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ABSTRACT 

With the growing use of search engines, information retrieval has become a latest 

research area. The growth of internet and explosion of information are the major 

factors due to which the size of documents has increased many folds. Thus there is a 

need of effective and efficient information retrieval mechanism. Latent Semantic 

Indexing (LSI) is one of the techniques for information retrieval which is very 

effective in correlating and retrieving relevant documents. 

The critical step involved in LSI algorithm is Singular Value Decomposition (SVD). 

SVD is a mathematical technique which is basically a matrix decomposition method. 

The SVD is highly effective to derive the semantic relevance, but it is computationally 

very expensive in terms of time and memory. Thus SVD becomes a bottleneck for 

quick retrieval of matching documents from large database. This necessitates the 

optimization of algorithm by parallelization using high performing architecture. 

Multicore processors can be used for such type of problems which are computationally 

intensive. The Cell Broadband Engine is one such multicore processor consisting of a 

traditional PowerPC based master core meant to run the operating system, and 8 

delegate slave processors built for compute intensive processing. This work introduces 

a modification on the serial singular value decomposition algorithm. It describes 

parallel implementation of the modified algorithm on Cell BE and issues involved. 

Exposure of system level optimization features in Cell BE has been employed on 

algorithm specific operations to achieve improvements to a great extent. The 

implementation achieves significant performance, thereby giving about 8 times 

speedup over sequential implementation. 
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INTRODUCTION 	 CHAPTER 1 

1.1 Introduction to the problem 

The amount of information that is retrieved and processed is growing rapidly and 

hence there is requirement for a faster and effective information retrieval tool. There 

are a number of ambiguities associated with the English language like polysemy and 

synonymy which makes information retrieval more complex. Many of such problems 

can be minimized when the query is provided in context. Latent Semantic Indexing 

(LSI) [1] is one of the techniques for information retrieval which is used to retrieve the 

documents from set of documents which are semantically relevant. It is a statistical 

technique which can extract contextual and structural information within words and 

sentences in a document [2]. 

LSI technique works on Term-Document Matrix (TDM). TDM is generated by 

arranging all content words within all documents in a document set along the vertical 

axis and all documents along the horizontal axis. LSI technique breaks down this 

matrix into smaller components using matrix decomposition method called as Singular 

Value Decomposition (SVD) [3]. SVD is a mathematical technique which 

decomposes the TDM matrix into a set of smaller components. These smaller 

components are then used to find the semantic relevance between query provided by 

user and document. Basically SVD is used to discard redundant information and focus 

only on essential semantic information. 

SVD is extraordinarily useful mathematical technique which breaks the TDM matrix 

A in the form of A = U E VT. U is orthogonal matrix which represents term vectors in 

new latent semantic space. E is diagonal matrix. The diagonal entries are known as 

the singular value which is the measure for relevance of terms and documents. V T  is 

orthogonal matrix which represents document vectors in new latent semantic space. 

We can create an approximation A' to the original A by choosing the top singular 

values in E, and setting the rest to zero. This is the step where we actually remove 
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redundant and noisy information. A number of methods and approaches have been 

proposed for calculation of SVD [12]. 

Though the SVD is highly effective to derive the semantic relevance between the 

documents, it is computationally very expensive in terms of time and memory. Thus, 

implementation of LSI requires investment of storage and computing time [1]. 

1.2 Motivation 

Size of document set has increased many folds with the growth of internet and an 

explosion of available information. LSI based systems are very effective at retrieving 

the correct documents, but they become slow and take a lot of processing power to 

process such large document set. LSI is very expensive to perform on real life sets of 

documents, because very large matrices are involved and SVD on such large matrices 

is very costly in terms of time [4]. Thus it requires a powerful hardware to make it 

fast. One solution is to have a large number of computers in a cluster or a grid. 

However this is a costly method. An alternate method can be devised in the form of 

multicore computer like Cell Processor. 

With introduction of Moore's law the microprocessor industry is making a consistent 

effort to deliver a higher throughput. The recent trend of technology suggests the use 

of more number of execution cores in each processor. Multicore technology focuses 

on delivering pure performance and optimizing power requirements. Multiple cores 

introduced in a processor are capable of sharing work and executing independent tasks 

simultaneously. The other benefits are enhanced performance and reduced power 

consumption. 

Multicore processors can be used for the problems which are computationally 

intensive. They can provide a significant amount of peak performance gain as 

compared to the uniprocessor. The Cell BE processor is one such multi-core 

processor. It is designed with the computationally intensive applications in mind, often 

used to achieve real time processing and reduce the execution time considerably for 

various applications. 
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Cell processor bears a huge potential for compute-intensive applications. But, it poses 

new implementation challenges because of its unique architecture and often requires 

substantial re-engineering of the existing algorithms. Motivation of this thesis is to 

utilize the dense computational power of the Cell architecture for parallelization of 

SVD and achieve the maximum performance. 

1.3 Problem Statement 

In this dissertation work we propose and implement the SVD of a matrix on Cell BE 

while addressing the real time processing aspects of the algorithm. We aim to 

parallelize the algorithm efficiently to reduce the running time of algorithm. 

The major contributions of this dissertation work lie in: 

1. Identifying major issues involved in porting a sequential SVD algorithm on a 

cell processor. 

2. Proposing potential solutions to these issues through parallel implementation. 

3. Evaluation of these solutions by porting parallel SVD algorithm on cell 

processors. 

This dissertation work presents the parallel implementation of SVD algorithm on 

multicore CBE Architecture. The implementation tries to utilize all the features of this 

architecture and at the same time it considers the architectural limitations, thereby 

obtains considerable performance gain. 

1.5 Organization of Thesis 

This thesis proposes the parallel model for SVD on CBE. The organization of the 

thesis is as follows: 

Chapter 2 discusses the hardware architecture of the multicore processor STI CBE and 

describes its various components. This also discusses some programming features of 
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Cell Broadband Engine which plays major role in achieving the significant 

performance. 

Chapter 3 discusses the background details of LSI and SVD computation of matrix. It 

also describes the various techniques suggested to carry out the SVD and approach 

used in the dissertation work for calculation of SVD. 

Chapter 4 discusses the sequential Householder Bidiagonalization algorithm, issues 

involved in implementing parallel version of it on Cell BE architecture and the 

solutions to those issues. 

Chapter 5 discusses the issues involved in implementing the diagonalization of 

bidiagonal matrix on Cell BE architecture and then provides solutions to those issues. 

Chapter 6 discusses work environmental setup on which experiment is carried out and 

the experimental results for various modules. 

Finally chapter 7 concludes the dissertation work and also discusses possible 

extensions. 
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CELL BROADBAND 
ENGINE ARCHITECTURE 	 CHAPTER 2 

Cell Broadband Engine is a joint venture of Sony, Toshiba and IBM Corporation 

formed in 2001. This collaboration of three companies is known as STI. The CBE 

processor is the first implementation of a new family of multiprocessors which extends 

64 bit Power PC Architecture. The Cell BE is mainly intended for application in game 

consoles and media-rich consumer-electronics devices such as high-definition 

televisions. But the architecture and the implementation have been designed to enable 

fundamental advances in processor performance [6]. 

The CBE is a single-chip multiprocessor with nine processors operating on a shared 

and coherent memory. All the nine cores share the main memory. The most 

distinguishing feature of the CBE is that, the function of these cores is specialized into 

two types: the PowerPC Processor Element (PPE), and the Synergistic Processor 

Element (SPE). The CBE has one PPE and eight SPEs [7]. 

2.1 Overcoming the Performance Limits 

The performance of present high-frequency processors is limited by three major 

factors. 

1. Memory Wall: Program performance is dominated by the activity of 

moving data between main storage and the processor. 

2. Frequency Wall: Conventional processors require increasingly deeper 

instruction pipelines to achieve higher operating frequencies. This 

technique has reached a point of diminishing returns 

3. Power Wall: Higher frequency implies higher operating voltage and hence, 

higher heat dissipation. 
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Cell BE overcomes the memory wall by using a 3-level memory architecture 

consisting of disk memory, shared main memory between SPEs and PPE and a local 

store in each SPE. Use of asynchronous DMA transfer and DMA multiple double 

buffering further add the speedup. It overcomes the frequency wall by making use of 

non- homogeneous parallelization. By specializing the PPE and the SPEs for control 

and compute-intensive tasks, cell BE works at high frequency without excessive 

overhead. In CBE, the power efficiency is increased by providing a general-purpose 

PPE to run the operating system and other control-plane code, and eight SPEs 

specialized for computing data-rich (data-plane) applications [7]. 

2.2 Architecture 

The CBE increases concurrency through the use of multiple processing cores and 

increases the specialization in execution through non-homogeneous parallelization. 

For this purpose, it employs 8 SPEs onto which threads of an application can be 

mapped and these SPEs are controlled by PPE. PPE and SPEs communicate through a 

common internal high-speed Element Interconnect Bus (EIB). The SPE offers a high 

bandwidth interface to a direct memory access (DMA) that can transfer 32 GB/sec to 

and from the 256 KB local memory. The CBE has clock speed of 3.2 GHz [6, 8]. The 

architecture is shown in Figure 2.1. 

2.2.1 PowerPC Processor Element (PPE) 

The PPE is a dual thread PowerPC architecture RISC core and support a PowerPC 

virtual memory subsystem. It has 32KB L1 instruction and data caches and 512 KB 

L2 (instruction and data) cache. .It runs an operating system, manages system 

resources, and is intended primarily for control processing, including the allocation 

and management of SPE threads. The instruction set for PPE is an extension of the 

PowerPC instruction set. It also includes a vector multimedia extension unit, called 

SIMD, so that it can do multiple operations simultaneously with a single instruction 

[6].  
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Figure 2.1Cell Broadband Engine Architecture [9] 

2.2.2 Synergistic Processor Elements (SPEs) 

Eight homogeneous SPEs are SIMD processor elements that are optimized for data-

rich operations. It consists of two main units, the Synergistic Processor Unit (SPU) 

and the Memory Flow Controller (MFC). The SPE deals with instruction control and 

execution. It includes a single register file with 128 registers (each one 128 bits wide), 

a unified (instructions and data) 256-KB local store (LS), an instruction-control unit, a 

load and store unit, two fixed-point units, a floating-point unit, and a channel-and-

DMA interface. The SPE implements a new SIMD instruction set, the SPE Instruction 

Set Architecture. 

The MFC contains a DMA controller that supports DMA transfers. Programs running 

on the SPE use the MFC's DMA transfers to move instructions and data between the 

SPE's LS and main storage. The MFC interfaces the SPE to the EIB which manages 
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bus bandwidth-reservation and synchronization operations between the SPE and all 

other processors in the system [6]. 

To support DMA transfers, the MFC maintains and processes queues of DMA 

commands [7]. After a DMA command has been queued to the MFC, the SPE can 

continue to execute instructions while the MFC processes the DMA command 

autonomously and asynchronously. 

2.2.3 Element Interconnect Bus (EIB) 

The EIB is a communication bus internal to the Cell processor which connects the 

PPE, the memory controller (MIC), eight SPE coprocessors, and two off-chip 1/O 

interfaces, for a total of 12 participants. The EIB is presently implemented as a 

circular ring consisting of four 16B-wide unidirectional channels. Out of these four 

channels, two run in clockwise direction and rest two run in anticlockwise direction. 

When traffic patterns permit, each channel can convey up to three transactions 

concurrently. As the EIB runs at half the system clock rate the effective channel rate 

is 16B every two system clocks. At maximum concurrency, with three active 

transactions on each of the four rings, the peak instantaneous EIB bandwidth is 96B 

per clock (12 concurrent transactions * 16B wide / 2 system clocks per transfer). 

2.3 Programming Features of Cell-BE 

2.3.1 SIMD Vectorization 

Support for SIMD operations is pervasive in the CBE. SIMD operands are vectors. A 

vector is an instruction operand containing a set of data elements packed into a one 

dimensional array. The elements can be integer or floating-point values. In the PPE, 

they are supported by the Vector/SIMD Multimedia Extension instruction set. In the 

SPEs, they are supported by the SPU instruction set. In both the PPE and SPEs, vector 

registers hold multiple data elements as a single vector. The data paths and registers 

supporting SIMD operations are 128 bits wide, corresponding to four full 32-bit 

words. This means that four 32-bit words can be loaded into a single register and 
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single operation (for example, addition) can be performed on these four data 

simultaneously. Similar operations can be performed on vector operands containing 

16 bytes, 8 half-words, or 2 double-words [7]. The following figure 2.2 shows such an 

operation [7, 8]. 

Vs:  vs131 Vs[2] V5 1] V5[0] 

+ 	+ 	+ 	+ 

ut: Vt[3] VJ21 V[1] V[OI 

'Jr 'Jr 'Jr 

ud:  vsl3]+Vd3] 5[21+V,l2J V,l1]+vd1] slot+vdo] 

Figure 2.2 SIMD operations in Cell BE 

2.3.2 DMA and Double Buffering 

MFC supports a set of DMA commands which provide the main mechanism for data 

transfer between the LS and main storage. It supports a set of synchronization 

commands which are used to control the order in which storage accesses are 

performed. Consider an SPE program that requires large amounts of data from main 

storage. The following is a simple scheme to achieve that data transfer: 

1. Start a DMA data transfer from main storage to buffer B in the LS. 

2. Wait for the transfer to complete. 

3. Use the data in buffer B. 

4. Repeat. 

There is a wastage of large amount of waiting time for DMA transfers using this 

method. We can speedup the process significantly by allocating two buffers, BO and 
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B 1, and overlapping computation on one buffer with data transfer in the other. This 

technique is called double buffering. The below figure 2.3 shows a flow diagram for 

this double buffering scheme. Double buffering is a form of multi-buffering, which is 

the method of using multiple buffers in a circular queue to overlap processing and data 

transfer [6]. 

Initiate DMA 
transfer to 
buffer Bo  

Wait for 
Initiate DMA 	DMA transfer 	Use data in 
transfer to 	 to buffer Bo  to 	Buffer Bo  
buffer BI 	 complete 

Wait for 
Use data in 	 DMA transfer 	Initiate DMA 
buffer B 	 to buffer BI  to 	transfer to 

complete 	 buffer B i  

Figure 2.3 Double buffering 

2.3.3 Mailbox 

While DMA transfer allows transfer of up to 16K. bytes of data between the main 

memory and each SPE's LS, mailboxes are designed for transfer of 32-bit data 

between the PPE and the SPE. Structurally, mailboxes are FIFO queues [10]. The 

MFC provides three types of mailbox queues, each with a different behavior and data 

transfer direction as shown in Figure 2.4. 
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SPE 	 MFC 

Inbound Mailbox Queue 

-------- 

EIB 

Outbound Mailbox Queue 	 PPE 
SPU 	 ——-- -- -- 

Outbound Interrupt Mailbox Queue 

SPE Read Access 	 PPE Read Access 

SPE Write Access 	 ----~ PPE Write Access 

Figure 2.4 Mailbox communication mechanism in Cell BE [10] 

1. SPU Inbound Mailbox: This is used to send data from the PPE to the SPE. This 

mailbox has space for storing up to four 32-bit messages at a time. If no message 

is found when the SPE program accessed the queue, the SPE stalls until data is 

written by the PPE program. 

2. SPU Outbound Mailbox: This is used to pass data from the SPE to the PPE. This 

mailbox has the capacity to accept only one 32-bit message. If the SPU outbound 

mailbox is full, writing of the next data is suspended until the PPE reads the data 

from the queue. 

3. SPU Outbound Interrupt Mailbox: Like the SPU outbound mailbox, this is used 

to send data from the SPE to the PPE. When this mailbox is written, however, an 

interrupt event is generated to notify the PPE when to read the data. 
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These mailboxes can be accessed either from the SPE or PPE programs. 

2.3.4 Signal Notification Register 

This is one more mechanism provided for SPE-PPE communication. Signal 

Notification Registers (SNRs) are 32-bit registers used to send signals, such as control 

messages and events, to an SPE from other SPEs or the PPE. There are two SNRs for 

each SPE. The sending processor (either PPE or SPE) writes the signal value in the 

form of 32-bit data into the SNR of the receiving processor (one of other SPEs). 

When the value is read by the receiving processor, all bits in the SNR are reset to zero. 

If the SNR is empty when it is read, the receiving processor stops execution until the 

signal is written [10]. 

(a) Overwrite Mode 	 (b) Logical OR Mode 

Figure 2.5 Signal Notification Registers in Cell BE [10] 

NRs can be configured for overwrite mode or logical OR mode. The overwrite 

is useful in a one-to-one signaling environment, whereas the logical OR mode 

;s many-to-one signaling. Either of these modes can be selected for each SNR, 
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independently of the other. Figure 2.5 shows the difference between the SNR's two 

operating modes. The SNRs also make barrier synchronization of multiple SPE 

programs possible by configuring them into logical OR mode. 
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BACKGROUND STUDY 
AND LITERATURE REVIEW 	 CHAPTER 3 

3.1. Latent Semantic Indexing 

Latent Semantic Indexing is an information retrieval technique that projects queries 

and documents into a space with "latent" or hidden semantic dimensions. This space 

is called as Latent Semantic Space. In the latent semantic space, a query and a 

document can have high similarity even if they do not share any terms - as long as 

their terms are semantically similar. Also they can be distant from each other, even if 

they share some common terms. This latent semantic space has fewer dimensions than 

the original space. LSI is a method for dimensionality reduction [1]. In short, LSI 

projects the queries and documents into space with smaller number of dimension (k) 

from the space with very large number of dimensions (n) where n > k. 

LSI uses a method from linear algebra, the Singular Value Decomposition (SVD) for 

dimensionality reduction. SVD takes a matrix A and represents it as A'' in a lower 

dimensional space [11]. 

The SVD projection is computed by decomposing the Term-Document Matrix Am  

into the product of three matrices, Um x,,, S,, and VT„ x „ as 

A=UEVT  

Where, 

• U is an m x n orthogonal matrix 

• E is an n x n diagonal matrix. The diagonal entries are known as the singular 

values. 

• VT is an n x n orthogonal matrix 
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We can view SVD as a method for rotating the axes of the n-dimensional space such 

that the first axis runs along the direction of largest variation among the documents, 

the second dimension runs along the direction with the second largest variation and so 

forth. The matrices U and V represent terms and documents in this new space. The 

diagonal matrix E contains the singular values of A in descending order. The ith  

singular value indicates the amount of variation along the i h̀  axis [1, 2]. 

A=U £. VT  
k n 	 n 

k 

k 	
VT 

 

n 	 n 

Figure 3.1 Matrix Decomposition 

The best square approximation of matrix A of rank k (Figure 3.1) can be calculated by 

restricting the matrices U, E and V to their first k <n rows, as shown in below, 

A' - Umxk F+kxkVT 
 mxk 

To choose the number of dimensions (k) for A' is an interesting problem. Reduction 

in k can remove much of the noise but keeping too few dimensions or factors may 

loose important information. LSI performance can improve considerably after 10 or 

20 dimensions, peaks between 70 and 100 dimensions, and then begins to diminish 

slowly [4]. 
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3.2 Singular Value Decomposition 

3.2.1 Literature Review 

Several algorithms have been developed for mathematical computation of singular 

value decomposition. We discuss here shortly some of the algorithms for computing 

the SVD. A number of additional algorithms exist, but they are not discussed here 

because they appear to be less suited for parallelization in our judgment. It cannot be 

predicted a clear winner among parallel SVD algorithms that can provide the single 

best trade-off between numerical stability [12], algorithmic complexity, 

parallelizability, efficiency, and ease of programming on CBE multicore architecture. 

> Classical Jacobi Method 

The classical Jacobi method applies to symmetric matrices. It transforms a symmetric 

N X N matrix A into a diagonal matrix by means of a sequence of Jacobi 

transformations [13]. Each of the Jacobi transformations is chosen to find the off-

diagonal elements of largest absolute value. The classical Jacobi method exhibits high 

numerical stability and convergence but computationally it is very slow [13, 14]. 

➢ Cyclic Jacobi Method 

The main disadvantage of the classical Jacobi method is the computational cost 

required to determine the largest off-diagonal element. Rather than searching for the 

largest element, a cyclic Jacobi method uses approach which applies Jacobi 

transformations in a data-independent fashion. This method is computationally faster 

than the classic Jacobi Transformation. 

The primary problem with the cyclic Jacobi method is the two-sidedness of the Jacobi 

rotation. Matrices are stored either in row-major or column-major format. The two-

sided Jacobi method traverses both. One of the two traversals might give poor 

performance conventional memory architectures [15]. 
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Hestenes-Jacobi Method 

Hestenes [16] introduced the one-sided Jacobi method by discovering the equivalence 

between orthogonalization of two vectors and annihilating a matrix element by means 

of orthogonal plane rotations. Hestenes algorithm gives low performance for 

multicore architecture and hence not popular. 

Golub-Kahan-Reinsch SVD 

The SVD algorithm suggested by Golub, Kahan, and Reinsch [17] has become the 

standard method for computation of SVD. This SVD algorithm is based on 

bidiagonalization. It consists of two phases, bidiagonalization and subsequent 

diagonalization. 

3.2.2 Our Approach: Golub-Kahan-Reinsch SVD 

The fastest available iterative Jacobi algorithms are slower than the fastest algorithms 

based on bidiagonalization. We follow the Golub-Kahan-Reinsch approach to 

calculate SVD as it is simple and compact, and maps well to the CBE multicore 

architecture. Algorithm 3.1 describes the SVD algorithm for an input matrix A. 

Algorithm 3.1 Singular Value Decomposition 

1. B *— QTAP 	{Bidiagonalization of A to B} 

2. E <— XTBY 	{Diagonalization of B to E} 

3. U — QX 	{Compute orthogonal matrices U and VT 

4. VT _(PY) T 	andSVDofA=UEVT} 

Figure 3.2 Golub — Kahan - Reinsch SVD algorithm 
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The SVD computation suggested by Golub-Kahan-Reinsch consists of two phases, 

bidiagonalization and subsequent diagonalization [18]. Bidiagonalization can be 

achieved by means of alternating QR and QL factorizations to annihilate column and 

row blocks or Householder bidiagonalization [18]. We use the latter method for 

bidiagonalization. The matrix is first reduced to a bidiagonal matrix using a series of 

householder transformations. The bidiagonal matrix is then diagonalized by 

performing implicitly shifted QR iterations [19]. 

I 	Given a matrix A 

Apply Householder 

Bidiagonalization on A 
B QTAP 

	

Q 	 B 	 P 
Householder matrix 	Bidiagonal Matrix 	Householder matrix 

Apply Diagonalization 

	

Multiply 	 Multiply 

	

with 	
using implicit shift QR on B 	

with Ef— X BY 

	

X 	 I 	Y 
Orthogonal unitary 	Diagonal Matrix 	Orthogonal unitary 

	

matrix 	 Containing Singular 	 matrix 
value 

	

U _ QX 	 ~Y~ 	 VT= (py)T 

Singular Value Decomposition 

Figure 3.3 Flow of Singular Value Decomposition Algorithm 
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Figure 3.3 shows the flow of Golub - Kahan - Reinsch SVD algorithm-how the matrix 

is reduced to first bidiagonal and then to diagonal form and also how matrices are 

generated to calculate the singular value decomposition. 

The subsequent chapters focus on Householder bidiagonalization algorithm (Chapter 

4) and Diagonalization of bidiagonal matrix algorithm using implicit QR shifting 

(Chapter 5). 
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HOUSEHOLDER BIDIAGONALIZATION 	CHAPTER 4 

The implementation of the Singular Value Decomposition requires that the matrix he 

reduced to a simpler form. In our case it is an upper bidiagonal form [20], which is 

given as follows, 

D, e, 

02 e2 

D3 c3 

~N(RAL Lje \ 
X2°44.....,. ACC Nc....... 

Datq ........... .. .. 
 

. 

t~nI en-I 
	 fQl 

I~n 

The basic idea to reduce the matrix in bidiagonal form is to decompose the matrix A in 

the following form: 

A = QI3P' 

This reduction of matrix A is achieved by applying a series of householder 

transformations where 13 is a bidiagonal matrix and Q and P are unitary householder 

matrices. The householder matrix acts on given vector to zero all its elements except 

the first one [ 18]. 

4.1. Householder Matrix 

The Householder Matrix P has the form: 

P = 1 — 2W.WT 	 (4.t) 

Where W is real vector with IW h = I The matrix P is orthogonal because 

P`=(I-2W.Wr).(I-2W.W5=I 	 (4.2) 

Therefore. P = Pd . But P' P, and so PT = P' proving orthogonality. Rewrite P as 
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T 
(4.3) 

Where the scalar H is 

H := Z Iut2 	 (4.4) 

And now u can be any vector. Suppose x is vector consists of first column of A. 

Choose 

u = x±Ixlei 	 (4.5) 

Where o f  is unit vector [1, 0, 0....0] T  Then we have 

P.x =±Ixlei 	 (4.6) 

This shows that the householder matrix P acts on a given vector x to zero all its 

elements except the first one [18]. 

4.2 Sequential Algorithm for Householder Bidiagonalization 

The standard way to reduce the matrix into bidiagonal form is to alternately pre and 

post multiply A with Householder transformations in order to introduce zeros in the 

;olumns and rows of the matrix [21, 22]. Each transformation annihilates the required 

)art of a whole column and whole corresponding row. To obtain the matrices P 

ad Q, one may either explicitly accumulate the transformations "on the fly" or store 

ie Householder vectors "in-place" in the zeroed parts of A for later backward-

,cumulation [21]. We follow latter strategy. 

the first step we choose Householder transformation P so as to introduce zeros in 

hatted elements in matrix A. 
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X X X X X 
X X X X X 
X X X X X 

X X X X 
7C X X X X 

After which P A has the form: 

X X X X k 
0 X X X X 
0 X X X X 
0 X X X X 
0 X X X X 

Next we choose K such that P • A • K has zeroes in the hatted elements to get a matrix 

of the form, 

X X 0 0 0 
0 X X X X 
0 X X X X 
0 X X X X 
0 X X X X 

The reduction proceeds recursively on the matrix A to finally form a matrix B of 

diagonal form. 

Instead of actually carrying out the matrix multiplication, we compute a vector 

P.= N 	 (4.7) 

Then we have (see [ 18] for detailed description) 

A' = A — q. uT  — u. qT 	 (4.8) 

This is computationally useful formula. In detail, at any stage m (m=1, 2...), the 

equations are as follows: 
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uT  = [0,0, ....... am;i + V, am+l,i, ..... , an.i] 	(4.9) 

And the quantity a is 

a = ((ai,m)Z  + ... + (a[,n)2) 	 (4.10) 

Variables are computed in the following order a, u, H, p, q, A'. At any stage m, matrix 

A is bidiagonal in its 0 to m-1 columns. Figure 4.1 gives the sequential algorithm for 

Householder Bidiagonalization. 

Algorithm 4.1: Householder Bidiagonalization 

Input:  

Output: 	D:[1....n] diagonal elements 

E:[1....n] Offdiagonal elements 

P:[1 . . . nj Householder Matrix 

Q: [ 1....n] Householder Matrix 

For i=1 to n 

Do 

Calculate scale. Use scaled a's for transformation. 

Form a. Eq. (4.B) 

Calculate u Eq. (4. ) and Store it in the A 

Calculate H given in Eq. (4.4) 

Form an element of P.(4.7) 

Form an element of Q. 

Reduce A Eq. (4.8) 

End for 

Figure 4.1 Sequential algorithm for Householder Bidiagonalization 
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4.3 Parallel Formulation of Algorithm 

The CBE architecture has very good architectural potentials like 8 SIMD, compute 

intensive cores and fast communication mechanisms between the cores. But the main 

challenging task while developing the parallel algorithm for any application on CBE, 

is very limited (i.e. 256KB) memory available with each SPE core. The existing 

algorithm has to be restructured in order to utilize this memory efficiently and also to 

minimize the communication between different cores. 

Bidiagonalization consumes a significant fraction of the total time to compute SVD. It 

has a drawback of having a lot of matrix-vector multiplication operations. Matrix-

vector multiplication requires 0 (n2) operations on 0 (n2) data, which results in poor 

computation-to-communication ratio. The parallel algorithm was developed after 

studying the pattern in the computations and the results. In the limit of large n, the 

operation count of the Householder reduction is 4n3  / 3 [18]. It is a very difficult 

algorithm to parallelize due to following reasons: 

1. Symmetrical nature of computations 

2. The diminishing size of the matrix and computations with the iterations. 

(Figure 4.2) 

Figure 4.2 Diminishing size of Matrix 
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The sequential algorithm reduces one row and one column in each iteration. It was 

observed that the computations in each column could not be done independently of 

each other. We cannot distribute the whole matrix to each SPE for parallelization of 

outer loop due to limited memory available with each SPE (i.e. 256KB). So the 

variables a, u, H, p, q. A' are computed in parallel with distribution of part of column 

to each SPE in each iteration (Figure 4.3). For calculation of each of variable, the part 

of column is brought onto the SPE memory through DMA. 

The DMA does transfer continuous memory data to and from main memory. Thus to 

distribute the column in different SPEs, the total number of DMA's required is equal 

to the size of part of column. In order to minimize the DMAs, the matrix is stored in 

column major order, as shown in Figure 4.3, so that only one DMA will be required in 

order to transfer part of column. 

I size n/R 

m 

Figure 4.3 Distribution of part of column to each SPE 

4.4 Implementation on Cell BE architecture 

Figure 4.4 lists the parallel algorithm for sequential Householder Bidiagonalization. 

The algorithm processes the input matrix by small blocks, providing for great data 

locality and fine granularity of parallelization. In the case of the Cell processor, it also 
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readily solves the problem of limited size of private memory associated with each 

computational core. 

4.4.1 SPE centric model 

The implementation follows the SPE-centric model in which most of the application 

code is distributed among SPEs. PPE core runs little more than a resource manager 

for the SPEs. SPE fetches next work item (what function to execute, pointer to data, 

etc.) from main memory or from its own memory, when it completes current work 

item [7]. The PPE manages the execution of the overall algorithm relying on the SPEs 

to deliver computational services. The PPE is responsible for launching and 

terminating the SPEs. The SPE execution cycle consists of waiting for a request, 

performing the requested task and sending back a response. 

PPE creates 8 SPE threads and assigns the thread ID to each SPE. The effective 

address of global control block is sent to each SPE thread at the time of creation, 

which is pulled by each SPE to its local store by a DMA transfer. The control block 

contains effective address of Matrix A, thread ID of SPE and other synchronization 

information. This effective address of Matrix A is used by each SPE to fetch the part 

of Matrix A from main memory through DMA. After this initial exchange of 

information the execution of algorithm is carried out by SPEs, PPE manages it. 

4.4.2 SPE-PPE Communication and barrier operation 

To transfer the data from main memory to SPE local store, the DMA communication 

mechanism [6, 7, 8] has been used. Generally this data is more than 4 bytes. There are 

special MFC commands available which provide the DMA mechanism. This 

mechanism enables SPE to access main storage. SPE fetches the part of matrix A from 

main memory through DMA. Also it transfers the updated part of Matrix A to main 

emory through DMA. The commands that transfer data from main storage to SPE 

e referred as get commands and commands that transfer data from SPE to main 

orage are referred as put commands [8]. 
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Algorithm: Parallel Householder Bidiagonalization Implementation 

Input: 	A: [1...m][1....n] 
Output: 	D: [1....n] diagonal elements 

E: [1....n] Offdiagonal elements 
P: [I....n][l...n] Householder Matrices 
Q: [1.. .n][1... n] Householder Matrices 

Create 8 SPE threads with threadiD [0...7] 
Initialize Matrix A and store it into column major order 

For i:=0ton 
SPE fetches the respective part of ia' column of matrix A through DMA. 
SPE calculates the scale and send it to PPE 
PPE calculates global_scale and sends in to each SPE through mailbox 
SPE performs scaling on Matrix A and forms a on respective part of 

column 
SPE sends calculated a to PPE. PPE calculates global a. 
SPE updates the respective part of column through DMA 
Synchronize all SPEs 
PPE calculates H in Eq. (4.4) 
SPE receives signal from PPE to start next work. 
SPE fetches the respective part of ith  column of Matrix A through DMA 
SPE forms A.0 in respective part of column of A. 
SPE receives calculated H from PPE through Mailbox. 
SPE forms an element of P. 
SPE updates the respective part of column through DMA. 
Synchronize all SPEs. 
PPE forms an element of Q. 
SPE receives signal from PPE to start next work. 
SPE fetches part of column through DMA. 
SPE reduces respective part of column 
SPE updates the respective part of column through DMA 
Synchronize all SPEs 

End for 

Figure 4.4 Parallel algorithm for Householder Bidiagonalization 
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To send data of 4 bytes, mailbox communication [7, 8] has been used. Two mailboxes 

(the SPE Write Outbound Mailbox and the SPE Write Outbound Interrupt Mailbox) 

are provided for sending messages from the SPE to the PPE. One mailbox (the SPE 

Read Inbound Mailbox) is provided for sending messages to the SPE [8]. Mailbox 

communication is used to send the control information. 

To achieve a barrier operation of only SPE threads (i.e., the PPE is not participating 

the barrier), signal notification registers [8] provide the most efficient method. The 

concept is: 

• One SPE (i.e. SPE 0) is assigned to be the master, others are slaves. 

• The master SPE's signal notification register is configured in logical OR mode [7]. 

• The slave SPE's signal notification register is configured in overwrite mode. 

• Each slave SPE is assigned a bit in signal notification register. 

➢ Synchronization Algorithm: 

• Slave SPE: 

— Writes a single bit to the master's signal notification register. 

— Waits for a message written to its signal notification register. 

• Master SPE: 

— Reads the signal notification register until all participant bits are read non-zero. 

— Writes to all the slave SPU's signal notification register. 

Figure 4.5 shows the flow of algorithm and PPE-SPE communication at various stages. 
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PPE 	
SPE 

Initialize the matrix A and store it  
in column major order  

Create 8 SPE threads, assign thread ID to 
each thread and send effective address of A 
to each SPE thread  

Calculate global_scale and send in to ea SPE  
through mailbox 

Identify thread ID and store effective 
address of A 

Fetch the respective part of ia column of 
matrix A through DMA 

ii 
Calculate the scale and send it to PPE 
through mailbox 

JL 

Receive global_scale from PPE. Perform 
scaling on Matrix A and form a on 
respective part of column 

Send calculated a to PPE. 
ii 

Update the respective part of column of 
Matrix A through DMA 

Synchronize all SPEs 

Calculate H and send signal to 
each SPE to start next work 

Send calculated H to each SPE 
through mailbox 

Fetch the respective part of I" column of 
Matrix A through DMA 

Form A.0 in respective part of column of A. 

Receive calculated H from PPE through 
Mailbox 

Form an element of? 

.11 
Update the respective part of column of 
Matrix A through DMA 

Synchronize all SPEs 

an Fetch the respective part of i~' column of Form element of Q and send 	 Matrix A through DMA rm  
signal to each SPE to start next work  

Reduce respective part of column of A. 

I 

. 	Update the respective part of column of 
Matrix A through DMA 

Synchronize all SPEs 

Figure 4.5 Flow of Parallel Bidiagonalization Algorithm 
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DIAGONALIZATION OF BIDIAGONAL 
MATRIX AND COMPLETE SVD 	 CHAPTER 5 

5.1 Diagonalization of Bidiagonal Matrix 

Next step in SVD is to reduce the bidiagonal matrix in diagonal form [23]. The 

bidiagonal matrix can be reduced to a diagonal matrix by iteratively applying the 

implicitly shifted QR algorithm [19]. The matrix B obtained in the first step is 

decomposed as 

E=XTBY 

Where E is a diagonal matrix, X and Y are orthogonal unitary matrices. E contains the 

singular values of matrix B. Each iteration updates the diagonal and super diagonal 

elements such that the values of the super diagonal elements become less than their 

previous values. On convergence of the algorithm the superdiagonal elements are 

reduced to zero and only the diagonal elements of the matrix are left in the matrix X. 

5.1.1 QR Algorithm 

The basic idea behind the QR algorithm is that any real matrix can be decomposed in 

the form 

A=Q•R 	 (5.1) 

Where Q is orthogonal and R is upper triangular. For a general matrix, the 

decomposition is constructed by applying Householder transformations to annihilate 

successive columns of A below the diagonal. Now consider the matrix formed by 

writing the factors in (5.1) in the opposite order: 

A'= R • Q 	 (5.2) 

is orthogonal, equation (5.1) gives R = QT  • A. Thus equation (5.2) becomes 

A'=QT. A . Q 	 (5.3) 
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We see that A' is an orthogonal transformation of A. 

The workload in the QR algorithm is 0 (n3) per iteration for a general matrix, which is 

prohibitive. However, the workload is only 0 (n) per iteration for a bidiagonal matrix, 

which makes it highly efficient on this form [ 18]. 

5.1.2 Sequential Diagonalization algorithm 

The standard algorithm for finding singular values of a bidiagonal matrix B is the QR 

algorithm applied implicitly to BTB. The algorithm computes a sequence B, of 

bidiagonal matrices starting from Bo= B as follows. From B; the algorithm computes a 

shift 62, which is usually taken to be the smallest eigenvalue of the bottom 2 by 2 

block ofB,BT. 

Then the algorithm does an implicit QR factorization of the shifted matrix BTB;  - oz  I 

= QR, where Q is orthogonal and R upper triangular, from which it computes a 

bidiagonal B;+i such that BT, + 1Bj+1 = RQ+ 62  I. As i increases, B converges to a 

diagonal matrix with the singular values on the diagonal [24]. 

Figure 5.1 lists the sequential algorithm for Diagonalization of bidiagonal matrix 

(which is obtained in previous step) using the implicit QR shifting technique. 

5.1.3 Parallel formulation of algorithm 

The diagonalization of the bidiagonal matrix is sequential in nature; the convergence 

of every superdiagonal element depends on the convergence of the element before it. 

Hence it is not possible to run parallel threads for convergence. So all the work for 

Diagonalization has been carried out on PPE only. Some architectural features have 

been used to gain the performance: 

31 



Algorithm 5.1 Diagonalization of bidiagonal matrix 

Input: 	B[l.....n][1....n] is bidiagonal matrix 
Output: 	D[I....n] contains singular values 

X[1....n] and Y[l .....n] contains the unitary orthogonal matrices 

For i:=0 ton 
Look for a single small subdiagonal element to split the matrix. 

Form shift. 

Perform a plane rotation followed by Givens rotations to restore bidiagonal 
form. 

Store calculated eigen value in D. 

Recover from underflow. 

Form eigenvector corresponding to ith  diagonal element of B and store it into 
Z [1...n]. 

End for 

Figure 5.1 Algorithm for Diagonalization of bidiagonal matrix 

1. SIMD Vectorization: The SIMD works on the multiple data performing a single 

instruction. Parallelization has been achieved through the use of SIMD Math 

Library functions for solving compute intensive equations involving reciprocal of 

square root and multiplication. This led to significant performance gain [6, 7, 8]. 

2. Loop Unrolling: In PPEs, branches are very expensive, and when mis-predicted, 

results in a loss of 18 cycles. The branches can be reduced by unrolling loops. By 

unrolling, a long stretch of instructions can be executed on the PPEs without any 

branch instruction. The PPEs have sufficient number of registers to allow deep 

unrolling. 4-way loop unrolling has been used in order to gain the performance in 

some extent [6]. 
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5.2 Complete SVD 

We perform following two matrix-matrix multiplications at the end to compute 

orthogonal matrices as given in Algorithm 3.1. 
U=QX 

VT =(PI) T  

Where, matrices Q and P are obtained the bidiagonalization step and matrices X and Y 
are obtained in diagonalization step. 

For the matrix-matrix multiplication, each SPE will do the (n/8)th  calculation. The 
distribution of matrices is as shown in the Figure 5.2. Following are the programming 

features of CBE used for matrix multiplication implementation. 

Matrix A 	 Matrix B 	 Matrix C=A X B 

■■■■■■■■ ■ 
■■■■■■■ ■ 
■■■ ■■■ ■ ■.■■■.■■ . 1111■■■ ■ 
■ ■■■■■■ • ■.Mons■®  

Matrix A and part of matrix B distributed 	Part of matrix C calculated by SPEO 
to SPRO 	 - 

Figure 5.2 Matrix multiplications on Cell BE 

SIMD Vectorization: Parallelization has been achieved through the use of SIMD 
Math Library functions for addition and multiplication. 

2. DMA list: A DMA list is a sequence of transfer elements (or list elements) that, 
together with an initiating DMA-list command, specifies a sequence of DMA 
transfers between a single area of LS and possibly discontinuous areas in main 
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storage. Such lists are stored in an SPE's LS, and the sequence of transfers is 

initiated with a DMA-list command. 

3. Double buffering: We can speedup the DMA process significantly by allocating 

two buffers, BO and B1, and overlapping computation on one buffer with data 

transfer in the other. This method is called double buffering. 
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EXPERIMENTAL RESULTS 	 CHAPTER 6 

6.1 Cell simulator 

The whole dissertation work is carried out in simulation environment using IBM's Full 

System Cell Simulator. It supports full functional simulation, including the PPE, 

SPEs, MFCs, PPE caches, bus, and memory controller. It can simulate and capture 

many levels of operational details on instruction execution, cache and memory 

subsystems, interrupt subsystems, communications and other important system 

functions [25]. The results are verified on Georgia Tech CBE server which provides a 

publicly accessible front-end cell-user.cc.gatech.edu. 

6.2 Results 

In the problem, two parameters are taken as input from the user, M (the number of 

rows) and N (the number of columns) giving rise to a M x N matrix. Therefore the 

parallel algorithm was tested for varying M and N. The matrix of size M x N is 

generated with random values which is sparse in nature. Here the values of M and N 

are chosen to be multiples of number of SPE's in order to assign equal computational 

load to each SPE. The processor specifications used in the experiment are shown in 

Table 6.1. 

Processor Intel Core2 Duo Cell Broadband Engine 

Cores 2 1+8 

Clock 2.00 GHz 3.2 GHz 
Memory 2GB DDR2 512 GB XDRAM 

OS Fedora Linux 
Kernel 

Red Hat Enterprise 
Linux® 5.2 

Compiler gcc 4.3.1 spu-gcc 

Table 6.1 Processor specifications 
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6.2.1 Speedup for Parallel Householder Bidiagonalization 

Table 6.2 provides the CPU vs. CBE execution time for parallel householder 

bidiagonalization as a function of the size of the randomly generated input matrix A. 

The difference in runtime between the serial and the parallel versions on Intel Core 2 

Duo and CBE respectively increases significantly by increasing the size of the input 

matrix, and it reaches a maximum for M=1024:N=1024, where the parallel version is 

about 21 times faster than the serial version. 

Size of Matrix 

(MzN) 

Sequential 

Algorithm (Time 

in sec) 

Parallel Algorithm 

(Time in see) 
Speedup 

64 x 64 0.21 0.24 0.86 
128 x 256 5.45 2.48 2.20 
256 x 512 48.20 6.47 7.44 
512 x 512 151.64 14.45 10.56 
512 x 768 264.07 21.39 12.17 

768 x 1024 793.78 45.83 17.32 
1024 x 1024 1236.48 58.16 21.26 

Table 6.2: Timing analysis of serial Householder Reduction on Intel Core2 Duo 

and parallel Householder Reduction on Cell BE 

The increase in speedup with increase in M was due to the fact that, in Householder 

transformations, for smaller dimensions the number of iterations after which to 

redistribute the resultant matrices were comparable to M which lead to a large idle 

time for some SPU's. The problem of synchronization in this algorithm was dealt with 

the use of the efficient Signal Notification Registers giving much better performance 

than the use of mailboxes. 

The results show that the performance of parallel SVD on CBE degrades for the 

matrix size 64 x 64. This is due to the communication cost between SPE and main 
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memory is greater than the computation cost. This can be dealt by deploying less 

number of SPE threads for computation. 

Figure 6.I compares the time required for sequential and parallel Householder 

bidiagonalization. Figure 6.2 suggests an increase in speedup as the number of rows 

M and the number of columns N were increased. 

900 
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U 
600 ,: - 

500 	- 

E 400 

300 
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0 — — 	 - 

64x64 128x256 256x512 512x512 512x768 768x1024 
Matrix Size 

—4--Sequential 

f Parallel 

Figure 6.1: Time required for serial and parallel Householder Bidiagonalization 
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Figure 6.2: Speedup of cell BE vs. Intel Core2 Duo for varying Matrix sizes 
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6.2.2 Speedup for complete SVD algorithm 

Table 6.2 provides the CPU vs. CBE execution time for parallel SVD as for randomly 

generated input matrix A. The difference in runtime between the serial and the 

parallel versions on Intel Core 2 Duo and CBE respectively increases significantly by 

increasing the size of the input matrix, and it reaches a maximum for 

M=1024:N=1024, where the parallel version is about 8 times faster than the serial 

version. 

Size of Matrix 
(MxN) 

Sequential SVD 
(Time in sec) 

Parallel SVD (Time 
in sec) Speedup 

64 x 64 0.561 0.636 0.88 

128 x 128 4.75 3.044 1.56 

256 x 256 38.57 12.362 3.12 

512 x 512 317.64 72.68 4.37 

768 x 768 1149.47 189.99 6.05 

1024 x 1024 2802.33 323.22 8.67 

Table 6.2: Timing analysis of serial SVD on Intel Core2 Duo and parallel SVD on 

Cell BE 

Figure 6.3 compares the time required for Sequential and parallel SVD. Figure 6.4 

suggests an increase in speedup as the number of dimensions M and the number of 

samples N were increased. 

It can be observed that the increase in speedup saturates at higher values of M because 

the data size in the SPEs exceeds 256KB and the computations are carried out by 

accessing the PPU memory multiple times which increases the memory latency due to 

greater DMA stalls. 
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CONCLUSION 	 CHAPTER 7 

In this work, we have proposed a parallel model for implementation of SVD 

computation on the CBE architecture. This model could be efficaciously used for LSI 

technique which is very popular method for information retrieval. 

Parallelizing SVD was the most interesting and challenging task. We tried to resolve 

the various issues related to implementation of the algorithm and then proposed 

solutions to them. Due to the high level of task parallelism achieved, and through the 

use of SIMD vectorization, significant performance improvement is obtained by the 

multicore implementation on CBE processor over Intel Core 2 Duo. This leads to give 

about 8 times speedup over sequential SVD. 

In comparison to a distributed system having multiple processing elements, the 

Parallel SVD implementation on the CBE processor achieves better results because of 

greater memory bandwidth and decreased time for interprocessor communication. In 

addition, CBE based implementation is quite cheap in comparison to distributed 

implementation. 

Though the current implementation of SVD on cell is resulting significantly well yet 

there is scope of better performance. As an extension to this work, the better parallel 

strategy can be defined for diagonalization of bidiagonal matrix to achieve the 

maximum speedup. 
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APPENDIX A: DEFINITIONS OF SOME MATHEMATICAL 
TERMS 

1. Orthogonal Vectors 

Two vectors u, v e R" are orthogonal if 
u • v=uT v=uIv1 ++Unvn =O 

Note that u • u = ulul + • • • + u„u„ = IIull2• If u is normalized, then u • u = 

2. Orthogonal Matrix 

A matrix Q is orthogonal if all row vectors are pair wise orthogonal, in other words 

QQT = QTQ = I 

In this case, QT = Q-1 

The product of two orthogonal matrices Q1, Q2 is also an orthogonal matrix 

(QIQ2)(QIQ2)T = Q1Q2Q2TQIT= QIIQIT= QIQIT= I. 

3. Bidiagonal Matrix 

Matrix A is upper bidiagonal if a ( 	i 	, j 	)=O 	unless i=j or i j-1. 
Matrix A is lower bidiagonal if a(i,j)=0 unless i j or i j+l. 

4. Diagonal Matrix 

An m x n matrix M is diagonal if Mt = 0 for all i ~ j. The remaining entries may or 
may not be non-zero. 

5. Numerical Stability 

Suppose we have some mathematically defined problem represented by f which acts 
on data d C c = some set of data to produce a solution f(d) E `P some set of 
solutions. An algorithm to determine f(d) is numerically stable if the computed 
solution is near the solution of a slightly perturbed problem. More precisely, let f 

denote an algorithm used to implement or approximate f, then it is stable if for all d E 

c there exists d* near d such that f(d*) is near f *(d). 



6. Convergent 

Matrix A is convergent if Ak  tends to 0 as k tends to infinity. 

7. Givens Rotation 

A Givens Rotation is a n*n matrix of the form PT  [Q 0 ; 0 I] P where P is 

a permutation matrix and Q is a matrix of the form [cos(x) sin(x); -sin(x) cos(x)]. 
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