U];

qmin = qmax = 0;
for(i =0; i<SIZE; i++)
{

if(q[i] < qmin) qmax = q[i];
else if(q[i] > qmax) qmax = qJ'i];

}
dqmax = 0;
for(i =0; i<SIZE; i++)
{

if(dbprod[i] > dqmax) dqmax = dbprod[ij;
}
limitl = mu/((1-teta)*SIZE);
limit2 = (teta * omegal)/(1-teta);
limit3 = (omegah)/(1-teta);
limit4 = ((SIZE - 1) * dqmax + qmax)/(1 - teta);

mvwprintw(win,8,2, "RANGES");
mvwprintw(win,8,45, "SATISFIED/NOT");
rnvwprintw(win,9,45, " 	(YIN)");

rnvwprintw(win, 11,2, "(ALPHA)*(GAMMA) < %f",limit1);
mvwprintw(win,13,2,"%f <= ALPHA ",Iimit2);
rnvwprintw(win, 14, 14," < = %f + (BETA) * %f",limit3,limit4);
if((alfa * grna) < limitl) ch = 'Y';

else ch = 'N';
mvwprintw(win, 11,55," %c",ch);
if((alfa > limit2) J 1 (alfa < = limit3 + beta * limit4)) ch =

else ch = 'N';
mvwprintw(win,13,55," %c" ,ch);

wrefresh(win);
wgetch(win);
endwinO;
}

/**X********/

/* Function implements the Zhang-Thomopoulos model 	*/

void ztrouter()
{
int i,j,k,cnt;
float engy,p,ENRGYN,ENRGYO;
FILE *fpt,*fl;

YO =0.02;

/* Initializing the NN model */
initnnw(SCE,DST);
ENRGYO = nnw_energy(SIZE,k = 2);

/* Computing the initial neuron activations 	*/
initcoeff() ;

cnt = 1; 	 -
printf("Initial Energy : %f\n",ENRGYO);
printf("ENTER NO. OF ITERATIONS");
scanf("%d", &ICNT);
printf("ITERATION -- ENERGY \n");
printf("NUMBER \n");

while (cnt <= ICNT)
{

/* Computing neuron outputs at successive intervals /
doupdate(cnt);
cal _neuronopO;

ENRGYN = nnw_energy(SIZE,k = 2);
if(cnt > 1-00)-
if(fabs(ENRGYO - ENRGYN) < DELTAZT) break;
ENRGYO = ENRGYN;
cnt+ +;

#if STAT ON FILE
fl = fopen("OPFILE", "w");
fprintf(fl,"SOURCE %d -- DESTINATION %d\n\n",SCE, DST);
for(i = 0; i < SIZE;i++)

for(j =0; j< SIZE; j++)
{

if(j == 0) fprintf(fl, "\n");
fprintf(f1," %6.4f ",nnvec[i][ii);

}
fclose(f1);
#endif

f* Determining the route information 	*/
findroute(i =2);
pathpref(i =2);

return;
{

/**/
/* Function generates a random number between 0 and 1 */ /*********************k***********************x*******/

float genrand(int S,float ded)
{
int i,k;
float j,temp;

switch(S)
{

case 1 	:
j = drand48();
if(ded > 0)
while(j > 0)

j =j - ded;
j = j+ ded;
return j;

case 2 :
ran[O] = 	171 * (ran[0] / 177) - 2 *(ran[O] % 177);
if(ran[0] 	< 0) 	ran[O] = ran[0] + 30269;
ran[l] 	= 	172 * (ran[l] / 176) - 35 * (ran[1] % 	176):
if (ran[1] 	< 	0) ran[1] =.ran[1] + 30307;
ran[2] = 170 * (ran[2}/ 178) - 63 * (ran[2] % 178);
if(ran[2] < 0) ran[2] = ran[2] + 30323;
temp = ran[0]t30269.0 + ran[11/30307.0 + ran[2j/30323.0;
k = temp;
temp = temp - k
if(ded > 0)

while(temp > 0)
temp = temp - ded:

if (temp < 0) temp += ded:
return temp;

return:
}

/***x/
/* Function initializes the NN configuration 	 */ /***/

void initnnw(int S , int D)
{
int i,j,k;
float xk;

i = 0;
while(i < SIZE)
{

if(i == 0 II i == SIZE -1)
{

for(j = 0; j < SIZE; j++)
nnvec[j][i] = 0;

switch(i)
{
case 0

nnvec[S-1][i] = 1.0;
break;

default :
nnvec[D-1] [i] = 1.0;
break;

}
}
else
{

xk- = 0. i * Y0;
for(j = 0; j < SIZE ; j ++)

nnvec[j][i] = 1/(float)SIZE + genrand(k=2,xk);
}
i++;

xk = 0;
for(i = 0; i < SIZE ; i++)

for(j =1;j < SIZE-I; j++)
xk = xk + nnvec[i][j];

xk=xk- SIZE +1;
xk = xk / ((SIZE - 1) *SIZE);
for(i = 0; i < SIZE ; i++)

for(= l; j < SIZE-l; j++)
{

if(nnvec[i] [j] > 0.05) nnvecl i j [j) -= xk;
if(nnvec[i][j] < 0) nnvec[i][j] += xk;

}
return;
}

void cal_neuronopO

/* Function computes the neuron ouputs 	*/
/* 	correspondi-ng -to input activations 	*/
lnt i,j; 	 -
float temp,val;

i = 0;
for(i = 0; i < SIZE ; i++)

for(j = 1; j < SIZE -1 ; j++)
{

val = coeff[i][j]
val = val/Y0;
temp = 	I + ftanh(val)
nnvec[i][j] = temp / 2;

}
return;
}

float icval(int i,int j,int m,int n)
{
/* Calculating the inter connection value between ij'th and */
/* mn'th neurons. 	 */

float temp;

temp = -DC;
if(n == j+1) temp -= A
if(n == j -1) temp -= A
if(j==n &&i!=m)
return temp;
}

* c[i][m];
* c[i][In];
temp -= B * 1.0;

float calk(int i , int j)
{
/* Function computes the net input activation 	*/
int m,n;
float temp,k;

k=0;
for(m = 0; m < SIZE ; in++)

for(n = 0; n < SIZE; n++)
{

temp = icval(i,j,m,n);
k += temp * nnvectm][n];

}
return k;
}

/**/
/* Function computes neuron outputs at succesive

time instants
/***V

void doupdate(int cnt)
{
int i,j,k;
float cl;

for(i = 0; i < SIZE ; i++)
for(j = 1; j < SIZE-1; j++)
{

cl = calk(i,j);
cl += DC * NN;
coeff[i][}] = coeff[i][j] * (1 -DT) + DT * c 1;

}
return;
]

void initcoeff()
{
/* Function compputes the initial input activations of neurons */
int i,j;
float temp,lambda;

lambda = 2 / Y0;
for(i = 0; 1 < SIZE ; i++)

f o r (j = 1; j < SIZE -I ; j++)
{

temp = (1 - nnvec[i][j])/ nnvec[i][j]
temp = flog(temp);
temp =(-1 / lambda) * temp
coeff[i][j] = temp;

}
return;
}

void create_cstmatO
{
J Function computes the delay information 	*/

int i,j;

/* Cost is ir- relation to the capacity of the link */
for(i=0;i <SIZE;i++)

for(j=0; j<SIZE ;++j)
if(i != j)
if(C[i][j] = = 0) c[i][j] = 20;
else
switch(C[ij[j]) {

case 128 : c[i][j] = 2.2;
break;

case 	64 : c[i]lj] = 2.4;
break;

case 	32 : c[i][j] = 2.6:
break;

case 	16 : c[i] jj] = 2.8;
break;

}
return;
}

void fres_displayO
{
/* Function stores route(s) information in file */
int i,j,cnt;
FILE *resf;

resf = fopen("RESU", "a");
fprintf(resf,"\nSOURCE : %d DESTINATION : %d\n",SCE,DST);
fprintf(resf,"NO. OF ROUTES : % 3d\n" ,result. RTCNT);
fprintf(resf, "\tROUTE
fprintf(resf, " NO. OF LINKS ");
fprintf(resf, " COST 	");
fprintf(resf," PROBABILITY \n ");

i = 0;
while(i < result.RTCNT)
]

cnt=0;
ford = 0; j < result.RTLINKS[i];j++)
{ cnt+ = 4;
fprintf(resf," %2d 	",result.ROUTE[iI[j] + 	1);

for(j = 0; j < 38-cnt; j + +.)
fprintf(resf," ");

" fprintf(resf, ",result. %3d 	 RTLINKS[i] -1);
fprintf(resf, " %7.4f 	",result. RTCOST[i]);
fprintf(resf," %7.4f\n",result.PREF[i]);
i++;

f
fprintf(resf," ITERATION COUNT : %5d\n",ICNT);

fflush(resf);
fclose(resf);
return;
}

/**/
This function implements the Mustafa-Faouzi model 	*/

/* Inputs : Capacity matrix, Source and Destination Nodes */
/* outputs : status of NN at _different intervals during 	*/
/* 	convergence, route(s), cost of the route(s) 	*/ /*** ***-******-*:***********/

void rtfinder()
{
int i,j,k,ch,x,cnt,ds,sc;
float l,temp,ic[MAX][MAX];
FILE *flpt;

#if STAT ON FILE
flpt =. fopen("OPFILE", "w");
#endif

#if SIGCTCH
signal(SIGINT,sigcatch_intr);
signal(SIGQUIT,sigcatch_intr);
signal (SIGH UP, s igcatch_iiitr);

#endif

/* Initializing the state of Neural Network */

for(i =0; i < SIZE; i++)
for(j =0; j< SIZE; j++)
if(i!=j)no[i][j] = 1/(float)(SIZE * 10) + genrand(k=2,1=0.0002);

/* Calculating the corresponding input activations of Neurons */
/* of the Neural Network

	 */
temp = LAMDA;
for(i =0; i < SIZE; i++)

for(j =0; j< SIZE; j++)
if(i ! = j) ni[i][j] = -(1/temp) * flog((1 - no[i][j])/no[il[jl);

ch = 1;
cnt = 0;
while(ch)
{

/* Calculating the incremental changes in the input 	*1
/* activations of Neurons of Neural- Network using
/* Relaxation method

for(i = 0; i < SIZE; i++)
for(j =0; j < SIZE; j++)
if(i != j)
{

I =• ic[i][j] = iccal(i,j);
ni[i][jl = (ni[i][j] + I *IT) / (1 + IT);

/* Calculating the corresponding output values of neurons 	*i
/* of Neurons for the input activations calculated above 	*/

for(i =0; i < SIZE; i++)
for(j =0; j < SIZE;. j++)
if(i != j)
{

temp = 0;
dno[j][i] = no[j][i];
temp = fexp(- LAMDA * ni[j][i]);
no[j][i] = 1/(1+temp);
dno[j][i] -= no[j][i];

if(cnt % 2000 = = 0)
i

#if STAT ON FILE
fprintf(flpt,"\nfTERATION NUMBER %d \n",cnt);
for (i = 0; i < SIZE; i++)

for(j = 0; j < SIZE; j++)
{

if(j == 0) fprintf(flpt, "\n");
fprintf(flpt," %6.4f ",no[i][j]);

}
#endif

}
x = 1;
for(i =0: i < SIZE && x ; i++)

for(j =0; j < SIZE && x ; j++)
if(i != j)

if(dno[i][j] < -DELTAV) x =0;

if(x ! =0 I cnt > 15000)
{

convrg_details(cut);
ch = 0;

}
cnt+ + ;

#if STAT ON FILE
fclose(flpt);

#endif

findpathO;
pathpref(i = 3);

return;
}

/*Function Input : Neuron location in the array 	 *1
/* 	Output : Calculates the net activation of neuron 	*/
/**/

float iccal(int x, int i)
{
int y,j;
float ic,t,il,i2,i3,i4,i5;

it =0;
if(x == .DST-I 	i == SCE-1)
else 	it = -MUI * 0.5 * cost]x]Iil;

i2 = 0;
if(x == DST-1 	i == SCE-1)
else 	if(cost[x][i] <= 0)

i2 = -MU2 * 0.5;

t = 0;
i3 = 0;
for(j =0; j< SIZE; j++)
if(x != j) t += no[x][j] - no[j]Ix];
i3 = -MU3 * t;
t = 0;
for(j =0; j < SIZE; j++)
if(j != i) t += no[i][j] - no[j][i];
i3+= MU3*t;

i4 = i5 = 0;
i4 = -MU4 * 0.5 * (1 -2 * no[x][i]);

if(x == DST-1 && i == SCE -1)
i5 = MU5 * 0.5;

ic = it+i2+i3+i4+i5;
return ic;
}

/*** ****~

/* Input_ is Capacity Matrix and creates Cost matrix */
/** *1

void create_costmat()
{
int i,j;

/* Cost is in relation to the capacity of the link */
for(i=0;i <SIZE;i++)

for(j=0; j<SIZE ;++j)
if(C[i][j] == 0) cost[i][j] = 0;
else
switch(C[i][j]) {

case 128 : cost[i][j] = 0.2;
break;

case 	64 : cost[i][j] = 0.4;
break;

case 	32 : cost[i][ji = 0.6;
break;

case 	16 : cost[i][j] = 0.8;
break;

default
}

return;
}

/* Function will be activated when there is an interrupt signal 	*/
I* during the convergence of the neural network 	 *i
/~e~kxe>k*~k*~k*~k~k%S~X~~K~k%k~k~k~k=k~*~K***=k~k~k~k*~*~kX~k~k~k~%~k~k5k*X~k~k~k~k*x*xitsgxehexxxxic3erxxacl

void sigcatch_intr()
{

WINDOW *win;
int i;

initscrO;
win = newwin(16,60,2,10);
wattrset(win, A_ALTCHARSET);
box(win,ACS VLINE,ACS HLINE);

mvwprintw(win,4, i0," INTERRUPT RECEIVED ");
findpathO;

/* 	Checks the RTCNT to determine whether present 	*!
/* 	neural network status gives any valid route 	*/

if(result.RTCNT <= 0)
{

mvwprintw(win,7, 10, "SORRY!!! NETWORK NOT CONVERGED"):
wrefresh(win);
sleep(2);
endwinO;
exit(0);

}
else
{

mvwprintw(win,7,10, "SHOWING ROUTES");
wrefresh(win);
sleep(2);
endwinO;
pathpref(i = 3);
exit(1);'

}
}

void convrg_details(int cnt)
{
/* Function informs whether about convergence
WINDOW *win;

initscr();
win = newwin(10,60,5,10);
wattrset(win, A ALTCHARSET);
box(win,ACS VLINE,ACS_HLINE)-,
mvwprintw(win,3,10, "CONVERGENCE AFTER
mvwprintw(win,5,10, "STATUS OF NNW IS AS
wrefresh(win);
sleep(3);
endwin0;
}

*/

ITERATION %d",cnt);
FOLLOWS :-");

1* 	Function checks the validity of parameters, 	*/
/* 	suggests valid ranges of parameters 	 */
/***/

void paracheck()

WINDOW *win;
float m1,m2,m3,m4,m5,cmax;
int i,j;
char ch;

initscr0;
win = newwin(20,60,2,10);
wattrset(win,A ALTCHARSET);
box(win,ACS VLINE,ACS HLINE);

ml = MUI;
m2 = MU2;
m3 = MU3;
mn4 = MU4;
m5 = MU5;

mvwprintw(win,2,10, "PARAMETERS :-
mvwprintw(win,3,30, "MU2 : %f" ,m2);
mvwprintw(win,4,30,"MU3 : %f",m3);
mvwprintw(win,5,30,"MU4 : %f",m4);
mvwprintw(win,6,30, "MU5 : %f" ,m5);
mvwprintw(win,8,10, "CONDITIONS
mvwprintw(win,9,10,"
mvwprintw(win,11,10,"MU5 = MU2");

MUI : %f",ml);

SATISFIED/NOT");
(YIN) ");

cmax = 0;
for(i = 0; i < SIZE;i++)

for(j =0; j< SIZE; j + +)
if(cost[i][jj > cmax) cmax = cost[i][j];

mvwprintw(win,13,10, "MU5 >> MUI * %f",cmax);
mvwprintw(win,15,10,"2 * MU3 - MU4 > 0");
mvwprintw(win,17,10, "MU l < 2 * MU3/ %f ",cmax);

if(m5 == m2) ch = 'Y.';
else ch = 'N';

mvwprintw(win,1 1, 47," %c",ch);
if(m5 > 3 * ml * cmax) ch = 'Y':

else ch = 'N';
mvwprintw(win,13. 47," %c",ch),
if(2 *m'3 -- m4 > 0)ch = 'Y';

else ch = 'N';
mvwprintw(win,15, 47," %c" ,ch);
if(m 1 < 2 * m3/cmax) ch = 'Y';

else ch = 'N';
mvwprintw(win,17, 47," %c",ch);

wrefresh(win);
sleep(5);
wgetclh (win) ;
endwin();
return;
}

/***********>k*>k***************** c******>k*** ****xxae**** ***** x/
/* Function extracts the route(s) from converged M-F model "/
f **************************hc>kx>;cxa<**************ic*****x*******1

void findpath()

int *ls[MAX]; 	-
int lent,elcnt,ch,plcnt,pele,proc;
int i,j,k,l,m,n,y,ins;
int RTE[RTMAX],lknt,crt;

lcnt=0;
ls[O] _ (int *)malloc(sizeof(int) * RTMAX);
for(i = 0; i < RTMAX; i++)

ls[lcntj[i] = -1;
ls[O][0] = SCE -1;
lcnt = 1;
ch = 1;
/* Picking out the neuron outputs related to routes "%
while(ch)
{

ls[lcnt] = (int *)malloc(sizeof(int) * RTMAX);
for(i = 0; i < RTMAX; i++)

-1s[lcnt1[i] = -1;
plcnt = 0;
elent = 0;
while((y = ls[lcnt-I][plcnt++]) > = 0)
{

for(i = 0; i < SIZE; i++)
if(no[y][i] > 0.15)

ins = 1;
ford = 0; j < elcnt; j++)
if(ls[lcnt][j] = = i) ins = 0;

if(ins != 0) ls[lcnt][elcnt++] = i;
}

for(i = 0; i < elcnt ; i++)
if(ls[lcnt][i] == DST-1) ch = 0;

lcnt++;

do
{
/* Generating combinations 	 */

RTE[0] = SCE;
lknt = 1;

• pele. = SCE - 1;
ls[0][01 + = HVAL;
for(i = 1; i < lcnt ; i±+)
{

• ford = 0; j < RTMAX; j++)
if(ls[i][j] > = 0 && ls[i][j] < HVAL)

{ 	if(cost[pele][is i] l > 0)
{

RTE[lknt++] = ls[i][j] + 1;
pele = ls[i][j];
ls[i][j] + = HVAL;
break;

}
else ls[i][j] += HVAL;

}
}
crt = 0;
tor(i = 0; i <lknt;i++)
{

j = RTE[i];
if(} == DST) crt = 1;

}
proc = 1;
for(i = lent -1; i > = 0 && proc ; i--)

for(j =0; j<RTMAX && proc ; j++)
if(ls[i][j] > = 0 && ls[i][j] < HVAL)
{

for(m = i+1; in < lent; m++)
for(n = 0; n < RTMAX; n++)
if(ls[m][n] > = HVAL) ls[m][n] - HVAL;
for(m = i -1; m > =0; m--)

for(n = RTMAX -1; n > = 0; n--)
if(ls[m][n] > = HVAL)
{

ls[m][n] -= HVAL;
break;

}
proc = 0;

}
if(crt == 1)
{

/* Result is accumulated if combination is a valid route -

result. ROUTE[result. RTCNT] _ (int *)mailoc(sizeof(int)*(lknt)).
for(i = 0; i < lknt;i++)

result. ROUTE[result. RTC NT I [i [= RTE[i J - 1;
result. RTLINKS [result. RTCNT] = lknt;
result. RTVAL[result. RTCNT] _ (float *)rnalloc(sizeof(float)*(lknt));
i = 0;
while(i < lknt - 1)
{

in = RTE[i] -1;
n = RTE[++i] -1;
result. RTVAL[result.RTCNT]Ii-II = no[m][nl;

}
(result. RTCNT) + +;
}

elcnt = 0;
for(i =0;i < lent; i++)

for(j =0;j< RTMAX; j + +)
if(ls[i][j] > 0 && ls[i][j] < HVAL)
elcnt++;

}
while(elcnt != 0);
return;
}

/**x***********=::*/
/* Function picks the route(s) from converged L-C model 	*/

void .findroutes()
{
int *path;
int prev,pres;
int i,j,k,proc,m.n,cnt,RTE[RTMAX];

do
{

for(i =0; i <= lks;i++)
{

for(j =0; j< SIZE; j++)
if(vec[i]->ele[j] > 0 && vec[i]->ele[j] < HVAL)
{

if(vec[i]->ele[j] > 0.25)
{

RTE[i] = j;
vec[i]-> ele[j] += HVAL;
j = SIZE;

}
}

}
proc = I;
for(i = lks ; i > 0 && proc ; i--)

for(j =0; j < SIZE && proc ; j++)

if(vec[i]->ele[j] > 0 && vec[i]->ele[j] < HVAL)
{

if(vec[i]- > ele[j J > 0.25)
{
for(m = 1+1; m <= lks;m++)

for(n=0; n< SIZE;n++)
if(vec[m]->ele[n] > HVAL)vec[m]->ele[nj -=

for(m = i-1; m >= 0;m--)
{

cnt =0
for(n =0; n<SIZE; n++)
if(vec[rn]->ele[ni > HHVAL) cnt++;
if(cnt > 1)
{
for(n= SIZE -1; n> =0 ;- n--)
if(vec[m]->ele[n] > HVAL)
{

vec[m l- > ele[n J -= HVAL;
n = -l;

HVAL;

}
}
else
for(n=0; n< SIZE;n++)
if(vec[m]->ele[ii] > HVAL)vec[ml- >ele[nJ -= HVAL;

}
proc = 0;
}

}
result. ROUTE[result.RTCNTI = (int *)malloc(sizeof(int)*(Iks+ 1));
for(i = 0; i <= lks;i++)

result.ROUTE[result.RTCNT][i] = RTE[i]
result.RTLINKS[result.RTCNT] = Iks + 1;
result. RTVAL[result. RTCNTj _ (float *)malloc(sizeof(float)*(lks +1));
i = 0;
while(i < Iks)
{

in = RTE[i]
if(vec[i]- > ele[m] > HVAL)
result. RTVAL[result. RTCNT][i]
else
result. RTVAL[result. RTCNT][i]
i++;

}
(result. RTCNT) + +;

= vec[i]->ele[ml - HVAL;

= vec[i]- > ele[m I

cnt =0;
for(i =0; i<= Iks ; i++)

for(j =0; j< SIZE; j++)
if(vec[i]->ele[j] > 0 && vec[i]->ele[j] < HVAL)

if(vec[i]->ele[j] > 0.25) cnt++;
}while(cnt != 0);

for(i =0; i<= Iks ; i++)
for(j =0; j< SIZE; j++)
if(vec[i]->ele[j] > HVAL) vec[i]->e1e[j] -= HVAL;

return;
}

/* Function determines the route from converged Z-T model 	%
/*************************************** ******************/

void findroute()
{
int *path;
int prev,pres;
int i,j,RTE[RTMAX],Iknt;

path, = (i~it *)malloc(sizeof(int) * SIZE);
for(j = 0; j < SIZE; j++)
{

path[j] = 0;
for(i =0; i < SIZE;i++)
if(nnvec[i][j] > 0.45) path[j] = 1+1;

}

i =0;
prey = 0;
pres = path[i];
lknt = 0;
while(i < SIZE)
{

if(prev ! = pres)
RTE[lknt+ +] = pres - I;

prey = pres;
pres -= path[++i];

}

result. ROUTE[result.RTCNT] = (int *)malloc(sizeof(int) * lknt);
for(i = 0; i <' lknt;i++)

result. ROUTE[result. RTCNT] Ii] = RTE[i]
result. RTLI NKS[result. RTCNT] = lknt;
result. RTVAL[result. RTCNT] = (float *)malloc(sizeof(float) ,* lknt);
i = 0;
while(i < lknt)
{

result. RTVAL[result.RTCNT][i] = 1;
i++;

(result. RTCNT) + +;

return;
}

/************************yc*******************XC*ia*****:c***/
/* Function computes the energy of the NN model 	*/ /**/

float nnw_energy(int lkcnt, jilt cse)
{
float E,temp,eI,e2,e3,e4,e5;
float *PA,templ,temp2;
int i,j,k,x;

PA = (float *)malloc(sizeof(float) * MAX);
switch(cse)
{

case 1 :
el = 0;
for(j =0; j< lkcnt;j++)
{

matmult(w,vec[j + 1]-> ele, PA, SIZE,SIZE, i = 1);
for(i =0; i< SIZE; i++)
el = el + vec[j] ->ele[i] * PA[i];

}
el *= 0.5;

e2 = 0;
for(j = 1; j < Ikcnt ; j++)
{

for(i = 0; i < SIZE; i++)
temp = temp + vec[j]- > elej i];
temp = temp -I;
temp *= temp;
e2 = e2 +ternp;

}
e2*= ALPHA *0.5;

e3 = 0;
for(j =0; j < =lkcnt ; j++)
{

matmult(d,q,PA,SIZE,SIZE,1);
for(i =0; i < SIZE; i++)
e3 = e3 + vec[j]- > ele[i] * PA[i];

}
e3 *= BETA;

E = el + e2 + e3;
free(PA);
break;

case 2:
el =0;
for(k =0; k < SIZE; k++)

for(i =0; i < SIZE ; i++)
for(j =0; j < SIZE; j++)
el = el + nnvec[i][k] * c[i][j] * nnveclj]lk+ 1 1;

el *=0.5*A;

e2 = 0;
for(k =0; k < SIZE ; k++)

for(i =0; i < SIZE; i++)
for(j=0; j < SIZE ; j++)
e2 = e2 + nnvec[i][k] * nnvec[j][k];

e2*=0.5*B;

e3 =0;
for(i =0; i< SIZE; i++)

for(j =0; j< SIZE; j++)
e3 = e3 + nnvec[i][j];

e3 -= SIZE;
e3 *:= e3;
e3 *= 0.5 * e3

E=el + e2 + e3
break;

case 3 :
el =0;
for(x =0; x < SIZE; x++)

for(i =0; i < SIZE; i++)
if(x ! = SCE 	1 i ! = DST)
if(x != i) el += cost[x][i] * no[x][i];

el *= MUI * 0.5;

e2 =0;
for(x =0; x < SIZE; x++)

for(i =0; i < SIZE; i++)
if(x ! = SCE 1 1 i ! = DST)

if(x != i)
if(cost[x][i] > 0) e2 += no[x][i];

e2 *= MU2 * 0.5;

e3 =0;
for(x =0; x < SIZE; x++)

for(i =0; i < SIZE; i++)
{

if(i != x)
{

tempt += no[x][i];
temp2 += no[i][x];

}
temp 1 = temp 1 - temp2;
e3 += tempi * tempt;
}

e3 *=- MU3 * 0.5;

e4 =0;
for(i =0; i < SIZE; i++)

for(x =0; x < SIZE; x++)
if(x != i) e4 += no[x][i] * (i - no[x][i]);

e4 *= MU4 * 0.5;

e5 = MU5 * 0.5 * (1 - no[SCE][DST]);

E = e 1 + e2 + e3 + e4 + e5 ;
break;

}
return E;
I

float *matmult(float a[][MAX],float b[MAX],float *j jut S,int R,int T)
{
/* Function performs the Multiplication of vector and matrix */
int i,j,k;

for(i=O; i <S; i++)
for(j=0; j<T; j++)
{

ci[i] = 0;
for(k =0; k < R; k++)

ci[i] = ci[i] + aliliki * blk]
}

return ci,
}

/**=*x:********

/* Function computes preferences of route(s),their costs */

void pathpref(int cse)
{
float total[RTMAX],ctotal;
int i,j,ond,nnd;
WINDOW *win;

ctotal = 0;
for(i = 0; i < result.RTCNT; i++)
{

total[i] = 1;
j = 0;

while(j < result.RTLINKS[i] - 1)
total[i] *= result.RTVAL[i][j++];

ctotal += total[i];
}

for(i = 0; i < result.RTCNT; i++)
result.PREF[i] = total[i] / ctotal;

for(i = -0; i < result.RTCNT;i++)
{

j = 0;
result. RTCOST[i] = 0;
while(j < result.RTLINKS[i] - 1)
{

and = result.ROUTE[i][j]
and = result. ROUTE[]][++j]

switch(cse)
{
case I

result. RTCOST[i] + = w[ond][nnd];
break;

case 2 :
• result.RTCOST[i] += (c[ond][nndj - 2);

break;
case 3 :

result. RTCOST[i] + = cost[ond][nnd];
break;

APPENDIX -II

A2.1 PARAMETER CALCULATION IN LEE-CHANG MODEL

The neural network model with the energy function (3.1) has a stable

solution. All the elements of matrix W in E are positive clearly first term

is positive. Second term is summation of square terms, it is certainly

positive. Therefore energy function E is bounded below by 0. The change in

energy can be written as

A
VE = E(U(i+ l)) - E(U(i))

h

_ I 	I U~ AUD I < 0 	 (A2.1)

j1

Therefore the state changes result in a decrease in the value of the

energy function and also energy function is bounded below. Hence the system

has 	a stable 	solution. 	To 	improve 	the convergence speed, parameters should

be chosen carefully.

There are three terms in oUk of (3.3). The third term of oUk is always

positive, for the assumption that the sum of all elements in vector Uk is

close to 1 but cannot be greater than I. Let o be the minimum value of Eiµk

since Eµk < 1

agen 	uk =1 	= aqn 	uk -1 I <- aqn (l-e) 	 (A2.2)
i 	I 	i

If (e~1), in order to keep the values of Uk within range, i.e. close to 1,

ad < µ/(1-6)n 	 (A2.3)

Where pis a positive constant. If the value of µ is small, then the

size of correction step is small so that the speed of convergence is slow.

On the other hand, if µ is large then the convergence speed will be fast.

However if the value is too large i.e. the correction step is too large

then it has a high probability that Uk to go out of range. Typical range of

µ is [0.2,1).

The first two term of AUk are always negative. The bounds of the two

terms are same. They can be written as

1 	1 	1 2 ewmin a 2 e i s a 2 'max (A2.4)

where wmin and wmax are minimal and maximal elements in W, and iii is the

element in column vector WUk-I or WUk+l' Since elements in Auk cannot be

all positive or negative each element of must lie between the upper and

lower bounds of (A2.4). Hence the following inequality

e wmin ` a' (1-e) a Wmax 	 (A2.5)

The constraint (A2.3) and (A2.5) can be used as upper and Iower bounds

for parameters a and w.

A2.2 PARAMETER CALCULATION IN MUSTAFA-FAOUZI MODEL.

General guidelines to select the coefficients of energy function so

that neural dynamics will converge to a valid path which is also of minimum

length are given here for Mustafa-Faouzi model.

The shape of the energy surface is tailored by the memory terms

T(3.9) and analog prompt terms 'X3 10). The memory and prompt terms

create a set of finite local energy attractors, (valid basins of

attraction) with equal depth (E=0) each corresponding to a feasible path.

The role of linear µl cost term is then to provide a negative bias that

enlarges the depth of these valid basins of attraction by varying amounts,

depending on the corresponding path cost. Therefore from (3.6) the global

minimum corresponds to that valid basin of attraction which complies with

the shortest path requirement. The ability to reshape the energy landscape

through the link cost bias terms, while keeping the interactions among

neurons relatively simple (since memory terms do not incorporate the link

costs) is the salient feature of this neural network model.

The quadratic energy function is characterized by the presence of

valleys, where among all points forming a valley some are low points

corresponding to a local minimal state. To ensure that every valley has

only one low point and hence to provide a graceful descent along the energy

surface, we require.

a 	> 0
av

xi

This corresponds to having 2113 - 114 > 0

The 	11.5 term should 	be relatively 	large 	so that from the 	early 	stages

of the 	neural computation a unity 	output 	for 	the 	neuron at 	location 	(d,$)

will 	be 	enforced and 	hence the 	construction 	of the 	shortest 	path 	will 	be

initiated. 	In the initial 	state of 	the 	neural network, with 	all 	neuron

inputs 	being set to 	zero, for 	the 	neuron 	at location (d,$), 	the 	input

activation increases at a rate

dux i
R 1 	0 1 = -- t I (x,i) = (d,$), intial state = -T >

Among the remaining neurons those corresponding to non existing arcs

will have their input decreasing at a rate

du 	 ___112
R2 	(x,i) ~ (d,$), intial state

While those corresponding to existing arcs will have their inputs

decreasing at a rate proportional to their corresponding link costs, namely

113

R3=-2-•w.

Therefore, in order to speed up the construction of the valid path

µ5. >> r ' (wxi)max is required.

An 	equally important requirement 	is to 	prevent 	nonexisting arc from

being part of the solution, it is reasonable to require R l =R2 or

From 	(3.4) 	it is clear, that by 	increasing the µl 	term (with remaining

µis 	being 	unchanged) shortest 	path 	algorithm 	gradually . refines 	the 	quality

of the 	solution, 	hence minimizing the chance of getting the neural 	network

state 	trapped 	in 	an "attractive" 	unfavorable 	local 	minimum. 	However 	µl

cannot 	be 	increased 	indefinitely, since 	once 	it 	exceeds 	a 	threshold 	value,

the 	neural 	algorithm starts 	to 	diverge 	and 	gives 	invalid 	solutions, 	as 	the

effect 	of 	µ3 	energy term 	will 	be 	shaded 	by 	stiff 	cost 	requirement.

Therefore, 	p, 	should be 	maximized _ at 	the 	same 	time 	solution 	must be

obtained. 	Assuming that for a valid neural output one neuron corresponding

to an existing 	arc, 	changes 	output from 	I 	to 0. 	In this case, 	the energy

term 	associated 	with the 	weighting 	coefficient 	113 	will 	increase 	by 	µ3,

while the energy term associated with µl will decrease by a maximum value

of (µ1/2). 	(wxi)max Hence 	for 	the net 	to 	reach 	a 	valid 	path 	µ l 	should

satisfy

µ
11< 2 3

1 	(w.)

APPENDIX - III

Incorporating reliability of nodes and dependency between nodes - in

neural network algorithm can be done as follows :

The failure . probability of every node in the network can be

represented by an nx 1 vector Q.

Q= [g1q2.....qn] T

where, q i represents the probability of failure of node i,

The dependency between any two nodes can be represented by any number

d (O5d~1), where d=1 indicates complete dependency between nodes. The

dependency relationships • of entire communication network can be represented

by an nxn symmetric matrix D, where each entry d ij stands for probability

of dependence of node j on node i. Assuming the node failures are mutually

dependent, the term of the energy function that includes the uncertainties

of each node can be represented as follows
h+1

E3= 	UJ DQ 	 (A3.1)
j=1

Now the resultant energy function will be the summation of (3. 1) and

(A3.1). The change in vector Uk, AUk now becomes.

AUk = -a(l/2)[WUk-1 + WUk+I] - a(3DQ + azen(l -) Uk) (A3.2)

The second condition for calculating the lower and upper bounds of

parameters becomes

(ewmin + (3gmin) ` T(1 - e) a(wmax + ft(n-1)dgmax + rgmax) (A3.3)

APPENDIX - IV

The routing algorithm minimizing expected delay usually assumes some

knowledge of overall traffic pattern.

Expected delay across a link is usually considered [M/M/1 queueing

systems] as a function of capacity C of the link and the actual traffic

aid on the link. Some -of -the functions [11 are

* 	Fl (a , Cif) =

p = (ai]/Cif)

The loss function is proportional to the average delay per message

across a link, when the message arrival rate and required transmission time

can be represented as poisson [exponential distribution] processes.

When Kleinrock independence approximation [11] is used, the sums of

delay across all links will be assumed proportional to the sum of loss over

whole network.

* 	F2(ai~, Cif) = Fo + p exp(p)

where Fo indicates transmission time over the link.

Here the loss increases exponentially as the traffic increases.

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

