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ABSTRACT 

A synchronous machine AVR-CUM-STABILIZER digital excitation 

controller utilizing the recursive least-squres identification with 

varying forgetting factor and a self-searching pole-shifting self-

tuning control stategy is described in this dissertation. 

The use of varying forgetting factor in the identification 

algorithm improves parameter tracking under both transient and dynamic 

conditions,  and the use of a self-searching pole-shifting self- 

tuning control increases the flexibility when applied to varying 

operating conditions encountered in power systems. 

Simulation studies are performed with the proposed controller 
fi 

on a single machine infinite bus system. It is observed that better 

system response is achieved using the proposed controller" in comparison 

to conventional controller. 
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CHAPTER - 1 

INTRODUCTION 

1.1 DEVELOPMENT OF POWER SYSTEMS 

Power is a pre-requisite for the progress of any society. 

It is a must for the industrial development which is essential to 

continual improvement in the standard of living of people everywhere. 

A major portion of the energy needs of a country is supplied in 

the form of electrical energy. The energy which is available in 

some other form like nuclear, hydro, thermal etc. is converted into 

the electrical energy and the electric power system becomes a tool 

for converting and transmitting it to the consumers. 

The growth of the electric power systems began in America 

in 1882. In that year the world's first power system was installed 

to sell energy for incandescent lighting. The system was d.c., three 

wire, 220/110 volts with total power requirements of 30 KW. The 

power was generated in steam driven d.c. 'dynamos' and distributed 

in underground cables. It is interesting to note that the system 

in its first eight years of operation had only one three-hour outage 

[24] . 

With the advent of transformers and the 'induction motors, 

the d.c. power systems gave way to the a.c. power systems. The first 

a.c. power system was put into operation in 1890.  Immediately the. 

1 

advantages of a.c. power systems were realized and it was subsequently 

standardised by the industry. 
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Until 1917, electric power systems were usually operated 

as individual units because they started as isolated systems and 

spread out only gradually to cover the whole country. An operator 

was quite capable of manually adjusting the outputs of the isolated 

units to suit the needs of the customer. As the power demand increased 

the small isolated systems were unable to supply power with sufficient 

frequency and voltage control. In order to properly meet the large 

fluctuations in load and to increase the reliability of supply, the 

power systems were interconnected over a transmission and distribution 

network. 

Interconnection is advantageous economically because 

fewer machines are required as a reserve for operation at peak 

loads (reserve capacity) and fewer machines running without load 

are required to take care of sudden, unexpected jumps in load (spinning 

reserve). 

Interconnection of power systems brought many new problems. 

Stability was one of them. 

1.2 STABILITY PROBLEM 

As discussed in. section 1.1, the generating units were 

interconnected to improve the quality of power supply and to reduce 

the overall production cost. This was the time when first indication 

of the existence of stability prob,em came into notice. The phenomenon 

was of spontaneous oscillations. 
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The interconnected power systems present complex operating 

and control problems. A disturbance of some sort can perturb the 

normal operating conditions-terminal voltage or synchronous speed-

of the generating units. A good system should have the ability to 

return to its normal operating condition after a disturbance. The 

present day' tendency of operating generators with a small stability 

margin has made the stability problem even more serious [2]. 

The definition - of stability, as applied to power systems, 

is stated as [2], 

"If the oscillatory response of a power system during 

the transient period following a disturbance is damped and the system 

settles in a finite time to a new steady operating condition, the 

system is said to be stable. If the system is not stable, it is 

considered unstable". 

According to this definition, the system response of 

continuous oscillation without enough damping is considered to be 

unstable [42]. 

A power system is a non-linear system and consists of 

many components. Some components are combinations of electrical and 

mechanical parts which have different dynamic behaviour. Due to the 

interactions between these parts, it is not easy to analyze the 

power system stability. In order to simplify the analysis, power 

system stability is considered in its three aspects [22], namely 

1. Steady state 
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2. Transient, and 

3. Dynamic stability 

The steady-state stability refers to the behaviour of 

a power system around a fixed operating point , equilibirum point, 

and no disturbance is considered. Therefore, it depends only upon 

the system operating conditions. 

Transient stability refers to the ability of the power 

system to survive a large impact. The unstable situation always results 

in the loss of synchronism during the first one or two swings after 

the disturbance. Usually this kind of stability depends strongly 

upon the magnitude and location of the disturbance and to a lesser 

extent upon the initial state or operating condition of the system 

[2]. 

The dynamic stability deals with the stability of a 

synchronous machine under. the condition of small load changes. The 

unstable situation in this case always results in long term low 

frequency oscillations [22]. If the damping existing in the system 

is not strong enough, the long term oscillations will become larger 

and larger. These electromechanical oscillations pose the following 

problems. 

1. They lead to dynamic instability of the system• 

2. They give rise to fluctuations in voltages and the 

phase angles. 

3. They cause excessive wear and tear of mechanical control 

components. 
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4. They cause inadvertent operation of protection devices 

on the system or on connected equipment. 

5. They excite subharmonic torsional shaft oscillations 

on large multistage turbine units. 

1.2.1 Methods to Enhance Power System Stability 

The engineers generally use the following methods to enhance 

the power system stability. 

1. Excitation control of synchronous generators [9,17,41] 

2. Input power control of synchronous generators [2,11,24] 

3. System operating condition and configuration 

control[35,46]. 

For a particular problem, any one or more of the above 

methods can be used. The excitation control is more preferred due 

to the following reasons: 

1. electrical system has much smaller time constant than 

-the mechanical system 

2. an electrical control system is more economical and 

easy to implement than a mechanical control system 

3. because of small loop time constant, an electrical 

system' is effectively a continuously acting system, consequently, 

it gives smooth system response. 
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1.3 EXCITATION CONTROL OF SYNCHRONOUS GENERATORS 

The main aim of using excitation control is to achieve 

an  acceptable  voltage profile at  the  consumer terminal  and  to 

effectively control the reactive power flow in the system. 

Considerable attention has been given in the literature 

to the excitation system and its ability to improve power system 

stability. Early researchers found that the 'steady-state' power 

limits of power networks could be increased by using the then available 

high-gain continuous-acting voltage regulators [18]. It was also 

recognised that the voltage regulator gain requirement was different 

at no-load conditions from that needed for good performance under 

load. The, high gain requirements of the voltage regulator introduced 

negative damping to inherently weakly damped interconnected •systems 

and thus had a detrimental impact upon the steady-state stability 

of the power system. It has been observed that the systems are less 

oscillatory with the voltage regulators turned off than with them 

operating. 

The voltage regulators are part and parcel of modern 

power systems. As has been already mentioned, the voltage regulator 

helps to maintain constancy of terminal voltage and thus it cannot 

be avoided. 

It has been suggested that the system damping could be 

enhanced by an auxiliary signal introduced through the excitation 

system [7,20,49]. This auxiliary signal is called the 'supplementary 

stabilizing signal' and the network used to -generate this signal 
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is known as the 'power system stabilizer' (PSS). 

The basic function of a power system stabilizer is to 

extend stability limits oy modulating generator excitation to provide 

damping to the oscillations of synchronous machine rotors relative 

to one another. These oscillations of concern typically occur in 

the frequency range of approximately 0.2 to 2.5 Hz, and insufficient 

damping of these oscillations may limit the ability to transmit 

power.  To provide damping,•  the stabilizer must produce a component 

of electrical torque on the rotor which is in phase with •speed 

variations [36]. The stabilizing signal is generally derived from 

speed variations, accelerating power, electrical power or frequency 

signals. However, for any input signal the transfer function of the 

stabilizer must compensate for the gain and phase characteristics 

of the excitation system, the generator, and the power system, which 

collectively determine the transfer function from the stabilizer 

output to the component of electrical torque which can be modulated 

via excitation control [36]. This transfer function is effected by 

voltage regulator gain, generator power level and ac system strength. 

1.3.1 Need for the Digital Excitation Controller 

The conventional •excitation controller (AVR + PSS) is 

based on the deterministic control theory. This controller has to 

be designed for some particular operating conditions and it will 

give excellent performance if tuned•. to its parameters properly. 



The actual power system is a highly non-linear system 

and its operating conditions may vary over a wide range. Moreover 

its properties are non-deterministic in nature. Thus the following 

problems arise when the conventional controllers are used:- 

1. selecting the proper transfer function for the 

controller 

2. tuning its parameters 

3. tracking the system operating conditions 

4. considering the interaction between various machines. 

A lot of work has been done to solve these problems. 

Different transfer functions have been proposed [20,49,13,37]. 

Excellent methods to tune the controller have been designed [28,8,40]. 

The mutual cooperation of different controllers in a multimachine 

environment. has also been studied [22]. But the problem of automatic 

tracking of system operating -  conditions adjusting the controller 

parameters simultaneously has remained a little studied area. 

All the above mentioned problems can be solved easily, 

and effectively if the controller identifies the system parameters 

'on-line' and automatically tunes itself to the identified system 

parameters.  This objective can be achieved by designing a digital 

excitation controller based on adaptive control theory. Many research 

papers have been reported in this area in the recent past [14, 15, 

2.0, 29, 501, but still this field is quite open for further research. 
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One form of adaptive control known as 'self-tuning' 

control is mostly used for the implementation of the digital excitation 

controllers. There are many self-tuning control algorithms available, 

such as pole-assignment, pole-shift, self-searching pole-shifting 

algorithms etc. [14,29,32,:•,52]. These algorithms are being used 

as the power system stabilizers and they provide a supplementary 

stabilizing control signal to the existing conventional AVRs. 

Therefore, it is worthwhile to find and develop an algorithm which 

can function as an 'AVR-cum-stabilizer' and solve the above mentioned 

problems more effectively. This is the main aim of the thesis. This 

is also the aim to study the performance of such a controller under 

both the dynamic and the transient operating conditions and to compare 

the performance of this controller with the conventional controller 

based on the deterministic control theory. 

1.4 OUTLINE OF THE THESIS 

This thesis is composed of five chapters. 

In chapter 2, different digital excitation controllers 

based on adaptive control theory are discussed. Adaptive control 

theory is reviewed briefly. Various system identification techniques 

are mentioned and the RLS identification technique is discussed. 

In chapter 3, the proposed AVR-cum-Stabilizer digital 

excitation controller is presented. The variable forgetting factor 

recurcive least. squares identification technique is used to make 

the controller suitable for the practical purposes. 
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Simulation studies have been conducted on a single machine 

connected to an infinite bus through a double circuit transmission 

line and the results are presented and discussed in chapter 4. 

Conclusions and comments on further research in this 

field are presented in chapter 5. 
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CHAPTER - 2 

DIGITAL EXCITATION CONTROLLERS 

2.1 INTRODUCTION 

The electric power system is a highly complex system. Most 

of the power systems in a country are interconnected to form power 

pools. To effectively control such huge, gigantic structures, new 

control methods are needed. Generally the deterministic control theory 

is applied to design the controllers for different system components. 

The main disadvantage with these controllers is that they do not 

take into consideration the uncertainties which may occur in the 

system. The problem gets further aggravated, because of the non-

linearity of the power system. 

The operating conditions of a power system continually change 

with time. The conventional controllers are designed to operate at 

some fixed operating condition for which their performance is very 

good. But their performance deteriorates as the operating conditions 

change, thus jeopordising the system reliability and system stability. 

The ideal controllers used should be able to track the 

operating conditions of the system and tune their own parameters 

to generate the requisite control. This is possible if the controller 

design is based on the adaptive control theory and the tracking of 

parameters is done on-line. The principles of adaptive control theory 

can be easily applied through the digital devices such as 

micrprocessors. 
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In this chapter, the different excitation 

controllers based on the adaptive control theory will be surveyed 

fairly broadly. 

2.2 ADAPTIVE CONTROL 

The adaptive control is a recent addition to the field of 

modern control theory. It has fascinated the engineers right from 

its inception. Its appeal lies in the fact that it takes into account 

the unpredictable system changes and adjusts the control. parameters 

according to the new system conditions. This self-adjusting property 

of this control makes it best suited for the systems with many unknown 

parameters that are changing in time. This control theory has found 

applications in almost all of the engineering fields which deal with 

systems full of uncertainities and unpredictable operating conditions. 

Perhaps, it is appropriate here to give a brief review of this control 

theory. 

The word adaptive means to change (onself) so that one's 

behaviour will conform to new or changed circumstances. 

With specific reference to physical systems, the adaptive 

control is initially defined as follows: 

'Intuitively ani adaptive regulator can change its behaviour 

in response to change in the dynamics of the process and the distur- 

bances'. 
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This definition is not complete and clear. It suggests 

that all kinds of controls such as open-loop control, closed-loop 

feedback control with constant parameters, closed-loop feedback control 

with changing parameters etc. belong to adaptive control, because 

they have different degrees of ability to change their behaviour, 

according to the system changes. The definition of adaptive control 

has been changed to' differentiate it from other controls. Astrom 

defined it simply as [3]: 

'adaptive control is simply a special type of non-linear 

feedback control'. It is a feedback control with variable feedback 

gains, instead of constant feedback gains. 

Conventional control theory deals with the dynamical systems 

whose• mathematical representations are completely known and the 

adaptive control refers to the control of partially known systems. 

The adaptive control is used because there is invariably 

some uncertainty in the .dynamic characteristics of most of the 

practical systems. The conventional control theory,  if used for 

the design of controllers for such systems, will not give  satisfac- 

tory performance in the entire range over which the  characteris- 

tics of the system may vary. 

The adaptive control theory was initially applied to design 

a high performance autopilot aircraft. The ordinary constant gain, 

linear feedback system works well in the operating condition in which 

it is set. However, its performance suffers when operating conditions 
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change. The wide range of operating conditions of the aircraft requires 

the controller to automatically change its control parameters and 

feedback gains to match the operating condition. Initially the attempt 

was not successful because of lack of computational facilities for 

implementation and the underdeveloped theoretical aspects. 

With the further development of the adaptive control and 

the advent of microcomputer technology, the new theory was applied 

to many systems and the encouraging results were obtained [3,6,7]. 

Recently, the power system also came under the fold of the adaptive 

control. The adaptive control was applied to design excitation 

controllers for better system performance and high reliability. 

2.3 SYSTEM IDENTIFICATION 

The backbone of adaptive control theory is the system identi-

fication. The problem of identification can be formulated as the 

evaluation of a system model representing the essential aspects of 

an existing system and representing the knowledge of that system 

in a useful form [4,26]. There are two forms of identification 

algorithms : 

1. off-line system identification algorithm 

2. on-line system identification algorithm 

_non- 
The off-line or real-time algorithms are generally more 

accurate than on-line or real-time algorithms since they may reprocess 

data several times. In self-tuning algorithms, because of real-time 

application, the recursive on-line algorithms are used. 
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Many system identification algorithms are available. All 

algorithms should possess the following requirements [26]: 

1. the algoritnm should be mathematically tractable 

2. it should be implementable on a microcomputer 

3. it should be generally applicable 

4.'the algorithm should converge to an optimal identification 

• 5. the convergence should be fast. 

The following are the three main aspects of system identifi-

cation [30]: 

1. An appropriate mathematical model 

2. A proper persistently'exciting signal, and 

3. A pre-selected identification scheme. 

2.3.1 System and Model 

A system is a physical object which is having measurable 

output y(t) and measurable input u(t) at any time t. For a stochastic 

system, any one or both of the input and output may be corrupted 

with noise as shown in Fig. 2.1. 

The knowledge of the properties of a system is generally 

called a 'Model'. A model can have the following forms: 

1..Mathematical model 

2. Graphical model 
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(t) 	 (t) 

u(t) 	 E 	SYSTEM 	 y (t) 
w(t) 	 x (t) 

FIG . 2.1-BLOCK DIAGRAM OF A STOCHASTIC SYSTE M 

e(t) 

u(t) 	 SYSTEM 	~ 	Y(t) 

Ff G. 2.2 — A BLOCK DIAGRAM OF A LR MODEL 
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In order to solve a problem, a model of the system is always 

necessary. Mathematical models are necessary when complex problems, 

such as power systems are'treated. 

There are two methods to derive a mathematical model of 

a complex system. First method is to look into the mechanisms of 

the system that generate signals and variables and on that basis 

construct the required model. For systems whose response is 

unpredictable or the complete mechanism of which is not known, the 

mathematical model is formed by measuring the signals of the system. 

The adaptive control technique uses latter method to construct a 

model. 

Many practical systems are multi-input multi-output. The 

same is the case with the power systems . But as far as excitation 

control is concerned, it can be treated fairly well by considering 

it as a single-input single-output system. Due to the digital computer 

application, the mathematical model considered is of discrete form 

(difference equations). 

The following are the two main kinds of discrete mathematical 

models frequently used in the self-tuning controller design. 

2.3.1.1 Linear Regression Model (LR) 

The model is assumed  to be of the form 

(Z) .y(t) =  Z 
 B(Z-1).u(t) + e(t)  (2.1) 

where, 

y(t) is the output signal 
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u(t) is the input signal 

e(t) is  assumed to be a  sequence of independent random 

variables with zero mean. 

k is the system delay 

A(ZI) and B(Z-1 ) are polynomials in the delay operator(Z) 

A and B are defined as: 

A(Z) = 1+ a1Z
-1 

+ .... + ana Z-na 
 

(2.2) 

B(Z-1 ) = b1 Z-1 + ..... + bnb Z-nb 
 

(2.3) 

na, nb are the orders of the polynomials A and B respectively. The 

graphic representation of the model is shown in Fig. 2.2. 

2.3.1.2 An ARMAX Model 

The block diagram of a stochastic system is as shown in Fig.2.1. 

The corrupted input 

w(t) = u(t) +  (t) 

where, 

~ (t) is the, white noise and u(t) is the observed input. 

The currupted output 

x(t) = y(t) - 	(t) 

(2.4) 

(2.5) 

where, 

y(.t) is the observed output. 



Suppose that the system input and output satisfy the following 

linear difference equation 

A(Z-1).x(t) = Z. B(Z 1). w(t)  (2.6) 

Substituting Equations 2.4 and 2.5 in Equation 2.6, we get 

A(Z-1).[y(t) - (t)] = Z-k•B(Z-1)[u(t) + E(t) 

or 

A(Z-1).y(t) = Z-k.B(Z-1).u(t) + Z-kB(Z-1) c(t) + A(Z) 
(t) 

['Ti 
A(Z 1).y(t) = Z-k.B(Z 1).u(t) + C(Z-1).e(t) 	(2.7) 

where, 

C(Z) is a polynomial in Z-1 

c(z) = 1 + C1.Z-1 + .... + CncZ-nc 	(2.8) 

where, 

Ci, is a function of a~, bk, and K. 

The model Equation 2.7 is called the ARMAX (auto regressive 

moving average exogeneous) model. 

Other models, such as the state space model,  are generally 

used for the multi-input multi-output system. 

2.3.2 Persistently Exciting Signal 

To identify a system, it is necessary to excite it by some 

exciting signal.. The signal should excite all modes of the system. 

By this way, the estimated parameters will converge to the reasonably 

correct values. The signal should have sufficiently rich frequency 

content i.e., it should be persistently exciting. 
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There are many exciting signals such as impulse function, 

step function, white noise, sinusoidal signal etc., which are being 

used. In most of the literature white noise is considered to be 

a suitable signal. Hence white noise has been taken for persistent 

excitation. 

2.3.3 Identification Methods 

The selection of identification method is mainly dependent 

upon the mathematical model used. Due to the suitability and reasonable 

simplicity of Linear Regression Model, it has been used to represent 

the system model. 

There are three main recursive identification algorithms 

which are generally used [4,. ,25, :,26,..,30,31].' 

1. Recursive Least Squares (RLS) Identification 

2. Recursive Extended Least Squares (REL) Identification 

3. Recursive Maximum Likelihood (RML) Identification 

Generally speaking, more sophisticated identification methods 

will require more calculation time. For this reason, when designing 

an on-line system identifier, a compromise must be made between the 

quality of identification and a reasonable calculation time among 

• all possible identification methods. 

The RLS method has the advantages of simple calculation 

and good convergence properties. It is the preferred technique for 

use in the design of the self-tuning controller for real-time 

applications. Hence it has been used for the identification purposes 

in the preent work. 
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2.3.,3.1 Recurcive Least Squares (RLS) Identification 

This is the most simple and popular method of identification. 

It has been used for many applications in the literature. It is discu-

ssed briefly as follows: 

Let y(t) be  the sampled output of the system,  and is 

given by 

Y(t) = 9T(t) 0(t) + e(t)  (2.9) 

where parameter vector Q(t) is given by 

AT(t) = [al,a2,....,ana,b1p2.......bnb]  (2.10) 

a's and b's are the actual parameters of the system and the 

information matrix is given by 

OT(t) _ [-Y(t-1),...,-y(t-na ),u(t-k-1),..., 

u(t-k-nb)]  (2.11) 

y's and u's are the old or previous outputs and inputs of the 

system respectively. 

The estimate of y(t) is y(t) and is given by 

n 
Y(t) = AT(t) 0 (t)  (2.12) 

This equation is known as the PREDICTION MODEL of the system.  The 

identified parameter vector is 

AT 	A 

(t) _ [a1,a2,....,ana,bl,b2,...,bnb]  .(2.13) 

where a's and  b's are the identified parameters of the system 
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Prediction error 

 

e (t) = y(t) - y(t)  e(t)  (2.14) 

A(t) is chosen in such a '. way that the criterion J 

m 
J =  e2  (t)  (2.15) 

t=1 

is minimized. 

The use of RLS technique [1 8] gives 

(t) = A(t-1) + k(t)[y(t) - AT(t-1)O(t)]  . (2.16) 

where, 

A(t-1) is the previous identified parameter vector and 

k(t) is the gain vector given by 

k(t)  =  P(t_1) 0(t)  
(2.17) 

[1 +  (t) P(t-1) 0(t)] 

P(t) = Error covariance matrix 

_ [1-k(t) 0T(t)].P(t-1) 
 

(2.18) 

A(t) is the weighted sum of last estimation A(t-1) and 

prediction error  E (t).  For a time-invariant system, as time 

increases, 9(t) converges towards its true value, and hence, the 

prediction error e (t), gain vector k(t) and covariance matrix P(t) 

tend to zero. It means that fresh experimental data are continuously 

in supply but this new information is not making any contribution 
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to the parameter estimation. In time-invariant systems, once the 

estimated parameters reach the 'true value' it may not be a problem. 

But the main aim of using the self-tuning control is for time varying 

systems. This problem affects the parameter tracking. Hence forgetting 

factor is used to remove the tracking problem. This will be discussed 

in detail in the next chapter. 

2.4 CONTROL TECHNIQUES 

The application of adaptive control strategy to digital 

excitation control is attractive because the effective system response 

changes with load level and system configuration. Whenever an adaptive 

controller detects the changes in system operating conditions, it 

responds by determining a new set of control parameters. Adaptive 

technique ensures that the controller parameters are suboptimal 

for the operating condition, and thus the system stability is 

enhanced. 

There are two main adaptive control techniques which can 

be used for the excitation cotrol of synchronous generators. They 

are 

1. Model Reference Adaptive Control (MRAC) [29] 

2. Self-tuning Adaptive Control (STAC) [5,6,29,14] 

2.4.1 Model Reference Adaptive Control Technique 

A very useful adaptive control technique is to specify a 

desired performance and measure the actual performance against this 

performance. This type of controller follows a model designed for 

the desired performance. Thus the first step in this control technique 
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is. the choice of a reference model. A reference model representing 

the desired behaviour of the closed-loop system is driven by the 

same input as the controlled system. The regulator parameters are 

then adjusted depending upon the error between the system output 

and the reference model output. A model reference adaptive control 

is shown in Fig. 2.3. 

The task of adaptation is to minimize a function of the 

difference between the outputs, or the states, of the adjustable 

system and those of the reference model. This is done by adaptation 

mechanism that modifies the parameters of the adjustable system. 

On the basis of the observed output error, this mechanism must be 

able to determine which way to adjust the controller coefficients 

and must also remain stable under all operating conditions. Thus 

the main problem in this mechanism is to design a suitable adaptation 

mechanism. Use of MRAC technique for the control of power systems 

is reported in [S6]. 

It has been observed that when the 'ideal reference model'is 

not achievable due to system limitations, the response of the reference 

system will be substantially different from that of the actual system. 

The difference in performance will be interpreted as system fault, 

and adaptation of the system gains  will occur even when the system 

is at steady state. 

The main disadvantage of this technique is that, it cancels 

the system zeros by the controller poles to get the closed-loop 

response. Hence it cannot be used to systems which are having the 

zeros outside the stability region [16,29]. Therefore, this does 

not seem to be a very suitable technique for excitation control in 

power systems. 
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FIG.2.3—MODEL REFERENCE ADAPTIVE CONTROL SCHEME 
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2.4.2 Self-Tuning Control Techniques 

This control technique is best suited for the digital 

excitation controller. Lately this method has been used for a variety 

of engineering problems. Its success can be attributed to the following 

advantages [32]. 

1. The algorithms are very simple 

2. The mathematical model is available in discrete form, 

thus it is easily implemented on microcomputers 

3. The satisfactory stable performance can be achieved. 

The self-tuning adaptive control has the ability of self-

adjusting its control parameters according to system conditions. 

It is a simple and effective technique. 

This technique is based on 'certainity equivalence principle' 

of the stochastic control theory. According to this principle, a 

stochastic problem can be solved in the following two steps i.e. 

a system identification problem and a deterministic control problem. 

The block diagram of a general self-tuning controller is as shown 

in Fig. 2.4. 

Various combinations of identification techniques and control 

strategies will result in different kinds of self-tuning controllers. 

In these techniques the parameters of a model of the controlled system 

are identified on-line and control is calculated using a pre-selected 

strategy (Fig. 2.4). 

The various self-tuning control techniques which can be 

used for excitation control are as follows: 
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FIG.2.4-BLOCK DIAGRAM OF A SELF-TUNING CONTROLLER 



2.4.2.1 Minimum Variance Control 

The original self-tuning control concept presented in Ref 

[3,5,6] made use of this control method, which minimizes the variance 

of the output of the process. The controller first predicts the next 

measurement for zero control, and then choses the control value 

so that the predicted output error is zero [.S]. The RLS identification 

technique is used for identifying the parameters of the system model. 

This method has the following drawbacks [29]: 

1. For. non-minimum phase systems, unstable poles are used 

to cancel the zeros outside the unit circle .  Any error in the 

mathematical model will result in an unstable closed loop system. 

2. This may produce excessive control inputs. 

3. This can be used only for a restricted class of processes 

4. The user can only change the sample frequency. 

This controller utilizes the following steps: 

1. Micro-computers are used to implement the self-tuning 

algorithms. Thus, the computations are done in discrete time, and 

the designer must select the sampling frequency. As a guide choose 

a sampling frequency approximately 10 time the normal system frequency 

of oscillation. 

2. At each sampling instant update the parameter estimates 

using the RLS algorithm. 

3. Compute the control which makes the predicted error zero. 
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Fora plant identified as [5] 

y(t) = -aly(t-1)-a2y(t-.2)+blu(t-l)+b2u(t-2)  (2.18) 

The minimum variance control is given by 

u(t) = 1/b1[a 1y(t)+a2y(t-l)-b2u(t-1)]  (2.19) 

In Equation 2.19 if •the pole at Z = -b2/b1  is on or outside 

the unit circle [IZJ<1], then control, u(t) increases without bounds. 

The cancellation of large parameter errors in one sample is impossible 

due to the control limits of the excitation system. If the control 

signal is limited, the resulting control, which is always in phase 

with the predicted error can give rise to poor damping. 

2.4.2.2 Linear Quadratic ( LQ) Control 

Reformulation of the problem by introducing the linear 

quadratic control strategy may eliminate the problems associated 

with minimum variance control. 

The concept behind this class of controllers is to minimize 

a linear quadratic performance index of the form 

00 
J =  [y(t)2  + r u(t-1)2 ] 

	
(2.20) 

t=1 

where, 

29 

u(t) and y(t) are the input and output of the process. 
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For r~0, the control minimizes the output error subject 

to the requirement that the. control effort be small.  For r--> 0, 

the penalty on large control is reduced, and in the limit gives minimum 

variance performance. For r --> °° control action is taken only to 

stabilize an unstable system. Thus, with a proper choice of r excessive 

saturation on the controller may be avoided. 

The various steps involved are [551: 

Steps (1) and (2) are the same as for MV controller. 

3. The system is described in the state space form as 

xk+l= Fxk + gu k  (2.21) 

yk = h xk 	 (2.22) 

where. matrix F and vectors g and h are determined from estimates 

in step 2. 

4. Obtain steady-state solution of equations 

Kk+l = -[gTSkg + r]-1 gTSkF 
 (2.23) 

Sk+l = [F + gKk]T $KF + hTn  (2.24) 

5. Obtain the control from 

Mk' = Kk xk 	 (2.25) 

The drawbacks in the control strategy are [29] 

1. To obtain steady-state solution of Equations 2.23 and 

2.24 requires infinite number of iterations. 

2. Large number of iterations are not possible in real 

time applications. 
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3. To determine the satisfactory value of r, the simulation 

studies have to be performed first and the best value of r has to 

be taken. 

2.4.2.3 Pole Assigned (PA) Control 

This control is similar to that of model reference in that 

the desirable response is pre-specified. In this technique the closed 

loop system poles are placed at pre-specified positions depending 

on the required transient response. The control engineer can easily 

relate pole locations to the closed-loop transient performance. 

Whereas the MV Controller shifts all the poles towards the origin, 

the PA Controller has the freedom to place the poles at other 

locations [5o]This scheme is therefore very robust and can be applied 

with ease to non-minimum phase systems. 

The steps invoved are 

Steps (1) and (2) are the same as for the MV controller. 

3. Compute control which will then place the poles to pre-

prescribed locations. 

For a single-input single-output system the process is given 

by the transfer function: 

y(t) - B(Z-1)  u(t) 

A(Z 1 ) 

(2.26) 

where u(t) is the input and y(t) is the output of the system. The 

polynomials A(Z-1) and B(Z-1 ) are given by 
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A(Z) = 1 + alZ-1  + .... + anaz-
na 

(2.27) 

B(Z 1 ) = b1Z-1  + .... + bnbZ
-nb 

and Z-1  is a delay operator 

The control is computed from 

u(t) _ - G(Z-1) 
Y(t)  (2.28) 

F(Z-1 ) 

where polynomials F(Z 1 ) and G(Z 1 ) are given by 

F(Z) = 1 + f1Z-1  + .... + fnfZ
-nf ;  of = nb - 1 

(2.29) 

G(Z1) = g0+ 
g1Z-1 + .... + gngZng ; ng = na - 1 

The closed loop transfer function from the noise input to the output 

is represented in the Fig. 2.5 

•  Therefore, the transfer function is written as 

Y(t)  F(Z-1) B(Z-1) 
_  (2.30= 

e(t)  A(Z-1) 
F(Z) 

 + 6(Z-1) G(Z) 

In the transfer function the transport delay is assumed to 

be 'zero.  The poles are determined by the characteristic equation 

A(Z-1)F(Z-1 ) 
 + B(Z)G(Z) = 0 
 

(2.31) 

According to the desired closed-loop transient properties, 

select a desired closed-loop :;system characteristic equation 



y (t) 
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FIG .2.5-BLOCK DIAGRAM OF PA CONTROL SYSTEM 
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T(Z) _ (1- aiZ-1) ( 1 - a2 z) .... (1- antZ-1) 

= 1 + t1Z-1 + t2Z-2 + .... + t Z-nt 
nt  

(2.32) 

where al'""' 	ant are desired closed loop poles[50]. 

The control  parameters f and g~ are computed by comparing 

the coefficients of Z's in the following equation : 

A(Z)F(Z) + B(Z-1)G(Z-1) = T(Z 
1) 
 

(2.33) 

where nt < na + nb - 1 
 

(2.34) 

For na = nb = n, solution of Equation 2.33 takes the form 

1  0 ... 0 bl 0 .... 0 

al  1  ...  0  b2  b1 .... 0 

a 
 an 

-1 ... a2  bn  bn-1.... b1 

0  an .... a3  0  bn .... b 

0  0  .... an  0  0 ....  b 

fl 

f2 

fn-1 

go 

gn-1 

t1-a1 

t2-a2 

tha n 

to+1 

t2n-1 

(2.35) 

Equation 2.35 can be written as 

M.Z=L 

where M is a (2n-1) x (2n-1) matrix, and Z and L are vectors having 

(2n-1) elements. 
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The solution of the equation is 

Z = M 1L  (2.36) 

where the inverse in Equation 2.36 exists provided that A(Z 1 ) and 

6(Z-1) have no common factors. Note that, if the elements of L are 

very small, the coefficients of F(Z-1) and G(Z) are small. With 

coefficients of F(Z-1) small, the roots of F (Z-1 ) are close to zero, 

and a stable controller is achieved. This controller produces smoother 

control action which is required for the direct digital control. 

2.4.2.4 Pole Shifting (PS) Control 

In the pole-assignment control the closed-loop poles 

are placed at pre-specified locations. The amount of control effort 

is to some extent proportional, to the distance of the proposed 

locations of the closed-loop locations from their open-loop locations. 

A poor choice of closed-loop locations may result in large control 

effort. If the. desired control cannot be provided, the system may 

become unstable. This can easily happen when a 'priori' decision 

on the system transfer function cannot be made, which is always the 

situations in power systems. Thus, the pole-assignment control strategy 

can be modified to a pole-shifting control strategy. In the pole-

shifting strategy the closed-loop poles are shifted radially towards 

the origin in the Z-domain, and a stable controller is achieved. 

Pole-shift control, while retaining the basic advantages 

of the pole-assignment strategy, eliminates the requirements of 

specifying the closed-loop pole locations. 
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T(Z) _ (1- a1Z-1 ) ( 1  - a2 
 Z-1) .... (1- antZ-1) 

= 1 + t1Z
1 
 + t2Z-2  + .... + tntZ-nt  (2.32) 

where ai,....,  
ant are desired closed loop polest5OJ. 

The control  parameters fi  and gj  are computed by comparing 

the coefficients of Z's in the following equation : 

A(Z-1)F(Z-1 )  + B(Z-1)G(Z-1) = T(Z 
1 )  (2.33) 

where nt  < na  + nb  -  (2.34) 

For na  = nb  = n, solution of Equation 2.33 takes the form 

1  0 ... 0 bl  0 .... 0  fl  t1-a1  

al  1  ...  0  b2  b1  .... 0  f2  t2-a2  

a  a  a  b  b 1.... b  f  t-a  (2.35) 
n  n-1

..  
2  n  n-1"  1  n-1  nn 

0  a  .... a3  0  b  .... b2  go  to+l  

0  0  .... a  0  0 ....  b 
 gn-1  t2n-1 

Equation 2.35 can be written as 

M.Z= L  - 

where M is a (2n-1) x (2n-1) matrix, and Z and L are vectors having 

(2n-1) elements. 



The solution of the equation is 

Z = WL 	 (2.36) 

where the inverse in Equation 2.36 exists provided that A(Z) and 

B(Z) have no common factors. Note that, if the elements of L are 

very small, the coefficients of F(Z 1) and G(Z) are small. With 

coefficients of F(Z) small, the roots of F (Z-1 ) are close to zero, 

and a stable controller is achieved. This controller produces smoother 

control action whic-h is required for the direct digital control. 

2.4.2.4 Pole Shifting (PS) Control 

In the pole-assignment control the closed-loop poles 

are placed at pre-specified locations. The amount of control effort 

is to some extent proportional, to the distance of the proposed 

locations of the closed-loop locations from their open-loop locations. 

A poor choice of closed-loop locations may result in large control 

effort. If the. desired control cannot be provided, the system may 

become unstable. This can easily happen when a 'priori' decision 

on the system transfer function cannot be made, which is always the 

situations in power systems. Thus, the pole-assignment control strategy 

can be modified to a pole-shifting control strategy. In the pole-

shifting strategy the closed-loop poles are shifted radially towards 

the origin in the Z=domain, and a stable controller is achieved. 

35 

Pole-shift control, while retaining the basic advantages 

of the pole-assignment strategy, eliminates the requirements of 

specifying the closed-loop pole locations. 
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If the open-loop poles are shifted radially towards the 

origin such that T becomes 

T = A(a Z-1) = 1 + a a1Z-1  + aZ a2Z-2  + .... + ananZ-n+...  (2.37) 

where a , called pole-shift factor, is closed to, but less than one, 

then L in Equation 2.36 becomes 

LT = [al  (a -1), a2( a 2 -l), ....,an( an  -1),0.....,0].  (2.38) 

The control  u can be calculated ãS 

u(t) _ [-u(t-1) .... -u(t-n-l), -y(t),...,-y(t-n-l)][Z] 

or  u(t) = xT(t)Z  (2.39) 

Though this method has certain problems as discussed 

in next section, it has been successfully implemented for the 

excitation control. The results reported are quite satisfactory [29]. 

2.4.2.5 Self-Searching Pole-Shifting Control 

As mentioned above, the pole-shifting control strategy 

gives quite satisfactory results. In this we keep the pole-shifting 

factor, a , constant, which is a major shortcoming of the PS control 

technique. Ideally, the proper value of the pole-shift factor should 

depend on the operating conditions of the synchronous generator. 

Under dynamic conditions, pole-shift factor can be close to zero, 

i.e. the poles can be shifted very close to the origin. However, 

under transient conditions this factor cannot be taken so small because 

of the practical limits on control. These difficulties can be overcome 

by utilizing a self-searching pole-shift factor strategy [14]. Instead 

of choosing a fixed value, of the pole-shift factor, appropriate 

value to match system operating conditions is computed every sampling 

instant. 

0 
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The idea of 'introducing the variable pole-shifting 

technique to the PS control technique is basically the same as that 

of introducing the variable forgetting factor to the RLS 

identification. In self-searching pole-shifting control technique, 

the pole-shifting factor a(t) is calculated recursively every control 

interval according to the following basic principles: 

1. Theoretically, as the closed loop poles are shifted 

towards the origin of the unit circle in the 'Z' domain the closed 

loop system becomes more stable. 

2. Practically as the poles are shifted to the origin 

of the  it circle more control effort is required. The control 

variable has its output limits. If these limits are exceeded, 

unsatisfactory control action will result and, in the worst case, 

the system will become unstable. 

Based  on these  principles, the criterion  of the  variable 

pole-shifting factor PS Control strategy can be mentioned as 

Determine the pole-shift factor which shifts the closed 

loop system poles as close as possible to the origin of the unit 

circle in the 'Z' domain without violating the control constraints. 

The algorithm for calculating the pole-shifting factor 

a(t) can be formulated as follows: 

Assuming that the practical control constraint is given by 

umin `< u < Umax 
 (2.40) 

the control  margin is defined-as 

max u u>,0 

Au =  (2.41) 
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If A u < 0, it means that one of the control limits has 

been .hit and the pole-shifting factor has to be increased. If Au>O, 

it means that the control limits have not been reached and the pole 

shifting factor can still decrease if a (t) > 0 . 

Modification of a (t) can be formulated as follows: 

As already derived in Equation 2.35 we have 

M.Z = L 

which means 

Z = M' L 

This equation calculatesthe control parameters, fi and g~ 

The control output is given by 

u(t) = xT(t).Z 

To meet the priciple (2) of subsection (2.4.2.5) a sensitivity function 

is calculated as 

= xT(t) 	,aa  
(2.42) 

or 

3 u = xT(t) 	a [ML] as 	:8a 

- T,  -1 
1 •- a 

or 

..1!L= xT(t).M 1[a1,2a2 a , ..., na a n-1]  (2.43) 
3a 



For the control margin calculated in Equation 2.41, the 

modification of  the pole-shifting factor a (t) is given by 

Aa = -K I uI. Au as 
(2.44) 

where K is a positive constant chosen to avoid excessive variations 

in a (t) 

The variable pole-shifting factor is given by 

a (t) = a (t-1) + da 
 

(2.45) 

This calculation may be repeated every sampling period 

until the control u is within the limits. However, modifying many 

times per sampling period is not necessary. In the simulation studies 

of applying this algorithm to a synchronous machine excitation control, 

good results were obtained with one iteration [14]. 

On start up, a can be assigned any value from 0 to 1 

The algorithm will automatically search for its best value. When 

the system to be controlled is operating in the steady state, shifting 

the closed loop poles even to the origin of the unit circle will 

result in small control effort. 
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CHAPTER - 3 

PROPOSED AVR-CUM-STABILIZER DIGITAL 

EXCITATION CONTROLLER 

3.1 INTRODUCTION 

Most of the digital excitation control techniques discussed 

in Chapter 2 have been proven successful in providing supplementary 

stabilizing signal to the conventional AVR [14,29]. In a way they 

work as self-tuning power system stabilizers, modulating the excitation 

signals to produce enough damping. However, the algorithms cannot 

be called as the total digital excitation controllers of the 

synchronous machine. Complete excitation control encompasses two 

functions,. i.e.  AVR and stabilizer.  Hence, it is quite logical 

to combine the two functions in one device to have a complete digital 

excitation controller. 

In this chapter, the self-searching pole-shifting self-

tuning algorithm is modified to work as an AVR-cum-stabilizer, in 

order to develop a complete digital excitation control of the 

synchronous generators. 

Since the electrical power system is a non-linear and time 

varying system, the RLS identification part of the algorithm discussed 

in section 2.3.3.1 is slightly modified to take into account the 

concept of variable forgetting factor to improve the performance 

of the adaptive mechanism [14,27,30,39]. 

W 
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3.2 PROBLEMS OF IDENTIFICATION-THE USE OF FORGETTING FACTOR 

The main aim of using the self-tuning control is for time 

varying systems. When RLS is used for this type of system, the 

following problem arises [51,53,54]. 

As the gain. vector K(t), used for up-dating the adaptive 

parameters, -. decreases in time, the system model error is less taken 

into account. This greatly affects the parameter tracking. One way 

to overcome this problem is to periodically reset the P(t) matrix 

to either a fixed initial value or a value depending on the latest 

P(t) matrix. But in this case, all the past information stored in 

the gain matrix will be lost. 

It is worthwhile to consider a criteria in which older values 

are discounted by an exponential weighting scheme which places heavier 

emphasis on the more recent data. As a result, the parameter tracking 

capability is greatly increased. 

Consider the ;;performanceddndex 

m 
J =  km-i  2 (t)  

(3.1) 
i=1 

wnere x < 1 is the forgetting factor. 

In this criterion the latter errors are given more weight 

than the earlier- ones.RLS identification algorithm with a forgetting 

factor is better adopted to work in real-time because the gain matrix 

does not need to be reset. In addition, past errors are gradually 

forgotten and more attention is paid to the recent information. 
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Accordingly, the RLS identification algorithm can be modified 

by changing Equation (2.18) to 

P(t) = 
 

[ 1 - K(t). 0T(t)]  P(t-1)  
(3.2) 

Now if A < 1 then P(t) will not tend to zero and the  algorithm is 

more capable of tracking the parameter variation. 

The fixed forgetting factor has already been used successfully, 

in practical applications [39]. Many results show that if the system 

is always properly excited, this algorithm will give good parameter 

tracking property for the time varying systems. However, there do 

exist systems which are not, 'properly' excited. These situations 

always happen in power systems. During the normal operating conditions 

the system is poorly excited, whereas under the large disturbances, 

the system is over-excited. The use of fixed forgetting factor RLS 

identification will face the following problems. 

1. It is difficult to choose an appropriate value of A , 

which will  give the best identified parameters.. A small value of 

A gives good parameter tracking for the case of large disturbances 

but also makes the parameters more sensitive to the system noise. 

A large value of A gives smooth parameter estimation which is 

useful for the steady-state operations but results in a slow parameter 

tracking speed. 

2. The so called P matrix 'blow-up' sometimes happens. This 

problem occurs when the fixed forgetting factor a is used and the 

slowly time-varying system operates in steady-state •for a long time. 
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In this case, as the prediction error tends to zero, Equation 3.2 

can be approximately represented by [51] 

P(t) = P(t-1) 
a  (3.3) 

This can be obtained by putting 0(t) = 0 in Eqn. (3.2). 

This means that P(t) matrix will exponentially tend to infinity. 

When P(t) becomes very large, any disturbance from the system will 

result  in an  inappropriate parameter estimation and then a  very 

undesirable control  action. This  will sometimes make the system 

unstable. 

In order to avoid such difficulties, a measure for the 

information content is defined. A forgetting factor can then be chosen 

at each step such that this is kept constant. Reasonable choice of 

information measure can pre~aent P(t) from blowing-up, while still 

retaining the adaptibility of the algorithm [27,53,54]. 

The measure of information content can be expressed 

recurcively as : 

Mkt) = A (t) 	(t-1) + [1-0T(t-1) K(t)] e2(t) 	(3.4) 

By keeping  (t) constant at moo, the amount of forgetting 

will at each step correspond to the amount of new information in 

the latest measurement, thereby ensuring that the estimation is always 

based on some amount of information. 



44 

Hence 

A(t)= 1- 
 [1-OT(t-1) K(t)] 

E Z(t) = 1 -  1  (3.5) 

o 
 N(tl 

If during steady-state error c (t) is small, A is close 

to unity and it retains as much information as possible. Moreover, 

it prevents P(t) matrix from blowing-up. If due to disturbance, 

error is large, A is reduced, hence  increasing the sensitivity of 

the estimator until parameters are readjusted and errors become small. 

3.3 PROPOSED CONTROLLER 

The necessary background required for the controller has 

been explained in chapter 2. The controller is based on the self-

searching pole-shifting, self-tuning control strategy. Its structure 

is as given in Fig. 3.1. 

y(t) is the system output signal which is sampled and fed 

to the controller which in turn generates a requisite amount of control 

signal u(t). 

In all the digital excitation controllers discussed in chapter 

2, this signal y(t) is either taken as speed, frequency, electric 

power or accelerating power. Since all the controllers act as power 

system stabilizers, the sampled signal y(t) is known as the stabilizing 

signal. 

In the proposed controller which has to act as an AVR-cum-

stabilizer, the signal y(t) should represent both the functions. 

Hence y(t), as shown in Fig. 3.2 is formed by amalgamating the 
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stabilizing signal and the voltage error signal. A definite weightage 

is given to these signals and the weighted sum is taken as y(t). 

This weighted sum is then sampled and fed to the digital controller. 

Damping of the system oscillations will depend very much 

on the weightage given to each signal. If more weightage is given 

to 	the 	auxi liar$' ' ~ • stabilizing signal, the damping would 

be more and the controller will act as a stabilizer and its performance 

as an AVR will be affected. If more weightage is given to the voltage 

error signal, the controller will act as a good AVR and its performance 

as a stabilizer will be poor. Therefore, giving an appropriate weight 

is very important for the desired operation of the controller. 

The complete algorithm for the self-searching pole-shifting 

self-tuning AVR-cum-stabilizer utilizing RLS identification with 

variable forgetting is given as below. 

3.3.1 Algorithm 

The algorithm consists of the following steps: 

1. Initialize the controlled system parameters 

2. Solve the system equations using Runge Kutta method 

3. Get p d and tVt signals, where A Vt = Vref-Vt 

4. Sample y(t), where y(t) is a weighted sum of p 6 andAVt 

y(t) = P l p'a + P2 AVt 

The weights Pland P2 are to be chosen carefully. 



5. The system parameters are estimated, by the use of the 

RLS identification algorithm as 

(t)=  (t) 0(t) + e(t) 

where 

A(t) is the identified parameter vector 

e(t) is the white noise injected into the system to 

excite all the modes. 

0(t) = measurement vector 

_ [-y(t-1), -y(t-2),...,-y(t-n), u(t-l),u'(t-2),..., 

u(t-n)] 

The prediction error is calculated as 

(t) = y(t) - y(t) 

A(t) is recurcively calculated as 

(t) = A(t-1) + K(t) e (t) 

where, 

P(t-l) 0(t) 
K(t)=gain matrix= 

[1 + 0T(t) P(t-1) 0(t)) 

and P(t) = error covariance matrix. 

[1 - K(t') O T(t)J  P(t-1) 

a(t) 

x is a forgetting factor for exponential weighting of last data 
values. x (t) is found from 

A (t) = 1 - [l-O
T(t-1)  K(t)]  

0 



M o is the measure of information content 

(t) =A(t)  X (t-1-) + [1-0T(t-1) K(t)] e2 (t) 

~(t) is kept constant at  o. 

6. Calculate the control from the equation:-

u(t) = xT(t).Z 

where,  
xT(t) = [-u(t-1),...,-u(t-n-1), -y(t),...,-y(t-n-1)] 

and 
Z=M 1L 

Z will contain the control parameters f's and g's. 

M is the matrix of identified Q(t) parameters given by 

Equation 2.35. 

LT =  [t1-a1,  t2-a2,...,tn-an, 0,....., 0] 

7.  Set the control limits i.e. set u max and u 
min 

8. Calculate Au as 

umax- u 	u >, 0 

Du = 
u - umin  

u < 0 

9. The a modification factor is calculated as 

Da = - K 	auf-1. E u 
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where 

as = -
T  1 .M x  [ a1,2a2 a 5....,nan an-1 J 

K is a positive constant chosen to avoid excessive 

variations in a . 

10. Calculate a (t) as 

a(t) = a (t-1) + Aa 

11. Repeat from (2) for incremental value of t. 

The initial values to different parameters is chosen 

carefully. Simulation studies of the algorithm has made it clear 

that the controller can work as an efficient AVR-cum-stabilizer for 

the synchronous generator. The results of the study are presented 

and discussed in the next chapter. 

3.4 SELECTION OF PARAMETERS 

The digital excitation controller uses the self-tuning control 

algorithm to tune its own various parameters. It seem to be 

interesting to say that even this self-tuning controller needs to 

be tuned. The tuning has to be done for several parameters like, 

selection of system model order, choice of the value for K, choice 

of initial value for a etc. Once these parameters are tuned 

properly, the controller will exhibit excellent performance. 

~enttal Li~► ra q Umve to of Qaotkec 
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3.4.1 Selection of the System Model Order 

Any known system can be represented by a mathematical model. 

The more complex the system, the higher will be the order of the 

system. Although it is desirable that the order of the model be as 

close as possible to that of the physical system, a reasonable 

simplification of the model is generally possible and even necessary 

when designing a self-tuning controller. 

The simplification of the mathematical model is necessary 

because of the following reasons: 

1. Self-tuning controller identifies the system parameters 

on-line. If the order of the model is high, the parameter estimation 

becomes difficult due to heavy calculation burden. 

2. Self-tuning controller requires only the most important 

part of the system dynamics. 

Thus the simplification of the system model is a must for 

the proper control. 

NQrmally third order system model is taken for the power 

system. This is based on the consideration that a third order system 

usually contains a pair of dominant poles and a single pole which 

represents the main part of the system dynamics. 



3.4.2 Selection of Minimum Value for A 

A is another tuning parameti^ for the self-tuning controller. 

A limit is put to its minimum value.  If a too small value of A is 

taken, it will discount the old information very fast. This is 

not an acceptable proposition. This will make the identified parameter 

too sensitive to the new measurements. If the system noise is high, 
it may create stability problems. Thus a limit is put to the low 

value of A . In theY-pr.esen3t study 0.98 has been taken as the minimum 

value for a . 

3.4.3 Selection of K 

The pole-shifting modification factor A a (t) is given 

by 

isd (t) _ -K I as I -1 Au  
where K is a constant chosen to avoid excessive variation 

in a (t). If we want smooth controller action, a(t) should change 

slowly. Thus it is obvious that the value of K should be small. 

But how small? Sometimes it becomes a must that a (t) should change 

quickly. Such a situation arises when there is a sudden change 

in the controlled system. Heavy saturation in the system controlled 

output can be avoided if a (t) increases rapidly.  This will bring 

the control closer to the limits. Sometimes the need arises to 

decrease a(t) rapidly to enhance system damping. Such a situation 

arises when the system is recovering from a sudden change. 

52 



The value of K taken for the present case is 0.05 

Its rough value can be calculated from the above mentioned 

equation. 

3.4.4 Selection of Initial Value for a 

a is a variable which can take any value from 0 to 1. The 

best value  for a will be automatically calculated by the 

controller itself. Any value between 0 to 1 can be assigned to 

a initially. However, to reduce the initial impact higher value 

of a is preferable. If higher value of a is chosen, it results 

in small control output and avoids initial impact on the system. 

Later-on the algorithm can search for the best value itself. 
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CHAPTER - 4 

APPLICATION OF THE PROPOSED CONTROLLER TO A 

SYNCHRONOUS GENERATOR 

4.1 INTRODUCTION 

The structure of the self-tuning algorithm has been studied 

fairly broadly in the last chapter. In this chapter, its performance 

is studied under different dynamic and transient conditions. It is 

observed that the controller performance in comparison to conventional 

one is fairly good. 

The simulation studies are performed on a single machine 

connected to an infinite bus through a double circuit transmission 

line. The results are compared with AVR/stabilizer combination proposed 

by Ontario Hydro [14] as shown in Fig. 4.1 with fixed transfer 

functions for AVR and stabilizer. 

The parameters used for the simulation studies are given 

in Appendix .' 

4.2 POWER SYSTEM MODEL 

The schematic diagram of the power system considered 

is shown in Fig. 4.2. 

The mathematical model of synchronous generator is a 

set of seven first order differential equations given as follows[l]: 
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Ad  = - Eosins - (ra + rt) id + xtiq + ( o - v ) Aq 

kd 	= - r kd i kd  

A f 	= Ef - rf if 	 .. 

~ q 	= Eocos S - (ra + rt ) i q - xt 'd - (w o - v ) A d 

akq  = rkq ikq  .. 

S= 

= (Tm + g - Te) o/2H  .. 

where, 

Te = wo/2 ( Ad i q- X g id) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

and 

 d  1md+la  1md  1md  
Iid 

A.kd  =  1md  ~md+lkd  '-md  ikd  (4.9) 

Af  1md  1md  1md+1f 
 if

• aq 

L ir 

1mq+1a  1  •q 1 
_  (4.10) 

A.kq  1mq  1mq+1k  k 
q  q 



These equations are derived by the use of the generalized 

theory of the alternating current machines [1]. 

The transfer function of the governor is [14] 

b 
g = (a  +  ) p S•  ..  (4.11) 

1 + Tgs 

The AVR-exciter combination have the following transfer function [14] 

Efd  A  (Vhf  - Vt)  ..  (4.12) 
1+ TAS 

The closed loop system configuration is as shown in Fig. 4.3. 

4.3 SIMULATION STUDIES 

Computer simulation studies were performed on the above 

mentioned power system. Its performance was studied by applying the 

dynamic as well as the transient disturbances. The performance of 

the proposed controller was,  compared with a conventional one. The 

encouraging results were observed. 

4.3.1 Dynamic Performance 

Small disturbances were given to the system and the response 

was observed for the dynamic performance of the controller. 

The following were the small disturbances applied to the 

system : 

1. A disturbance of 5% step change in the input torque was 

applied to the synchronous machine. The operating conditions before 
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the  disturbance were  0.6 p.u. active  power output and  0.85 lagging 

power  factor. The  rotor angle response  is shown in  Fig. 4.4a.  It 

is clear from the system response that the oscillations are reasonably 

damped with the proposed controller. 

Fig. 4.4b depicts the p 6 response due to the disturbance. 

Fig. 4.4c shows the output generated by the controller. 

Due to the disturbance, the output fluctuates in order to follow 

the changes in the system response and once the system settles to 

the new operating condition, the output also settles. 

The pole-shift factor and the forgetting factor are shown 

in Figs. 4.4d and 4.4e respectively. Since the disturbance is small, 

there are no variations recorded in these parameters. a continues 

to remain at zero and X continues to remain at 1.0. 

2. A disturbance of 5% step change in V
ref 

 was applied to 

the machine.  The operating conditions were kept at 0.6 p.u. power 

output and 0.85 lagging p.f. The response of the rotor angle is shown 

in Fig. 4.5a. The superiority of the digital controller is evident. 

The oscillations get damped quicker than the conventional controller. 

The p 6 response is shown in Fig. 4.5b. 

The output of the digital controller and the terminal voltage 

when this controller is used are depicted in Figs. 4.5 (c) and (d) 

respectively. It shows that the digital controller performs as an' 

AVR also. 

Since the controller does not hit the limits, so the pole 

shift factor again will remain at zero (Fig. 4..5e). 
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The forgetting factor registers a change immediately after 

the disturbance. It is shown in Fig. 4.5f. 

System response to the above small disturbances shows that 

reasonable damping is provided by the proposed controller. This 

contributes to dynamic stability. More-over, it performs as an AVR 

also. 

4.3.2 Transient Performance 

To investigate the transient performance of the proposed 

controller, the following disturbances were given to the synchronous 

machine : 

1. A 50% step change in input torque was applied to the 

synchronous machine operating at 0.6 p.u. active power output and 

0.85 lagging p.f.The rotor angle response to the disturbance plotted 

in Fig. 4.6a shows the excellent performance of the digital, controller. 

The oscillations are damped out quickly. 

Fig. 4.6b depicts the p 6 response. The output of the 

controller is depicted in Fig. 4.6c.  It is seen that the controller 

hits the limits, so we can see the variation in c . Due to the 

severe disturbance, the proposed controller moves the closed loop 

poles of the system away from the origin for short duration of 

time. 

The variation of a is shown in Fig. 4.6d.  will also 

change and its variations are also depicted in Fig. 4.6e. 

For this particular case, the variations of the identified 

A and B parameters are recorded in Figs. 4.6(f) and (g) respectively. 
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It is observed that the new parameters are identified very quickly 

and the system settles to the new operating conditions. The forgetting 

factor A discounts the old information quickly and this makes the 

identified parameters sensitive to new measurements. 

2. A 30% step change in input torque, to study the behaviour 

of the system under motoring action, was given to the synchronous 

machine. The responses of rotor angle, p d, u, a and A are shown 

in Fig.4.7. It is seen that the better system damping is achieved 

with the proposed controller than with the conventional controller. 

3. A three-phase to ground short circuit was applied to 

the infinite bus side of one of the transmission. lines for 0.1 sec. 

The faulted line was then disconnected from both sides for 0.15 

sec. by the protective relays. 'After that, the faulted line was 

reclosed successfully. The system response to such  a disturbance 

is  shown in  Fig.  4.8. In Fi9.4.8, 6,  p d , u, Vt,  a and  A  are 

depicted. 

The operating conditions for such a study was 0.72 p.u. active power 

output and 0,85 lagging p.f. 

4. A three-phase to ground short circuit was applied again. 

After the fault is cleared the line is not reconnected back. This 

simulated the short circuit and one line loss test. The response 

to this type of disturbance is depicted in Fig. 4.9. 

In order to accommodate the large disturbance, the pole-shift 

factor in the proposed controller has to increase when the control 

hits the limits. The poles are shifted away from the origin for 
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a small time to avoid excessive output saturation problem of the 

controller. When the system recovers from the large disturbances, 

the control output decreases from the ceiling value and the pole-

shift control algorithm will rapidly decrease a , in order to bring 

the poled back closer to the origin. 

From the, above tests it is evident that the dynamic as well 

as the transient stability of the system is increased with the help 

of the proposed controller. It performs well as an AVR as well as 

a stabilizer. 



IN 
63 

ml 

20 	21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(a) ROTOR ANGLE RESPONSE 

0.05 

0.03 

W 	0.01 
J 
l7 
Q - 0.01 

a 0 - 
0 

LL  -0.05 
0 

-0.07 
z a 

-0.09 

-0.15 
20 

FIG. 4.4 

21 	22 	23 	24 	25 
TIME IN SECONDS 

(b) p5 RESPONSE 

— RESPONSE TO A 5% STEP CHANGE 

RN 
	

27 

IN INPUT TORQUE 



a 

N -0.150 
I0 

v 

cc 
W 

-0.350 
0 
cr 

z 
0 
U 
. -0.550 
0 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

64 

A 

(c) OUTPUT OF DIGITAL CONTROLLER 

FIG. 4.4 (CONTINUED) 



cr 
0 

1.000 

0 z 

W 0.999 
0 
x 
0 
U- 

0.20 

0.15 

65 

F- 0.05 U_ 

0.0 
w 
J 
a-0.05 

-0.10 
20 21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(d) POLE-SHIFTING FACTOR 

1.001 

0.998 
20 21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(e) FORGETTING FACTOR 

FIG. 4.4 	(CONTINUED) 



w 

Z -0.34 

cx -0.36 
0 r a -0.38 

-0.40 

DIGITAL EXCITATION CONTROLLER 

----- CONVENTIONAL CONTROLLER 
-0.28 

-0.30 

-0.32 

—0.42 
20 21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(a) LOAD ANGLE RESPONSE 

-0.50 
20 

0.50 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(b) p6 RESPONSE 

w 
J 
a 
Q 

0 0.25 

O 

U- 
0 
w 
	0.0 

z 

U 
U -0.25 

w 
Q 
cx 

FIG. 4.5 —RESPONSE TO A 50/o STEP CHANGE IN TERMINAL 

VOLTAGE REFERENCE 



0.010 

0.005 

cr 
w 
J 

0.0 

z 
0 
U 

21 	22 	23 	24 	25 	26 	27 
TIME IN SECONDS 

(c) OUTPUT OF DIGITAL CONTROLLER 

21 	22 	23 	24 	25 	Zb 	L7 

TIME IN SECONDS 

(d ) TERMINAL VOLTAGE 

- 0.010 

-0.015 
20 

F- 	1.175 

1.160 

1.145 
20 

FIG . 4.5 	(CONTINUED) 

67 

1.280 

1.265 

1.250 

w 	1.235 

Q 
1.220 

O 



ix 	0.8 
0 
Q 0 •6 
U- 

u 	0.4 

0.2 
w 
J 
a.. 	0.0  

-0.2 
20 

ilk 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(e) POLE SHIFT FACTOR 

1.001 

1.000 

0.999 

cr  0.998 
0 

0.997 

0.996 z 

W 0.995 
0 
cr 
0 U. 

20 	21 	22 	23 	24 	25 	26 
	

27 

TIME IN SECONDS 

(f) FORGETTING FACTOR 

FIG. 4.5 	(CONTINUED) 



LU J 
lD z 
a 	0.0 
0 J 
LL 0 
u-i 
0 -0.50 

U 
U- 
0 
w -1.00 

cx 

69 

- 0.350 

- 0.650 

-0.750 
20 

nirITet PvrIThTInAI rnNTDnI_LER 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(a) LOAD ANGLE RESPONCE 

- 0.4450 

w J tD 
Q -0.55C 

-1.50 
20 

0.50 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(b)' p6 RESPONSE 

FIG. 4.6 -RESPONSE TO A 50% STEP CHANGE IN INPUT TORQUE 



70 

20 	21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(c) OUTPUT OF THE CONTROLLER 

FIG. 4.6 (CONTINUED) 



[4 

E 

0.20 

0.15 

Q 
U 
Q 

0.10 

U.  
N 
W 0.05 
J 
0 
a 

v 

71 

20 	21 	22 	23 	24 	25 	26 	27 
TIME IN SECONDS 

(d) . VARIATION IN POLE SHIFT FACTOR 

20 	21 	22 	23 	24 	25 	26 	27 

. TIME IN SECONDS 

(e) VARIATION IN FOR GETTING FACTOR 

FIG. 4.6 	(CONTINUED) 



(f) VARIATION OF 'A IDENTIFIED PARAMETERS 

FIG. 4.6 	( CONTINUED ) 

2.0 

1.5 

1.0 

N 	0.5 
w 
w 

Q 
a 
4 a 

0.0 
a 
0 
w 
U- 

z 
w - 0.5 
G1 

-1.5 

21 	22 	23 	24 	25 	26 	zi 

TIME IN SECONDS 

- 2.0 
20 

72 



5 

4 

3 

2 

N x w 
f-
w 
Q 
a 0 a 

m 
0 
w 
Li 	-1 
F- z 
w 
0 

-3 

-4 

73 

21 	22 	23 	24 	25 	26 	27 
TIME 'IN SECONDS 

(9) VARIATION OF 'B' IDENTIFIED PARAMETERS 

FIG.4.6 	(CONTINUED) 



D 

Lii 0.2 
Z 

U 

DIGITAL EXCITATION CONTROLLER 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(o) LOAD ANGLE RESPONSE 

-0.20 

-0.25 

-0.40 
20 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(b) p6 RESPONSE 

—RESPONSE TO A 300/o STEP DECREASE IN INPUT TORQUE 

0.8 

Li  0.6 

x 
0.4 

D 0.0 
W 

cr 

-0.2 
20 

FIG. 4.7 

74 

1 -0.30 
I 
D 
D 
x 

-0.35 



75 

(c) OUTPUT OF DIGITAL CONTROLLER 

FIG. 4.7 	(CONTINUED) 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

-0.025 
X20 

0.025 

0.020 

0.015 

0.010 

0 0.005 
I.- 
z 
0  0 0 U 
U- 
0-0.005 

-0.010 

0 
15 

-0.020 



0.20 

cr 
0 
Q 0.10 
w 
I.- 
w 
x 

0.0 
w 
J 
0 
a 

S 

76 

z 
0.999 

w 
0 
cr 
0 
w 

w 0.998 
m 
Q 
ac 
Q 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(d) POLE SHIFT FACTOR 

0.997 
20 21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(e) VARIATION OF FORGETTING FACTOR 

FIG.4.7 	(CONTINUED) 



-0.90 
ROLLER 

ER 

21 	22 	23 	24 	25 	26 	27 

TIME AN SECONDS 

-0.92 

-0.96 

—1.12 

—1.16 

—1.2C 
20 

z 
— —1.04 
w J 
z 
Q 
cx 
o -1.08 H
0  
cx 

77 

(a) LOAD ANGLE RESPONSE 

FIG. 4.8 -RESPONSE TO A THREE PHASE TO GROUND SHORT 
CIRCUIT WITH SUCCESSFUL RECLOSURE OF CIRCUIT 
BREAKERS 



3 

0.02 

0.02 

21 	22 	1 23 	24 	25 	26 	27 

TIME IN SECONDS 

(b) OUTPUT OF DIGITAL CONTROLLER 

W 	0.01 
J 
a 0.01 
r z 

LL  - 0.0C 
0 

-0.0 

-0.0 
20 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(c) TERMINAL VOLTAGE 

FIG.4.8 (CONTINUED) 

1.03 

0.97 

0.95 
20 

78 

1.01 
w 

0 
J 	0.99 
z 



0.25 

0.20 

w  0.05 

S 

cx 0.995 
0 
U 
Q U. 

z 0.990 

w 
0 
cc 
0 
U-  0.985 

20 	21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(d) POLE-SHIFT FACTOR 

79 

1.000 

0.980 
20 21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(¢) FORGETTING FACTOR 

FIG. 4.8 ' 	(CONTINUED) 



-0.98 

-1.02 

Z -1.06 
Q 
fl 
Q 

Z -1.10 

w 
J 

z 
4 

21 	22 	23 	24 	25 	26 	27 
TIME IN SECONDS 

(a) ROTOR ANGLE RESPONSE 

FIG. 4.9 -RESPONSE TO A THREE PHASE TO GROUND SHORT 
CIRCUIT WITH ONE LINE LOSS 

80 

0 



27 26 21 	22 	23 	24 	25 

TIME IN SECONDS 

(c) TERMINAL VOLTAGE 

FIG. 4.9 	(CONTINUED ) 

21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(b) OUTPUT OF DIGITAL CONTROLLER 

-0.025 
20 

81 

0.91 

0.9! 

0.9 
20 

0.025 

0.020 

0.015 

a 0.010 
w 
J 

0 0.005 

z 
0  0.0 

L 
°-0.005 
I- 

D 
-0.010 

0 
-0.015 

QI i s 

1.0E 

1.0~ 

1.0, 

1.0 

w 	1.0 

0.9 

0.9' 



0.3 

o 0.2 
U 

p.- 
! 	0. 1 

N 

W J 
Q. 0.0 

82 

1.00.5 

1.000 

0.995 
0 
U 
Q U- 

0.990 

0.98C 

20 	21 	22 	23 	24 	25 	26 	27 

TIME IN SECONDS 

(d) POLE SHIFT FACTOR 

TIME IN SECONDS 

(Q) FORGETTING FACTOR 

FIG.4.9 	(CONTINUED) 

(antral Literary UI1IVeTStQ of ourUaL 
ROOK 



CHAPTER - 5 

CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

The problem with the  conventional excitation controller.  

is that they are tuned to a fixed operating condition and their 

control strategy is based upon the deterministic control theory. 

These cannot provide optimum response when the system operating 

conditions change. 

In the present work, the adaptive control theory is used 

to design a digital excitation controller. Self-tuning control is 

one of the most effective and the simplest stochastic control 

strategies. It has received a lot of interest in many industrial 

applications in recent years, however its use in power systems is 

relatively new. 

The self-tuning pole-shifting control technique has been 

used to design a digital excitation controller which performs as 

an AVR-cum-stabilizer.  It tracks the system and computes the control 

according to the changing operating conditions. 

Simulation studies have been performed on a power system to 

test the proposed controller. The performance of the system  is 

observed for both the dynamic as well as the transient operating con-

ditions. It is concluded that the controller works excellently 

under the different varying operating conditions. 
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5.2'FUTURE WORK 

The application of the self-tuning control technique to 

power systems is quite new. A lot of research is needed to make 

the controllers based on this theory suitable for the actual implemen-

tation in the field. Thus the field is quite open. 

The following are the few recommendations for future work 

in the field - 

1. The proposed controller can be implemented on a micro-

machine power system in a laboratory environment and its validity 

as an efficient controller can be confirmed. 

2. Different stabilizing signals can be used to compare 

the performance of the proposed controller. The stabilizing signals 

should be either frequency, accelerating power, error in electrical 

power etc. 

3. The proposed controller can be applied to a more practical 

system such as a multi-machine power system and its performance can 

be studied.  , 

4. Its behaviour can be studied in power systems which have 

the sub-synchronous resonance problem. 

5. A complete digital machine controller can be designed 

which can control both the excitation and the governer of the machine. 

It is important to do these types of studies in collaboration 

with industries. 
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APPENDIX 

Synchronous Machine Parameters in p.u. 

ra = 0.007  1md = 0.00296 1mq = 0.00166 

rkd = 0.023  1kd = 0.00007 1kq = 0.00007 

rf  = 0.00089  1 = 0.00031 if = 0.0018 

H = 3.64 sec 

Transmission Line Parameters in p.u. 

r't = 0.024 xt = 0.115 

AVR and Exciter 

KA = 200  TA = 0.01 s 

Governor 

 

a = -0.001326; b = -0.17 ;  T9 = 0.25 s 

Conventional Stabilizer 

The transfer function of the conventional stabilizer is 

K  
sT 

V(s) _ -  
Q  1+'sTl ..  

6 p 
KA ~T+sTQ 1+sT2 

where, 
K S = 0.015; TQ = 1.5 s;.T1 = 0.3 s;T2 = 0.06 s 

Stabilizer Output limit = + 5/KA 
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