
a 	TiC1 ~.

sl

A NEW VIRTUAL MACHINE MIGRATION
POLICY USING DYNAMIC THRESHOLD FOR

CLOUDS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

INTEGRATED DUAL DEGREE
m

COMPUTER SCIENCE AND ENGINEERING
(With Specialization in Information Technology)

L=ei
ANKIT AGARWAL

l

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2012

CANDIDATE'S DECLARATION

I hereby declare that the work being presented in the dissertation work entitled "A New

Virtual Machine. Migration Policy Using Dynamic Threshold For Clouds" towards the

partial fulfillment of the requirement for the award of the degree of Integrated Dual Degree

in Computer Science and Engineering (with specialization in Information Technology)

and submitted to the Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, India is an authentic record of my own work carried out

during the period from May, 2011 to June, 2012 under the guidance and provision of Dr.

Manoj Misra, Professor, Department of Electronics and Computer Engineering, III'

Roorkee.

I have not submitted the matter embodied in this dissertation work for the award of any other

degree and diploma.

Date: June, 2012
Place: Roorkee 	 (An kit Agarwal)

CERTIFICATE

This to certify that the declaration made by the candidate above is correct to the best of my

knowledge and belief.

Date: June, 2012
	

Dr. Manoj Misra
Place: Roorkee 	 Professor,

E&CE Department
IIT Roorkee, India

1

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my heartfelt gratitude to my guide and mentor

Dr. Manoj Misra, Professor, Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee, for his trust in my work, his able guidance,

regular source of encouragement and assistance throughout this dissertation work. I would

state that the dissertation work would not have been in the present shape without his

inspirational support and I consider myself fortunate to have done my dissertation under him.

I also extend my sincere thanks to Dr. Padam Kumar, Professor and Head of the

Department of Electronics and Computer Engineering for providing facilities for the

work.

I would like to thank all my friends especially Rajdeep Barua who supported and encouraged

me to finish this work.

Finally, I would like to say that I am indebted to my parents for everything that they have

given to me. 1 thank them for sacrifices they made so that I could grow up in a learning

environment. They have always stood by me in everything I have done, providing constant

support, encouragement, and love.

ANKIT AGARWAL

ii

ABSTRACT

Cloud computing is an emerging model of business computing. Cloud computing is the long

dreamed vision of computing as a utility, where data owners can remotely store their data in

the cloud to enjoy on-demand high-quality applications and services from a shared pool of

configurable computing resources. As the cost of energy is increasing day by day, there is a

need to shift to energy saving mechanism. In Cloud computing there are large number of host

and different virtual machines running on them. In this dissertation, the concept of migration

of virtual machines is studied. The different migration policies of the virtual machines and

factors on which they depend are studied. The migration policy depends on two threshold

values. The dynamic evaluation of these thresholds is suggested and a different migration

policy is suggested. The performance evaluation is done on the basis of migration count of

the virtual machines. Finally the thesis is concluded by pointing out future perspective of the

migration policies and how can they be used in the real time environment.

iii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... I
1.1. 	Cloud Computing ... l

1.2. 	Problem Statement ...2

1.2.1. 	Problem Description ..2

1.3. 	Organization of Dissertation ..3

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW4

2.1 	Types of Cloud ...4

2.1.1 	Software as a Service (SaaS) ...4

2.1.2 	Platform as a Service (PaaS) ..5

2.1.3 	Infrastructure as a Service (IaaS) ...6

2.2 	Deployment Methods ...7

2.2.1 	Private Cloud ...7

2.2.2 	Public Cloud ...7

2.2.3 	Hybrid Cloud ...7

2.3 	CloudSim ...8

2.3.1 	Modelling in Cloud ..10

2.3.2 	Modelling in VM Allocation ...11

2.4 	Migration Policies ..12

2.4.1 	Minimization of Migration Policy ...12

2.4.2 	Highest Potential Growth Policy ...14

2.4.3 	Random Choice Policy ..16

iv

	

2.5 	Dynamic Threshold ..17

	

2.6 	Roulette Wheel Selection ..18

	

2.7 	Research Gaps ..20

CHAPTER 3: PROPOSED SCHEME ...21

	

3.1 	Proposed threshold policy ..21

	

3.2 	Proposed migration policy ...23

CHAPTER 4: DESIGN AND IMPLEMENTATION ...25

CHAPTER 5: RESULTS AND DISCUSSION ...29

	

5.1 	Evaluation of Threshold Policies using threshold policies29

	

5.2 	Evaluation of Migration Policies using proposed threshold policy34

	

5.3 	Evaluation of Proposed Threshold Policy ..39

CHAPTER 6: CONCLUSION AND FUTURE WORK ..41

	

6.1 	Suggestions for future work ...42

REFERENCES...43

v

LIST OF FIGURES

Figure 2.1 	Layered CloudSim Architecture ..9

Figure 2.2 	Pseudo code for Minimization of Migration Policy ..14

Figure 2.3 	Pseudo code for Highest Potential Growth Policy ..15

Figure 2.4 	Pseudo code for Random Choice Policy ..17

Figure 2.5 	Roulette Wheel ..19

Figure 3.1 	Pseudo code for Modified Roulette Wheel Selection24

Figure 4.1 	CloudSim class diagram ..25

Figure 5.1 	The variation of virtual machine migration count with virtual machine count
taking50 host ...30

Figure 5.2 	The variation of virtual machine migration count with virtual machine count

taking 100 host ...31

Figure 5.3 	The variation of virtual machine migration count with virtual machine count
taking150 host ...31

Figure 5.4 	The variation of virtual machine migration count with virtual machine count
taking200 host:...32

Figure 5.5 	The variation of virtual machine migration count with virtual machine count
taking250 host:...33

Figure 5.6 	The variation of virtual machine migration count with virtual machine count
taking300 host ...34

Figure 5.7 	The variation of virtual machine migration count with virtual machine count
taking50 host ...35

Figure 5.8 	The variation of virtual machine migration count with virtual machine count
taking100 host ...36

vi

CHAPTER 1
INTRODUCTION

1.1. Cloud Computing
Cloud computing is Internet-based computing, whereby shared resources, software, and

information are provided to computers and other devices on-demand. While it is sometimes

considered simply an alternative means of traditional server or website hosting, the Cloud is

actually much more than that, offering many different layers and opportunities. Cloud

computing enables on demand network access to a shared pool of configurable computing

resources. Of particular benefit is the flexible infrastructural platform that Cloud computing

provides, which can change computing resources from a capital- and skill-intensive

investment into an elastic-scale utility-model of allocation [1].

Cloud computing describes a data processing infrastructure in which the application software

and often the data itself is stored permanently not on your PC but rather a remote server

that's connected to the Internet. When you need to use the application or access the data,

your computer connects to the server through the Internet and some of that information is

cached temporarily on your client machine [1].

As energy costs are increasing there is a need to shift the focus from optimizing datacenter

resource management for pure performance to optimizing them for energy efficiency, while

maintaining high service level performance. Therefore, Cloud service providers need to

adopt measures to ensure that their profit margin is not dramatically reduced due to high

energy costs. There is also increasing pressure from governments worldwide aimed at the

reduction of carbon footprints, which have a significant impact on the climate change. Thus,

providers need to minimize energy consumption of Cloud infrastructures, while ensuring the

service delivery [2].

1

1.2. Problem Statement
The aim is to evaluate performance of virtual machine migration policies using dynamic

threshold allocation in cloud. And Proposed a vteia po lit .

1.2.1. Problem Description

In the real time environment there are large numbers of hosts and different virtual machines

allocated to them. But many of these hosts can be shut down because only few virtual

machines of lower CPU utilization are allocated to them.

The migration of virtual machines between nodes (hosts) is done, as most of the time the

virtual machines don't use the resources allocated to them, thus they can be consolidated to a

minimum number of nodes. The idle nodes can then be shut down or put to sleep, thus

reducing the total energy consumption.

The migration policy takes two threshold values, ie lower utilization threshold and upper

utilization threshold. These threshold values depend upon the current CPU utilization of the

host. As the number of virtual machine allocated to the host changes, so does its utilization.

The total CPU utilization of a particular host is the sum of CPU utilization of all the virtual

machines allocated to it.

The goal stated in the problem statement can be divided into three sub-problems:

I. 	Dynamically determining the upper and lower utilization threshold values that will be

used by the migration policy.

2. Performance evaluation of the existing migration policy by taking the dynamic

threshold values (evaluated by both existing and suggested policy) and the static

threshold values.

3. Performance evaluation of the proposed migration policy with the existing migration

policy using dynamically determined threshold values.

2

1.3. Organization of Dissertation

This thesis report comprises of six chapters including this chapter that introduces the basic of

cloud computing and states the problem. The rest of the dissertation report is organized as

follows.

Chapter 2 provides a brief description of literature review on Cloud computing. It contains

the literature review of CloudSim on which the simulation is performed. It also contains

various migration policies along with the dynamic threshold evaluation policy.

Chapter 3 provides a detailed description of the proposed scheme for evaluating the dynamic

threshold. It also contains the description of the proposed migration policy.

Chapter 4 gives the brief description of the implementation of the proposed scheme. It

contains various classes in the CloudSim that is being used for the simulation. 	~; v

Chapter 5 discusses the results and including discussion on them. The performance parameter

used is the migration count.

Chapter 6 concludes the work and gives the directions for future work.

CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

A Cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented as one

or more unified computing resource(s) based on service-level agreements established through

negotiation between the service provider and consumers. Cloud computing is a model for

enabling convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction.

This cloud model promotes availability and is composed of five essential characteristics,

three service models, and four deployment models [3]

2.1. Types of Cloud

There are main three systems categories Software as a Service (SaaS), Platform as a Service . ,

(PaaS) and Infrastructure as a Service (IaaS).

2.1.1. Software as a Service (SaaS)

Traditionally, users. prescribe software and it is license in and order to install it on their hard.,

disk and then use it, however, in the cloud users do not required to purchase the software

rather the payment will be based on pay-per-use model. It support multi-tenant which means

that the physical backend infrastructure is shared among several users but logically it is

unique for each user [4].

Software as a Service (SaaS) is a software distribution model in which applications are

hosted by a vendor or service provider and made available to customers over a network,

typically the Internet. There are two different delivery models for SaaS. First is the Hosted

Application Management (Hosted AM) model is similar to ASP (Application Service

Provider) in which a provider hosts commercially available software for customers and

delivers it over the Web. Second is the Software on Demand model in which the provider

4

gives customers network-based access to a single copy of an application created specifically

for SaaS distribution [4].

Benefits of the SaaS model include:

• Easier administration.

• . 	Automatic updates and patch management.

• Compatibility: All users will have the same version of software.

• Easier collaboration.

• Global accessibility.

2.1.2. Platform as a Service (PaaS)
In PaaS the development environment are provided as service. The developers will use

vendor's block of code to create their own applications. The platform will be hosted in the

cloud and will be accessed using the browser [4].

It is a way to rent hardware, operating systems, storage and network capacity over :;the 	 k,

Internet. The service delivery model allows the customer to rent virtualized servers and

associated services for running existing applications or developing and testing new ones. It is

an outgrowth of Software as a Service (SaaS), a software distribution model in which hosted

software applications are made available to customers over the Internet. PaaS has several

advantages for developers. With PaaS, operating system features can be changed and

upgraded frequently. Geographically distributed development teams can work together on

software development projects. Services can be obtained from diverse sources that cross

international boundaries. Initial and ongoing costs can be reduced by the use of infrastructure

services from a single vendor rather than maintaining multiple hardware facilities that often

perform duplicate functions or suffer from incompatibility problems. Overall expenses can

also be minimized by unification of programming development efforts [4].

5

2.1.3. Infrastructure as Service (IaaS)

In IaaS [4], vendors provide the infrastructure as a service where it is delivered in form of

technology, datacentres and IT services to the customer which is equivalent to the traditional

"outsourcing" in the business world but with much less expenses and effort. The main

purpose is to tailor a solution to the customer based on required applications.

Infrastructure as a Service is a provision model in which an organization outsources the

equipment used to support operations, including storage, hardware, servers and networking

components. The service provider owns the equipment and is responsible for housing,

running and maintaining it. The client typically pays on a per-use basis. Infrastructure as a

Service is sometimes referred to as Hardware as a Service (HaaS) [4].

Table 2.1.: Cloud Computing Services

Service Providers

SaaS Support running multiple instances of it. Google Docs

Develop software that is capable to run in the Mobile Me

cloud. Zoho

PaaS Platform which allows developer to create Microsoft Azure

programs that can be run in the cloud. Force.com

Includes several applications services which Google App Engine.

allow easy deployment.

IaaS Highly scaled a shared and computing Amazon S3

infrastructure accessible using internet browser. Sun's Cloud Service

Consists of Database, servers and storage

R

2.2. Deployment Methods
There are three deployment models for Cloud computing: Public, Private, and Hybrid.

2.2.1. Public Cloud

A public cloud is one based on the standard cloud computing model, in which a service

provider makes resources, such as applications and storage, available to the general public

over the Internet. Public cloud services may be free or offered on a pay-per-usage model. The

physical infrastructure is generally owned and managed by the service provider [1].

The main benefits of using a public cloud service are:

• Easy and inexpensive set-up because hardware, application and bandwidth costs are

covered by the provider.

• Scalability to meet needs.

• No wasted resources because you pay for what you use.

Examples of public clouds include Amazon Elastic Compute Cloud (EC2), IBM's Blue

Cloud, Sun Cloud, Google AppEngine and Windows Azure Services Platform.

2.2.2. Private Cloud

A private cloud is a proprietary network or data center which is managed by the organization

it serves. The physical infrastructure may be owned by and managed by the organization or

the designated service provider with an extension of management and security control planes

controlled by the organization [1].

2.2.3. Hybrid Cloud
A hybrid cloud is a composition of two or more Clouds (public or private) that remain unique

entities but are bound together by standardized or proprietary technology that enables data

and application portability [1]. It is offered in one of two ways: a vendor has a private cloud

and forms a partnership with a public cloud provider, or a public .cloud provider forms a

partnership with a vendor that provides private cloud platforms. It is a cloud computing

environment in which an organization provides and manages some resources in-house and

has others provided externally.

7

2.3. CloudSim

The CloudSim toolkit supports both system and behavior modeling of Cloud system

components such as data centers, virtual machines (VMs) and resource provisioning policies.

CloudSim offers the following novel features [5]:

(i) support for modeling and simulation of large-scale Cloud computing environments,

including data centers, on a single physical computing node.

(ii) a self-contained platform for modeling Clouds, service brokers, provisioning, and

allocation policies.

(iii) support for simulation of network connections among the simulated system elements.

(iv) facility for simulation of federated Cloud environment that inter-networks resources

from both private and public domains.

(v) availability of a virtualization engine that aids in the creation and management of

multiple, independent, and co-hosted virtualized services on a data center node.

(vi) flexibility to switch between space-shared and time-shared allocation of processing

cores to virtualized services.

Figure 2.1. [5] shows the multi-layered design of the CloudSim software framework and its

architectural components.The CloudSim simulation layer provides support for modeling and:

simulation of virtualized Cloud-based data center environments including dedicated

management interfaces for VMs, memory, 'storage, and bandwidth. The fundamental • issues,

such as provisioning of hosts to VMs, managing application execution, and monitoring

dynamic system state, are handled by this layer. A Cloud provider can study the efficiency of

different policies in allocating its hosts to VMs (VM provisioning), by implementingdifferent

strategies at this layer. Such implementation can be done by programmatically extending the

core VM provisioning functionality. There is aclear distinction at this layer related to

provisioning of hosts to VMs. A Cloud host can be concurrently allocated to a set of VMs

that execute applications based on Software as a Service (SaaS) provider's defined Quality of

Service (QoS) levels. This layer also exposes the functionalities that a Cloud application

developer can extend toperform complex workload profiling and application performance

study.

.8

USER DUDE ---
SIMULATION
SPECIFICATION

SCHEDULING
POLICY

	

....................................... 	,...; 	..

	

Cloud Scenario; 	User Requirements 	Application Configuration

	

........I.................. 	..;

..
User Data Center Broker

CLOUDS 1M

USER
INTERFACE
STRUCTURES

VM SERVICES

CLOUD
SERVICES

CLOUD
RESOURCES

NETWORK

Cloudlet 	 ': Virtual Machines

...
Cloudlet Execution 	VM Management ._

... 	.. 	 ks

....................... 	,......I..................... s,...................... I...........

VM 	CPU 	Memory 	Storage 	Bandwidth
Provisioning; e Allocation 	'•. Allocation 	Allocation € 	Allocation

..............................rr

,u, t
Event 	Sensor 	Cloud 	Data Center
Handling 	 Coordinator

...............................

... 	..:
Network Topology 	 Message Delay Calculation!

... 	...:

CLOUDSIM CORE SIMULATION ENGINE.

Figure 2.1.: Layered CloudSimArchitecture[5]

{1

The top-most layer [5] in theCloudSim stack is the User Code that exposes basic entities for

hosts (number of machines, theirspecification, and so on), applications (number of tasks and

their requirements), VMs, number ofusers and their application types, and broker scheduling

policies. By extending the basic entitiesgiven at this layer, a Cloud application developer can

perform the following activities: (i) generatea mix of workload request distributions,

application configurations; (ii) model Cloud availabilityscenarios and perform robust tests

based on the custom configurations; and (iii) implement customapplication provisioning

techniques for clouds and their federation.

2.3.1. Modelling in Cloud

The infrastructure-level services (IaaS) [5] related to the clouds can be simulated by

extending the data center entity of CloudSim. The data center entity manages a number of

host entities. The hosts are assigned to one or more VMs based on a VM allocation policy

that should be defined by the Cloud service provider. The VM policy ,stands for the

operations control policies related to VM life cycle such as: provisioning of a host to a VM,

VM creation, VM destruction, and VM migration. Similarly, one or more application

services can be provisioned within a single VM instance, referred to as application

provisioning in the context of Cloud computing. In the context of CloudSim, an entity is an.

instance of a component. A CloudSim component can be a class (abstract or complete) or set

of classes that represent one CloudSim model (data center, host).

A data center [5] can manage several hosts that in turn manage VMs during their life cycles.

I-lost is a CloudSim component that represents a physical computing server in a Cloud: it is

assigned a pre-configured processing capability (expressed in millions of instructions per

second—MIPS), memory, storage, and a provisioning policy for allocating processing cores

to VMs. The Host component implements interfaces that support modeling and simulation of

both single-core and multi-core nodes.

VM allocation (provisioning) [5] is the process of creating VM instances on hosts that match

the critical characteristics (storage, memory), configurations (software environment), and

requirements (availability zone) of the SaaS provider. CloudSim supports the development of

10

custom application service models that can be deployed within a VM instance and its users

are required to extend the core Cloudlet object for implementing their application services.

Furthermore, CloudSim does not enforce any limitation on the service models or

provisioning techniques that developers want to implement and perform tests with. Once an

application service is defined and modeled, it is assigned to one or more pre-instantiated

VMs through a service-specific allocation policy. Allocation of application-specific VMs to

hosts in a Cloud-based data center is the responsibility of a VM Allocation controller

component (called VmAllocationPolicy). By default, VmAllocationPolicy implements a

straightforward policy that allocates VMs to the Host on a First-Come-First-Serve (FCFS)

basis. Hardware requirements, such as the number of processing cores, memory, and storage,

form the basis for such provisioning. Other policies, including the ones likely to be expressed

by Cloud providers, can also be easily simulated and modeled in CloudSim.

For each Host component,[5] the allocation of processing cores to VMs is done based on a

hostallocation policy. This policy takes into account several hardware characteristics, such as

numberof CPU cores, CPU share, and amount of memory (physical and secondary), that are

allocated toa given VM instance. Hence, CloudSim supports simulation scenarios that assign

specific CPUcores to specific VMs (a space-shared policy), dynamically distribute the

capacity of a core amongVMs (time-shared policy), or assign cores to VMs on demand.

2.3.2. Modelling the Vm Allocation

Clouds [5] contain an extra layer (the virtualization layer) that acts as an execution,

management, and hosting environment for application services. Hence, traditional application

provisioning models that assign individual application elements to computing nodes do not

accurately representthe computational abstraction, which is commonly associated with Cloud

resources. For example, consider a Cloud host that has a single processing core. There. is a

requirement of concurrentlyinstantiating two VMs on that host. Although in practice VMs

are contextually (physical andsecondary memory space). isolated, still they need to share the

processing cores and system bus.Hence, the amount of hardware resources available to each

VMis constrained by the total processingpower and system bandwidth available within the

host. This critical factor must be consideredduring the VM provisioning process, to avoid

11

creation of a VM that demands more processingpower than is available within the host. In

order to allow simulation of different provisioningpolicies under varying levels of

performance isolation, CloudSim supports VM provisioning attwo levels: first, at the host

level and second, at the VM level. At the host level, it is possible tospecify how much of the

overall processing power of each core will be assigned to each VM. Atthe VM level, the VM

assigns a fixed amount of the available processing power to the individualapplication services

(task units) that are hosted within its execution engine.

2.4. Migration Policy

There are large numbers of Hosts and different Virtual Machines are allocated to them. In the

simulation process using CloudSim, the virtual machines might not get the complete CPU

utilization what it is expecting. The host CPU utilization might be less than the maximum

which can be allocated to it. The measure at any instance of time of the CPU. utilization of

host is the sum of CPU utilization of all the virtual machines allocated to that host. Many of

the hosts can be shut down because only few virtual machines of lower CPU utilization are

allocated to them. These virtual machines can be migrated to other hosts.

To determine when and which VMs should be migrated, the algorithm uses a double-

threshold VM selection . policies. The basic idea is to set upper and lower utilization

thresholds for hosts and keep the total utilization of the CPU by all the VMs allocated to the

host between these thresholds. If the CPU utilization of a host falls below the lower

threshold, all VMs have to be migrated from this host and the host has to be switched to the

sleep mode in order to eliminate the idle power consumption. If the utilization exceeds the

upper threshold, some VMs have to be migrated from the host to reduce the utilization [2].

2.4.1. The Minimization of Migration Policy

The Minimization of Migrations (MM) policy selects the minimum number of VMs needed

to migrate from a host to lower the CPU utilization below the upper utilization threshold if

the upper threshold is violated [2].

12

Let V} be a set of VMs currently allocated to the host j. Then P(V) is the power set of V~ .

The MM policy finds a set R E P(VV) as shown in equation (2.1) [21 whereT„ is the upper

utilization threshold; T1 is the lower utilization threshold; u is the current CPU utilization of

the host j; and ua(V) is the fraction of the CPU utilization allocated to the VM v.

LS 1 SE P(V3). uj -Et ~s ua(v)< T. S 	min} 	ifu Tu :

R = 	V 	 if uu < T, 	(2.1.)

0 	 otherwise

As shown in the figure 2.2, the algorithm sorts the list of VMs in the decreasing order of the

CPU utilization. Then, it repeatedly looks through the list of VMs and finds a VM that is the

best to migrate from the host. The best VM is the one that satisfies two conditions. First, the

VM should have the utilization higher than the difference between the host's overall

utilization and the upper utilization threshold. Second, if the VM is migrated from the host,

the difference between the upper threshold and the new utilization is the minimum across the

values provided by all the VMs. 	 T,.

If there is no such a VM, the algorithm selects the VM with the highest utilization, removes it

from the list of VMs, and proceeds to a new iteration. The algorithm stops when the new

utilization of the host is below the upper utilization threshold. The complexity of the

algorithm is proportional to the product of the number of over-utilized hosts and the number

of VMs allocated to these hosts [2].

13

Input: hostList
Output: migrationList

for (each Host h in hostList) {
vmList = h.getVmListQ;
vmList.sortDecreasingUtilizationo;
hUtil = h.getUtilO;
bestFitUtil = MAX;
while (hUtil> THRES—UP){

for(each vm v in vmList){
if(v.getUtilO >hUtil-THRES UP){

t = v.getUtil() — hUtil + THRES_UP;
if(t <bestFilUtil) {

bestFitUtil = t;
bestFitVm = v;

}
}
else if(bestFitUtil = MAX)

bestFitVm = v;
break;

}
hUtil = hUtil — bestFitUtil;
migrationList.add(bestFitVm);
vmList.remove(bestFitVm);

}
if(hUtil< THRES_LOW){

migrationList.add(h.getVmList());
vmList.remove (vmList);

}
}
return migrationList;

Figure 2.2. : Pseudo code for Minimization of Migration Policy[2]

2.4.2. The Highest Potential Growth Policy

When the upper threshold is violated, the Highest Potential Growth (HPG) policy migrate

VMs that have the lowest usage of the CPU relatively to the CPU capacity defined by the

VM parameters in order to minimize the potential increase of the host's utilization [2].

14

As shown in equation (2.2) [2], ur(v) is the fraction of the CPU capacity initially requested

for the VM v and defined as the VM's parameter.

{S i Se P(VI). Uj ' 1~,, s Ua (tr) < TU . Z LE `r - min.) 	if ua >T11 ; u.-Fv1

R= 	Vi. 	 ifuu <Tu; 	(2,2)

C
	

Otherwise

Input :hostList
Output: migrationList

for (each host h in hostList){
vmList = h.getVMListO
hostUtil = h.getUtil ();

if (hostUtil<= Thres Low) {
m igrationL i st. add(vmLi st);

}
else if (hostUtil>Thres_Up){

vmLi st. sortlncreasingRelativeUti l O;
for (each Vm v in vmList){

if (hostUtil>Thres_Up){
vmUtil = v.getUtil0;
if (vmUtil> (hostUtil - upperThreshold)){

migrationList.add(v);
hostUtil -= vmUtil;
vmList.remove(v);

}
}

}
}

}
return migrationList;

Figure 2.3. Pseudo Code for Highest Potential growth Policy

15

As shown in the figure 2.3., the algorithm finds the host utilization and if it is lesser than the

lower utilization threshold then all the virtual machines allocated to that host is added to the

migration list. If the host utilization is more than the upper threshold then the virtual

machines are sorted in the increasing order of their relative utilization (the ratio between the

allocated utilization to the actual utilization). The virtual machine having the lower relative

utilization is added to the migration list and is removed from the virtual machine list. The

process continues till the host utilization is more than the upper threshold value.

2.4.3. The Random Choice Policy

The Random Choice (RC) policy relies on a random selection of a number of VMs needed to

decrease the CPU utilization by a host below the upper utilization threshold.

According to a uniformly distributed discrete random variable (X), whose values index

subsets of Vj, the policy selects a set R EP(V~), as shown in equation (2.3) [3].

•S SEP{fig,). ui- - E<<,,Su,(v)<T , X 	U(.Q.;P(Vj)l-I))-ifu3>T,a

R= Vi 	 ifuj<Tu 	(2.3.)

0
	

Otherwise

As shown in the Figure 2.3., the algorithm finds the host utilization and if it is lesser than the

lower utilization threshold then all the virtual machines allocated to that host is added to the

migration list. If the host utilization is more than the upper threshold then the randomly a

virtual machine is selected and is added to the migration list. This virtual machine is then

removed from the virtual machine list. The process continues till the host utilization is more

than the upper threshold value.

16

Input: hostUtil
Output: migrationList

for (each host in hostList){
vmList = h.getVMList()
hostUtil = h.getUtil ();

if (hostUtil<= Thres_Low) {
m igrationList.add(vmLi st);

}
else if(hostUtil>Thres_Up){

for (each Vm v in vmList){
if (hostUtil>Thres_Up) {

Vmvm= vmList.get(Random(vm.size0));
vmUtil = vm.getUtil();
if(vmUtil> (hostUtil - upperThreshold)){

mi grati onLi st. add(vm);
hostUtil = vmUtil;
vmList.remove(vm);

}
}

}
}

}
return migrationList;

Figure 2.4. : Pseudo Code for Random Choice Policy

2.5. Dynamic Threshold
The dynamic threshold (DT) is used because the fixed values for' the thresholds are

unsuitable for an environment with dynamic and unpredictable workloads, in which different

types of applications can share a physical resource. The system should be able to

automatically adjust its behavior depending on the workload patterns exhibited by the

applications. Therefore automated adjustment of the utilization thresholds based on a

statistical analysis of the historical data collected during the lifetime of VMs is used [2].

17

The calculation of CPU Utilization of Virtual Machine is done [6] using equation (2.4).

1_1vm = total RequestedNtips
totalN ips for that VM (2.4)

The Upper Utilization Threshold is done as follows:

sum = l ~ °tz 	 (2.5.)

Tut r = T - (((P 	sqr) ~ stint) - (,(P,i * Sqr) sum)) 	(2.7.)

where, for each host we preserve amount of CPU capacity by upper (Puu) and lower (Pi)
probability limits.

The Lower Utilization Threshold is done as follows:

r
sum= 	; ,

n

sq _ E_ 	 __ —

Tiz.wer_- 	su.n7. — (PI * sqr)
U;

(2.9.)

if CPU utilization is 30%
if CPU utilization is >_ 30% 	(2,10.).

where, we considered P, as probability limit of lower threshold and n is number VMs on the
host.

2.6. Roulette Wheel Selection
Roulette Wheel Selection (RWS) [7] scheme probabilistically select individual based on their

fitness value F;. The circumference of Roulette-wheel is the sum of finesses of all the

individuals. The individual whose fitness is larger is more probable to get selected. As shown

in the figure 2.5. , the probability of area A getting selected is higher than the all other areas.

18

Figure 2.5. Roulette Wheel

The probability of Area to get selected is

The cumulative probability S is given as

S E pi 	 (2.12.)

The cumulative probability of an individual lies between 0 and 1. The ith individual is

represents the cumulative probability from p;_1 to pi. Thus in order to select n individual, n

random numbers between 0 and I are generated. The individual that represents the chosen

random number in the cumulative probability range gets selected. This way, the individual

with higher fitness value will represent a larger range in the cumulative probability values

and therefore has a higher probability of getting selected. On the other hand, an individual

with smaller fitness value represents a smaller range in cumulative probability values and has

a smaller probability of getting selected.

19

2.7. Research Gaps
The following research gaps were identified after the literature review:

1. The policy for determining the upper and lower utilization threshold takes probability

limit into account which is not valid for the real time applications. A policy for

determining the threshold values is suggested taken into consideration both the virtual

machine that are allocated and not allocated.

2. The policy given for the determining the migration count of virtual machines takes

into account the virtual machines whose utilization is largest. A policy is suggested to

determine which virtual machine needs to be migrated taking into account other

virtual machines allocated to the host.

20

CHAPTER 3
PROPOSED SCHEME

This chapter gives the proposed schemes for dynamic threshold evaluation and for the

migration count of virtual machines.

3.1. Proposed Threshold Policy (PT)
The lower and upper utilization threshold used in the migration policy should be dynamically

determined. In real time environment there are large number of hosts and virtual machines.

There are different virtual machines allocated to the host each having different CPU

utilization which might be different than the actual CPU utilization of virtual machines. Thus

having a same static threshold value for every host is not efficient. Thus at each host

depending upon its utilization, its threshold value need to be determined. These threshold

values depend upon the virtual machines allocated to the host. The total utilization of the host

is sum of all the virtual machine's utilization allocated to it.

Let there be total N virtual machines which can be allocated to 1 hosts. The actual

(requested) CPU utilization of the N virtual machines is X, X2... XN. At any instance of time

t let there be n virtual machines allocated to H; host. The CPU utilization of the host I-I; is the

sum of utilization of these n virtual machines ie the current CPU utilization of the virtual

machines, not its actual CPU utilization.

Define a Utilization Vector UV of size N as follows:

for each i. from. 1 to N

,UV = 0 if VM is not allocated at tin-i.e t 	 c3.i.)

_ if VMi is allocated at time t zvherexiis its CPU utilization.at tinie..t

21

Define Error Vector EV of size N as follows:

for each i front. I to N

EV; 	 (3.2•)

where,

x(t) is the CPU utilization of the allocated VM; at time t

x;(t-1) is the CPU utilization of the allocated VM; at time t-1

(x;(t) and x;(t-l) can be zero if at time tort-1 VM; is not allocated)

X; is the actual (requested) CPU utilization of the allocated VM;

The net error = Utilization Vector * Error Vector

l?xample:

Let there be 5 virtual machine VMi, VM2, VM3, VM4, VM5 with actual CPU utilization as

X1, X2. X3, X4and Xs.

At time t VM,, VM2 and VM3 are allocated with CPU Utilization as x j(t), x2(t) x3(t).

At time t+l VM2 and VM4 are allocated with CPU Utilization as x2(t+l), x4(t+l).

Utilization Vector (UV) _ [0 X .(t+1) 0 x4(t+1) 0) 	 (3.3.)

Error Vector (ELI J = (O— ___t) (_(t+1) — to (t}? (o — xactt) (x.(t+1) — a} (0— 0)

Net Error = Utilization Vector. * Error Vector

:c x 	- ~ E¢;7 	0-xft) 	 ~(t+i) -Q)
— 0 	x 	x~(t - 1) 	x 	 + 	(t +• '1} 	s o.. 	(3. 5.)

22

At the start of the simulation, let there be n Virtual Machines be allocated to Host Hi.

Sum =Y Utilization of n Virtual Machines allocated to Hi 	(3.6.)

Lower Threshold Value = a * Sum 	 (3..7.)

Upper Threshold Value = b * Suni 	 (3.5.)

a-~b= 1 	 (3.9.)

where, a and b are positive constants

Thus,

Lower Threshold Value (t) = Total Error + Lower Threshold Value (t-1)
	

(3.10.)

Upper Threshold Value (t) = Total Error Upper. Threshold Value (t- 1). 	(3.11.)

So initially the lower and upper utilization threshold are taken as some fraction of the total

CPU utilization of host and at every simulation time it gets modified taking into 	r~-

consideration the error in the utilization. Thus each host has lower and upper utilization

threshold value according to the virtual machines allocated to that host. At every simulation

time these values are modified.

3.2. Proposed Migration Policy

The proposed algorithm is the modification of Roulette Wheel Selection (MRWS)

There are N Virtual Machines and H Hosts. Suppose at any given instance of time t n virtual
machines are allocated to the host Hi and the upper and lower utilization threshold value be L
and U.

The CPU utilization of the these n virtual machines be x1 , x2, ..xn where x1< x2...<x.

As shown in the Figure 3.1., the algorithm first find the cumulative of the relative utilization

of each of the virtual machine allocated to the host. A random number is selected between 0

23

and 1. If this number is greater than cumulative of the relative utilization, then this virtual

machine is selected. This virtual machine is added to the migration list and is removed from

the virtual machine list. The process continues till the host utilization is greater than the

upper threshold value. If the host utilization is greater than the lower threshold then all the

virtual machines allocated to the host is added to the migration list.

Input: hostList
Output: migrationList

for (each Host h in hostList) {
vmList = h.getVmList();
vmList.sortlncreasingUtilizationO;

for(each vmv in vmList)
sum += v.getUtil()

for(each vmv in vmList){
pi = v.getUtil()/sum
ci = ci-I + pi;

}
while (sum >Thres_Up){

number = Random number between 0 and 1
for(each vmv in vmList){

if (number > ci) {
migrationList.add (v)
sum = sum — v.getUtil()
vmList.remove (v)
break

}
}
if (sum <Thres_Low) {

for(each vm v in vmList){
migrationList.add(v)
sum = sum — v.getUtil()
vm List. remove(v)

}
}

}
if (sum <Thres Low)

migartionList.add(vmList)
}
return migrationList

Figure 3.1. Pseudo Code for Modified Roulette Wheel Selection

24

CHAPTER 4
DESIGN & IMPLEMENTATION

Cloudsim

Network

[mpoiog J 	
VM 	 Datacenter 	Datacenter 	Datacenter

SAN 	 Allocation 	 Characteristic 	Broker

Storage j 	Policy

Federated 	Cloud 	Sensor
Cloudlet

Datacenter 	Coordinator
VM Allocation

Policy Simple

Cloudlet

VM 7 	 Scheduler

BW

Host
	RAM

Provisioner
	

Provisioner

BW Provisioner Simple

VM

Schedule

RAM

Provisioner

Simple

Cloudlet

Scheduler

Space Shared

Cloudlet

Scheduler

Time Shared

VM

VM

Scheduler

Scheduler

Space Shared
	

Time Shared

Figure 4.1.: CloudSim class design diagram [5]

2\27 	 25

tz~~l~v

The class design diagram of CloudSim [5] is shown in the figure 4.1. There are various

classes that are used in the simulation process.

BwProvisioner: This is an abstract class that models the policy for provisioning of

bandwidth to VMs. The main role of this component is to undertake the allocation of network

bandwidthsto a set of competing VMs that are deployed across the data center. Cloud system

developers andresearchers can extend this class with their own policies (priority, QoS) to

reflect the needs of theirapplications. The BwProvisioningSimple allows a VM to reserve as

much bandwidth as required;however, this is constrained by the total available bandwidth of

the host [5].

CloudCoordinator: This abstract class extends a Cloud-based data center to the federation.

It is responsible for periodically monitoring the internal state of data center resources and

based on that it undertakes dynamic load-shredding decisions. Concrete implementation of

this component includes the specific sensors and the policy that should be followed during

load-shredding. Monitoring of data center resources is performed by the updateDatacenterO

method by sending queries Sensors. Service/Resource Discovery is realized in the

setDatacenterOabstract method that can be extendedfor implementing custom protocols and

mechanisms (multicast, broadcast, peer-to-peer) [5].

Cloudlet: This class models the Cloud-based application services (such as content delivery,

social networking, and business workflow). CloudSim orchestrates the complexity of an

application in terms of its computational requirements. Every application service has a pre-

assigned instructionlength and data transfer (both pre and post fetches) overhead that it needs

to undertake duringits life cycle. This class can also be extended to support modeling of other

performance andcomposition metrics for applications such as transactions in database-

oriented applications [5].

CloudletScheduler: This abstract class is extended by the implementation of different

policiesthat determine the share of processing power among Cloudlets in a VM. There are

two 	types 	of 	provisioning 	policies 	are 	offered: 	space-shared

(C loudetSchedulerSpaceShared)andtime-shared (CloudletSchedulerTimeShared) [5].

M

Datacenter: This class models the core infrastructure-level services (hardware) that are

offered by Cloud providers. It encapsulates a set of compute hosts that caneither be

homogeneous or heterogeneous with respect to their hardware configurations (memory,cores,

capacity, and storage). Furthermore, every Datacenter component instantiates a

generalizedapplication provisioning component that implements a set of policies for

allocating bandwidth,memory, and storage devices to hosts and VMs [5].

DatacenterBroker or Cloud Broker: This class models a broker, which is responsible for

mediating negotiations between SaaS and Cloud providers; and such negotiations are driven

byQoS requirements. The broker acts on behalf of SaaS providers. The difference betweenthe

broker and the CloudCoordinator is that the former represents the customer (i.e. decisions

ofthese components are made in order to increase user-related performance metrics), whereas

thelatter acts on behalf of the data center, i.e. it tries to maximize the overall performance of

the datacenter, without considering the needs of specific customers [5].
, 	 r

DatacenterCharacteristics: This tclass contains configuration information of data center

resources [5].

Host: This class models a physical resource such as a compute or storage server. It 	"I?

encapsulates important information such as the amount of memory and storage, a list and

type of processing cores (to represent a multi-core machine), an allocation of policy, for

sharing the processing poweramong VMs, and policies for provisioning memory. hand

bandwidth to the VMs [5].

NetworkTopology: This class contains the information for inducing network behavior

(latencies)in the simulation [5].

RamProvisioner: This is an abstract class that represents the provisioning policy for

allocatingprimary memory (RAM) to the VMs. The execution and deployment of VM on a

host is feasibleonly if the RamProvisioner component approves that the host has the required

amount of freememory. The RamProvisionerSimple does not enforce any limitation on the

amount of memorythat a VM may request. However, if the request is beyond the available

memory capacity, then itis simply rejected [5].

27

SanStorage: This class models a storage area network that is commonly ambient in Cloud-

baseddata centers for storing large chunks of data. SanStorageimplements a simple interface

that can be used to simulate storage and retrieval of any amount of data, subject to the

availability of network bandwidth. Accessing files in a SAN at run-time incursadditional

delays for task unit execution; this is due to the additional latencies that are incurred

intransferring the data files through the data center internal network [5].

Sensor: This interface must be implemented to instantiate a sensor component that can

beused by a CloudCoordinator for monitoring specific performance parameters (energy-

consumption,resource utilization). CloudCoordinator utilizes the dynamic performance

informationfor undertaking load-balancing decisions. The methods defined by this interface

are: (i) set theminimum and maximum thresholds for performance parameter and (ii)

periodically update themeasurement [5].

Vm: This class models a VM, which is managed and hosted by a Cloud host component.

Every VM component has access to a component that stores the following characteristics

related to aVM: accessible memory, processor, storage size, and the VM's internal

provisioning policy that isextended from an abstract component called the CloudletScheduler

[51.

VmmAllocationPolicy: This abstract class represents a provisioning policy that a VM

Monitorutilizes for allocating VMs to hosts. The chief functionality of the

VmmAllocationPolicy is to selectthe available host in a data center that meets the memory,

storage, and availability requirement fora VM deployment [5].

VmScheduler: This is an abstract class implemented by a Host component that models the

policies(space-shared, time-shared) required for allocating processor cores to VMs. The

functionalities of this class can easily be overridden to accommodate application-specific

processor sharing policies [5].

28

CHAPTER 5
RESULTS

The simulation is done using CloudSim.

Each host is modeled to have one CPU core, with 8 GB RAM and 1 TB storage and 1000,

2000, 3000 MIPS which is randomly allocated. The virtual machines are been assigned CPU

utilization as 250, 500, 750, 1000 MIPS randomly. Virtual machines were created each

requires one CPU core with 128 RAM and 2 GB storage. Each virtual machine runs an

application with 150,000 MI ie 10 minutes of the execution on 250 MIPS CPU with 100%
utilization. In case of static threshold the lower utilization threshold is taken as1000 MIPS

(lowest CPU utilization of host) and higher utilization threshold to be 1500 MIPS (average
CPU utilization of host).

The simulation is done with varying the number of host from 50 to 300 hosts.

5.1. Evaluation of the Migration Policies using Threshold Policies

In this section we present the result of the evaluation of three different threshold policies
used in the different migration policies. The value of lower and upper utilization threshold

.N k.

for the static threshold policies is taken as 1000MIPS and 1500MIPS respectively. The value

of constants a and b used in the proposed threshold policy is taken as 0.33 and 0.67
respectively.

The three different threshold policies are:

1. Static Threshold Values
2. Dynamic threshold policy
3. Proposed threshold policy

The figure 5.1 shows the variation of migration count with the virtual machines. The

simulation is done taking 50 hosts. The MM policy using proposed threshold schemes gives

the lowest migration count. The MM policy using the given dynamic threshold gives the

highest migration count. The overall migration count increases as the virtual machine count

increases. There are various dips seen in the graph. It is due to the fact that as the number of

host is taken as 50, and different number of virtual machines are allocated to them, most of

which are not allocated as the specifications are not met. The lines in the graph are also close

by because the difference in the migration count is less (around 100-250).

24000

21000

- 	M M+ST
18000

C —•— HPG+ST

0 15000 —+-- RC+ST =
° ,-, MM+DT

12000
 HPG+DT

9000 RC+DT /

~— M M+PT

000 --- HPG+PT

3

6

000
- RC+PT

I I I

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.1.: The variation of virtual machine migration count with virtual machine count taking 50 hosts

The figure 5.2 shows the variation of migration count with the virtual machines. The

simulation is done taking 100 hosts. The RC policy using dynamic threshold schemes gives

almost same result as RC policy using static threshold. The MM policy using the given DT

policy gives the highest migration count. The overall migration count increases as the virtual

machine count increases. The dip in the MM using DT policy around 450 virtual machine is

because in the PT policy the values of a and b constant are used for evaluation of the

threshold values which in turn depends upon the current utilization of the host and previous

threshold values, which is not in the case of DT and ST policy. Thus the graph shows almost

straight lines in case of the migration policy using DT threshold evaluation policy.

30

45000

42000

39000

36000 - 	MM+ST
33000

c 30000 -.- H PG+ST

-_- RC+ST UO 27000
24000

"
MM+DT 4~

2 21000
-_- HPG+DT

18000
RC+DT 15000

M M+PT 12000
9000 - -HPG+PT

6000
- - RC+PT

3000

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.2. : The variation of virtual machine migration count with virtual machine count taking 100 hosts

68000

63000

58000

53000 - 	MM+PT

Y 48000 •
C
0 43000 43000

 2 v

—s- - RC+PT

0 38000
— 	MM+DT

33000

°-° 28000 H PG+DT

23000 —•— RC-4-DT

18000 —~- M M+ST

13000 - - - HPG+ST
8000

RC+ST
3000

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.3. : The variation of virtual machine migration count with virtual machine count taking 150 hosts

r

31

The figure 5.3 shows the variation of migration count with the virtual machines. The

simulation is done taking 150 hosts. The MM policy using proposedthreshold schemes

performs best giving a lower migration count. The MM policy using the DT policy gives the

highest migration count. The overall migration count increases as the virtual machine count

increases. The graph also shows linear increase in the migration count with respect to the

virtual machine count as at 150 hosts all the virtual machines are allocated to some host or

the other and is getting the full specification as expected.

The figure 5.4 shows the variation of migration count with the virtual machines. The

simulation is done taking 200 hosts. The MM policy using proposed threshold schemes

performs best giving a lower migration count. The RCpolicy using the proposed threshold

gives the highest migration count. The sudden increase in the migration count for the MM

using ST policy is because the host utilization varies as the number of virtual machines

allocated to it increases, but in the ST policy the threshold values are given as constant, thus

increasing the migration of virtual machines.

69000

64000

59000

54000 - MM+DT

49000 —•— RC+DT
44000

—~ H PG+PT
39000

34000 0 —~ RC+PT

29000 —~ H PG+DT

24000 —~ MM+PT

19000 T HPG+ST

14000
RC+ST

9000

4000
- MM+ST

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.4. : The variation of virtual machine migration count with virtual machine count taking 200 hosts

32

69000

64000

59000

54000 —=— MM+DT

49000 —=— HPG+DT

U
44000

—a-- RC+PT
39000

0 ;r 34000
—T— RC+ST

~o
2 29000 —*= — HPG+PT

24000 —+ — MM+PT

19000

14000

--+- MM+ST

H PG+ST
9000

4000
RC+DT

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.5. : The variation of virtual machine migration count with virtual machine count

The figure 5.5 shows the variation of migration count with the virtual machines. The

simulation is done taking 250 hosts. The MM policy using proposed threshold schemes gives

similar result to the HPG policy using proposed threshold. The RCpolicy using the static

threshold gives the highest migration count. The graph is linear as all the host is 250 most of

the virtual machines are allocated. There is very less difference seen in some of the lines.

This is because the difference is insignificant, that is a difference of maximum 500 is there

which is not visible in comparison to the higher values of the migration count.

The figure 5.6 shows the variation of migration count with the virtual machines. The

simulation is done taking 300 hosts. The MM policy using proposed threshold schemes

performs best. The MM policy using the ST gives the highest migration count. The result is

almost similar to the previous graph.

33

68000

63000

58000

53000 MM+DT

48000 T HPG+DT C
43000 0 RC+ST

C 38000

+~ 33000
=~ MM+ST

°–° 28000 -- HPG+PT

23000 –~ MM+PT

18000

13000
+— RC+DT

H PG+ST
8000

• -- - RCG+PT
3000

50 	100 	150 	200 	250 	300 	350 	400 	450 	500

Virtual Machines

Figure 5.6. : The variation of virtual machine migration count with virtual machine count taking 300 hosts

In real time application were there are large number of host and virtual machines the

dynamic threshold policy can be used. The static threshold policy gives large number of

migration count virtual machines in comparison to the dynamic threshold policy. For smaller

number of host and large number virtual machines the migration count of virtual machine

decreases because of the fact that all the virtual machines can't be allocated to the host as

host specification does not support them

5.2. Evaluation of the Migration Policies using Proposed Threshold

Policy

In this section the result of the evaluation done for the different migration policies using
dynamic threshold policy is shown.

The different migration policies are:

1. Modified Roulette Wheel Selection Policy

2. Minimization of Migration Policy

3. Highest Potential Growth Policy

34

4. 	Random Choice Policy

The figure 5.7, gives the variation of different migration policies using proposed threshold

scheme for 50 hosts. The graph shows that there is very slight distinction between the

migration policies. The difference is in the order of 100 which are not clearly visible as the

migration count is in the order of 10000. There are various dips seen in the graph. It is due to

the fact that taking 50 hosts many of the virtual machines are not allocated as the

specifications are not met.

24000

22000

20000
C

0
18000 	 --.-- MRWS+PT

0
—.— M M+PT

16000
—s— HPG+PT

14000 	 RC+PT

12000

10000

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.7. : The variation of virtual machine migration count with virtual machine count taking 50 hosts

The figure 5.8, gives the variation of different migration policies using proposed threshold

scheme for 100 hosts. The graph is linear till 300 virtual machines. After that the graph is

horizontal with a dip. It is due to the reason that for 100 hosts 300 virtual machines can be

assigned. As the number of virtual machines increases, they are not allocated to the hosts. A

dip is the exhaustion limit of the 100 hosts.

35

42000

37000

= 32000 0
C - MRWS+PT

27000 	 —w— MM+PT m
on

—+— HPG+PT
22000

—r— RC+PT

17000

12000

50 100 150 200 250 300 350 400 450 500

Virtual Machine

Figure 5.8. : The variation of virtual machine migration count with virtual machine count taking 100 hosts

47000

43000

39000

35000

3 31000 o

U 27000 MM+PT

23000 —•— HPG+PT

2 19000 --a— RC+PT

15000 —n— MRWS+PT

11000

7000

3000

50 	100 	150 	200 	250 	300 	350 	400 	450 	500

Virtual Machines

Figure 5.9. : The variation of virtual machine migration count with virtual machine count taking 150 hosts

36

The figure 5.9, gives the variation of different migration policies using proposed threshold

scheme for 150 hosts. The graph shows that MRWS performs best and HPG gives the worst

performance. The graph follows linear path. All the virtual machines are fully allocated to the

hosts. The difference is significant between the HPG and the rest of the policies.

60000

55000

50000

45000
H
4-

= 40000
U 0

0 35000 	
' MRWS+PT

0- 	 —■— M M+PT co oa 30000
--- HPG+PT

25000
—X— RC+PT

20000

15000

10000

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.10.: The variation of virtual machine migration count with virtual machine count taking 200 hosts

The figure 5.10, gives the variation of different migration policies using proposed threshold

scheme for 200 hosts. The graph shows that there very slight distinction between the

migration policies that is of the order of 100 which is negligible in comparison to the

migration count which is in the order of 1000.

The figure 5.11, gives the variation of different migration policies using proposed threshold

scheme for 250 hosts. The graph shows that there very slight distinction between the

migration policies which is similar to the previous graph.

70000

65000

60000

55000

50000
c
0 45000
V

	

C_ 40000 	 MRWS+PT
0
20

	

	 —■--- MM+PT 35000 as
- - HPG+PT 30000

	

25000 	 RC+PT

20000

15000

10000

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.11. The variation of virtual machine migration count with virtual machine count taking 250 hosts

66000
61000
56000
51000

ZI 46000
6 41000

	

C 36000 	 MRWS+PT

	

31000 	 —.--- M M+PT

	

26000 	 —_— HPG+PT

	

21000 	 — RCG+PT
15000
11000

6000
1000

50 100 150 200 250 300 350 400 450 500

Virtual Machines

Figure 5.12. The variation of virtual machine migration count with virtual machine count taking 300 hosts

38

The figure 5.12, gives the variation of different migration policies using proposed threshold
scheme for 300 hosts. The graph shows that there is very distinction between the migration

policies. The graph is similar to the previous 2 graphs, thus showing the results are

consistent.

As shown in the figures 5.7- 5.12, it is found that as the number of host increases, there is a

decrease in the migration count of the virtual machine in the Modified Roulette Wheel
Selection policy. There is no significant difference in the migration count of the migration

policies. But in the real time applications where there are number of large number of hosts
and the virtual machines, the difference in the migration count would be observed. As shown

in the figures as number of host increases a difference is noticed. It is also clear that for

smaller number of host and large number virtual machines the migration count of virtual
machine decreases. It is because of the fact that all the virtual machines can't be allocated to

the host as host specification does not support them.

5.3. Evaluation of the Proposed Threshold Policy

The proposed threshold scheme takes into account the previous threshold values and the

current utilization of the host. The initial value of the lower and upper threshold values is
taken as a and b times the initial host utilization. In this section the variation of the migration

count for virtual machines with respect to the constants (a) is discussed. The simulation is
done taking 100 host and 500 virtual machines. The sum of a and b is 1. Thus the value b is

depended upon the value of a.

The figure 5.13. shows the variation of lower and upper utilization threshold averaged over

100 hosts with the a values.The value of a varies from 0 to 0.5. The value of a cannot be

greater than 0.5 because in that case the value of lower utilization threshold would be greater

than upper utilization threshold, which is not possible. As seen from the graph the average
value of utilization thresholds is very low initially. It is because of the fact that at the start of

the simulation most of the virtual machines are not allocated to the host. This average value

changes from around 10 MIPS to a maximum 220 MIPS. As seen from the graph, the

39

maximum value of utilization is around 0.3 a value. The difference between the lower and

upper threshold values is also greater is case of 0.3. The higher difference indicates more

probability of host utilization to lie in this range, thus decreasing the virtual machine

migration count

250

0

0 	200
I-
0)
eo

150
Ci LowerUtilThres (initial)

=

	

 100 	
o UpperUtilThres (initial)

0) 0 LowerUtilThres (final)

	

50 	
o UpperUtilThres (final)

C
;r

M
0

0 	0.1 	0.2 	0.3 	0.4 	0.5

a values

Figure 5.13. : The variation of utilization threshold averaged over 100 hosts with the a values

40

CHAPTER 6
CONCLUSION

Cloud Computing is fast spreading technologies. It is helpful in providing a large number of

services of the user. User can share data and information and can retrieve them. The user can

also use the application hosted on various datacenter. There are large numbers of datacenter

which are distributed geographically. These datacenter consumes large amount of energy

which need to be reduced. As decreasing the energy consumption will not only save the

energy but also reduce the cost due to energy consumption. There are large numbers of hosts

and different virtual machines are allocated to these host. The number of host whose

utilization is below a given a threshold level can be shut down and the virtual machines on

that host can be switched to other host.

In this dissertation, cloud computing is discussed including various types of cloud and

different deployment methods. The different migration policy along with the dynamic

threshold evaluation scheme is discussed in detail. The modification of Roulette Wheel

Selection policy for virtual machine migration is suggested. A dynamic threshold evaluation

scheme for the determining the threshold is suggested. The CloudSim, the simulation

environment for the cloud is discussed in detail.

The dissertation gives the performance evaluation in terms of migration count of virtual

machines. The evaluation is done for the three migration policy using the static threshold and

dynamic threshold policies. The result indicates that the migration policy performs better in

case of the proposed dynamic threshold evaluation policy and the migration policies give

worst performance incase of static threshold values. The static threshold values cannot be

used in real time scenarios where the workload changes.

The suggested migration policy is compared with the given migration policies using the

proposed dynamic threshold policy. The results indicated that the performance is better for

the proposed migration policy, although the difference is very less. The results are consistent

with varying number of hosts. Thus for larger number of hosts the proposed migration

41

scheme gives better results in comparison to the other migration policies using proposed

dynamic threshold policy.

The evaluation of the proposed dynamic threshold policy is done. The variation of lower and

upper utilization threshold averaged over hosts with the a values, indicates that the possible

values of a can lies between 0 and 0.5. The difference in the threshold values indicates that

the optimal a value is around 0.3.

6.1. Suggestion for future work

1. The future works is to use the migration list generated to effectively migrate the

virtual machine to different host and to minimize the energy consumption

2. The allotment of the virtual machines to the host can be modified so that after the

allotment the host utilization is between the two threshold values.

3. The simulation was done with host having one CPU core. The simulation has to be

done on multi-core host as well.

42

REFERENCES

[1]. Gowrigolla B., Sivaji, S., Masillamani M.R., "Design and auditing of Cloud

computing security," Proc. Information and Automation for Sustainability (ICIAFs),

20105th International Conference, Dec. 2010, pp.292-297.

[2]. Anton Beloglazov, JemalAbawajy, and RajkumarBuyya, "Energy-Aware Resource

Allocation Heuristics for Efficient Management of Data Centers for Cloud

Computing", The International Journal of Grid Computing and eScience, Future

Generation Computer Systems (FGCS), , Apr 2011, vol. 28, no. 5, pp. 755-768.

[3]. Ahmed, M.; Yang Xiang; Ali, S., "Above the Trust and Security in Cloud

Computing: A Notion Towards Innovation," Proc. Embedded and Ubiquitous

Computing (EUC), 2010 IEEE/IFIP 8th International Conference, Dec 2010, pp. 723-%
730.

[4]. Almulla, S.A., Chan YeobYeun, "Cloud computing security management," Proc.

Engineering Systems Management and Its Applications (ICESMA), 2010 Second

International Conference,Apr 2010, pp.1-7.

[5]. Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose and

RajkumarBuyya, "CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms", Wiley

Online Library, Aug 2010, vol. 41, no.1, pp. 23- 50.

[6]. RichaSinha, NidhiPurohit and HiteshiDiwanji, "Power Aware Live Migration for

Data Centers in Cloud using Dynamic Threshold", International Journal of Computer

Technology and Applications, Dec 2011, vol. 2, no. 6, pp. 2041-2046.

[7]. S. Rajasekaran, G.A. VijayalakshmiPai, "Neural Network, Fuzzy Logic, and Genetic

Algorithms", PHI Learning pvt. ltd., May 2010

43

18]. 	Xiaobo Fan, Wolf-Dietrich Weber , Luiz Andre Barroso. "Power provisioning for a

warehouse-sized computer". In Proc. of the 34th ACM International Symposium. On

Computer Architecture, May 2007, vol. 35, no. 2, pp. 13-23.

[9]. 	Akshat Verma, Puneet Ahuja, Anindya Neogi "pMapper: power and migration cost

aware application placement in virtualized systems". In Proc. of the 9th

ACM/IFIP/USENIX International Conference on Middleware 2008, pp. 243-264.

[10:]. Elisa Bertino, Federica Paci, Rodolfo Ferrini, Ning Shang, "Privacy-preserving

Digital Identity Management for Cloud Computing". IEEE Data Engineering

Bulletin, Mar 2009, vol. 32, no. 1, pp. 21-27.

[1 1]. Buyya, R.; Chee Shin Yeo; Venugopal, S., "Market-Oriented Cloud Computing:

Vision, Hype, and Reality for Delivering IT Services as Computing Utilities," High

Performance Computing and Communications, 2008. HPCC '08. 10th IEEE

International 	Conference, 	Sep 	2008 	pp.5-13.

44

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

