
PARALLEL LATENT SEMANTIC INDEXING
ALGORITHM ON CELL BROADBAND ENGINE

ARCHITECTURE

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
IuL•1-4t4.1an.3:1 i [i1SiZci

in
COMPUTER SCIENCE AND ENGINEERING

QI
KANASE-PATIL PADMAJA BABURAO

. 3 // ,,..
1_J ri/i s

i r. R

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
MAY, 2010

CANDIDATE'S DECLARATION

I hereby declare that the work being presented in the dissertation report titled "Parallel Latent

Semantic Indexing Algorithm on Cell Broadband Engine Architecture" in partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Computer Science and Engineering, submitted in the Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee, is an authentic record of my

own work carried out under the guidance of Dr. Kuldip Singh and Dr. Ankush Mittal (Ex-

faculty) in the Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee. i have not submitted the matter embodied in this dissertation report for the

award of any other degree.

Dated: Q- 8 /°5 /2010

Place: IIT, Roorkee 	 Kanase Patil Padmaja Baburao

CERTIFICATE

This is to certify that above statements made by the candidate are correct to the best of our

knowledge and belief

Dated: 2 g JO5j2 o l o

Place: LIT, Roorkee

V~,Yt/
L-_

Dr. Kuldip Singh,

Professor,

Department of Electronics and

'A1

Dr. Ankush Mittal

Former Associate Professor,

Department of Electronics and

Computer Engineering. 	 Computer Engineering

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity. It is my

privilege to express my thanks to my guide Dr. Kuldip Singh whose constant motivation,

patience and enthusiasm were immensely helpful in carrying out this work. .1 would like to

express my deep sense of gratitude to my ex-guide Dr. Ankush Mittal, for his invaluable

guidance and constant encouragement throughout the dissertation. I would like to thank Dr. S.

N. Sinha, Head of ECE Department, for supporting us at critical juncture during the thesis

submission.

I acknowledge Georgia Institute of Technology, its Sony-Toshiba-IBM Center of Competence,

and the National Science Foundation, for the use of Cell Broadband Engine resources that have

contributed to this research. I would also like to thank the authors of book "Numerical Recipes in

C" for developing the uniprocessor implementation of the SVD algorithm that I have modified

and parallelized in this work.

I take this opportunity to extend my sincere thanks to all my friends at IIT Roorkee for the

constant support throughout my stay here. I am highly grateful to my brother Mr. Amarsingh

and my parents for their love and blessings which always motivated me to work better. Finally I

thank god for being kind to me and driving me through this journey.

(Kanase Patil Padmaja Baburao)

ABSTRACT

With the growing use of search engines, information retrieval has become a latest

research area. The growth of internet and explosion of information are the major

factors due to which the size of documents has increased many folds. Thus there is a

need of effective and efficient information retrieval mechanism. Latent Semantic

Indexing (LSI) is one of the techniques for information retrieval which is very

effective in correlating and retrieving relevant documents.

The critical step involved in LSI algorithm is Singular Value Decomposition (SVD).

SVD is a mathematical technique which is basically a matrix decomposition method.

The SVD is highly effective to derive the semantic relevance, but it is computationally

very expensive in terms of time and memory. Thus SVD becomes a bottleneck for

quick retrieval of matching documents from large database. This necessitates the

optimization of algorithm by parallelization using high performing architecture.

Multicore processors can be used for such type of problems which are computationally

intensive. The Cell Broadband Engine is one such multicore processor consisting of a

traditional PowerPC based master core meant to run the operating system, and 8

delegate slave processors built for compute intensive processing. This work introduces

a modification on the serial singular value decomposition algorithm. It describes

parallel implementation of the modified algorithm on Cell BE and issues involved.

Exposure of system level optimization features in Cell BE has been employed on

algorithm specific operations to achieve improvements to a great extent. The

implementation achieves significant performance, thereby giving about 8 times

speedup over sequential implementation.

TABLE OF CONTENTS

Candidate's Declaration ..i

Certificate..i

Acknowledgements ..ii

Abstract...iii

Listof Figures ...vii

List of Ta 	les ..vui i

Listof Acronym ...ix

Listof Publications ..x

Chapter 	1: Introduction 	...1

1.1 	Introduction to the problem ...1

1.2 Motivation ..:............................2

1.3 Problem Statement ...3

1.4 Organization of Report ..3

Chapter 2: Cell Broadband Engine Architecture ..5

2.1 Overcoming Performance the Limit ..5

2.2 Architecture ...6

2.2.1 PowerPC Processor Element (PPE) ..6

2.2.2 Synergistic Processing Element (SPE) ..7

2.2.3 Element Interconnect Bus (EIB) ..8

.2.3 Programming Features of Cell BE ...8

2.3.1 	SIMD Vectorization ..8

2.3.2 DMA and Double Buffering ...9

2.3.3 	Mailbox ...10

iv

2.3.4 Signal Notification Register ..12

Chapter 3: Background Study and Literature Review ...14

3.1 	Latent Semantic Indexing ...14

3.2 Singular Value Decomposition ...16

3.2.1 	Literature Review ..16

3.2.2 Our Approach: Golub-Kahan-Reinsch SVD17

Chapter 4: Householder Bidiagonalization ...20

4.1 Householder Matrix ..20

4.2 Sequential Algorithm for Householder Bidiagonalization21

4.3 Parallel Formulation of Algorithm ..24

4.4 Implementation on Cell BE architecture ...25

4.4.1 	SPE centric Model ..26

4.4.2 SPE-PPE Communication and Barriers Operation26

Chapter 5: Diagonalization of Bidiagonal Matrix and Complete SVD30

5.1 Diagonalization of Bidiagonal Matrix ...30

5.1.1 	QR Algorithm ..30

5.1.2 Sequential Diagonalization Algorithm ...31

5.1.3 Parallel Formulation of Algorithm ...31

5.2 Complete SVD ..33

Chapter 6: Experimental Results ...35

6.1 	Cell Simulator ...35

6.2 	Results ..35

6.2.1 Speedup for parallel Householder Bidiagonalization36

6.2.2 Speedup for complete SVD algorithm ..38

V

LIST OF FIGURES

2.1 Cell Broadband Engine Architecture

2.2 SIMD Operations in Cell BE

2.3 Double Buffering

2.4 Mailbox Communication Mechanism in Cell BE

2.5 Signal Notification Registers in Cell BE

3.1 Matrix Decomposition

3.2 Golub — Kahan - Reinsch SVD algorithm

3.3 Flow of Singular Value Decomposition Algorithm

4.1 Sequential algorithm for Householder Bidiagonalization

4.2 Diminishing size of Matrix

4.3 Distribution of part of column to each SPE

4.4 Parallel algorithm for Householder Bidiagonalization

4.5 Flow of Parallel Bidiagonalization Algorithm

5.1 Algorithm for Diagonalization of bidiagonal matrix

5.2 Matrix multiplication on Cell BE

6.1 Time required for Sequential and parallel Householder Bidiagonalization

6.2 Speedup of cell BE vs. Intel Core2 Duo for varying Matrix sizes

6.2 Timing analysis of serial Householder Reduction on Intel Core2 Duo and parallel
Householder Reduction on Cell BE

6.3 Time required for Sequential and parallel SVD

6.2 Speedup of cell BE vs. Intel Core2 Duo for varying Matrix sizes

VII

LIST OF TABLES

6.1 Processor specifications

6.2 Timing analysis of serial Householder Reduction on Intel Core2 Duo and parallel

Householder Reduction on Cell BE

6.3 Timing analysis of serial Householder Reduction on Intel Core2 Duo and parallel

Householder Reduction on Cell BE

WE

LIST OF ACRONYMS

CBE Cell Broadband Engine

DMA Direct Memory Access

EIB Element Interconnect Bus

LS Local Store

LSI Latent Semantic Indexing

MFC Memory Flow controller

MIC Memory Interface Card

PPE PowerPC Processing Element

SIMD Single Instruction Multiple Data

SNR Signal Notification Register

SPE Synergistic Processing Element

SPU Synergistic Processing Unit

SVD Singular Value Decomposition

ix

LIST OF PUBLICATIONS

Padmaja Kanase-Patil, Ankush Mittal, Kuldip Singh, "Implementation of

Minimum Spanning Tree Algorithm on Cell BE", Accepted in International

Conference on Advanced Computation Engineering, Bangalore, 21-22 June 2010

2. Padmaja Kanase-Patil, Kuldip Singh, Ankush Mittal, "Parallel Householder

Bidiagonalization on Cell Broadband Engine Architecture", Accepted in Fifth

International Conference on Industrial and Information System, NIT Surathkal,

29th July-15̀ August, 2010

x

INTRODUCTION 	 CHAPTER 1

1.1 Introduction to the problem

The amount of information that is retrieved and processed is growing rapidly and

hence there is requirement for a faster and effective information retrieval tool. There

are a number of ambiguities associated with the English language like polysemy and

synonymy which makes information retrieval more complex. Many of such problems

can be minimized when the query is provided in context. Latent Semantic Indexing

(LSI) [1] is one of the techniques for information retrieval which is used to retrieve the

documents from set of documents which are semantically relevant. It is a statistical

technique which can extract contextual and structural information within words and

sentences in a document [2].

LSI technique works on Term-Document Matrix (TDM). TDM is generated by

arranging all content words within all documents in a document set along the vertical

axis and all documents along the horizontal axis. LSI technique breaks down this

matrix into smaller components using matrix decomposition method called as Singular

Value Decomposition (SVD) [3]. SVD is a mathematical technique which

decomposes the TDM matrix into a set of smaller components. These smaller

components are then used to find the semantic relevance between query provided by

user and document. Basically SVD is used to discard redundant information and focus

only on essential semantic information.

SVD is extraordinarily useful mathematical technique which breaks the TDM matrix

A in the form of A = U E VT. U is orthogonal matrix which represents term vectors in

new latent semantic space. E is diagonal matrix. The diagonal entries are known as

the singular value which is the measure for relevance of terms and documents. V T is

orthogonal matrix which represents document vectors in new latent semantic space.

We can create an approximation A' to the original A by choosing the top singular

values in E, and setting the rest to zero. This is the step where we actually remove

1

redundant and noisy information. A number of methods and approaches have been

proposed for calculation of SVD [12].

Though the SVD is highly effective to derive the semantic relevance between the

documents, it is computationally very expensive in terms of time and memory. Thus,

implementation of LSI requires investment of storage and computing time [1].

1.2 Motivation

Size of document set has increased many folds with the growth of internet and an

explosion of available information. LSI based systems are very effective at retrieving

the correct documents, but they become slow and take a lot of processing power to

process such large document set. LSI is very expensive to perform on real life sets of

documents, because very large matrices are involved and SVD on such large matrices

is very costly in terms of time [4]. Thus it requires a powerful hardware to make it

fast. One solution is to have a large number of computers in a cluster or a grid.

However this is a costly method. An alternate method can be devised in the form of

multicore computer like Cell Processor.

With introduction of Moore's law the microprocessor industry is making a consistent

effort to deliver a higher throughput. The recent trend of technology suggests the use

of more number of execution cores in each processor. Multicore technology focuses

on delivering pure performance and optimizing power requirements. Multiple cores

introduced in a processor are capable of sharing work and executing independent tasks

simultaneously. The other benefits are enhanced performance and reduced power

consumption.

Multicore processors can be used for the problems which are computationally

intensive. They can provide a significant amount of peak performance gain as

compared to the uniprocessor. The Cell BE processor is one such multi-core

processor. It is designed with the computationally intensive applications in mind, often

used to achieve real time processing and reduce the execution time considerably for

various applications.

2

Cell processor bears a huge potential for compute-intensive applications. But, it poses

new implementation challenges because of its unique architecture and often requires

substantial re-engineering of the existing algorithms. Motivation of this thesis is to

utilize the dense computational power of the Cell architecture for parallelization of

SVD and achieve the maximum performance.

1.3 Problem Statement

In this dissertation work we propose and implement the SVD of a matrix on Cell BE

while addressing the real time processing aspects of the algorithm. We aim to

parallelize the algorithm efficiently to reduce the running time of algorithm.

The major contributions of this dissertation work lie in:

1. Identifying major issues involved in porting a sequential SVD algorithm on a

cell processor.

2. Proposing potential solutions to these issues through parallel implementation.

3. Evaluation of these solutions by porting parallel SVD algorithm on cell

processors.

This dissertation work presents the parallel implementation of SVD algorithm on

multicore CBE Architecture. The implementation tries to utilize all the features of this

architecture and at the same time it considers the architectural limitations, thereby

obtains considerable performance gain.

1.5 Organization of Thesis

This thesis proposes the parallel model for SVD on CBE. The organization of the

thesis is as follows:

Chapter 2 discusses the hardware architecture of the multicore processor STI CBE and

describes its various components. This also discusses some programming features of

3

Cell Broadband Engine which plays major role in achieving the significant

performance.

Chapter 3 discusses the background details of LSI and SVD computation of matrix. It

also describes the various techniques suggested to carry out the SVD and approach

used in the dissertation work for calculation of SVD.

Chapter 4 discusses the sequential Householder Bidiagonalization algorithm, issues

involved in implementing parallel version of it on Cell BE architecture and the

solutions to those issues.

Chapter 5 discusses the issues involved in implementing the diagonalization of

bidiagonal matrix on Cell BE architecture and then provides solutions to those issues.

Chapter 6 discusses work environmental setup on which experiment is carried out and

the experimental results for various modules.

Finally chapter 7 concludes the dissertation work and also discusses possible

extensions.

4

CELL BROADBAND
ENGINE ARCHITECTURE 	 CHAPTER 2

Cell Broadband Engine is a joint venture of Sony, Toshiba and IBM Corporation

formed in 2001. This collaboration of three companies is known as STI. The CBE

processor is the first implementation of a new family of multiprocessors which extends

64 bit Power PC Architecture. The Cell BE is mainly intended for application in game

consoles and media-rich consumer-electronics devices such as high-definition

televisions. But the architecture and the implementation have been designed to enable

fundamental advances in processor performance [6].

The CBE is a single-chip multiprocessor with nine processors operating on a shared

and coherent memory. All the nine cores share the main memory. The most

distinguishing feature of the CBE is that, the function of these cores is specialized into

two types: the PowerPC Processor Element (PPE), and the Synergistic Processor

Element (SPE). The CBE has one PPE and eight SPEs [7].

2.1 Overcoming the Performance Limits

The performance of present high-frequency processors is limited by three major

factors.

1. Memory Wall: Program performance is dominated by the activity of

moving data between main storage and the processor.

2. Frequency Wall: Conventional processors require increasingly deeper

instruction pipelines to achieve higher operating frequencies. This

technique has reached a point of diminishing returns

3. Power Wall: Higher frequency implies higher operating voltage and hence,

higher heat dissipation.

5

Cell BE overcomes the memory wall by using a 3-level memory architecture

consisting of disk memory, shared main memory between SPEs and PPE and a local

store in each SPE. Use of asynchronous DMA transfer and DMA multiple double

buffering further add the speedup. It overcomes the frequency wall by making use of

non- homogeneous parallelization. By specializing the PPE and the SPEs for control

and compute-intensive tasks, cell BE works at high frequency without excessive

overhead. In CBE, the power efficiency is increased by providing a general-purpose

PPE to run the operating system and other control-plane code, and eight SPEs

specialized for computing data-rich (data-plane) applications [7].

2.2 Architecture

The CBE increases concurrency through the use of multiple processing cores and

increases the specialization in execution through non-homogeneous parallelization.

For this purpose, it employs 8 SPEs onto which threads of an application can be

mapped and these SPEs are controlled by PPE. PPE and SPEs communicate through a

common internal high-speed Element Interconnect Bus (EIB). The SPE offers a high

bandwidth interface to a direct memory access (DMA) that can transfer 32 GB/sec to

and from the 256 KB local memory. The CBE has clock speed of 3.2 GHz [6, 8]. The

architecture is shown in Figure 2.1.

2.2.1 PowerPC Processor Element (PPE)

The PPE is a dual thread PowerPC architecture RISC core and support a PowerPC

virtual memory subsystem. It has 32KB L1 instruction and data caches and 512 KB

L2 (instruction and data) cache. .It runs an operating system, manages system

resources, and is intended primarily for control processing, including the allocation

and management of SPE threads. The instruction set for PPE is an extension of the

PowerPC instruction set. It also includes a vector multimedia extension unit, called

SIMD, so that it can do multiple operations simultaneously with a single instruction

[6].

6

PowerPC 	 RAM
Processin
g Element 	 SPED 	SPEl 	SPE2 	SPE3 	

Memory
controller (PPE) 	 1 	1 	II 	II System memory

Ii Interrupt 	256 	256 	256 	256
II eontrolIer IjIIcBIIIJIBIjIIIBlIIIcBI

Loon 	Loca 	Loca 	Loca 	 RAM
64-bit
PPC 2 	 store 	store 	store 	store
Thread
SMT
VMX

I 	 Element Interconnect Bus

LIcache 	 SPE4 	SPES 	SPE6 	SPE7

256 	256 	256 	25G
KB IiiI KB ililKu 	KB
Loma 	Lora 	Loca 	Loca
I 	 1 	 I 	 I 	 vo
store 	store 	store 	store 	controller

512 KB

LZ cache

I/o

Figure 2.1Cell Broadband Engine Architecture [9]

2.2.2 Synergistic Processor Elements (SPEs)

Eight homogeneous SPEs are SIMD processor elements that are optimized for data-

rich operations. It consists of two main units, the Synergistic Processor Unit (SPU)

and the Memory Flow Controller (MFC). The SPE deals with instruction control and

execution. It includes a single register file with 128 registers (each one 128 bits wide),

a unified (instructions and data) 256-KB local store (LS), an instruction-control unit, a

load and store unit, two fixed-point units, a floating-point unit, and a channel-and-

DMA interface. The SPE implements a new SIMD instruction set, the SPE Instruction

Set Architecture.

The MFC contains a DMA controller that supports DMA transfers. Programs running

on the SPE use the MFC's DMA transfers to move instructions and data between the

SPE's LS and main storage. The MFC interfaces the SPE to the EIB which manages

7

bus bandwidth-reservation and synchronization operations between the SPE and all

other processors in the system [6].

To support DMA transfers, the MFC maintains and processes queues of DMA

commands [7]. After a DMA command has been queued to the MFC, the SPE can

continue to execute instructions while the MFC processes the DMA command

autonomously and asynchronously.

2.2.3 Element Interconnect Bus (EIB)

The EIB is a communication bus internal to the Cell processor which connects the

PPE, the memory controller (MIC), eight SPE coprocessors, and two off-chip 1/O

interfaces, for a total of 12 participants. The EIB is presently implemented as a

circular ring consisting of four 16B-wide unidirectional channels. Out of these four

channels, two run in clockwise direction and rest two run in anticlockwise direction.

When traffic patterns permit, each channel can convey up to three transactions

concurrently. As the EIB runs at half the system clock rate the effective channel rate

is 16B every two system clocks. At maximum concurrency, with three active

transactions on each of the four rings, the peak instantaneous EIB bandwidth is 96B

per clock (12 concurrent transactions * 16B wide / 2 system clocks per transfer).

2.3 Programming Features of Cell-BE

2.3.1 SIMD Vectorization

Support for SIMD operations is pervasive in the CBE. SIMD operands are vectors. A

vector is an instruction operand containing a set of data elements packed into a one

dimensional array. The elements can be integer or floating-point values. In the PPE,

they are supported by the Vector/SIMD Multimedia Extension instruction set. In the

SPEs, they are supported by the SPU instruction set. In both the PPE and SPEs, vector

registers hold multiple data elements as a single vector. The data paths and registers

supporting SIMD operations are 128 bits wide, corresponding to four full 32-bit

words. This means that four 32-bit words can be loaded into a single register and

8

single operation (for example, addition) can be performed on these four data

simultaneously. Similar operations can be performed on vector operands containing

16 bytes, 8 half-words, or 2 double-words [7]. The following figure 2.2 shows such an

operation [7, 8].

Vs: vs131 Vs[2] V5 1] V5[0]

+ 	+ 	+ 	+

ut: Vt[3] VJ21 V[1] V[OI

'Jr 'Jr 'Jr

ud: vsl3]+Vd3] 5[21+V,l2J V,l1]+vd1] slot+vdo]

Figure 2.2 SIMD operations in Cell BE

2.3.2 DMA and Double Buffering

MFC supports a set of DMA commands which provide the main mechanism for data

transfer between the LS and main storage. It supports a set of synchronization

commands which are used to control the order in which storage accesses are

performed. Consider an SPE program that requires large amounts of data from main

storage. The following is a simple scheme to achieve that data transfer:

1. Start a DMA data transfer from main storage to buffer B in the LS.

2. Wait for the transfer to complete.

3. Use the data in buffer B.

4. Repeat.

There is a wastage of large amount of waiting time for DMA transfers using this

method. We can speedup the process significantly by allocating two buffers, BO and

9

B 1, and overlapping computation on one buffer with data transfer in the other. This

technique is called double buffering. The below figure 2.3 shows a flow diagram for

this double buffering scheme. Double buffering is a form of multi-buffering, which is

the method of using multiple buffers in a circular queue to overlap processing and data

transfer [6].

Initiate DMA
transfer to
buffer Bo

Wait for
Initiate DMA 	DMA transfer 	Use data in
transfer to 	 to buffer Bo to 	Buffer Bo
buffer BI 	 complete

Wait for
Use data in 	 DMA transfer 	Initiate DMA
buffer B 	 to buffer BI to 	transfer to

complete 	 buffer B i

Figure 2.3 Double buffering

2.3.3 Mailbox

While DMA transfer allows transfer of up to 16K. bytes of data between the main

memory and each SPE's LS, mailboxes are designed for transfer of 32-bit data

between the PPE and the SPE. Structurally, mailboxes are FIFO queues [10]. The

MFC provides three types of mailbox queues, each with a different behavior and data

transfer direction as shown in Figure 2.4.

10

SPE 	 MFC

Inbound Mailbox Queue

EIB

Outbound Mailbox Queue 	 PPE
SPU 	 ——-- -- --

Outbound Interrupt Mailbox Queue

SPE Read Access 	 PPE Read Access

SPE Write Access 	 ----~ PPE Write Access

Figure 2.4 Mailbox communication mechanism in Cell BE [10]

1. SPU Inbound Mailbox: This is used to send data from the PPE to the SPE. This

mailbox has space for storing up to four 32-bit messages at a time. If no message

is found when the SPE program accessed the queue, the SPE stalls until data is

written by the PPE program.

2. SPU Outbound Mailbox: This is used to pass data from the SPE to the PPE. This

mailbox has the capacity to accept only one 32-bit message. If the SPU outbound

mailbox is full, writing of the next data is suspended until the PPE reads the data

from the queue.

3. SPU Outbound Interrupt Mailbox: Like the SPU outbound mailbox, this is used

to send data from the SPE to the PPE. When this mailbox is written, however, an

interrupt event is generated to notify the PPE when to read the data.

11

These mailboxes can be accessed either from the SPE or PPE programs.

2.3.4 Signal Notification Register

This is one more mechanism provided for SPE-PPE communication. Signal

Notification Registers (SNRs) are 32-bit registers used to send signals, such as control

messages and events, to an SPE from other SPEs or the PPE. There are two SNRs for

each SPE. The sending processor (either PPE or SPE) writes the signal value in the

form of 32-bit data into the SNR of the receiving processor (one of other SPEs).

When the value is read by the receiving processor, all bits in the SNR are reset to zero.

If the SNR is empty when it is read, the receiving processor stops execution until the

signal is written [10].

(a) Overwrite Mode 	 (b) Logical OR Mode

Figure 2.5 Signal Notification Registers in Cell BE [10]

NRs can be configured for overwrite mode or logical OR mode. The overwrite

is useful in a one-to-one signaling environment, whereas the logical OR mode

;s many-to-one signaling. Either of these modes can be selected for each SNR,

12

independently of the other. Figure 2.5 shows the difference between the SNR's two

operating modes. The SNRs also make barrier synchronization of multiple SPE

programs possible by configuring them into logical OR mode.

13

BACKGROUND STUDY
AND LITERATURE REVIEW 	 CHAPTER 3

3.1. Latent Semantic Indexing

Latent Semantic Indexing is an information retrieval technique that projects queries

and documents into a space with "latent" or hidden semantic dimensions. This space

is called as Latent Semantic Space. In the latent semantic space, a query and a

document can have high similarity even if they do not share any terms - as long as

their terms are semantically similar. Also they can be distant from each other, even if

they share some common terms. This latent semantic space has fewer dimensions than

the original space. LSI is a method for dimensionality reduction [1]. In short, LSI

projects the queries and documents into space with smaller number of dimension (k)

from the space with very large number of dimensions (n) where n > k.

LSI uses a method from linear algebra, the Singular Value Decomposition (SVD) for

dimensionality reduction. SVD takes a matrix A and represents it as A'' in a lower

dimensional space [11].

The SVD projection is computed by decomposing the Term-Document Matrix Am

into the product of three matrices, Um x,,, S,, and VT„ x „ as

A=UEVT

Where,

• U is an m x n orthogonal matrix

• E is an n x n diagonal matrix. The diagonal entries are known as the singular

values.

• VT is an n x n orthogonal matrix

14

We can view SVD as a method for rotating the axes of the n-dimensional space such

that the first axis runs along the direction of largest variation among the documents,

the second dimension runs along the direction with the second largest variation and so

forth. The matrices U and V represent terms and documents in this new space. The

diagonal matrix E contains the singular values of A in descending order. The ith

singular value indicates the amount of variation along the i h̀ axis [1, 2].

A=U £. VT
k n 	 n

k

k 	
VT

n 	 n

Figure 3.1 Matrix Decomposition

The best square approximation of matrix A of rank k (Figure 3.1) can be calculated by

restricting the matrices U, E and V to their first k <n rows, as shown in below,

A' - Umxk F+kxkVT
 mxk

To choose the number of dimensions (k) for A' is an interesting problem. Reduction

in k can remove much of the noise but keeping too few dimensions or factors may

loose important information. LSI performance can improve considerably after 10 or

20 dimensions, peaks between 70 and 100 dimensions, and then begins to diminish

slowly [4].

15

3.2 Singular Value Decomposition

3.2.1 Literature Review

Several algorithms have been developed for mathematical computation of singular

value decomposition. We discuss here shortly some of the algorithms for computing

the SVD. A number of additional algorithms exist, but they are not discussed here

because they appear to be less suited for parallelization in our judgment. It cannot be

predicted a clear winner among parallel SVD algorithms that can provide the single

best trade-off between numerical stability [12], algorithmic complexity,

parallelizability, efficiency, and ease of programming on CBE multicore architecture.

> Classical Jacobi Method

The classical Jacobi method applies to symmetric matrices. It transforms a symmetric

N X N matrix A into a diagonal matrix by means of a sequence of Jacobi

transformations [13]. Each of the Jacobi transformations is chosen to find the off-

diagonal elements of largest absolute value. The classical Jacobi method exhibits high

numerical stability and convergence but computationally it is very slow [13, 14].

➢ Cyclic Jacobi Method

The main disadvantage of the classical Jacobi method is the computational cost

required to determine the largest off-diagonal element. Rather than searching for the

largest element, a cyclic Jacobi method uses approach which applies Jacobi

transformations in a data-independent fashion. This method is computationally faster

than the classic Jacobi Transformation.

The primary problem with the cyclic Jacobi method is the two-sidedness of the Jacobi

rotation. Matrices are stored either in row-major or column-major format. The two-

sided Jacobi method traverses both. One of the two traversals might give poor

performance conventional memory architectures [15].

16

Hestenes-Jacobi Method

Hestenes [16] introduced the one-sided Jacobi method by discovering the equivalence

between orthogonalization of two vectors and annihilating a matrix element by means

of orthogonal plane rotations. Hestenes algorithm gives low performance for

multicore architecture and hence not popular.

Golub-Kahan-Reinsch SVD

The SVD algorithm suggested by Golub, Kahan, and Reinsch [17] has become the

standard method for computation of SVD. This SVD algorithm is based on

bidiagonalization. It consists of two phases, bidiagonalization and subsequent

diagonalization.

3.2.2 Our Approach: Golub-Kahan-Reinsch SVD

The fastest available iterative Jacobi algorithms are slower than the fastest algorithms

based on bidiagonalization. We follow the Golub-Kahan-Reinsch approach to

calculate SVD as it is simple and compact, and maps well to the CBE multicore

architecture. Algorithm 3.1 describes the SVD algorithm for an input matrix A.

Algorithm 3.1 Singular Value Decomposition

1. B *— QTAP 	{Bidiagonalization of A to B}

2. E <— XTBY 	{Diagonalization of B to E}

3. U — QX 	{Compute orthogonal matrices U and VT

4. VT _(PY) T 	andSVDofA=UEVT}

Figure 3.2 Golub — Kahan - Reinsch SVD algorithm

17

The SVD computation suggested by Golub-Kahan-Reinsch consists of two phases,

bidiagonalization and subsequent diagonalization [18]. Bidiagonalization can be

achieved by means of alternating QR and QL factorizations to annihilate column and

row blocks or Householder bidiagonalization [18]. We use the latter method for

bidiagonalization. The matrix is first reduced to a bidiagonal matrix using a series of

householder transformations. The bidiagonal matrix is then diagonalized by

performing implicitly shifted QR iterations [19].

I 	Given a matrix A

Apply Householder

Bidiagonalization on A
B QTAP

	

Q 	 B 	 P
Householder matrix 	Bidiagonal Matrix 	Householder matrix

Apply Diagonalization

	

Multiply 	 Multiply

	

with 	
using implicit shift QR on B 	

with Ef— X BY

	

X 	 I 	Y
Orthogonal unitary 	Diagonal Matrix 	Orthogonal unitary

	

matrix 	 Containing Singular 	 matrix
value

	

U _ QX 	 ~Y~ 	 VT= (py)T

Singular Value Decomposition

Figure 3.3 Flow of Singular Value Decomposition Algorithm

18

Figure 3.3 shows the flow of Golub - Kahan - Reinsch SVD algorithm-how the matrix

is reduced to first bidiagonal and then to diagonal form and also how matrices are

generated to calculate the singular value decomposition.

The subsequent chapters focus on Householder bidiagonalization algorithm (Chapter

4) and Diagonalization of bidiagonal matrix algorithm using implicit QR shifting

(Chapter 5).

19

HOUSEHOLDER BIDIAGONALIZATION 	CHAPTER 4

The implementation of the Singular Value Decomposition requires that the matrix he

reduced to a simpler form. In our case it is an upper bidiagonal form [20], which is

given as follows,

D, e,

02 e2

D3 c3

~N(RAL Lje \
X2°44.....,. ACC Nc.......

Datq

.

t~nI en-I
	 fQl

I~n

The basic idea to reduce the matrix in bidiagonal form is to decompose the matrix A in

the following form:

A = QI3P'

This reduction of matrix A is achieved by applying a series of householder

transformations where 13 is a bidiagonal matrix and Q and P are unitary householder

matrices. The householder matrix acts on given vector to zero all its elements except

the first one [18].

4.1. Householder Matrix

The Householder Matrix P has the form:

P = 1 — 2W.WT 	 (4.t)

Where W is real vector with IW h = I The matrix P is orthogonal because

P`=(I-2W.Wr).(I-2W.W5=I 	 (4.2)

Therefore. P = Pd . But P' P, and so PT = P' proving orthogonality. Rewrite P as

20

T
(4.3)

Where the scalar H is

H := Z Iut2 	 (4.4)

And now u can be any vector. Suppose x is vector consists of first column of A.

Choose

u = x±Ixlei 	 (4.5)

Where o f is unit vector [1, 0, 0....0] T Then we have

P.x =±Ixlei 	 (4.6)

This shows that the householder matrix P acts on a given vector x to zero all its

elements except the first one [18].

4.2 Sequential Algorithm for Householder Bidiagonalization

The standard way to reduce the matrix into bidiagonal form is to alternately pre and

post multiply A with Householder transformations in order to introduce zeros in the

;olumns and rows of the matrix [21, 22]. Each transformation annihilates the required

)art of a whole column and whole corresponding row. To obtain the matrices P

ad Q, one may either explicitly accumulate the transformations "on the fly" or store

ie Householder vectors "in-place" in the zeroed parts of A for later backward-

,cumulation [21]. We follow latter strategy.

the first step we choose Householder transformation P so as to introduce zeros in

hatted elements in matrix A.

21

X X X X X
X X X X X
X X X X X

X X X X
7C X X X X

After which P A has the form:

X X X X k
0 X X X X
0 X X X X
0 X X X X
0 X X X X

Next we choose K such that P • A • K has zeroes in the hatted elements to get a matrix

of the form,

X X 0 0 0
0 X X X X
0 X X X X
0 X X X X
0 X X X X

The reduction proceeds recursively on the matrix A to finally form a matrix B of

diagonal form.

Instead of actually carrying out the matrix multiplication, we compute a vector

P.= N 	 (4.7)

Then we have (see [18] for detailed description)

A' = A — q. uT — u. qT 	 (4.8)

This is computationally useful formula. In detail, at any stage m (m=1, 2...), the

equations are as follows:

22

uT = [0,0, am;i + V, am+l,i, , an.i] 	(4.9)

And the quantity a is

a = ((ai,m)Z + ... + (a[,n)2) 	 (4.10)

Variables are computed in the following order a, u, H, p, q, A'. At any stage m, matrix

A is bidiagonal in its 0 to m-1 columns. Figure 4.1 gives the sequential algorithm for

Householder Bidiagonalization.

Algorithm 4.1: Householder Bidiagonalization

Input:

Output: 	D:[1....n] diagonal elements

E:[1....n] Offdiagonal elements

P:[1 . . . nj Householder Matrix

Q: [1....n] Householder Matrix

For i=1 to n

Do

Calculate scale. Use scaled a's for transformation.

Form a. Eq. (4.B)

Calculate u Eq. (4.) and Store it in the A

Calculate H given in Eq. (4.4)

Form an element of P.(4.7)

Form an element of Q.

Reduce A Eq. (4.8)

End for

Figure 4.1 Sequential algorithm for Householder Bidiagonalization

23

4.3 Parallel Formulation of Algorithm

The CBE architecture has very good architectural potentials like 8 SIMD, compute

intensive cores and fast communication mechanisms between the cores. But the main

challenging task while developing the parallel algorithm for any application on CBE,

is very limited (i.e. 256KB) memory available with each SPE core. The existing

algorithm has to be restructured in order to utilize this memory efficiently and also to

minimize the communication between different cores.

Bidiagonalization consumes a significant fraction of the total time to compute SVD. It

has a drawback of having a lot of matrix-vector multiplication operations. Matrix-

vector multiplication requires 0 (n2) operations on 0 (n2) data, which results in poor

computation-to-communication ratio. The parallel algorithm was developed after

studying the pattern in the computations and the results. In the limit of large n, the

operation count of the Householder reduction is 4n3 / 3 [18]. It is a very difficult

algorithm to parallelize due to following reasons:

1. Symmetrical nature of computations

2. The diminishing size of the matrix and computations with the iterations.

(Figure 4.2)

Figure 4.2 Diminishing size of Matrix

24

The sequential algorithm reduces one row and one column in each iteration. It was

observed that the computations in each column could not be done independently of

each other. We cannot distribute the whole matrix to each SPE for parallelization of

outer loop due to limited memory available with each SPE (i.e. 256KB). So the

variables a, u, H, p, q. A' are computed in parallel with distribution of part of column

to each SPE in each iteration (Figure 4.3). For calculation of each of variable, the part

of column is brought onto the SPE memory through DMA.

The DMA does transfer continuous memory data to and from main memory. Thus to

distribute the column in different SPEs, the total number of DMA's required is equal

to the size of part of column. In order to minimize the DMAs, the matrix is stored in

column major order, as shown in Figure 4.3, so that only one DMA will be required in

order to transfer part of column.

I size n/R

m

Figure 4.3 Distribution of part of column to each SPE

4.4 Implementation on Cell BE architecture

Figure 4.4 lists the parallel algorithm for sequential Householder Bidiagonalization.

The algorithm processes the input matrix by small blocks, providing for great data

locality and fine granularity of parallelization. In the case of the Cell processor, it also

25

readily solves the problem of limited size of private memory associated with each

computational core.

4.4.1 SPE centric model

The implementation follows the SPE-centric model in which most of the application

code is distributed among SPEs. PPE core runs little more than a resource manager

for the SPEs. SPE fetches next work item (what function to execute, pointer to data,

etc.) from main memory or from its own memory, when it completes current work

item [7]. The PPE manages the execution of the overall algorithm relying on the SPEs

to deliver computational services. The PPE is responsible for launching and

terminating the SPEs. The SPE execution cycle consists of waiting for a request,

performing the requested task and sending back a response.

PPE creates 8 SPE threads and assigns the thread ID to each SPE. The effective

address of global control block is sent to each SPE thread at the time of creation,

which is pulled by each SPE to its local store by a DMA transfer. The control block

contains effective address of Matrix A, thread ID of SPE and other synchronization

information. This effective address of Matrix A is used by each SPE to fetch the part

of Matrix A from main memory through DMA. After this initial exchange of

information the execution of algorithm is carried out by SPEs, PPE manages it.

4.4.2 SPE-PPE Communication and barrier operation

To transfer the data from main memory to SPE local store, the DMA communication

mechanism [6, 7, 8] has been used. Generally this data is more than 4 bytes. There are

special MFC commands available which provide the DMA mechanism. This

mechanism enables SPE to access main storage. SPE fetches the part of matrix A from

main memory through DMA. Also it transfers the updated part of Matrix A to main

emory through DMA. The commands that transfer data from main storage to SPE

e referred as get commands and commands that transfer data from SPE to main

orage are referred as put commands [8].

26

Algorithm: Parallel Householder Bidiagonalization Implementation

Input: 	A: [1...m][1....n]
Output: 	D: [1....n] diagonal elements

E: [1....n] Offdiagonal elements
P: [I....n][l...n] Householder Matrices
Q: [1.. .n][1... n] Householder Matrices

Create 8 SPE threads with threadiD [0...7]
Initialize Matrix A and store it into column major order

For i:=0ton
SPE fetches the respective part of ia' column of matrix A through DMA.
SPE calculates the scale and send it to PPE
PPE calculates global_scale and sends in to each SPE through mailbox
SPE performs scaling on Matrix A and forms a on respective part of

column
SPE sends calculated a to PPE. PPE calculates global a.
SPE updates the respective part of column through DMA
Synchronize all SPEs
PPE calculates H in Eq. (4.4)
SPE receives signal from PPE to start next work.
SPE fetches the respective part of ith column of Matrix A through DMA
SPE forms A.0 in respective part of column of A.
SPE receives calculated H from PPE through Mailbox.
SPE forms an element of P.
SPE updates the respective part of column through DMA.
Synchronize all SPEs.
PPE forms an element of Q.
SPE receives signal from PPE to start next work.
SPE fetches part of column through DMA.
SPE reduces respective part of column
SPE updates the respective part of column through DMA
Synchronize all SPEs

End for

Figure 4.4 Parallel algorithm for Householder Bidiagonalization

27

To send data of 4 bytes, mailbox communication [7, 8] has been used. Two mailboxes

(the SPE Write Outbound Mailbox and the SPE Write Outbound Interrupt Mailbox)

are provided for sending messages from the SPE to the PPE. One mailbox (the SPE

Read Inbound Mailbox) is provided for sending messages to the SPE [8]. Mailbox

communication is used to send the control information.

To achieve a barrier operation of only SPE threads (i.e., the PPE is not participating

the barrier), signal notification registers [8] provide the most efficient method. The

concept is:

• One SPE (i.e. SPE 0) is assigned to be the master, others are slaves.

• The master SPE's signal notification register is configured in logical OR mode [7].

• The slave SPE's signal notification register is configured in overwrite mode.

• Each slave SPE is assigned a bit in signal notification register.

➢ Synchronization Algorithm:

• Slave SPE:

— Writes a single bit to the master's signal notification register.

— Waits for a message written to its signal notification register.

• Master SPE:

— Reads the signal notification register until all participant bits are read non-zero.

— Writes to all the slave SPU's signal notification register.

Figure 4.5 shows the flow of algorithm and PPE-SPE communication at various stages.

28

PPE 	
SPE

Initialize the matrix A and store it
in column major order

Create 8 SPE threads, assign thread ID to
each thread and send effective address of A
to each SPE thread

Calculate global_scale and send in to ea SPE
through mailbox

Identify thread ID and store effective
address of A

Fetch the respective part of ia column of
matrix A through DMA

ii
Calculate the scale and send it to PPE
through mailbox

JL

Receive global_scale from PPE. Perform
scaling on Matrix A and form a on
respective part of column

Send calculated a to PPE.
ii

Update the respective part of column of
Matrix A through DMA

Synchronize all SPEs

Calculate H and send signal to
each SPE to start next work

Send calculated H to each SPE
through mailbox

Fetch the respective part of I" column of
Matrix A through DMA

Form A.0 in respective part of column of A.

Receive calculated H from PPE through
Mailbox

Form an element of?

.11
Update the respective part of column of
Matrix A through DMA

Synchronize all SPEs

an Fetch the respective part of i~' column of Form element of Q and send 	 Matrix A through DMA rm
signal to each SPE to start next work

Reduce respective part of column of A.

I

. 	Update the respective part of column of
Matrix A through DMA

Synchronize all SPEs

Figure 4.5 Flow of Parallel Bidiagonalization Algorithm

29

DIAGONALIZATION OF BIDIAGONAL
MATRIX AND COMPLETE SVD 	 CHAPTER 5

5.1 Diagonalization of Bidiagonal Matrix

Next step in SVD is to reduce the bidiagonal matrix in diagonal form [23]. The

bidiagonal matrix can be reduced to a diagonal matrix by iteratively applying the

implicitly shifted QR algorithm [19]. The matrix B obtained in the first step is

decomposed as

E=XTBY

Where E is a diagonal matrix, X and Y are orthogonal unitary matrices. E contains the

singular values of matrix B. Each iteration updates the diagonal and super diagonal

elements such that the values of the super diagonal elements become less than their

previous values. On convergence of the algorithm the superdiagonal elements are

reduced to zero and only the diagonal elements of the matrix are left in the matrix X.

5.1.1 QR Algorithm

The basic idea behind the QR algorithm is that any real matrix can be decomposed in

the form

A=Q•R 	 (5.1)

Where Q is orthogonal and R is upper triangular. For a general matrix, the

decomposition is constructed by applying Householder transformations to annihilate

successive columns of A below the diagonal. Now consider the matrix formed by

writing the factors in (5.1) in the opposite order:

A'= R • Q 	 (5.2)

is orthogonal, equation (5.1) gives R = QT • A. Thus equation (5.2) becomes

A'=QT. A . Q 	 (5.3)

30

We see that A' is an orthogonal transformation of A.

The workload in the QR algorithm is 0 (n3) per iteration for a general matrix, which is

prohibitive. However, the workload is only 0 (n) per iteration for a bidiagonal matrix,

which makes it highly efficient on this form [18].

5.1.2 Sequential Diagonalization algorithm

The standard algorithm for finding singular values of a bidiagonal matrix B is the QR

algorithm applied implicitly to BTB. The algorithm computes a sequence B, of

bidiagonal matrices starting from Bo= B as follows. From B; the algorithm computes a

shift 62, which is usually taken to be the smallest eigenvalue of the bottom 2 by 2

block ofB,BT.

Then the algorithm does an implicit QR factorization of the shifted matrix BTB; - oz I

= QR, where Q is orthogonal and R upper triangular, from which it computes a

bidiagonal B;+i such that BT, + 1Bj+1 = RQ+ 62 I. As i increases, B converges to a

diagonal matrix with the singular values on the diagonal [24].

Figure 5.1 lists the sequential algorithm for Diagonalization of bidiagonal matrix

(which is obtained in previous step) using the implicit QR shifting technique.

5.1.3 Parallel formulation of algorithm

The diagonalization of the bidiagonal matrix is sequential in nature; the convergence

of every superdiagonal element depends on the convergence of the element before it.

Hence it is not possible to run parallel threads for convergence. So all the work for

Diagonalization has been carried out on PPE only. Some architectural features have

been used to gain the performance:

31

Algorithm 5.1 Diagonalization of bidiagonal matrix

Input: 	B[l.....n][1....n] is bidiagonal matrix
Output: 	D[I....n] contains singular values

X[1....n] and Y[ln] contains the unitary orthogonal matrices

For i:=0 ton
Look for a single small subdiagonal element to split the matrix.

Form shift.

Perform a plane rotation followed by Givens rotations to restore bidiagonal
form.

Store calculated eigen value in D.

Recover from underflow.

Form eigenvector corresponding to ith diagonal element of B and store it into
Z [1...n].

End for

Figure 5.1 Algorithm for Diagonalization of bidiagonal matrix

1. SIMD Vectorization: The SIMD works on the multiple data performing a single

instruction. Parallelization has been achieved through the use of SIMD Math

Library functions for solving compute intensive equations involving reciprocal of

square root and multiplication. This led to significant performance gain [6, 7, 8].

2. Loop Unrolling: In PPEs, branches are very expensive, and when mis-predicted,

results in a loss of 18 cycles. The branches can be reduced by unrolling loops. By

unrolling, a long stretch of instructions can be executed on the PPEs without any

branch instruction. The PPEs have sufficient number of registers to allow deep

unrolling. 4-way loop unrolling has been used in order to gain the performance in

some extent [6].

32

5.2 Complete SVD

We perform following two matrix-matrix multiplications at the end to compute

orthogonal matrices as given in Algorithm 3.1.
U=QX

VT =(PI) T

Where, matrices Q and P are obtained the bidiagonalization step and matrices X and Y
are obtained in diagonalization step.

For the matrix-matrix multiplication, each SPE will do the (n/8)th calculation. The
distribution of matrices is as shown in the Figure 5.2. Following are the programming

features of CBE used for matrix multiplication implementation.

Matrix A 	 Matrix B 	 Matrix C=A X B

■■■■■■■■ ■
■■■■■■■ ■
■■■ ■■■ ■ ■.■■■.■■ . 1111■■■ ■
■ ■■■■■■ • ■.Mons■®

Matrix A and part of matrix B distributed 	Part of matrix C calculated by SPEO
to SPRO 	 -

Figure 5.2 Matrix multiplications on Cell BE

SIMD Vectorization: Parallelization has been achieved through the use of SIMD
Math Library functions for addition and multiplication.

2. DMA list: A DMA list is a sequence of transfer elements (or list elements) that,
together with an initiating DMA-list command, specifies a sequence of DMA
transfers between a single area of LS and possibly discontinuous areas in main

33

storage. Such lists are stored in an SPE's LS, and the sequence of transfers is

initiated with a DMA-list command.

3. Double buffering: We can speedup the DMA process significantly by allocating

two buffers, BO and B1, and overlapping computation on one buffer with data

transfer in the other. This method is called double buffering.

34

EXPERIMENTAL RESULTS 	 CHAPTER 6

6.1 Cell simulator

The whole dissertation work is carried out in simulation environment using IBM's Full

System Cell Simulator. It supports full functional simulation, including the PPE,

SPEs, MFCs, PPE caches, bus, and memory controller. It can simulate and capture

many levels of operational details on instruction execution, cache and memory

subsystems, interrupt subsystems, communications and other important system

functions [25]. The results are verified on Georgia Tech CBE server which provides a

publicly accessible front-end cell-user.cc.gatech.edu.

6.2 Results

In the problem, two parameters are taken as input from the user, M (the number of

rows) and N (the number of columns) giving rise to a M x N matrix. Therefore the

parallel algorithm was tested for varying M and N. The matrix of size M x N is

generated with random values which is sparse in nature. Here the values of M and N

are chosen to be multiples of number of SPE's in order to assign equal computational

load to each SPE. The processor specifications used in the experiment are shown in

Table 6.1.

Processor Intel Core2 Duo Cell Broadband Engine

Cores 2 1+8

Clock 2.00 GHz 3.2 GHz
Memory 2GB DDR2 512 GB XDRAM

OS Fedora Linux
Kernel

Red Hat Enterprise
Linux® 5.2

Compiler gcc 4.3.1 spu-gcc

Table 6.1 Processor specifications

35

6.2.1 Speedup for Parallel Householder Bidiagonalization

Table 6.2 provides the CPU vs. CBE execution time for parallel householder

bidiagonalization as a function of the size of the randomly generated input matrix A.

The difference in runtime between the serial and the parallel versions on Intel Core 2

Duo and CBE respectively increases significantly by increasing the size of the input

matrix, and it reaches a maximum for M=1024:N=1024, where the parallel version is

about 21 times faster than the serial version.

Size of Matrix

(MzN)

Sequential

Algorithm (Time

in sec)

Parallel Algorithm

(Time in see)
Speedup

64 x 64 0.21 0.24 0.86
128 x 256 5.45 2.48 2.20
256 x 512 48.20 6.47 7.44
512 x 512 151.64 14.45 10.56
512 x 768 264.07 21.39 12.17

768 x 1024 793.78 45.83 17.32
1024 x 1024 1236.48 58.16 21.26

Table 6.2: Timing analysis of serial Householder Reduction on Intel Core2 Duo

and parallel Householder Reduction on Cell BE

The increase in speedup with increase in M was due to the fact that, in Householder

transformations, for smaller dimensions the number of iterations after which to

redistribute the resultant matrices were comparable to M which lead to a large idle

time for some SPU's. The problem of synchronization in this algorithm was dealt with

the use of the efficient Signal Notification Registers giving much better performance

than the use of mailboxes.

The results show that the performance of parallel SVD on CBE degrades for the

matrix size 64 x 64. This is due to the communication cost between SPE and main

36

memory is greater than the computation cost. This can be dealt by deploying less

number of SPE threads for computation.

Figure 6.I compares the time required for sequential and parallel Householder

bidiagonalization. Figure 6.2 suggests an increase in speedup as the number of rows

M and the number of columns N were increased.

900

800

700

U
600 ,: -

500 	-

E 400

300

200

100

0 — — 	 -

64x64 128x256 256x512 512x512 512x768 768x1024
Matrix Size

—4--Sequential

f Parallel

Figure 6.1: Time required for serial and parallel Householder Bidiagonalization

25

20

a 10

5

0

128x256 256x512 512x512 512x768 768x 1024 1024x 1024

Matrix Size

Figure 6.2: Speedup of cell BE vs. Intel Core2 Duo for varying Matrix sizes

37

6.2.2 Speedup for complete SVD algorithm

Table 6.2 provides the CPU vs. CBE execution time for parallel SVD as for randomly

generated input matrix A. The difference in runtime between the serial and the

parallel versions on Intel Core 2 Duo and CBE respectively increases significantly by

increasing the size of the input matrix, and it reaches a maximum for

M=1024:N=1024, where the parallel version is about 8 times faster than the serial

version.

Size of Matrix
(MxN)

Sequential SVD
(Time in sec)

Parallel SVD (Time
in sec) Speedup

64 x 64 0.561 0.636 0.88

128 x 128 4.75 3.044 1.56

256 x 256 38.57 12.362 3.12

512 x 512 317.64 72.68 4.37

768 x 768 1149.47 189.99 6.05

1024 x 1024 2802.33 323.22 8.67

Table 6.2: Timing analysis of serial SVD on Intel Core2 Duo and parallel SVD on

Cell BE

Figure 6.3 compares the time required for Sequential and parallel SVD. Figure 6.4

suggests an increase in speedup as the number of dimensions M and the number of

samples N were increased.

It can be observed that the increase in speedup saturates at higher values of M because

the data size in the SPEs exceeds 256KB and the computations are carried out by

accessing the PPU memory multiple times which increases the memory latency due to

greater DMA stalls.

38

3000 T 	 —

25c3G

20Cc 	}
x

1500

1000 +---------- ----- —

500

0 	■

—4—Sequentiai

f Parallel

64 x 64 128x128 256x256 512 x 512 768 x 768 1024 x 1024
Matrix Size

Figure 6.3: Time required for serial and parallel SVD

10
9

8 	_
7

3 6
5

a 4
3
2

0
0

128 x 128 256 x 256 	512 x 512

Matrix Size

768 x 768 	1024 x 1024

Figure 6.2: Speedup of cell BE vs. Intel Core2 Duo for varying Matrix sizes

CONCLUSION 	 CHAPTER 7

In this work, we have proposed a parallel model for implementation of SVD

computation on the CBE architecture. This model could be efficaciously used for LSI

technique which is very popular method for information retrieval.

Parallelizing SVD was the most interesting and challenging task. We tried to resolve

the various issues related to implementation of the algorithm and then proposed

solutions to them. Due to the high level of task parallelism achieved, and through the

use of SIMD vectorization, significant performance improvement is obtained by the

multicore implementation on CBE processor over Intel Core 2 Duo. This leads to give

about 8 times speedup over sequential SVD.

In comparison to a distributed system having multiple processing elements, the

Parallel SVD implementation on the CBE processor achieves better results because of

greater memory bandwidth and decreased time for interprocessor communication. In

addition, CBE based implementation is quite cheap in comparison to distributed

implementation.

Though the current implementation of SVD on cell is resulting significantly well yet

there is scope of better performance. As an extension to this work, the better parallel

strategy can be defined for diagonalization of bidiagonal matrix to achieve the

maximum speedup.

40

REFERENCES

[1] Rosario, B, Latent Semantic Indexing: An overview. INFOSYS 240 (Spring

2000)

[2] Kathryn Parsons, Agata McCormac, Marcus Butavicius, Simon Dennis and Lael

Ferguson "The Use of a Context-Based Information Retrieval Technique"

Technical Report, DSTO, 2009

[3] Wall, Michael E., Andreas Rechtsteiner, Luis M. Rocha."Singular value

decomposition and principal component analysis" in A Practical Approach to
Microarray Data Analysis. D.P. Berrar, W. Dubitzky, M. Granzow, eds. pp. 91-

109, Kluwer: Norwell, MA (2003). LANL LA-UR-02-4001.

[4] Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W. and Harshman, R.

A. "Indexing by latent semantic analysis." Journal of the Society for Information

Science, 41(6), 391-407, 1990.

[5] http://en.wikipedia.org/wiki/Singular value decomposition

[6] "Cell Broadband Engine - An Introduction", Cell Programming Workshop, IBM
Systems and Technology Group, April 14-18, 2007

[7] Cell 	Broadband 	Engine 	Programming 	Tutorial 	v2.0

http://moss.csc.ncsu.edu/—mueller/clusterr/s3/CBE Tutorial v2.0 15December2

006Tpdf

[8] Cell Broadband Engine programming handbook, Version 3.0, April 2006.

htts://www-01 . ibm.com/chins/techlib/techlib.nsf/techdocs/

FC857AE550F7EB83872571A80061F788/$file/CBE Programming Tutorial v

3.0.ndf

[9] http://cellspe-tasklib.sourceforge.net/

[10] http://www.kernel.org/pub/linux/kernel/people/aeoff/cell/ps3-linux-docs/ps3-

linux-dots-08.06.09/Cel lProgrammingTutori al/AdvancedCell Programming.html

41

[11] Christopher D. Manning and Hinrich Schutze, "Foundations of Statistical

Natural Language Processing", ISBN 0262133601, 620 pp, Jun 1999.

[12] virginia c. Klema, alan j. Laub, "The Singular Value Decomposition: Its

Computation and Some Applications", IEEE transactions on automatic control,

vol. Ac-25, no. 2, April 1980

[13] Forsythe, G. E., and P. Henrici: "The cyclic Jacobi method". Trans. Amer. Math.

Soc. 94, 1-23 (1960).

[14] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins

University Press, Baltimore and London, 2nd edition, 1993.

[15] Volker Strumpen, Henry Hoffmann, and Anant Agarwal, "A Stream Algorithm

for the SVD", Technical Memo, MIT-LCS-TM-64, October 22, 2003

[16] Magnus R. Hestenes, "Inversion of Matrices by Biorthogonalization and Related

Results" Journal of the Society for Industrial and Applied Mathematics, 6(1):51-

90, March 1958.

[17] Gene H. Golub and Christian Reinsch. "Singular Value Decomposition and

Least Square Solutions" In J. H. Wilkinson and C. Reinsch, editors, Linear

Algebra, volume II of Handbook for Automatic Computations, chapter U10,

pages 134-151. Springer Verlag, 1971.

[18] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannary: "Numerical

Recipes in C", Cambridge University Press, New York, 1997.

[19] J. Kurzak and J.J. Dongarra, "QR Factorization for the CELL Processor," J.

Scientific Programming, special issue on high performance computing on CELL

B.E. processors, pp. 1-12, 2008.

[20] http://en.wikiyedia.ore/wikiBidiaizonal matrix

[21] B. Grosser and B. Lang, "Efficient Parallel Reduction to Bidiagonal

Form," Parallel Computing, vol. 25, no. 8, pp. 969-986, 1999.

42

[22] N. Bosner and J.L. Barlow, "Block and Parallel Versions of One-Sided

bidiagonalization," SIAM.!. Matrix Analysis and Applications, vol. 29, no. 3, pp.

927-953, 2007.

[23] http://en.wikipedia.or wiki/Diaeonal matrix

[24] James Demmel, W. Kahan, "Accurate Singular Values of Bidiagonal Matrices",

SIAM Journal on Scientific and Statistical Computing, vol. 11, no. 5, pp. 873 —

912, Sept. 1990.

43

APPENDIX A: DEFINITIONS OF SOME MATHEMATICAL
TERMS

1. Orthogonal Vectors

Two vectors u, v e R" are orthogonal if
u • v=uT v=uIv1 ++Unvn =O

Note that u • u = ulul + • • • + u„u„ = IIull2• If u is normalized, then u • u =

2. Orthogonal Matrix

A matrix Q is orthogonal if all row vectors are pair wise orthogonal, in other words

QQT = QTQ = I

In this case, QT = Q-1

The product of two orthogonal matrices Q1, Q2 is also an orthogonal matrix

(QIQ2)(QIQ2)T = Q1Q2Q2TQIT= QIIQIT= QIQIT= I.

3. Bidiagonal Matrix

Matrix A is upper bidiagonal if a (i 	, j)=O 	unless i=j or i j-1.
Matrix A is lower bidiagonal if a(i,j)=0 unless i j or i j+l.

4. Diagonal Matrix

An m x n matrix M is diagonal if Mt = 0 for all i ~ j. The remaining entries may or
may not be non-zero.

5. Numerical Stability

Suppose we have some mathematically defined problem represented by f which acts
on data d C c = some set of data to produce a solution f(d) E `P some set of
solutions. An algorithm to determine f(d) is numerically stable if the computed
solution is near the solution of a slightly perturbed problem. More precisely, let f

denote an algorithm used to implement or approximate f, then it is stable if for all d E

c there exists d* near d such that f(d*) is near f *(d).

6. Convergent

Matrix A is convergent if Ak tends to 0 as k tends to infinity.

7. Givens Rotation

A Givens Rotation is a n*n matrix of the form PT [Q 0 ; 0 I] P where P is

a permutation matrix and Q is a matrix of the form [cos(x) sin(x); -sin(x) cos(x)].

	Title

	Abstract

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7
	References
	Appendix

