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ABSTRACT 

The routing of packets from 	source to destination is an important 

issue in the design of packet-switched computer networks, where the goal is 

to minimize the network wide average time delay. The routing algorithms 

rely heavily on the shortest path computations that have to be carried out 

in realtime. 

This dissertation addresses the application of neural networks to the 

optimal routing problem. Three neural network models are compared. Their 

performance in giving optimal routes is analysed through simulation results 

by selecting three different communication network topologies. The neural 

network models compared are Lee-Chang model, Zhang-Thomopoulos model and 

Mustafa-Faouzi model, all based on Hopfield neural networks. 

All-through Lee-change model gives multiple optimal, suboptimal routes 

simultaneously it is not fool proof in giving all optimal routes. But 

Mustafa-Faouzi model is found to be giving all optimal routes. The 

performance of these models in finding the multiple optimal routes 

simultaneously and the conditions there in are analysed through simulation 

results. Other factors like divergence problems, computational power 

requirement have also been examined. 
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CHAPTER - 1 
INTRODUCTION 

1.1 ROUTING IN COMPUTER NETWORKS 

The routing 	of packets 	from source 	node 	to destination 	node 	is 	an 

important issue 	in the 	design 	of communication network 	consisting 	of 

multiple nodes 	and links, 	because it 	affects 	several performance 	measures 

of 	interest. The 	objective of 	the 	routing 	algorithm 	is to 	optimize 	some 

performance measure such as mean packet delay or network throughput. 

Routing can be done in a centralized, distributed or localized manner 

[1]. In centralized algorithms, all route choices are made at a central 

node, while in distributed algorithms the computation of routes is shared 

among the network nodes with information exchanged between the nodes as 

necessary. In localized routing algorithms, each node needs to have the 

most current network connectivity and computes the routes to all possible 

destination nodes based on connectivity information. In order to have the 

most current network connectivity, all network nodes broadcast their 

connectivity to neighboring nodes. 

Centralized routing method requires a special node in the network 

which periodically receives information from all other network nodes and 

based on this 	global 	information, it 	sets up and updates 	routing tables 	for 

all 	nodes. This 	method 	requires high computational 	facilities at 	central 
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control node and also high reliability - of central control node since 

failure of the central control node results in the shutdown of the entire 

network. 

The distributed routing approach can reduce some problems in 

centralized routing. In this case each node makes its own routing decisions 

based on the local information it receives from its neighboring nodes. 

Looping of packets and deadlocks might occur due to inconsistent routing 

paths. 

In localized routing algorithm, all network nodes broadcast their 

network connectivity to neighbors nodes, so that each node can react 

quickly to changes in the network, but does incur the communication cost of 

broadcasting such changes. 

Either centralized, distributed or localized routing algorithms can be 

operated in static or adaptive manner. In static routing algorithms, path 

used between each origin destination pair is fixed regardless of traffic 

conditions and network changes. In adaptive routing algorithms, the paths 

used to route new message between origin and destination change 

occasionally in response to the traffic conditions and network changes, 

i.e. failed links, increase or decrease of link cost. 

1.2 WHY NEURAL NETWORKS FOR ROUTING 

Neural networks are parallel distributed information processing 

systems that consists of non linear processing elements and weighted 
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connections [2]. Each layer in a neural network consists of a collection of 

processing elements. Each processing element collects the value from all of 

its input connections, performing a predefined mathematical operation and 

produces a single output value. 

The motivation for the neural networks is from natural neural systems. 

Human information processing system ' is composed of many neurons switching 

at speeds about a million times slower than computer gates. Yet humans are 

more efficient than computers at computationally complex tasks such as 

speech understanding, visual recognition etc. Neural networks are designed 

to exploit the unique computational power of human brain - parallel 

distributed nature of processing. Neural networks offer interesting 

alternative solutions to many problems. Routing in computer networks is 

one such area. 

There are several routing algorithms with different levels of 

sophistication and efficiency. The optimality of routing algorithm is a 

relative attribute which usually implies efficient use of network resources 

so as to optimize a performance measure [Eg. finding optimal paths for data 

transmission within a short time so as to satisfy users demand for a faster 

servicel. This requires shortest path computations involved in the routing 

problem to be carried out in real time. Neural networks are very good 

candidates for implementing shortest path computations involved in routing 

problem because of potential of the neural network hardware approach [3] 

for high computational speed. 
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1.3 STATEMENT OF THE WORK 

Given the network topology, and link capacity information, optimal 

routing problem requires 	finding 	all possible, optimal paths 	of each source- 

destination pair of the network that will minimize the network wide average 

delay. 

This work addresses the application of neural networks to the optimal 

routing problem. Three neural - network models are compared w.r.t. the 

quality of solution provided by them. Three different network topologies 

are selected for this purpose. Their abilities in finding multiple optimal 

paths simultaneously is also analysed through simulation results. 

1.4 ORGANIZATION OF THE THESIS WORK 

The first chapter provides an introduction to the routing problem 

involved in computer networks and discusses the need of neural networks for 

routing problem. Statement of the work is given after. 

Second chapter deals with the Hopfield neural networks and their 

computational power demonstration. Artificial neural network and feedback 

neural network model are briefly discussed in this chapter as they are the 

fundamentals in Hopfield neural networks. 

Third chapter explores the neural network models for routing, and 

the advantages and disadvantages of these models. Fourth chapter discusses 

the software implementation of the neural network models. 
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Finally in the fifth chapter the results obtained from simulation 

are discussed, concluding remarks for the work are simultaneously given. 

Some suggestions for further work are also given after. 
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CHAPTER -2 
NEURAL NETWORKS 

This chapter briefly discusses the details of artificial neural 

networks, classification of neural networks, and continuous time feedback 

neural network model. Hopfield neural networks are single layer feedback 

network models employing batch learning. Their computational power was 

first demonstrated by Hopfield and Tank [4] by applying it to Travelling 

salesman problem (TSP). In fact, this demonstration is the motivation 

behind the neural network models for routing. The details of Hopfield 

neural network and its application to TSP are discussed in subsequent 

sections of this chapter. 

2.1 NEURON MODELING FOR ARTIFICIAL NEURAL SYSTEM. 

Every 	neuron 	model 	consists 	of a 	processing 	element with 	synoptic 

input 	connections 	and 	a 	single 	output. This single 	output is 	copied 	into 

all 	the 	outgoing 	connections 	of 	the 	neuron. The 	signal 	flow of 	neuron 

inputs, 	xi 	is 	considered 	to 	be 	unidirectional as 	indicated 	by arrows, 	as 	a 

neuron's output signal flow. 	A general neuron symbol 	is shown 	in fig. 	2.1. 

This 	symbolic 	representation 	shows 	a set 	of 	weights 	and the 	neuron's 

processing 	unit. 	The 	neuron 	output -signal is 	given 	by the 	following 

relationship. 
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i, 
v 

Multiplicative 
weights 

., 	Synaptic connections 

ccssin$ node 

Fig. 2.1 General symbol of neuron 

n 
0=f(WTX) =f 	 w i x i 	 (2.1) 

i= I 

where, W is the weight vector defined as 

W = [W I  W2  ... Wn] 
T 

and X is the input vector defined as 

X=[x1 x2  ...xn]T  

[Subscript T denotes transposition]. 

to as an activation function. Its domain 

The function f(WTX) is referred 

is the set of activation values, 

net, of the neuron model. The variable net is defined as a scalar product 

of the weight and input vector. 

net = WT  X 
	

(2.2) 
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It is clear-, from (2.1) that the neuron or a processing node performs 

the operation of summation of its weight inputs to obtain net. Subsequently 
it performs the nonlinear operation f(net) through its activation function. 
Typical activation function used is 

f(net) = 	2   1 	 (2.3) 

Where A > 0 in (2.3) is proportional to the neuron gain determining 

the steepness of the continuous function f(net) near net = 0. The 
continuous activation function is shown in the fig. 2.2, for various A. 

Activation function (2.3) is called bipolar continuous function. 

Fig.2.2 Bipolar continuous activation functions of neuron 

By shifting and scaling the bipolar activation function defined by 

(2.3), unipolar continuous functions can be obtained as : 

f(net) = 	I  + exp (-x net (2.4) 



Given a layer of m neurons, their output values 01,  02, 	Or  can be 

arranged in a layer's output vector : 

0 = [ 01  02  ... Om]T 	 (2.5) 

• Where Oi  is the output signal of the ith neuron. The domains of vector 

0 are defined in m-dimensional space as follows for i = 1,2, ... m. 

(-1 1)m  = {O E Rm  , Oi  E (-1 1)} 	 (2.6) 

or 

(0, 1)m  = {0 E Rm  , Oi  E (0, l) } 	 (2.7) 

for bipolar and unipolar continuous activations defined as in (2.3) 

and (2.4) respectively. It is evident that the domain of vector 0 is the 

interior of either m-dimensional cube (-1,1)m  or of the cube (0,1)m. 

Now the artificial neural network can be defined as an inter 

connection of neurons as defined in (2. 1) through (2.4) such that neuron 

outputs are connected through weights, to all other neurons including 

themselves. 

2.2 CLASSIFICATION OF NEURAL NETWORKS 

Broadly speaking, neural nets can be classified in to two types, feed 

forward networks, and feedback networks. In feedforward networks, recall of 



information is performed in the feedforward mode or from input towards 

output only. Such networks have no memory. Recall in such networks is 

instantaneous. Thus past time conditions are irrelevant, for their 

computation. Network responds only to its present input. Feedback network 

models perform recall computation with feedback operational. These networks 

are considered as dynamical systems and a certain time interval is needed 

for their recall to be computed. Feedback networks are also called 

recurrent. They interact with their input through the output. 

Another 	meaning-ful 	basis 	for 	classification is 	to 	differentiate 

neural 	networks 	by 	their 	learning 	mode. 	Learning 	in all 	neural 	networks 

fall 	into 	three 	groups, 	supervised, 	unsupervised 	and batch. 	Learning 	is 

necessary when the information about relationship between input and 	output 

is unknown or incomplete, a priori so that no design of a network can be 

performed in advance and network requires training in a particular 	learning 

mode. 	In 	supervised 	learning 	at each 	instant of time when the input 	is 

applied 	the 	desired 	response 	of 	the 	system 	is provided 	by 	the 

supervisor/environment. 	The 	distance 	between 	actual 	and 	desired 	response 

results 	as 	an 	error 	measure 	and 	is 	used 	to 	correct network 	parameters 

(weights) 	externally. 	In 	unsupervised 	mode 	learning 	must 	be 	accomplished 

based 	on 	the 	observation 	of responses 	to 	inputs 	since the 	desired 	response 

is 	not known previously. 	In batch 	learning 	mode, all network weights are 

adjusted 	in 	a 	single 	training 	step. 	Here 	complete 	set 	of 	design 	data 	is 

needed 	to 	determine 	weights 	and 	feedback 	information is 	produced 	by 	the 

10 



o,(1+A) 

02(i+ij 

is 

o„(►+e) 

Delay elements 

network it self is not involved in developing the network. This learning 

technique is also called recording. 

2.3 FEEDBACK NEURAL NETWORK MODEL 

Here all the neuron outputs are connected back to their inputs as 

shown in fig.2.3: 

• The essence of closing the feedback 
x,(0) 

loops is to enable control of output Oi  

through output Oi, for j = 1,2,....m. Such 
x2(o) 

control is especially meaningful if the 

present output say 0(t) controls the output 

at the following instant 0(t+o). The time o 

elapsed between t and t+o is introduced by x•(0)  

the delay elements in the feedback loop. 

Fig 2.3 Single-layer feed 
back network interconnection 
scheme 

The mapping of 0(t) into 0(t+o) can be written as 

O(t+o) = r[W 0(t)] 	 (2.8) 

where W is an n x n weight matrix also called connection matrix 
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W11 
	W2 	... win 

	

w21 
	w22 ... w2n 

w= 	 (2.9) 

wm 1 wm2 	wmn 

and I' is a non linear matrix operator : 

	

f(•) 	0 	... 0 

FE.] = 	0 	f(•) 	... 0 	
(2.10) 

0 	o 	f() 

Here nonlinear activations f(•) on the diagonal of the matrix operator 

F operate component wise on the activation values net of each neuron. 

The input X(t) is only needed to initialize this network so that 0(0) 

= X(0), after that input is removed and the system remains autonomous for 

t>0. If the feedback concept is implemented with any infinitesimal delay 

between output and input introduced in the feedback loop then the output 

vector can be considered to be a continuous time function. As a result 

entire network operates in continuous time. An example of one such 

elementary delay network is shown in fig. 2.4. 

R 

+  T~I  + 

R 

C 	I c 	v2 

Fig. 2.4 Feedback Connection in continuous tirne network 
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It 	is 	an 	analogy of a simple 	electric 	network 	consisting of resistance 

and 	capacitance. 	Here the differential 	equation 	relating 	v2 and 	v 1 	the 

output and input voltage respectively is 

dv2 v l v2 

~t — IBC - RC (2. 1 1) 

Continuous time networks employ neurons with continuous activation . 

functions. An elementary synaptic connection using delay network given in 

fig. 2.4 is shown in figure 2.5. 

f 

0, 

0, 

Fig. 2.5 Elementary synaptic connection in continuous-time network. 

The resistance Rid serves as a weight from the output of the jth 

neuron to the input of the ith neuron using 	finite time interval At, 

equation (2.12) can be discretized as 

netk+ 1 _ net 
At 

=~(Ok-net) 
J 

(2.12) 
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V t 	 Vt 	 V3 	 V* 

Fi.g.2.6 Gradient type I4opfield t eura1 MTetwork 



The activation of ith neuron at the instant k + 1 can be expressed a: 

net + 1 = net + 	(Ok - net) 

The contribution to net, by jth neuron is distributed in time 

according to (2.13). When n neurons are connected to the 	input of ith 

neuron as shown in fig. (2.5) expression (2.13) needs to be computed for 

j=1,2...,n and summed. 

2.4 HOPFIELD NEURAL NETWORK 

Continuous time single layer feedback networks also called Gradient 

type networks are generalized Hopfield networks in which the computational 

energy decreases continuously in time. 

Gradient type networks converge to one of the stable minima in the 

state space. The evolution of the system is in the general direction of 

negative gradient of the of an energy function. Typically network energy 

function is made equivalent to a certain objective (penalty) function that 

needs to be minimized.The search for an energy minimum performed by 

gradient type network corresponds to the search for a solution of 

optimization problem. 

The single layer 	feedback 	networks can be 	modeled 	by a 	physical 

system. This modeling 	provides 	the link between 	the theory 	and 
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implementation. The model of a gradient-type neural system using electrical 

components is shown in the fig.2.6. It consists of a neurons, each mapping 

its input voltage u in to output voltage v through the activation 

function f(u), which is common static voltage transfer characteristic 

(VTC) of the neuron. Any high gain voltage amplifier with saturation could 

be used in this model as a replacement for a neuron. Conductance w 

connects the output of the jth neuron to the input of ith neuron. The 

inverted neuron outputs v i  are usually tapped at inverting rather than 

noninverting output to avoid negative conductance values w ig  connecting in 

inhibitory mode, the output of jth neuron to the input of ith neuron. This 

network is required to be symmetric w.. = w i  i.e. the outputs of neurons 

are not connected back to their own inputs. Each neuron receives an 

external current (known also as a bias Ii). Now denoting synaptic 

connection matrix [w ig] by W. The neuron dynamics [3] of Hopfield network 

are described by 

du. 	 V. 
- = 	 v i _ - +1. 	 (2.14) 

1= 1  

where Tr is circuit time constant. 

For a synaptic connection matrix W, if the gains of the neurons are 

sufficiently high then the dynamics of neurons follow a gradient descent of 

the quadratic energy function 
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11 	n 	 1l 

E = -4 	vi v. - ~ Ii vi 	 (2.15) 

i=1 j=1 	i=1 

Also, while the state of the neural network evolves inside the N-

dimensional Hypercube defined by vi e {0,1}, the minima of the energy 

function (2.15) occurs at 211 corners of this space, only if gain of the 

amplifiers is ' very high. In terms of the energy function (2. 15), the 

dynamics of ith neuron are described by 

du 	ui aE -a- _ - - av 
1 

(2.16) 

2.5 TRAVELLING SALESMAN TOUR LENGTH MINIMIZATION 

For solving TSP a suitable objective function has to be formulated to 

substitute the energy function. 

Travelling salesman problem is minimization of tour length through a 

number of cites with only visit in each -city. The network consisting of n 

unipolar continuous neurons arranged in an n x n array [matrix], where ith 

row in the n x n matrix corresponds to a city Yj, and jth column in the 

matrix corresponds to a city position Xi, can be used, to solve the TSP . 

Thus, there will be city rows and position columns. Since each city can 

only be visited once and no simultaneous visits are allowed, solution 

matrix can contain only a single I in each column and a single 1 in each 

row. The neuron turned on or with output 1 in the square array of neurons 

indicates a particular position of a particular city in the tour.. 
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The energy (objective) function to solve the problem is given as 

follows : 

 

n  n  I1  n  I1  n 

E = A 	 vXi vXj + B 	 vXi vYi 
X=l i=1 j=1 	1=1 X=1 Y=1 

j ~ i 	 Y * X 

n n  2 

+C 	 V Xi n + 
X=1 i=1 

11 	n 	11 

	

D 	 dXY vXi (vY, i+ 1 + vY, i-1) 	(2.17) 

X=1 Y=1 i=1 

Y*X 

The A term becomes 0 if the matrix does not contain more than one I in 

each row. Similarly the B term restricts the number 1 's in each colun i to 

I. C term is required to ensure of that the matrix simply does not contain 

all zeros. D term takes into account, the true goal - tour optimization. 

The distances between the adjacent cities are summed while computing the 

term, and summations are to be as modulo n: So the D term is numerically 

equal to the length of the path of the tour. 

The resulting weight matrix and bias terms can be obtained by equating 

(2.16) with (2.15). The weights and bias currents given as follows 
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w?Xiv 	-2A j = 	 ij)-2B (3ij (I- 6X},)-2C 

- 2 D dxy ('i,J+ 1 +) 

Where - is kronecker delta function defined as 

a i j = 1, for i= j and 	 = 0, for i 	j. 

and 	I xi 	2 C N 	 (2.18) 

using the weight and bias currents (2.18) and equation (2.14) a system 

of non linear differential equations can, be solved for minimization of tour 

length in TSP problem. 
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CHAPTER -3 
NEURAL NETWORK MODELS 

3.1 LEE- CHANG MODEL[51,[6] 

Symbols and definitions used in the model are as follows 

s : source node 

d destination node 

h : maximum number of linksof optimal paths from s to d 

n : number of nodes in the network topology, 

Control vector Uk  = [u1  u2 .... un ]T 

where 	u 	stands for the ratio 	of 	the 	traffic 	of 	node 	i, 	in 	the kth 

position 	of the 	source to destination path. 	uk 	is always between 	0 and 1. 

If u 	equals 	1, 	it 	means that all 	the 	traffic will 	be concentrated 	on node 

i. 	If 	the 	elements 	of Uk  have all 	zeros 	except 	at 	certain 	element 	i, then 

it 	represents 	the 	fact that the kth 	position 	of the 	path 	is 	to 	be 	via node 

The state is said to convergent iff given,  a small tolerance E > 0, the 

update of traffic remains within this E-neighborhood, i.e. there are only 

small changes in the states of the network. If there is only one source-to-

destination path then one element of Uk  will converge to 1 and other 

elements to 0. On the other hand if there is more than one optimal soirce- 
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to-destination path, then the elements of Uk will be convergent to the same 

.-alues for several different nodes. 

The model is arranged in multiple layers, and the number of layers is 

equal to the maximum number of nodes in the routing path. The connection 

between successive layers is dependent on the connectivity of communication 

network. 

Neurons in the same layer are not independent. The weight of links 

between layers are fixed in this model. The first layer stands for source 

node of the path and the last layer stands for the destination node. 	So, 

the values 	of 	neurons in the first and 	last layers are 	fixed. The 	output 

values of neurons in the intermediate layers are obtained by learning. 

During 	the 	training, each 	layer 	gets a forward correction from 	the lower 

layer and backward correction 	from upper layer and 	self correction among 

neurons in the same layer. 

The energy function of this model is given by 

11 	 h I2 

E=2 
UT 

j WUj+l +(~)(2) 	ui-1 	 (3.1) 
j=1  j=2 i 

The first term of energy function 	is 	the 	delay 	time of network. 	The 

nxn delay time weighting matrix W is formed by collecting the corresponding 
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delays from each node to every other in the network. The second term 

restricts the sum of uJ (i =1,2, .... , n) in U, constrained to be close to 1. 

The weighing factor ' which is a positive constant can be adjusted properly 

so that the values of U will converge quickly. To minimize energy 

function, differentiating w.r.t. Uk  

aE(2)  1 	 i WUk-1 + WUk+l + 2 z en 	uk -1 	(3.2) 
k 

where ell  is an n by I vector with all l's. Because the gradient is in 

the direction of maximal change, the vector AUk  is set to be proportional 

to -aE/aUk  with proportional constant c (> 0) : 

AUk  = - a () 	WUk-1 + WUk+ I + a -d en  1 - uk 

k = 2,3,...,n 	 (3.3) 

U k(i) 	is defined 	as the 	value of Uk  after the ith 	iteration. 	If 	i=0, 

initial 	values of vectors Uk(0)'s 	(k = 	1,2,...., h+l) have to be assigned. 

Since, 	each layer 	has different properties, the initial 	assignment 	is 

divided into five cases as follows : 

Case-1 : When k equals 1, 	U1 	is the first vector in the path. 	If node 

s 	is picked to be the source node, then sth element of U 1  is set 	to 	1, and 

other elements to 0. 
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Case-2 : When k equals h+l, Uh+1 is the last vector in the path. If d 

is the destination node the dth  element of Uh+ I is set to 1, and other 

elements to 0. 

Case-3 : When k equals 2, U2  is the second vector in the path. The 

values of nodes which are connected to the source node are assigned to be 

0. The values of u? which are not connected to the source node are 

assigned to be 1 divided by number of links connected to it. 

Case-4 : When k equals h, values of Uh  are assigned similarly as in 

case-3. 

Case-5 : When k is not in the four classes above i.e. k = 3.....,h-1. 

The values of every element in Uk  said to be same except for source and 

destination nodes. Since loops are not allowed in this path, the values for 

source and destination are set to 0 i.e. 

Uk = 0 if i = s,d 

1/n otherwise 

After the initialization, U k's are updated according to the equation. 

U k(i+ 1) =Uk(i)+oUk ,k= 2,3,...,h. 
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This procedure continues until vectors of Uk  satisfy the convergence 

criterion. This network model 	always converges 	to a stable 	solution. 

Proof is given 	in Appendix II. 	The rate of convergence will be improved if 

the parameters a and y, in (3.1) are chosen carefully. The information for 

reasonable parameters calculation is also given Appendix II. 

3.2 ZHANG - THOMOPOULOS MODEL 

The neural network model is arranged in a two dimensional array of 

size nxn, where n is the total number of nodes in the topology of the 

network. The output vxi  of neuron at location (x,i) is defined as follows : 

1 if node x is the ith  node to be visited in the path 
v . 

 = x1 
0 otherwise 

The energy function, whose minimization process, moves the neural 

network to the stable state (corresponding to the solution) is given by 

n-I n n 	 n 11 n 

E  — 	L 	vik 	vJ k+ l + 	L 	 vik vjk J  
k=1 i=1 j=1 	 k=1 i=1 j=1 

n n 
	2 

+ 	14 	L 	v .. -n 	 (3.4) 
i=1 j=1 
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Where wij  consists of zero cost self loops connecting each node to 

itself and very large costs to nonexisting links and proper costs to 

corresponding existing links. 

In the energy function, A term represents the total cost of the path 

from source to destination. The B and C terms are constraints introduced to 

force 	the 	neural network 	to 	coverage 	to 	a 	valid 	path. 	The 	B 	term is 

minimized 	if each column contains at most a single 1, 	which corresponds to 

at most one node visited at a time. The C term ensures that there 	will be 

exactly n 	I 's 	in the final solution. 	When combined together, the B and C 

term 	ensure that each 	column 	will 	have 	exactly 	a 	single 	1. Here 	in 	this 

model, 	for a 	given source 	and 	destination 	pair 	(s,d) 	state 	of 	all 	neurons 

located 	in the 	first and last column are 	fixed 	[vs 1 = "dn = 	I 	and 	the 

remaining neuron in the first and 	last column are set to 	0], while allowing 

the output values of remaining neurons to evolve so as to minimize the 

energy function. 

The state of (i,j)th  neuron, uij  can be described by the differential 

equation : 

n 	n 

zJ  + 	 T  ij ,1  i •vim + l  ij 
	 (3.5) 

1=1 m=1 
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where, Tij,m11 	-A Wim(6n,i+l + 6n,i-1) 	B Sin (l 	o. ) - C is the 

connection weight between (i,j)th neuron and (m,n)th neuron in the nxn 

neuron array obtained by comparing the corresponding coefficients in (3.4) 

and (2.15). 

Here 5. is the Kronecker delta . function defined as before, also 

v = g(ui~) = [ 1 + tanh(ui~/u0)]/2, 

I.. 
Ii 

	C * N (input bias term), 

uO = gain factor. 

Energy minimization procedure involves solving n2 nonlinear 

differential equations. This procedure continues until output of each vii 

approaches either 0 or 1, which corresponds to the steady state (it could 

be a local minimum). 

3.3 MUSTAFA - FAOUZI MODEL 181 

This model gives a suitable representation scheme, such that the 

shortest path is encoded in the final state of the neural network. The 

model is organized in an nxn matrix, with all diagonal elements removed 

since they are not needed. Each element in the matrix is represented by a 

neuron which is described by double indices (x, i) where row subscript x and 

column subscript i denote the node numbers. Therefore, the neural network 

25 



requires n(n-1) neurons ' and a neuron at - location (x,i) is characterized by 

its output vxi, defined as follows: 

1, if the are from node x to node i is in the 
vxi  = 	shortest path 

0, otherwise 

Also pxi  is defined as 

1, if the are from node x to node i does not exist 
Pxi 	0, otherwise 

In addition, the cost of an arc from node x to node i will be denoted by 

a finite positive number. For nonexisting arcs this cost is zero. 

The suitable energy function, whose minimization process drives the 

neural network into its lowest energy state (corresponding to the shortest 

path) is given as follows : 

n n 	 n n 
112 

E=-2- 	wxi, vxi +vxi + 
x=1 i=1 	 x=1 i=1 

i$x 	 i$X 

(x,i) 	(d,$) 	(x,1) 	(d,$) 
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H 	n 	n 	2  µ 
L vxi 	L vxi 	+ 

x=1 i=1 i1 

i*x 	i#x 

Fl n 
114  

x=1 x=1 
x*i 

t̀ 5 vxi(1-vxi) + -- (1-vds) (3.6) 

The 	111 	term 	minimizes the 	total 	cost of path 	by 	taking 	into 	account 

the 	cost 	of 	existing 	links. The 	112 	term 	prevents 	the 	nonexisting 	links 

being 	included 	in the chosen path. 	The 113 	term 	is zero for every- node 	in 

the solution, 	if the number of incoming arcs equals the number of outgoing 

arcs. 	This 	makes 	sure 	that if a 	node is 	entered 	in 	the 	solution 	path, 	it 

will also be exited by a path. 	The µ4  term pushes 	the state of the neural 
2 

network to converge to one of the 21 	-n corners of the Hypercube defined by 

Vxi  c 	{O,1 }. The µ$ term is zero when the output of the neuron at location 

(d,$) 	settles 	to 	1. 	Although the 	link from 	d 	to 	s 	is 	not 	part 	of 	the 

solution, 	it 	is 	introduced 	to enforce 	the 	construction 	of path, 	which 	must 

originate 	at 	s 	and 	terminate at 	d. 	This makes 	sure 	that 	the 	final 	solution 

contains the arc from d to s and therefore both source and destination will 

be in the solution. 

The final 	solution will always be a loop, with nodes d and s 	included. 

This 	loop consists 	of two parts, a directed path 	from 	s to d and an are 

0 
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from d to 	s. If there are no zero length loops in the network then 	the µl 

and 13 terms will ensure that there will be at most a single 	1 at each row 

a'nd at each column. 	This guarantees 	that there 	will 	be one 	to 	one 

relationship between the paths and the neural network representations. 

Rewriting (2.14), (2.15) and (2.16) in such a way as to take into 

account the representation of neurons with double indices, we get 

 

n  n du.  u . 

	

_  ui I + V 	V T xi, .  ' v . + Ixi = -uxi - a E (3.7) 
YJ 	yj 	 x y=l j=1 

j#Y 

By substituting (3.6) in (3.7), 

neuron (x,i) is readily obtained :  

the equation of the motion of the 

d

ot— — - uz 1. - 	W xi(1-sxd his) - 	pxi(1-"xd "is) 

Fl 	 n 

- µ3 ~ (vxy - vyx) +  13 Z (viy - vyi) 
y=l  y=1 
Y~x 	 Y#i 

--- (1-2v.) + 7 6xd 8is' V(x,i)E n x n 	1 (3.8) 



where S is the Kronecker delta defined as before . 

By 	comparing the corresponding 	coefficients in 	(3.6) and 	(2.15) 	the 

connection strengths and biases can be derived. They are given as follows : 

Txi,yj 	[14  .5xy 6ij µ36xy  - µ3aij  + µ36 x  + 113 6iy 	(3.9) 

112 
Ix1 = 7 Wxi(1-Sxd his) 	pxi(1-Sxd his)  

114 	115  
+ 	xd6is (3.10) 

The first term in (3.9) represents excitatory self-feedbacks, and the 

second and third terms represents local inhibitory connections among the 

neurons in the same row and in the same column, respectively. The last two 

terms represent excitatory cross-connections among neurons. 

This neural network model maps the data represented by link costs and 

node connectivity information into biases rather than into neural 

interconnections. This is due to the fact that data terms are associated 

with linear rather than quadratic expressions in the energy function. Here 

the minimization corresponds to solving a system of n(n-1) nonlinear 

differential equations, where . the variables are neurons output voltages 

vxi's. The efficiency of the model in solving the problem, requires 

selection of appropriate values of energy function coefficients. The 

general guidelines to select these coefficients are given in Appendix-Il. 
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The neural network models discussed do not have specific names. In 

this work the models are referred to, with author names prefixed to them. 

The relative merits and demerits of these models are as follows : 

The limitation of Lee-Chang model is that it is to be supplied with 

number of links between the source destination pair. Also every time, 

neural network configuration has to be initialized- before starting it. This 

model performance is limited, only by its own drawback, but this model can 

be extended successfully to incorporate reliability of nodes and dependency 

between nodes in computing the routes. Appendix III discusses the details. 

Zhang-Thomopoulos model is formulated to give optimal solution, but 

it inherits the inherent drawback in Hopfield network i.e. local minima 

problem. In this model also the values of neurons. in first and last column 

have to be fixed before starting it. In this model, cost of links is 

reflected 	in connection weights between neurons. 	This becomes a problem, 

when model, is implemented in hardware because cost of links may change in 

real time. 

In Mustafa Faouzi model formulation, cost of links is reflected in 

bias currents. This proves to be a big advantage for the model. But the 

parameters in this model have to be chosen very carefully. 



CHAPTER -4 
DESIGN AND IMPLEMENTATION 

The simul-ation program is written in `C' language and run under UNIX 

environment on TATA ELXSI POWER SERIES 3200 SYSTEM. The operating 

system is IRIX version of UNIX. 

The data structures and subroutines used in the simulation program are 

discussed in the following sections. 

4.1 Simulation Program Data Structures 

SCE 	Specifies the source node 

DST 	Specifies the destination node 

SIZE : Specifies total number of nodes in .the. communication network 

topology. 

C[ ][ ]: is the link capacity matrix, each element C[i][j] 

represents the capacity of the link between -node i -& -node j. 

WIT ], 

c[ ][ 1, 

cost[ if]: are the delay weighting matrices, each of them represents 

the delay on the links of the communication network. 
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Result 

This structure is used to store route(s) information for a given 

source-destination pair. The declaration of the structure is 

struct res { 

int *ROUTE [ ]; 

int RTCNT; 

int RTLINKS [1; 

float *RTVAL [ ]; 

float PREF [ ]; 

float RTCOST [ ]; 

} 

struct res result; 

RTCNT : specifies the number of route(s) existing between a 

given source-destination pair. 

ROUTE : is the list of routes found between a given source 

destination pair. 

RTLINKS : specifies the number of links in the route(s) 

RTCOST : specifies the cost of the route(s) 

RTVAL : is used to store the output values of neurons representing 

the route(s). 

PREF 	: specifies the preference of route(s). 

The data structures used in Lee-Chang model 	are as follows: 

Iks : specifies the number of links between source and destination. 
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vec : 

This data structure is used to represent the control vector. Its 

declaration is as follows: 

Struct vect } 

float ele [ ]; 

}' 

Struct vect 	*vec[ ]; 

ele 	: specifies the value of a neuron in the control vector. 

The data structures used in the Zhang-Thomopoulos model and Mustafa-

Faouzi model respectively are as follows: 

nnvec [ ][ ], no[ ][ ] : 	are the neuron output arrays, each 

element specifies the output value of the 

neuron in a particular position in the 

neuron array. 

coeff [ 1{ ], -nil ][ ] 	: are the neuron input arrays, each 

element specifies the input activation 

value present at a particular neuron in 

the neuron array. 

YO, LAMDA 	 : 	Specifies the gain value of neurons. 

DT,IT 	 : 	Specifies the difference interval 

between successive instants overwhich 

neuron output values are computed. 
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Routines 

main O  : 	main function is used to select a particular neural 

network model depending on the settings of constants 

MODELI, MODEL2, and MODEL3. 

takeip ( ) : 	This function receives source, destination and link 

capacity matrix as inputs and computes the delays over 

links. 

genrand ( ) : This function generates a random number between any 

number x (1 > x > 0) and zero. 

nnw_energy( ): This function computes energy associated with the 

neural network model . 

The functions , used for Lee-Chang model are as follows: 

detlinks( ): This function determines the number of links between 

source and destination. The link capacity matrix is used 

for this purpose. Matrix Cln  is checked whether element in 

source row and destination column is greater than zero, 

if so, m will be the minimum number of links between 

source and destination. Here Cm  denotes, multiplication 

of C itself m times. 

creatmem( ): This function creates the control vectors. The number of 

control vectors created are equal to Iks plus 1. 

initvect( ): This function initializes the control vectors, 

representing the neural network for a particular source 

and destination pair. 

34 



SOURCE ,DESTI NAT ION,PARAMETERS 
CAPACITY MATRIX,DELA MATRIX 

DETERMINE 
No. OF LINES 

CREATE 
CONTROL UECTORS 

INITIALIZE 
CONTROL UECTORS 

-UPDATE 
CONTROL UECTORS - 

NO 	IS 
CONUERGENC 

9 

YES 

DETERMINE 
PATHS 

COMPUTE ROUTE 
PREFERENCE & COST 

STOP. 

Fig. 4.1 Flow chart for implementation of 
Lee-Chang model. 
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diffcalc( ): This function computes changes in control vector at 

successive iterations. 

update() 	This function uses diffcalc () function to compute 

changes in control vectors to update them at successive 

iterations. The first and last control vectors are not 

updated because changes are not needed in them. 

findroutes( ): This function determines the routes, from the informat-

ion coded in the converged neural network. It generates 

proper combinations using position of elements i-n -control 

vectors which are greater than a certain value to 

determine the routes. 

router l ( ) : This function performs the implementation of Lee-Chang 

model using the above functions of -Lee-Chang model as 

shown. in fig. 4.1. 

The functions used in Zhang-Thomopoulos model are as follows: 

initnnw ( ): This function initializes the output values- of neuron 

array. 

initcoeff( ):This function computes the input activation to the neuron 

corresponding to the initial output value of neurons. 

cal-neuronop( ): This function computes the neuron output 

values corresponding to the input activations present at 

their inputs. 
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SOURCE, DESTINATION, PARAMETERS 

CAPACITY MATRIX,DELAY MATRIX 

INITIALIZE 
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STOP 

Fig. 4.2 Flow chart for implementation 
of Mustaf a-Faouz i ate ! 

Zharng-Thomopuu los models . 
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doupdate( ): This function implements the relaxation algorithm to 

compute neuron input activations at successive time 

instants. 

findroute( ):This function picks out the route from source to 

destination from the state of converged neural network. 

ztrouter( ): This function performs the implementation of Zhang- 

Thomopoulos model using the above functions for Zhang- 

Thomopoulos model as shown in fig.4.2. 

Functions used for Mustafa-Faouzi model: 

iccal() : This function computes the net input activation of neuron. 

findpath( ):This function determines the route(s) from the 

information encoded in the state of converge neural 

network. 

rtfinder( ):This function performs the implementation of Mustafa- 

Faouzi model using the above function for Mustafa-Faouzi 

model as shown in fig.4.2. 

pathpref( ):This function computes the preference and cost of 

route(s) found between source- destination pair. 

Paracal ( ) , 

Paracheck( ):These functionscheck the validity of parameters chosen 

for Lee-Chang model and Mustafa-Faouzi model respectively. 
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CHAPTER -5 
CONCLUSION 

5.1 DISCUSSION OF RESULTS : 

The three communication network topologies chosen are shown in figs. 

5.1, 5.2 and 5.3. In figs 5.1 and 5.2 the number on the arcs indicates the 

link capacity. For simulation purpose link cost (delay) '• is assumed to be 

inversely proportional to the link capacity. For communication network 

topology shown in fig. 5.3 the number on the arcs indicates the link cost 

chosen randomly. 

The reason for _selecting different sizes of communication networks is 

to bring out the divergence problem if there exists any. The reason for 

selecting the variable cost conditions is to compare the performance of 

Lee-Chang model and Mustafa-Faouzi model, in giving multiple optimal routes 

simultaneously. 

The parameter set selected [9], [ 10] for each model is shown in table 

5,.1. - How the link cost. (delay) is chosen, in accordance. with link capacity 

is also shown in table 5.1. 

1: Functions for delay calculations- are given in APPENDIX-W 
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In all the three models, the route(s) information will be encoded in 

the state of converged neural network. For the topology shown in fig. 5.3, 

he -state of neural network models for source - destination pair (1, 8) is 

shown in figs. 5.4 (a), 5.4 (b) and 5.4 (c). 

Table 5.1 

Lee-Chang model Zhang-Thomopoulos Model Mustafa-Faouzi Model 

Parameter set 	parameter set parameter set 

a = 	0.005 	A = 25 µ = 950 

(3 = 30 	 B = 500 112  = 3500 

C = 500 113  —3200 

N =9.5 114  = 3500 

At = 2X10-6  115  = 85 

uO = 0.02 At = 10-5  

A = 1 

Link Link cost Link Link cost Link Link cost 

Capacity Chosen Capacity Chosen capacity Chosen 

128 0.2 128 2.2 128 0.2 

64 0.4 64 2.4 64 0.4 

32 0.6 32 2.6 32 0.6 

16 0.8 16 2.8 16 0.8 
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SOURCE 1 -- DESTINATION 8 

MODEL : Lee-Chang 

ROUTE(s) : 1 - 2 - 5 - 8 

1 - 4 - 5 - 8 

NUMBER OF LINKS : 3 

Fig. 5.4(a) STATUS OF CONVERGED NEURAL NETWORK 

1  2  3  4 

1 1.000000 0.000000 0.000000 0.000000 

2 0.000000 0.172443 0.000000 0.000000 

3 0.000000 0.000000 0.000000 0.000000 

4 0.000000 0.814312 0.000000 0.000000 

5 0.000000 0.000000 0.986755 0.000000 

6 0.000000 0.000000 0.000000 0.000000 

7 0.000000 0.000000 0.000000 0.000000 

8 0..000000 0.000000 0.000000 1.000000 

9 0.000000 0.000000 0.000000 0.000000 

MODEL : Zhang-Thamapoulos 

ROUTE(s) : 1 - 4 - 5 - 8 

NUMBER OF LINKS : 3 

Fig. 5.4(b) STATUS OF CONVERGED NEURAL NETWORK 

1  2  3  4  5  6  7  8  9 

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0..000 

4 0.0000 0.9998 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 

5 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.000 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9999 1.0000 1.000 

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 
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MODEL : Mustofa-Faouzi 

ROUTE(s) : 1 - 2 - 5 - 8 

1 - 4 - 5 - 8 

1 - 4 - 7 - 8 

NUMBER OF LINKS : 3 

Fig. 5.4(c) STATUS OF CONVERGED NEURAL NETWORK : 

1  2  3  4  5  6  7  8  9 

1 0.0000 0.2755 0.0000 0.6352 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000 0.0000 0.2450 0.0000 0.0000 0.0000 0.0000 

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

4 0.0000 0.0000 0.0000 0.0000 0.3541 0.0000 0.2465 0.0000 0.0000 

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6280 0.0000 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 0.0000 0.0000 0-.0000 0.0000 0.0000 0.0000 0.0000 0.2712 0.0000 

8 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0171 0.0000 
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In Lee-Chang model and Zhang-Thomopoulos model, it can be easily 

seen that at any position in path sum of values of neurons representing 

that position is equal to one. But this is also satisfied in Mustafa-Faouzi 

model. 

For all combinations of source-destination pairs in communication 

network topology shown in fig. 5.3, all three models are applied. The 

following are based on the results obtained. 

MODEL 	 % OF CASES IN WHICH OPTIMAL 

ROUTES ARE FOUND 

Lee-Chang 	 100 

Zhang-Thomopoulos 	 69.44 

Mustafa-Faouzi 	 t00 
A 

Taking source 	as I 	and for 	all possible 	destinations 	the 	cost 	of 

routes found by the three models are shown in fig. 5.5. 

The inherent problem found in Zhang-ThomopouIos model is, the cost of 

links is reflected in interconnection weights. So the neurons belonging to 

the row which represents the node, having highest number of links 

associated with other nodes in the communication network topology are very 

highly activated, always. This won't become a problem for small networks. 
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But because of this reason neural network diverges when applied to 

communication networks of big size. 

It is found that, almost all routes given by Zhang-Thomopoulos model 

go through the node 5, [node 5 has more number of links, i.e. (4) connected 

to it]. The above mentioned reason is found to be true, when Zhang-

Thomopoulos model is applied to network topology shown in fig. 5.1, in many 

cases network is found to be diverging. 

For all combinations of source- destination pairs in communication 

network topologies shown in fig. 5.1 and fig. 5.2 Lee-Chang model and 

Mustafa-Faouzi model are applied. The following are based on the results 

obtained. 

In all the cases both models converged to valid solutions. 

It is found, Lee-Chang model can give simultaneously multiple 

optimal, suboptimal routes, differing in their route cost by approximately 

5%. But Mustafa-Faouzi model gives multiple optimal routes, only when all 

the routes are of equal cost. Because of this performance of Lee-Chang 

model is slightly better in some cases when applied to topology shown in 

fig. 5.2. 

Figs. 5.6 	and 5.7 	show the cost of route (s) found by Lee- 

Chang model and Mustafa-Faouzi, when applied to a particular set of source-

destination pairs. 
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In the 	Lee-Chang 	model, 	at any 	particular 	position in 	the path, 	a 

node 	is selected such 	that the sum of distance to the node in 	the previous 

position in 	the 	path 	and 	the 	distance to 	the 	node 	in 	the next 	position 	in 

the path is 	minimum. 	Because of this 	formulation, 	if 	the routes, differ 	in 

the 	ith  position 	in 	the 	path, they 	won't 	differ 	in (i-1)th, (i+1)th  

positions in the path. Hence, Lee-Chang model in general not giving all 

existing optimal routes. But Mustafa-Faouzi model gives all the existing, 

optimal routes. These statements can be observed in fig. 5.6 	and fig. 

5.7 

Other Observations : 

• Lee-Chang model is converging, in between 75 to 400 iterations. On 

average it is taking 225 iterations, 1 sec. of processing power in 

TATA ELXSI POWER SERIES 3200 SYSTEM. 

• Mustafa-Faouzi model is converging in between 4000-12000 iterations. 

On average it is taking 3 minutes of processing power in TATA ELXSI 

POWER SERIES 3200 SYSTEM, 9000 iterations to produce route(s). 

• Lee-Chang model can be easily extended to take reliability of nodes, 

dependency between nodes in the communication network, in to 

consideration- while computing the route. But, number of iterations 

for convergence, becoming large (approximately 3 to 4 times i.e.. 

800-900 iterations). 



CONCLUDING REMARKS : 

Zhang-Thomopoulos model formulation is not suitable for large 

communication networks. 

Lee-Chang model is more or less suited for software implementation 

because the number of neurons in the model changes depending on the number 

of links. Computational power requirement of this model is low. Because of 

the drawback of this model there may be a chance of crowding over some 

links. 

Mustafa-Faouzi mode] computational power requirement is very high in 

software implementation. This model is highly suitable for hardware 

approach. Also this model has the characteristics of ideal routing 

algorithm. Parameter selection is a critical matter in this model. The 

attractive feature of this model is extraction of all 	existing optimal 

routes simultaneously. 



5.2 SUGGESTIONS FOR FURTHER WORK 

* Neural network models in this work are implemented(tested) for 16 

node and 15 node communication network topologies,and maximum 

number of links up to 6 or 7 in the routing path. Real life 

implementations need testing in much larger communication network 

topologies of sizes around or more than 50 . and number of links 

in the routing path up to 20 or more. With the help of high 

computational facilities, the models can be tested for large 

communication networks. 

* Hopfield neural networks can be easily modeled by simple 

electrical components, and the real potential of the Hopfield 

neural networks is in hardware approach. Work towards this 

direction can only exploit the abilities of Hopfield neural 

networks for routing problem. 
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#include <stdio.h> 
#include < curses.h > 
#include < math. h > 
#include < signal . h > 

/*******************************/ 
/* GLOBAL VARIABLES 	*/ /********************************/ 

#define MODELI 0 
#define MODEL2 0 
#define MODEL3 1 

#define MAX 20 	 /* Maximum number of nodes in network */ 
#define NET SIZE 16 	/* Total number of nodes in the network */ 
#define RTMAX 8 	 /* Maximum number of routes 	*/ 

/* Actions in comments 
#define STAT ON FILE 0 
#define STAT RESDISP 1 
#define SIGCTCH 	1 
#define AID_PARACAL 0 
#define INC DEPD 0 
#define INPUTMODE 0 
#define OPERMODE I 

will be activated if constant is 1 	*! 
/* Status of NN ,Route information on file*/ 
/* Result display on screen 	 */ 

/* interrupt signal catch 	 */ 
/* Aid to parameter calculation 	*/ 

/* Inclusion of dependencies in L-C model */ 
/* Takes topology inforthation from screen */ 
/* Takes topology information from file */ 

int SIZE; 	 /* Size of the network topology */ 
int C[MAX][MAX]; 	/* Link capacity information 	*I 
int SCE,DST; 	/* Source and Destination 	*! 

/* Structure to store 
struct res{ 

int *ROUTE[RTMAX]; 
int RTCNT; 
int RTLINKS[RTMAX]; 
float *RTVAL[RTMAX]; 
float PREF[RTMAX]; 
float RTCOST[RTMAX]; 

}; 
struct res result; 

#define HVAL 10000 

result */ 

/* Route(s) 	 */ 
/* Number of route(s) 	 */ 

/* Number of links in the route */ 
/* Neuron output values  

/* Preference of the route(s) 	*/ 
/* Cost of the route(s) 	*/ 

int ICNT; 	 /* Number of iterations */ 

int ran[3] _ {9000,866,30}; /* Seeds for random number generation */ 



/* Mustafa-Faouzi model Global Variables */ 

/*. Energy function coefficients 	*/ 
#define MU 1 950 
#define MU2 3500 
#define MU3 3200 
#define MU4 85 
#define MU5 3500 

/* Minimum change in neuron output required to continue iterations */ 
#define DELTAV 0.000001 
#define IT 0.00001 	/* Difference time interval */ 
#define LAMDA 1 	/* Gain 	 */ 

/* Arrays to store values of Neuron output, input and change in output */ 
float no[MAX][MAX],ni[MAX][MAX],dno[MAX][MAX]; 

float cost[MAX][MAX]; 	/* Delay weighting matrix */ 

/* Lee-Chang model Global Variables */ 

#define DELTARW 0.00000001 

float w[MAX][MAX]; 	/* Delay nformation 	*/ 
float d[MAX][MAX]; 	/* Dependency information 	*; 
float q[MAX]; 	/* Reliability information */ 
float *dbprod; 
int NLIST[MAX]; 

/* Control Vectors */ 
struct vect{ 

float ele[MAX]; 
}; 
struct vect *vec[MAX], *newvec[MAX], *dvec[MAX1; 

/* Energy function coefficients */ 
#define THETA 0.8 
#define MU 	0.5 
#define BETA 0.5 
#define ALPHA 0.005 
#define GAMMA 30 

int lks ; 	/* Number of links between source and destination */ 

/* Zhang-Thomopoulos model Global Variables */ 

./* Energy function coefficients 	 */ 
#define A 25 
#define B 500 
#define DC 500 
#define NN 9.5 



/* Mustafa-Faouzi model functions 	*/ /****************************************/ 

void rtfinder(); 
void create costmatO; 
float iccal(int , 	int); 
void findpathO; 
void sigcatch_intrO; 
void convrg_details(int ); 
void paracheck(); 

main() 

#if MODELI 
takeipO; 
router 10; 

#endif 

#if MODEL2 
takeipO; 
ztrouter(); 

#endif 

#if MODEL3 
takeipO; 

rtfinder(); 
#endif 
I 

/**********************************************************/ 
/* 	Function reads the input information in to array 	*/ /**********************************************************/ 

void readmatp(float ab[MAX1[MAX(,int ba[MAX][MAXI, int S) 
{ 
int i,j; 
for(i=0;i<SIZE ;i++) 
{ 

printf("row %d elements 1n",i+ 1); 
for(j=0;j <SIZE;j++) 
{ 

printf("%d :",j+1); 
switch(S) 
{ 
case 

scanf(" %f" , &ab[ i ] [j]); 
break; 

case 2: 
scanf(" %d",&ba[i][j]); 
break; 

} 



/* Minimum change in energy required to continue iterations *i 
#define DELTAZT 0.0001 

#define DT 0.000002 /* Difference time interval */ 

. /* Input,output values of neurons 	*/ 
float nnvec[MAX][MAX],coeff[MAXI[MAX[; 

float Y0; 	/* Gain 	 */ 
float c[MAX][MAX]; /* Link cost information 	*/ 

/****************************************, 
/** 	 FUNCTIONS 	 **/ 
i***************************************./  

void takeip(); 
void readmatp(float x[][MAX],int y[][MAX], int ); 
void storematf(char *, int , int ); 
void readmatf(char *, int , int); 
float genrand(int , float ); 
void pathpref(int ); 
float nnw_energy(int ,int); 
void fres_display(); 

/* 	Lee-Chang model functions 	*/ 

void routerl(); 
void createw(int); 
int detlinks(int , int ,int); 
int detadj(int ,. int x[][MAX], int); 
void createmem(int ); 
void initO; 
void initvect(struct vect *v[],int , int , int); 
void vectdisp(struct vect *v[], int , int ,int); 
void dbcalc(); 
float *matmult(float l[][MAX],float b[],float *,int , int ,int); 
int diffcalc(int ); 
void updateO; 
void findroutes(); 

/****************************************/ 
/* Zhang-Thomopoulos model functions */ 
/***************************************/ 

void ztrouter(); 
void initnnw(int ,int ); 
void initcoeff(); 
float icval(int ,int ,int ,int ); 
float calk(int , int ); 
void cal_neuronopO; 
void doupdate(int); 
void findrouteO; 
void create_cstmatO; 



puts(" 	") 

/********************************************** * c****** x/ 
f* 	Function stores array in a file, 	 '; 
/* 	always activated after function readmatpO 	*i 
/****** ************************ 4 **************************/ 

void storematf(char *fname, int Sint code) 

tnt I, j; 
FILE *fptr; 
char ch='s'; 

if((fptr = fopen(fname, "w")) ! = NULL) 
{ 

for(i=O; i<S; i++) 
for(j=0; j<S; j++) 

switch(code) 
{ 
case 0 :fprintf(fptr, 

break; 
case I :fprintf(fptr, 

break; 
case 2 :fprintf(fptr, 

break; 
case 4 :fprintf(fptr, 

break; 
} 

if(code = = 3) 
for(i=0;i <SIZE;i++) 

fprintf(fptr,"%f%c',q[i],eh); 
fclose(fptr); 

} 
else 

puts("ERROR IN OPENING FILE\n "); 

1* 	Function reads array from a file 	 */ /*********************************************************x/ 

void readmatf(char *fnarne,  int S, int code) 
{ 
int i, j; 
FILE *fptr; 
char ch =' '; 

if((fptr = fopen(fname, "r"))! = NULL ) 
{ 

for(i=0; i<=S-1; i++) 
for(j =0; j<=  S-1; j++) 

switch(code) 

%d %c",C[i][jl,ch); 

%f%c",d[i][j],ch); 

.. %f %c",c[il[jj,ch): 

" %f%c",cost[i][j],ch); 



{ 
case 0 : fscanf(fptr, " %d %c", &C[i][j],&ch); 

break; 
case 1: fscanf(fptr," %f%c",&d[i][j],&clh); 

break; 
case 2: fscanf(fptr," %f%c",&c[i][j],&ch); 

break; 
case 4 : fscanf(fptr, "%f%c", &cost[iI[JI,&ch); 

break; 

 

} 
if(code == 3) 

for(i =O;i< S 
fscanf(fptr, 

i++) 
"%f%c",&q[i],&ch); 

} 
else 
{ 

fclose(fptr); 

 

printf("ERROR IN OPENING THE FILE \n\n"); 
exit(0); 

/**** :e***********>k******>k********* ******ie* ** *ac***** *se/ 

l** 	Function takes Source,Destination,link capacity **! 
l** as inputs and computes delay information 	**% /**********************************************x********x/ 

void takeipO 
{ 
int type; 

SIZE = NET SIZE; 

#if INPUTMODE 
readmatp(w,C,type = 1); 
storematf("MAT",SIZE,type = 0); 
#endif 

#if OPERMODE 
readmatf("MAT" ,SIZE,type); 
#endif 

#if MODELI 
createw(SIZE); 

#endif 

#if MODEL2 
create costmat(); 
#if AID PARACAL 

paracheck(); 
exit(0); 

#endif 



#endif 

#if MODEL3 
create_cstmatO; 

#endif 

printf(" ENTER SOURCE : "); 
scanf(" %d", &SCE); 
if(SCE > SIZE I SCE < 1) 
{ 

printf("Sorry Source does'nt Exist!!\n"); 
exit(I); 

I 
printf(" ENTER DESTINATION : 
scarf(" %d", &DST); 
if(DST > SIZE ! DST < 1) 
{ 

printf("Sorry Destination does'nt Exist!!\n"); 
exit(l); 

return; 
I 

I*********************************************x *****x ******); ***/ 
/* 	Function implements Lee-Chang model  
/* Inputs : Capacity matrix, Source and Destination Nodes */ 
/* outputs status of NN at different intervals during 	*/ 
1* 	convergence, route(s), cost of the route(s) 	*/ 
/************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ****:;:***/ 

void router 10 
{ 
int count=0,i,k,j; 
float ENRGYN,ENRGYO; 
FILE *fpt, *f l ; 

/* Determining number of links between SCE and DST *i 
Iks = detlinks(SIZE,SCE,DST), 
printf("SOURCE-- %d....DESTINATION- %d\n",SCE. DST); 
printf("NO. OF LINKS- %d", Iks); 

/* Creating control vectors 	 *I 
creatmem(lks); 
initO; 

#if INC_DEPD 
/* Dependency,reliability information inclusion 	"/ 
takedg0 
dbcalc(); 

#end if 

1* Initializing control vectors 	 `/ 
initvect(vec,lks,SCE, DST); 



#if AID PARACAL 
paracal(); 
exit(1); 

#endif 

#if STAT ON FILE 
f 1 = fopen(" PFILE" ,'w"); 
fprintf(fl,"SOURCE : %d 	DESTINATION : %d\n\n",SCE,DST); 

#endif 

ENRGYO = nnw energy(lks,i=1); 
printf("\nENTER NO. OF ITERATIONS : "); 
scanf(" %d",&ICNT); 
while(count <= ICNT) 
{ 

/ Updating control vectors 
update(); 
ENRGYN = nnw_energy(lks, i =1); 

#if STAT ON FILE 
if(count % 100 = = 0) 
{ 
fprintf(fl,"\n ITERATION NUMBER 
for(j =0; j<  SIZE; j++) 

for(k =0;k <= Iks; k++) 
{ 
if(k == 0) fprintf(f 1, "\n"), 
fprintf(f l .1  %6f ", vec[k]- > elelj I); 

%d\n",count); 

#endif 

/* Checking for convergence 	 */ 
if (count > 100) 
if(ENRGYO - ENRGYN < DELTARW) break; 
ENRGYO = ENRGYN; 

count+ +; 

#if STAT ON FILE 
fclose(f1); 

#endif 

/* Determining route(s) information from converged NN */ 
findroutes(); 
pathpref(i =1); 

return; 
} 



void takedq() 
{ 
/* Function fills the reliability,dependency information */ 
int i; 

readmatf("DEPD",SIZE,i=1); 
readmatf(" REL" ,SIZE, i = 3) 
system("clear"); 
return; 

/* Function determines the number of links in the path */ 
I * 	* 	***, ********************** ******** X*********1 

int detlinks(int X , int S, int D) 
{ 
int cl [MAX][ MAX],c2[MAX][MAX],c3IMAX][MAX]; 
int count , i, j,k; 

S-=1; D-=1; 
X-1; i++) 

=X-1; j+ 

else  

count = 1; 
if(S = = D) return 0; 

else if(cL[S][D] == 1) return count; 
while(count <= X) 
{ 
for(i=0; i< SIZE; i++) 

for(j =0; j< SIZE ; j++) 
{ 	c3[i][j] = 0; 

for(k =0; k < SIZE; k++) 
c3[i][j] = c3[i][j] I (cl[i][k] & c2[k][j]); 

I 

for(i=0; i< SIZE; i++) 
for(j =0; j<  SIZE; j++) 

c2[i]L1] = c3[i][J]; 
if(c2[S][D] == 1) break; 
count+ + ; 
I 

if(count = = X) return -1; 
else return + +count; 

} 

int detadj(int N, int cx[MAX][MAX], lilt S) 
{ 
/* Function determines the number of adjecencies to node N */ 
int i,j; 



i =0; 
N-=1; 
for(j =0; j<  S ; j++)  

if((cx[N][j] >0) &&(j!= N)) 
{ 

i++; 
NLIST[i-1] =j; 

} 
return i; 
} 

Function creates the control vectors 	*1 /***************************************************/ 

void creatmern (int links) 
{ 
int 1; 

for(i=0; i<= links;i++) 
{ 

vec[i] _ (struct vect *) malloc(sizeof(struct vect)); 
newvec[i] = (struct vect *) rnalloc(sizeof(struct vect)); 
dvec[i] = (struct vect *) malloc(sizeof(struct vect)); 

} 
return; 
} 

/****************************************************/ 
/* 	Function initializes control vectors 	*/ 

void initvect(struct vect *vp[],int vcnt,int S. int D) 
{ 
int i,j,k; 
int adcnt; 
char ch; 

i=0; 
while(i < =vcnt) 
{ 

for(j=0;j < =SIZE-1;j++) 
vp[i]->ele[j] =0; 

if(i = =0) 
{ 

vp[i]- > ele[S-1 ] =1; 
} 
else if(i = =vcnt) 
{ 

vp[i]- > ele[D-1 ] =1; 

else if (i == vcnt -1) 
{ 



adcnt = detadj(D,C,SIZE); 
for(j =0;j < adcnt; j + +) 
{ 

k = NLIST[jJ; 
vp[i]- > ele[k] = I /(tloat)adcnt; 

} 

else if(i ==i) 
{ 

adcnt = detadj(S,C,SIZE); 
for(j =0; j < adcnt; j + +) 
{ 

k = NLIST[j1; 
vp[ i]- > ele[k = l/(float)adcnt: 

} 
} 

else 
{ 
for(j=0; j< SIZE; j++) 
if(j!= S-1 && j != D-1) 

vp[i]- > ele[j] = 1/(float)SIZE; 
} 

i++; 
} 
return; 
} 

void createw(int S) 
{ 
/* Function computes the delays corresponding to existing links */ 
int i,j; 

for(i=0;i<S;i++) 
for(j =0; j <-S ;++j)  
{ 

if(C[i][j] = = 0) 	w[i][j] = 10; 
else switch(C[i][j]) 

{ 
case 128 : w[i][j] = 1; 

break; 
case 	64 : w[i][jI = 1.3; 

break; 
case 	32 : w[ i j [ j j = 1.6; 

break; 
case 	16 : w[i][j] = 1.9; 

break; 
} 

} 
return; 
} 

void dbcalcO . 
{ 
/* Function computes dbprod 	 *i 
inti; 



dbprod = (float *) malloc(sizeof(float) * SIZE); 
matmult(d,q,dbprod,SIZE,SIZE,i=1); 
return; 
} 

/* Function computes the change in control vector ' / 
/************************************************ ****/ 

int diffcalc(int k ) 
{ 
int i,j,n=1; 
float *dl  , *d2; 
float l,m,sum,q; 

if(k == 0) return -1; 

dl = (float *)malloc((sizeof(float))*SIZE); 
matmult( w ,newvec[k-l]->ele,dl,SIZE,SIZE,n); 
d2 = (float *) malloc((sizeof(float))*SIZE); 
matmult( w , newvec[k+ 1]-> ele,d2,SIZE,SIZE,n); 
sum =0; 
for(i=0;i<SIZE; i++) 

sum = sum + newvec[k]->ele[i], 
in = ALPHA * GAMMA * (1-sum); 
for(i=0;i<SIZE; i++) 
{ 

I = -(0.5) * ALPHA * (dl[il + d2[i]); 
#if INC DEPD 

q = -(ALPHA) * BETA * dbprod[i] 
dvec[k]->ele[i] = l+m+q 

#else 
dvec[k]- > ele[i] = I +m 

#endif 
} 

return 1; 
I 

/* Function updates the control vectors 	 */ 
/*****************************************************/ 

void update() 
{ 
int i,j; 

for(i=0;i< =lks;i++) 
for(j=0;j<SIZE;j++) 

newvec[i]->ele[j] = vec[i]->ele[j]; 
for(i =1; i< Iks; i++) 

diffcalc(i); 
for(i =1; i < lks; i++) 

for(j =0; j< SIZE; j++) 
{ 



if(newvec[i]-> ele[j] > 0 && j H SCE-I && j! = DST-1) 
if(dvec[i]->ele[j] > 0) 
newvec[i]-> ele[j] = vec[ij-> eleUj + dvec[i]-> ele[j*]; 
else 
newvec[i]->ele[j] = vec[-i]->ele[j] + dyed ji]->ele[jI: 
if(newvec[i]- > ele[j] < 0) newvec[i ]- > ele[j] =0: 

} 
for(i=1; i<lks;i++) 

for(j=0;j<SIZE;j++) 
vec[i]- > ele[j] = newvec[i]->ele[j]; 

return; 
} 

void init() 

/* Function initializes control vectors to 
int i,j; 
for(i=O; i<.=1ks; i++) 

for(j=0;j<SIZE; j++) 
newvec[i]--> ele[j] = vecl i]-> ele[j] 

return; 
} 

zero */ 

= dvec[i]->ele[j] = 0; 

/* Function checks the validity of parameters, 	*/ 
/* suggests valid ranges of parameters 	 */ 
/****************************************************/ 

paracal () 

mt i,j; 
float limitl,limit2,limit3,limit4; 
float gma,alfa, teta, beta, mu, omegal, omegah, gmax,qm in, dqmax: 
char ch; 
WINDOW *win; 

initscr(); 
win = newwin(18, 70,2,5); 
wclear(win); 
wattrset(win, A~ALTCHARSET); 
box(win, ACS VLINE, ACS_HLINE); 
gma = GAMMA; 
teta = THETA; 
alfa = ALPHA; 
mu= MU; 
beta = BETA, 
mvwprintw(wi-n,2, 10, "PARAMETERS : 
mvwprintw(win,2,30,"GAMMA : %f THETA 
mvwprintw(win,3,30,"ALPHA : %f 	MU 
mvwprintw(win,4,30,BETA : %f 	",beta); 

ornegal = 50; 
omegah =0; 
for(i = 0; i < SIZE;i++) 

for(j =0; j< SIZE;j++) 

: %f",gma,teta); 
%f",alfa,mu); 



if(w[i][j] < omegal) omegal = w[i][j]; 
else if (w[i][j] > omegah) omegah = w[i]U]; 

qmin = qmax = 0; 
for(i =0; i<SIZE; i++) 
{ 

if(q[i] < qmin) qmax = q[i]; 
else if(q[i] > qmax) qmax = qJ'i]; 

} 
dqmax = 0; 
for(i =0; i<SIZE; i++) 
{ 

if(dbprod[i] > dqmax) dqmax = dbprod[ij; 
} 
limitl = mu/((1-teta)*SIZE); 
limit2 = (teta * omegal)/(1-teta); 
limit3 = (omegah)/(1-teta); 
limit4 = ((SIZE - 1) * dqmax + qmax)/(1 - teta); 

mvwprintw(win,8,2, "RANGES"); 
mvwprintw(win,8,45, "SATISFIED/NOT"); 
rnvwprintw(win,9,45, " 	(YIN)"); 

rnvwprintw(win, 11,2, "(ALPHA)*(GAMMA) < %f",limit1); 
mvwprintw(win,13,2,"%f <= ALPHA ",Iimit2); 
rnvwprintw(win, 14, 14," < = %f + (BETA) * %f",limit3,limit4); 
if((alfa * grna) < limitl) ch = 'Y'; 

else ch = 'N'; 
mvwprintw(win, 11,55," %c",ch); 
if((alfa > limit2) J 1 (alfa < = limit3 + beta * limit4)) ch = 

else ch = 'N'; 
mvwprintw(win,13,55," %c" ,ch); 

wrefresh(win); 
wgetch(win); 
endwinO; 
} 

/**********************************************X********/ 

/* Function implements the Zhang-Thomopoulos model 	*/ 

void ztrouter() 
{ 
int i,j,k,cnt; 
float engy,p,ENRGYN,ENRGYO; 
FILE *fpt,*fl; 

YO =0.02; 

/* Initializing the NN model */ 
initnnw(SCE,DST); 
ENRGYO = nnw_energy(SIZE,k = 2); 



/* Computing the initial neuron activations 	*/ 
initcoeff() ; 

cnt = 1; 	 - 
printf("Initial Energy : %f\n",ENRGYO); 
printf("ENTER NO. OF ITERATIONS"); 
scanf("%d", &ICNT); 
printf("ITERATION -- ENERGY \n"); 
printf("NUMBER \n"); 

while (cnt <= ICNT) 
{ 

/* Computing neuron outputs at successive intervals / 
doupdate(cnt); 
cal _neuronopO; 

ENRGYN = nnw_energy(SIZE,k = 2); 
if(cnt > 1-00)- 
if(fabs(ENRGYO - ENRGYN) < DELTAZT) break; 
ENRGYO = ENRGYN; 
cnt+ +; 

#if STAT ON FILE 
fl = fopen("OPFILE", "w"); 
fprintf(fl,"SOURCE %d -- DESTINATION %d\n\n",SCE, DST); 
for(i = 0; i < SIZE;i++) 

for(j =0; j<  SIZE; j++) 
{ 

if(j == 0) fprintf(fl, "\n"); 
fprintf(f1," %6.4f ",nnvec[i][ii); 

} 
fclose(f1); 
#endif 

f* Determining the route information 	*/ 
findroute(i =2); 
pathpref(i =2); 

return; 
{ 

/******************************************************/ 
/* Function generates a random number between 0 and 1 */ /*********************k***********************x*******/ 

float genrand(int S,float ded) 
{ 
int i,k; 
float j,temp; 

switch(S) 
{ 



case 1 	: 
j = drand48(); 
if(ded > 0) 
while(j > 0) 

j =j - ded; 
j = j+ ded; 
return j; 

case 2 : 
ran[O] = 	171 * (ran[0] / 177) - 2 *(ran[O] % 177); 
if( ran[0] 	< 0 ) 	ran[O] = ran[0] + 30269; 
ran[l] 	= 	172 * (ran[l] / 176) - 35 * (ran[1] % 	176): 
if ( ran[1] 	< 	0 ) ran[1] =.ran[1] + 30307; 
ran[2] = 170 * (ran[2}/ 178) - 63 * (ran[2] % 178); 
if(ran[2] < 0) ran[2] = ran[2] + 30323; 
temp = ran[0]t30269.0 + ran[ 11/30307.0  + ran[2j/30323.0; 
k = temp; 
temp = temp - k 
if( ded > 0) 

while(temp > 0) 
temp = temp - ded: 

if (temp < 0) temp += ded: 
return temp; 

return: 
} 

/*******************************************************x/ 
/* Function initializes the NN configuration 	 */ /*******************************************************/ 

void initnnw(int S , int D) 
{ 
int i,j,k; 
float xk; 

i = 0; 
while(i < SIZE) 
{ 

if(i == 0 II  i == SIZE -1) 
{ 

for(j = 0; j < SIZE; j++) 
nnvec[j][i] = 0; 

switch(i) 
{ 
case 0 

nnvec[S-1][i] = 1.0; 
break; 

default : 
nnvec[D-1 ] [i] = 1.0; 
break; 

} 
} 
else 
{ 



xk- = 0. i * Y0; 
for(j = 0; j < SIZE ; j ++) 

nnvec[j][i] = 1/(float)SIZE + genrand(k=2,xk); 
} 
i++; 

xk = 0; 
for(i = 0; i < SIZE ; i++) 

for(j =1;j < SIZE-I; j++) 
xk = xk + nnvec[i][j]; 

xk=xk- SIZE +1; 
xk = xk / ((SIZE - 1) *SIZE); 
for(i = 0; i < SIZE ; i++) 

for( = l; j < SIZE-l; j++) 
{ 

if(nnvec[i] [j] > 0.05) nnvecl i j [ j) -= xk; 
if(nnvec[i][j] < 0) nnvec[i][j] += xk; 

} 
return; 
} 

void cal_neuronopO 

/* Function computes the neuron ouputs 	*/ 
/* 	correspondi-ng -to input activations 	*/ 
lnt i,j; 	 - 
float temp,val; 

i = 0; 
for(i = 0; i < SIZE ; i++) 

for(j = 1; j < SIZE -1 ; j++) 
{ 

val = coeff[i][j] 
val = val/Y0; 
temp = 	I + ftanh(val) 
nnvec[i][j] = temp / 2; 

} 
return; 
} 

float icval(int i,int j,int m,int n) 
{ 
/* Calculating the inter connection value between ij'th and */ 
/* mn'th neurons. 	 */ 

float temp; 

temp = -DC; 
if(n == j+1) temp -= A 
if(n == j -1) temp -= A 
if(j==n &&i!=m) 
return temp; 
} 

* c[i][m]; 
* c[i][In]; 
temp -= B * 1.0; 



float calk(int i , int j) 
{ 
/* Function computes the net input activation 	*/ 
int m,n; 
float temp,k; 

k=0; 
for(m = 0; m < SIZE ; in++) 

for(n = 0; n < SIZE; n++) 
{ 

temp = icval(i,j,m,n); 
k += temp * nnvectm][n]; 

} 
return k; 
} 

/****************************************************/ 
/* Function computes neuron outputs at succesive 

time instants  
/***************************************************V 

void doupdate(int cnt ) 
{ 
int i,j,k; 
float cl; 

for(i = 0; i < SIZE ; i++) 
for(j = 1; j < SIZE-1; j++) 
{ 

cl = calk(i,j); 
cl += DC * NN; 
coeff[i][}] = coeff[i][j] * (1 -DT) + DT * c 1; 

} 
return; 
] 

void initcoeff()  
{ 
/* Function compputes the initial input activations of neurons */ 
int i,j; 
float temp,lambda; 

lambda = 2 / Y0; 
for(i = 0; 1 < SIZE ; i++) 

f o r (j = 1; j < SIZE -I ; j++)  
{ 

temp = (1 - nnvec[i][j])/ nnvec[i][j] 
temp = flog(temp); 
temp =(-1 / lambda) * temp 
coeff[i][j] = temp; 

} 
return; 
} 



void create_cstmatO 
{ 
J Function computes the delay information 	*/ 

int i,j; 

/* Cost is ir- relation to the capacity of the link */ 
for(i=0;i <SIZE;i++) 

for(j=0; j<SIZE ;++j) 
if(i != j) 
if(C[i][j] = = 0) c[i][j] = 20; 
else 
switch(C[ij[j]) { 

case 128 : c[i][j] = 2.2; 
break; 

case 	64 : c[i]lj] = 2.4; 
break; 

case 	32 : c[i][j] = 2.6: 
break; 

case 	16 : c[i] jj] = 2.8; 
break; 

} 
return; 
} 

void fres_displayO 
{ 
/* Function stores route(s) information in file */ 
int i,j,cnt; 
FILE *resf; 

resf = fopen("RESU", "a"); 
fprintf(resf,"\nSOURCE : %d DESTINATION : %d\n",SCE,DST); 
fprintf(resf,"NO. OF ROUTES : % 3d\n" ,result. RTCNT); 
fprintf(resf, "\tROUTE  
fprintf(resf, " NO. OF LINKS "); 
fprintf(resf, " COST 	"); 
fprintf(resf," PROBABILITY \n "); 

i = 0; 
while(i < result.RTCNT) 
] 

cnt=0; 
ford = 0; j < result.RTLINKS[i];j++) 
{ cnt+ = 4; 
fprintf(resf," %2d 	",result.ROUTE[iI[j] + 	1); 

for(j = 0; j < 38-cnt; j + +.) 
fprintf(resf," "); 

" fprintf(resf, ",result. %3d 	 RTLINKS[i] -1); 
fprintf(resf, " %7.4f 	",result. RTCOST[i]); 
fprintf(resf," %7.4f\n",result.PREF[i]); 
i++; 

f 
fprintf(resf," ITERATION COUNT : %5d\n",ICNT); 



fflush(resf); 
fclose(resf); 
return; 
} 

/****************************************************************/ 
This function implements the Mustafa-Faouzi model 	*/ 

/* Inputs : Capacity matrix, Source and Destination Nodes */ 
/* outputs : status of NN at _different intervals during 	*/ 
/* 	convergence, route(s), cost of the route(s) 	*/ /***************************************** ***-******-*:***********/ 

void rtfinder() 
{ 
int i,j,k,ch,x,cnt,ds,sc; 
float l,temp,ic[MAX][MAX]; 
FILE *flpt; 

#if STAT ON FILE 
flpt =. fopen("OPFILE", "w"); 
#endif 

#if SIGCTCH 
signal(SIGINT,sigcatch_intr); 
signal(SIGQUIT,sigcatch_intr); 
signal (SIGH UP, s igcatch_iiitr); 

#endif 

/* Initializing the state of Neural Network */ 

for(i =0; i < SIZE; i++) 
for(j =0; j< SIZE; j++) 
if(i!=j)no[i][j] = 1/(float)(SIZE * 10) + genrand(k=2,1=0.0002); 

/* Calculating the corresponding input activations of Neurons */ 
/* of the Neural Network 

	 */ 
temp = LAMDA; 
for(i =0; i < SIZE; i++) 

for(j =0; j<  SIZE; j++) 
if(i ! = j) ni[i][j] = -(1/temp) * flog((1 - no[i][j])/no[il[jl); 

ch = 1; 
cnt = 0; 
while(ch) 
{ 

/* Calculating the incremental changes in the input 	*1 
/* activations of Neurons of Neural-  Network using 
/* Relaxation method 

for(i = 0; i < SIZE; i++) 
for(j =0; j < SIZE; j++) 
if(i != j) 
{ 

I =• ic[i][j] = iccal(i,j); 
ni[i][jl = (ni[i][j] + I *IT) / (1 + IT); 



/* Calculating the corresponding output values of neurons 	*i 
/* of Neurons for the input activations calculated above 	*/ 

for(i =0; i < SIZE; i++) 
for(j =0; j < SIZE;. j++) 
if(i != j) 
{ 

temp = 0; 
dno[j][i] = no[j][i]; 
temp = fexp( - LAMDA * ni[j][i]); 
no[j][i] = 1/(1+temp); 
dno[j][i] -= no[j][i]; 

if(cnt % 2000 = = 0) 
i 

#if STAT ON FILE 
fprintf(flpt,"\nfTERATION NUMBER %d \n",cnt); 
for (i = 0; i < SIZE; i++) 

for(j = 0; j < SIZE; j++) 
{ 

if(j == 0) fprintf(flpt, "\n"); 
fprintf(flpt," %6.4f ",no[i][j]); 

} 
#endif 

} 
x = 1; 
for(i =0: i < SIZE && x ; i++) 

for(j =0; j < SIZE && x ; j++) 
if(i != j) 

if(dno[i][j] < -DELTAV) x =0; 

if(x ! =0 I cnt > 15000) 
{ 

convrg_details(cut); 
ch = 0; 

} 
cnt+ + ; 

#if STAT ON FILE 
fclose(flpt); 

#endif 

findpathO; 
pathpref(i = 3); 

return; 
} 



/*Function Input : Neuron location in the array 	 *1 
/* 	Output : Calculates the net activation of neuron 	*/ 
/****************************************************************/ 

float iccal(int x, int i) 
{ 
int y,j; 
float ic,t,il,i2,i3,i4,i5; 

it =0; 
if(x == .DST-I 	i == SCE-1) 
else 	it = -MUI * 0.5 * cost]x]Iil; 

i2 = 0; 
if(x == DST-1 	i == SCE-1) 
else 	if(cost[x][i] <= 0) 

i2 = -MU2 * 0.5; 

t = 0; 
i3 = 0; 
for(j =0; j< SIZE; j++) 
if(x != j) t += no[x][j] - no[j]Ix]; 
i3 = -MU3 * t; 
t = 0; 
for(j =0; j < SIZE; j++) 
if(j != i) t += no[i][j] - no[j][i]; 
i3+= MU3*t; 

i4 = i5 = 0; 
i4 = -MU4 * 0.5 * (1 -2 * no[x][i]); 

if(x == DST-1 && i == SCE -1) 
i5 = MU5 * 0.5; 

ic = it+i2+i3+i4+i5; 
return ic; 
} 

/*********************************************** ****~ 

/* Input_ is Capacity Matrix and creates Cost matrix */ 
/************************************************** *1 

void create_costmat() 
{ 
int i,j; 

/* Cost is in relation to the capacity of the link */ 
for(i=0;i <SIZE;i++) 

for(j=0; j<SIZE ;++j) 
if(C[i][j] == 0) cost[i][j] = 0; 
else 
switch(C[i][j]) { 

case 128 : cost[i][j] = 0.2; 
break; 



case 	64 : cost[i][j] = 0.4; 
break; 

case 	32 : cost[i][ji = 0.6; 
break; 

case 	16 : cost[i][j] = 0.8; 
break; 

default 
} 

return; 
} 

/* Function will be activated when there is an interrupt signal 	*/ 
I* during the convergence of the neural network 	 *i 
/~e~kxe>k*~k*~k*~k~k%S~X~~K~k%k~k~k~k=k~*~K***=k~k~k~k*~*~kX~k~k~k~%~k~k5k*X~k~k~k~k*x*xitsgxehexxxxic3erxxacl 

void sigcatch_intr() 
{ 

WINDOW *win; 
int i; 

initscrO; 
win = newwin(16,60,2,10); 
wattrset(win, A_ALTCHARSET); 
box(win,ACS VLINE,ACS HLINE); 

mvwprintw(win,4, i0," INTERRUPT RECEIVED "); 
findpathO; 

/* 	Checks the RTCNT to determine whether present 	*! 
/* 	neural network status gives any valid route 	*/ 

if(result.RTCNT <= 0) 
{ 

mvwprintw(win,7, 10, "SORRY!!! NETWORK NOT CONVERGED"): 
wrefresh(win); 
sleep(2); 
endwinO; 
exit(0); 

} 
else 
{ 

mvwprintw(win,7,10, "SHOWING ROUTES"); 
wrefresh(win); 
sleep(2); 
endwinO; 
pathpref(i = 3); 
exit(1);' 

} 
} 



void convrg_details(int cnt) 
{ 
/* Function informs whether about convergence 
WINDOW *win; 

initscr(); 
win = newwin(10,60,5,10); 
wattrset(win, A ALTCHARSET); 
box(win,ACS VLINE,ACS_HLINE)-, 
mvwprintw(win,3,10, "CONVERGENCE AFTER 
mvwprintw(win,5,10, "STATUS OF NNW IS AS 
wrefresh(win); 
sleep(3); 
endwin0; 
} 

*/ 

ITERATION %d",cnt); 
FOLLOWS :-"); 

1* 	Function checks the validity of parameters, 	*/ 
/* 	suggests valid ranges of parameters 	 */ 
/*********************************************************/ 

void paracheck() 

WINDOW *win; 
float m1,m2,m3,m4,m5,cmax; 
int i,j; 
char ch; 

initscr0; 
win = newwin(20,60,2,10); 
wattrset(win,A ALTCHARSET); 
box(win,ACS VLINE,ACS HLINE); 

ml = MUI; 
m2 = MU2; 
m3 = MU3; 
mn4 = MU4; 
m5 = MU5; 

mvwprintw(win,2,10, "PARAMETERS :- 
mvwprintw(win,3,30, "MU2 : %f" ,m2); 
mvwprintw(win,4,30,"MU3 : %f",m3); 
mvwprintw(win,5,30,"MU4 : %f",m4); 
mvwprintw(win,6,30, "MU5 : %f" ,m5); 
mvwprintw(win,8,10, "CONDITIONS 
mvwprintw(win,9,10," 
mvwprintw(win,11,10,"MU5 = MU2"); 

MUI : %f",ml); 

SATISFIED/NOT"); 
(YIN) "); 

cmax = 0; 
for(i = 0; i < SIZE;i++) 

for(j =0; j<  SIZE; j + +) 
if(cost[i][jj > cmax) cmax = cost[i][j]; 

mvwprintw(win,13,10, "MU5 >> MUI * %f",cmax); 
mvwprintw(win,15,10,"2 * MU3 - MU4 > 0"); 
mvwprintw(win,17,10, "MU l < 2 * MU3/ %f ",cmax); 



if(m5 == m2) ch = 'Y.'; 
else ch = 'N'; 

mvwprintw(win,1 1, 47," %c",ch); 
if(m5 > 3 * ml * cmax) ch = 'Y':  

else ch = 'N';  
mvwprintw(win,13. 47," %c",ch), 
if(2 *m'3 -- m4 > 0)ch = 'Y'; 

else ch = 'N'; 
mvwprintw(win,15, 47," %c" ,ch); 
if(m 1 < 2 * m3/cmax) ch = 'Y';  

else ch = 'N'; 
mvwprintw(win,17, 47," %c",ch); 

wrefresh(win); 
sleep(5); 
wgetclh (win) ; 
endwin(); 
return; 
} 

/***********>k*>k***************** c******>k*** ****xxae**** ***** x/ 
/* Function extracts the route(s) from converged M-F model "/ 
f **************************hc>kx>;cxa<**************ic*****x*******1 

void findpath() 

int *ls[MAX]; 	- 
int lent,elcnt,ch,plcnt,pele,proc; 
int i,j,k,l,m,n,y,ins; 
int RTE[RTMAX],lknt,crt; 

lcnt=0; 
ls[O] _ (int *)malloc(sizeof(int) * RTMAX); 
for(i = 0; i < RTMAX; i++) 

ls[lcntj[i] = -1; 
ls[O][0] = SCE -1; 
lcnt = 1; 
ch = 1; 
/* Picking out the neuron outputs related to routes "% 
while(ch) 
{ 

ls[lcnt] = (int *)malloc(sizeof(int) * RTMAX); 
for(i = 0; i < RTMAX; i++) 

-1s[lcnt1[i] = -1; 
plcnt = 0; 
elent = 0; 
while((y = ls[lcnt-I][plcnt++]) > = 0) 
{ 

for(i = 0; i < SIZE; i++) 
if(no[y][i] > 0.15) 

ins = 1; 
ford = 0; j < elcnt; j++)  
if(ls[lcnt][j] = = i) ins = 0; 



if(ins != 0) ls[lcnt][elcnt++] = i; 
} 

for(i = 0; i < elcnt ; i++)  
if(ls[lcnt][i] == DST-1) ch = 0; 

lcnt++; 

do 
{ 
/* Generating combinations 	 */ 

RTE[0] = SCE; 
lknt = 1; 

• pele. = SCE - 1; 
ls[0][01 + = HVAL; 
for(i = 1; i < lcnt ; i±+)  
{ 

• ford = 0; j < RTMAX; j++) 
if(ls[i][j] > = 0 && ls[i][j] < HVAL) 

{ 	if(cost[pele][is i ] l > 0) 
{ 

RTE[lknt++] = ls[i][j] + 1; 
pele = ls[i][j]; 
ls[i][j] + = HVAL; 
break; 

} 
else ls[i][j] += HVAL; 

} 
} 
crt = 0; 
tor(i = 0; i <lknt;i++) 
{ 

j = RTE[i]; 
if(} == DST ) crt = 1; 

} 
proc = 1; 
for(i = lent -1; i > = 0 && proc ; i--) 

for(j =0; j<RTMAX && proc ; j++) 
if(ls[i][j] > = 0 && ls[i][j] < HVAL) 
{ 

for( m = i+1; in < lent; m++) 
for(n = 0; n < RTMAX; n++) 
if(ls[m][n] > = HVAL) ls[m][n] - HVAL; 
for(m = i -1; m > =0; m--) 

for(n = RTMAX -1; n > = 0; n--) 
if(ls[m][n] > = HVAL) 
{ 

ls[m][n] -= HVAL; 
break; 

} 
proc = 0; 

} 
if(crt == 1) 
{ 



/* Result is accumulated if combination is a valid route - 

result. ROUTE[result. RTCNT] _ (int *)mailoc(sizeof(int)*(lknt)).  
for(i = 0; i < lknt;i++) 

result. ROUTE[result. RTC NT I [ i [ = RTE[ i J - 1; 
result. RTLINKS [result. RTCNT] = lknt; 
result. RTVAL[result. RTCNT] _ (float *)rnalloc(sizeof(float)*(lknt)); 
i = 0; 
while(i < lknt - 1) 
{ 

in = RTE[i] -1; 
n = RTE[++i] -1; 
result. RTVAL[result.RTCNT]Ii-II = no[m][nl; 

} 
(result. RTCNT) + +; 
} 

elcnt = 0; 
for(i =0;i < lent; i++) 

for(j =0;j< RTMAX; j + + ) 
if(ls[i][j] > 0 && ls[i][j] < HVAL) 
elcnt++; 

} 
while(elcnt != 0); 
return; 
} 

/**********************************************x***********=::*/ 
/* Function picks the route(s) from converged L-C model 	*/ 

void .findroutes() 
{ 
int *path; 
int prev,pres; 
int i,j,k,proc,m.n,cnt,RTE[RTMAX]; 

do 
{ 

for(i =0; i <= lks;i++) 
{ 

for(j =0; j<  SIZE; j++) 
if(vec[i]->ele[j] > 0 && vec[i]->ele[j] < HVAL) 
{ 

if(vec[i]->ele[j] > 0.25) 
{ 

RTE[i] = j; 
vec[i]-> ele[j] += HVAL; 
j = SIZE; 

} 
} 

} 
proc = I; 
for(i = lks ; i > 0 && proc ; i--) 

for(j =0; j < SIZE && proc ; j++) 



if(vec[i]->ele[j] > 0 && vec[i]->ele[j] < HVAL) 
{ 

if(vec[i]- > ele[j J > 0.25) 
{ 
for(m = 1+1; m <= lks;m++) 

for(n=0; n< SIZE;n++) 
if(vec[m]->ele[n] > HVAL)vec[m]->ele[nj -= 

for(m = i-1; m >= 0;m--) 
{ 

cnt =0 
for(n =0; n<SIZE; n++) 
if(vec[rn]->ele[ni > HHVAL) cnt++; 
if(cnt > 1) 
{ 
for(n= SIZE -1; n> =0 ;- n--) 
if(vec[m]->ele[n] > HVAL) 
{ 

vec[ m l- > ele[ n J -= HVAL; 
n = -l; 

HVAL; 

} 
} 
else 
for(n=0; n< SIZE;n++) 
if(vec[m]->ele[ii] > HVAL)vec[ ml-  >ele[nJ -= HVAL; 

} 
proc = 0; 
} 

} 
result. ROUTE[ result.RTCNTI = (int *)malloc(sizeof(int)*(Iks+ 1)); 
for(i = 0; i <= lks;i++) 

result.ROUTE[result.RTCNT][i] = RTE[i] 
result.RTLINKS[result.RTCNT] = Iks + 1; 
result. RTVAL[result. RTCNTj _ (float *)malloc(sizeof(float)*(lks +1)); 
i = 0; 
while(i < Iks ) 
{ 

in = RTE[i] 
if(vec[i]- > ele[m] > HVAL) 
result. RTVAL[result. RTCNT][ i] 
else 
result. RTVAL[result. RTCNT][ i] 
i++; 

} 
(result. RTCNT) + +; 

= vec[i]->ele[ml - HVAL; 

= vec[i]- > ele[ m I 

cnt =0; 
for(i =0; i<=  Iks ; i++) 

for(j =0; j< SIZE; j++) 
if(vec[i]->ele[j] > 0 && vec[i]->ele[j] < HVAL) 

if(vec[i]->ele[j] > 0.25) cnt++; 
}while(cnt != 0); 



for(i =0; i<=  Iks ; i++) 
for(j =0; j< SIZE; j++) 
if(vec[i]->ele[j] > HVAL) vec[i]->e1e[j] -= HVAL; 

return; 
} 

/* Function determines the route from converged Z-T model 	% 
/*************************************** ******************/ 

void findroute() 
{ 
int *path; 
int prev,pres; 
int i,j,RTE[RTMAX],Iknt; 

path, = (i~it *)malloc(sizeof(int) * SIZE); 
for(j = 0; j < SIZE; j++) 
{ 

path[j] = 0; 
for(i =0; i < SIZE;i++) 
if(nnvec[i][j] > 0.45) path[j] = 1+1; 

} 

i =0; 
prey = 0; 
pres = path[i]; 
lknt = 0; 
while(i < SIZE) 
{ 

if(prev ! = pres) 
RTE[lknt+ + ] = pres - I; 

prey = pres; 
pres -= path[++i]; 

} 

result. ROUTE[result.RTCNT] = (int *)malloc(sizeof(int) * lknt); 
for(i = 0; i <' lknt;i++) 

result. ROUTE[result. RTCNT] Ii] = RTE[i] 
result. RTLI NKS[result. RTCNT] = lknt; 
result. RTVAL[result. RTCNT] = (float *)malloc(sizeof(float) ,* lknt); 
i = 0; 
while(i < lknt ) 
{ 

result. RTVAL[result.RTCNT][i] = 1; 
i++; 

(result. RTCNT) + +; 

return; 
} 



/************************yc*******************XC*ia*****:c***/ 
/* Function computes the energy of the NN model 	*/ /********************************************************/ 

float nnw_energy(int lkcnt, jilt cse) 
{ 
float E,temp,eI,e2,e3,e4,e5; 
float *PA,templ,temp2; 
int i,j,k,x; 

PA = (float *)malloc(sizeof(float) * MAX); 
switch(cse) 
{ 

case 1 : 
el = 0; 
for(j =0; j<  lkcnt;j++) 
{ 

matmult(w,vec[j + 1]->  ele, PA, SIZE,SIZE, i = 1); 
for(i =0; i< SIZE; i++) 
el = el + vec[j] ->ele[i] * PA[i]; 

} 
el *= 0.5; 

e2 = 0; 
for(j = 1; j < Ikcnt ; j++) 
{ 

for(i = 0; i < SIZE; i++) 
temp = temp + vec[j]- > elej i]; 
temp = temp -I;  
temp *= temp; 
e2 = e2 +ternp; 

} 
e2*= ALPHA *0.5; 

e3 = 0; 
for(j =0; j < =lkcnt ; j++) 
{ 

matmult(d,q,PA,SIZE,SIZE,1); 
for(i =0; i < SIZE; i++)  
e3 = e3 + vec[j]- > ele[i] * PA[i]; 

} 
e3 *= BETA; 

E = el + e2 + e3; 
free(PA); 
break; 

case 2: 
el =0; 
for(k =0; k < SIZE; k++) 

for(i =0; i < SIZE ; i++) 
for(j =0; j < SIZE; j++) 
el = el + nnvec[i][k] * c[i][j] * nnveclj]lk+ 1 1; 

el *=0.5*A; 



e2 = 0; 
for(k =0; k < SIZE ; k++) 

for(i =0; i < SIZE; i++)  
for(j=0; j < SIZE ; j++) 
e2 = e2 + nnvec[i][k] * nnvec[j][k]; 

e2*=0.5*B; 

e3 =0; 
for(i =0; i< SIZE; i++) 

for(j =0; j<  SIZE; j++) 
e3 = e3 + nnvec[i][j]; 

e3 -= SIZE; 
e3 *:= e3; 
e3 *= 0.5 * e3 

E=el + e2 + e3 
break; 

case 3 : 
el =0; 
for(x =0; x < SIZE; x++) 

for(i =0; i < SIZE; i++) 
if(x ! = SCE 	1 i ! = DST) 
if(x != i) el += cost[x][i] * no[x][i]; 

el *= MUI * 0.5; 

e2 =0; 
for(x =0; x < SIZE; x++) 

for(i =0; i < SIZE; i++) 
if(x ! = SCE 1 1 i ! = DST) 

if(x != i) 
if(cost[x][i] > 0) e2 += no[x][i]; 

e2 *= MU2 * 0.5; 

e3 =0; 
for(x =0; x < SIZE; x++) 

for(i =0; i < SIZE; i++) 
{ 

if(i != x) 
{ 

tempt += no[x][i]; 
temp2 += no[i][x]; 

} 
temp 1 = temp 1 - temp2; 
e3 += tempi * tempt; 
} 

e3 *=- MU3 * 0.5; 

e4 =0; 
for(i =0; i < SIZE; i++) 

for(x =0; x < SIZE; x++) 
if(x != i) e4 += no[x][i] * (i - no[x][i]); 

e4 *= MU4 * 0.5; 



e5 = MU5 * 0.5 * (1 - no[SCE][DST]); 

E = e 1 + e2 + e3 + e4 + e5 ; 
break; 

} 
return E; 
I 

float *matmult(float a[][MAX],float b[MAX],float *j  jut S,int R,int T) 
{ 
/* Function performs the Multiplication of vector and matrix */ 
int i,j,k; 

for(i=O; i <S; i++) 
for(j=0; j<T; j++) 
{ 

ci[i] = 0; 
for(k =0; k < R; k++) 

ci[i] = ci[i] + aliliki * blk] 
} 

return ci, 
} 

/********************************************=*x:******** 

/* Function computes preferences of route(s),their costs */ 

void pathpref(int cse) 
{ 
float total[RTMAX],ctotal; 
int i,j,ond,nnd; 
WINDOW *win; 

ctotal = 0; 
for(i = 0; i < result.RTCNT; i++) 
{ 

total[i] = 1; 
j = 0; 

while( j < result.RTLINKS[i] - 1) 
total[i] *= result.RTVAL[i][j++]; 

ctotal += total[i]; 
} 

for(i = 0; i < result.RTCNT; i++) 
result.PREF[i] = total[i] / ctotal; 

for(i = -0; i < result.RTCNT;i++) 
{ 

j = 0; 
result. RTCOST[i] = 0; 
while(j < result.RTLINKS[i] - 1) 
{ 

and = result.ROUTE[i][j] 
and = result. ROUTE[]][++j] 



switch(cse) 
{ 
case I 

result. RTCOST[i] + = w[ond][nnd]; 
break; 

case 2 : 
• result.RTCOST[i] += (c[ond][nndj - 2); 

break; 
case 3 : 

result. RTCOST[i] + = cost[ond][nnd]; 
break; 



APPENDIX -II 

A2.1 PARAMETER CALCULATION IN LEE-CHANG MODEL 

The neural network model with the energy function (3.1) has a stable 

solution. All the elements of matrix W in E are positive clearly first term 

is positive. Second term is summation of square terms, it is certainly 

positive. Therefore energy function E is bounded below by 0. The change in 

energy can be written as 

A 
VE = E(U(i+ l)) - E(U(i)) 

h 

_ I 	I U~ AUD I < 0 	 (A2.1) 

j1 

Therefore the state changes result in a decrease in the value of the 

energy function and also energy function is bounded below. Hence the system 

has 	a stable 	solution. 	To 	improve 	the convergence speed, parameters should 

be chosen carefully. 

There are three terms in oUk of (3.3). The third term of oUk is always 

positive, for the assumption that the sum of all elements in vector Uk is 

close to 1 but cannot be greater than I. Let o be the minimum value of Eiµk 

since Eµk < 1 



agen 	uk =1 	= aqn 	uk -1 I <- aqn (l-e) 	 (A2.2) 
i 	I 	i 

If (e~1), in order to keep the values of Uk within range, i.e. close to 1, 

ad < µ/(1-6)n 	 (A2.3) 

Where pis a positive constant. If the value of µ is small, then the 

size of correction step is small so that the speed of convergence is slow. 

On the other hand, if µ is large then the convergence speed will be fast. 

However if the value is too large i.e. the correction step is too large 

then it has a high probability that Uk to go out of range. Typical range of 

µ is [0.2,1). 

The first two term of AUk are always negative. The bounds of the two 

terms are same. They can be written as 

1 	1 	1 2 ewmin a 2 e i s a 2 'max (A2.4) 

where wmin and wmax are minimal and maximal elements in W, and iii is the 

element in column vector WUk-I or WUk+l' Since elements in Auk cannot be 

all positive or negative each element of must lie between the upper and 

lower bounds of (A2.4). Hence the following inequality 

e wmin ` a' (1-e) a Wmax 	 (A2.5) 

The constraint (A2.3) and (A2.5) can be used as upper and Iower bounds 

for parameters a and w. 



A2.2 PARAMETER CALCULATION IN MUSTAFA-FAOUZI MODEL. 

General guidelines to select the coefficients of energy function so 

that neural dynamics will converge to a valid path which is also of minimum 

length are given here for Mustafa-Faouzi model. 

The shape of the energy surface is tailored by the memory terms 

T(3.9) and analog prompt terms 'X3  10).  The memory and prompt terms 

create a set of finite local energy attractors, (valid basins of 

attraction) with equal depth (E=0) each corresponding to a feasible path. 

The role of linear µl  cost term is then to provide a negative bias that 

enlarges the depth of these valid basins of attraction by varying amounts, 

depending on the corresponding path cost. Therefore from (3.6) the global 

minimum corresponds to that valid basin of attraction which complies with 

the shortest path requirement. The ability to reshape the energy landscape 

through the link cost bias terms, while keeping the interactions among 

neurons relatively simple (since memory terms do not incorporate the link 

costs) is the salient feature of this neural network model. 

The quadratic energy function is characterized by the presence of 

valleys, where among all points forming a valley some are low points 

corresponding to a local minimal state. To ensure that every valley has 

only one low point and hence to provide a graceful descent along the energy 

surface, we require. 



a 	> 0 
av 

xi 

This corresponds to having 2113 - 114 > 0 

The 	11.5 term should 	be relatively 	large 	so that from the 	early 	stages 

of the 	neural computation a unity 	output 	for 	the 	neuron at 	location 	(d,$) 

will 	be 	enforced and 	hence the 	construction 	of the 	shortest 	path 	will 	be 

initiated. 	In the initial 	state of 	the 	neural network, with 	all 	neuron 

inputs 	being set to 	zero, for 	the 	neuron 	at location (d,$), 	the 	input 

activation increases at a rate 

dux i 
R 1 	0 1 = -- t I (x,i) = (d,$), intial state = -T >  

Among the remaining neurons those corresponding to non existing arcs 

will have their input decreasing at a rate 

du 	 ___112 
R2 	(x,i) ~ (d,$), intial state 

While those corresponding to existing arcs will have their inputs 

decreasing at a rate proportional to their corresponding link costs, namely 

113 

R3=-2-•w. 



Therefore, in order to speed up the construction of the valid path 

µ5. >> r  ' (wxi)max is required. 

An 	equally important requirement 	is to 	prevent 	nonexisting arc from 

being part of the solution, it is reasonable to require R l  =R2  or  

From 	(3.4) 	it is clear, that by 	increasing the µl 	term (with remaining 

µis 	being 	unchanged) shortest 	path 	algorithm 	gradually . refines 	the 	quality 

of the 	solution, 	hence minimizing the chance of getting the neural 	network 

state 	trapped 	in 	an "attractive" 	unfavorable 	local 	minimum. 	However 	µl  

cannot 	be 	increased 	indefinitely, since 	once 	it 	exceeds 	a 	threshold 	value, 

the 	neural 	algorithm starts 	to 	diverge 	and 	gives 	invalid 	solutions, 	as 	the 

effect 	of 	µ3 	energy term 	will 	be 	shaded 	by 	stiff 	cost 	requirement. 

Therefore, 	p, 	should be 	maximized _ at 	the 	same 	time 	solution 	must be 

obtained. 	Assuming that for a valid neural output one neuron corresponding 

to an existing 	arc, 	changes 	output from 	I 	to 0. 	In this case, 	the energy 

term 	associated 	with the 	weighting 	coefficient 	113 	will 	increase 	by 	µ3, 

while the energy term associated with µl  will decrease by a maximum value 

of (µ1/2). 	(wxi)max Hence 	for 	the net 	to 	reach 	a 	valid 	path 	µ l 	should 

satisfy 

µ 
11< 2 3 

1 	(w.) 



APPENDIX - III 

Incorporating reliability of nodes and dependency between nodes - in 

neural network algorithm can be done as follows : 

The failure . probability of every node in the network can be 

represented by an nx 1 vector Q. 

Q= [g1q2.....qn] T 

where, q i represents the probability of failure of node i, 

The dependency between any two nodes can be represented by any number 

d (O5d~1), where d=1 indicates complete dependency between nodes. The 

dependency relationships • of entire communication network can be represented 

by an nxn symmetric matrix D, where each entry d ij stands for probability 

of dependence of node j on node i. Assuming the node failures are mutually 

dependent, the term of the energy function that includes the uncertainties 

of each node can be represented as follows 
h+1 

E3= 	UJ DQ 	 (A3.1) 
j=1 

Now the resultant energy function will be the summation of (3. 1) and 

(A3.1). The change in vector Uk, AUk now becomes. 

AUk = -a(l/2)[WUk-1 + WUk+I] - a(3DQ + azen(l - ) Uk) (A3.2) 

The second condition for calculating the lower and upper bounds of 

parameters becomes 

(ewmin + (3gmin) ` T(1 - e) a(wmax + ft(n-1)dgmax + rgmax) (A3.3) 



APPENDIX - IV 

The routing algorithm minimizing expected delay usually assumes some 

knowledge of overall traffic pattern. 

Expected delay across a link is usually considered [M/M/1 queueing 

systems] as a function of capacity C of the link and the actual traffic 

aid on the link. Some -of -the functions [11 are 

* 	Fl (a , Cif) =  

p = (ai]/Cif) 

The loss function is proportional to the average delay per message 

across a link, when the message arrival rate and required transmission time 

can be represented as poisson [exponential distribution] processes. 

When Kleinrock independence approximation [11] is used, the sums of 

delay across all links will be assumed proportional to the sum of loss over 

whole network. 

* 	F2(ai~, Cif ) = Fo + p exp(p) 

where Fo indicates transmission time over the link. 

Here the loss increases exponentially as the traffic increases. 
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