INTERACTIVE SIMULATOR FOR OUTAGE STUDIES

A DISSERTATION

submitted in partial fulfilment of the requirements for the award of the degree

of

MASTER OF ENGINEERING

in

ELECTRICAL ENGINEERING

(System Engineering & Operation Research)

By

AMIT BHARGAVA

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247667 (INDIA)

April, 1988

CANDIDATE'S DECLERATION

I hereby, certify that the work presented in the dissertation INTERACTIVE SIMULATOR FOR OUTAGE STUDIES in partial fulfilment of requirements for the award of the degree of MASTER OF ENGINEERING in ELECTRICAL ENGINEERING AND OPERATION RESEARCH. submitted in Electrical Engineering Department, University of Roorkee, Roorkee (India), is an authentic record of my own work carried out for a period of about six months from August 1987 to March 1988 under supervision of Dr. J.D. Sharma, Professor, Electrical Engineering Department, Universith of Roorkee and Mr. A.D. Pandey. Reader. Earthquake Engineering Department, University of Roorkee, Roorkee.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

DATED: 6th April 1988

This is to certify that the above statement made by the candidate is correct and best of our knowledge.

DEPARTMENT, UNIVERSITY OF ROORKEE,

ROORKEE - 247 667, INDIA

SHARMA)

TRICAL ENGINEERING

DEPARTMENT, UNIVERSITY OF ROORKEE, PROFUEE _ 247 667. INDIA.

ABSTRACT

Interactive simulator for outage studies

Outage simulation is performed for accessing the security of power system which in turn can be used in operation and planning studies. In outage simulation, power system steady state performance is studied under various contingency conditions.

An effort is made in this work to develop an interactive outage simulator for simulating the generator and line outages in power system. This simulator provides graphical output and screen presented, menu driven, program and data control. For load flow studies fast decoupled method is used. The network sparcity is also exploited in data storage and calculations. This simulator is very flexible and data base modifications and restoration are very easy.

ACKNOWL EDGEMENT

Author express profound gratitude to Dr. J.D. Sharma, Reader in Electrical Engineering, University of Roorkee, Roorkee and Mr. A.D. Pandey, Reader in Earthquake Engineering Department, University of Roorkee, Roorkee, for their constant encouragement and valuable guidance.

Author wishes to thank his friends for their encouragement and company.

CONTENTS

1.		Introduction	1
2.		Load flow studies	
	2.1	Introduction	6
	2.2	Fast decoupled method	.7
	2.3	Method of finding inverse of	
		matrices (B') and (B")	13
	2.4	Reactive limit check on Q	
		limited bus	18
	2.5	Voltane limit check on	
		voltage limited buses	19
3.		Outage studies	
	3.1	Introduction	20
	3.2	Line outage	21
	3 • 3	Computation of sensivity	
		matrix	27
	3.4	Multiple branch outage	
		•imulation	28
-	3.5	Simulation of single line	31
		outages	

4.		Graphic Implementation	
	4.1	System and software package	33
	4.2	GRAPH - X defined subroutines	36
	4.3	Graphic display of outages	42
5.		Structure of mackage	
	5.1	Objective	49
	5.2	Main features	49
	5.3	Structure of the package	50
	5.4	Variables used in the package	64
	5.5	Input structure	74
A PPENDICES			
A .1		Tree for subroutines called	82
		in the outage studies	
A.2		Data and results	
	A.2.1	Five bus system	86
	A .2.2.	INEE - 14 bus system	94
	A.2.3	IEEE - 118 bus system	98
A.3		Bibliography	112

CHAPTER-1

IN TRODUCTION

An important aspect of the design and operation of a power system network is to mentain system security.

A secure operating state of power system is defined as that state which is invulnerable to unacceptable system condition such as:

- Cascading outrges
- system sepration
- violation of tages

 violation of tages

 violation of tages

 tages

 limits of line currents
- bus voltages, or system frequency
- loss of synchronization among cherators

Analysis of system security is a river, fin three major applications:

- Long term planning
- - evaluation of generator capa (t)
 requirements
 - evaluat on of interconnected system
 power c oh n e capabilities
 - evaluation of transmission system
 ader may

2. Planning of Operations

- Determination of spinning reserves requirements
- scheduling of hourly generation as well as interchange scheduling among neighboring systems
- out age dispatching of transmission lines and transformers for mathematice and system operation.

3. On line Operation

- Monitoring of operating state of the system
- contingency evaluation
- prediction of level or measure of system security
- providing in puts to security enhancement functions.

The security assessment process itself consists of two primary functions:

- 1. Security Monitoring: this consists of the processing of incoming data, correlating it with available data in order to reliably determine the operating state of the system at present or in near future.
- 2. Security Analysis: this consists of simulating the system under various contingency conditions in order to

CHAPTER-1

INTRODUCTION

An important aspect of the design and operation of a power system network is to mentain system security.

A secure operating state of power system is defined as that state which is invulnerable to unacceptable system condition such as:

- Cascading outages
- system sepration
- wide-spread out ages
- violation of emerging limits of line currents
- bus voltages, or system frequency
- loss of synchronization among generators

Analysis of system security is a primary function in three major applications:

- Long term planning
- evaluation of generator capacity requirements
 - evaluation of interconnected system
 power exchange capabilities
 - evaluation of transmission systemadequacy

2. Planning of Operations

- Determination of spinning reserves requirements
- scheduling of hourly generation as well as interchange scheduling among neighboring systems
- out age dispatching of transmission lines and transformers for mathematice and system operation.

3. On line Operation

- Monitoring of operating state of the system
- contingency evaluation
- prediction of level or measure of system security
- providing in puts to security enhancement functions.

The security assessment process itself consists of two primary functions:

- 1. Security Monitoring: this consists of the processing of incoming data, correlating it with available data in order to reliably determine the operating state of the system at present or in near future.
- 2. Security Analysis: this consists of simulating the system under various contingency conditions in order to

evaluate the measure of system security and provide inputs to enhancement strategies.

In either of the above functions undated mathematical models of the system are required. These models are classified as steady - state (static) and dynamic. And each class can be deterministic or stochastic.

System disturbances are classified into load and event distrubances. Locd disturbances consist of small random fluctuations superimposed on slowly varying trend changes. Event disturbances consist of:

- fault on transmission lines
- cascading events due to protective relay action following severe over loads or violation of operating limits
- generator out ages due to loss of synchronism or malfunction
- sudden and large load changes.

Transmission line outage are generally due to weather (lightning or storm), improper relaying, operator errors or accidents. Most such outages will effect single line. However multiple line outages may occur due to bus faults or accidents involving multiple line towns. Therefore they should not be disregarded entirely statistics on

transmission line may or may not be available in given utility. Generator outages statictics perhaps are more understood with data available on most systems.

The information available from outage studies ise essential for the continious evaluation of the current performance of a power system and for analysing the effectiveness of alternative plans for system expansion to meet increased load demand.

Effort has been made to develop interactive outage simulator for generator and line outages.

The input to be given either through cards or from an editor. A computer program is developed to input the data interacting Main advantages of inputing data through CRT are, firstly, field boundaries are not user's concern and secondly, only the essential part of data may be entered. The outages may be displayed selectively. During the program execution the user is asked if the display is needed. A hardcopy of display can be produced during program execution.

Selective data may be printed by defining 10 options. The option <u>is</u> hold true if <u>it is</u> assigned value unity. Without any options set bus data, line data,

system data, no of interaction and maximum mismatches are printed. Option 1 produces additional bus listing.

Option 2 produces additional branch listing. Option 4

writes active and reactive mismatches at each interation.

Option 5 prints variation in active power generated at swing bus. Option 6 is used for change in reactive power or voltage specified at buses with limits. Option 7 prints variation of inphase transformer and drop of power in outage. Option 8 prints the voilation of reactive limits.

Option 9 is used for printing bus loading, branch loading, shunt loses and series loses. Option 10 prints the redistribut. Active power on generator in outage.

The outage are simulated for three test systems, i. e., 5 bus system given by EL-Abiad, IEEE-14 system bus and IEEE 118 system bus. The results were displayed for the five bus system. The display included lines, buses, generator, bus voltages and bus angles. The overloaded line are blinked for some time.

CHAPTER - 2

LOAD FLOW STUDIES

2.1 INTRODUCTION

Lead flow calculation provide power flows and voltage for a specified power system subject to regulating capability of generators, condensors, and tap changing under loaded transformers as well as specified net inter chapter between individual operating systems. This information is escential for the continuous evaluation of the current performance of a power system and for analyzing the effectiveness of alternative plans for system expansion to meet increased load demand.

The load flow problem consists of the calculation of power flows and voltages of a network for a diffied terminal or but condition. Associated with a four quantities, the real, reactive power, magnitude and the hase angle. It is necone bus, called the slack bus to provide and reactive rower. The computing time per and reactive rower alinearly with the condition is roughly equal to seven Gauss siedel items in computing time.

CHAPTER - 2

LOAD FLOW STUDIES

2.1 INTRODUCTION

Load flow calculation provide power flows and voltage for a specified power system subject to regulating capability of generators, condensors, and tap changing under loaded transformers as well as specified net interchange between individual operating systems. This information is essential for the continuous effaluation of the current performance of a power system and for analyzing the effectiveness of alternative plans for system expansion to meet increased load demand.

The load flow problem consists of the calculation of power flows and voltages of a network for spedified terminal or bus condition. Associated with each bus are four quantities, the real, reactive power, the voltage magnitude and the phase angle. It is necessary to select one bus, called the slack bus to provide additional real and reactive power. The computing time per iteration of .exton's method varies linearly with the size of the problem. For typical large systems one Newton iteration is roughly equal to seven Gauss siedel iterations in computing time.

2.1.1 Decoupled Methods

An inherent characteristic of exy practical electric power transmission system operating in stendy state is the strong interdependence between active powers and bus voltage angles, and between reactive powers and voltage magnitude. This decoupling is achieved by solving separately P-Q and Q-V problems. Over all saving in total core required is 35 percent- 40percent and the saving in time is 10 percent - 20 percent less than for the formal Newton method.

2.2 Fast decoupled method:

This method utilises the symmetry in P-Q and Q-V problems. The speed of each iteration is $1\frac{1}{2}$ -times the Gauss seedel iterations or 1/5 in of a Newton's iteration. The method requires lesser space and take lesser amount of C.P.U. time than the Newton's method.

We make use of following variables:

 $E_{i}=V_{i}<\Theta_{i}$

Nodal Voltage

I;

0

Nodal injected current

 P_{ci}

Active power generated

P_{T.i}

Active 'power load

 $\mathtt{Q}_{\texttt{Gi}}$

 $Q_{\mathbf{f},\mathbf{i}}$

P_i=P_{Gi}-P_{Li}

Q_i=Q_{Gi}-Q_{Li}

 $S_i = P_i + jQ_i$

 $\Delta S_i = \Delta P_i + J \Delta Q_i$

ΔI;

 $\Delta E_i = \Delta V_i < \Delta Q_i$

Y

Reactive power generated

Reactive power load

Total Real power at a bus

Total Reactive power at a bus

Net nodal injected power

Power mismatch

Current mismatch

connection to nodal

voltage

Nodal admittance matrix

From nodal analysis or Kirchoff's law. The relationship between current and voltage at buses may be expressed as:

I = YE

Where $I = [I_i...I_n]^T$

and $E=[E_1...E_n]^T$

Y is a square complex matrix and n is the total number of nodes .

The power at a bus may be expressed as:

$$S_i = E_i I_i^* = P_i + Q_i$$
 (2.2.1)

or

$$S_{i}^{*} = E_{i} \sum_{j=1}^{n} Y_{ij} F_{j} = P_{j} - JQ_{j}$$
 (2.2.2)

Thus if 2n equation in 4n variables. Thus Y2n variables are fixed then the solution is unique. In other words. If two of the variables P_i , Q_i , E_i , Q_i be known at each bus the above equation be solved.

Buses are classified accordingly to the variables defined on it. One bus is chosen as the slack or reference bus at this bus the voltage is fixed and the bus supplies the power loses to the system.

Various types of buses considered in this simulation are:

(1) PQ buses P, and Q, are fixed	(1)	PQ buses	P, and (Q, are	fixed
----------------------------------	-----	----------	----------	--------	-------

- (2) PV buses $|E_i|$ and P_i are fixed
- (3) PQ V buses P_i and Q_i are fixed and there are limits on the $|E_i|$ on a bus
- (4) PV Q buses P_i and $|E_i|$ is specified and Q_i has maximum and minimum limits
- (5) PV Q buses Remotelly controlled $P_i \text{ and } |E_i| \text{ specified and }$ Q limits are also defined and the $|E_i|$ of the other bus is kept constant.

2.2.1 Derivation of Fast Decoupled Method

For each PQ bus i, the complex power mismatch is given as:

$$\Delta S_{i} = S_{i}^{Sp} - \Sigma E_{i} I_{i} = P_{i}^{Sp} + jQ_{i}^{Sp} - E_{ik=1}^{\Sigma Y} ik^{*E}k$$

let
$$Y_{ik} = G_{ik} + jB_{ik} \times 1$$

Hence.

$$\Delta P_{i} = P_{i}^{Sp} - Re \left\{ (e_{i} + jf_{i})_{k=1}^{S} (G_{ik} - jB_{ik}) (e_{k} - jf_{ik}) \right\}$$

$$= P_{i}^{Sp} - E_{i} \sum_{k=1}^{S} (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) V_{k}$$

and

$$\Delta Q_{i} = Q_{i}^{Sp} - I_{m} \{(e_{i} + jf_{i})_{k=1}^{n} (G_{ik} - jB_{ik})(e_{k} - jf_{k})\}$$

$$= Q_{i}^{Sp} - E_{i}\sum_{k=1}^{n} (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik})^{V_{k}}$$

The convergence criteria is chosen as:

 $\Delta P_i = \langle C_i \text{ for all PQ and PV buses}$

$$\Delta Q_i = \langle C_q \text{ for all PQ buses} \rangle$$

where C_p and C_q are tolerances

The change in the active the reactive power, voltage magnitude and angle may be expressed as

$$\begin{bmatrix} \Delta P & J_1 & J_2 \\ \Delta Q & J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta Q \\ \Delta V \end{bmatrix}$$
 (2.2.3)

Solution is approached by moving in the direction of negative slope, where

$$J_1 = -\frac{\partial (\Delta P)}{\partial (Q)}$$
, $J_2 = \frac{-\partial (\Delta P)}{\partial (V)}$,

$$J_3 = \frac{-\delta(\Delta Q)}{\delta(\Delta Q)}$$
, $J_4 = \frac{-\delta(\Delta Q)}{\delta(\Delta V)}$

or in general

$$J = \begin{bmatrix} J_1 & J_2 \\ J_3^1 & J_4^2 \end{bmatrix}$$
 (2.2.4)

where J is the Jacobian matrix.

 $$\rm As$$ in case of decoupled methods coupling between P-Q and Q-V components is relatively weak.

$$\begin{bmatrix} \triangle P \\ \triangle Q \end{bmatrix} = \begin{bmatrix} J_1 & 0 \\ 0 & J_4 \end{bmatrix} \quad \begin{bmatrix} \triangle Q \\ \triangle E \end{bmatrix}$$

let
$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} H & O \\ O & L \end{bmatrix} \begin{bmatrix} \Delta Q \\ \Delta E / E \end{bmatrix}$$

It may be proved

$$H_{ij} = L_{ij} = E_{i}E_{j} (G_{ij} \sin \Theta_{ij} - B_{ij}\cos\Theta_{ij})$$

$$H_{ij} = -B_{ii} \quad E_i^2 - \phi_i$$

$$L_{ij} = -B_{ii} E_i^2 + Q_i$$

Following assumption are made in fast decoupled method:

$$\cos\,\theta_{k\,m}$$
 2.1, $G_{k\,m}\,\sin\,\theta_{k\,m}\ll\,B_{k\,m}$

and $\theta_k \ll B_{kk} V^2$

Hence,

$$[\Delta P] = [V B^{\perp} V] [\Delta \Theta] \qquad (2.2.5)$$

$$[\triangle Q] = [V B^{11}V] [\triangle V/V] \qquad (2.2.6)$$

Following rules are observed in the formation of $\textbf{B}^{\textbf{l}}$ and $\textbf{B}^{\textbf{l} \textbf{l}}$ matrix

- (a) Omitt form [B'] the representation of those network elements that dominantly affect MVAR flows, i.e. shunt-reactaness and offnoiral in-phase transformer taps.
- (b) Omitting from [B'] angle shifting effects of phase shifters.
- (c) V is assumed to be 1 p.u. and
- (d) Neglecting series resistance in oalculating the elements of [B'].

The final result is

$$[\Delta P/V] = [B'] [\Delta Q]$$
 (2.2.7)

$$[\triangle Q/V] = [B''] [\triangle V]$$
 (2.2.8)

both [B] and [B] are real and sparse. It phase shifters are not connected [B] and [B] are symmetrical.

2.3 Method of Finding Inverse or Matrices [B'] and [B"]

The method used is given by Zollenkopf []. The method is suitable for the matrices that are strictly symmetric and positive definate or diagonally dominant. In order to save on CPU time and storage, and optimally ordered storage scheme and special programming techniques are used.

A set of n linear equations can be expressed ina matrix notation as

$$Ax = b$$
 (2.3.1)

where A is a non singular

nxn coefficient matrix

x is a coloumn vector of n unknowns.

b is a known vector.

Solution may be conputed directly as:

$$x = A^{-1} b$$
 (2.3.2)

1et

$$L^{(n)} \cdot L^{(n-1)} \cdot ... \cdot L^{(1)} \Lambda R^{(1)} \cdot ... \cdot R^{(n-1)} R^{(n)} = I (2.3.3)$$

where

L are left hand factor matrices

R are righthand factor matrices

I is unity matrix

The equation () can be modified by simple transformation to:

$$A^{-1} = R^{(1)} R^{(2)} \dots R^{(n)} L^{(n)} \dots L^{(2)} L^{(1)} (2.3.4)$$

In order to determine the factor matrices L and R the following sequence of inter midiate matrices are introduced:

$$A^{(0)} = A$$

$$A^{(1)} = L^{(1)} A^{(0)} R^{(1)}$$

$$A^{(j)} = L^{(1)} A^{(j-1)} R^{(j)}$$

$$A^{(n-1)} = L^{(n-1)} A^{(n-2)} R^{(n-1)}$$

$$A^{(n)} = L^{(n)} A^{(n-1)} R^{(n)} = T$$

The matrices A $^{(i)}$, L $^{(i)}$ and R $^{(j)}$ may be *alculated from the elements of A $^{(j-1)}$

let
$$A^{(j)} = [a_{ik}^{(j)}]$$
 $a_{jj}^{(j)} = 1$
 $a_{ij}^{(j)} = 0$
 $a_{j}^{(j)} = 0$
 $a_{j}^{(j)} = 0$
 $a_{ik}^{(j)} = a_{ik}^{(j-1)} - \frac{a_{ij}^{(i-1)}a_{jk}^{(i-1)}}{a_{ij}^{(j-1)}}$

where i is called piritol index for i and k varies from (j+1) ...n

Matrix a j) is of the form

$$A^{(i)} = \begin{bmatrix} 1 & 0 & ----0 \\ 0 & 1 - (j) ---0 \\ a_{ij} - a_{nj} \\ 0 & a_{nij} - a_{nn} \end{bmatrix}$$
 (2.3.7)

Factor matrices $L^{(i)}$ is of the form

where
$$l_{ij}^{(i)} = \frac{1}{a_{ij}(j-1)}$$

$$l_{ij}^{(j)} = -a_{ij}^{(j-1)}/a_{jj}^{(j-1)}$$

$$l_{kk}^{(i)} = l \quad k \neq i$$

$$i = (j+1), \dots n$$

$$k = 1, \dots, n$$

Factor matrices R(i) is of the form

where

$$r_{ij}^{(i)} = -a_{jk}^{(j-1)} / a_{ij}^{(j-1)}$$

$$r_{kk}^{(i)} = 1, k=1,...,n$$

If the matrix A is symmetrica the

$$a_{ik}^{(j-1)} = a_{ki}^{(j-1)}$$

and
$$r_{jk}^{(i)} = l_{ij}^{(j)}$$
 for $i = k \neq J$

Hence if (i) is symmetrical

matrix j^{th} Row of $R^{(i)}$ is identical to j^{th} coloumn of $L^{(j)}$, except for the diagnosterm.

In order to exploit the benefit of sparcity, a compacked matrix storage scheme in which only the non-zero terms are retained is employed. In addition to matrix elements themselves, tables of indexing information to identify the elements and to facilitate their addressing is made. Small memory requirements and short computation

time come be realized because only non zero matrix terms are stored and processed. Symmetry can entirely be exploited in programming for matrices having symmetrical pattern of non zero terms.

2.4 Reactive limit check on Q limited bus

Let DQ_i be defined as the deviation of the calculated reactive power from the violated limit. The power at PQ, PQV and FQRV buses connected to the given buses are calculated. From this voltage correction ΔV_k are calculated. Correction is made for branch outages.

Using the voltage corrections $\Delta \textbf{V}_k$ the total power at the bus i is calculated

Let F1 be the total power

Let F2 =
$$\frac{DQ_i}{V_i}$$

+ F3 =
$$\frac{\text{F2}}{\left(\text{V}_{i}\right)^{2}}$$

and
$$X_1 = \frac{F2}{(F1 + F3)}$$

for limit on bus bar to be true

$$-1.0 \le x 1 \le 1.0$$

Voltage at all nodes except the give node is modified as

$$V_k = V_k + XI \times \Delta V_k$$
 k, 2,, x

for the node which is being considered

$$V_i = V_i + XI$$

2 Voltage limit check on voltage limited buses

Let ${\tt DV}_{{\tt i}}$ be the deviation of the voltage from the violated limit.

Reactive power at the bus is taken as unity and all other reactive power is taken zero.

Let $\Delta V_{\mathbf{k}}$ k=1,...,n be the voltage correction calculated from the factorized matrix.

Then, sensivity factor SQ is defined as

$$SQ = 1.0 / \Delta V_{i}$$

The voltage at all buses except the slack bus is modified. The modified voltage is

$$V_k = V_k + \Delta V_k \times \frac{DV_i}{\Delta V_i}$$
 $k = 2, ..., n$.

The reactive power generated at the bus is modifies as

$$Q_{i} = Q_{i} + \frac{DV_{i}}{\Delta V_{i}} \qquad V_{i}$$

CHAPTER 3

CHAPTER - 3

OUTAGE STUDIES

3.1 INTRODUCTION

An important aspect of design and operation of a power system network is to maintain system security. If a generator is disconnected from the system due to failure, then enough power should be generated without in admissible frequency drop or without shedding of load. The line must be designed such that, if a line is damaged and removed from the system by relays, the other system buses do not become overloaded. This is to reduce cascading failures.

Several methods available for outage study are:

- () Gauss-seidel method
- (2) Explicit matrix inversion method
- (3) Direct solution method using triangular factorization.

Gauss seidel method is lest complex to program but is slow. Spare matrix method in triangular factorization is fast and effecient.

8,8	Das.
- - 	C-18
	ikila
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	There are many spelling mistakes and gramahad errors. (vests is thristing usually). What do you mean by interactive outage. The sendence is not inhelligible.
5. 1	What does of tim 3 producte? What do you orean by often?
. 1	In steady state tenterdependance exist between which parameters of powersystems. P-0 80-V
8	What is the objective of the Discutation's What are the concluments.
)	Adv. of decitalid it is ? fast & onemory Consonry Disadv. + Convergence is par particularly if lares have high 2/x reh.
	e de la companya de l

Every time outage takes place the bus matrix must change, and hence a new system is formed. To save time and space on a computer method using the same factorized matrix and little extra effort are most suited for the computer. The space and time needed for refactorization.

3.2 Line Outage

The method for the outage studies is in combination of fast decoupled load flow method. Advantage is taken of a technique which mathamatically models outage system by its pre-contingency by adding changes in the injected powers at the terminal buses of outaged branches.

In principle a line or transformer outage causes a system confugration change. An equivalent mathematical model is made which has original confugration except that at the terminal buses of outaged elements additional active and reactive power, equal to that which would flow if the line was present with modified system voltages are injected. The maximum number of $\Delta P_{\rm I}$, $\Delta Q_{\rm I}$ variables for each outage is 4.

$$P_{km} = V_k V_m \left[G_{km} \cos \Theta_{km} + B_{km} \sin \Theta_{km} \right] - V_k^2 \left(G_{km} G_{km}^{\prime} \right) (3.2.1)$$

$$Q_{km} = V_k V_m [G_{km} \sin \theta_{km} - B_{km} \cos \theta_{km}] + V_k^2 (B_{km})$$
 (3.2.2)

$$Pmk = V_{m}V_{k}(G_{km}cos\theta_{mk}-B_{km}sin\theta_{mk}) + V_{m}^{2}(B_{km}-B_{km})$$
 (3.2.3)

$$Q_{mk} = V_{m}V_{k}[G_{km} cos\theta_{mk} - B_{km} sin\theta_{mk}] + V_{m}^{2}(B_{km} - B_{km})$$
 (3.2.4)

where
$$Q_{km} = \Theta_k - \Theta_m = -\Theta_{mk}$$

 G_{km} + jB_{km} (k,m)the element of admittance matrix

$$G_{km} + jB_{km}' = \frac{1}{2}$$
 (line changing admittance)

Similarly for post contingency variables

$$V_k' = V_{k0} + \Delta V_k$$

$$Q_{k}' = Q_{k0} + \Delta Q$$

$$P_{km}^{t} = P_{km_0} + \Delta P_{km}$$

$$P'_{mk} = P_{km_0} + \Delta P_{mk}$$

and similar equations may be written for post contingency variables

let
$$\triangle P_{km}$$
 R U $\triangle Q$ (3.2.5) $\triangle Q_{km}$ T S $\triangle V/V$

Assuming decoupling i.e.

$$U = 0$$
 , $T = 0$

we have

$$P_{km} = V_k V_m \left[G_{km} \cos \left(\Theta_k - \Theta_m \right) + B_{km} \sin \left(\Theta_k - \Theta_m \right) \right]$$

$$- V_k^2 \left(G_{km} - G_{km}^{\prime} \right)$$

$$Q_{km} = V_k V_m \left[G_{km} \sin \left(\Theta_k - \Theta_m \right) - B_{km} \cos \left(\Theta_k - \Theta_m \right) \right]$$

$$+ V_k^2 \left(B_{km} - B_{km}^{\prime} \right)$$

Assuming $\cos \theta_{\rm km} \approx 1$

and
$${\tt G}_{k\,m}$$
 sin ${\tt \Theta}$ << ${\tt B}_{k\,m}$

and
$$\sqrt{V_k/V_m} \approx 1.0$$

we have
$$P_{km} = V_k V_m \left[G_{km} + B_{km} \sin \left(\Theta_k - \Theta_m \right) \right]$$

$$- V_k^2 \left(G_{km} - G_{km} \right)$$

$$\frac{\int P_{km}}{\partial Q_k} = V_k V_m B_{km}$$

$$\frac{\mathbf{b}^{P_{km}}}{\mathbf{b}^{Q_{m}}} = -\mathbf{v}_{k}\mathbf{v}_{m} \mathbf{b}_{km}$$

$$\Delta P_{km} = \frac{\partial P_{km}}{\partial \Theta_k} \quad \Delta Q_k + \frac{\partial P_{km}}{\partial \Theta_m} \Delta \Theta_n$$

$$= V_k V_m \{ B_{km} \Delta \Theta_k - B_{km} \Delta \Theta_m \}$$

$$\frac{\Delta P_{km}}{V_k V_m} = B_{km} * V_k * \int \frac{\overline{V_m}}{V_k} \Delta \Theta_k$$

$$- B_{km} * V_m * \int \frac{\overline{V_k}}{V_m} \Delta \Theta_m$$

Since
$$\sqrt{v_k/v_m} \approx 1.0$$

We have
$$\sqrt{V_k/V_m} = B_{km} \triangle \Theta_k - B_{km} \triangle \Theta_m$$

Similarly
$$\frac{\Delta P_{mk}}{\sqrt{V_k V_m}} = -B_{km} \Delta \Theta_k + B_{km} \Delta \Theta_m$$

Which may be represented as

$$\begin{bmatrix} \Delta P_{km} \\ \overline{V_{k}} \overline{V_{m}} \\ \hline -B_{km} & B_{km} \end{bmatrix} = \begin{bmatrix} B_{km} - B_{km} \\ -B_{km} & B_{km} \end{bmatrix} \begin{bmatrix} \overline{V}_{k} & 0 \\ 0 & V_{m} \end{bmatrix} \begin{bmatrix} \Delta \theta_{k} \\ \Delta \theta_{m} \end{bmatrix}$$
 (3.2.6) We have

We have

$$e_{km} = v_k v_m \{ -B_{km} \} + v_k^2 [B_{km} - B_{km}]$$

$$\frac{3 e_{km}}{5 V_k} = -B_{km} V_m + 2V_k B_{km} - 2V_k B_{km}$$

$$\frac{\partial \Theta_{km}}{\partial V_m} = -B_{km} V_k$$

$$\Delta \Theta_{km} = \frac{\partial \Theta_{km}}{\partial V_k} \Delta V_k + \frac{\partial \Theta_{km}}{\partial V_m} \Delta V_m$$

$$= \{ -B_{km} V_m + 2V_k [B_{km} - B_{km}] \} \Delta V_k - B_{km} V_k \Delta V_m$$

$$\frac{\Delta \Theta_{km}}{\sqrt{V_k V_m}} = \{ -B_{km} / \frac{V_m}{V_k} + 2 - \frac{V_e}{V_m} [B_{km} - B_{km}] \} \Delta V_k$$

$$-B_{km} / \frac{V_k}{V_m} \Delta V_m$$

Since
$$\int \frac{V_k}{V_m} \approx 1.0$$

$$\frac{\triangle \Theta_{km}}{\sqrt{V_{k} V_{m}}} = \{ -B_{km} + 2 [B_{km} - B_{km}] \{ (\frac{\triangle V_{k}}{V_{k}}) x^{V_{k}} \}
+ \{ -B_{km} \} (\frac{\triangle V_{m}}{V_{m}}) V_{m}
= \{ B_{km} - 2B_{km} \} V_{k} (\frac{\triangle V_{k}}{V_{k}})
+ \{ -B_{km} \} V_{m} (\frac{\triangle V_{m}}{V_{m}})$$

Similarly

$$\frac{\Delta \Theta_{mk}}{V_k V_m} = -B_{km} * V_k * (\frac{\Delta V_k}{V_k})$$

$$+ [B_{km} - 2B_{km}'] * V_m (\frac{\Delta V_m}{V_m})$$

Hence

$$\frac{\Delta \Theta_{km}}{\sqrt{V_k V_m}} = \begin{bmatrix} B_{km} - 2B_{km} & -B_{km} \\ -B_{km} & B_{kn} - 2B_{km} \end{bmatrix}$$

$$\frac{\Delta \Theta_{km}}{\sqrt{V_k V_m}} = \begin{bmatrix} V_k & 0 \\ 0 & V_m \end{bmatrix} \times \begin{bmatrix} \Delta V_k / V_k \\ \Delta V_m / V_m \end{bmatrix} (3.2.7)$$

The equations (3.2.6) and (3.2.7) can be written in the form

$$[\Delta P/VV]_{k,m} = [B_3]_{k,m} [V]_{k,m} (\Delta \Theta)_{k,m}$$
 (3.2.8)
and
 $[\Delta \Theta/VV]_{k,m} = [B_4]_{k,m} [V)_{k,m} [\Delta V/V]_{k,m}$ (3.2.9)

decoupling process is completed by :

- (1) Omitting from (B₃) the representation of these network elements that pre dominantly affect reactive power flow.
- (2) Omitting from $[B_4]$ the angle shifting effect of phase shifter.
- (3) Setting all elements of [V] to 1.0 p.u.

We have

$$\left[\frac{\Delta F}{VV}\right]_{k,m} = \left[B_3\right]_{k,m} \left[\Delta \Theta\right]_{k,m} \tag{3.2.10}$$

$$[\Delta Q/VV]_{k,m} = [B_{4}]_{k,m} [\Delta V]_{k,m}$$
 (3.2.11)

3 2 Computation of sensivity matrix

To complete the ith column of a sensivity matrix let a column (ei) be drafined as zero vector except its ith element is unity, therefore

[J] [S] [ei] = [I] [ei] [J] [S] =
$$[e_i]$$
 [3.2.12)

where S is the i^{th} collumn of sensivity matrix [S] and is calculated by solving the factorized Jacobian matrix (J) and (e_i) by Zollen koph Bi factorization direct solution subroutine.

Assuming that the loads and real power output of generating plants remains unchanged and since the out of a line k m connecting two load buses k and m is being simulated by changes in the power injected into bus k and m only, therefore based on the fast decoupled load flow method

$$\left[\frac{\Delta P}{V}\right] = \left[B_1\right] \left[\Delta \Theta\right] \text{ or } \left[\Delta \Theta\right] = \left[S_1\right] \left[\frac{\Delta P}{V}\right]$$

$$\begin{bmatrix} \frac{\Delta \Theta}{V} \end{bmatrix} = \begin{bmatrix} B_2 \end{bmatrix} \begin{bmatrix} \Delta V \end{bmatrix}$$
 or $\Delta V = \begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} \frac{\Delta Q}{V} \end{bmatrix}$

Only two columns of each sensivity matrix $~S_1$ and $~S_2,$ the $\Delta P_{\mbox{I}k}$ and $\Delta P_{\mbox{I}m}$ are given by

$$[\Delta P_I]_{k,m} = [I] - [SP]^{-1}[E_o]_{k,m}$$

Similarly

$$[\Delta Q_{I}]_{k,m} = [I] - [SQ]^{-1}[Q_{o}]_{k,m}$$

Formulation of [SP] and [SQ] is discussed in next section

3.4 Multiple branch outage simulation

Consider outage of line 1,2,...,n connected between load buses (a,b), (c,d)..., (y,z).

The changing the injected power $(\Delta P_I, \Delta Q_I)$ into the buses (a.b), (c,d),...(y,z) are given by

$$2n \left[\Delta INJECT\right] = 2n \left[POWER_0\right] + 2n[\Delta POWER]$$
 (3.4.1)

where [\triangle INJECT] are the changes in injected powers at 2n buses (POWER $_{0}$) are the precontingency power flow in lines and (\triangle POWER] are the changes in these power

flow due to outages. Above equation applies for both active and reactive power.

The relations between [\triangle POWER] and changes in bus voltage magnitudes and angles are expressed in a general form by the following equations

$$[\triangle POWER] = [VV] [B] [\triangle X]$$
 (3.4.2)

where \triangle POWER = \triangle P, \triangle X = \triangle Q

$$B_{a,b} = [B_3]_{ab} = B_{ab} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

or \triangle POWER = $\triangle Q$, $\triangle X$ = $\triangle V$ and

$$B_{a,b} = \begin{bmatrix} B_{4} \end{bmatrix}_{a,b} = \begin{bmatrix} B_{ab} - 2B_{ab} \\ -B_{ab} \end{bmatrix}$$

$$B_{ab} - 2B_{ab}$$

where $C = \frac{B_{ab} - 2B_{ab}}{B_{ab}}$

We have

$$(\Delta X] = [S] \left[\frac{-\Delta INJECTED}{V} \right]$$
 (3.4.5)

hence

[
$$\triangle POWER$$
] = [\sqrt{VV}] [B] [S] [V^{-1}][$\triangle INJECTED$]
= [B][S] [\sqrt{VV}] [V]⁻¹[$\triangle INJECTED$]
= [BS] [$\triangle INJECTED$] (3.4.6)

Since \sqrt{VV} and $[V]^{-1}$ are diagnoe matrices, $[\sqrt{VV}]$ $[V]^{-1}$ = [I] (unity matrix)

Since
$$\sqrt{v_i/v_j} \approx 1$$

and
$$[BS] = [B][S]$$

Matrix (BS] in formulated row by row as

Row a = $\begin{bmatrix} C \times row & a & of \\ S \end{bmatrix}$ - low b $\times B_{ab}$ of $\begin{bmatrix} S \end{bmatrix}$

Row
$$h = [C * row b of [S] - row a of [S] * B_{ab}]$$

Therefore we do not need to store

 $[B_3]$, $[B_4]$, $[\sqrt{VV}]$ and $[V]^{-1}$ we need only [S] $[B_3]$ and $[B_4]$ are multiplied implicitly from equation [3.4.1] and [3.4.6]

By knowing the 2n columns of sensivity matrix, ΔQ and ΔV , the correction due to line outages, are calculated to obtain V and Q for all system buses. Post contiguecy line flows are therefore determined

3.5 Simulation of single line outages

Single line branch outage is simulated by open circuiting each branch. Bus and branch variables are modified as the branch is taken out.

Unity active power is injected at the two buses and the angle connecting using original matrix are computed

A factor D2 is calculated as

D2 = $|S| \otimes_{\text{sending}} - \delta \otimes_{\text{receiving}} - \frac{1}{XX}|$ where XX = line reactance of outaged branch For split condition D2 \approx 0.

For split condition topological check is made.

The circuit continuity is checked. For the system connected to refrence bus the refrence remains same of the other system the bus, receiving or sending whicheven is connected, is taken as the second refrence.

Let D1 =
$$\frac{-1}{\int_{\mathbb{Q}}^{\mathbb{Q}} \operatorname{sending} - \int_{\mathbb{Q}}^{\mathbb{Q}} \operatorname{receiving} - \frac{1}{XX}}$$

a variable THCORR is defined for all buses as $\text{THCORR}_{k} = D_{i} * \Sigma_{k}$

If receiving and sending bus is one of the PV, PQ and PQRV then active power at receiving bus is assumed -1.0 and power at sending bus as 1.0. For all other cases both active powers are taken as unity.

The voltage correction is calculated.

A variable D3 is defined as

D3 =
$$\frac{1.0}{\text{Sending} - \text{V}_{\text{receving}} - \frac{XX}{Z}}$$

 $\label{eq:VHCORF} \textit{Variable VHCORF}_{\textbf{k}} \; \; \textit{is defined for all buses as}$

$$VHCORR_{k} = D3 * b V_{k}$$

Outage solution is carried out in same way except the voltages and angles at different buses are modified as

$$\mathbf{e}_{\mathbf{k}} = \mathbf{e}_{\mathbf{k}} + \mathbf{e}_{\mathbf{k}} + \mathbf{h}$$

$$V_k = V_k + V_k + VHCORR_k \times VHIKO$$

where

THIKO =
$$^{6}_{h} Q_{sinding} - ^{6}_{h} Q_{receiving}$$

CHAPTER 4

CHAPTER-4

GRAPHIC IMPLEMENTATION

4.1 System and Software Package:

An IBM - compatable PC-XT was used for the purpose of graphic implementation. Micro-soft Fortranie. Fortran-77 was used for writing programs. The system was monochrome with hercules graphic card. The software rackage used was called as GRAPH-X

4.1.1 Main Features of GRAPH-X

Graph-X can be used for plotting points drawing lines, circles, arcs and reactangles It allows text writing. It allow to switch colour levels from dark to green.

4.1.2 On screen graphic facilities.

Following on screen graphic facilities are available:

INT 10.COM - extension to DOS for on screen graphics

FOR 2 GRH, OBJ - linkage to FORTRAN

HCG.COM - confugration file for graphic card.

4.1.3 Printing facilities

Following print facilities are available:

HARCOPY.COM - extension to DOS for screen printing

PRINTER.DEF - definition file for IBM or Epson dot matrix printer.

Both INTIO.COM and HARCOPY.COM must be loaded before using graphics.

4.1.4 Coordinate system

Graphic screen may be considered as two dimension array with X being horizontal and Y - being vertical axis. The origin of the axis is the upper left corner. The addressable pixels are:-

X (horizontal) : 0 to 719

Y (vertical) : 0 to 347

Any part of figure outside the legal boundary is clipped at the edges .

Any letter corrsing the boundary is suppressed fully.

Height of the pixel is 1.5 times more than to its width. To draw figures with same scales on both (axises) vertical dimensions are multiplied 2/3.

4.1.5 Screen Colour level

Figures may be drawn green or black in any background, also the figure may be drawn in colour opposite to the background. The colour levels are:

- 0 causes the figure to be drawn black
- 1 eauses theseigune togheedtewnegneenn
- 2 causes pixel to change colour it causes green figures on black colour and black figures on green background

Repeated drawing of a figure with level 2 will cause it to blink.

4.1.6 Text Writing

Text is drawn 9 pixel wide and 14 pixel high.

Background and the colour of the text depends on the set level. The character must be inputed in ASCII form. It the character are more they may be defined as double precision or character.

4.1.7 Graphic pages

There are two independent pages in which graphic display is stored. Each graphic page is independent and requires 16 K memory. Both these pages can be used independently for display and writing. Caution has to be taken while using page 0. The first 4K of page 0 is shared by text mode buffer. Any text mode

operation will contaminate graphic page D. The run time error are eclipsed when the screen is in graphic mode.

4.1.8 Using GRAPH-X with fortran

Few precaution are necessary for using $\mbox{GRAPH-X}$ with FORTRAN.

Each function or subroutine of GRAPH-X must be declared as EXTERNAL in the program. Variables should not be passed directly to GRAPH-X routine. Number must be assigned to a variable, which is then passed as an argument to the routine,

4.2 GRAPH-X defined subroutine.

GRAPH-X provide subroutine to set up graphics, draw figures and printhard copy. The subroutines defined by GRAPH-X are described below:

Subroutine ARC

ar

This subroutine draws a quarter circle •n
the screen give the centre of the arc radius and
the guadrant in which the arc is to be drawn

Calling sequence: CALL ARC(X,Y,RADIUS,QUAD)

Arguments:-

X,Y = Cordinates of Centre of the arc.

RADIUS = Number of pixel between point X,Y and the arc in X-ax is

QUAD = Number of quadrant in which

arc is to be drawn. Numbers

are from 1 through 4 with first

quadrant as 1 and increasing

counter clockwise.

Subroutine BLKFIL

Given height, width and the lower left corner, this subroutine draws a solid rectangle.

Calling sequence: CALL BLKFIL(X,Y,WIDTH,HEIGHT)

Arguments:

X,Y, = Cordinates of lower left corner

WIDTH = width in pixels

HEIGHT = height in pixels.

Subroutine CIRC

Given the centre and the radius the subroutine draws a circle

Calling sequence: CALL CIRC(X,Y,RADIUS)

X,Y = cordinates of centre point

RADIUS = number of pixels between centre and circumfrence on X - axis.

Subroutine CLSCR

This subroutine clears the graphic page currently written into :

Calling sequence:

CALL CLRSCR

Subroutine DISP

This subroutine set the page to be displayed on the screen

Calling sequence:

CALL DISP(BUFPAGE)

Arguments:

BUFPAGE = Or buffer page

Subroutine DLINE

This subroutine draws a line from current sursor position to specified cursor position.

Calling sequence:

CALL DLINE (X,Y)

Arguments:

X,Y = cordinates of end

position

Subroutine FILL

This subroutine fills the area in a convexpolygon by reverse colour, given a point inside the pl polygon Calling sequence : CALL FILL (X,Y)

Arguments:

X,Y, = Cordinates of a point lying
inside the corvex polygon.

Subroutine PUTPT arguments:

This subroutine moves the imagenary cursor to specified position on the screen may be used with DLINE subroutine.

Calling sequence : CALL PUTPT (X,Y)

Arguments:

X,Y __ Cordinates of the imaginary cursor

Subroutine GETPT

This subroutine reads the intensity of a given pixel any where within legal cordinates.

Calling sequence : CALL GETPT (X,Y) INTENS)

Arguments:-

INTENS = Intersity value

O - Black

1 - Green

Calling sequence : CALL FILL (X,Y)

Arguments:

X,Y, = Cordinates of a point lying
inside the corvex polygon.

Subroutine PUTPT arguments:

This subroutine moves the imagenary cursor to specified position on the screen may be used with DLINE subroutine.

Calling sequence : CALL PUTPT (X,Y)

Arguments:

X,Y __ Cordinates of the imaginary cursor

Subroutine GETPT

This subroutine reads the intensity of a given pixel any where within legal cordinates.

Calling sequence : CALL GETPT (X,Y) INTENS)

Arguments:-

INTENS = Intensity value

O - Black

1 - Green

Subroutine GMODE

This subroutine puts graphic cand into graphic mode. It must be called before calling any graphic function or subroutine.

Calling sequence:

CALL GMODE

Subroutine GPAGE

Subroutine determine the page to be written into

Calling sequence: CALL GPAGE (BUFPAGE)

Arguments:

BUFPAGE

= Buffer page 0 or 1

Subroutine LEVEL

Subroutines sets the level to be used by subsequent graphic function.

Calling sequence : CALL LEVEL (INTENS)

Arguments:

INTENS

= 0 black

1 Green

2 XOR

Subroutine PLOT

Plots a given point on the screen depending on the colour level set.

Calling sequence : CALL PLOT (X,Y)

Arguments:

X,Y = Cordinates of points to be
plotted.

Subroutine TMODE

This subroutine puts graphic card into normal text mode:

Calling sequence

: CALL TMODE

Subroutine TEXTF

This subroutine writes array of characters at a desired point on screen character are written horizontally. Upto 4 character may be accommodated in single precision, 8 characters in double precision and upto 132 in CHARACTER xn decleration.

Calling sequence

CALL TEXTP (X.Y.LEN.MSG)

Arguments:

X,Y = Cordinate of first letter
 in the array. The cordinate
 is of lower left corner.

LEN = Length of character in text string

MSG = Array of character

Subroutine HRDCPY

This subroutine generates hard copy of the graphic page on the dot matrix printer.

Calling sequence

CALL HRDCPY(OPT CHAR)

Arguments:

OPTCHAR = '1' Graphic page 0

'2' Graphic page 1

'3' Graphic page O reverseviides

4' Graphic page 1 severse video

'5' Graphic page 1 and page 0

6' Graphic page 6 and page 8 reverse video.

4.3 Graphic Display of outagea:

GRAPH -X subroutines are used to display the results of load flow and outages. Display consists of buses, lines generators, voltage and angles.

In the main program subroutine OUT is called whenver the results of load flow and outlage simulation are be stored on the disk.

This subroutine also writes the following data in mporary file:

- 1. System Mame
- ?. Branches or generators involved in outage

- 3. Bus name, voltage and angle at the bus
- 4. line data: Sending bus, receiving bus, overload on lives and : live loadings.

This data is read by subroutine ABC. This subroutine generators graphic display.

4.3.1 Subroutines for graphic display of outage:
Subroutine name: ABC

This subroutine reads the data written by subroutine OUT. It draws buses, lines and generators. It also writes having angle and voltages at the buses.

Calling sequence : CALL ABC

Calls : GRAF, HEAD, DBUS, GENER, DLINK. TMOD

Variables:

TYPE = Type of bus

'H' Horinzontal

'V' Vertical

IXI, IYI = Centre point of bus.

IW = width or height, whichever
is greater, of bus.

IBX1, IBY1 = Cordinate for writing bus name

(IX2, IY2) =

IX3, IY3

ix4, IY4 four successive point defining bus

O Generator not present

1 Generator present

Subroutine GRAP

This subroutine clears screen, puts screen in graphic mode chooses page one for both writing and display.

IXI.IYI = Centre point of bus.

is greater, of bus.

IBX1, IBY1 = Cordinate for writing bus name

(IX2, IY2) =

IX3, IY3

1X4, IY4 four successive point defining bus

IX5, IY5

O Generator not present

1 Generator present

Subroutine GRAP

This subroutine clears screen, puts screen in graphic mode chooses page one for both writing and display.

Calling sequence : CALL GRAF

Subroutine HEAD

This subroutine writes two lines of text showing information about the system. First line displays system name. Second line displays type of outage, generator of line out and drop of power in generator outage.

Calling sequence : CALL HEAD

Wariables:-

IHX1. IHY1 = Cordinates of first line

IHX2, IHY2 = Cordinates of second line

N = system name

B1 = sending bus

B2 = Reciving bus

B3 = drop of power at the

generator

Subrousibeoutins DBUS

SUBROUTINE DBUS

This subroutine draws a bus at a given location of centre point of bus. It displays, name of the bus, angle and voltage at the bus.

Calling sequence:-

CALL DBUS (B, V, A, IX1, IY1, IW, IVX1, IVY1, INX1, INY1, IBX1, IBY1, TYPE)

Arguments:-

B = Bus name

V = Voltage at bus

A = angle at the bus

IX1, IY1 = position of the centre point at the bus.

IW = width of the bus in pixels

IVX1,IVY1 = position of voltage text

INX1, INY1 = position of angle text

IBX1, IBY1 = position for the bus name

Type = type of bus

'H' for horizontal.

*V' for vertical

Subroutine DLIN

This subroutine draws a time between two buses.

Calling sequence:-

CALL DLIN(IMVA, IX2, IY2, IX3, IY3, IX4. IY4, IX5, IY5)

Arguments:-

IMVA = switch to indicate the out branch
in outage studies

0 - branch out

1 - branch present

IX2, IY2

IX3, IY3 = point describing path between

IX4, IY4 two buses

IX5, IY5

Subroutine BLINK

This subroutine blinks overloaded line.

Callingabeingneequence: - CALL BLINK (IX2, IY2), IY3, IX4, IY4, IX5, IY5)

Arguments:-

IX2, IY2

IX3, IY3 = define line between two buses

IX4. IY4

IX5, IY5

Subroutine GENER

This subroutine draws a generator given bus location and the location of the centre point of generator.

Ca Calling sequence: - CALL (IX1, IY1, TYPE, IRX1, IRY1)

Arguments: -

TYPE = type of bus
'H' Horizontal

'V' vertical.

<u>CHAPTER - 5</u> STRUCTURE OF PACKAGE

5.1 Objective:

The object of the program is to perform load flow and outage studies using fast decoupled method. It allows the specific and automatic simulation of outages. The load flow techniques is one of the fastest technique available for large system.

5.2 Main Features:

The main features of the program are as follows:

- A system is given a unique name by which it is referred.
- Two or more circuit may be inputed and interconnection defined between them.
- Each bus can be given a unique name by which it referred in all subsequent I/O operation.
- A bus may be voltage bus, load bus, reactive limited bus, voltage limited bus or a remotely controlled bus.

- Branch may be defined between two buses which, may be a line, fixed-transformer, controllable transformer, fixed interconnection, controllable interconnection or a pahse shifter.
- A shunt inductance a at a bus can be defined.
- MVA limits on bus may be defined program will indicate any violation.
- C tages can be simulated automatically or can be specified specially.
- Outage simulated are single line outages, double parallel outages, generator outages
- Split cases may be included or excluded from the study.
- Additional menerator data if present may be considered separately.
- Active power may be distributed in the split conditions.
- Voltage and reactive power limits may be removed in the outage studies.

5.3 Structure of Package:

The main program (EX) is used to perform various steps of load flow and outage studies.

The main program performs various function such

as inputing load flow data, performing factorizing initializing the initial vectors, outputting the result and performing outage studies. Program has one input, one output and five units for temporary storage on disk. Software has been dimensioned for:

100	$^{ m N}$ odes
200	Branches
50	Controllable transformers
10	Systems
^ 2 0	Interconnection
20	Phase-shifters
40	Generators
46	Busbars with reactive limits
40	Busbars with voltage limits

The sub routines with their description is given below:

5.3.1 Program EX

This is the main program which calls various routines to input data, perform, Load flow, and outage studies.

Subroutine Calls: IN1, IN2, FACTOR, INITIL LOAD,
OUT, IN3, IN4, AUTSIM, SEPSIM

5.3.2 Subroutine INT

This subroutine allows user to enter the data interactivity from CRT

Subroutine calls: NONE.

5.3.3 Subroutine IN2

This subroutine reads line and branch data and checks its validity. It also reads systemdata. It sorts the buses alphabatically. It also produces a listing of input data. Also addition branch listing and bus listing consisting of B'matrix elements can also produced

Calls: ASRT, HEADI, ERROR1, NSRT, BWASR, CHKIN

5.3.4 Subroutine FACTOR

This subroutine factorizes B'and B' matries for angle and voltage calculation. It calculates inverse of B'and B' matrices so that correction in angle and voltage may be calculated.

Calls: INV1. INV2, INV3, UP1

5.3.5 Subroutine INVI

This subroutine initializes the arrays for the calculation of matrix inverse.

Calls: NONE

5.3.6 Subroutine INV2

This subroutine carries out pivoting modification of the arrays.

Calls: NONE

5.3.7 Subroutine INV3

This subroutine performs back substitution for the calculation of inverse.

Calls: NONE

5.3.8 Subroutine INITIL

This subroutine saves values which are modified by subroutine LOAD so that they may be used later. The saved values are initial active power at swing bus bar, initial setting of tap, initial voltage at remote controlling busbar, initial reactive power generated at controlled bus and voltage at reactive limited buses.

CALLS: NONE

5.3.9 Subroutine LOAD

This subroutine solves the load flow problem.

Active and reactive power is calculated, from which voltage and angle corrections are computed updated. Violation of limits on reactive power orvoltages at buses are

checked and corrected. Power in interconnection iscalculated. Tap portion is corrected and solution is checked for recovergence.

CALLS: REACHK, AVRCHK, INV4, SWICHK, UP2, VACRC,
UP2, TAPCHK, VOLCHK

5.3.10 Subroutine INV4

This subroutine finds the angle and voltage correction from the given A and B'' matrix. The result is obtained in same array as the input vector.

CALLS: NONE

5.3.11 Subroutine VACRC

This subroutine obtains non-constant scalar which multiplies the constant correction vectors of B'and B'. These corrections are applied in case of outage studies.

CALLS : NONE

5.3.12 Subroutine SWICHK

This subroutine calculate power in the interconnection and corrects active power generated at swing bus.

CALLS : UP2

15.3.13 Subroutine AVRCHK

This subroutine calculates reactive power generated for nodes for which AVR has not yet operated. It is called when generator data is present.

CALLS: NONE.

.1

5.3.14 Subroutine TAPCHK

This subroutine checks voltage limits on buses controlled by a variable in phase transformer and corrects the tap portion.

CALLS : UP2

5.3.15 Subroutine VOLCHK

This subroutine checks voltage limits on PQ buses and corrects reactive power generated at the same node or correct the voltage at a PV bus depending in the way busbar has been defined as either remote controlled or local controlled.

CALLS : FNSRT, INV4, VACRC, UP1.

5.3.16 *ubrout ine REACHK

This subroutine checks reactive limit on PV Q buses and correct the voltage magnitude.

CALLS : REACT, UP1, VACRC, PNSRT, INV4

5.3.17 Subroutine REACT

This subroutine calculates reactive power generated in slack, swing, PV and PV with Q limit nodes.

Calls : UP3, UP4

5.3.18 Subroutine OUT

This subroutine prints output and check for over load, busbar limits and system exchange. In calculates reactive power at bus and the powers sent and received at each line. It also checks for losses.

CALLS: REACT, LOCALC, HEAD 2. PCALC. UP3. UP4.

5.3.19 Subroutine LOCALC

Calculates MVA loading of a branch and compare with limits. There are two limits with which the loading is compared.

CALLS : NONE

5.3.20 Subroutine PCALC

This subroutine calculates the common values to lines, in-pahse transformers and phase-shifters, needed for calculation of active and reactive power flow.

Calls : NONE

5.3.21 Subroutine IN3

This subroutine reads selection of studies to be carried out and if indicated reads the generator data for all the studies.

CALLS : INGEN : ERROR2.

5.3.22 Subroutine INGEN

This subroutine reads generator data as indicated in subroutine IN3.

Calls : ERROR2, BNASR, ERROR2

5.3.23 Subroutine IN4

This subroutine reads parameters for outage study. Intialize the voltages and powers by calling subroutine INITIL. It saves the result of base case voltages, angle, reactive power and active power.

CALLS : INT2, INITIL

5.3.24 Subroutine INT2

This subroutine refactorize B'' matrix in case of generator data.

CALLS : INV1, INV2, IN3, INV4, UP1, ERROR2

5.3.25 Subroutine AUTSIM

This subroutine simulates outages. The outage that may be simulated are single branch outage, double parallel branch outage, half loss generation and full loss generation.

CALLS : RESB, INT3, OUT, VCHIK, LOAD, GSIM, BSIM, RESG, UP3

5.3.26 Subroutine VCHK

This subroutine checks the change in voltage at a bus caused by outage with the permissible drop.

If drop exceeds the permissible value it is printed.

CALLS : HEAD3

5.3.27 Subroutine INT3

This subroutine initialize PG, NG, V, TH and Y matrix for change in tap for controllable transformer.

CALLS : UP2

5.7.28 Subroutine BSIM

This subroutine simulates branch outages. Outaged branch parameter are changed. Split condition is checked, correction factor for voltage and angles are calculated.

CALLS: SPLCHK, INV4, BNSR, ERROR2

5.3.29 Subroutine SPLCHK

This subroutine handles split cases. The circuit is checked topologically for split condition. Power in outaged branch iscalculated and B and B'' refactorize.

CALLS : UP1. FACTOR. GRES

5.3.30 Subroutine GRES

This subroutine redistributes active power accordingly to either governor droop or according to spare capacity.

CALLS : NONE

5.3.31 Subroutine GSIM

This subroutine simulates generator outages. Qlimits of generator is reduced and the reactive power is also reduced. And fictious Qlimits are assigned if there is no Qlimits.

CALLS : GRES.

5.3.32 Subroutine RESG

This subroutine resaturate all the values modified in routine GSIM

CALLS : NONE

5.3.33 Subroutine RESB

Resaturation of branch values modified in routine BSIM subroutine is performed in this subroutine.

CALLS : UP4

5.3.34 Subroutine SEPSIM

This subroutine simulates specified outages.

CALLS: GRES, RESB, LOAD, ERROR2, INT3, ENASR, OUT, GSIM, JPSR, BSIM, RESG.

5.3.35 Subroutine HEAD1

Prints titles for the printing of input ata in the load flow study.

CALLS : NONE

5.3.36 Subroutine HEAD2

Prints titles for printing of output data in load flow study.

CALLS : None

5.3.37 Subroutine HEAD3

Prints heading for the voltage difference in a line during outage.

CALLS : NONE.

5.3.38 Subroutine ERLOR1

This subroutine prints error message in load flow study.

CALLS None.

5.3.39 Subroutine ERPOR2

This subroutine prints error message in the outage studies.

CALLS : NONE

5.3.40 Subroutine UP1 (L,I,K,N)

Obtains sending number I, receiveing number K of a branch packed in JUMP(L) also entry order of branch packed in NBRANC (L).

CALLS : NONE

5.3.41 Subroutine UP2 (J, I,K)

This subroutine obtains sending bus number I and receiving bus number K of branch packed in J.

CALLS : NONE

5.3.42 Subroutine UP3(L,T,K,N,NC)

This subroutine obtains sending number I, receiving number K, branch entry order N and circuit number NC fromJUMF(".) and NBRANC (L)

5.3.43 Subroutine UP4 (J,I,K,NC)

This subroutine obtains sending bus number I and receiving bus number K of branch packed in J and circuit number NC is also obtained.

CALLS : NONE.

5.3.44 Subroutine CHKIN (CNOM1, CN1, INI, IFIN, K)

This subroutine checks if name CN1 is already in table CNOM1.

INI, IFIN = limits of search.

K = if not in table

CALLS : NONE

5.3.45 Subroutine ASRT (CNOM1, ITAB, INI, IFIN)

This subroutine sorts array CNOM1 alphabatically. ITAB is parallel array arranged is same order as

INI, IFIN = limits of CNOM1 between which sorting takes place.

CALLS : NONE

5.3.46 Subroutine NSRT (SSOR, ITAB, INI, IFIN)

Numerical sort of array JSOR is performed. ITAB is parallel array to JSOR

INI, IFIN = limits of JSOR between which sorting take place.

5.3.47 Subroutine ENNSR (N2,N1, J)

Binary search for numerical arrays are performed. Branch entry order is N2, retruning position N1, J is the array selected.

CALLS : NONE

5.3.48 Subroutine ENASR (CNOM1, CN1, JNI, IFJN1)

Binary search of name CN1 in table CNOM1

INI, IFIN = limits between which search take place.

K = portion of name CN1 in table CNOM1

CALLS : NONE

1

5.3.49 Subroutine FNSRT (L,L10)

Searches in JUMP the first element in which busbar number L appears and return the position in L10.

5.3.50 Subroutine JPSR (III, KKK, NSEC, LSE1)

The subroutine searchs element III, KKK in circuit NSEC in array JUMP LSEL is the portion in jump

54 Variables used in the Packag

5.4.1 Variables dimensiond for buses

IFLAG Flag indicator ANOML Bus Name Active power generated PG QG Reactive power generated activer power load PLŒ Reactive power load V Voltage magnitude Shunt suceptance ВK Capacitor and shunt susceptance **B**KK YSR Real part diagnol of admittance matrix YSI Imaginary part diagnol of admittance matrix PMM working array = short circuit rating

TH = /Voltage angle

NOZE , LCOL, LCOLB, NSEQ = used in factorization

routine

THCORR = Vector correction for B'

VHCDRR = Vector correction for B

PGSTO = PG base case load flow

solution

VHSTO = Voltage magnitude base ease load flow solution

THSTO = Voltage angle base solution

IAUX = Auxillary storage

5.4.2 Variable dimensioned for lines

GL = Inverse of reactance

YR = Real part of mutual admittance

YT = Imaginary part of mutual

admittance

JO1L2 = 10000 # MVA Limit 1 +

MVA limit2

JUMP = 1000000 * sending bus bar

+ 1000 * Receiving bus bar +

Number of circuit

SSNL = Total line suseptance/2

ortapsetting

KLS, GLS, ils, i used in factorization routine

5.4.3 Variable dimensioned for factorization subroutine

Dimension = $2 \times dimension of branchee$.

+ dimension of nodes

DE. DB, ITAGB, LNXT, LNXTB

5.4.4 Variables dimensioned for phase shifter

TAPB = Value of quadnature tap

YRK1 = Imag part of mutual admitance -

TAPB

YIKl = Real part of mutual admittance-

TAPB

NLP = Array_relating JPIKL, TAPB, E

YRK1, YIK1 to branch entry order

JPIKL = as JUMP

5.4.5 Variables dimensioned for controllable transformer

TAPA = present value of tap

BLMT = Lower limit of tap

STEP = increment of tap per step

TLMT = upper limit of tap

NLT = array relating TAPA, BLMT, STEP,

TLMT, VSPEC, JTIKE, TVSPEC to

branch entry order

JTIKL = as JUMP

VSPEC .specified voltage .specified voltage

TVSPEC = Tolerance specified in voltage

magnitude

YRT = Real part of mutual admittance

without tap

YIT = Imaginary part of mutual admittance

without tap

TAP = Initial setting of tap

5.4.6 Variables dimensioned for controllable phase-shifter

These arrays are provided for future implementation but are not used in the program

BLMB, STEB, TLMB, PPSPC, TPPSPC

5.4.7 Vriables dimensioned for voltage limited buses

VMIN = Minimum voltage limit

VMAX = Maximum voltage limit

ITABL = array relating VMIN, VM-X to

controlling bus bar

ITAB4 = Array relating VMIN. VMAX to con-

trolling bus bar

ANOMR1 = Name of controlling bus bar

VS > = Initial voltage at remote contro-

lling bus bar.

QGS = Initial reactive power generated

at controlled bus bar

SQ = sensivity factor for PQ V or PQ

RV bus bar

5 # .8 Variables dimentioned for system

NSISV = number of the system

INIS = beginning of the system in array

ANOMI

IFINS = final of system in array ANOM1

NBXSTS = number of bus bars of the system

NRXSTS = number of branches of the system

PSPEC = active power exchanged for the

system

TTSPEC = tolarance in exchange specified

for the system

CNOMS = Name of the system

PGS = Initial active power at swing

bus

5.4.9 Integer variables

JIN = Input unit number

JOUT = Output unit numver

JTAPE

JTEPE

JITPE = Workfiles

JTOPE

JTUPE

NODE = 1 Reference bus

2 PV bus

3 PQ bus

4 swing bus

5 PV with Q limits

6 PQ with V limits (1/cal source)

7 PQ with V limits (Remote source)

NBRANC = 1 Line

2 Fixed Transformer

3 Controllable Transformer

4 Fixed interconnection

5 Controllable Interconnection

6 Fixed phase shifter

NK = Total number of nodes

NL = Total number of Branches

NK 5 = Number of PVQ buses

NUSIS = Number of system

NOTIV = Number of controllable intercom -

ection

NOVR = Number of PQV and PQRV buses

NOTV = Number of controllable

NPHASE = Number of phase shifters

NL4 = Number of fixed interconnection

NURUTA = 1 outage study

5.4.10 Indicator variables

KJLIT = Number of irterations of which adjustments are automatically applied.

KILL = switch to indicate error

IAREA a Indicators of Area inter changes

IIREF	=	Second reference bar
LFMAX	=	2 - dimension of branches -
		dimension of nodes
ITER	=	no of iterations
MAXIT	=	Maximum number of iteration
IDIVE	=	Indicator of divergence
ICP .	=	Switch to indicate Area inter-
		changes is required
ICQI	=	switch to indicate nat voltage
		limits adjustment is required
ICQ 2	#	switch to indicate that on line
	i.	control tap adjustment is required
ICQ3	=	Switch to indicate that reactive
		limit adjustment is required
KPl	= ·	switch to indicate that active
		power has been modified in swing
		b s
KQ 1	=	switch to indicate that PQV and
		PQRV buses have been modified
K Q3	æ	switch to indicate that voltage
		of PVQ bus has been modified
K Q4	=	switch to indicate that AVR has
		been modified
ICGEN	=	switch indicate there is generator
		data

IOUT switch to indicate that load flow routine is used for outage simulation TOUTI Switch to indicate wether correction is required for 1-B and B 2. B only 3. B only 4. None. DCON VA Specified initial convergence to introduce adjustments. OIVI Indicator that there is something wrong in load flow solution IJOL 1 Indicator used to read only once in routine LOCALC the array JCIL1L2 from JTEPG IOU numbers of branch outage IOUL1 number of load outages number of generator outages IOUG IGEN number of generators used for outage studies NGEN Total number of generators IIDI2 switch to define redistribution accordance to governor drop IIDI3 Switch to indicate redistribution according to spare cpacity. IPARAL. Switch = 0 when automatic calculation of double parallel outages IOFF Indicator of something wrong in

simulation.

5.4.11 Variables dimensioned for Q limited buses and generator

WMIN = minimum reactive power generation

QMAX = maximum reactive power generation

ITAB5 = Array relating Q MAX, QMIN to

alphabaticalorder

VSS = Initial voltage at PVQ buses

SQQ = Sensivity factor for reactive

limits

5.4.12 Variables dimensioned for generator

NDOEG = 10 - Number of bus bars + Node /

type

EG = Voltage behind synchronous reac-

tance

EGG = Not used

BBB = inverse synchronous reactance

ESTA = Governor droop or 1/spare capacity

FREVA = No load frequency

JPMIMA = 10000 - PMIN + PMAX

TA = Minimum reactive limit of gene-

rator outaged

TC = Maximum reactive limit of gene-

rator outaged

JTA 10000 - Minimum active power +

maximum active power of Gen.out

5.5 Input Structure

For the ease of reading data from the card reader the data has been described as 80 coloumn wide. The data is formatted.

The first two data card read eight character

ASCII control variables. Total number of times program
is to be excuted is also defined. The value of control
when found in the first 8 coloumns of a data card signifies either end of certain type of data or start of a
new data.

The control variables in 1st card are:

Coloumn	Format	Variable	discription.
1	A8	ATIT	Start of system data
9	A8	AMIS	Start of commend cards
17	A8	ASIS	Start reading system data
25	A8	ABAR	Start reading bus data
33	A8	AL IN	Start of line data
41	A8	AINT	start of interconnection data
49	A8	ACAM	Go for outage study
57	A8	AFIN	Finish study or finish
			interconnection data
65	A8	ASTUD T	Read if generator data
			present
73	Λ8	AGEN ER	Start of outage data

Variables defined in second card are:

Coloumn	Format	Variable	Description
1	A8	AOUPAR	Start of outage data
33	8A	AFFIN	Start of second execution
72	18	ITOTI	Total number of exeutions.

Various types of records in sequence are:

(a) System record

This is a two card record. The record begins with control variable ATIT on the first card

Coloum	Format 3	Variable	Description
1	10A8/6A8	ANOM	system heading
49	13	NEST	Study
52	13	NSCAO	Case
55	F53	DCONV	Maximum MW/MVAR mismatch
60	14	MAXIT	Maximum number of iteration
64	Fu4	BASE	MVA Base
68	1011	IOPT	Ten option for printing
78	F3.0	P	Convergence factor

5.4.11 Variables dimensioned for Q limited buses and generator

WMIN = minimum reactive power generation

QMAX = maximum reactive power generation •

ITAB5 = Array relating Q MAX, QMIN to alphabaticalorder

VSS = Initial voltage at PVQ buses

SQQ = Sensivity factor for reactive limits

5.4.12 Variables dimensioned for generator

NDOEG = 10 - Number of bus bars + Node /

type

EG . = Voltage behind synchronous reac-

tance

EGG = Not used

BBB = inverse syschronous reactance

ESTA = Governor droop or 1/spare capacity

FREVA = No load frequency

JPMIMA = 10000 - PMIN + PMAX

TA = Minimum reactive limit of gene-

rator outaged

TC = Maximum reactive limit of gene-

rator outaged

JTA 10000 - Minimum active power +

maximum active power of Gen.out

TX Governer droop or 1/spare capacity TD not used TE. inverse of synchronous reactance of generator outage TF Voltage behind synchronous reactance of generator outaged JAUX 1000 + Generator entry number + Q limit entry number. **JEUX** 1000 - Fictitious Q limit entry order + generator entry number. minimum voltage of controlled TJ bus bar JK Maximum vlotage of controlled bus bar. ITC Pointer to entry order of voltage limits.

5.4.13 Variables diemnsioned for controllable interconnection

ITAB6 = 100 - sending system + recieving system

(b) Comment cards

These cards are entional. It begins control and variable AMIS. Upto 10 comments cards of 80 column wide may be accommendated.

(c) System data

For each new system the circuit data is read. It begins with control variable ASIS.

The variable read are:

Coloumn	Format	Variable	Description
ì	A8	AREFER	Refrence bus name
9	14	NSIS	System number
13	F 5.0	PS	active power exchange
18	F3.0	TPS	Tolerance in active power
			exchange
21 7/	.8 AN	MC	System name

(d) Bus data

The bus data begins with variable ABAR

The data describes and selects the type of bus.

The records repeated until all buses have been described. The variable are:

Column	Format	Variable	Description
			:
1	A8	CONTROL	Bus name
9	F6.4	VK	Voltage at the bus
15	F6.1	PCK	Active power generated
21.	F6.I	PLK	Reactive power generated
27	F6.1	PLK	Active power load
33	F6.1	QLK	Reactive power load
39 ·	F6.1	OM INK	Minimum reactive power
•			generated
4.5	P6.1	QMA X K	Maximum reactive power
÷			generated
5 1	F6.4	$\mathbf{M}\mathbf{I}_{N}\mathbf{K}$	Minimum voltage limit
57	F6.4	VMAXK	Maximum voltage limit
63	F5.0	VBASEK	Base voltage
68	A8	CN AMEK	Controlling bus
7 6	F5.0	RATI	Short circuit rating

(e) Line data

This data begins with variable AL in .It may repeated till all the lines have been described. This data ends with ACAI or AFIN.

	····	<u> </u>	
Column	Format	Variable	Description
1	A8	CONTROL	Sending bus
9	A8	CN AMEK	Receiving bus
*	F7.5	RR	Line resistance in P-7.
24	F7.5	XX	Line reactance in P.U.
31	F7.5	SS	Total suseptance in P.U.
38	Il	INDK	Indicated for presence of
. ·			phase shifter
39	F5.2	TAP	./. initial tap
44	F5.2	BB	./. lower tap
49	F 4.2	ST	./. increment tap
53	F5.2	TT	./. upper tap
64	F6.4	TS	tolerance specification
70	<u>15</u>	LF1	lower MVA rating
75	I <i>'</i> 5	LF2	upper MVA rating
80	Il	NC	Area number

If INDIC = 1 then next card contains following data

Coloumn	Format	Variable	Description
1	F5.2	TEP	Value of gued tap
6	F5.2	· BB	./. Lower tap
10	F4.2	ST	./. increment tap
15	F5.2	TT	./. upper tap
19	F6.1	V PS	specified voltage
25	F6.1	TS	Tolerance specification

(f) Inter connection data

This variable begins where AINT and ends with variable AFIN. The variables read are:

Column	Format	Variable	Description
1	A8	· CONTROL	Sending bus
9	A8	CONTRK	Receiving bus
17	F7.5	RR	Line resistance in P.U.
24	F.7.5	XX	Line reactance in P.U.
31	F7.5	SS	Total susptance in P.U.
38	. I2 .	NSI	System sending No.
40	12	ŅS2	System receiving No.
70	15	LF1	Lower MVA limit
85	15	LF2	Upper MVA limit
80	n	NC	Area number
	•-		

(f) Inter connection data

This variable begins where AINT and ends with variable AFIN. The variables read are:

Column	Format	Variable	Description
1	A8	· CONTROL	Sending bus
9 .	A8	CONTRK	Receiving bus
17	F7.5	R R	Line resistance in P.U.
24	F.7.5	XX	Line reactance in P.U.
31	F7.5	SS	Total susptance in P.U.
38	. I2 .	NSl	System sending No.
40	12	NS2	System receiving No.
70	I 5	LF1	Lower MVA limit
\$ 5	I 5	LF2	Upper MVA limit
80	II ,	NC	Area number

(g) Generator input data

This data begins with control card ASTUDY.

The variables read are:

Column	Format	Variable	Description
		,	
1	12	ISTUDE	1 for no generator data
3	12	ISTUD2	O for no generator data
5	12	ISTUD3	O for no generator data
7	12	ICGEN	O for no generator data
9	F5.2	FIPER	Frequency drop behind
			generator.

(h) Outage data

This data instructs the type of outage studies to be carried out. The data begins with control card AOUPAR. The vatiables read are:

Column	Format	Variable	Description
1	Il	ILl	Single line outage
2	IJ	IT5	Double parallel outage
3	Il	I13^	Specified line outage
4	Il	IG1	Half loss generation
5	Il	IG2	Full loss generation
6	Il	IG3	Sepcified calculation
7	Il	ICP	Area interchanges
8	Il	ICP2	Redistribution of power
			on split condition
9	Il	ICOT	On line tap changing
10	Il	ICQ2	V limits on PQ V or
			PQRV buses
11	Il	ICQ3	Q limits on PVQ buses
12	Il	ISPLIT	Consideration of split
25	F4.2	VDROP1	Single outage voltage drop
			limit
33	F4.2	VDROP2	Double outage voltage
			drop limit .
33	711	IOPT	Options for printing
	•	•	(option 4- option 10)
	•	•	

APPENDIX A.1

Tree for subroutines called in the outage studies

Tree for program MAIN

Tree for subroutine LOAD

Tree for subroutine OUT

Tree for subroutine AUSTSIM

Tree for subroutine SEPSIM

Tree for subroutine BSIM

	ļ	:				FOLLER LIT 2 TVR	0001 0001 1000 1000 1000		
	, , ,	CONTROL	·			FONER PI	100 100 100 100 100 100 100		
X. X.		VOLTAGE LIMITS HIM. MAX.		: 東京東		VOLTAGE TOLER. SPECIFIED P.U.			
1 电阻压的系统	0ATA 	,	•	•		INCR. UPFER TAP F.U.			
		REATIVE LIMITS NIM. NI				LOWER J			
		A D REACTIVE	.000 .100 .150 .450		BRANCH DATA	INITIAL			
	SUS IN	L O A C REAL RE	. 2000 . 4500 . 2000 . 2000	,	ВВВИС	TOTAL SUSC. F.U.	.05000 .05000 .04000 .03000		
		ION REACTIV	. 300 . 300 . 300 . 300	E T		REACTANCE F.U.	.06000 .24006 .18000 .18000 .12000		
	1	GENERATION REAL REA		M 2- M		RESIST.	.02000 .08000 .06000 .04000 .01000		
X X X	; ! ! ;	日 日 15		* *		=	ਜ਼ਿਜ਼ਜ਼ਜ਼ਜ਼ਜ਼		
		E VOLTAGE	1.0600			RECIVING B U S	SOUTH LAKE LAKE ARIN ARIN ELM ARIN ELM		
	1	E .	NORTH ELN LAKE NAIN SQUTH			SENDING B U S	NORTH SOUTH SOUTH SOUTH CONTH RRIN		

X X

BUSBAR LOADINGS

L O B D SHUNT RCTIVE REACTIV RESCTIV CHU) CHVRR)	60.0 10.0 .0 .0 .0 .45.0 15.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	165.0 80.0 .0
GENERATION . ACTIVE REACTIV CHWS CHVRRD	86. 00.00 00.00	66.4
GENERF PCTIVE CHU)	130.4 0.00.0 0.00.0	170.4
A G E RNGLE (DEG)	24,20 24,20 24,57,20 25,70	
V O L T A HAGNITUDE (P.U.)	1.0600 .9925 .9906 .9833 1.0304	9
TYPE	A G G G G	! ! ! ! !
E E	NORTH ELN LAKE NAIN SOUTH	TOTAL

一 工程中的工作来

X X X

BRANCH LOADINGS

;											
	TAP SETT- ING (P.U.)										
	OVER- LOAD										
	A LIN2 HVA	100	2001	100	100	100	100				
	111	100	32	100	100	100	100				
	ACTUAL LIM1 NVA NVA	A -	8	10	S S	88 83	13 13				
	LINE LOSSES ACTIVE REACT. PERCEN- CMUS CHVARS NTAGE										
	ME LOSSE REACT. CHVAR)	, 4 6, 4	1.74	-1.97	. 65	-2.67	-2.18				
	LI RCTIVE CMUD	ग प ग ८		1.53	1.24	ų. γ	Ω.	เก	ıШ	0	พั
	SIEVED REACTIV CHVARO	16.5 2		22.8	13. A	15.4	18.2	SYSTEM LOSSES	REACTIV	16.30	-29.86
	POWER RECIEVED ACTIVE REACTIV CHWY CHWARY	85. A	. 61 . 62	87.9	54.0	6.47 6.43	27.3	SYSTI	ACTIVE REACTIVE	0.43	
	SENT REACTIV CHURRO	15.0 6.0	17.0	20.0	14.1	12.8	16.0			SERIES	SHUNT
	FONER S	41.0	. or	ω Φ.	55,2	ડા જ.	28.0				
	z.	F4 F	4 ~				- -				
	RECEIVING B U S	LAKE	HRIN	SOUTH	ELA	LAKE	MIHN		·		
	SENDING B U S	NORTH	LAKE	MORTH	SOUTH	SOUTH	SOUTH				

5,43 -13,56

TOTAL

SYSTEM 1
OUTAGE STUDY BRANCH OUT LAKE NORTH

SYSTEM 1 OUTAGE STUDY BRANCH OUT SOUTH MAIN

SYSTEM 1

OUTAGE STUDY BRANCH OUT SOUTH ELM

SYSTEM 1

OUTAGE STUDY

BRANCH OUT LAKE

NORTH

SYSTEM 1

OUTAGE STUDY

BRANCH OUT MAIN

ELM

SYSTEM 1

OUTAGE STUDY BRANCH OUT MAIN LAKE

OUTAGE STUDY GENERATOR OUT SOUTH DROP= 20.8 M.W.

S Y S T E M 1

OUTAGE STUDY GENERATOR OUT SOUTH DROP= 48.8 M.W.

14 805
IEEE-14
XXX

	CONTROL	
	VOLTAGE LIMITS C MIN. HAS.	
	MITS HAX.	240 440 500 500
	REATIVE LIMITS HIM. MAR	-,060 .000 -,400
BUS DATA IN CP.U.>	L O A D REAL REACTIVE	000 050 000 018 018 016 000 000 000 000 190
79	L O R	. 000, 000, 000, 000, 000, 000, 000, 00
	ION	
	GENERATION REAL REAL	89889888888888888
	n E VOLTAGE	1.0500
	H H H E V0	FOURTEEN OME TEN THO SIX MINE FIVE FOUR FOUR ELEVEN THELEVE

ВКАИСН ВАТА

黑黑黑

POWER POWER LIM 1 LIM 2 NVA NVA 200 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 VOLTAGE TOLER. SPECIFIED P.U. LOWER INCR. UPPER TAP P.U. P.U. IMITIAL TAP .9780 .9690 .9320 .05288 .04920 .04388 .03746 .037460 .037460 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 TOTAL SUSC. P.U. .05917 .22304 .19797 .17382 .17103 .19890 .25581 .13027 .17001 .17001 .19988 .25022 .25022 .25202 REACTANCE F.U. RESIST. P. U. z RECIVING B U S FOURTEEN THIRTEEN THIRTEEN THIRTEEN THIRTEEN THIRTEEN FOUR SEVEN SEVEN SEVEN SEVEN SEVEN MINE THREE TH SENDING B U S

BUS
T.
EE-
IE
×

BUSBAR LOADINGS

u T T	TYPE	V O L T HAGNITUDE (P.U.)	H G E ANGLE	GENERI RCTIVE CMD	GENERATION ACTIVE REACTIV CMD (TWAR)	L O RCTIVE (TH)	REACTIV	SHUNT RENCTIV CHVRR>
this gain was day, and they gain they gain the first day and the first	: 1 1					•	,	,
FOURTEEN	REF.	1.0600	00.	232.6	-21.5	o,	٥	٥.
팔	ca Ca	.9647	-17.17	0.	o.	4.0	್ಲ್	o.
TEN	ind Ca	1.0291	-14.79	٥.	4. □.	•	o,	o.
911	r. Ci	01 10 10 10 10 10 10 10 10 10 10 10 10 1	-15.73	0.	Ģ.	in in	လ က	ο.
X V	Œ.	1.0091	-14.83	٥.	o.	in in		o,
FIRE	Pa	.9910	-16.24	α.	o.	29.5	16.6	18
FIVE	PQ	1.0301	~8.9€	o.	o,	7.6	₽. -	o.
FOUR	Pū	1,0219	-10.42	α.	o.	4. 6-	о. 19	o,
THREE	G G	05L4.	-15.56	0	¢.	6.1	1. 5.	o.
SEVEN	Pi	1,0033	-14.39	O,	٥.	٥.	o,	φ.
EIGHT	G.	1,000,	-16.58	0.	Ċ,	9.0	യ	°.
ELEVEN	æ ∧d	ው ማ ማ	-14.51	0.	24.0	11.2	io N	Φ,
THELEVE	A C	1.0100	-12.73	0,	ਚ ਜੋ (ਪ	के ध	19.0	o.
THIRTEEN	PV D	1.0450	-4.98	40.0	ር- ቁ	21.7	12.3	o,
	1			1				
TOTAL				272.6	82.6	259.0	Ω* Ю.	18.7

BRANCH LORDINGS

TAP SETT- ING (P.U.)		.9690	.9780	. 9320
THP		#	"	# #
OVER- LORD				
LIR2 NVR	001 001 001 001 001		100	000000000000000000000000000000000000000
LIN1 HVA	100 100 100 100 100	33333	80000	000000000000000000000000000000000000000
ACTUAL NVA	ক⇔ក្ដុំ ស	MH 041	100 100 100 100	41 158 24 25 25 25 25 25 25 25 25 25 25 25 25 25
S PERCEN- MTRGE				
LINE LOSSES ACTIVE REACT. P CHD (HVRR)	21. 20. 20. 20. 20. 20.	1	2.31	4 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1
RCTIVE ONLO	.08 .07 .13	98.009	99.50	
TEVED CHVAR)	1 0 10 1.	11 11 11 11 11 11 11 11 11 11 11 11 11	က်တွင်း တြင်းလုပ်ငံ ကြင်းလုပ်ငံ	7.3 -15.6 7.9 -15.6 7.9 -1.9 5.0 -3.9 5.0 -5.5 0.9 -1.6 0.9 -1.6 TIVE REACTIVE TH HVAR 3.64 56.22
POUER RECIEVED ACTIVE REACTIV CHUS CHURRS	0 4 0 k 0 4 0 C		សេច សេច ភេព	37.33 1523.2 1523.2 1523.2 70.0 70.0 13.64 13.64
SENT REACTIV CHVARO	. a. v v. v	1 1 4 1 4 1 6 6 1 6 1 6 1 6 1 6 1 6 1 6	ימטו! רפירם	-115 -2.1 -2.1 -4.3 -4.3 3.6 SERIES
POWER S ACTIVE P	0 4 00 K F → 4 0	6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	160 m 160 m 160 m	ы ийдарг - к-гы фары - ы фары к-гы
Z	निल्लान		4 4 4 4 4	ੀ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ
RECEIVING B U S	ONE SIS ONE THE	NINE FOUR THO TEN	SEVEN EIGHT THO	CLEVEN THREE THELEVE THE FOUR FOUR THELEVE
SENDING' B U S	THO TEN MINE	FOUR FIVE THREE SEVEN	SCVCA FOUR NINE ELEVEN	FIVE ELEVEN FOUR FOUR FOURTEEN THI RIEEN THI RIEEN

BUS · DATA IN CP.U.)

KHILE	VOLTAGE	GENRATION REAL REAC	REACTIVE	LOAD REAL R	D REACTIVE	REACTIVE LAITS AIM. HAN.	VOLTAGE NIN.	LIMITS MAS.	CONTROL BUS
	1 1								
10	1.0300	-0.130	0000	000.0	00.00				
100		0.000	0.000	0.200	0.100				
101		000.0	0.000	0.110	0.070				
		000	000.0	0.210	0.100				
100		000.0	0.000	0.120	0.070				
105		0.00	0.000	0.300	0.160				
105		0.000	0.000	0.420	0.310				
107		000.0	0.000	0.380	0.150				
108		0.000	0.000	0.150	0 0 0 0 0				
104 11	i i i	0,000	000.0						
11	1.0200	200 200 200 200	0000	0000	1500				
111		000.0	0.00	0.050	0.030				
112		0.00	0.000	0.430	0.160		•		
110		00000	0.000	0.020	0.010				
114		0.000	0,000	0.030	0.030				
115		0.000	0.000	0.080	0.030				
116		000.0	0.000	0.220	0.070				
117		0.00	0.000	0.200	0.080				
118	,	000.0	000.0	0.330	0.150				
12	1.0150	140	0.00	000	0.000				
13	.9680	060.0-	0.000	0.620	0.130		•		
<u>₹</u>	0796.	0.070	0.000	0.430	0.270				
15	.9630	0 0 0 0	0000	5,290	0.23 0.23 0.33				
16	.9840	0.000	0.000	000	0.260		•		
	0886.		000.0	0.310	0.170				
0 (1 10	00/0.	•	0.000	0.200	0.236				
→ (7000 7000 7000	Ģ	000.0		00.400				
A C))))	0000		100				
2.0	1.00000	V 0.40	000.0	0.870	0.300		•		
1 71	9550	0.480	0000	1.130	0.320				
100	.9520	0.000	0.000	0.630	0.220				
<u>\</u> 24	.9540	000.0	0.00	0.840	0.180				
នា (N	.9820	1.550	0,000	2.770	1.130				
126	0000	1,600	0.000	000.0	000.0				•
27	0866.		0.000	0,770	0.140				
00 (O	1.0050	3,910	0,000	0000	7				
	1.0500	3,920	0.000	0,550	0.180				
0 0	0055	000.0	000.0	20.0	0,000				
0.0	000	0000	0000	0 t v					
77	0000		0000	0000	0000				
1 1			0000		0000				
0 TO	01.00 0.00 0.00 0.00	<u>ې د</u>	000.0	0.000	0.00				
i in) O (000.0	000.0	0.680	0.360				
) W	1,0060	0.00	0.000	0.610	0.280				
에 에	1.0400	4.770	0.000	1.300	0.260				

XXX

BUS DATA

CONTROL BUS VOLTAGE LIMITS NAM. REACTIVE LMITS MIM. MAK. LOAD REACTIVE 0.240 0.000 GENRATION AL REACTIVE REAL VOLTAGE ..9850 1.0150 1.0050 ...9870 ...9870 ...9870 1.0100 ...9730 ...9730 ...9730 ...9730 ...9730 .9730 0066 MINTER MINTER ϕ of the proposition of the p

DATA		CP.U.>
BUS	1	I

NAME	VOLTRGE	GENRE	GENRATION L REACTIVE	LOAD REAL R	AD REACTIVE	REACTIVE LNITS NIM. MAR.	VOLTAGE NIN.	LIMITS MAS.	CONTROL
		1						1	
00 117	0500	0.000	0.000	0.240	0.150				
, O.	1.0150	0.000	0.000	0.000	0.000				
A. 4	1,0150		000.0	000.0	000.0				
7 T	•		0.000	0.780	0.420				
현	0086.		0.000	000.0			*		
M T	0066		0.000	0.650	0.100				
4. 4.			0.000	0.000	0.000				
A. TU	1.0170	1	0000.0	0.370	0.180				
46			000.0	0.230					
47	9710	000°0	00000	က တ က က	0.220				
₩. (. 9650 000 000 000	*	000.0	0,610					
on Tu		•		000	0000				
า นิก	•	0000			000.0				
5 £	0000		000	200			,		
1 (N) (O	0526		000.0	0.250	0.130				
100	00000°		0.000	0.000	0.000				
54 4	1.0050		0.000	0.000	0.000				
53			000.0	0.200	0.030				
56		•	000.0	0.390	0.100				
57			000.0	000.0					
00 (1 10 (1			0,000	0.190					
ф. Ю.	0000		0.000	0.000	200.0				
ο γ γ α.	374.	•	000.0		2.500				
5 ¥ 0 ¥			000.0	0.00	0.160				
7 N 2 G			000.0	0.140	0,010				
) 19) \D			0.000	0.250	0.100				-
4			0.000	0.110	0.030				
o O			0.000	0.180	0.030				
ē.		9	0.00	0.140	0.00				
Γ <u>-</u> :			000.0	0.100	0.020				
Φ V			000-0	0.070	0000				
ν Ο Γ•	0200		0.000	006.0	0.300				
- f-			0.00	2.0	0.040				
 - ['-			0.000	0.000	0.000				
72			0.000	0.230	0.030				
73 73			0.000	0.330					
ण [-]			00000	0000	0000				
i -1			0.000	0,000	000.0				
- r 0 r			0000	0 C	0.100				
- (0 - (1		1 1	000.0	0.180	0.0.0				
- 1 00			0.000	0.150					
တ	0579.	•	000.0	0.600	•				
			000	0 0 0 0 0 0 0 0	0.220				
7 C			000.0	900					
V 10			0000	0.170	0.040				•
)									

BUS ORTA

3545	VOLTAGE	GENEREL	GENRATION IL REACTIVE	REAL	LORD REACTIVE	REACTIVE LAITS MIN. HAR.	VOLTAGE NIM.	LIMITS MAX.	· CONTROL BUS
1								***	
A.		00000	0.000	0.170	0.080				
10 00		0.000	0.000	0.180	0.050				
36		0.000	0.000	0.230	0.110				
5-6		0.000	0.00.0	0.120	0.030				
100		0.000	0.000	0.120	0.030				
ф. 60		0.000	0.000	0.780	0.030				
O.	.9620	0.000	0.000	0.450	0.250				
06		0.000	0.000	0.000	0.000				
₩		0,000	0.000	0.000	0.000				
N m		0.000	0,000	0.280	0.070				
E C		0.000	0.000	0.000	000.0				
a.		0.000	0.00	0.000	0.000				
EQ.		0.000	0.00	0.470	0.110				
96		0.000	0.000	0.710	0.260				
P-		0.000	000.0	0.390	0.320				
00.00		0.000	0.00.0	0.000	0,000				
ů,		0.000	0.000	0.540	0.270		•		

BRANCH DATA

POUER LIM 2 HVA	
POWER LIN 1	
VOLTHOE TOLER. SPECIFIED F.U.	
UPPER TAP P.U.	
INCR.	
LOUER TAP P.U.	
INITIAL TAP P.U.	
TOTAL SUSC. P.U.	01260 00780 00780 000780 00070
REACTANCE P.U.	0.09890 0.09890 0.06880 0.06880 0.06880 0.06880 0.059400 0.059400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050400 0.050500
RESIST.	0.02020 0.01520 0.01930 0.01930 0.01930 0.01930 0.01930 0.01930 0.02520 0.01520
Z	
RECEIVING BUS	888 4888 8888 8888 8888 8888 8888 8888
SENDING	888888478668844888448884488888888888888

NER POUER N 1 LIN 2 NVA NVA	100			100 100		150				100		500 500		100 100		100 100	100		150 150			100 100				100 100				100	•			150 150 250 250	100 100			100	100		
POWER LIM 1	Ä		· =	Ā	⋽	-	≓ .	-		-	→ ₹	ric	, , ,	7	=	Ä	Ä =	4 =	i - -i	Ħ	Ä	Ā P	ā #	. 	ā	Ā Ā		i	≒	Ä .	4.5) =	Ä	ř	j =	. =	큐	Ä :	4	, ,,	-
VOLTAGE TOLER. SPECIFIED P.U.																				•																					
UPPER TAP P.U.											-																											•			
F.U.																																					•				
LOWER TAP P.U.																																									
INITIAL TAP P.U.	•														,																										
TOTAL SUSC. F.U.	.01260	08500.	.01420	.02020	.00860	.00100	.00860	.00700	.00260	.00420	707CZ.	51500	.00240	.00940	.01060	.01780	.00900.	02150	.02220	.00200	.01600	02320	00550	.02000	.00560	01480	03750	.01220	.02020	.05860	00000	.05100	.02440	08820	00400	08600	.01020	.01180	.00400	01240	0.00
REACTANCE P.U.	06660*0	0.04240	0.10800	0.16000	0.06880	0.00800	0.06820	0.05400	0.02080	0.03400	0.00040	0.02020	0.01960	0.07310	0.08340	0.14000	0.07070	0.24440	0.04370	0.03940	0.12440	0.18010	0.03010	0.15630	0-04930	0.11700	0.44.00	0.09700	0.15900	0.11530	000000	0.41150	0.19600	0.16300	0.00000	0.07410	0.08550	0.09430	0.03510	0.0980.0	
RESIST.	03030	01230	.02410	.04840	.02090	.00180	.02030	.01190	.00450	.00860	00430	00000	00200	.02220	.02120	.03290	.02150	05450	01320	.01200	.03200	.04540	01910	.04740	.01110	.02520	01830	05030	.03420	.03170	0.1500	.10220	.04880	.03180	00000	.01640	.01910	.02370		00000	00440
z	₩ 1		-	-	1	-	-	-	-	Η,	⊶ •		4 ,	-	~	-	н,		-	-	-	⊶.		4	-	٦,	 -		~	 .	4 +	-		⊶.		-	-	٠,		÷ •	٠,
RECEIVING BUS	in i	g 4	5	Φ	50	57	50	m	58	Φį	17	y Dur	Դա	51	53	117	ž, L	~ r	प - ४ <u>२</u>		72	ው i	ი ი	, T	ů,	υ Σ	0 4) (C	68	£ 12	9 =	: F	35		7 ¥	116	69	02.	. r.	. ī	1 t
SENDING	30	3.00 1.00	36	56	€1	61	57	55	m	, 28 1	T 1	ric	50	60	Ġ.	vo ·	۰	61	1	۰,۲۰	7	(O)	9 Y	. J	6	<i>თ</i> :	v v	ğ. Ş.	57	00 0 VD V	0 0 0 4	101	10	11	71.	27	13	6.0	25	- -	֓֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓

X X X

*** IEEE-118 8US

0.000	# # # # # # # # # # # # # # # # # # #		6.19. 04150 002870 002870 00220 01100 03210 05930 01450 01450 01450 01450 01450 01450 01450 01450 01450 015080 016080 06080	6. U. 14200 0. 02640 0. 02640 0. 00940 0. 04900 0. 06600 0. 06600 0. 16300 0. 16300 0. 16300 0. 16300 0. 16300 0. 16300 0. 16300 0. 16300 0. 16500 0. 16500	5.05C. 0.0128. 0.00286. 0.00286. 0.00120. 0.0120. 0.0120. 0.0120. 0.0120. 0.0120. 0.0120. 0.0120. 0.0120. 0.0120. 0.0120. 0.0120.	95.7 3.4 1.4	F.U. F	P.U.	F. U.	SPECIFIED P.U.	1	100
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	######################################		04150 002870 002870 00280 004130 003210 015930 003210 015930 004100 01590 00580 0068	0.14200 0.02680 0.02680 0.00940 0.00940 0.04970 0.06660 0.06660 0.18300 0.18300 0.18300 0.18300 0.18300 0.18300 0.18300 0.18300 0.18300 0.18300 0.18300	01820 00280 00280 00280 002100 002100 02300 00600 00600 00800 00800 00800		**		1			100
	\$ 1 4 6 4 5 4 5 8 8 8 8 6 4 5 6 1 6 8 8 8 8 1 7 8 8 8 8 1 8 1 8 1 8 1 8 1 8		.04150 .00870 .00280 .00220 .00220 .01100 .03210 .03230 .01450 .01450 .01860 .04560 .04560 .04560 .04560 .04680 .04680 .04680 .04680 .04680 .04680	0.14200 0.02680 0.02680 0.02680 0.02680 0.04870 0.06600 0.06600 0.13300 0.13300 0.134610 0.13500 0.13500 0.13500	.01820 .000286 .000286 .00120 .00120 .00120 .00760 .00760 .007760 .007760 .007760					,		100
. * * * * * * * * * * * * * * * * * * *			.00250 .00250 .00220 .00220 .00220 .03210 .03230 .01450 .01450 .03580 .02580 .02580 .02580 .02580 .02580 .02580 .02580 .02580	0.026%0 0.00940 0.00940 0.00940 0.009%00 0.09%00 0.09%00 0.13%00 0.13%00 0.13%00 0.13%00 0.13%00 0.13%00	.000280 .000480 .000480 .000480 .000480 .000480 .000480 .000480 .000480 .000480 .000480						001	00
3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 6 7 4 8 8 8 8 8 7 9 9 1 9 8 8 8 8 8 7 9 9 1 9 8 8 8 8 8 7 9 9 1 9 8 8 8 8 7 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1		. 00260 . 00220 . 00220 . 01100 . 05210 . 05210 . 01850 . 01850 . 05550 . 05560 . 05680 . 05680	0.00940 0.100940 0.10000 0.04970 0.09800 0.09870 0.13300 0.14540 0.13500 0.13500 0.13500	0.001480 0.00120 0.00120 0.00130 0.00600 0.00600 0.00600 0.00600 0.00600						100 081	150
55554455335545555555555555555555555555	6745888544458888844 6745888874414588		0.1150 0.01100 0.03210 0.03210 0.03933 0.03900 0.04500 0.04100 0.04100 0.04000 0.04000 0.04000 0.04000 0.04000 0.04000 0.04000	0.0108100 0.0108100 0.04970 0.06080 0.06080 0.18300 0.18300 0.1840 0.024840 0.024840 0.024840 0.024840 0.024840	00120 001340 001340 002100 002100 00200 001720 003020						100	100
00000000000000000000000000000000000000	7		01100 05210 05210 05920 05920 01450 01450 04550 04550 04000 04000 06850 06850 06850 06850 06850 06850	0.04472 0.04472 0.0660 0.06860 0.06860 0.18300 0.18300 0.1840 0.18600 0.18600 0.18700	. 00600 . 00600 . 00600 . 00600 . 00600 . 00600 . 00600						100	100
244555347474747 244555347454555553	7		03210 03210 03210 01840 01840 01840 02550 02550 0600 0600 0600 0600 0600 0	0.1050 0.1050 0.1050 0.050 0.050 0.1530 0.1530 0.1540 0.1250 0.1250 0.1250 0.1250	01340 52300 52300 00600 00800 01720 03020						100	100
6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	688885444868888849 688885444868888		05920 009900 001840 001840 003550 003550 005080 005080 006840 018500 01910	0.15800 0.05050 0.05050 0.15800 0.15800 0.15700 0.15700 0.12500 0.15700 0.15700	.02100 .00260 .00660 .00660 .02320 .03600 .03600						100	100
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 % % F & & 1 & 6 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9		00900 01840 01450 05550 06550 06550 06550 06560 06840 06840 06840 06840	0.09860 0.09860 0.06080 0.18300 0.18300 0.18400 0.094640 0.18500 0.18600 0.18700 0.18800	. \$280 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050						100	100
0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		01840 01450 01450 05550 04106 05580 05680 04000 06840 06840 05850 05850	0.06050 0.06050 0.18300 0.18300 0.18400 0.0840 0.13860 0.18800 0.18800 0.18800	.00760 .00600 .02320 .01720 .08600						200	200
5 33 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uanaanaanaan	.01450 .05550 .05550 .03580 .06080 .02240 .05000 .03800 .05010	0.04870 0.18300 0.18300 0.18300 0.24540 0.18500 0.18500 0.18700 0.18500	.00600 .02320 .01720 .08600 .03020						100	100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		.05550 .04106 .04106 .05580 .05240 .05240 .05840 .03800 .05010	0.18300 0.18100 0.18100 0.24540 0.13560 0.18600 0.18700 0.18700	.02320 .01720 .08600 .03020	•					100	100
0	44668888488 41688888888		.04106 .08580 .06080 .02240 .02240 .06840 .05800	0.13500 0.16100 0.24010 0.09010 0.13560 0.12700 0.18700	.05120 .08600 .03020					٠	201	100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2		.03580 .06080 .06240 .04000 .06840 .03800	0.16100 0.24540 0.024540 0.13560 0.12700 0.16250	.08600° .03020 .01120						001	001
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.06080 .02240 .04000 .06840 .03800	0.24540 0.09010 0.13560 0.18600 0.18700 0.18900	.03020					,	150	D (
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.02240 .04000 .06840 .03860 .06010	0.09010 0.13560 0.18600 0.18700 0.18900	.01120						100	100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.04000 .06840 .03800 .06010	0.13560 0.18600 0.12700 0.18900							001	007
\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0000010 11011 11		.06840 .03890 .06010	0.18600 0.12700 0.18900 n.06250	.01660							20
ପ୍ରୟପ୍ତ ବେଶ୍ୟର୍ଷ ସ	2007 H W		.03860 .06010 .01910	0.12700 0.18900 0.06250	02220						001	001
0.	21 21 21 21		.05010	0.18900 0.06230	.01280							000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 + 0 ·	7	.01910	0.06250	.02360							
88844444	# Ø				00800.						001	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17		.08440	0.27780	000000						200	000
	i	-	.01790	0.02020	00000						001	100
2222	M 60		.02670	0.07520	02500						007	100
21 21 21	a a		.04860	0.13700	01700						004	300
200	50		00600.	0.04590	. DNA80						300	100
21		, - 1	.09850	0.32400	04140.						901	100
	N.	~ 1	00000°	0.14500	04070.						100	100
833	Γ-1	,,	.04740	0.10400						•	100	100
₩	සි	~ .	02020.	0.00000	00000						100	100
प b 10 (72 û 30 A	-	04090	0.16350	.02020					•	100	100
0 %	8 6	•	02630	0.12200	.01540						100	000
88	(()	-	.01690	0.07070	.01000							
22	4	-	.00270	0.00930	.00360						95	99
22	25	-	.05030	0,22950							201	100
23	ζ. 4	-	.00480	0.01010							100	100
N :	123	٦,	.04750	0.21300	01000						100	100
च . (N) (, o		00400	0.09660	01200				٠		100	100
T 7	0 f	٠.	04070	0.12000	.03520						100	100
i k	. o	-	03130	0.14500	.01880						100	100
0 K	2.00		.03280	0.15000	.01940						100	100
) e	56	-	.00260	0.01350	.00720						001	007
6.0	27	-	.01230	0.05610	.00720						9	201
56	22	1	.00820	0.03760	.00480						351	100
27	53	-	.04820	0.21800	. UZZZU.						100	100
25	N .	- -	.02580	0.11700	10800						200	500
7 0	100	٠.	.00270	0.03020	19000						200	500
23	346 86	ı -	.00140		.31900						120	oci

POLER LIN 2 NVA	\$4 \$4 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5
FOUER LIM 1	\$ \$ \$ \$ £ 5 £ 5 £ 5 £ 5 £ 5 £ 5 £ 5 £ 5
VOLTAGE TOLER. SPECIFIED P.U.	
UPPER TAP F.U.	
INCR.	
LOWER TAP P.U.	
INITIAL TAF P.U.	
TOTAL SUSC. P.U.	001220 001230
REACTANCE F.U.	0.10150 0.10150 0.10150 0.10150 0.10100 0.10100 0.10100 0.10250
RESIST.	002240 000330 000330 000300 000300 000300 000300 000300 001030 001300
RECEIVING BUS	ያቸች የአህ ያቸው የሚያ ነው የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ
SENDING BUS	######################################

*** IEEE-118 BUS

POWER LIM 2 HVA	1500 11000 1000 1000 100
FOUER LIM 1	2011 2011 2011 2011 2011 2011 2011 2011
VOLTAGE TOLER. SPECIFIED P.O.	
UPPER TAP P.U.	
INCR.	
LOWER TAP P.U.	
IMITIAL TAP F.U.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
TOTAL SUSC. P.U.	0.000000000000000000000000000000000000
REACTANCE P.U.	0.12620 0.05250 0.22900 0.22900 0.122900 0.11200 0.11200 0.15840 0.03780 0.076200 0.07620 0.07
RESIST.	02770 04560 02460 02460 02460 04660 014660 01660 01660 01000 00000 00000 00000 00000 00000
Z	
RECEIVING BUS	
SEMDING	ტტტტეგგგგგგეეეენებე 1 4 ექენებებება გენებებებებებებებებებებებებებებებებებებე

X X X

1 ER 1 17 1 2 1 17 1 1 2	20000000000000000000000000000000000000
77	
FOUER LIT 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VOLTHGE TOLER. SPECIFIED P.U.	
UPPER TAP P.U.	
F.U.	
LOWER TAP P.U.	
INITIAL TAP F.U.	2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
TOTAL SUSC. P.U.	0.000000000000000000000000000000000000
REACTANCE P.U.	0.12620 0.20400 0.126400 0.11200 0.16280 0.16280 0.05780 0.05880 0.07630 0.07630 0.07630 0.07680 0.07680 0.07680 0.07680 0.07680 0.07680 0.07680 0.077000 0.07700 0.07700 0.07700 0.07700 0.07700 0.07700 0.07700 0.07
RESIST. P.U.	02770 046050 06050 06050 06050 06050 06050 06050 06050 06060 06060 06060 06060 06060 06060 06060 06060 06060 06060 06060 06060
z	
RECEIVING BUS	14441100444000000000000000000000000000
SENDING BUS	\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

			1		1	1		
지구	TYPE	VOLTHGE	GE	-	TIOH	LOAD	ЯD	SHUNT
	1 1 1 1	HRENI TUDE (P.U.)	AMGLE. (DEG)	ACTIVE R	REACTIVE (AVAR)	ACTIVE CMUS	REACTIVE CHUARS	REACTIVE CHVAR>
,	į	6 1 6			0 0	c	c	a
		7,000		ָּתְּ בְּיִתְּ בְּיִרְ	0 F	000		90
10	is C	0.00 0.00 0.00	0.0		r	0,0	0.0	
100	ı a	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	10		0.0	11.0	0.0	0
101	. d	0.9847) (C		0.0	0.10	10.0	0.0
100	. a	0.000 C	00.00		0.0	0.00	10.0	0.0
100	. d	0000 C	. or • ∀ . • ⊂	0.0	0.0	12.0	Ω. -	0.0
105	. a.	0.4875	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.0	0.0	30.0	16.0	0.0
) V	. 4	0.0776	(()		0.0	42.0	31.0	0.0
0 f 2 G	3 C	0.000	10		0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 60	0,0
_ (C	2 0	10000	- C		00		0	
807 807	3 (L (1.0030	7 0 0 0 1 0	000	00) C	, q	00
in,	r (1.0224	, k		000) c	90	00
ı i) L	00201	_ (}\		0 0 0 0	2 (i i	90
110	<u> </u>	0055	7	2.0	00	o o	o c	90
111	g.	0.9883	10 . T	•	n.u	n i	9 (
112	Œ.	0.9601	C-0		D .	ວ. ທີ່	10.0	
113	₫.	0.9657	-10.92	0.0	0.0	2.0	1.0))
114	g.	0.9665	-11.37	0.0	0.0	o.e	0°0	0.0
115	a a	0.4508	-15.47		0.0	0.8	0.0	0.0
	G A.	6.9593	-15.47	0.0	0.0	0.68	7.0	0.0
1 -	G.	0.9726	-19,14	0.0	0.0	20.0	O.0	0.0
07	. d.	10 D	00 f	0.0	0.0	33.0	15.0	0.0
) 1 ()	3 2	1.0150	10.01	(A)	-220.0	0.0	0.0	0.0
÷	. a	0040	000	0 0	20.01	50.00	13.0	0.0
) T	- <u>-</u>	00000	T.) <u>C</u>	. Δ. 	C. O	22.0	0.0
ָּעַ	- <u>-</u> -	0.9630	1 T		MT.	0.00	23.0	0.0
J 7	- <u>-</u>	0.0840	ı,	0.0	1001	0.00	26.0	13.6
o r	- ā	00000		, 0	0.00) C	12.0	0.0
¥.9	> 1	00000	4000	9 49 9 40 9 40	710) (C	70.00	0.0
ę,	÷ :	00100	- C) ()) ()	9 6	0.0
Ţ.	> : L (00000	N T T T T T T T T T T T T T T T T T T T) () (- 7) C) C	, 0
N :	5 : L (2000		0.0	r r		9.0	, , , , , ,
25	> : L (1.000	F. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.) 	- (- 1 () - 1 ()	0 r	0.00	10
21	<u>≥</u>	1.0250	01.8-	0.40%	ο . Το . Τ		200	200
25	à	0.9550	11,04	യ അ	12.0	113.0	0.55) ()
M	<u>2</u>	0.9520	-15.13	0.0	σ Ω	D.	0.22	0.0
4.0	ā.	0.9540	-14.04	0.0	a. Rů	0 T	18.0	0.0
50) a	0.9850	-10.79	155.0	176.5	277.0	113,0	0.0
26	<u>.</u>	0.9950	-6.07	160.0	-25.1	0.0	0.0	0.0
25	÷	0.9980	-6.69	0.0	ω. Ο	7.0	14.0	0.0
200	9	1.0050	12.42	391.0	1.400 m	0.0	0.0	0.0
9 0	ā	1.0500	10.6	0.000 0.000	386.2	0.00	18.0	0.0
	. <u>a</u>	0088-0	1	0.0	27.6	52.0	22.0	0.0
30	: ā	0.9550	, ,	0.0	य (र्	51.0	27.0	0.0
, r	ā	0.9840	1 T. C.	0.0	17.2	66.0	20.0	0.0
0.1	: a.	0.9800	ത		r- ∞,	0.0	0.0	0.0
1 F	ā	0.4010	. 00	1	10.6	0.0	0.0	0.0
ų v	ā	0.9580) (X	0.0	-1.9	68.0	27.0	11.0
T W	ā	0.000		0.0	10		36.0	0.0
7 4 7 0	> 1 . û	0.000	- C		(A) (A)	6.1.0	0.00	0.0
ָ פֿר פֿר	2 2	00000		9 0) (4) (4) (4) (4) (4) (4) (4) (4	0.00	96	0
-	3- L	2012	10.41).) ()	3 - 5 - 5 - 4)	!

BUSBAR LOADINGS

SHUNT REACTIVE (HUAR)		
AD REACTIVE CHVARD	ស៊ុច១០អ៊ី១១០ស៊ីស៊ីស៊ីម៉ាចម៉ែនល័ច១៤១១២១បន្ទីស៊ីកី-១២២២២២៤២៤២០០២១៤១១ដីមីក្លង់ម៉ែចដែ ១០១០អ៊ី១១០ស៊ីកូម៉ាស៊ីម៉ាចម៉ែនល័ច១៤២១២១២២២២២២២២២២២២២២២២២២២២២២២២២២២២២២២២	
LOHO RCTIVE R	%	
REACTIVE CHURK)	W W Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	
SENERATION ACTIVE REACT CHD) CH		
HSE RMBLE (DE6)		; ;
VOLTHSE HAGNITUDE F CP.U.S	0.9850 0.9850 0.9850 0.9800 0.9800 0.9800 0.9900 0.9920 0.9833	,)) •
TYPE	75555555555555555666656656666666666666	ļ •
NAME	\$\$ 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5)

ROINGS	
2	
BUSBAI	

мяне	TYPE	VOLTAGE MAGNITUDE AN	IGE ANGLE CDEGO	SENER BCTIVE CHUS	GENERATION ACTIVE REACTIVE CHU) CHUAR)	LOAO ACTIVE RE	AD REACTIVE CHUARD	SHUNT REACTIVE CHUAR)
				! ! !				
Ω Æ	G.Y.	0,9644	-13,77	0.0	0.0	17.0	0.0	0.0
eg S	P.O.	0.9538	-14.72	0.0	0.0	18.0	0.0	0.0
88	PO	0,0400	-15.71	0.0	0.0	23,0	11.0	0.0
ŝ	ď	0.9693	-13.70	0.0	0.0	12.0	Ω. Μ	0.0
88	ğ	0.9572	-14.55	0.0	0.0	12.0	0.00	0.0
Φ.	ã	0866.0	16.96	0.0	0.0	78.0	Ω. 10	0.0
.g.	ž	0.9620	-18.92	0.0	T.0-	45.0	25.0	0.0
9	g.	1.0137	-7.31	0.0	0.0	0.0	0.0	0.0
41	Œ.	1.0105	ភ ព ពី	0.0	0.0	0.0	0.0	0.0
<u>2</u> 2	œ.	1.0100	-5.25	0.0	0.0	0.8%	7.0	0.0
m o	Œ.	1.0185	10° 00° 01′ −	0.0	0.0	0.0	0.0	0.0
T.	ď	0.9866	1-2 °C-1	0.0	0.0	0.0	0.0	0.0
93	G.	0.9662	-7.15	0.0	0.0	47.0	11.0	0.0
96	<u>ت</u> د.	1.0033	-3.81	0.0	0.0	71.0	26.0	0.0
2-6	g.	1.0090	-14.00 -14.00	0.0	0.0	29.0	32.0	20.4
96	g.	1.0522	-2°.29	0.0	0.0	0.0	0.0	0.0
ው ው	r. G	0.9855	13.04	0.0	٥.0	54.0	27.0	19.4
1			-	+ + + + + + +		1111111111		
TOTAL				3801.5	1523.4	3668.0	1430.0	84.0

X

*** IEEE-118 BUS

TAP SETT- ING (P.U.)	1: 0.9350
OVER- LORD	
LIN2 HVA	
11111 11011	
ACTURL TWR	2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ES PERCE- NTRGE	HIGH
LOSS EACT. HVAR)	
LINE ROTIVE RI	
EIVED (ENCTIV (HVAR)	ျားရရှင်တွင် ရှင်လည်း မေရန်ကို မြေရန်းမှုန်းမှုန်းမှုန်းမှုန်းများများများများများများများများများမျာ
FOUER RECEIVED ACTIVE REACTI CMD CHVAR	9484
SENT CENCTIV CHURRX	်းရှိသည်။ သည်။ သည်။ သည်။ သည်။ သည်။ သည်။ သည်။
POUER ACTIVE R CHUS	
ž	
RECEIVING BUS	00000000111111111111111111111111111111
SENDING BUS	00000000000000000000000000000000000000

V	١
ï	Ì
Ž	
,	
đ	٥
a	
ē	3
	j

	_	_

*** IEEE-118 BUS

TAR SETT- ING (F.U.)				1: 0.9850	
OVER- LOHD					
LIMS		599555555			
LIN1 HVR		333333333		555555555555555555555555555555555555555	
ACTURE HVB	νν. νν. νν. σ. σ. νν. σ. σ. σ.	22 22 30 30 30 12 22 23 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	CE E E E E E E E E E E E E E E E E E E	2 4 4 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30668425344445
LOSSES ERCT. PERCE- TVARD WTAGE		HIGH			· · · · · · · · · · · · · · · · · · ·
M <u>m</u> <u>o</u> i	1.001. 200.11. 200.42.	11111111111111111111111111111111111111	60000000000000000000000000000000000000	200 8 11 9 0 0 12 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00 00 00 00 00 00 00 00 00 00 00 00 00
HCTIVE R	0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200004044000 200004044000 2000000000 20048000	0010000000000
RECEIVED VE REACTIV > CMVAR>	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	မရုပ်နှင့် မရုပ်နှင့် မြောင်လေသိသည် ရောင် မြောင်လေသိသိသည် မောင်	24 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 0 0 4 4 4 6 1 1 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
FOWER REC ACTIVE R CMM2	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	დაბი გამ წეგე დაბი გამ წეგე დაგადი ქიარაგა	row A Hawaran waran Karan wa wanan kata Karan wanan katan ka	0,000 kg 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SENT REACTIV CHURR)	4 4 4 4. G & D D D	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		::	6 0 6 4 4 5 8 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6
POWER ACTIVE RI	00 7 0 6 1 4 4 6 6 4 4 6 6 4 4	2001 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	លេខ បាងគ្នេប្រកម្មភ ក្បាលស្រួយឈងក្រុមក្រុង ប្រាស្សស្នក្សក្	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 3 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ż		P P P P P P P P		ச ெசை ச்சிசிசிசிசிசி	तलवनस्तनस्तन
RECEIVING BUS	104 105 111	승규준 11 등 수 중 11 1 등 수 중 11 1 등 수 중	74 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	លួយបានក្នុងស្នា ក្រុសស ក្រុសស	00000000000000000000000000000000000000
SENDING BUS	4444 6669	4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ል ል ል ል ል ል ል ል ል ል ል ል ል ል ል ል ል ል ል	የመጀመር 4 የሀመር የመመ የመመረጉ ነገር ነው የመመረጉ ነገር ነው መመመመ ነገር ነው መመመመመ ነገር ነው መመመመመመ ነገር ነው መመመመመመመመመመመመመመመመመመመመመመመመመመመመመመመመመመመ	. 12 17 12 14 14 14 14 14 14 14 14 14 14 14 14 14

黑黑黑

TAP SETT- ING (P.U.)	1: 0.9380
OVER- LORD	
HUR LIMI-LIM2 MUR HUR	
LIM1 NVA	
ACTURL NVR	
SES PERCE- NTAGE	
ME LOSSI REACT. F CHURRS	
LINE ACTIVE RI	4 4 4 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
RECEIVED VE REACTIV	
POWER RE RCTIVE (MU)	
SENT REACTIV CHURES	$\frac{4}{9} \frac{1}{9} \frac{1}$
POHER ACTIVE R	
×.	
RECEIVING BUS	をまちもてててできまままででできませんできるののできるののののののののできることできます。 のちてら ししまますでもなるであれるもでできる。 ししりょしょうこうさいからすてするのでもな
SEMDING BUS	1 2 2 1 2 2 2 2 2 1 4 1 1 1 1 2 2 2 2 2

BRANCH LOADINGS

XXX

							1 1 1 1	1	1	! ! !	1			
SEMDING BUS	RECEIVING BUS	ż	PONER ACTIVE CMUS	SEN CENC	POWER RECEIVED ACTIVE REACTI CMA) (HVAR	SCEIVED REACTIV (MVAR)	LINE ACTIVE RI CHAD C	NE LOSSES REACT, PE (HVAR) N	RCE- TAGE	ACTUAL RVA	LIM1	LIN2 HVA	OVER- LOAD	TAP SETT- ING (P.U.)
		} ! !		;		[à	0	Ģ Ž		
	gv.	-	7.		D . C		5	J * D~		N :		5		
	25	1	150.1		150.7	ু কুল ক	00.0	(N (D)		 10	0 N	200		1: 0.9600
	26	-	31.1		31,1	P.	00.00	0.26		31	100	100		0000000
	iō	-	100		100	-30.3	0.92	00.6~		187	200	00%		
	, Q	·	1.51	00 P	150.7	· 1000000000000000000000000000000000000	or in	10.1		A.	000	200		
	9 C	٠,	, 1 , 1 , 1		- 4	000	00) () ()		, ()	9 5	001		
	7 (٠,	. r		r (r. (N F	N * * * * * * * * * * * * * * * * * * *		1 H) ()) () i ()) () () ()		
	25	I	200		o N	N .	0.0	70.7		5) () () (11
	(A)		122.4		122. 4.	210.1		24.11 11.11		a i				
	93	7	16.C		0.0	-70°		すす。 1 ○ 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·		103		150 150		
	i) A	-	184.		184.0	350°0		00°.01		9 (3)	9 7	400		
31	۵. 4.	-	17.1		17.0	-11.2		-0.25		ON N	100	100		
	CIE CIE		11.C		11.0	3.1		-1.92		F	100	100		
	1 60 160	-	1.0		ŭ. ñ	~10.6	0.01	-0.50		런	100	100		
•	2) (c	-	(Y)		106.3	r- 9	4.00 00.00	00 -10 00		515	150	150		
	, <u>c</u>	-	41.6		40.7	10 (N	т Ю,	0.61		v V	100	100		
	, i g	۰-			C.	13.0	0.07	4.4	HUTH	12	100	100		
) प (१)	-	3.00		5.00	গ	0.36	0.73		i N	100	100		
	ري ان (•	(A)	(i)	in M	en On	0.76	0.13		(n)	100	100		
	, or	-	4		10 T	٠. ص	0.08	-0.85 -0.45		ΔĹ U-	100	100		
	, (°	, , ,	4.0		1-100 100	ω σ	0.73	ω. Μ		7.1	100	100		
	. 10	· 	40		η- (Δ	0.7	0.0	-0-10		E	100	100		
) (C	+ +			1 4. 	100	00.00	(n)		(C)	200	500 500		0.9350:1
) (C		1.05 0.05		40.	186.7	্য ম	07,00		197	3	700		
,	0 0	-	20 10 10 10		<u>ु</u> प	1. OC.	0.30	68°0-		5	100	100		
\ r .	0	-	9-9-		10.0	67 67	0.02	(O)		-	100	100		
	36	-	0.0	0,921	0	-22.4	0,18	₩. ₩.	HIGH	in N	100	100		
					SYSTI	system Losses	y)							
						1	1							
					ACTIVE M	REACTIVE NVAR	لى <u>ا</u>							
				SERIES	3 133.61	852.59	<u>o</u>							
				SHUNT		-682.29	ā.							
•				TOTAL	133.61	170.30	9							

REFERENCES

- (1) Zollenkopf, K., Large sparge sets of linear equations in Bifactorization basic computational algorithms and programming techniques (book) edited by J.K. Reid, Ed., New York 1970, Academic Press 1979.
- (2) El-Marsafaury, M.M. and Mathur, R.M., An improved method for outage studies, paper A 79,062-1 IEEE winter power meeting. New York, Feb. 1979.
- (3) B. Stott and O. Alsac, Fast decoupled load flow technique, IEEE Trans., Vol. PAS-93, 1974, pp. 859 869.
- (4) Yaacov, G.Z. Ben, Data base approach to system analysis studies, PAS-81, pp. 2643 2649.
- (5) Walker, Leuris N., Hybrid simulator, faster-thanreal time performance evaluation, PAS-78, pp. 1795-1804.
- (6) Granirlley, Ott., Hybrid simulator for studying long t rm dynamics, PAS-77 pp. 907 915.

- (7) Keyhani, Ali, Interactive simulator for power system research, PAS-84, pp. 516 521.
- (8) Elder, L., Real-time simulation of major disturbances for use in operator training, PAS-82, pp. 334 339.
- (9) Diane M., Special purpose numerical hard ware for power system applications, PAS-82, pp. 265 270.
- (10) Pai, M.A., Computer techniques in power system analysis , Tata Mc Graw-Hill, New Delhi, pp. 110 - 136.
- (11) Stagg and El Abiad, Computer methods in power system analysis, Mc Grow-Hill, International student Edition, pp. 257 342.
- (12) Debs, A.S. and Benon, A.R., Security assessment of power system, Conference on System Engineering for Power, Status and Prospect, August 1975 pp. 144-172.