INTEL 8086 BASED CONTROLLER FOR CSTR CONTROL

A DISSERTATION

Submitted in partial fulfilment of the requirements for the award of the Degree of MASTER OF ENGINEERING in ELECTRICAL ENGINEERING (Systems Engineering and Operation Research)

By

RAKESH BHATNAGAR

DEPARTMENT OF ELECTRICAL ENGINEERING UNIVERSITY OF ROORKEE ROORKEE-247 667 (INDIA) February, 1987 I hereby, certify that the work which is being presented in the dissertation entitled, 'INTEL 8086 BASED CONTROLLER FOR CSTR CONTROL' in partial fulfilment of the requirements for the award of the degree of MASTER OF ENGINEERING in ELECTRICAL ENGINEERING with specialization in SYSTEMS ENGINEERING AND OPERATION RESEARCH, submitted in the Electrical Engineering Department, University of Roorkee, Roorkee [India], is an authentic record of my own work carried out for a period of about six months from August, 1986 to February, 1987, under the supervision of Sh. M.K.Vasantha, Reader, Electrical Engineering Department, University of Roorkee and Sh. B.Mohanty, Lecturer, Chemical Engineering Department, University of Roorkee, Roorkee, India.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

Dated 2/3/87

Rohatnagar [RAKESH BHATNAGAR]

This is to certify that the above statement made by the candidate is correct to the best of our knowledge. M (M.K. VASANTHA] M (M.K. VASANTHA] M (B. MOHANTY] READER

ELEÇTRICAL ENGINEERING DEPARTMENT UNIVERSITY OF ROORKEE ROORKEE-247 667, INDIA ROOR

LECTURER CHEMICAL ENGINEERING DEPARTMENT UNIVERSITY OF ROORKEE ROORKEE-247 667, INDIA

ACKNOWLEDGEMENT

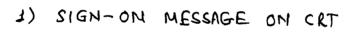
I wish to express my deep sense of gratitude to my guides, Sh. M.K.Vasantha, Reader, Electrical Engineering Department, University of Roorkee, Roorkee and Sh. B. Mohanty, Lecturer, Chemical Engineering Department, University of Roorkee, Roorkee, without whose co-operation, inspiration and guidance it would have been impossible to complete the thesis.

I would fail in my duty if I do not thank Mr. A.Garg, Proprieter, M/S Electrotech, Roorkee for helping me in getting various units of my thesis developed.

Thanks are due to Sh. N.Aterkar, M/S. Soilex Consultants Pvt.Ltd., Roorkee for having helped me out of number of difficulties.

I would like to greatfully acknowledge the direct or indirect part played by Prof. P.Mukhopaddhya (H.O.D.), Prof. A.K.Pant and Prof. H.K.Verma, Electrical Engineering Department, University of Roorkee, Roorkee in seeing through the thesis completed.

The completion of thesis with all the help available would not have been possible without the co-operation and advise of my close friends, Mr. A.Bhatia, Mr. G.C.Agnihotri, Mr. V.Pande, Mr. P.Garg and Mr. C.Raje, who have been associated with the thesis work right from the budding to the completion stage. The up and Computer lab. staff, specially Mr. K.Singh, and Mr. R.Singh, who have played a role of prime importance in getting my thesis completed, also deserve a special word of thanks from me.


Thanks are also due to Mr. D.C.Bhardwaj, E and C.Epgg. Department for his effecient and time bound typing of the thesis.

In the end, I am greatful to all whose name I have missed and who have played a part in seeing through the thesis to the final phase.

magar

.

.

ABSTRACT

In the present dissertation, an effort has been made to control the temperature and level of continuously flowing water in a Continuous Stirred Tank Reactor (CSTR). A CSTR and a digital controller using 8086 µp have been developed for implementing a Proportional-Integral-Derivative (PID) control scheme, through software, to control the temperature. A level transducer, using capacitance-to-frequency conversion principle and a valVe, coupled with a stepper motor, for controlling the level have also been developed.

For controlling the temperature, a 1- ϕ half-controlled SCR bridge has been fabricated. The firing circuit required for the bridge and an A/D converter module have also been developed for the above purpose. A precise control of temperature in the range of $\pm 0.25^{\circ}$ C has been observed.

A floating point arithmetic has been developed which can be used for accurate calculations by PID control scheme. Various other routines, necessary for level control, have also been developed, but these are not used for the present work.

The man- m/c communication has been achieved through a CRT. Some functional commands have been developed for this purpose.

CONTENTS

CERTIFICATE

ACKNOWLEDGEMENT

ABSTRACT

CHA	PTER	PAGE NO
1.	INTRODUCTION	••• 1
2.	SYSTEM DESCRIPTION	••• 5
	2.1 Experimental Set-Up	••• 5
	2.2 Salient Features of VMC-86/3	••• 7
	2.3 System Assembly	23
3.	TRANSDUCERS AND SIGNAL CONDITIONING	
	3.1 Temperature Transducer and Signal Conditioning	••• 24
	3.2 Level Transducer and Signal Conditioning	25
4.	HARDWARE DEVELOPMENTS	29
	4.1 SCR Firing Circuit	••• 29
	4.2 24-Channel A/D Scanner Card	••• 33
	4.3 Stepper Motor Driving Circuit	••• 38
5.	DESIGN OF CONTROLLER	••• 43
	5.1 Control Schemes	••• 43
	5.2 Software Implementation of PID Control Scheme	••• 47
	5.3 Estimation of Control Parameters	••• 52

contd...

CHA	PTER	PAGE NO
6.	SOFTWARE DEVELOPMENT	••• 55
	6.1 Main Program	••• 56
	6.2 Serial Communication and Functional Commands	••• 57
	6.3 Floating-Point Arithmetic	••• 63
	6.4 Routines for Various Interfaces	66
	6.5 Temperature Monitoring and other routines.	••• 72
	PROGRAM LISTING	••• 78
7.	EXPERIMENTATION AND RESULTS	133
	7.1 Experiment Procedure	133
	7.2 Results and Discussions	•••136
8.	CONCLUSION AND SUGGESTIONS FOR FURTHER DEVELOPMENTS	•••137
	REFERENCES	
	PHOTOGRAPHS	
	APPENDIX - A	•••139
	APPENDIX - B	•••148
	APPENDIX - C	•••157
·	APPENDIX - D	

.

.

,

.

.

. ·

.

CHAPTER - I

INTRODUCTION

In Chemical Industries, Continuous Stirred Tank Reactor (CSTR) with heating system plays a major role in carrying out general purpose reactions at elevated temperatures. The controlling factors that effect the performance of a CSTR include level of the fluid in the tank, flow rate at the inlet and outlet of the tank and temperature of the fluid in the tank. Out of all these temperature is the most important parameter as it controls the reaction rate of a raction. Thus it should be controlled with a greater accuracy. The efficiency of CSTR, an important building block of Chemical Industries can be improved to a greater degree by on-line controlling the input and output variables. This, in turn, will help in maintaining the product quality and reducing the production cost.

There are several control schemes which have been developed for the process control. For the present work, PID control scheme has been used. In the past days, analog controllers were very popular for the process control. Analog controllers consist of mainly the operational amplifiers which are used for building multiplier, integrator, differentiator and summer blocks for the PID scheme. But now a days, digital controllers, based on Microprocessors are successfully replacing the analog controllers. This yields certain advantages, as summarised below:

- 1) A digital controller is usually cheaper than its analog counterpart.
- 3) It is smaller and lighter than its analog counterpart and the power consumption is also very low.
- 4) It offers great reliability since no. of components in the system noise are successfully overcome.
- 5) The importance of up based control systems becomes more distinct when more no. of variables and control loops are dealt with.

All the considerations as mentioned above led to the present investigation with following objectives:

- To study the VMC-86/3 Microcomputer kit, m.fd by Vinytics Peripherals Pvt.Ltd., Ghaziabad, along with 8259 interrupt controller for the control purpose.
- 2) To develop a fast digital controller with the help of a 8086 up.
- 3) To develop support devices like A/D converter, SCR and based single phase converter, level transducer stepper motor controlled control value for level control.

The photographs of the complete system and individual modules along with the C-F converter and SCR firing circuit waveforms are added after the last chapter.

- 4) To develop software for support devices, floating point arithmetic, PID algorithm and serial communication through CRT.
- 5) To test the working of above hardware and software developments by controlling temperature of a CSTR.

The report of the work done in this dissertation is divided into eight chapters. After having given a brief introduction of objectives of the work to be done, i.e., control of CSTR, using PID control scheme in Chapter-I, a detailed description of the system is included in Chapter-II. Chapter -III deals with the description of temperature transducer and design and fabrication of level transducer. The development of SCR firing circuit and A/D converter card form an integral part of the chapter -IV, which ends with a description of stepper motor driver card. m.fd by Vinytics Peripherals Pvt.Ltd., Ghaziabad. A method of estimation of PID control parameters is given in Chapter -V. which also includes the description of various control schemes and the software implementation of PID control scheme. Software development along with flow charts and program listing is described in Chapter VI. The results obtained from the experimentation conducted on the practical system are discussed in Chapter VII, and are reported in Appendix-A. Conclusions and recommendations for further developments emerged out of the present work are given in Chapter - VIII.

CHAPTER II

SYSTEM DESCRIPTION

This chapter describes the experimental set up for the process to be controlled and the details of micro computer kit used to control the process.

2.1 EXPERIMENTAL SET-UP

The experimental set up has been depicted schematically in fig. 2.1-1, as shown in photograph no.2 It consists of an overhead tank (1) having a 4 inch overflow line (2) to maintain constant head, a water outlet (13), regulating values (3,4), a solewoid valve (5), mechanical stirrer (6), CSTR (7), two number of main heaters (8) with 1.3 KW capacity each, an auxiliary heater (9) with a capacity of 1.3 KW, temperature senser (copper constantan thermocouple, m.f.d M/S Thermoelectrics, Neitherlands)(10), capacitive level senser (11) and stepper motor controlled value (12).

2.1.1 CSTR

Continuous Stirred Tank heater (CSTR) is a vertical shell as shown in fig.2.1-1 . The I.D. and height of the cylinder are 21 cm. and 50 cm. respectively. The CSTR is fitted with a mechanical stirres (6) to homogenize the liquid continuously by stirring it. A copper constantan thermocouple (10) is used to measure the temperature of CSTR. A specially developed capacitive level transducer with a precision C-F converter is used to monitor the liquid level inside the CSTR. A 4-KW heater with three immersion heating elements, each having 1.33 KW capacity is used for heating the contents of CSTR. Out of these 3 heaters, 2 heaters are used to deliver 80 percent of the energy required. The third heater is used through a μp controlled SCR converter bridge (sec. 4.1) for control purpose.

Fig. 2.1-1 shows the relative positions of inlet pipe, thermocouple, level senser, heaters, stirre inside the CSTR. The outlet of the CSTR is connected with a stepper motor controlled value. The outlet flow rate of the CSTR can be controlled by this value directly by µp. The level of the CSTR can be controlled by controlling the outflow.

2.1.2 OVERHEAD TANK

It consists of a rectangular mild steel tank, having a 4-inch overflow line, draining the water if its level in the tank exceeds a given height. The tank is painted with primer followed by an enamel paint. This eliminated any possibility of the tank getting rusted and therby making the valves choke and sensors dirty. A strainer is also provided just at the month of the exit pipe to prevent any slush getting into the system.

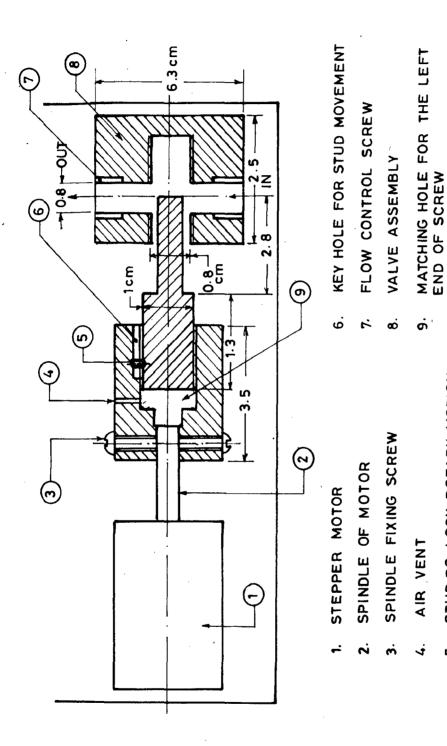


FIG. 2.1-3 CONTROL VALVE WITH STEPPER MOTOR

-3 CONTROL VALVE WITH STERDER MOTOR

STUD TO LOCK ROTARY MOTION

ശ്

2.1.3 STEPPER MOTOR CONTROLLED VALVE

Fig.2.1-3 shows the details of the control valve developed for the present work. The control valve is operated with the help of a stepper motor which precisely controls the linear movement of the flow control screw (7). The stepper motor is activated through the up and the pulse trains are issued to rotate it upto a predetermined angle. The rotary motion thus created is transferred to the flow control screw through (5,6,9) which in turn moves in or out in the flow area to increase \mathbf{r} decrease resistance in the flow path as required. As amount of flow is equal to head across the valve divided by resistance, the movement of screw controls the flow rate.

The present value is designed to operate at very low pressure and hence no sealing technique is used to make it leak proof. Under present circumstances the value works excellently with very little leakage.

2.2 SALIENT FEATURES OF VMC-86/3

VMC-86/3 is a single board Microprocessor Training/ Development Kit manufactured by the company-Vinytics and is configured around the Intel's 16 bit Microprocessor 8086 in maximum mode. The kit can be used for process control and to develop software for the 8086 systems. The co-processor 8087 and I/O processor 8089 can also be added on the board. 8086 CPU can also be replaced by 8088 CPU.

It can be communicated with the kit through a key board having 28 keys and eight seven segment displays. The kit also has the capacity of interacting with teletypewriter, CRT terminal and Audio Cassette Recorder.

2.2.1 SYSTEM SPECIFICATIONS

PROCESSORS:

Central Processor	: 8086, 16 bit up operating in maximum mode or 8088, 8 bit up. Both processors can be operated at a max. clock frequency of 15 MHz.	
Co-Processor	: 8087 Numeric data processor	
I/O Processor	: 8089 I/O Processor	
MEMORY :		
EPROM	32 K bytes loaded with monitor, expandable to 128 K bytes using four 27256.	
RAM	: 16 K bytes of CMOS RAM expandable to 128 K bytes using sixteen 6264.	
INPUT/OUTPUT:		
Parallel	: 72 lines using three 8255.	
Serial	 1) 20 mA Current Loop 2) EIA RS-232-C (Main) 3) EIA RS-232-C (Aux.) 4) Audio Cassette Recorder Interface. 	

Interrupt (256 Vectored)	:	8 different level interrupts through 8259 A
Timer/Counter	:	Three 16 bit Timer/Counter through 8253.
Other Interfaces	:	EPROM Programmer for 2732/2732A/ .2764/27128/27256 using specific personality module for each of them.
Keyboard and Display	:	28 keys and 8 seven segment . display.
Bus	:	All address, data and control signals (TTL compatible) available at edge connecter as per Multibus. The kit has its own Resident Bus.
Power Supply	•	$5V \pm 5 \%$, 2.5 A for kit and \pm 12V, 400 mA for TTY/CRT.

2.2.2 HARDWARE DESCRIPTION

1) <u>CPU (8086 A-4)</u>:

8086 is a 16 bit µp having 16 data lines and 20 address lines. The lower 16 address lines are multiplexed with 16 data lines. The address lines are latched by using 74LS 373 as shown in Appendix D. The 8086 is used in maximum mode (MN/ MX input held logically low). The processor is designed to operate with the 8089 I/O processor and other processors in multiprocessing and distributed processing systems.

The INTR and TEST inputs to 8086 are pulled low. TEST is used by the coprocessor.

2) <u>CO-PROCESSOR 8087</u>

An 8087 Co-processor obtains its instructions from another processor, called a host. The co-processor monitors instructions fetched by the host and recognizes certain of these as its own, and executes them . A co-processor, in effect, extends the instruction set of its host computer.

3) <u>I/O PROCESSOR 8089</u> :

The 8086 is designed to be used with the 8089 in high performance I/O applications. The 8089 conceptually resembles a up with two DMA channels and an instruction set specifically tailored for I/O operations, Unlike simple DMA controllers, the 8089 can service I/O devices directly, removing this task from the CPU. In addition, it can transfer data on its own bus or on the system bus, can match 8-bit or 16-bit peripherals to 8-bit or 16-bit buses, and can transfer data from memory to memory or from I/O device to I/O device.

4) <u>CLOCK GENERATOR (8284)</u>

The clock generator circuit is an Intel 8284 clock generator/driver. The circuit requires a crystal input which operates at a fundamental frequency of 14.7456 MHz. The clock generator/driver divides the crystal frequency by three to produce a 4.95 MHz CLK signal. Additionally, it gives a divide by two output of the 4.95 MHz CLK and is called PCLK (peripheral Clock), which is used by the various peripherals on the board. The system can operate either at 4.95 MHz or at 2.45 MHz. This is selected by a jumper connection on the board as shown below:

C Q4.9 MHz

B CLK

A 02.45 MHz.

The VMC 86/3 is supplied in 2.45 MHz configuration.

The clock generator/ driver provides two control signal outputs which are synchronized internally; RDY (ready) and RST (reset). RST is used to reset the VMC-86/3 to an initialized state and occurs when the RES input goes low (when power first is applied or when the system RESET key is pressed). The RDY2 input is made high and AEN2 input low so as to make READY output high.

5) BUS CONTROLLER 8288)

The 8288 is a Bus Controller which decodes status signals outputted by an 8089 or an 8086 in maximum mode. When these signals indicate that the processor is to run a bus cycle, the 8288 issues a bus command that identifies the bus cycle as memory read, memory write, I/O read, I/O write, etc. It also provides a signal that strobes the address into latches. The decoding is as follows:

s ₂	\$ ₁	ទី	Processor State	8288 Command
ð	0	0	Interrupt ` Acknowledge	INTA
0	0	1	Read I/O Port	IORC
0	l	0	Write I/O Port	IOWC
0	l	1.	Halt	None
l	0	0	Code Access	MRDC
1	0	l	Read Memory	MRDC
l	1	0	Write Memory	MWTC, AMWC
l	1	l	Passive	None

6) BUS ARBITER (8289) :

The 8289 is a Bus Arbitor that controls the access of a processor to multimaster system resources (typically memory) that is shared by two or more microprocessors (masters). Arbiters for each master may use one of the several priority resolving techniques to ensure that only one master drives the shared bus.

7) <u>MEMORY</u>:

The kit provides 32 K bytes of EPROM loaded with monitor and 16K bytes of CMOS RAM. The total onboard memory can be configured as follows:

EPROM - 16 K bytes using four 2732 32 K bytes using four 2764 64 K bytes using four 27128 128 K bytes using four 27256. RAM -128 K bytes using sixteen 6264.

95275	A A A A A A A A A A A A A A A A A A A
82172	Vec Pen AB AB AB AB AB AB AB AB AB AB AB AB AB
\$975	VC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ASETS	Vcc A8 A8 A9 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0

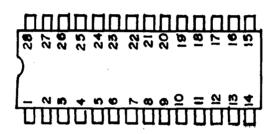


FIG. 2.2-I

A SETS	00000000000000000000000000000000000000	Gnd.
\$975	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Gnd.
82175	A A A A A A A A A A A A A A A A A A A	Gnd.
21296	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Gnd.

The system provides four 28 pin sockets for the EPROM area named as EPROM 0 to EPROM 3 and sixteen 28 pin sockets for the RAM area named as RAMO to RAM 15. EPROM 0 to EPROM 3 can be defined to have either of 2732/2764/27128/27256 and the RAM 0 to RAM 15 is defined for 6264. The selection is done by changing the jumper connections in the Block Box, for the EPROMS.

SELECTION OF MEMORY CHIPS:

The RAM area, i.e. RAM O to RAM 15 are defined for 6264 CMOS RAM. But the ROM area, i.e., EPROM O to EPROM 3 can be defined to have 2732/2764/27128/27256. All the signal points of the 28 pin sockets except pin no. 26 and 27 are same for a 2732, 2764, 27128 and 27256 chips, as shown in Fig. 2.2.1. These signal points are named as T26 and T27 in the circuit diagram shown in Appendix D. For selecting either of the above mentioned EPROMS, jumper selection is to be done for T26, T27, JM1, JM2 and ADCD, as shown in the circuit diagram.

The following table shows the jumper position for the different EPROMs.

	27256	27128	2764	2732
T27	A ₁₅	V _{cc}	V _{cc}	V _{cc}
T26	A ₁₄	A ₁₄	Vcc	V cc
JM2	-	A ₁₆	A ₁₆	A16
JML	~	-	A ₁₅	^A 15
ADC D	A ₁₆	A ₁₅	A ₁₄	^A 14

The EPROM sockets are named as EPROM 0 to EPROM 3. Socket 0 and Socket 1 are corresponding to the even bytes and socket 2 and socket 3 are corresponding to odd bytes. The monitor lies in sockets 1 and 3 in EPROM 27128.

The memory mapping of the various chips corresponding to sockets 0 to 3 is as follows:

		27256	27128	2764	2732
EPROM	0	EOO OO to FFFFE	F0000 to F7FFE	F8000 to FBFFE	FCOOO to FDFFE
EPROM	l	F0000 to FFFFE	F8000 to FFFFE	FCOOO to FFFFE	FEOOO to FFFFE
EPROM	2	EOOOl to EFFFF	F0001 to F7FFF	F8001 t ₀ FBFFF	FCOO1 to FDFFF
EPROM	3	F0001 to FFFFF	F8001 to FFFFF	FCOOl to FFFFF	FE OO1 to FFFFF

Thus, using 27128 in sockets 1 and 3 refers to an address F8000-FFFFF. Additionally, 2764 used in sockets 2 and 4 refers to the address F0000-F3FFFor F4000-F7FFF.

The memory sockets RAM 0 to RAM 7 are corresponding to even bytes and RAM 8 to RAM 15 are corresponding to odd bytes. The memory mapping of these are given below:

RAM 0 : 00000-03FFF	RAM 8 : 00001 - 03FFF
RAM 1 : 04000-07FFE	RAM 9 • 04001 - 07FFF
RAM 2 : 08000-0BFFE	RAM 10: 08001 - 08FFF
RAM 3 : OCOOO-OFFFE	RAM 11: OCOOL - OFFFF
RAM 4 : 10000-13FFE	RAM 12: 10001 - 13FFF
RAM 5 : 14000-17FFE	RAM 13: 14001 - 17FFF
RAM 6 : 18000-18FFE	RAM 14: 18001 - 18FFF
RAM 7 : 1COOO-1FFFE	RAM 15: 10001 - 1FFFF

Thus 6264 having used in sockets 0 and 8 refers to the memory area 00000-03FFF.

- 8) <u>I/O DEVICES</u> :
 - (a) <u>8279</u>

8279 is a general purpose programmable keyboard and display I/O interface device designed for use with the 8086 μ p. It provides a scanned interface to 28 contact key matrix and scanned displays. It has got 16 x 8 display RAM which can be loaded or interrogated by the CPU. When a key is pressed, its corresponding code is entered in the FIFO queue of 8279 and is read by the μ p. 8279 also refreshes the display RAM.

(b) 8255 :

8255 is a programmable peripheral interface (PPI) which basically acts as a general purpose I/O component

to interface peripheral equipments to the system bus. It has got three input/output ports of 8 lines each (Port A, Port B and Port C). Port C can be divided into two ports of 4 lines each named as Port C upper and Port C lower. Any input/output combination of port A, port B, port C upper and port C lower can be defined using the appropriate software commands. Nine I/O ports are provided by using three 8255 chips. The ports lines are brought out at connectors J1, J2, and J 3, the details of which are given in Appendix B. A word may be inputted or outputted using the same ports of 8255-II simultaneously.

(c) <u>8253</u>:

This chip is a programmable interval timer/counter and can be used for the generation of accurate time delays under software control. This chip has got three independent 16-bit counters each having a count rate of upto 2 MHz. The CLK, GATE and OUT signals of these timers are brought out at the J5 connector.

(d) <u>8251</u>:

This chip is a programmable communication interface and is used as a peripheral device. This device accepts data characters from the CPU in parallel form and then converts them into a continuous serial data stream for transmission. Simultaneously, it can receive serial data stream and converts them into

parallel data characters for the CPU. This chip will signal the CPU whenever it can accept a new character for transmission or whenever it has received a character for the CPU. The CPU can read the complete status of it at any time. In the kit, 8251 has been utilized for Main/Aux. RS-232-C interface and 20 mA current loop (i.e., for CRT/TTY interface).

(e) <u>8259</u>:

The 8259 is a device specifically designed for use in real time, interrupt driven µC systems. It manages eight levels of requests and has built in features for expandability to other 8259 s. It is programmed by system's software as an I/O peripheral. A selection of priority modes is available to the programmer, which can be changed or reconfigured dynamically at any time during the main program. The IRO-IR2 lines of 8259 have been used by the system itself for 8087 co-processor and 8089 I/O processor. IR3-IR7 lines have been buffered and are brought out on the multibus. The details of multibus are given in Appendix B.

9) <u>DISPLAY</u> :

The kit provides eight digits of seven segment display; four digits for displaying address of any location or name of any register, and the rest four for the contents of the memory location or register. All the eight digits of the display are in hexadecimal notation.

10) BUFFERS :

The address, data and control lines are buffered by using the ICs 74-LS-245 and 74-LS-240

and are made available to the user at the PCB edge connector in the MULTIBUS configuration. All these lines have been made bi-directional.

11) PORT ADDRESSES:

The port addresses of the various I/O devices used in VMC-86/3 kit are given below:

DEVICE NAME	PORT NAME	PORT ADDRESS
8255 - I	Port A	FFF8
,	Port B	FFFA
	Port C	FFFC
	Control Word	FFFE
8255 - II	Port A	FFF9
-	Port B	FFFB
	Port C	FFFD
	Control Word	FFFF ·
8255 -I II	Port A	FFEO
,	Port B	FFE2
	Port C	FFE4
	Control Word	FFE6
8279	Data Word	FFE8 or FFEC
	Command Word	FFEA or FFEE
8253	Counter O	FFD8
•	Counter 1	FFDA
	Counter 2	FFDC
	Control Word	FFDE

contd...

DEVICE NAME	PORT NAME	PORT ADDRESS
8251 (Main)	Data Word Command Word	FFFO or FFF4 FFF2 or FFF6
8251 (Aux.)	Data Word Command Word	FFDO or FFD4 FFD2 or FFD6
8259	Data word Command Word	FFC8 or FFCC FFCA or FFCE
8089	Channel 1 Channel 2	FFCO FFC1

2.1.3 EXPANSION THROUGH MULTIBUS

The multibus is a general purpose multiprocessing system bus. All the designs based on VMC-86/3 are to be developed around this standard bus.

The address, data and control lines of 8086 in VMC-86/3 are buffered and are made available at the PCB edge connector, as per the MULTIBUS STANDARD. The pin assignment of MULTIBUS is given in Appendix B.

The multibus signal lines are divided into following sections:

1. Initialization Signal Line

2. Address and Inhibit Lines

3. Bus Contention Resolution Lines

4. Information Transfer Protocol Lines

5. Asynchronous Interrupt Lines

6. Power Supply Lines.

These are described below:

1. INITIALIZATION SIGNAL LINE

INIT: The initial'ization signal resets the entire system to a predetermined state. **INIT** may be supplied by one of the bus masters or by external logic.

2. ADDRESS AND INHIBIT LINES:

(a) $\overline{MA} \ \overline{0} - \overline{MA} \ \overline{19}$: 20 address lines are used to transmit the address of a memory location or an I/O port to be accessed.

(b) BHEN : The least significant address line ADRØ and BHEN are used to specify that the 8-bit data will be transferred on the higher order 8 data lines or lower order 8 data lines. If the data transfer is l6bits, their combination enables data on all the 16 lines.

3. DATA LINES

<u>SD0</u> -SD15 : The 16 bidirectional data lines are used to exchange information with a memory location or I/O port. In 8 bit systems, only the lines SD0 - SD 7 are used.

4. BUS CONTENTION RESOLUTION LINES

(a) <u>BCLK</u>: The negative edge of the Bus clock is used to synchronize bus contention. <u>BCLK</u> is asynchronous with the CPU clock. <u>BCLK</u> may be slowed, stopped or single stepped during debugging. (b) <u>CCLK</u>: The constant clock provides a clock signal of constant unspecified frequency.

(c) BPRN : The Bus Priority In signal tells a bus magter that no higher priority device is requesting use of the system bus. BPRN is synchronized with BCLK. This signal is 'daisy chained' if serial priority arbiteration is used. When parallel priority arbiteration is used, a bus master generates BPRN.

(d) <u>BPRO</u>: This is Bus Priority Out signal. Like BPRN, BPRO is daisy chained when serial peiority arbiteration is used, <u>BPRO</u> is fed to the <u>BIRN</u> input of the next priority module. When using parallel priority arbiteration, a bus arbiter must provide this signal. <u>BRPO</u> is synchronized with <u>BCLK</u>.

(e) <u>BUSY</u>: The Bus Busy signal is applied by the current bus master to indicate that the system bus is in use. BUSY is used by other devices to determine whether or not they may acquire control of system bus. BUSY is synchronized with BCLK.

(f) <u>BREQ</u>: The Bus Request signal is used by devices to indicate that they wish to become bus master. <u>BREQ</u> is synchronized with <u>BCLK</u>; it is not bussed on the mother board.

(g) <u>CBRQ</u>: <u>CBRQ</u> is used by all potential bus masters to inform the current bus master that another master wishes to use the bus. If high, the current bus master

knows that no other device is requesting the bus, and therefore the present bus master is to retain the bus.

5. INFORMATION TRANSFER PROTOCOL LINES

A bus master that has control of the systm bus generates all data transfer control signals. All address signals (and data signal, when a write is to occur) must be stable at least 50 ns prior to the transfer control signal pulse and must remain valid for at least 50 ns after control signal pulse is removed.

Information transfer protocol lines are not synchronous with BCLK.

(a) SMRD: The memory Read Control indicates that the address of a Memory location has been placed on the address lines and that the contents of the address location are to be placed on data lines.
(b) SMWR: The Memory Write control indicates that the

address of the memory location has been placed on the address lines and the data to be written into the addressed memory location is going to be placed on the system data bus.

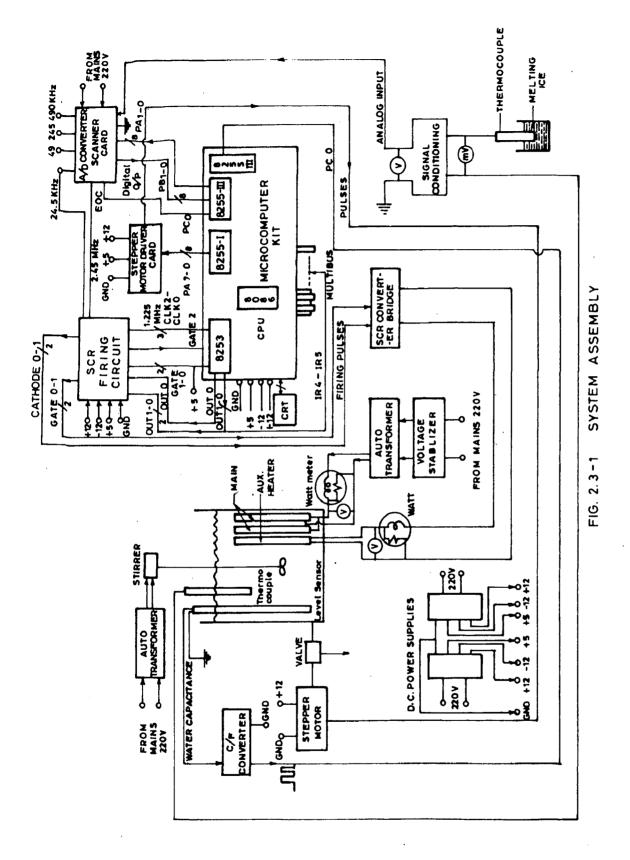
(c) <u>SIRD</u>: The I/O Read Control indicates that the address of an input port has been placed on the system address lines and the data at that input port is to be placed on the data lines. (d) \underline{SIWR} : The I/O write control indicates that the address of an O/P port has been placed on the system address lines and the data is going to be outputted to that port.

(e) <u>XACK</u>: The Transfer Acknowledge signal is used in handshaking by the selected bus slave to acknowledge to the bus master in response to the transfer control signal.

6. ASYNCHRONOUS INTERRUPT LINES

(a) <u>INT3 - INT7</u> : These priority interrupt request lines are used with parallel interrupt resolution circuitary.

(b) <u>INTA</u>: The interrupt acknowledge signal is used by a bus master to acknowledge the interrupt signal placed by the external logic.


7. POWER SUPPLY LINES

Various regulated power supply lines are provided on the multibus. These include GND, +5V, -5V, +12V and -12V.

The circuit dig in Appendix D shows how these signals are brought at the PCB edge connector. The pin assignment of bus signals on MULTIBUS Board connector is given in Appendix B.

2.3 SYSTEM ASSEMBLY

The µp, process, instruments and transducers are assembled as shown in Fig. 2.3.1.

· TEWLY

20 TENEY

CHAPTER-III

TRANSDUCERS AND SIGNAL CONDITIONING

A transducer converts the variable to be monitored into a suitable electrical signal that may be an equivalent voltage, frequency etc. This O/P signal is suitably conditioned before it is fed to up.

Temperature and level transducers used for the present work, with signal conditioning are discussed in this chapter.

3.1 TEMPERATURE TRANSDUCER AND SIGNAL CONDITIONING

A Copper Constantan Thermocouple, manufactured by M/S Thermoelectrics, Netherlands is used. Two thermocouples are used to measure the temperature of the CSTR. One of the thermocouples is put in cold junction (melting ice) and other at the CSTR as hot junction to mreaure the actual temperature of process fluid.

As the temperature -emf. relationship of the thermocouple is non-linear, it is divided into six linear zones for the temperature range 0° to 70° C. The temperature-emf relationships for these zones are given below:

Temp. = 27.613402 x emf. + 0.759278, for 1.188 \geq emf ($\mu\nu$)

= 24.27180 x emf. + 1.165120, for 1.188 < emf ≤ 1.600
= 23.809523 x emf. + 1.904764, for 1.600 < emf ≤ 2.020
= 23.364486 x emf. + 2.803738, for 2.020 < emf ≤ 2.448
= 22.831050 x emf. + 4.109589, for 2.448 < emf ≤ 2.886
= 22.624434 x emf. + 4.70542, for 2.886 < emf ≤ 3.328</pre>

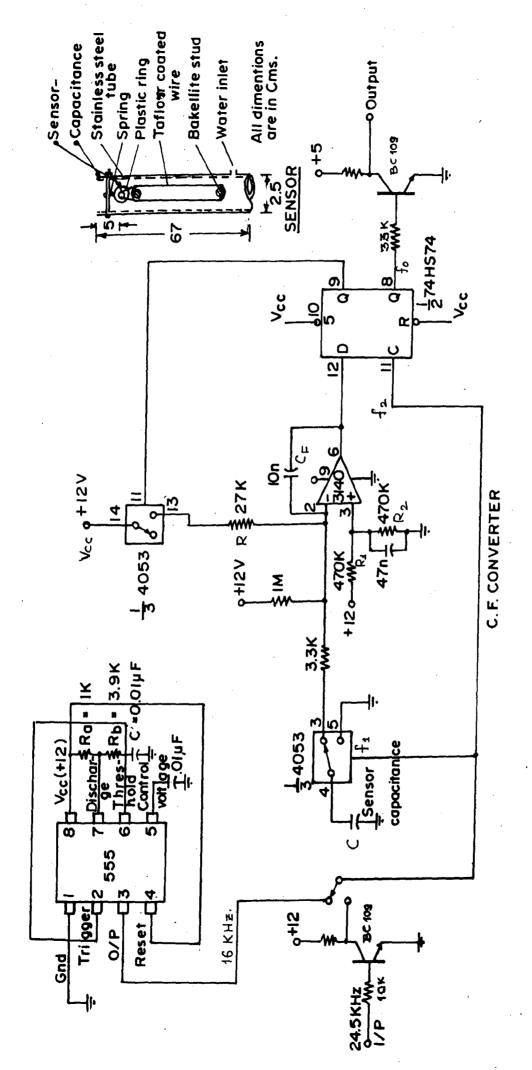


FIG. 3.2-I WATER SENSOR AND C.F. CONVERTER.

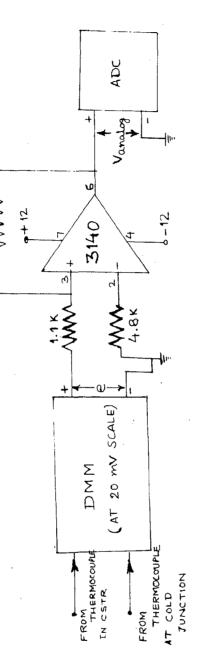


FIG. 3.1.1 ; SIGNAL CONDITIONING FOR

THERMOCOUPLE

For practical purposes, e.m.f (uv) = 40 x temp ($^{\circ}$ C).

The temperature of water in the CSTR can reach to a max. of 100°C (as the CSTR is open to atmosphere), at which the thermocouple O/P would be 4.25 mv. This voltage is amplified by a factor of approx. 1000 to make it suitable for ADC. The amplification stage is shown in Figure 3.1.1. The DMM, (model 177), provided by Keithley, Ohio (USA), is kept at 20 mv scale. It gives an O/P proportional to the input voltage (i.e. thermocouple O/P), e (mv) as

The OP-AMP 3140 amplifies this voltage by a factor of 21 and feeds it to ADC. Thus the I/P to ADC is given by $V_{analog} = \frac{e^{(mv)} x^{21}}{20}$ volts = 1.05 e(mv) volts

Thus, V_{analog} varies with water temp. in the range OV to 4.46V, which can be read by up through ADC to monitor temperature of the water.

3.2 LEVEL TRANSDUCER AND SIGNAL CONDUTIONING

A capacitive water-level sensor using taflon coated wire and a capacitance to frequency converter is developed and is described here. The sensor converts water level to electrical capacitance, hence the method of measuring the capacitance must be unaffected by conductivity. In addition, a digital signal is required for interfacing to the μp . These requirements are met by developing a capacitance to frequency (C-F) converter.

3.2.1 <u>SENSOR</u>

The sensor, as shown in Fig. 3.2.1, consists of a taflon coated wire mounted inside a stainless steel tube. The wire is wrapped around a bakellite **stud** at the bottom of the tube and the ends are joined above the maximum water level, thereby doubling the capacitance and avoiding the problem of sealing the end of the wire.

A bakellite stud is used to space the wires at the top of the tube where they are anchored to a rigit plastic ring and tensioned by an spring.

Water forms one plate of this capacitor and the wire the other, while the taflon insulation is the dielectric. The plate area and therefore the capacitance change linearly with water level.

3.2.2 C-F CONVERTER

Fig. 3.2.1 shows a C-F converter along with the sensor. An integrator balances charge on its feedback capacitance C_F by using a clocked D flip-flop and switch to dump a precise amount of charge into it whenever its O/P voltage rises above the flip-flops logic level. The clock to the D flip-flop can be given by either a 555 timer used in astable mode (16 KHz) or through the A/D converter module (24.5 KHz). The either option can be selected through a jumper.

A signal current is provided by repeatedly charging the sensor capacitor C from the integrator input and then discharging it.

Equating the signal current $f_1 Vcc/2$ to the feedback current $f_0 Vcc / 2Rf_2$, the O/P frequency f_0 is given by

 $f_0 = f_1 f_2 RC$,

where f_1 is the frequency at which the capacitor is switched, f_2 the D-flip-flop clock frequency and R includes the resistance of the switch.

For
$$f_1 = f_2 = f_c$$
, say
 $f_c = f_c^2$ RC

The max. possible O/P frequency is $f_2/2$.

Hence, $2f_1 RC < 1$.

The feedback capacitance C_F should be large enough to prevent the OP-AMP O/P from saturating. Allowing a max. O/P voltage change of $V_{\rm CC}/4$ when charge is dumped into the input, it is required that

 $C_F > 2/f_2R$.

However, C_F must not be so large that the O/P voltage change can ever fail to be detected by the flip flop.

In the circuit shown in Fig. 3.2.1, the clock to the flip-flop can be given through two options -

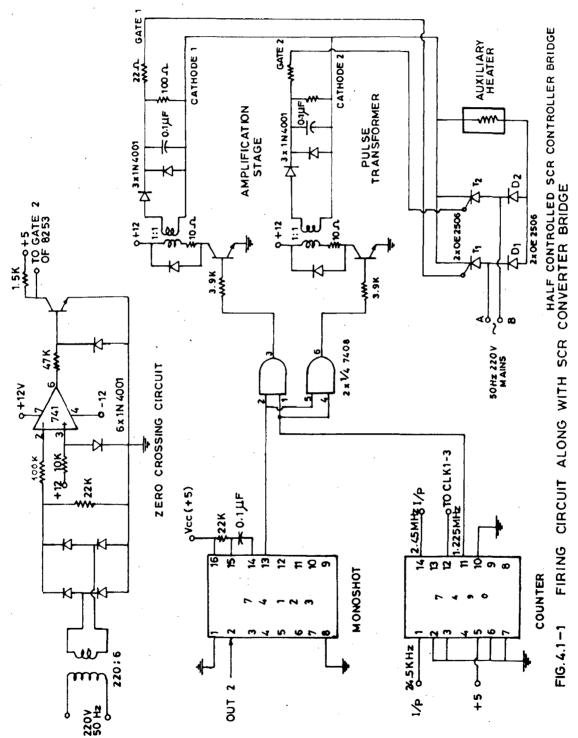
- 1) A 16KHz clock gen rated by I.C.555 timer, used in astable mode.
- 2) A 24.5 KHz clock from the A/D converter module, discussed in section 4.2, amplified to 12V. Either option can be selected through a jumper.

The C-F converter O/P is a train of +12V pulses, which is brought to TTL level by the transistor BC 109.

CHAPTER - IV

HARDWARE DEVELOPMENTS

4.1 SCR FIRING CIRCUIT


DESCRIPTION :

This is a control element for controlling energy input to heater and then to control heat input to the system through the bridge as dimended by the controller.

4.1.1 OPERATION OF THE THYRISTORS

Fig. 4.1.1 shows the complete firing circuit along with the single phase half controlled rectifier bridge. T_1 and T_2 are the two thyristors(OE 2506) and D_1 and D_2 are the two diodes (OE 2506), each with a maximum current rating of 25A and peak inverse voltage of 600 V. The firing circuit is described in the next section.

A sinusoidal input (220V, 50 Hz) is applied between terminals A and B. When A is positive with respect to B, diode D_1 is forward biased. Now if T_1 is fired at an angle α (0 to 180°), a current flows through T_1 -load - D_2 . Similarly when A is negative with respect to B (i.e. in the negative half cycle of the sinusoidal input), a current will flow through the path T_2 -load- D_1 , when the thyristor T_2 is fired. The current through the load (auxiliary heater in this case) is always unidirectional.

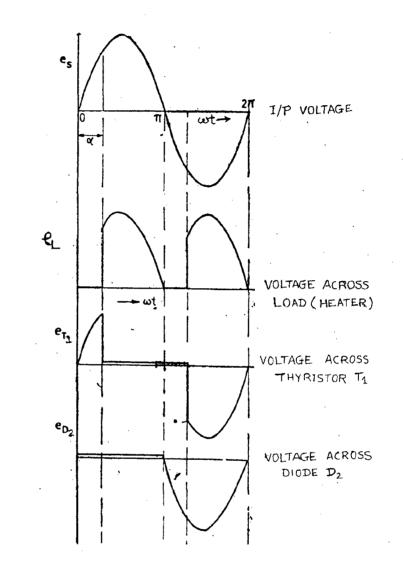


FIG 4.1.2: VOLTAGE WAVE FORMS IN SEMICONVERTER BRIDGE.

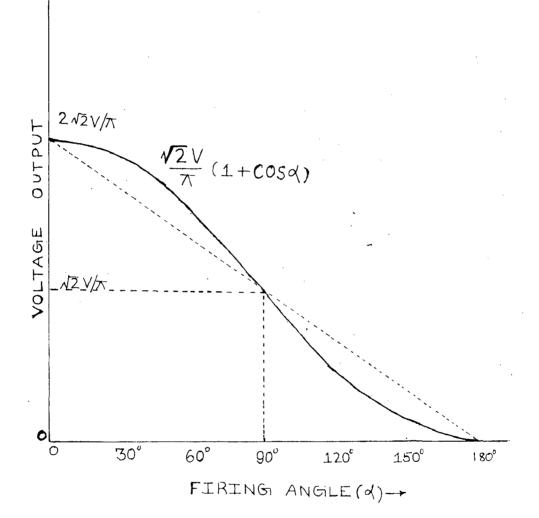
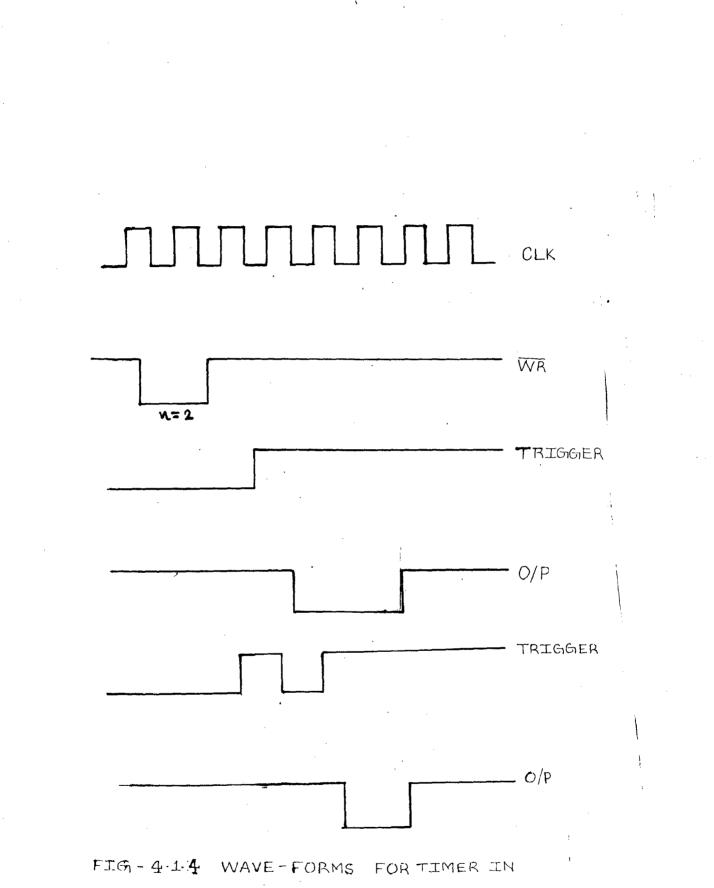


FIG-4.1.3: OUTPUT VOLTAGE OF SEMICONVERTER AT DIFFERENT FIRING ANGLES

The variations of supply voltage, voltage across heater, voltage across thyristors, voltage across diodes and the current through heater with respect to firing angle are shown in fig. 4.1.2. The heater is assumed to be purely resistive.

The expression for average voltage across the load may be derived as -

$$V_{av} = \frac{1}{\pi} \int_{\alpha}^{\pi} V_{m} \sin \omega t d (\omega t)$$
$$= \frac{1}{\pi} V_{m} [-\cos (\omega t)]_{\alpha}^{\pi} = \frac{V_{m}}{\pi} (1 + \cos \alpha)$$


The variation of V with the firing angle α is shown in fig. 4.1.3.

4.1.2 DESIGN OF FIRING CIRCUIT

ZERO CROSSING DETECTER

A zero crossing detecter as shown in fig. 4.1.1 is required to indicate the zero crossing (0[°] or 180°) of the input sine wave because the firing angle α is to be measured from these instants.

The input sine wave (220V) is stepped down through a transformer to 6V, which is then rectified by a diode bridge and applied at the inverting input of the comparator, the non-inverting input of which is at 0.7 V (voltage drop across diode). When the input at inverting input exceeds this voltage, the 0/P of comparator gives - V_{cc} (i.e. -12V). The

MODE-1

.

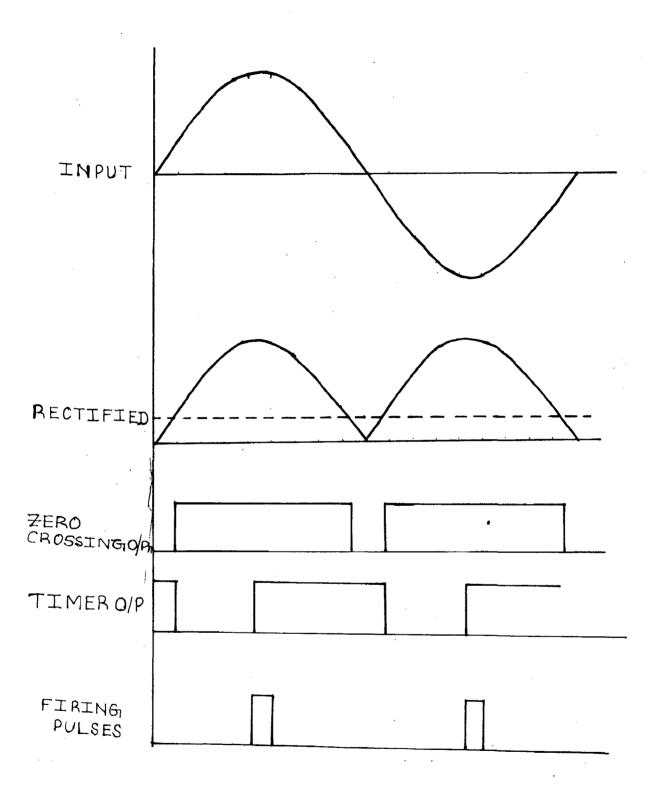


FIG. 4.1.5 : WAVEFORMS AT VARIOUS POINTS IN SCR FIRING CIRCUIT

.

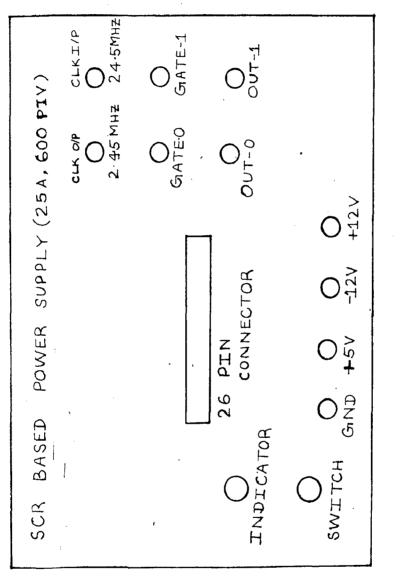


FIG 4.1.6 FRONT PANEL OF SCR MODULE

diode at the base of the transistor limits this voltage to -0.7V by conducting in the forward biased direction. Thus, the transistor goes to cut-off region, thereby giving an O/P of 5V at its collector.

When the voltage at inverting input is below that t at the non-inverting input of the comparator, the O/P of comparator goes to $+V_{cc}$ (i.e. +12 V) which brings the transistor into saturation. Therefore an O/P of 0.3 V(logic 0) at collector of the transistor is obtained. This O/P can be neglected and is taken as OV. Thus, at each zero crossing of the input sine wave, (ie.0° or 180°) a low to high transition (TTL level) at the collector of the transistor is obtained.

The output of zero crossing detecter is shown in Fig. 4.1.5. This output is given to GATE 2 of 8253, with counter 2 initialized in mode 1(i.e., programmable oneslot) and already loaded with a count equivalent to the firing angle. The clock to all the counters of 8253 is given by dividing PCLK (2.45 MHz) by 2 using the counter 7490. Thus, the CLKO, CLK 1 and CLK 2 of 8253 are given 1.225 MHz' clock. The output (OUT 2) waveform in mode 1 is shown in figure 4.1.4. After a delay (N/1.225 us; N being the count loaded into COUNTER 2) equivalent to the firing angle α from the 0[°] or 180[°] reference, it gives a low to high transition and then a high level till the next zero crossing, at which retriggering

31

of COUNTER 2 takes place. This output is not strong enough to turn on an SCR. So an amplification stage, described in next section is required.

AMPLIFICATION STAGE

The rising edge obtained at OUT 2 of 8253 triggers a monoshot (74123). The duration of the monoshot's output pulse is governed by the R_{ext} and C_{ext} connected to it and is given by

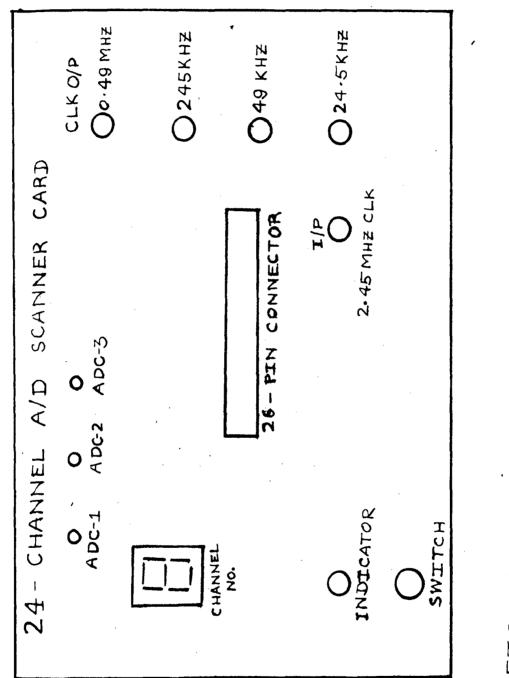
 $t_{w} = 0.28 R_{ext} C_{ext} (1.0 + \frac{0.7}{R_{ext}}) ns$

where R_{ext} is in K ohms and C_{ext} in pF.

With $R_{ext} = 22 \text{ K ohm}$.

and $C_{ext} = 0.1 \text{ uF} = 10^5 \text{ pF},$ $t_w = 0.6 \text{ ms}.$

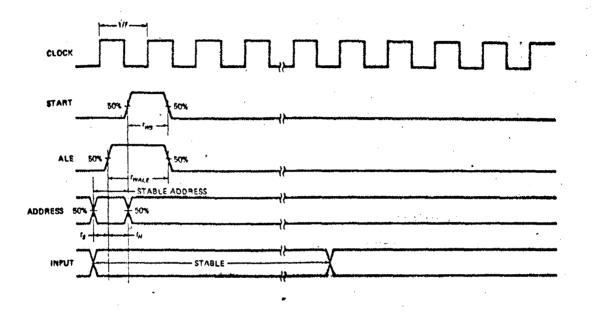
This duration is sufficient to trigger the SCRs. This pulse is AND_{ed} with high frequency pulses of 5 KHz, amplified and fed to the 1:1 pulse transformer. The high frequency AND_{ing} is required to avoid the saturation of the pulse transformer and is obtained by dividing the 24.5 KHz. input to the module by 5 through the divide - by-5 counter of 7490. The 24.5 KHz. input is obtained from the A/D scanner card, described in section 4.2. The pulse transformer provides physical isolation between the control circuit and the power circuit. The modulated pulses reduce the gate dissipation in the SCR. A diode is connected across the pulse transformer. Gate protection is required for over-voltage and over-current. Because of the low power level of the control circuitary, this protection can be provided by simple means. The gate can be protected against overvoltage by connecting a resistance in series with the pulse transformer input. A common problem encountered in the SCR circuitary is spurious firing of the device. Trigger pulses may be induced at the gates due to turn on or turn off of a neighbouring SCR or transients in the power circuit. These undesirable trigger pulses may turn on the device, thus causing improper operation of the circuit. Gates are protected against such spurious firing by using shielded cables or twisted gate lead connections. A capacitor is connected across the gate to cathode to bypass the noise pulses.

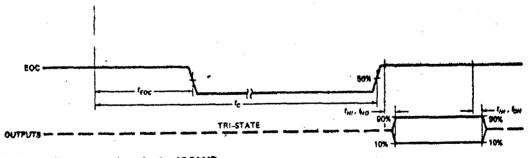

The waveforms at various points are shown in fig. 4.1.5 and the front panel of the module developed is shown in fig. 4.1.6.

4.2 <u>24-CHANNEL A/D SCANNER CARD</u>

DESCRIPTION :

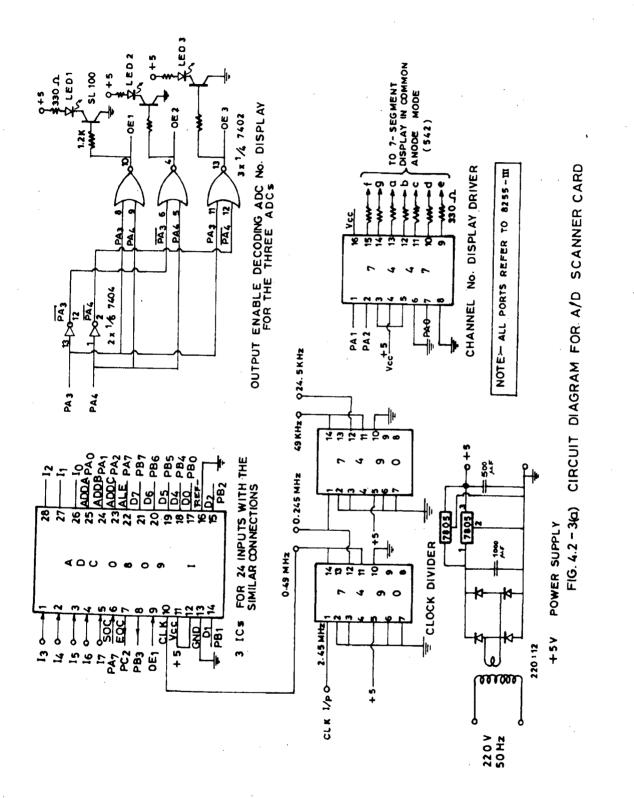
This module has been developed to convert the analog voltage, obtained by thermocouple after signal conditioning, into digital equivalent. One channel is required for the present work. The other 23 channels may be used for further developments. Moreover, it provides four clock outputs of


33



PANEL OF ADC MODULE FIG - 4.2.1CW FRONT

Ó∞ ADC – 3 0 – 2) B S $\bigcirc \infty$ Q ADC-2) U O^{∞} GND ADC-1


FIG. 4.2.1 (b)-BACK PANEL OF ADC MODULE

.

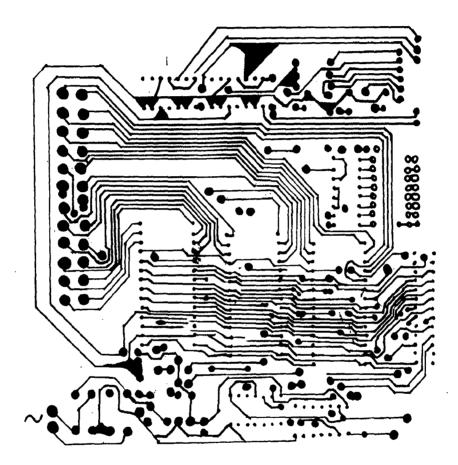


FIG. 4. 2. 3 (b) - ADC CARD PEB LAYOUT

ñ

different frequencies - 0.49 MHz, 245 KHz, 49 KHz and 24.5 KHz, the only input being 2.45 MHz clock. An inbuilt 5V D.C.power supply is also included. The front panel of this module is shown in Fig. 4.2.1(a). The 24 inputs can be provided from the back panel, which is shown in fig. 4.2.1(b). Three 8-channel, 8 bit A/D converter ICs (ADC 0809) are used to meet the above requirement. The channel no. and the corresponding ADC in operation are indicated by the seven segment display (0-7) and the LEDs respectively on the front panel.

4.2.1 WORKING OF ADC 0809

The pin deg. of the A/D converter,ADC 0809 and the pin descriptions are given in Appendix C. As can be seen from the timing dig. shown in fig, 4.2.2, an Start of Conversion and Address Latch Enable pulse is to be sent after placing the address on the address lines to initialize the ADC. The End of conversion, which is normally high goes low after same delay. It remains low during the conversion period, which is about 100 µs. When it goes high indicating the conversion is over, the digital equivalent can be inputted.

4.2.2 <u>CIRCUIT DESCRIPTION</u>

The circuit dig. of the A/D converter scanner card is shown in fig. 4.2.3(a) and layout of its PCB is shown in fig. 4.2.3(b). The whole circuit dig is divided into various parts as follows:

34

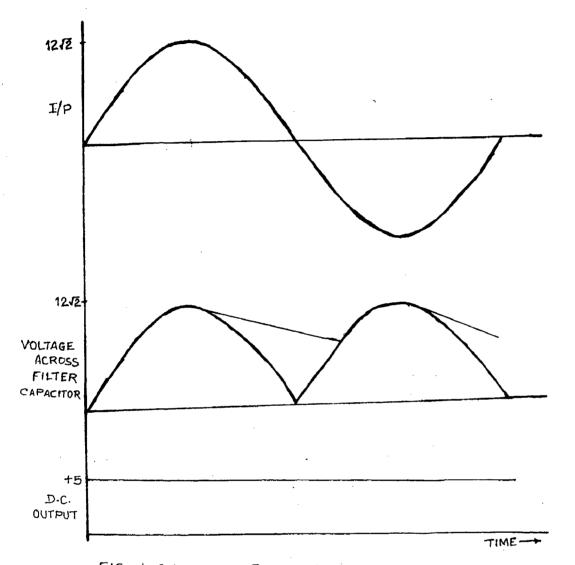


FIG. 4.2.4 WAVEFORMS FOR +5 V D.C. POWER SUPPLY

.

(a) +5V DC SUPPLY:

A 12V sinusoidal input is rectified by the diode bridge. The capacitor at the O/P of this bridge is charged to the peak voltage of the rectified wave, when this reaches to its peak value. The capacitor O/P decays slowly till the next peak of the rectified wave appears. Thus an O/P as shown in fig. 4.2.4 across the capacitor, i.e. at the I/P of voltage regulator 7805, is obtained. The 7805 then gives a constant +5 V DC supply. Two 7805 voltage regulators are used in parallel so as to increase the o/p current rating to 1A (each 7805 having 500 mA o/p current rating). This is used to supply +5V to all the components on the card.

(b) <u>CLOCK DIVIDER</u> :

A clock I/P of 2.45 MHz is divided by five, ten, fifty and hundred to give 0.49 MHz, 245 KHz, 49 KHz. and 24.5 KHz. by using the two 7490 counters. Each 7490 has one divide-by-five counter and a divideby-two counter. The 2.45 MHz I/P is divided by 5 to give 0.49 MHz by using one 7490. This o/p is fed to the divide-by-two counter of the same 7490 so as to give 245 KHz. Similarly, other 7490 gives, with 245 KHz as an I/p, the two frequencies of 49 KHz and 24.5 KHz. These clock points are brought to the terminals on front panel, shown in fig. 4.2.1(a). The 0.49 MHz clock is used for ADC 0809 chips.

(c) ADC 0809 INTERFACING

The I/B is applied on any of the 8 lines I_0-I_7 . The I/P to be scanned is addressed by ADDC-ADDA, connected to PA2-PAO of 8255-III through a 26 pin connector. The address is latched by ALE through PA7. An start of conversion signal is sent through PA6 and the End of conversion is polled through PC2-PCO for the three ADCs (ADC 1-3). The data is inputted through PB.

7402 and 7404 are used for decoding which ADC's OE is to be made active (high).PA3 and PA4 lines are used for this purpose. The decoding is shown below:

 PA4	PA3	ADC No.SELECTED
0	0	ADC-1
0	l	ADC-2
1	0	ADC-3
l	l	NONE

So, the 8-I/P channels of ADC-1 are addressed by 00-07 (for IO-I7), for ADC-2 (08-OF) and that for ADC-3 by 10-17, through PA. The 0.49 MHz CLK to the three ADCs are provided by the o/p of one of the 7490s, as discussed earlier. The reference voltage is kept +5V and the -ve reference voltage is grounded.

(d) DISPLAY

The 3 LEDs on the front panel indicate which ADC is currently working. The OE of the three ADCs are given to the base of 3 transistors (BC-109) seperately. The OE of the ADC under operation will go high and drive the corresponding transistor. The collector current flowing through the ON transistor will glow the corresponding LED.

A 7-segment display in common anode-mode (592) displays the channel no. of the selected ADC in operation. Since the channel no. is addressed by PA2-PAO, so the same lines are used for displaying the channel no. (0-7). Thus, the three I/Ps of 7-segment display driver (7447) are connected to PA2-PAO (PAO being least significant) and the fourth I/p (most significant) is grounded.

Thus, the 3- LEDs and the seven segment display indicate which of the 24-channels is working. Output of the ADC is:

Digital Equivalent = $\frac{V_{analog}}{255} \times V_{ref}$.

4.3 STEPPER MOTOR DRIVING CIRCUIT

DESCRIPTION :

The stepper motor is used to control the level of the water in the tank by operating a value which controls the outlet of the water from the tank.

Stepper motor is one of the most suitable devices to convert digital pulses into precise incremental rotary motion, and can be effeciently used to control the valve and thus flow with the help of a up issuing control pulses.

The specification of the stepper motor used for the above experiment are:

1) Type: Permanent Magnet D.C., Bifiler wound SM

ii) Step angle:1.8 ± 5 percent non-cumulative,

iii) Steps/Revolution :200.

iv) Speed: 0-10,000 steps/sec, i.e. 0-3,000 RPM.

4.3.1 WORKING OF STEPPER MOTOR

The PM stepper motor is shown in Fig. 4.3.1. It consists of two stator windings, viz. A and B and a rotor having the magnetic poles N and S. When any one of the stator winding is energised, the corresponding magnetic poles are generated in the stator. The rotor (permanent magnet) hence positions itself such that its poles lock with the corresponding stator poles. When the two windings are energised simultaneously, the rotor positions itself along the direction of the resultant magnetic field.

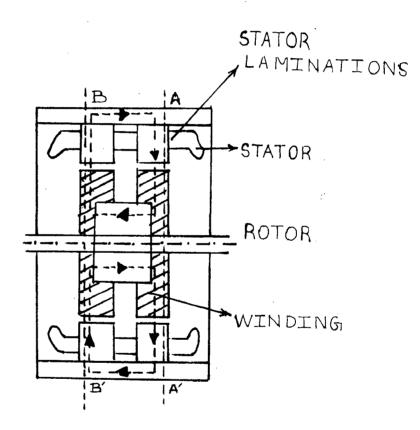
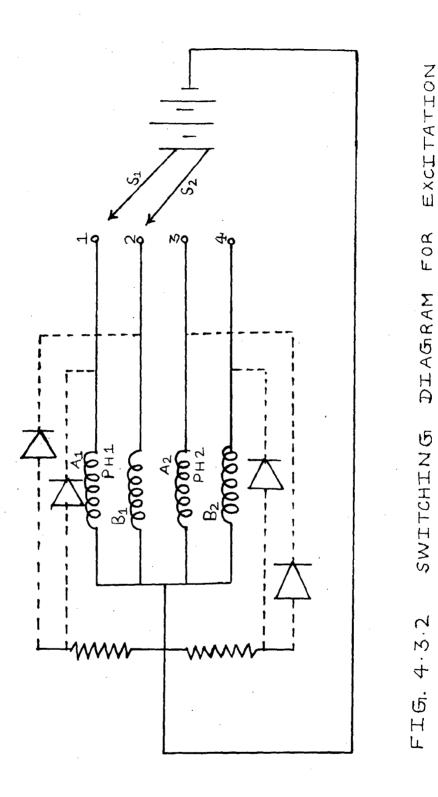



FIG. 4.3.1 : PM STEPPER MOTOR

WIN DINGS Ц О

The different combinations of excitation of stator windings along with the corresponding rotor positions are shown in Fig. 4.3.2.

The motor used has 1.8° step angle, it has 50 teeth on the rotor and 8 main poles on the stator. The step angle, $\Theta_s = \frac{360}{N_s K_s}$

 $N_r = No.$ of rotor teeths,

where

 $K_s = Excitation sequence factor.$

The following 3 modes of operation of PM stepper motor are possible:

i) Single phase mode :

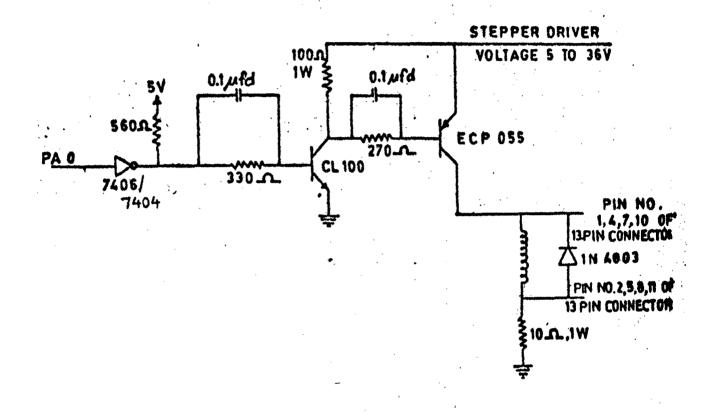
In this mode, only one of the motor windings is excited at a time. There are 4 steps in excitation sequence.

ii) Two phase mode:

Both the phases are excited at a time. This mode also consists of 4 steps in excitation sequence.

In both these modes, the step angle is 90° and excitation sequence factor is 2. However, the rotor position is 45° away from those in the single phase mode.

iii) Hybrid mode:


It is the combination of both single phase and two phase modes. The voltage +v is applied during certain steps while voltage -V is also applied sometimes. So this requires a bipolar regulated supply and a pair of SPDT switches. To avoid this, each of the stator windings is splitted into two sections Al, A2 and Bl, B2. These sections are wound differentially. These winding sections can now be excited from a unipolar regulated supply. This type of construction of PM stepper motor is called bifilar winding construction. Advantage achieved by doing so is the reduced winding inductance.

Stepping motor being used is PM Bifilar Wound Stepper motor with six leads, operated in Hybrid mode. Each of the two phases has double winding with a centre tap. The advantage achieved by doing so is that switching the supply from one side to another of a phase causes reversal of magnetic polarity without actually reversing the polarity of supply. Four step input sequence gives $1.8^{\circ}(full)$ and eight step input sequence gives 0.9° (half) step function.

The switching sequence along with 4 and 8 step input sequence is given in table 4.3.1. This switching sequence will move the shaft in one direction, to reverse the direction of movement, the reverse sequence of the above (i.e. (upwords) is to be followind.

In the present case, however, the 4 step input sequence has been used.

40

FIG. 4.3.3 - STEPPER MOTOR INTERFACE

SWITCHING SEQUENCE 4-STEP INPUT 8-STEP INPUT PH-1 PH-2 PH-1 PH-2 A-1 B-1 B-2 A-2 A-1 B-1 A-1 B-2 0° 0. 0.

Table 4.3.1

4.3.2 NEED OF STABLIZED CURRENT

The torque is directly proportional to the current in winding, which is governed by the d.c. resistance of the winding. As the switching starts, the inductive resistance of the winding, which increases with the frequency of switching, opposes the rise of current to desired level within the time given for one step depending on the frequency of stepping. This is mainly due to L/R time constant of the winding. The drop in current level causes drop in torque as the speed increases. In order to improve torque at high speeds; it is necessary to maintain current at the desired level. This can be achieved by one of the following methods.

- By increasing supply voltage and introducing current limiting resistances in each phase.
 Introduction of resistances improves the time constant of the winding.
- ii. By using a constant current source with or without a chopper instead of using a constant voltage source, which will give even better performance.

The stepper motor driver card, provided by Vinytics, is shown in Fig. 4.3.3, with the change that +12 V supply is used for driving stepper motor rather than +5 V.

The pin dig. and the pin descriptions of all the ICs used for developing the hardware modules are given in Appendix - C.

42

CHAPTER V

DESIGN OF CONTROLLER

A controller is designed to adjust the state of a process as measured by some transducer- the process variable (PV) - to conform to a particular standard value called the set point (SP). The difference between them is termed as the error E, i.e.

E = SP - PV

A control algorithm for digital computer implementation i.e. a calculation method that produces a control output by operating on an error signal is developed later in this chapter. The different types of control schemes and their control laws (i.e. their behaviour with the error) are also described in this chapter.

5.1 CONTROL SCHEMES

A control system block dig. is shown in Fig. 5.1.1. 5.1.1 <u>PROPORTIONAL CONTROL</u>

The desired mode of control in this scheme consists of manually adjusting the final controlled element corresponding to zero error under average process conditions. The control low for the proportional mode is -

where

 $\mathbf{P} = \mathbf{K}\mathbf{E} + \mathbf{P}_{\mathbf{S}}$

ere E = SP - PV,

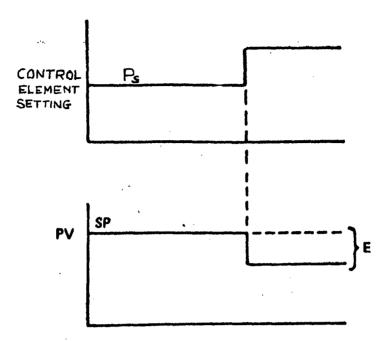
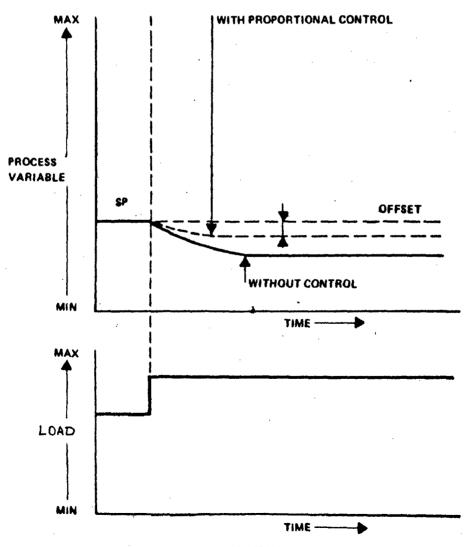



FIGURE 5.1.3 Response to proportional control.

RESPONSE TO LOAD CHANGE

FIGURE 5.1.4 Load step response.

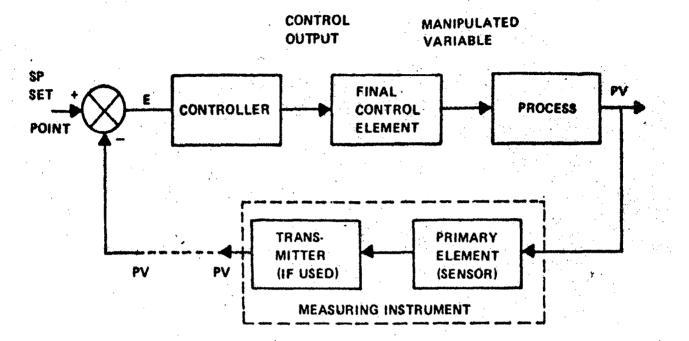
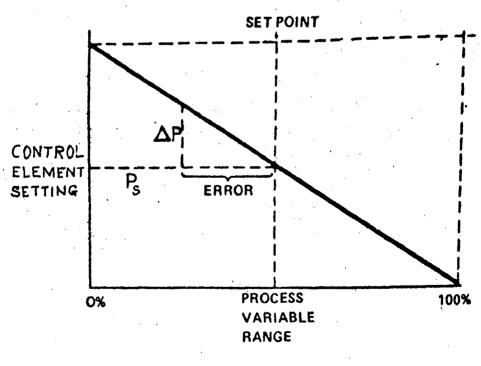



FIGURE 5.1.1 Control system block diagram.

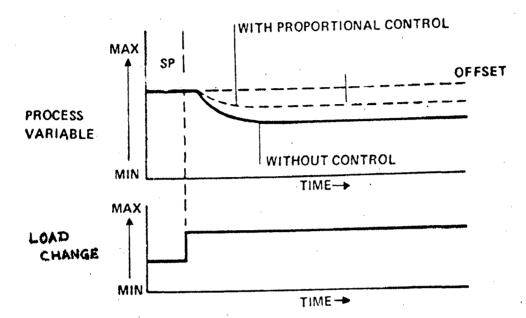


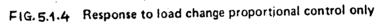
FIG. 5.1.2 PROPORTIONAL CONTROL LAW

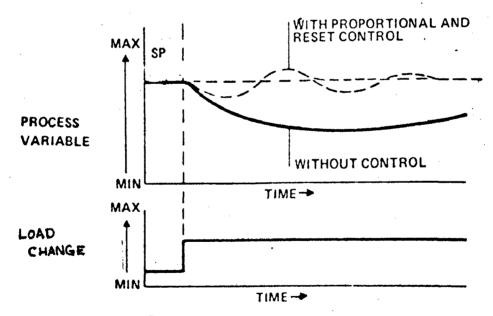
 $P_s = Constant controlled element setting at E=0.$ This is the eqn. of a straight line and is shown in Fig. 5.1.2.

Fig. 5.1.3 demonstrates the action of the proportional controller in time. If for some reason, there is a step load disturbance, the controlled element will be adjusted by a proportional amount in the direction necessary to reduce the error to zero. So there will be deviation in P about P_s . But from the control law, it is obvious that P can change only if E does, since P_s is a constant. So because of this deviation, there will be a definite change to the value of E, the error. This residual error, as shown in Fig. 5.1.4 is called the offset. So only for one value of load condition, that is established by the value of P_s , the proportional mode control results in zero error.

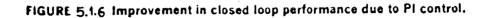
5.1.2 INTEGRAL CONTROL

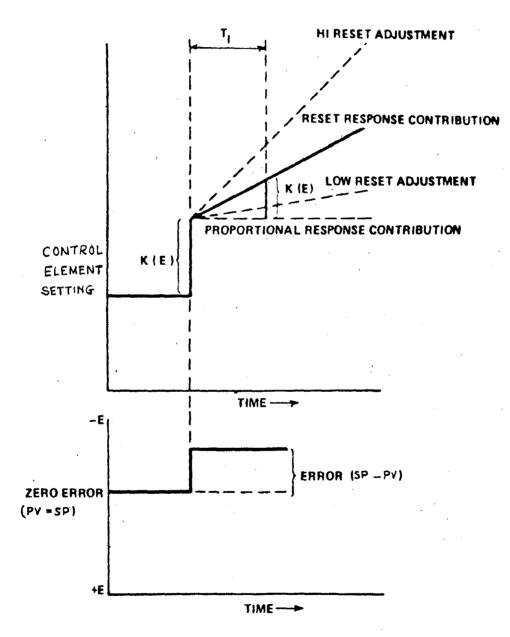

The proportional controller algorithm leads to a steady state error whenever the load exceeds that initially set by the value of P_s ; this value must be reset if the error is to be reduced to zero. This can be achieved by a reset mode in which the rate of change of controlled variable is proportional to the error, i.e.


$$\frac{d\mathbf{P}}{dt} = K_1 E$$


Take initial condition as zero

 $\mathbf{P} = \mathbf{K}_{1} \int \mathbf{E} dt$


PROPORTIONAL PLUS RESET CONTROL



Response to load change proportional plus reset control

PROPORTIONAL PLUS RESET CONTROL

This gives the control law for integral control. This will completely null the error and correct the offset, given enough time, since the controller continues to drive the value so long as any error exists.

If both proportional and integral control are combined, the control equation will be

 $P = KE + K_{1} \int E dt + P_{s}$

This is known as PI controller. The behaviour of the PI controller when subject to an error step is shown in Fig. 5.1.5. The controller σ/p rises almost instantly by an amount KE as a result of the proportional term. But since the error persists, the integral term adjusts the controlled element at a constant rate (assuming an open loop system), where the slope of rise is given by reset rate K_I. After a time T_I, called the reset time, the controller O/P due to the slope of the integral term becomes equal to the original proportional contribution KE. Thus, PI algorithm in terms of reset time can be expressed as -

 $\mathbf{P} = \mathbf{K}\mathbf{E} + \frac{\mathbf{K}}{\mathbf{T}_{\mathsf{T}}} \int \mathbf{E} \, \mathrm{d}\mathbf{t} + \mathbf{P}_{\mathsf{S}}$

as

$$K_{I} = K/T_{I}$$

Fig. 5.1.6 shows, in terms of a closed loop system, the improvement resulting from the addition of this reset or integral mode. The response of a stable system to a step load change is thus eventually a nulling of the error.

5.1.3 DERIVATIVE (RATE) CONTROL AND THE PID ALGORITHM

As is obvious from Fig. 5.1.6, that a substantial amount of time could elapse before a fairly slow process returns to zero error. A means of improving the controller to have it anticipate the error by sensing when, and how fast, it begins to move can be achieved by sensing the rate of change of error and adding a term proportional to this factor as a correction to the controller. This factor will be

$$\mathbf{P} = \mathbf{K}_{\mathrm{D}} \quad \frac{\mathrm{d}\mathbf{E}}{\mathrm{d}\mathbf{t}}$$

where K_{D} is the derivative or rate constant.

This rate term affects the controller only during a change in the magnitude of the error. A steady state value of E can be corrected only by the PI algorithms. Combining all these, leads to a three-mode controller, the PID controller. The control law for PID control can be expressed as -

$$P = K(E + \frac{1}{T_{I}} \int E dt + T_{D} \frac{dE}{dt}) + P_{s}$$

The term T_D is the rate or derivative time and is related to K_D , the rate gain constant by

$$K_{\rm D} = K T_{\rm D}$$

Fig. 5.1.7 demonstrates the performance of a PDcontroller. If the set point is moved linearly (ramped) so that the open loop error is a function of time E= ct, the rate action will produce an immediate step change in controlled

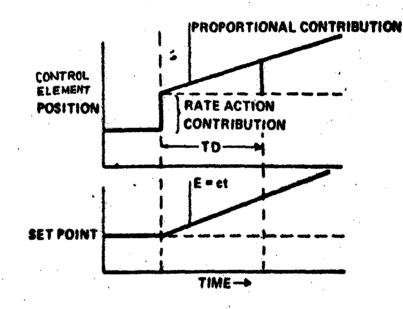
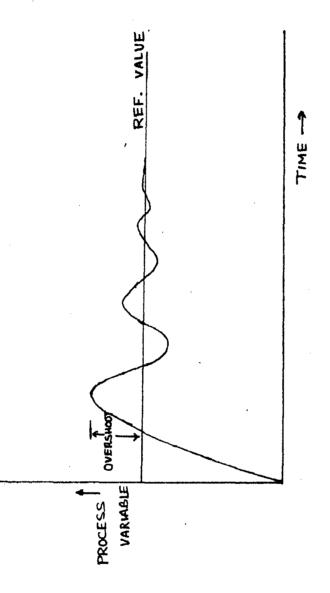
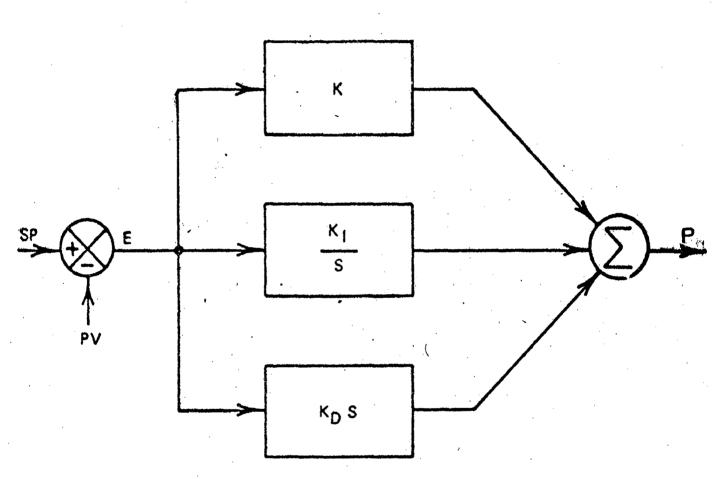
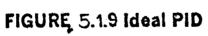





FIGURE 5.1.7 - PD controller action.

o/p proportional to the error slopec. It takes a time T_D for the proportional factor KE to equal this anticipated rate correction.

The response of PID controller is shown in fig.5.1.8. Modifications of the PID Algorithm

The transfer function of the PID controller is given by $\frac{P}{E} = K (1 + \frac{1}{T_T s} + T_D s)$, which is shown by fig. 5.1-9.

In order to limit high frequency gain and phase, this is modified by a low pass filter.

$$\frac{P}{E} = \frac{1}{1 + T_{F}s} K \left(1 + \frac{1}{T_{I}s} + T_{D}s \right) \qquad \dots (5.1.1)$$

If

$$T_F = \Upsilon T_2$$
; $1/T_F$ being low-pass corner frequency

 $K = K_{1} \frac{T_{1} + T_{2}}{T_{1}}$ $T_{I} = T_{1} + T_{2}$ $T_{D} = \frac{T_{1}T_{2}}{T_{1} + T_{2}}$...(5.1.2) $K_{1} (1 + T_{2} + S_{1}) (1 + T_{2} + S_{2})$

then

5.2 SOFTWARE IMPLEMENTATION OF PID CONTROL SCHEME 5.2.1 POSITION ALGORITHM

An algorithm convinent for implementing PID control scheme on microprocessor can be developed by using eqn. 5.1.3, i.e.

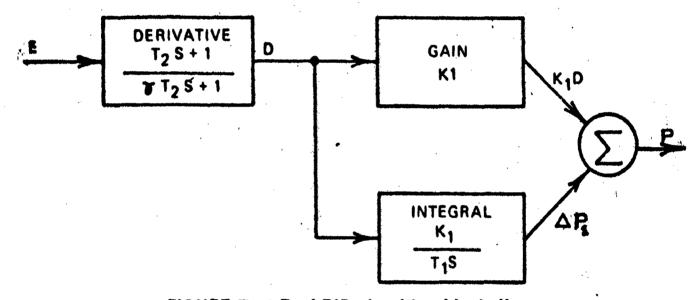


FIGURE 5.2.1 Real PID algorithm block diagram.

$$E = \frac{T_2 s + 1}{Y T_2 s + 1} K_1 (1 + \frac{1}{T_1 s})$$

where P = output of the controller

E = error (PV-SP)

 T_1 = real integral time constant T_2 = real derivative time constant Υ = real amplitude constant K_1 = gain

Fig. 5.2.1 shows the real PID algorithm block diagram. An algorithm can be derived considering each block seperately.

Derivative Block

For derivative block, $\frac{D}{E} = \frac{T_2 s + l}{YT_2 s + l}$ $\Rightarrow (YT_2 s + l) D = (T_2 s + l)E$ $\Rightarrow YT_2 \frac{dD}{dt} + D = T_2 \frac{dE}{dt} + E$

Changing to difference form using

$$\Delta D = D_n - D_{n-1}$$

$$\Delta T = T_n - T_{n-1} = T_s (sample period)$$

$$YT_2 - \frac{D_n - D_{n-1}}{T_s} + D_n = T_2 - \frac{E_n - E_{n-1}}{T_s} + E_n$$

$$\Rightarrow D_n (YT_2 + T_s) = YT_2 D_{n-1} + T_2 (E_n - E_{n-1}) + E_n T_s$$

$$D_n = \frac{YT_2}{YT_2 + T_s} D_{n-1} + \frac{T_2}{YT_2 + T_s} (E_n - E_{n-1}) + (\frac{T_s}{YT_2 + T_s}) E_n$$

 $= D_{n-1} - D_{n-1} (1 - \frac{YT_2}{YT_2 + T_s}) + \frac{T_2}{YT_2 + T_s} (E_n - E_{n-1}) + (\frac{T_s}{YT_2 + T_s}) E_n$ = $D_{n-1} + (\frac{T_2}{YT_2 + T_s})(E_n - E_{n-1}) + \frac{T_s}{YT_2 + T_s} (E_n - D_{n-1}) + ...(5.2.1)$

For small values of $T_s(<< T_2)$,

$$D_n \stackrel{\sim}{\sim} D_{n-1} + \frac{1}{\gamma} (E_n - E_{n-1}) + \frac{T_s}{\gamma T_2 + T_s} (E_n - D_{n-1}) \dots (5.2.2)$$

This is the desired form of the derivative block.

Integral Block

For integral block, the transfer function is

$$\frac{P}{D_n} = \frac{K_1}{T_1 s}$$
$$\mathbf{F}_s = \frac{K_1}{T_1} D_n$$

In discrete form,

$$\frac{P_n - P_{n-1}}{T_s} = \frac{K_1}{T_1} D_n$$

$$\therefore \Delta P_T = K_2 \left(\frac{T_s}{T}\right) D_n$$

and K_1 as the system gain.

IDEAL PID

The non-interactive PID algorithm can be written directly by referring to Fig. 5.1-9.

$$P_{n} = Ke_{n} + K_{I} \sum_{i=0}^{n} e_{i}T_{s} + K_{D} \frac{n}{T_{s}} + P_{s}$$
(5.2.3)

Where the summation is the difference equivalent of integration, and

P_s = Average value of controlled variable (offset)

 K_{T} = Integral gain constant, K/T_{T}

 K_{D} = Derivative constant, KT_{D}

The advantage of this algorithm is that it gives a fast response.

5.2.2 VELOCITY ALGORITHM

The velocity or incremental form is obtained by subtracting two successive values of P,i.e. $P_n - P_{n-1}$. Solving eqn. (5.2.3) for V_{n-1} ,

$$P_{n-1} = K e_{n-1} + K_{I} \sum_{i=0}^{n-1} e_{i} T_{s} + K_{D} \frac{e_{n-1} - e_{n-2}}{T_{s}} + P_{s}$$
(5.2.4)
$$P_{n} - P_{n-1} = \Delta P_{n} = K(e_{n} - e_{n-1}) + K_{I} e_{n} T_{s} + \frac{K_{R}}{T_{s}} (e_{n} - 2e_{n-1} + e_{n-2})$$
(5.2.5)

One advantage is that the average value P_s has disappeared, meaning that, when the controller is first started, the control loop has not to be initialized by inserting this value manually. In the positional form, if the controlled loop is switched from manual to automatic control, the process will bump unless the controller is aligned with the present controlled element position. The velocity algorithm is

Central Library University of Roorkee

bumpless. Another advantage is that the elimination of the summation eliminates the danger of windup, a condition in which the controller saturates its integral term when for some reason an error signal persists.

5.2.3 IMPROVED DERIVATIVE AND INTEGRAL COMPUTATION

The PID algorithm can be modified further. In the first differences, taken for derivative terms in position algorithm and even for second differences in velocity algorithm, noise may be a problem.

The simple first difference is

 $\Delta e_n = e_n - e_{n-1}$

and the second difference,

$$\Delta^{2}e = \Delta e_{n} - \Delta e_{n-1}$$

= $(e_{n} - e_{n-1}) - (e_{n-1} - e_{n-2})$
= $e_{n} - 2e_{n-1} + e_{n-2}$

Employing four point central difference technique of interpolation for velocity algorithm.

Let
$$e' = \frac{e_n + e_{n-1}}{4} e_{n-2} + e_{n-3}$$

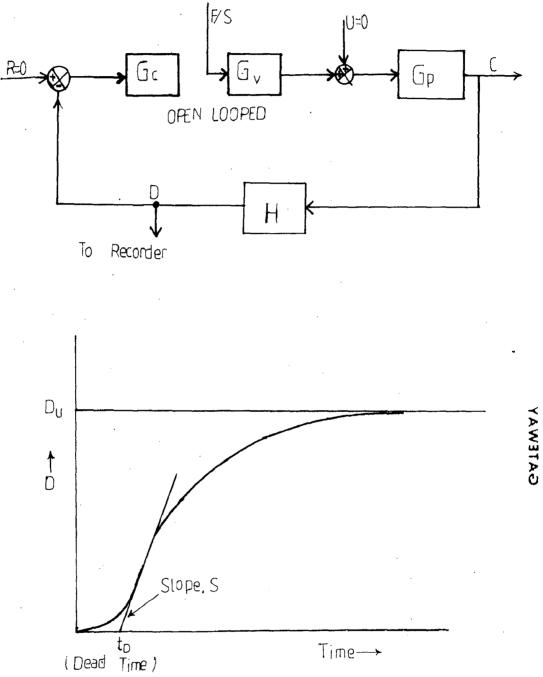
where e_n to e_{n-3} are equally spaced at the sampling interval.

$$\frac{\Delta e}{T_s} = \left(\frac{e_n - e^*}{1.5T_s}\right) + \frac{e_{n-1} - e^*}{0.5T_s} + \frac{e^* - e_{n-2}}{0.5T_s} + \frac{e^* - e_{n-3}}{1.5T_s}\right) / 4$$
$$= \frac{1}{6T_s} \left(e_n - e_{n-3} + \frac{3e_{n-1} - 3e_{n-2}}{3e_{n-2}}\right)$$

Similarly integral term for $\sum_{i=0}^{n} e_i$ can be substituted by i=0

 $\sum_{i=0}^{n} \frac{e_i + e_{i-1}}{2}$

So velocity algorithm can be modified as


$$\Delta P_{n} = K(e_{n}-e_{n-1}) + \frac{K_{D}}{6T_{s}} (e_{n}+2 e_{n-1}-6e_{n-2}+2e_{n-3}+e_{n-4}) + K_{I} (\frac{e_{n}+e_{n-1}}{2})T_{s}$$
(5.2.6)

However, for the present work, the position algorithm is taken and is approximated by taking 15 errors only for the integral term. Thus,

 $P_n = K e_n + K_I \sum_{i=n-14}^{n} e_i T_s + K_D \frac{e_n - e_{n-1}}{T_s} + P_s (5.2.7)$

5.3 ESTIMATION OF CONTROL PARAMETERS

It is always possible to evaluate control parameters by deriving a theoritical model for the process to be controlled. However, the initial controller settings can also be evaluated from the experimental data by plotting the reaction curve. Process reaction curve method, given by Cohen and Coon is one of such methods. This method is described below.

FIG. 5.3.1 - PROCESS REACTION CURVE WITH BLOCK DIG. TO MEASURE IT.

PROCESS REACTION CURVE METHOD

A block diagram for measurement of process reaction curve and the process reaction curve are shown in Fig. 5.3.1.

This method consists of applying a small step change in the manipulated variable to the opened control loop and recording the curve of measured variable versus time, called the process reaction curve. It is assumed that no load changes occur during the test. In addition, all the dynamic components of the loop other than the controller must be included between the point of application of the manipulated variable change and the point of recording the response.

A tangent is drawn to the reaction curve at the point of inflection. The intercept of this tangent on the abscissa is taken as the apparent dead time T_d . The slope of the tangent, S, is proportional to 1/T, the reciprocal of the apparent time constant. In this case D_u is the ultimate response. Hence,

$$T = D_u/S$$

The steady state gain between F and D is calculated as

$$K_p = D_u/F$$

Using the values of T_d , T and K_p determined in this manner, the following controller settings are recommended by Cohen and Coon .

Proportional :

$$K = \frac{1}{K_p} - \frac{T}{T_d} \left(1 + \frac{T_d}{3T} \right)$$

Proportional -Integral :

$$K = \frac{1}{K_{p}} \frac{T}{T_{d}} \left(\frac{9}{10} + \frac{T_{d}}{12T} \right)$$
$$T_{I} = T_{d} \left(\frac{30 + 3T_{d}/T}{9 + 20T_{d}/T} \right)$$

Proportional- Derivative :

$$K = \frac{1}{K_{p}} - \frac{T}{T_{d}} \left(\frac{5}{4} + \frac{T_{d}}{6T} \right)$$

$$T_{D} = T_{d} - \frac{6 - 2T_{d}/T}{22 + 3T_{d}/T}$$

Proportional- Integral- Derivative :

$$K = \frac{1}{K_{p}} \frac{T}{T_{d}} \left(\frac{4}{3} + \frac{T_{d}}{4T} \right)$$

$$T_{I} = T_{d} \frac{32 + 6T_{d}/T}{13 + 8T_{d}/T}$$

$$T_{D} = T_{d} \frac{4}{11 + 2T_{d}/T}$$

These relations give a good estimate of controller settings and are used to estimate the control parameter values when the system has a dead time. However, this method is not used for the present work.

CHAPTER VI

SOFTWARE DEVELOPMENT

The philosophy of the CSTR control is discussed in earlier chapters. This requires the development of some routines, necessary to implement PID control scheme by software on the CSTR. A top-down approach is taken for this purpose i.e. main program written first and the necessary routines next. The software tree for the control scheme is shown in Fig. 6.1.1.

The whole software is grouped into five main parts as given below:

1) Main Program

- 2) Serial Communication and Functional Commands
- 3) Floating Point Arithmetic
- 4) Routines for Various Interfaces
- 5) Temperature monitoring and other routines.

However, the floating point arithmetic routines are not used for controlling the CSTR. These may be used for a precise control and are therefore developed.

A brief description of all these routines along with the flow charts wherever necessary is given below. The whole program listing is given at the end of this chapter.

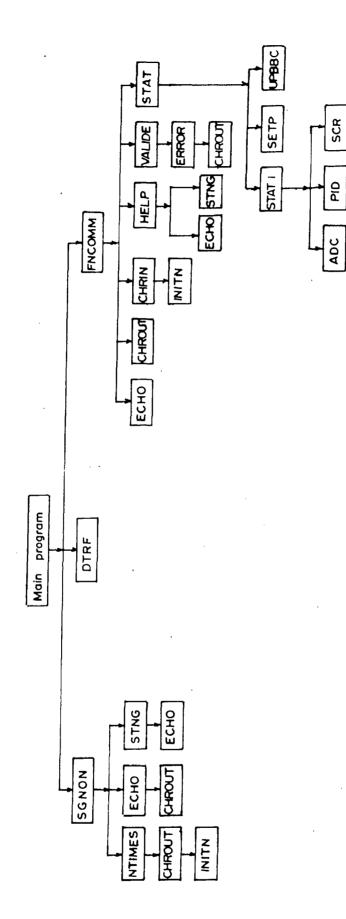


FIG. 6-1-1 SOFTWARE TREE FOR CSTR CONTROL (TOP-DOWN)

6.1 MAIN PROGRAM

The main program developed for temperature control of the CSTR first transfers the necessary data from EPROM to the RAM area. This is done for convinience so that the data is not to be entered in RAM, every time the power is put on. This data transfer includes the addresses of type 252 and type 253 interrupts. (from FO00:3200-3207 to 0000: 03F0-03F7) which are used by the routines FREQ and STAT1 respectively. Also it includes the values of the PID parameters K,K_IT_S and K_D/T_S (from FO00:3208-320D to 0000: 3F1E-3F23), necessary for the routine PID. Moreover, for the same routine, all the errors in locations 0000:3F00-3F1D are set to zero. All the data transfer is done by routine DTRF.

Then it displays a sign-on message, the ASCII Codes of characters of which are stored in locations F000:3000-3157 by the routine SGNON. The FNOOMM routine then expects a valid functional command to be given and executes it. This routine, as discussed later assumes certain data to be stored in locations FO00:3170-3189, 31A0-31A7, 3F00-3F03. If the functional command is STAT, it asks for the ref. temp in BCD and stores the value in unpacked BCD format in memory locations 0000:3EF0-3EF1. This routine requires certain data to be stored in

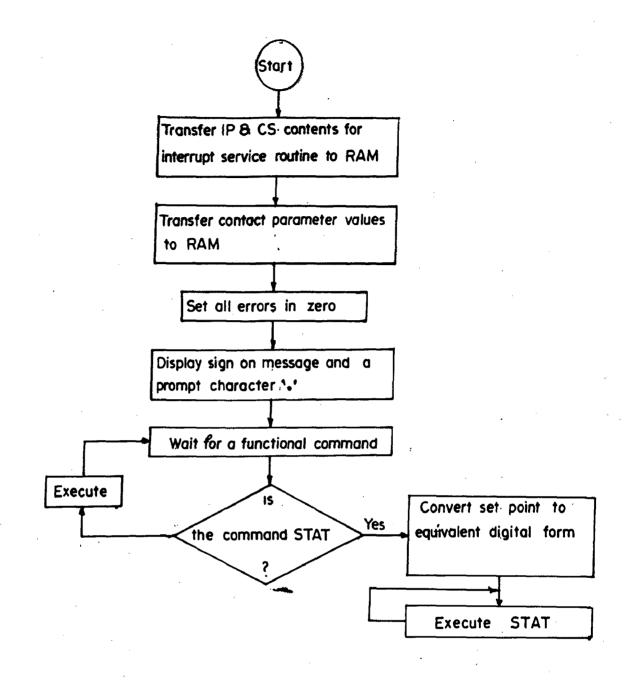
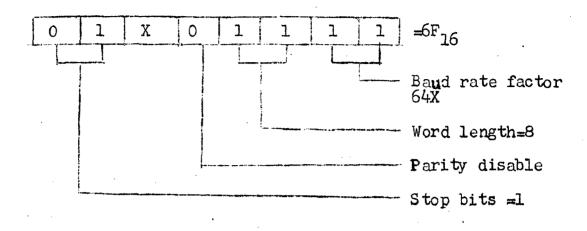


FIG. 6.1.2 FLOW CHART FOR MAIN PROGRAM.

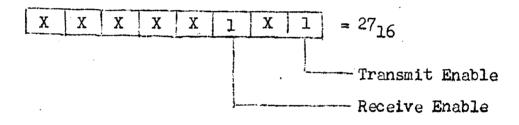
locations FOOO:31BO-31B9. The routine UPBBC converts the unpacked BCD ref. temp. value into an equivalent digital word and stores it at location OOOO:3EFO-3EF1 for using it by the routine STAT1.

The main program starts at an address F000:0000.

6.2 SERIAL COMMUNICATION AND FUNCTIONAL COMMANDS


These routines are developed for man-m/c communication through CRT. They consist of initializing 8251 through which the serial communication is made, inputting a character's ASCII code from the ASCII keyboard, outputting a character or a no. of characters to the console, echoing a character given from the ASCII keyboard, sending sign-on message and executing the various functional commands given through CRT.

These routines are given below with the flow charts wherever necessary.


1) <u>SUBROUTINE INITN</u>:

This routine initializes the 8251 for

Clock frequency = 64 x band rate, Stop bit = 1 Word length = 8 No parity.

Command Instruction Format

All the routines developed for serial communication and functional commands assume that this routine is already called.

Calling address - FOOO:1000.

2) SUBROUTINE CHRIN:

This routine inputs the ASCII code of a character pressed on the ASCII keyboard in the reg. AL.

Calling address - F000:1010

3) <u>SUBROUTINE CHROUT</u>:

This routine outputs a character whose ASCII code is in AL to the console.

Calling address - F000: 1020.

4) SUBROUTINE ECHO:

This routine echoes a character whose ASCII code is in(AL) to the console.

'ESC' is echoed as '\$'

*CR is echoed as 'LF' + 'CR'.

Calling address -F000:1040.

5) <u>SUBROUTINE NTIMES</u>:

This routine sends a character whose ASCII code is in reg. AL to the console as many times as the contents of reg. CL. If (CL)=00, the character is outputted 256 times.

Calling address- F000: 1060

6) SUBROUTINE STNG:

This routine sends an string of characters whose ASCII codes are in memory locations starting from (DS):(SI). The no. of characters are given by (CL).If (CL)=00 the string is assumed to have 256 characters.

Calling address - F000': 1070.

7) <u>SUBROUTINE ERROR</u>

This routine sends 'x' to the console as an error message.

Calling address - F000'1080.

8) <u>SUBROUTINE SGNON</u>:

This routine clears the whole CRT screen and displays the sign-on message -

CSTR	
READY	
GUIDED BY 1)SH. 2)Sh.	M.K.VASANTHA B.MOHANTY

The ASCII codes of all these characters are stored in memory locations FOCO: <u>3000</u> - <u>3157</u>. A data FF in any of these locations indicates the no. of blanks given in the next location. The characters of "CSTR READY" are displayed by a (<u>4</u>)x (<u>7</u>) matrix formed by the character "#" e.g. character "C" is displayed as

> # # # # # # # # # #

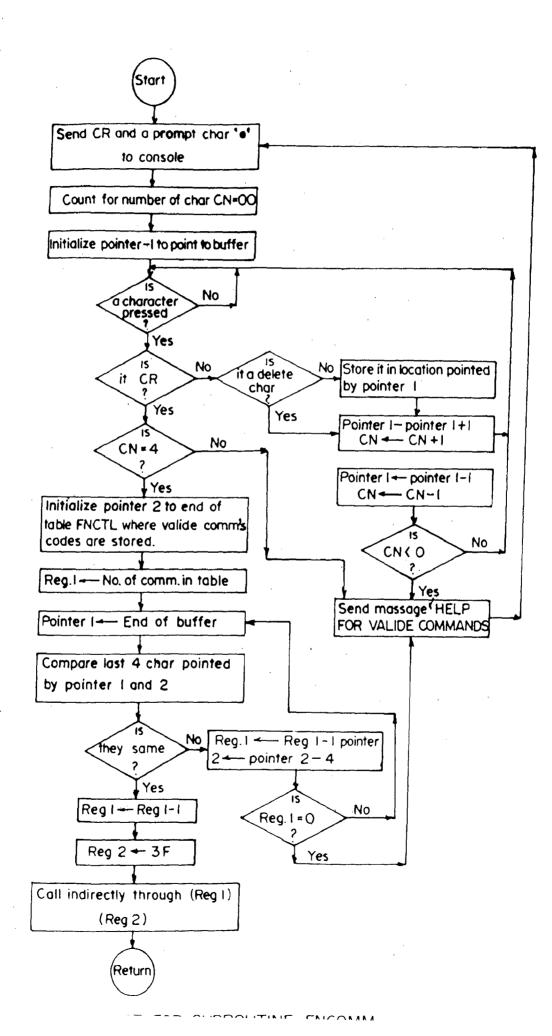
Calling address-F000:1090

9) SUBROUTINE FNCOMM

This routine displays a prompt character '.', indicating that it is expecting any command to be given through the CRT. If a valid command is given, the routine written for that command is executed and after execution a prompt character is again displayed expecting a new command to be given. The ASCII codes of the characters given in functional command are stored in a BUFFER RAM area starting from 3EAO , until 'CR' is pressed. The characters in the buffer can be deleted

in the reverse sequence they are entered till a character '/' is pressed. Pressing the character '/' when there is nothing in the buffer or giving an invalid command are indicated by displaying a message -

* HELP' FOR VALID COMMANDS


and further it waits for the next command. Each commands is assumed to have 4 characters. When 'HELP' is given , it displays the list of valid commands which include HELP, and STAT.STAT starts the control program execution by first executing SETP, which asks for the set point (ref.temp) and stores it in the mem. location 0000:3EEO-3EE1 after converting into the digital equivalent. The ref. temp. is taken as 40°C if nothing is entered.

STAT continuously executes the control program. To change the set point when this program's execution is going on, the key RESET on Hex-key board of the kit is to be pressed, and then start all over again.

The addresses to serve the various functional commands are stored in memory location 3F00 onwords.

A no. of more functional commands can be developed by making small changes in this routine. These changes are given below:

i) Change the value of NFC in the instruction MOV AL,NFC located at FO00:1131 to the required no. of functional commands.

- ii) Store the ASCII codes of characters in the new commands F000:31A8 onwards in table FNCTL in continuation to those of previous commands. Each command is assumed to have four characters.
- iii)Store the 2 byte addresses of each functional command routine F000': 3F04 onwards in continuation to those for previous commands.

The flow chart for this routine is shown in Fig. 6.2.1 Calling address - F000:10E0.

10) SUBROUTINE HELP.

This routine displays the list of valid functional commands as -

1) HELP

2) STAT

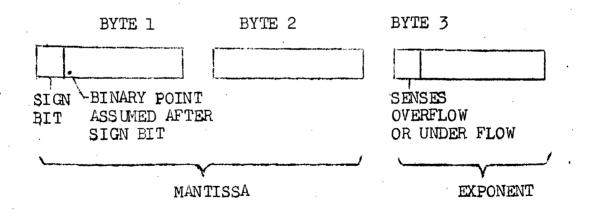
Calling address - F000:1180

11) SUBROUTINE VALID

This routine checks if a character whose ASCII code is in(AL), a valid BCD no. (i.e. 0 to 9) or not. If not, if sends 'x' as an error message to the console. If the character is a valid BCD no., it is converted into unpacked BCD form by subtracting 30_{10} from the character's ASCII code.

Calling address - F000:11B0

12) SUBROUTINE SETP:


This routine asks for the REF.TEMP and waits for the BCD value to be given. If any digit is not a valid BCD digit, an error message '*' is displayed and the digit is not accepted. The last two valid BCD digits entered are accepted until a 'CR' is pressed. If nothing is entered, the set point is taken as 40°C. Finally, the set point in unpacked BCD format is stored in mem. locations OOOO:3EFO-3EF1.

Calling address - F000:11C0

6.3 FLOATING POINT ARITHMETIC

FLOATING POINT NUMBER REPRESENTATION:

The floating no. consists of two parts- 15 -bit mantissa and 7-bit exponent. So it can be presented by three consecutive bytes as

2's complement form has been used. The leftmost bit (16th bit) of mentissa is used as a sign bit. The left most bit of exponent is used for sensing the overflow/underflow condition of the floating point no. The remaining 7-bits of the exponent could express 0 through 127. However, to express negative exponents, the no. 64_{10} or 40H (offset) has been added to the desired exponent (excess 64 form).

All the numbers are assumed to be in the normalised form, i.e., the range of mantissa is taken from ± 0.5 to 1. With this representation, the range of possible floating point numbers is $\pm (0.27105 \times 10^{-19} \text{ to } 0.92231 \times 10^{19})$. The accuracy of representation is 1 part in $2^{15}(\text{ approx } 0.003\%)$. The floating point $\pm \sqrt{9}$ -ve overflow are 0.92231×10^{19} (7FFF₁₆ 7F₁₆) and -0.92231×10^{19} (8001₁₆ 7F₁₆) respectively. Underflows are set equal to zero.

All the numbers are assumed to be in the normalised form, i.e., the range of mantissa is taken from \pm 0.5 to 1. With this representation, the range of possible floating point numbers is \pm (0.27105 x 10⁻¹⁹ to 0.92231 x 10¹⁹). The accuracy of representation is 1 part in 2¹⁵ (approx. 0.003 %.). The floating point +ve s-ve overflow are 0.92231 x 10¹⁹ (7FFF₁₆) and -0.92231 x 10¹⁹ (8001₁₆7F₁₆) respectively. Underflows are set equal to zero.

All the floating point arithmetic routines developed assume that the mantisgs of operand 1 and operand 2 are in registers. AX and DX and their exponents in registers BL and BH respectively. Thus, a representation for operand 1 is taken as (AX)(BL) and that for operand 2 as (DX)(BH).

The routines developed for floating point arithmetic include the basic arithmetic operations- Integer to Floating

Point and Floating point to Integer conversion, Normalisation, Addition, Subtraction, Multiplication and Division.

1. SUBROUTINE INTF

This routine converts an integer in reg. (AX) into a floating point no. with its mantissa in (AX) and exponent in (BL). The flow chart for this routine is shown in Fig.6.3.1. Calling address - FOOO: 1300.

2. SUBROUTINE FTIN:

This routine converts a floating point no. in (AX)(BL)into an integer in (AX). The integer is set to $7FFF_{16}$ or $800l_{16}$ depending on whether the floating point no. is +ve or -ve respectively, when the result exceeds 16 bits. The result is set to 0000 when it is less than 0001. The flow chart for this routine is shown in Fig. 6.3.2.

Calling Address - F0000: 1350

3. SUBROUTINE NORMA:

This routine converts a floating point no. in (AX)(BL)into a nonmalised floating point no. in (AX)(BL). The flow ohart for this routine is shown in Fig.6.3.3.

Calling Address - F000: 1380

4. SUBROUTINE SUBTRN/ ADDN:

The routine'SUBTRN subtracts operand 1 in (AX)(BL) from the operand 2 in (DX)(BH) by adding the later to the 2's complement of the former through the routine ADDN. The routine

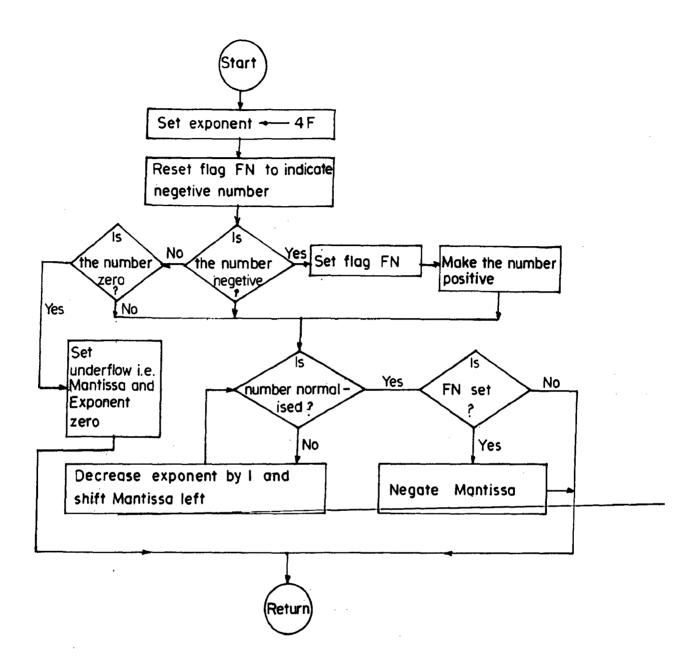


FIG. 6-3-1 FLOW CHART FOR SUBROUTINE INFT.

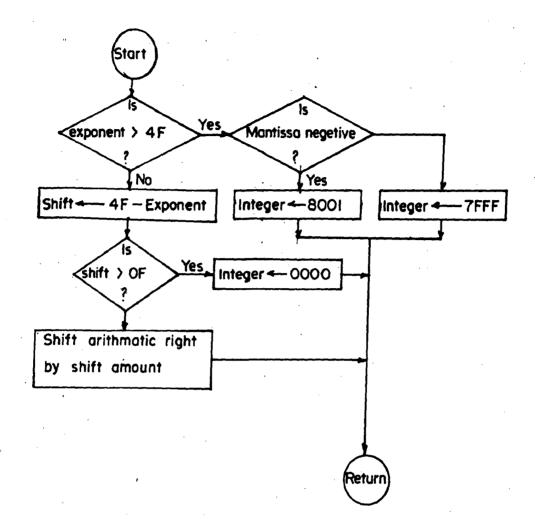


FIG. 6.3.2 FLOW CHART FOR SUBROUTINE FTIN.

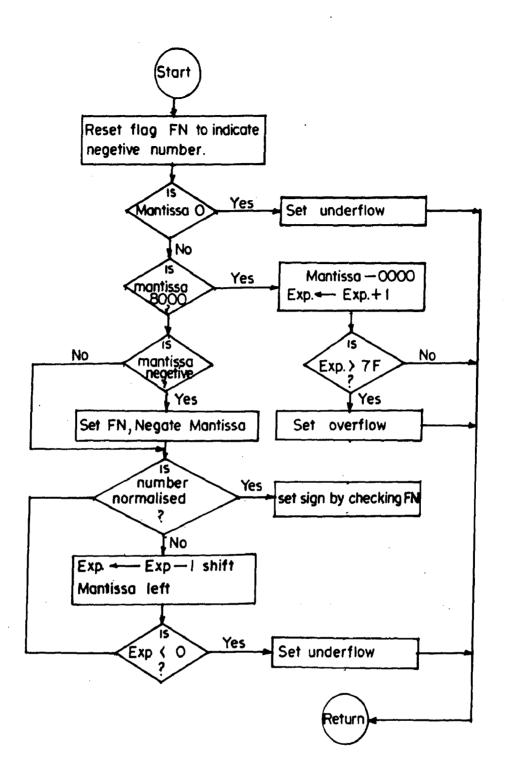


FIG. 6-3-3 FLOW CHART FOR SUBROUTINE NORMA.

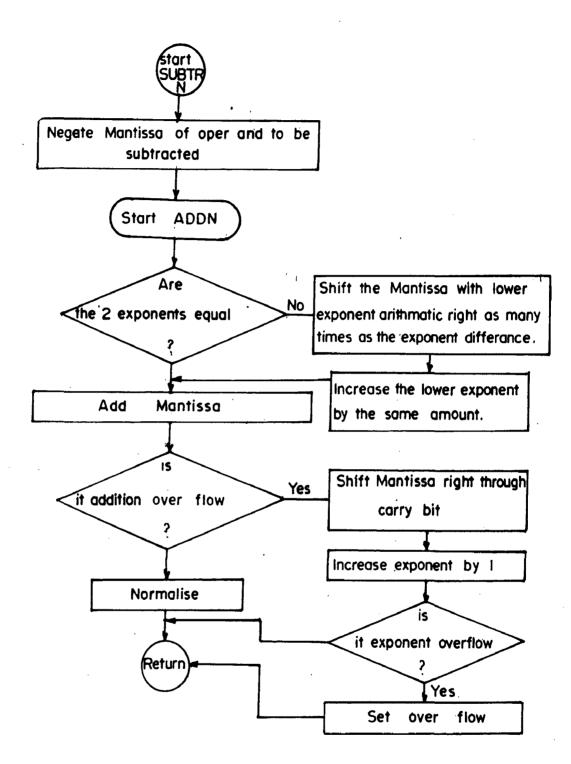


FIG. 6.3.4: FLOW CHART FOR SUBROUTINE SUBTRN/ADDN.

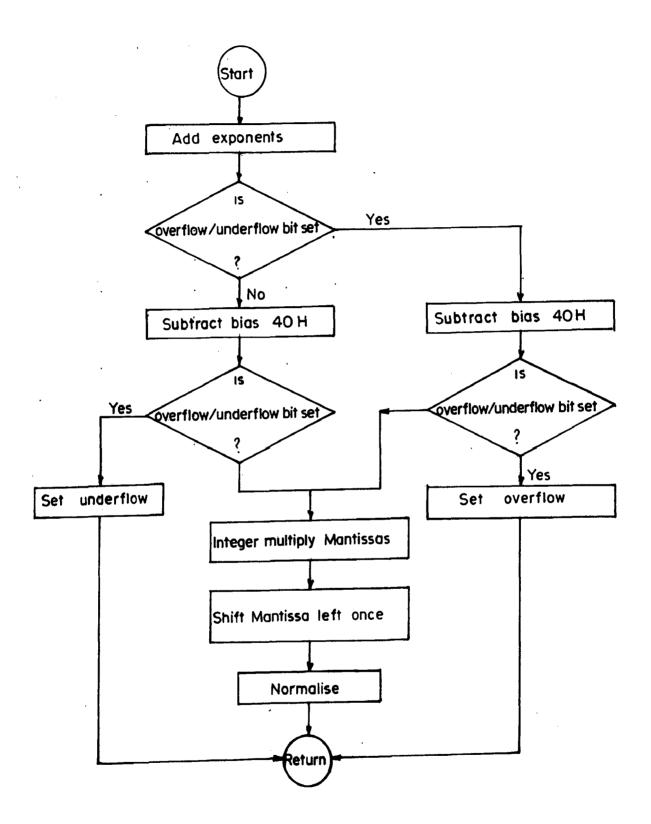
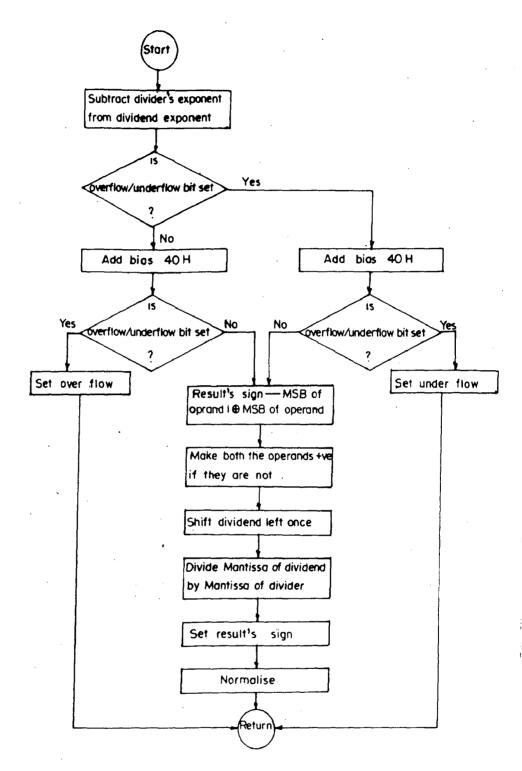



FIG. 6-3-5 FLOW CHART FOR SUBROUTINE MULT.

.

EIG. 63.6 FLOW CHART FOR SUBROUTINE DIV.

ADDN adds the two operands. The result of both the operations are returned in (AX)(BL).

This routine has two entries, one for SUBTRN and another for ADDN. The entries for SUBTRN and ADDN are at memory locations F000:13D0 and 13D2 respectively.

The flow chart for these routines is given in Fig. 6.3.4.

5. SUBROUTINE MULT :

This routine multiplies the two normalised operands in (AX)(BL) and (DX)(BH) and returns the normalised result in (AX)(BL).

Calling Address - F000:1410

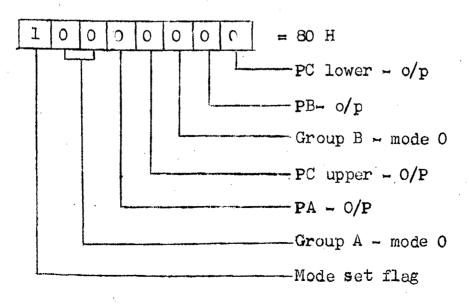
6. SUBROUTINE DIV:

This routine divides a normalised operand in (DX)(BH) by a normalised operand in (AX)(BL) and returns the normalised result in (AX)(BL).

Calling Address - F000:1450

6.4 ROUTINES FOR VARIOUS INTERFACES :

These routines are developed for initiating and governing the functions of the various hardware interfaces developed. These include the routines for driving stepper motor, issuing firing pulses to SCR converter bridge, initiating ADC and inputting digital equivalent of the voltage applied at I/P of ADC, counting the frequency of the pulses outputted by C-F converter of level transducer. These routines are described below.

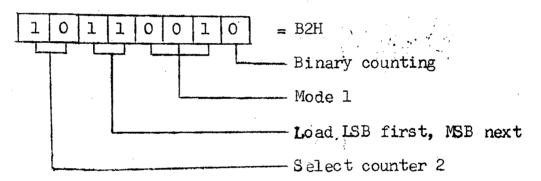

1) SUBROUTINE STPM :

This routine issues pulses to the stepper motor driver circuit to rotate the stepper motor through 1.8° . The pulses are issued from 8255-I, port A. The duration of the pulses is decided by a DELAY subroutine, which is fixed to about 30 ms.

This routine rotates the motor in one direction. To rotate it in opposite direction, as discussed earlier in stepper motor driving circuit, the pulses are to be issued in the reverse sequence.

This routine could be used to control level of water in the tank by controlling the position of value at the outlet of the tank, which in turn is decided by how much to rotate the stepper motor. For the present work, this routine is not being used.

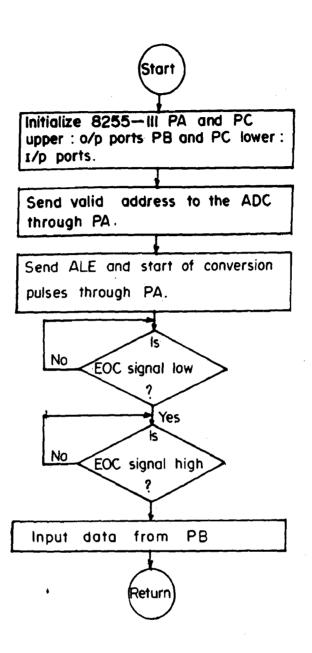
All the ports of 8255-I are taken as simple o/p ports. The mode word for initializing 8255-I is taken as



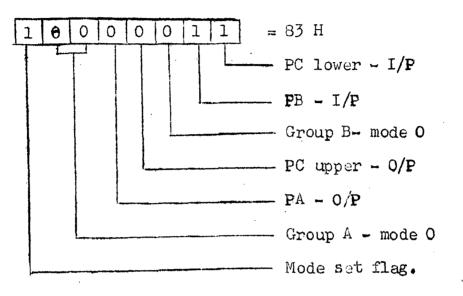
Calling address - F000: 1600.

2) SUBROUTINE SCR

This routine issues firing pulses to the SCR converter bridge. The o/p of zero crossing detector as discussed in SCR firing circuit, retriggers counter 2 of 8253, initialized in mode 1 and loaded with a delay count corresponding to α (predecided). Thus, the firing pulses are issued at an angle α from the 0^o.


The mode word taken for initializing counter 2 of 8253 in mode 1 is taken as -

Calling address - F000: 1640


3) SUBROUTINE ADC :

This routine initiates ADC by placing address of the channel to be used on the address lines and sending start of conversion pulse and ALE signal to the ADC through PA of 8255-III. The End of conversion signal is palled through PC_2 -PC₀. When it goes high to low and then low to high, the analog to digital conversion is over. The digital equivalent is then inputted through PB of the 8255-III.

FIG. 6.4.1: FLOW CHART FOR SUBROUTINE ADC.

8255-III is initialized with PA and PC upper as O/P ports and PC and PC lower as I/P ports. The mode word for initializing 8255-III is taken as

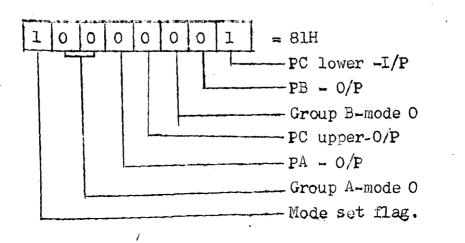
The table 6.4.1 shows the addresses for the 8 channels $\sim \sqrt{10}$ of each ADC.

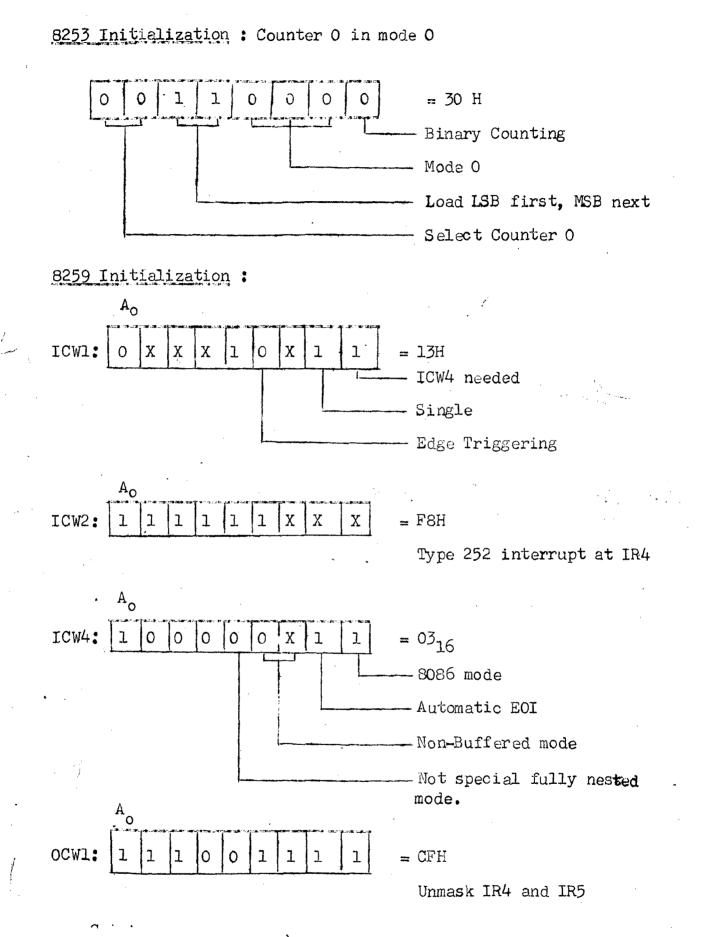
TABLE 6.4.1

an theory and the state of the state of the state of the state of the	a - A - A - A - A - A - A - A - A - A -	n. 19 se su de Luis (n. 19. su est s
ADC NO.	CHANNEL NO.	ADDRESS ES
1	0~7	00~07
2	0-7	08-0F
3	0-7	10-17.

Calling address - F000: 1660.

4) SUBROUTINE FREQ


This routine counts the no. of pulses in one sec., i.e. the frequency of the pulses. The pulses are given at PC_{o} of 8255-II and polled through it. When a pulse goes high to low and then low to high, the counter counting no of pulses is incremented by one. This counting is done for 1 sec.


The l sec duration is realized by interrupting the μp twenty times, each interrupt at 50 ms. For this counter 0 of 8253 is loaded with a count of 61300_{10} in mode 0. This interrupts the processor through IR4 of 8259. In the I.S.S., it is checked if the processor is interrupted twenty times. If not, counter 0 is reloaded with the same count. The duration achieved by loading counter 0 with a count 61300_{10} twenty times is -

61300 x 20 µs = 1000.81 x 10³ µs = 1000.81 ms, as the clock freq. to timer 0 is 1.225, as discussed in SCR firing circuit.

In the total program it is assumed that execution of instructions other than those used for counting the no. of pulses in the 20 interrupt cycles take 0.81 ms. Hence, the pulses are counted effectively for (1000.81-0.81) ms, i.e. 1 sec.

The various mode words for initializing 8255, 8253 and 8259 for this routine are given below. 8255 Initialization: PC lower as I/P port and rest all as 0/P

However, for the present work, this routine is not used. This could be used for level control. Calling address - F000`1690

6.5 TEMPERATURE MONITORING AND OTHER ROUTINES

These routines include FID control routine, its implementation to monitor temperature, necessary data transfer from EPROM to RAM area and conversion of ref. temp. value to equivalent digital form. These routines with flow, charts, wherever necessary are described below-

1) SUBROUTINE STAT:

This routine asks for the ref. temp. in BCD through subroutine SETD, converts it into equivalent digital form through subroutine UPBBC and then jumps to subroutine STAT1 to monitor the temperature.

Calling address - F000: 14B0

2) SUBROUTINE STAT1

This routine monitors temp. through PID control scheme. The sampling period is taken as 8 sec. For this, the counter 1 of 8253 is initialized in mode 3, and is loaded with EF74₁₆ to generate square pulses of time period 50 ms. The OUT1 is, connected to IR5 of 8259. For a sampling period of 8 sec., the up is to be interrupted 160 times by OUT1 (8259 being initialized to detect edge triggerred interrupts).

At each sampling period, the error is calculated in digital form and stored in locations 0000:3EEO-3EE1. Through PID control scheme, an apparent firing angle is calculated. The apparent firing angle is 160°-actual firing angle (as for a firing angle of 160°, the power delivered by SCR converter bridge is zero, as is shown in Fig. 7.1.1.

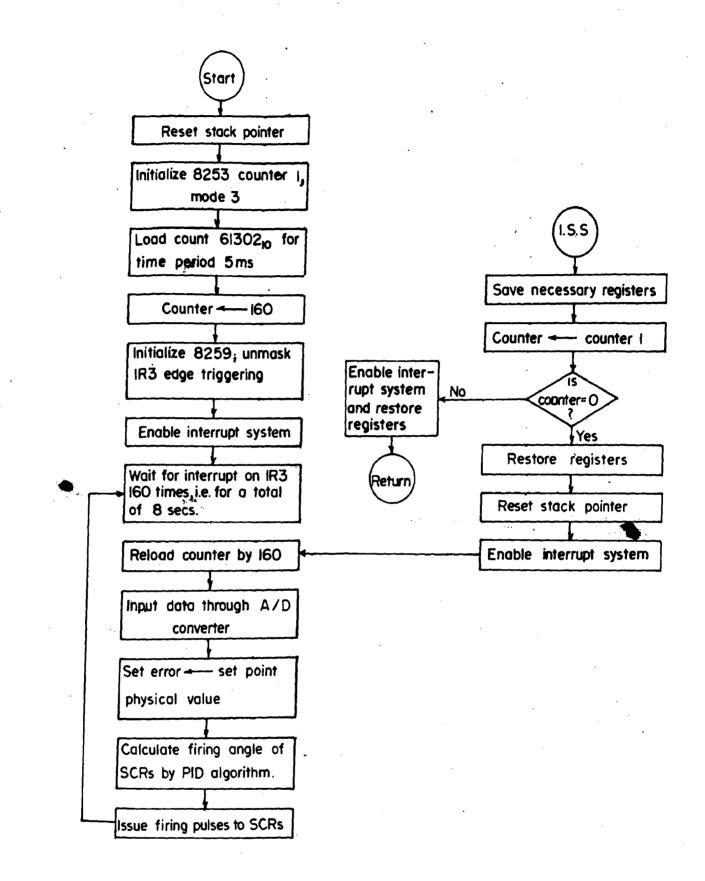
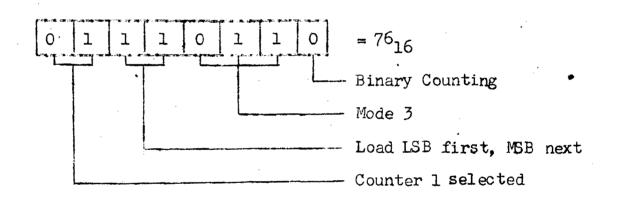
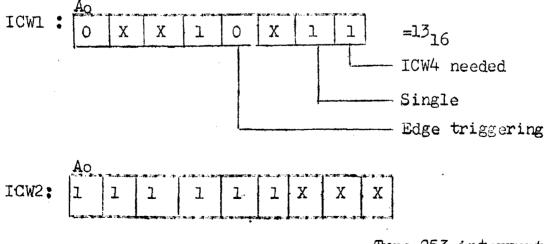
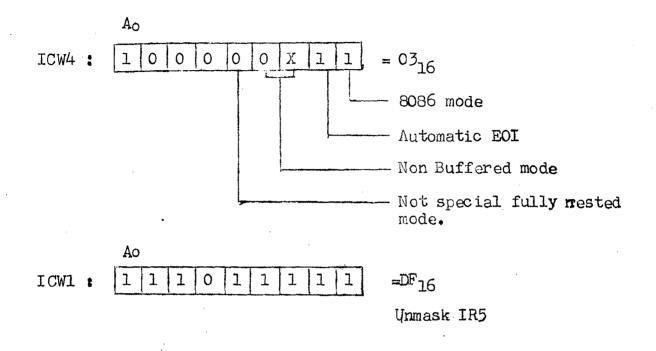



FIG. 6.5.1: FLOW CHART FOR SUBROUTINE STAT1


•

The apparent firing angle (which is in 4 bytes) calculated by PID control scheme is then limited between 0° to 160° . A count in counter 2 is loaded which is directly proportional to the actual firing angle (160-apparent firing angle) and is 68 times of it. If the actual firing angle is 0° , the count to be loaded is 0001. The firing pulses are sent at this calculated firing angle for the current sampling period.


The mode word for initializing counter 1 of 8253 in mode 3 is taken as

For initializing 8259,

Type 253 interrupt at IR5

The flow clart for this routine is given in Fig. 6.5.1 Calling address - F000: 1700.

3) <u>SUBROUTINE PID</u> :

This routine performs all the PID calculations. For integral term, as discussed earlier, 15 errors(including the current error) are taken. The errors are stored in locations 0000:3F00-3FID (each error occupying 2 bytes) in the order $e_{n-14}-e_n$ respectively. Values of K, $K_I T_S$ and K_D/T_S are stored in 0000: 3F1E-3F23 (2 bytes for each) respectively. The value of V_m , taken in 4 bytes is stored in 0000: 3F24-3F27.

During intermediate stages of calculations, the integral term is stored in 0000:3F28-3F2B and the derivative term in 0000: 3F2C-3F2F.

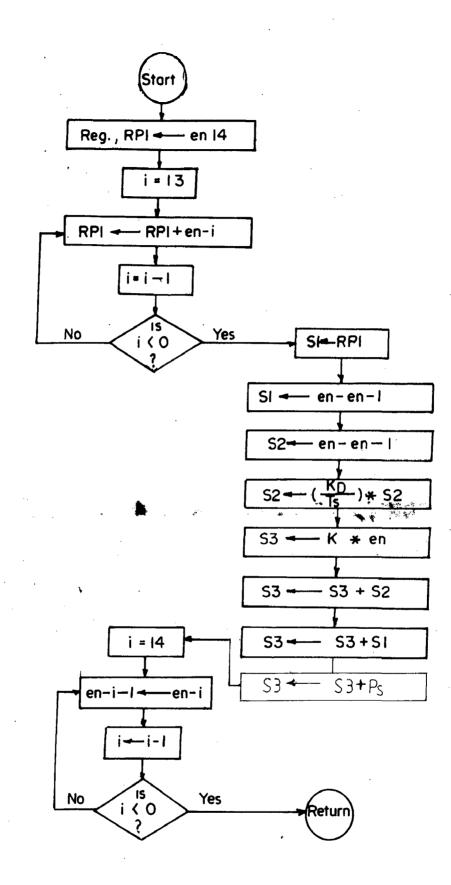


FIG. 6.5.2: FLOW CHART FOR SUBROUTINE PID.

.

Finally, after all the calculations, $e_i(i=n-13,n)$ are shifted to e_{i-1} positions for processing in the next sampling period

The flow chart for this routine is given in Fig. 6.5.2.

Calling address - F000 : 1780.

4) SUBROUTINE SAPPD:

This routine is used as an Interrupt Service Routine for IR5 to indicate the begining of a sampling pd. of 8 sec. This routine is executed after every 50 ms. When it is executed 160 times, it indicates that 50 x 160 ms=8 sec. sampling pd is over and the new sampling pd. is to start and then it returns to monitor temperature in subroutine STAT1 in the next sampling pd.

Calling address - FOOO: 17E0.

5) SUBROUTINE UPBBC

This routine converts the ref. temp value stored in locations 0000: 3EFO - 3EF1 in unpacked BCD format into a digital equivalent that would have been obtained as an o/p of the ADC. This equivalent value in binary is then stored in locations 0000: 3EE0-3EE1.

First, the unpacked BCD value is converted into binary. The thermocouple gives an o/p of 40 uv/°c approximately. This is amplified by an amplifier stage, as discussed in temperature transducer and signal conditioning to 40 mv/°C. So the binary value of ref temp. is multiplied by this value so as to give an equivalent value of thermocouple o/p voltage in mV. If this value is fed to the ADC as an I/P, the o/p of ADC would be 0.04 x ref. temp x 255/5, i.e. ref. temp. X 204_{10} / 100_{10} . Hence, the binary value of ref. temp. is multiplied by 204_{10} and then divided by 100_{10} so as to give an equivalent digital **value**

Calling address - FOOO: 1800.

6) SUBROUTINE DTRF:

This routine transfers the necessary data from EPROM to RAM area in the begining of main program. This data includes -

- i) The offset and segment addresses for interrupt service routines for IR4 of 8259 (to be used by subroutine FREQ) and that for IR5 (to be used by subroutine STAT 1). This data is transferred from locations F000: 3200-3207 to locations 0000: 03F0-03F7.
- ii) Zero is filled in all the locations reserved for e_{n-14}
 to e_n(i.e. in locations 0000: 3F00-3F1D), to be
 used by subroutine PID initially.
- iii)All the control parameters, i.e., the value of K $K_{I} T_{S}$ and K_{D}/T_{S} are transferred from locations F000: 3208 320D to locations 0000: 3F1E-3F23. Calling address F000: 1830.

The total program in the EPROM occupies a memory area F000:0000 - 0013, 1000-1200, 1300-1500, 1600-1860 and the data occupies an area F000:3000- 3210 and 3F00-3F03. The RAM area used by the program is 0000:03F0 - 03F7, 3EA0-3F30.

The program listing is given below.

PROGRAM LISTING

FUNCTION NAME	•	MAIN-PROGRAM
INPUT	:	Memory Locations 0000 : 3F24-3F27 F000: 3166,3170-3189, 31A0-31A7, 3F00-3F03, 31B0 -31B9
OUTPUT	ŧ	None
CALLS	:	INTF, DTRF, SGNON
DES TROYS	•	All registers; Memory locations 0000:03F0, 03F7, 3EA0-3EBF, 3EE0-3EE1, 3EF0-3EF1, 3F00-3F23, 3F28-3F2F.
DESCRIPTION	:	The value of Ps is required to be stored in the memory locations 0000: 3F24-3F27 (four-bytes) before executing the program. The description of main program is already given in section 6.1.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
~€.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω.Ω	F000: 0000 0003 0005 0008 000A 000A 000D 000F	BB 00 13 FF D3 BB 30 18 FF D3 BB 90 10 FF D3 BB E0 10	MOV BX, INTF CALL INTF MOV BX, DTRF CALL DTRF MOV BX, SCNON CALL SCNON MOV BX, FNCCMM	Transfer data from EPROM to RAM Display sign-on message Wait for functional
4 112124-46-214 ⁰⁰⁻¹	0012	FF E3	JMP FN COMM	Commands and

FUNCTION NAME

INPUT

OUTPUT

CALLS

DESTROYS

DESCRIPTION

: INITN

• NONE

: NONE

: NONE

AL,DX

* Initializes 8251 for Clock freq. = 64 X baud rate
Stop bit = 1
No. parity, Word length = 8
All the routines developed for serial
communication with the CRT assume this
routine is already called.

LEBEL	ADDRESS	CONTENIS	MNEMONICS AND OPERANDS	COMMEN'IS
INIŢN	F000:1000 1003	BA F2 FF BO 2F	MOV DX, FFF2 Mov Al , 2F	Initialize 8251 as required
·	1005 1006 1008 1009	EE BO 27 EE C3	OUT DX,AL MOV, AL,27 OUT DX, AL RET	Receive and transmit enable

: CHRIN

INPUT

: NONE

- OUTPUT
- : AL
- CALLS
- DESTROYS
- : NONE
- : DX
- DESCRIPTION
- : Inputs the ASCII code of a character pressed on the ASCII keyboard, in the reg. AL. It waits till the receiver is ready.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
CHRIN. CHRI	F000:1010 1013 1014 1016 1018 1018 101B 101C	BA F2 FF EC A8 02 74 FB BA FO FF EC C3	MOV DX,FFF2 IN AL,DX TEST AL,O2 JZ CHRI MOV DX,FFFO IN AL,DX RET	<pre>} Get console's status Wait if receiver is not ready Get char.in AL }</pre>

FUNCTION NAME	: CHROUT
INPUT	* AL
OUTPUT	: NONE
CALLS	NONE
DESTROYS	• AH, DX
DESCRIPTION	: Outputs a char. whose ASCII code is in (AL) to the console
N	It waits till the transmitter is ready.

•

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
CHROUT CHRQ	F000:1020 1023 1025 1026 1028 102A 102A 102C 102F 1030	8A EO BA F2 FF EC A8 01 74 FB 8A C4 BA F0 FF EE C3	MOV AH, AL MOV DX, FFF2 IN AL, DX TEST AL, O1 JZ CHRO MOV AL, AH MOV DX, FFFO OUT DX, AL RET	Check for trans- } mitter to get ready by reading 8251's status Data transfer to } CRT through 8251

.

. ·

.

81

i.

FUNCTION NAME	: ECHO
INPUT	: AL
OUTPUT	: NONE
CALLS	: CHROUT
DESTROYS	: DX
DESCRIPTION	<pre>Echoes the character whose ASCII Code is in(AL)on the console. 'ESC' is echoed as '\$' 'CR' is echoed as 'LF'+'CR'.</pre>

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS.
ECHO	F000:1040	53	PUSH BX	Save BX
	1041	BB <u>20 10</u>	MOV BX, CHROUT	Pointer for CHROUT subroutine
	1044	50	PUSH AX	Save Char
	1045	3C 1B	CMP Al, 'ESC'	See if echoing 'ESC'
	1047	75 <u>02</u>	JNZ LI	No, branch
	1049	BO 24	MOV AL,\$	Yes,Echo as 🖇
Ll	104B	FF D3	CALL CHROUT	Output char
	104D	30 OD	CMP AL, CR	Check if CR
	104F	75_04	JNZ L2	No, branch
	1051	BO OA	MOV AL, 'LF'	Yes, output 'LF'
·	1053	FF D3	CALL CHROUT	Indirect call through BX
L2	1055	58	POP AX	Restore character.
	1056	5B	POP BX	Restore BX
	1057	C3	RET.	

•

.

.

FUNCTION NAME	: NTIMES
INPUT	: AL,CL
OUTPUT	: NONE
CALLS	: CHROUT
DESTROYS	: AH, BX,CL,DX
DESCRIPTION	Sends the character whose ASCII Code is in reg. 'AL' to the console as many times as the contents of reg. 'CL'. If (CL)=0, the character is outputted 256 times.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
NTIMES	F000:1060 1063 1065 1067 1069	BB <u>20 10</u> FF D3 FE C9 75 <u>FA</u> C3	MOV BX, CHROUT CALL CHROUT DEC CL JNZ L1 RET	Send char.to console till (CL)is decremented to zero

FUNCTION NAME	: SING
I NP UT	: CL,SI, DS
OUTPUT	: NONE
CALLS	: ECHO
DES TROYS	CL,DX,SI
DESCRIPTION	Sends an string of characters whose ASCII Codes are stored in memory locations starting from (DS):(SI). The no. of characters in the string are given by (CL).

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
SING	F000:1070	57	PUSH DI	Save DI
	1071	FC	CLD	Automatic Increment
	1072	BF <u>40</u> 10	MOV DI, ECHO	
Ll	1075	AC	LODSB	Load byte from (DS):(SI) and auto increment to (SI)
	1076	FF D7	CALL ECHO	
	1078	FE C9	DEC CL	All characters echoed
	107A	75 F <u>9</u>	JNZ L1	No, send next char.
	107C	5F	POP DI	Restore DI if yes
8.1987.842.982.994.21	107D	C3	RET	

.

FUNCTION NAME

: ERROR

INPUT

• NONE

• NONE

OUTPUT

CALLS

DES TROYS

CHROUT

• AX, BX, DX

DESCRIPTION

Sends 'x' as an error message to the console.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
ERROR	F000:1080 1083 1085 1087	BB <u>20 10</u> BO 2A FF D3 C3	MOV BX,CHROUT MOV Al,'x' CALL CHROUT RET	Send * to console.

FUNCTION NAME	: SGNON
INPUT	Mem. Locations F000:3000-3157
OUTPUT	* None
CALLS	: ECHO, NTIMES, STNG
DESTROYS	* AX, BX, CL, DX, SI, DI, BP, DS, ES.
•	This routine clears the whole CRT screen and displays the sign-on message.
DESCRIPTION	* The ASCII codes for each character are stored in the memory locations F000:3000-3157 The starting location is named as START.

	·			
LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
SGNON	F000:1090	BD <u>16 01</u>	MOV BP,NCHAR	No.of mem.locations in sign-on-table
	1093	FC	ĊĽD	
	1094	BB <u>00 F0</u>	MOV BX,Data Seg.	
	1097	S E DB	MOV DS, BX	
	1099	BB <u>40 10</u>	MOV BX, ECHO	
	1090	BE <u>00</u> <u>30</u>	MOV SI,START	Starting address of the table.
	109F	BF <u>60 10</u>	MOV DI,NTIMES	
	10A2	Bl 20 .	MOV CL,20	20 ₁₆ line feeds to
:	10A4	BO OA	MOV Al, LF }	blank the console
:	10A6	FF D7	CALL NTIMES	
	loas	AC	LODSB	
	10A9	3C FF	CMP AL, FF	Is data FF 🕏
-	CORE DATA DESCRIPTION COLORD TRANSMISSION			

contd...

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
i in an in an	10AB	75 <u>0A</u>	JNZ LI	No,branch
	load	BO 20	MOV AL, 'p'	Yes 'Space' in (AL)
:	10 AF	8A OC	MOV CL,(SI)	No.of spaces in (CL)
	10B1	46	INC SI	
	10 B2	4D	DEC BP	· · · · · · · · · · · · · · · · · · ·
	10B3	FE <u>C9</u>	DEC CL	One space less
	10B5	FF D7	CALL NTIMES	Send spaces to console
Ll	10B7	BB <u>40</u> <u>10</u>	MOV BX, ECHO	Echo the char.
	loba	FF D3	CALL ECHO	
	10BC	4D	DEC BP	All char.sent?
	lobd	75 <u>E9</u>	JNZ L2	No. send next.
	lobf	B1 <u>02</u>	MOV CL,NFL	No. of 'LF' to be given after SGNON message.
	1061	BO OA	MOV AL, 'LF'	·
	1003	FF D7	CALL NTIMES	
	1005	BB 70 10	MOV BX,SING	Send Guided by message
	1008	B1 42	MOV CL,NGD	No.of char in Guided by message
	loca	FF D3	CALL SING	
	locc	C3	RET	
Rauge som filler and det		nangera. A optimosition and an optimosition		un antisecteur de la cut licterie de la cut licterie de la cut de

.

ASCII CODES FOR SGNON MESSAGE:

START DW 3000

ASSUME DS: FOOO

F000:3000.DB	FF	08	23	20	23	20	23	FF	05	23	20	23	20	23	FF	04
3010	23	20	23	20	23	20	23	20	23	$\mathbf{F}\mathbf{F}$	03	23	20	23	20	23
3020	20	23	OD	FF	06	23	FF	AO	23	FF	0D	23	FF	07	23	FF
3030	06	23	OD	FF	0 6	23	FF	OВ	23	20	23	20	23	FF	08	23
3040	FF	07	23	20	23	20	23	20	23	OD	FF	06	23	FF	10	23
3050	FF	07	23	FF	07	23	FF	05	23	0D	FF	08	23	20	23	20
3060	23	FF	05	23	20	23	20	23	FF	08	23	FF	07	23	FF	06
3070	23	OD	AO	OA	AO	OA	FF	11	23	20	23	20	23	20	23	FF
30 80	04	23	20	23	20	23	20	23	FF	07	23	FF	07	23	20	23
3090	20	23	20	23	FF	04	23	FF	05	23	OD	FF	11	23	FF	06
30A0	23	FF	03	23	FF	0C	23	20	23	FF	06	23	FF	0 6	23	FF
. <u>3</u> 0B0	04	23	FF	03	23	OD	FF]]	23	20	23	20	23	20	23	FF
3000	04	23	20	23	20	23	FF	07	23	FF	03	23	FF	05	23	FF
30D0	06	23	FF	05	23	20	23	0D	$\mathbf{F}\mathbf{F}$	11	23	FF	05	23	FF	04
30E0	23	FF	OA	23	20	23	20	23	20	23	FF	04	23	FF	06	23
30Fa	FF	06	23	OD	FF	11	23	FF	06	23	FF	03	23	20	23	20
3100	23	20	23	FF	03	23	FF	07	23	FF	03	23	20	23	20	23
3110	20	23	FF	07	23	OD	20	20	20	20	20	20	47	55	49	44
3120	45	44	20	42	59	3a	31	29	53	48	2E	4D	2E	4B	2E	56
3130	41	53	41	4E	54	48	41	OD	20	20	20	20.	20	20	20	20
3140	20	20	20	20	20	20	20	20	32	29	53	48	2E	42	2E	4D.
3150	4F	48	41	4E	54	5 9	OD	OD								

FUNCTION NAME	FNCOMM
INPUT	: MEM. LOCATIONS F000:3170-3189 F000:31A0-31A7 F000:3F00-3F03
OUTPUT	: NONE
CALLS	ECHO, CHROUT, CHRIN, HELP, STAT
DESTROYS	: AX, BX, CX, DX, SI, DI, SP, DS, ES, SS Mem. locations 0000; 3EAO-3EBF
DESCRIPTION	: Waits for a functional command to be given by displaying a prompt character. The ASCII Codes of the given command are stored in locations OOOO: 3EAO-3EBF. It compares these codes with the ASCII codes of valid commands stored in locations FOOO: 31AO-31A7. If the command is valid, the address for executing that command is taken from mem. locations FOOO-3FOO-3FO3. For invalid commands a message, "HELP" FOR VALID COMMANDS is displayed, the ASCII Codes of which are stored in FOOO: 3170-3189.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
FNCOMM L4	F000:10E0 10E3 10E5 10E8 10EB 10ED 10EF	B9 <u>00 00</u> 8E D1 BC 00 01 BB 40 10 B0 0D FF D3 BB 20 10	MOV CX,0000 MOV SS,CX MOV SP,0100 MOV BX, ECH0 MOV AL,'CR' CALL ECH0 MOV BX,CHROUT	<pre>Set stack segment to (SS)</pre>

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	10F2	B0 2E	MOV AL,	Send prompt
	10F4	FF D3	CALL CHROUT) char
	10F6	FC	CLD	Clear direction flag
	10F7	8E C1	MOV ES,CX	(ES) -0000
	10F9	BF AO 3E	MOV DI, BUFFER	To store commands char.in buffer.
	10FC	B1 00	MOV CL, OO	Counter for no. of char.in the comman given.
L3	10FE 1101	BB <u>10</u> <u>10</u> FF D3	MOV BX,CHRIN CALL CHRIN	Input a character
	1103	BB 40 10	MOV BX, ECHO	Echo it
	1106	FF D3	CALL ECHO	}
	1108	3C OD	CMP AL, CR'	Compare if 'CR'
	AOLL	74 <u>1F</u>	JZ Ll	
	JOC	30 2F	CMP AL, 1/1	Is it a delete cha
	110E	74 05	JZ L2	Yes, branch
	סבוב	AA	STDS B	Store in buffer.
	נונו	FE Cl	INC CL	Increment Counter for no. of chars.
	1113	EB <u>E9</u>	JMP L3	given
12	1115	4F	DEC DI	Foint to previous
	1116	FE C9	DEC CL	char.in buffer to delete it No.of chars. to be decremented by 1
	1118	79 <u>E4</u>	JNS L3	

			nan nan ing sebagainan nanananan sebagainan sebagainan sebagainan sebagainan sebagainan sebagainan sebagainan s	
LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
ERR	111A	BB <u>80</u> 10	MOV BX, ERROR	Error if rubbing
	111D	FF D3	CALL ERROR	} (deleting)unnece- ssarily
	112F	BB <u>70 10</u>	MOV BX,SING	Give the
	1122	BE <u>70 31</u>	MOV SI, HELMES	message -
	1125	Bl <u>lA</u>	MOV CL, NCHAR	HELP' FOR
	1127	FF D3	CALL STNG	VALID COMMANDS
	112A	EB <u>BD</u>	JMP L4	Search for next command.
Ll	112B	80 F9 04	CMP CL,04	Check if no. of char.
	112E	75 <u>EA</u>	JNZ ERR	is 4.if not, error.
				If yes, compare buffer with fn al table FNCTL
	11.30	BO <u>02</u>	MOV AL,NFC	No. of fn.al commands
	1132	8A C8	MOV CL,AL	Save in CL
	1134	DO EO	SHL AL,01	Multiply by 4. to find total no.of
	1136	DO EO	SHL AL, Ol	char.in table.
•	1138	FE C8	DEC AL	SI will now
	113A	B4 00	MOV AH,00	point to end of
	113C	BE AO 31	MOV SI, FNCTL	FNCTL TABLE
	113E	03 FO	ADD SI, AX	
	1141	88 C8	MOV AL,CL	
	1143	FD	STD	Auto decrement.
a - a - a - a - a - a - a - a - a - a -	depression in Carrier and an approach	and the state of t	angeonesis asonotennesses and contennesses	an a

LEBEL	ADDRESS	COMMENTS	MNEMONICS AND	COMMENTS
			OPERANDS	
L6	1144	. BF A3 3E	MOV DI, BUFFER+03	Point to last.char. in buffer.
	1147	B9 04 00	MOV CX,0004	
	114A .	F3 A6	REPE CMPS B	CX is decremented
	114C	74 <u>08</u>	JZ L5	by no. of characters which are same.
	114E	FE C8	DEC AL	Compared all commands.
	1150	74 <u>C8</u>	JZ ERR	Yes, Error.
	1152	28 Fl	SUB SI, CX	No, decrease SI by CX to point to end of prev. command.
	1154	EB <u>EE</u>	JMP L6	
L5	1156	B4 <u>3F</u>	MOV AH, High byte	Higher byte of address from where address for fn.al command
	1158	FE C8	DEC AL	service routine is to be taken
	115A	DO EO	SHL Al,Ol	AL=00 for Ist comm. =02 for 2nd comm. and so on.
	115C	8B D8	MOV BX,AX	
	115E	FF 17	CALL BX	Indirect call within segment.
	1160	BB EO 10	MOV BX, FNCOMM	Jump to serve
	1163	FF E3	JMP F.NCOMM	Fn.al Comm.
No. of Concession, Name				

ASCII CODES FOR 'HELP' FOR VALID COMMANDS MESSAGE:

HELMES DW 3170

ASSUME DS. FOOD

F000:3170 DB 27 48 45 4C 50 27 20 46 4F 52 20 56 41 4C 49 44 3180 20 43 4F 4D 4D 41 4E 44 53 0D

ASCII CODES FOR THE VALID COMMANDS:

FNCTL DW 31A0

ASSUME DS; FOOO

F000 31A0 DB 48 45 4C 50 53 54 41 54

ADDRESS TO SERVE VALID COMMANDS

ASSUME DS : FOOD

F000:3F00 DB 80 11 B0 14

FUNCTION NAME	HELP
INPUT	LOCATIONS FOOD: 31A0 -31A7
OUTPUT	NONE
CALLS	ECHO,SING
DESTROYS	AX,BX,CX,DX,SI
DESCRIPTION	This routine displays the list of valid commands as - 1) HELP

2) STAT

The ASCII codes for these are stored in locations FOOO: 31A0-31A7.

LEBEL	ADDRESS	CONTENTS	MENMONICS AND OPERANDS	COMMENTS '
HELP	F000:1180	В4 02	MOV AH,02	No.of comm.to be displayed
	1182	46	INC SI	Point to begining of FNCTL table
	1183	B5 31	MOV CH,31	ASCII code for 1
Ll	1185	BB 40 10	MOV BX, ECHO	
	1188	BO OD	MOV AL, CR	
	118A ·	FF D3	CALL ECHO	Echo 'CR'
	118C	8A C5	MOV AL, CH	ASCII code for comm.
	118E	FF D3	CALL ECHO	send comm.no.to console
	1190	BO <u>29</u>	MOV AL, ')'	
	1192	FF D3	CALL ECHO	Send')' to console
	1194	BO 20	MOV AL, ">"	
	1196	FF D3	CALL ECHO	Send 'Ø'to console

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
kuungedanktoiku unerrikku .	1198	B1 04	MOV CL,04	No. of char.in a command.
	119A	BB 70 10	MOV BX,SING	
	119D	FF D3	CALL SING	Send comm.pointed by (SI)
	119F	FE C5	INC CH	
	11A1	FE CC	DEC AH .	All commands sent
. •	11A3	75 EO	JNZ Ll	No, branch.
	11A5	: C3	RET	
		and a second and a		e kojim jekzami na filozofi zatelo. Ali in teorem majačkih direkti kojim jeka na se na se na se na se na se na

FUNCTION NAME	• VALID
INPUT	: AL
OUTPUT	: NONE
CALLS	ERROR
DESTROYS	AL, BX, DX
DESCRIPTION	Checks if a char. in AL is a BCD digit or not. If not, stores 'x' in AL and echos it.
• •	Also, for valid char., it convets ASCII char.into unpacked BCD format.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
VALID	F000:11B0	20 30	SUB AL,30	Convert to unpacked BCD
	11B2	78 <u>04</u>	JS ERR	Error, if ASCII code less than 30.
	11B4	3C 09	CMP AL,09	Error if BCD Char.>9
	1186	7E 05	JLE L1	
ERR	1188	BB <u>80</u> <u>10</u>	MOV BX, ERROR	Echos 'x' and stores in AL.
	IIBB	FF D3	CALL ERROR	
Ll	11BD	С3	RET	
4 - 			and a state of the	Viena de la companya

FUNCTION NAME	: SETP
INPUT	Mem.locations F000:31B0-31B9
OUTPUT	: Mem. Locations0000:3EF0-3EF1
CALLS	: ECHO, STNG, CHRIN, VALID
DES TROYS	* AX, BX, CX, DX, SI, DI Mem. locations 0000:3EF0-3EF1
DESCRIPTION	: Displays 'REF.TEMP:' (ASCII codes stored in F000:31B0-31B8), and waits for the BCD set point to be given. The set point in dB packed. BCD format is stored in RAM area 0000: 3EF0-3EF1. If nothing is given, the ref. temp. will be taken as 40. This routine is already described before.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
STEP	F000:11C0	FC	CLD	Auto increment
	11C1	BF <u>FO 3E</u>	MOV DI,SETPT	Point to begining of RAM area wh ere ref. temp is to be stored.
	11C4	BE <u>BO</u> <u>31</u>	MOV SI, PAR	Point to table where ASCII, codes of 'REF. TEMP:are stored.
	1107	BB 70 <u>10</u>	MOV BX,SING	
	LICA	Bl OA	MOV CL,OA	Display REF TEMP
	JJCC	FF D3	CALL STNG	
	lice	B9 0 0 04	MOV CX, 0400	Move Ref.Temp <-4 0°C.
·	1101	90	NOP	
	11D2	90	NOP	
	1103	90	NOP	•

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	11D4	90	NOP	
	11D5	90	NOP	
L2	1106	BB <u>10 10</u>	MOV BX, CHRIN	
	11D9	FF D3	CALL CHRIN	Input character
	IIDB	BB <u>40 10</u>	MOV BX, ECHO	
	llDE	FF D3	CALL ECHO	Echo it
	lIEO	3C OD	CMP AL, CR	Is it "CR"?
	11E2	74 <u>of</u>	JZ Ll	Yes, branch
•	11E4	BB <u>B0</u> 11	MOV BX,VALID	
	11E7	FF D3	CALL VALID	Display 'x' if invalid char.
	11 Ę 9	3C 2A	CMP AL, 'x'	Is char.invalid 4
	lleb	74 <u>E9</u>	JZ L2	Yes, branch
	lled	8A E9	MOV CH,CL	(CX) (Higher digit
	llef	8A C8	MOV CL,AL	(CL) \leftarrow Lower digit
	llFl	EB <u>E3</u>	JMP L2	
Ll	11F3	89 C8	MOV AX,CX	(AX) ← Unpacked BCD value.
	11F5 ⁽	AB	STDS W	
•	11F6	C3	RET	

ASCII CODES FOR "CR REF.TEMP".

PAR DW 31B0 ASSUME DS: FOOO

F000: 3180 DB OD 52 45 46 2E 54 45 4D 50 3A

FUNCTION NAME	: INTF
INPUT	: AX
OUTPUT	: AX,BL
CALLS	• NONE
DESTROYS	: AX,BX
DESCRIPTION	: An in
	norma

An integer in (AX) is returned as a normalised floating point no. with mantissa in (AX) and exponent in (BL).

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
INTF	F000:1300	B7 00	MOV BH,00	Flag to indicate -ve
:	1302	B3 4F	MOV BL,4F	Set exponent < 4F
	1304	A9 FF 7F	TEST AX,7FFF	Is no. zero?
	1307	74 <u>13</u>	JZ_L3	Yes branch
	1309	F6 C4 80	TEST AH,80	Check if no.is-ve
	1300	79 <u>04</u>	JNS LI	
	130E	FE C7	INC BH	If negative,
	1310	F7 D8	NEG AX	make +ve
Ll	1 312	F6 C4 40	TEST AH,40	Check if normalised
	1315	75 21	JNZ STSCN	If yes,set sign
	1317	Dl EO	SHL AX,01	Decrease exp.by
	1319	4B	DEC BL	l and left shift.
Lana in antiquità d'attant				

LEBEI,	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	131A	EB <u>F6</u>	JMP L1	
L3	131C	F6 C4 80	TEST AH, 80	
	131F	74 <u>oc</u>	JZ UFLOWÈ	
	1321	B4 C0	MOV AH, CO	
	1323	FE C3	INC BL	· .
	1325	03	RET	
UFLOW	132A	B8 00 00	MOV AX,0000	M e ntissa underflow
UFLOWE	132D	B3 00	MOV BL,00	Exponent underflow
	1 3 2F	C3	RET	
STSGN	1338	F6 C7 01	TEST BH,01	Is no ve ie. LSB of BH=1?
	133B	74 02	JZ L5	No,branch
	133D	F7 D8	NEG AX	Yes,Negate no.
L5	133F	C3	RET	
L				

FUNCTION NAME

INPUT

OUTPUT

CALLS

DES TROYS

: FTIN

AX,BL

: AX

: NONE

: AX, BX,CL

DESCRIPTION

Converts a floating point no. in (AX)(BL) into an integer in (AX).
Overflow is set when result exceeds.
16 bits and an underflow is set when result is less than 0001.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
FTIN	F000:1350 1352 1354 1356 1359 135B 135D 135F	 B7 4F 2A FB 78 <u>14</u> 80 FF 0F 7F CF 8A CF D3 F8 C3 	MOV BH,4F SUB BH,BL JS OVRFLM CMP BH,0F JG UFLOW MOV CL,BH SAR AX,CL RET	Regd.amount of right shift Is exponent > 4F ? No, is shift >15 ₁₀ ? Yes,underflow No,shift arithmetic right Return
				х

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
OVRFLOW OVRFLM	F000:1368 136A 136C	B3 7F 08 E4 78 <u>04</u>	MOV BL,7F OR AH, AH JS NEGO	Set exponent to 7F Is(AX-) - ve ? Yes,branch
NEGO	136E 1371 1372	B8 FF 7F C3 B8 01 80	MOV AX,7FFF RET MOV AX,8001	No,+ve overflow
	1375	C3	RET	MAG OVELITOM

•	•
FUNCTION NAME	: NORMA
INPUT	: AX,BL
OUTPUT	: AX,BL
CALLS	: UFLOW, OVEFLOW, STSGN
DESTROYS	: AX,BX
DESCRIPTION	: A floating point no. in (AX) (BL) is returned with a normalised floating point no. in (AX) (BL)

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
NORMA	F000:1380	52	PUSH DX	Save DX
	1381	30 FF	XOR BH,BH	Clear BH to check for -ve no.
	1383	A9 FF 7F	TEST AX,7FFF	
	1386	75 <u>1B</u>	JNZ NORMI	
	1388	F6 C4 80	TEST AH,80	Is mantissa 8000 ?
	138B	74 08	JZ L2	No,branch to underflow as mantissa is O.
	138D	B4 C0	MOV AH,CO	Yes,set mantissa COOO
	138F	FE C3	INC BL	Increase exponent by 1
	1391	78 09	JS L3	If overflow, branch
	1393	EB 27	JMP RETURN	Return
L2	1395	BA <u>2A 13</u>	MOV DX, UFLOW	Set underflow
	1398	FF D2	CALL UFLOW	
	139A	EB <u>20</u>	JMF RETURN	· · · ·

MNEMONICS AND OPERANDS COMMENTS CONTENTS LEBEL ADDRESS BA 68 13 MOV DX, OVRFLOW Set overflow L3 139C CALL OVRFLOW FF D2 139F JMP RETURN 13A1 EB 19 OR AX, AX Is no - ve 🕈 09 CO 13A3 NORML No, branch JNS L1 13A5 79 04 Yes, Set flag for INC BH FE C7 13A7 -ve no. NEG AX Negata mantissa 13A9 F7 D8 F6 C4 40 TEST AH,40 Is no normalised ? 13AB. L1Yes, branch JNZ L4 13AE 75 07 SHL AX,01 13B0 D1 EO No, shift mantissa left. DEC BL Decrease exp by 1 13B2 4BUnderflow if exp.<0 JS L2 78 <u>E0</u> 13B3 JMP SHORT LL Check again 13B5 EB F4L4 BA <u>38 13</u> MOV DX,STSGN Set sign of the 13B7 normalised no. 13BA FF D2 CALL STSGN Restore DX RETURN 5A 13BC POP DX 13BD C3 RET Return.

FUNCTION NAME
INPUT
OUTPUT
CALLS
DESTROYS
DESCRIPTION

SUBTRN/ADDN

: AX, BX, DX

- : AX,BL
- : NORMA, OVEFLOW
- : AX, BX, CL, DX
- The routine ADDN adds the two normalised operands in (DX)(BH) and (AX)(BL). The routine SUBTRN subtracts the later from the former. The result of both the operations is returned in (AX)(BL). Thus, the routine has two entries one for addition and another for subtraction.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
SUBTRN ADDN	F000:13D0	F7 D8 88 D9	NEG AX MOV CL,BL	
	13D4	28 F9	SUB CL,BH	Exponent difference in CL
,	13D6	74 <u>OF</u>	JZ ADDM	If diff=0,branch
	13D8	79 <u>06</u>	JNS SHIFT	If diff.>0,branch
	13DA	F6 D9	NEG CL	(CL) \leftarrow Magnitude of diff.
	13DC	8A DF	MOV BL,BH	Larger magnitude no. in
	13DE	87 C2	XCHG AX,DX	(AX)(BL)
SHIFT	13E0	80 F9 OF	CMP CL,OF	Diff.magnitude >OF ?
	13E3	7F 1C	JG RETURN	Yes, return
	13E5	D3 FA	SAR DX,CL	No.equalise the exponents

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
ADDM	13E7	03 C2	ADD AX,DX	Add mantissas
	13E9	BA 80 13	MOV DX, NORMA	Address of normaliza- tion routine
	13EC	70 <u>04</u>	JO ADDO	If Addition overflow, branch
	13EE	FF D2	CALL NORMA	Normalise.
	13F0	EB <u>OF</u>	JMP RETURN	
ADDO	13F2	DI D8	RCR AX,01	Shift right through carry
	13F4	FE C3	INC BL	Increase exp by 1
	13F6	FF D2	CALL NORMA	Normalise
	13F8	08 DB	OR BL,BL	Exponent's sign bit set ?
:	13FA	79 05	JNS RETURN	No, return
	13FC	BA <u>68</u> <u>13</u>	MOV DX, OVRFLOW	Yes, overflow
	13FF	FF D2	CALL OVRFLOW	
RETURN	1401	C3	RET	

FUNCTION NAME	MULT
INPUT	AX, BX, DX
OUTPUT	: AX,BL
CALLS	: OVRFLOW, UFLOW, NORMA
DES TROYS	: AX, BX, CX, DX
DESCRIPTION	This routine multiplies the two normalised operands in (DX)(BH) and (AX)(BL) and returns the normalised result in (AX)(BL).

à

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
MULT	F000:1410	02 DF	ADD BL,BH	Add exponents
	1412	B7 00	MOV BH, OO	Indi a ates overflow/ underflow
-	1414	79 <u>02</u>	JNS Ll	Branch if sign flag set.
	1416	FE C7 '	INC BH	
Ll	1418	F7 EA	IMUL DX	Integer multiply mantissas
	141A	87 C2	XCHG AX,DX	Higher order result in AX
	141C	80 EB 40	SUB BL,40	Subtract bias
	141F	79 <u>14</u>	JNS L4	
	1421	08 FF	OR BH, BH	
	1423	75 02	JNZ L2	
	1425	EB 07	JMP L3	
-) 	a na an	1 - 1 - 100 - 100 to graph carbon and the state	1977 - 1929 - La <u>constantingua di</u> angela di second	

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
L2	1427 142A	BA 68 13 FF D2	MOV DX,OVRFLOW CALL OVRFLOW	Set overflow
L3	142C 142E 1431	EB <u>10</u> BA <u>2A 13</u> FF D2	JMP RETURN MOV DX,UFLOW CALL UFLOW	Return Set underflow
L4	1433	EB 09	JMP RETURN	Return
	1435	D0 E6	SHL DH,01	Shift result
	1437	DI DO	RCL AX,Ol	}
	1439	BA 80 13	MOV DX,NORMA	left once
RETURN	143C	FF D2	CALL NORMA	Normalise
	143E	C3	RET	Return

FUNCTION NAME	DIV
INPUT	AX, BX, DX
OUTPUT	AX,BL
CALLS	OVRFLOW, UFLOW, NORMA, STSGN
DES TROYS	AX, BX, CX, DX
DESCRIPTION	This routine divides the normalised operand in (DX).(BH) by a normalised operand in (AX) (BL) and returns the result in (AX)(BL).

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
DIV	F000:1450	8B C8	MOV CX,AX	Save denom.in CX
	1452	2A FB	SUB BH,BL	
	1454	8A DF	MOV BL,BH	Exponent diff.in BL
	1456	B7 00	MOV BH,00	
	1458	8A C7	MOV AL,BH	AL indicates underflow/overflow
•	145A	79 02	JNS LI	
	145C	FE CO	INC AL	
Ll	145E	80 C3 40	ADD BL,40	Add bias
	1461	79 14	JNS L2	
	1463	08 CO	OR AL,AL	
	_1465	75 <u>09</u>	JNZ L6	Underflow,whensign before and after adding 40.
	1467	32 E6	XOR AH, DH	MSB decides sign of overflowed result.

LEBEL	ADDRESS	CONTENTS	MNEWIONICS AND OPERANDS	COMMENTS
			andalar na na manana (, , , , , , , , , , , , , , , , , ,	
	1469	BA 68 13	MOV DX, OVRFLOW	
	146C	FF D2	CALL OVRFLOW	Set overflow
	146E	EB <u>2F</u>	JMP RETURN	
L6	1470	BA <u>2A 13</u>	MOV DX, UFLOW	
	1473	FF D2	CALL UFLOW	Set underflow
	1475	EB <u>2A</u>	JMP RETURN	
L2	1477	31 CO	XOR AX,AX	Clear AX
	1479	08°F6	OR DH, DH	Is dividen d - ve ?
	147B	79 <u>04</u>	JNS L3	No, branch
	147D	FE C7	INC BH	Negative mantissa flag
	147F	F7 DA	NEG DX	Make + ve
L3	1481	08 ED	OR CH, CH	Is divider-ve ?
	1483	79 04	JNS L4	No,branch
	1485	FE_C7	INC BH	
	1487	F7 D9	NEG CX	Make denom.+ve
L4 .	1489	DI EL	SHL CX,01	Shift denom.left once
	148B	F7 F1	DIV CX	Divide
	148D	08 E4	OR AH, AH	Is quotient's MSB Set?
	148F	79 04	JNS 15	No,branch
				•

LEBEL	ADDREAS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	1491 1493	Dl E8 FE C3	SHR AX,01 INC BL	Yes, shift result right Increment exp.by 1
L5	1495	BA 38 13	MOV DX,STSGN	
	1498	FF D2	CALL STSGN	Set sign
	149A	BA <u>80 13</u>	MOV DX, NORMA	
	149D	FF D2	CALL NORMA	Normalise
RETURN	149F	C3	RET	
				an a

FUNCTION NAME	STPM
INPUT	NONE
OUTPUT	NONE
CALLS	DELAY
DESTROYS	BX,AL,DX
DESCRIPTION	This routine rotates the stepper motor through 1.8 ⁰ by issuing pulses from PA of 8255-I

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
STPM	F000 1600 1602 1605 1606 1609 160B 160C 160F 1611 1613 1614 1616 1618 1618 1619	BO 80 BA FE FF EE - 'BA F8 FF BO FA - EE - - BB 30 16 FF D3 - BO F5 - EE - - FF D3 -	MOV AL, 80 MOV DX, FFFE OUT DX, AL MOV DX, FFF8 MOV AL, FA OUT DX, AL MOV BX, DELAY CALL DELAY MOV AL, F6 OUT DX, AL CALL DELAY MOV AL, F5 OUT DX, AL CALL DELAY	<pre>Initialize all } ports as o/p ports o/p code } for. step 0 Delay between } 2 steps o/p code for step 1 Delay between 2 steps o/p code for step 3</pre>

			en en en de se dere de Sedere dans de en anvertiere de seder de service de sedere de sedere de sedere	
LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
,	ad férníjou a Thurb allingayan			na z doktor ok en kroninn ar Danged Ordang Arts vongelage i godernis fore toggenger synapsision fan
	161B	B0 F9	MOV AL, F9	o/p code for step 4.
	161D	EE	OUT DX,AL	
	161E	FF D3	CALL DELAY	
	1620	C3	RET	
DELAY	1630	50	PUSH AX	Save reg.
	1631	B8 00 OF	MOV AX,OFOO	Count for 30 ms delay
Ll	1634	48	DEC AX	Decrement count
· ·	1635	75 <u>FD</u>	JNZ LI	Is count zero ?
	1637	.58	POP AX	Yes, restore reg.
	1638	C3	RET	
	and the second second	י מערכים ערבים אוריים איריים אירים ביציע בייני איני איני איני איני איני איני אינ	landa milikutaki site site site dan permekinaki teksi teksi yaran basi permekatar yar	

FUNCTION NAME	SCR	
INPUT	BX	
OUTPUT	NONE	
CALLS	NONE	
DESTROYS	AL,DX	
DESCRIPTION	This routine issues the firing pulses to SCR converter bridge at an angle α , which corresponds to a delay count in (BX) to be loaded into the timer. The delay is with reference the rising edge o/p of zero crossing detected	to

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
G 2 Gungan (1999 - 19	F000 1640 1643 1645 1646 1649 164B 164C 164E 164F	BO B2 EE	MOV DX,Control wor MOV AL,B2 GUT DX,AL MOV DX,Counter 2 MOV AL,BL OUT DX,AL MOV AL,BH OUT DX,AL RET	d Counter 2, LSB first, MSB next,mode 1, Binary counting Load LSB into Counter 2. Load MSB

FUNCTION NAME	ADC
INPUT	BL
OUTPUT	AL
CALLS	NONE
DES TROYS	AL,DX
DESCRIPTION	This r
	addres
	conton

This routine initiates the ADC, addressing the channel no. by the content of reg. (BL), and inputs the digital equivalent of the analog voltage applied at the input of ADC into reg.(AL). The 24-channels are addressed by 00-17, as desoribed earlier.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	F000 :1 660 1663 1665	BA E6 FF B0 83 EE	MOV DX,FFE6 MOV AL,83 OUT DX,AL	PA and PC upper as o/p ports. PB and PC lower of 8255-I as I/P ports.
	1666 1669 166B	ba eo ff <u>8a c3</u> ee	MOV DX,FFE.O MOV AL,BL OUT DX,AL	Send valid address and latch it through 8255
	166C 166E 166F 1671	OC CO EE 8A C3 EE	OR AL,CO OUT DX,AL MOV AL,BL OUT DX,AL	Send ALE and start of conv. pulse (make high and then low). The address should remain valid through- out.

LEBEL .	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	Comments
Ll	1672 1675 1676 1678	BA E4 FF EC A8 01 75 FB	MOV DX,FFE4 IN AL,DX TEST AL,O1 JNZ L1	Check if EOC }has gone low
L2	167A 167B 167D 167F 1682 1683	EC A8 Ol 74 FB BA E2 FF EC C3	IN AL,DX TEST AL,O1 JZ L2 MOV DX,FFE2 IN AL,DX RET	Check if EOC has gone high Input the o/p of ADC

FUNCTION NAME

.....

• FREQ

CX :

INPUT

- OUTPUT
- CALLS
- DES TROYS

* Al,BL,CX,DX

: NONE

DESCRIPTION

* This routine counts the no. of pulses in one sec at the PC₀ of 8255-II. Counter 0 of 8253 is loaded with a count of 61300₁₀ in mode 0 for getting a delay of around 50 ms, which interrupts the processor through IR4 of 8259. When this interrupt comes twenty times, i.e. 50 x 20 ms = 1 sec are over the no. of pulses counted are returned in (CX). A description of this routine is given earlier. The offset and segment address for I.S.S. is contained in locations 0000:03F0-03F3

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
FREQ	F000:1690 1693 1695 1696 1699 169B 169D	 BA FF FF BO 81 EE BA C8 FF BO 13 EE 42 42 	MOV DX,Cont.reg. MOV AL,mode wd OUT DX,AL MOV DX, FFC8. MOV AL,XXX1 OX11 OUT DX, AL INC DX INC DX	Initialize PC lower as I/P port and rest all as o/p port. ICW1 Edge triggering
	169E - 16A0	BO F8 EE	MOV AL, III IXXX OUT DX, AL	Type 252 interrupt Jat IR4

* Mem. locations 0000: 03F0-03F3

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	16A1	BO 03	MOV AL,0000 OX11	8086 mode
	16A3	EE	OUT DX,AL	Automatic EOI not special fully g ested mode.
	16A4	BO CF	MOV AL, CF	Mask all interrupt
	16A6	EE	OUT DX,AL	lines except IR4
	16A7	B9 00 00	MOV CX,0000	Initial freq.count
	16AA 16AD 16AF	BA DE FF BO 30 EE	MOV DX,Cont.reg. MOV Al,Mode wd OUT DX,AL	Initialize counter 0 in mode 0, ISB first, MSB next,Binary coun- ting.
	16B0	BA D8 FF	MOV DX, Counter O	
	16B3	BO 74	MOV AL,74	Load a count
	16B5	EE	OUT DX,AL	61300 ₁₀ (_EF74 ₁₆)
	16B6	BO EF	MOV AL, EF	in counter O
	16B8	EE	OUT DX,AL	۰.
	16B9	B3 14	MOV BL,14	Count for no. of
	16BB	FB	STI	timer interrupts.
	16BC	BA FD FF	MOV DX, Port C	Poll through PCo of 8255-II
Ll	16BF	EC	IN AL,DX	1974 - C.
	1600	A8 Ol	TEST AL,01	Is PCo low P
	1602	75 FB	JNZ L1	No,wait
L2	16C4	EC	IN AL,DX	Yes, poll again

LEBEL	ADDRESS	CONTENIS	MNEMONICS AND OPERANDS	COMMENTS
	16C5 16C7	A8 01 74 FB	TEST AI 01 JZ L2	Is PC _o high ? No,wait
	1609	41	INC CX	Increment no.of pulses counted.
	16CA	EB F3	JMP Ll	Branch for further counting
	16CC	C3	RET	Return

I.S.S. FOR IR 4

LEBEL	ADDR ESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	F000 + 16D0	50	PUSH AX	Save registers
	16D1	52	PUSH DX	to be used.
	16D2	FE CB	DEC BL	20 interrupts over o
	16D4	74 <u>14</u>	JZ 13	Yes branch
i	16D6	BA DE FF	MOV DX, Cont.reg.	
	16D9	BO 30	MOV AL, mode wd	For
	16DB	EE	OUT DX,AL	further
	16DC	BA D8 FF	MOV DX, Counter 0.	Interrupts
	16DF	BO 74	MOV AL,74	
	16E1	EE	OUT DX,AL	
	16E2	BO EF	MOV AL, EF	
	16E4	EE	OUT DX,AL	
	16E5	5A	POP DX	Restore
	16E6	58	POP AX	registers
	16E7	FB	STI	
	16E8	EB 08	JMP L4	
L3	l6ea ·	81 C4 06 00	ADD SP,0006	To point to CS of sub FREQ in the staok
	16ee	BB CC 16	MOV BX,Return add of sub.FREQ	
	16F1	53	PUSH BX	To point to return add of sub.FREQ.
L4	16F2	CF	IRET	Return from I.S.S.

ADDRESS TO SERVE IR4 I.S.S.

0000.03F0 DB DO 16 00 F0

FUNCTION NAME

OUTPUT

CALLS

DESTROYS

STAT

Mem. locations F000: 31B0 ~ 31B9 Mem. location 000:3EE0 ~ 3EE1 SETP, UPBBC AX,BX,CX,DX,SI,DI Mem. locations 0000: 3EE0-3EE1, 0000: 3EF0-3EF1

DESCRIPTION

This routine asks for the ref. temp in BCD and converts this value into binary equivalent through subroutine UPBBC and . stores in location 0000: 3EEO-3EE1.Then it jumps to subroutine STAT1 which monitors the temperature through PID control scheme.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
STAT	F000:14B0 14B3 14B5 14B8 14BA	BB CO 11 FF D3 BB OO OO BE DB BB OO 18	MOV BX,SETP CALL SETP MOV BX,0000 MOV DS,BX MOV BX,UPBBC	Ask set point (DS) <- 0000
	14BD 14BF 1462	FF D3 BB 00 17 FF E3	CALL UPBBC MÖV BX,STATL JMP STAT 1	Convert into binary equiv. Monitor variable

FUNCTION NAME	STAT 1
INPUT	Mem. locations 0000:03F4-03F7,3F00-3F27
OUTPUT	None
CALLS	ADO, PID, SCR, SAPPD
DESTROYS	AX,BX,CX,DX,SI,DT,BP,DS Mem. locations 0000: 3F00-3F1D, 3F28-3F2F
DESCRIPTION	This routine monitors the temperature through PID control scheme. The fifteen errors (assumed zero initially) are stored in locations 0000:3F00-3F1D; parameters K in $0000:3F1E-3F1F$, K _I T _S in $0000:3F20-3F21$, K _D T _S in $0000:3F22-23$. The value of P _S is to be stored in $0000:3F24-3F27$ before executing the main program.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
STATI	F000:1700 1703 1705 1708 1708 1708 170B 170D 170E 1711 1713 1714 1716	BB 00 00 8E DB BC 00 01 BA DE FF BO 76 EE BA DA FF BO 74 EE BO EF EE	MOV BX,0000 MOV DS,BX MOV SP,0100 MOV DX,FF DE MOV AL,76 OUT DX,AL MOV DX,FF DA MOV AL,FF DA MOV AL,74 OUT DX, AL MOV AL,EF OUT DX, AL	<pre>(DS) ←0000 (SP) ←0100 Initialize 8253,counter 1 in mode 3 Load count for time period of 50 ms in counter 1</pre>

LEBEL	ADDRE SS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	1717	BD AO OO	MOV BP, OO AO	No. of interrupts of duration 50 ms each,for a sampling pol of 8 sec.
	171A	BA C8 FF	MOV DX, FFC8	Initialize 8259
	171D	BO 13	MOV AL,13	Edge triggering
	171F	EE -	OUT DX,AL	
	1720	42	INC DX	
	1721	42	INC DX	
	1722	BO F8	MOV AL,F8	Type 253 interrupt
	1724	EE	OUT DX,AL	∫at IR5
	1725	- B 0 03	MOV AL,03	8086 mode, MEOL,
	1727	EE	OUT DX,AL	Not special fully node
	1728	BO DF	MOV AL, DF	unmask IR5
	172A	EE	OUT DX,AL	
	172B	FC	CLD	Auto increment
	1720	90	NOP	
	172D	90	NOP	
	172E	90	NOP	
	172F	FB	STI	Enable interrupt
Ll	1730	F4	HALT	Synchronise with
	1731	EB FD	JMP L1	8 sec.sampling interval
	1733	BD A0 00	MOV BP,00A0	Reload counter for
				160 times 50 ms
¹ =10				interrupts

LEBELADDRESSCONTENTSMNEMONICS AND OPERANDSCOMMENTS1736B3 11MOV B1,11Input digital1738BE 60 16MOV SI,1660of temp through the second secon	
1738 BE 60 16 MOV SI, 1660 of temp through	
	l equiv.
173B FF D6 CALL ADC Channel] of	lgh
reg. AL	ADC-3 in
173D B4 00 MOV AH,00 Higher byte	← 00
173F BE EO 3E MOV SI, 3EEO	
1742 8B 14 MOV DX,(SI) (DX) Set po	int
1744 2B DO SUB DX, AX $(DX) \leftarrow$ Error	
1746 BF C 3F MCV DI, 3F C Store error	in
1749 89 15 MOV (DI), DX 0000:3FIC-3F	ID
174B BE 80 17 MOV SI,PID	
174E FF D6 CALL PID (DX)(AX)<-16	0, -α
1750 F7 C2 00 TEST DX,8000 Is $(160^{\circ}-\alpha)$ 80	02
1754 74 05 JZ L2 No, branch	
1756 BB 89 2A MOV BX,2A89 Yes,set firi 2A89 (i.e. 1	ng angle (60°)
1759 EB 1C JMP L3 Branch	
L2 175B F7 C2 FF TEST DX,7FFF Is $(160^{\circ}-\alpha)$	255 <u>}</u>
175F 75 13 JNZ L4 Yes, branch	
1761 BB AO OO MOV BX,160 ₁₀ No.,evaluate	α
1764 2B D8 SUB EX, AX (BX) $\langle -\alpha $ in	degrees
1766 78 0C JS L4 Branch if α	< 0 ⁰
1768 BO 44 MOV AL,68 ₁₀ Timer count	~~
176A F6 E3 MUL AL,BL a(degrees)X6	⁸ 10

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	176C	OB CO	OR AX,AX	Is count zero?
	176E	74 04	JZ L4	Yes,branch
	1770	8B D8	MOV BX,AX	(BX) ← count
	1772	EB 03	JMP L3	Branch
L4	1774	BB Ol OO	MOV BX 0001	O ⁰ firing angle count
L3	1777	BE 40 16	MOV SI,SCR	Issue firing pulses
	177A	FF D6	CALL SCR	to SCR bridge
	177C	EB B2	JMP L1	Wait till next sampling period.
				•

ADDRESS TO SERVE IRS, i.e. SAPPD :

0000:03F4 DB F0 17 00 F0

FUNCTION NAME	PID
INPUT	Mem locations 0000:3F00- 3F27
OUTPUT	AX, DX
CALLS	None
DESCTROYS	AX, BX, CX, DX, SI, DI
	Mem. locations 0000: 3F00-3F1D, 3F28-2F2F
DESCRIPTION	This routine, through PID control scheme
	calculates the actuating signal value in 4 bytes and returns the result in (DX)(AX), with higher bytes in DX and lower bytes in AX.

.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
PID	F000 :1 780	Bl OE	MOV CL,OE	No. of additions of error
	1782	BE 00 3F	MOV SI, 3F00	
	1785	AD	LODS W	
Ll	1786	03 04	ADD AX,(SI)	
	1788	46	INC SI	
	1789	46	INC SI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	178A	FE C9	DEC CL	$(AX) \leftarrow \sum_{i=n-14}^{n} e_{i}$
	1780	75 <u>F8</u>	JNZ L1	T≈U-T+
	178E	BE 20 3F	MOV SI, 3F20	
	1791	F7 2C	IMUL AX,(SI)	Integral term in (DX) (AX)
	1793	BF 28 3F	MOV DI,3F 28	Store integral term
	1796	AB	STOS W	in 3F28-3F2B
	1797	89 15	MOV (DI), DX	

COMMENTS CONTENTS MNEMONICS AND LEBEL ADDRESS OPERANDS BE 1A 3F MOV SI, 3F 1A 1799 AD LODS W 179C 8B 14 MOV DX, (SI) 179D $(DX) \leftarrow e_n - e_{n-1}$ SUB DX.AX 2B DO 179F $(AX) \leftarrow e_n - e_{n-1}$ MOV AX, DX 89 DO 17A1 MOV SI, 3F22 17A3 BE 22 3F IMUL AX, (SI) 17A6 F7 2C Derivative term in (DX)(AX) 17A8 47 · INC DI 47 INC DI 17A9 · 17AA AB STDS W Store derivative term MOV (DI), DX 17AB 89 15) in 3F2C-3F2FMOV SI, 3F1C BE 1C 3F 17AD LODS W **17**B0 AD (AX) ← K: .e_n F7 2C IMUL AX, (SI) 17B1 (CX)← K.en 17B3 8B C8 MOV CX.AX No.of terms to be added MOV BL,03 17B5 B3 03 BE 24 3F MOV SI, 3F34 17B7 LODS W 17BA AD **17**BB 03 08 ADD CX,AX LODS W 17BD AD

127

L2

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	17BE	13 DO	ADC DX,AX	(DX)(CX)←P+I+D terms
	17C0 17C2	FE CB 75 <u>F6</u>	DEC BL JNZ L2	+Ps
	17C4	89 C8	MOV AX,CX	Result in (DX)(AX)
	1706	B9 OE OO.	MOV CX,000E	No. of transfers of errors
	1709	BF 00 3F	MOV DI, 3F00	$e_{i-1} \leftarrow e_i(i=n-13, n)$
	17CC	BE 02 3F	MOV SI, 3F02	
	17CF	F2 A5	REP MOVSW	
	17D1	C3	RET	

.

.

128

•

FUNCTION NAME	: SAPPD
INPUT	: NONE
OUTPUT	: NONE
CALLS	* NONE
DESTROYS	I NONE
DESCRIPTION	* This routine is used as an Interrupt Service Routine for IR5 to indicate the beginning of a sampling pds. of 8 sec. The count in reg. BP is initialized to 160. This routine is serviced after every 50 ms. When it is executed 160 times, the routine returns to monitor temperature in subroutine

STAT1.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
SAPPD	17E0	53	PUSH BX	Save reg.
	17E1	4D	DEC BP	Decrement Counter
•	17E2	75 OA	JNZ LI	Is counter zero $\frac{1}{2}$
	17E4	81 C4 O4 00	ADD SP,0004	Yes,
	17E8	BB 33 17	MOV BX,1733	Monitor temp in
	17EB	53	PUSH BX	next sampling pd.
	17EC	4C	DEC SP	
	17ED	4C	DEC SP	
L1	17EE	5B	POP BX	Restore reg.
	17EF	FB	STI	Eneble interrupt
	17F0	CF	IRET	

FUNCTION NAME	•	UPBBC
INPUT	:	Location 0000: 3EF0-3EF1
OUTPUT	•	Location 0000: 3EE0-3EE1
CALLS	:	None
DES TROYS		AX,CL,SI,DS Location 0000: 3EE0-3EE1
DESCRIPTION	•	This routine converts the ref. temp. value stored in unpacked BCD format in 0000: 3EF0-3EF1 into a digital equivalent which would have been obtained as an o/p of the ADC.

TEBET	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
UPBBC	F000: 1800	FC	CLD	Auto increment
	1801	<u>BE FO 3E</u>	MOV SI, <u>JEFO</u>	(SI)←address of unpacked BCD no.s
	1804	AD	LODS W	(AX) - Unpacked BCD value of temp.
	1805	B1 04	MOV CL,04	Shift left higher by te
	1807	D2 E4	SHL AH,04	four times
	1809	OA C4	OR AL,AH	(AL)←packed BCD
	180B	B4 O O	MOV AH,00	
Ll	180D	FE C4	INC AH	Convert to
	180F	2C 01	SUB AL,01	binary in
	1811	2F	DAS	AH
	1812	75 <u>F9</u>	JNZ LI	
	1814	8A C4	MOV AL, AH	
	1816	B1 CC	MOV CL,CC	
Same and the second	1818	F6 El	MUL AL, CL	S≪Ref.value ¥ 204 ₁₀

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	COMMENTS
	181A 181C 181E 1820 1823 1824	B1 64 F6 F1 B4 00 BF E0 3E AB C3	MOV CL,64 DIV AX,CL MOV AH,00 MOV DI, <u>3E</u> E0 STDSW RET	Digital equiv. ←S/100 ₁₀ Higher byte ←(00) Store digital equiv. in 0000:3EEO-1 Return

r.

FUNCTION NAME		DTRF
INPUT		LOCATIONS FOOD: 3200-320D
OUTPUT		LOCATIONS 0000: 03F0-03F7,3F00-3F23
CALLS	8	NONE
DESTROYS		AX, BX, CX, SI, DI LOCATIONS 0000:03F0-03F7, 3F00-3F23
DESCRIPTION	:	This routine transfers the data to be used by many routines from EPROM to RAM area. Thus, every time the power is put on, this data is not to be stored in RAM area before executing the main program.

LEBEL	ADDRESS	CONTENTS	MNEMONICS AND OPERANDS	Comments
DTRF	F000:1830	BB OO FO	MOV BX, FOOO	
	1833	8E DB	MOV DS, BX	(DS) <- F000
	1835	BE 00 32	MOV SI, 3200	Source <-F000:3200
	1838	BF FO 03	MOV DI,03FO	Destination 0000:03F0
	183B	B9 0 4 00	MOV CX,0004	Transfer offset and
	183E	FC	CLD	Segment addresses
	183F	F2 A5	REP MOVSW	\int for IR4 and IR5 I.S.S.
	1841	B8 00 00	MOV AX,0000	Move zero to all
·	1844	BF 00 3F	MOV DI, 3F00	the errors e _{n-14} to
	1847	B9 OF 00	MOV CX,000F	e _n
	1 84A	F2 AB	REP STOSW	Transfer PID control
	184C	B9 03 00	MOV CX,0003	parameters to
	184F	F2 A5	REP MOV SW	0000: 3F1E-3F23
	1851	C3	RET	Return

CONTENTS TO BE TRANSFERRED:

ASSUME DS: FOOO

F000:3200 DB D0 16 00 F0 E0 17 00 F0 02 00 05 00 01 00

CHAPTER - VII

EXPERIMENTATION AND RESULTS

7.1 EXPERIMENT PROCEDURE

The experimental set up is assembled as shown in Fig. 2.3.1 and the process to be controlled in Fig.2.1.1 (chapter II).

Before conducting experiment, the whole set up is cleaned for the scale deposits by using solution of caustic soda followed by water wash and then dilute acid wash and finally with distilled water till neutral wash is obtained.

7.1.1 OPERATING PROCEDURE

First of all the water inlet (14) to the overhead tank (1) is opened. The flow rate in the tank is maintained in such a way that the overflow line (2) starts functioning. The valve (3) is opened to allow water into the CSTR (7). The control valve (12) is kept at full open condition to drain the water. The valve (3) is opened to such an extent that a constant level develops in the CSTR. The level in all the cases should atleast be 6 cms.more than the height of the immersion heaters. The stirrer (6) and the main heater (8) are activated simultaneously. After around 17 minutes, the temperature in the CSTR becomes steady.

7.1.2 GENERATION OF STEP INPUT

The Step input to the CSTR can be given in two wayseither by introducing a step change in load variable (liquid flow rate to CSTR or its temperature or heat developed by main heaters) or in set point. The magnitude of step input (in load variable) can be controlled by regulating the valve (4) and then energising the solenoid valve (5). This scheme controls the auxiliary liquid fluid to CSTR.

The step change in set point can be generated with the help of μp .

7.1.3 EXPERIMENTATION

1) VOLTAGE AND POWER VS FIRING ANGLE FOR SCR CONVERTER BRIDGE:

The voltage and power delivered to the auxiliary heater vs.firing angle characteristics generated for SCR bridge were recorded, as tabulated in Appendix A and plotted, as shown in Fig. 7.1.1. As can be noted from this characteristic, the power delivered at 160° firing angle almost becomes zero. This is used for all calculation purposes.

2) <u>PID CONTROL OF CSTR</u>

The CSTR was operated as described in sec.7.1.1 and a constant level of water was maintained. The flow rate of water into the system was kept at 1.8 LPM. The main heaters were put on at 220V and the temperature time history of the

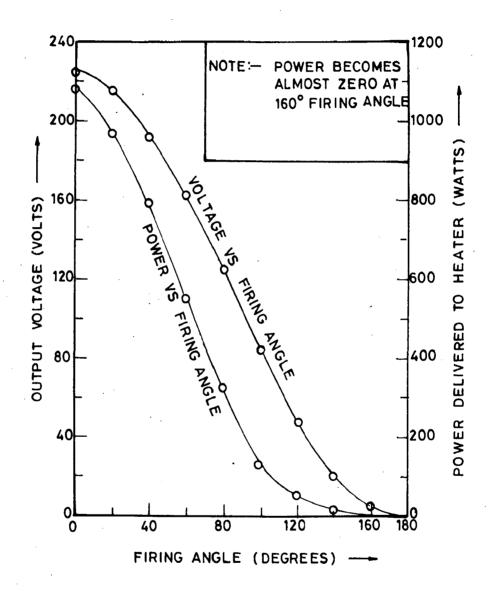


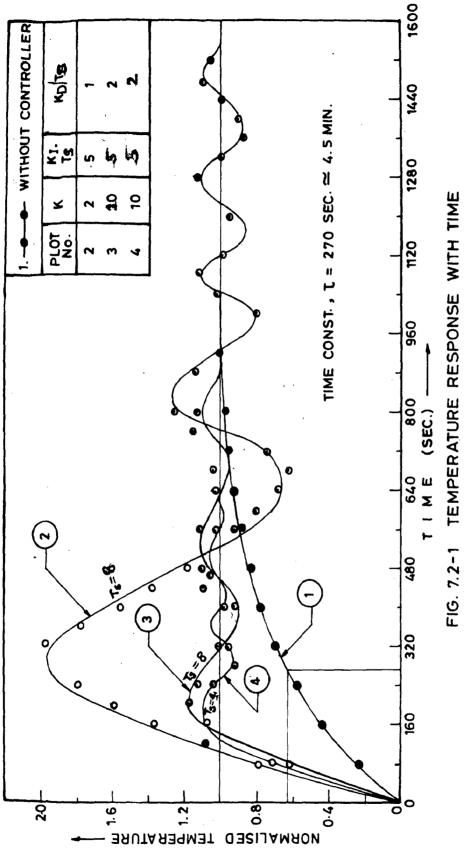
FIG. 7.1-1 POWER AND VOLTAGE VS FIRING ANGLE CHARACTERISTICS OF CONVERTER BRIDGE

CSTR was noted upto the steady state. After the steady state was achieved, the set point was fixed at 40° C and the PID control algorithm was executed for a set of control parameters K, K/T_I and KT_D values. The time-temperature history of the process was noted upto a fresh steady state under the PID control scheme. Then the control heater was put off and the system was allowed to reach its original steady state value. This was necessary to start a fresh run with different set of control parameters. This sequence was repeated for PID control with different values of control parameters, out of which results of only three sets are presented.

The different sets of $K_{,K}/T_{I}$ and KT_{D} values along with different operating conditions under which the experiments were conducted are given in Table 7.1.

Set No.	к, на се за село се за село се за село се село се	K _I T		yT _s T s(sec.))
l	2	5]	L 8	
2	<u>2</u> 0	5	2	2 8	
3	10	5	2	2 4	
	low Rate	: 1.8]	LPM 220 volts	groun d'Alexandronaecon en grado de servicio de servicio de servicio de servicio de servicio de servicio de se	

TABLE 7.1 OPERATING PARAMETERS


By changing the control parameters by trial and error, an optimum combination was obtained as reported in set no.3.

7.2 RESULTS AND DISCUSSIONS

The results of the experimentation as described in sec. 7.1.3 were recorded and normalised are reported in Appendix A. These results are plotted in Fig. 7.2.1. From the plot in Fig. 7.2.1, the time constant τ of the CSTR comes out to be 4.5 minutes.

Out of around twenty experiments conducted, covering different values of the control parameters for a sampling period of 8 sec., it was observed that K = 10, $K_{I}T_{S}=5$, $K_{D}/T_{S}=2$ gave the best results.

In the next set of experiments it was planned to check the effect of the sampling time on the mode of control. It was thought necessary to sample temperature shoot-ups due to system fluctuations by decreasing the sampling time. The sampling time was cut-off to 4 secs. It is clear from the Fig.7.2.1, plot 4 that the concept gave a better result. In terms of actual temperature, a fluctuation of ± 0.25 °C was observed around the set point by doing so. However, further decrease in sampling time moved the system towards on/off control.

CHAPTER - VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER DEVELOPMENTS

The conclusions and suggestions emerged out of the present work are listed below:

CONCLUSIONS

From the experiments conducted and the results analysed, the following conclusions can be made:

- The 8086 can proved to be a very powerful µp for the control applications.
- 2. The temperature of the CSTR can be very effectively controlled by PID control scheme through the up.
- 3. A very cost effective and accurate capacitive level transducer can be developed with the help of highly linear C/F converter as developed in the present work.

RECOMMENDATIONS

- 1. Multivariable combined control scheme for level and flow along with temperature should be taken to utilize the potentiality of 8086 µp.
- To increase the accuracy for temperature control, a
 12 bit A/D converter should be used.
- 3. A control scheme for self-tuning the control parameters should be used.

4. An arrangement should be made to get feed back from the motor at outlet of the CSTR about its angle of rotation for controlling the level.

. 0

REFERENCES

- [1] User's Manual, VMC-86/3 Microprocessor Training/ Development Kit, Vinytics Peripherals Pvt.Ltd., Delhi.
- [2] Intel's Microsystem Components Handbook, Vol. I and II, 1984.
- [3] Intel's iAPX 86,88 User's Manual, 1981.
- [4] Gibson and Liu, Microcomputer Systems: The 8086/8088 Family, Prentice-Hall of India Publication.
- [5] I.C.Master, Vol. I and II, 1983.
- [6] Texas Instruments 'The TTL Data Book for Design Engineers', 1981.
- [7] Bibbero, Robert J., "Microprocessors in Instruments and Control", Wiley-Interscience Publication, 1977.
- [8] Russell Rector and George Alexy "The 8086 Book", Osborne/McGraw Hill Publication.
- [9] Cohen, G.H. and Coon, G.A., Trans. ASME, 75: 827 (1953).
- [10] Coughanowr, Donald R. and Koppel, Lowell B., 'Process Systems Analysis and Control'.
- [11] Ross, P.J., 'A Water-Level Sensor using a capacitance to frequency converter', Journal of Physics, E:Scientific Instrument, Vol. 16, Aug. 1983, pp. 827.
- [12] Hall, Dougles V., 'Microprocessors in Instruments and Control', McGraw-Hill Publication.

- [13] Dewan, S.B. and Stranghen, A., 'Power Semiconductor Circuits', Wiley- Interscience Publication, 1975.
- [14] Krikelis, Nicholas J. and Fassois, Spilios D., Microprocessor Implementation of PID controllers and Lead Lag Compensators', I.E.E.E.Transactions on Industrial Electronics, Vol. IE-31, No.1, Feb., 1984.
- [15] 'Microcomputer Data Handbook', Business Promotion Bureau, Delhi, First Edition, 1983.
- [16] Practical Semiconductors Data Mannual, Volume-2, Business Promotion Bureau, Delhi, 1976.
- [17] Stepper Motor Interface, Vinytics, Delhi.

APPENDIX A

EXPERIMENTAL RESULTS

1) VARIATION OF CONVERTER BRIDGE O/P WITH FIRING ANGLE

S.No.	FIRING ANGLE (DEGREES)	TIMER COUNT	OUTPUT VOLTAGE (VOLTS)	OUTPUT CURRENT (AMP)	POWER DELIVERED (WATTS)
l.	0	0001 ₁₀ =0001 ₁₆	225	4.8	1080
2.	10	680 ₁₀ =02A8 ₁₆	222	4.75	1054.5
3.	20	1361 ₁₀ =0551 ₁₆	215.5	4.5	969.75
4.	30	2042 ₁₀ =07FA ₁₆	206.2	4.3	886.66
5.	40	2722 ₁₀ =0AA2 ₁₆	193.2	4.1	792.12
6.	50	3403 ₁₀ =0D4B ₁₆	180	3.8	. 684
7.	60	4083 ₁₀ =0FF3 ₁₆	163	3.4	554.2
8.	70	4764 ₁₀ =1290 ₁₆	14 4	3	432
9.	80	5444 ₁₀ =1544 ₁₆	125.5	2.6	326.3
10.	90	6125 ₁₀ =17ED ₁₆	104.5	2.1	219.45
11.	100	6805 ₁₀ =1A95 ₁₆	84.0	1.7	128
12.	110	7486 ₁₀ =1D3E ₁₆	65.5	1.25	87.875
13.	120	8167 ₁₀ =1FE7 ₁₆	48	l	48
14.	130	8847 ₁₀ =228F ₁₆	32.4	0.7	22.68
15.	140	9528 ₁₀ =2538 ₁₆	20	0.4	8
16.	150	10208 ₁₀ =27E0 ₁₆	9.5	0.2	1.9
17.	160	10889 ₁₀ =2A89 ₁₆	3.75	0.08	0.3
18.	170	11569 ₁₀ =2D31 ₁₆	Q	0	0.
19.	180	¹¹²⁵⁰ 10 ^{=2FDA} 16	0	0	0

Resistance of Heater \approx 47 ohms. These results are plotted in Fig. 7.1.1.

.

2) STEP RESPONSE OF TEMPERATURE WITH TIME WITHOUT CONTROLLER

			na an ait à calanna mhainmach an an daoit	
S.No	TIME (SEC)	THERMOCOUPLE E.M.F. (mv)	TEMP. (oC) Ti	NORMALISED TEMP.
1.	0	0.922	23 . 45	0
2.	20	0,949	24.117	
3.	40	0•989	25,102	0.108
4.	60	1.028	26 .0 62	
5.	80	1.059	26.825	0.220
6.	100	1.,088	27:539	
7.	120	1,118	28.277	0.315
8.	140	1.152	29.114	
9.	160	1.177	29.729	0.410
10.	180	1.029	30.51	
11.	200	1.221	30,801	0.480
12.	220	1.245	31.384	-
13.	240	1.267	30.918	0.554
14.	260	1.288	32.427	•
15.	280	1.305	32.840	0.614
16.	300	1.326	33.350	
17.	320	1.346	33.835	0.679
18.	340	1.363	34.248	
19.	360	1,385	34.782	0.741
20.	380	1.391	35.073	
21.	400	1.424	35.728	0.803
1				

فاحتر والمسي المراجعة

.

·· ;

Step I/P - 220V, 10.5 A

S.No	TIME (SEC)	THERMOCOUPLE E.M.F.(mv)	TEMP. (oC)Ti	NORMALISED TEMP.
22.	420	1.424	35.728	na fan anternen en
23.	440	1.438	36.068	0.825
24.	460	1.446	36.262	
25.	480	1.457	36.529	0.855
26.	500	1.473	36,918	
27.	520	1.479	37.063	0.890
28.	540	1.482	37.136	
29.	560	1.496	37.476	0.917
30.	580	1,503	37.646	•
31.	600	1,508	37 •767	0.936
32.	620	1.514	37.913	
33.	640	1.522	38.107	0.959
34.	66 0	1.528	38,252	
35.	68 0	1.536	38.447	0.981
36.	700	1.548	38.738	
37.	720	1.539	38.519	0.985
38.	740	1.545	38,665	
39.	760	1.549	38,714	0.998
40.	780	1.547	38.738	
41,	800	1.547	38 . 7 3 8	1

Initial Temp			23.45°C
Steady State	Temp.	=	38•738 °C

Difference between steady state value and initial value,

 $\Delta T = 38.738 - 23.45 = 15.288$

Sample calculation for Normalised temperature: For S.No.3,

Normalised Temp = $\frac{T_i - \text{Initial Temp}}{\Delta T}$ $= \frac{25.102 - 23.45}{15.288}$

= 0.108

These results are plotted in Fig. 7.2.1, plot 1.

3) TEMPERATURE RESPONSE WITH CONTROLLER

•

Main 1	Heater Supp	ly	:	22 0 V				
Water Flow Rate			;	1.8 Li	tres/Mi	in.		
Refer	ence Temp		:	40°C				
i)	K = 2,	K _I T _S	=	5,	$K_{\rm D}/T_{\rm S}$	= 1,	T_s	=8

S.No.	TIME (SEC)	THERMOCOUPLE E.M.F.(mv)	TEMPERATURE (°C) T _i	NORMALISED TEMP
1.	0	1.505	37•694	0
2.'	40	1.544	38.641	
3.	· 80 ·	1.579	39.49	0.778
4.	120	1.609	40.214	
5.	160	1.636	40.857	1.372
6.	200	1.660	41.429	
7.	240	1.68	41.905	1.826
8.	28 0	1,698	42.333	
9.	320	1.694	42.238	1.97
10.	360	1,676	41.81	
11.	400	1.654	41.286	1.557
12.	440	1.635	40.833	
13.	480	1,619	40.452	1.196
14.	520	1.604	40.095	
15.	560	1.592	39.806	0.915
16.	600	1,581	39.539	
17.	640	1.571	39.296	0.694

143

sec.

144

S .No	TIME (SEC)	THERMOCOUPLE E.M.F.(mv)	TEMPERATURE (oC) T _i	NORMALISED TEMP
18.	68 0	1.563	39.102	
19.	720	1.556	38,932	0.537
20.	760	1.576	39.903	
21.	8 0 0	1.63	40.714	1,26
22.	840	1.628	40.667	
23.	88 0	1.613	40.143	1.13
24.	920	1.599	39.976	
25.	960	1.587	39.685	0.87
26,	1000	1.577	39.442	
27.	1040	1.606	40.143	1.02
28.	1080	1.612	40.286	
29.	1120	1.598	39.952	0.98
30.	1160	1.587	39.675	
31.	1200	1.597	39.927	0.96
32.	1240	1.606	40.143	
33.	1280	1.614	40.333	1.13
34.	1320	1.6	40.000	
35.	1360	1,588	39.709	0.87
36.	1400	1.591	39.782	
37.	1440	1.601	40.024	1
38.	1480	1.61	40.238	
39.	1520	1.607	40.167	1.06

.

Initial Temperature = 37.694Steady State Temp = $40^{\circ}C$

. 7.

ΔT = 40-37.694 = 2.306

Sample calculation for Normalised Temperature: For S.No.3, Normalised Temp = $\frac{T_i - \text{Initial Temp}}{\Delta T}$ = $\frac{39.49 - 37.694}{2.306}$

These results are plotted/Fig. 7.2.1, Plot No.2,

ii) $K = 20, K_{I}T_{S} = 5, K_{D}/T_{S} = 2$

S.No	TIME (SEC)	THERMOCOUPLE E.M.F.(mv)	TEMPERATURE (°C), Ti	NORMALISED TEMP
1.	0	1.414	35•485	0
2.	40	1.479	37.063	0.35
3.	80	1.527	38.228	0.607
4.	120	1.580	39.515	0.89
5.	160	1.622	40.524	1.12
6.	20 0	1.630	40.714	1.16
7.	240	1.620	40.476	1.107
8.	28 0	1.619	40.452	1.102
9.	320	1.598	39.952	0.99
10.	360	1,584	39.612	0.914
11.	400	1.583	39.587	0.908
12.	440	1.618	40.429	1.096
13.	480	1 . 636	40.857	1.19
14.	520	1,636	40.857	1.19
15.	560	1.632	40.762	1.17
16.	600	1.617	40.405	1.09
17.	640	1.606	40.143	1.03
18.	68 0	1.607	40.167	1.037
19.	720	1.595	39.879	0.97
20.	760	1.629	40.691	1.156
21.	800	1.627	40.643	1.145
22.	840	1.608	40.191	1.043 .

Initial Temperature =35.485°C

Steady State Temp. = $40^{\circ}C$

 $\Delta T = 40-35.485 = 4.515^{\circ}C$

iii) K = 10, $K_{I}T_{S} = 5$, $K_{D}/T_{S} = 2$, $T_{s} = 4$ sec.

S.No	TIME SEC	THERMOCOUPLE E.M.F. (mv)	'TEMPERATURE (°C),Ti	NORMALISED TEMP
7	0	1.467	36.772	0
1. 2.	.0 .20	1,495	37.452	0
				0.368
3.	40	1.516	37.961	0.000
4.	60	1.544	38.641	
5.	80	1.572	39:320	0.789
6.	100	1.580	39.515	,
7.	120	1.590	39•757	0.924
8.	140	1,598	39.952	
9.	160	1.611	40.262	1.081
10.	180	1.608	40.191	
11.	200	1.615	40.357	1.11
12.	220	1.620	40.476	
13.	240	1.606	40.143	1.044
14.	260	1.592	39.806	
15.	280	1,588	39.709	0.909
16.	300	1.590	39.757	
17.	320	1.595	39.879	0.962
18.	340	1.600	40.00	
19.	360	1.605	40.119	1.036
20.	380	1.603	40.071	
21.	400	1.596	39.903	0.969
22.	420	1.602	40.048	

S.No	TIME SEC	THERMOCOUPLE E.M.F.(mv)	TEMPERATURE (oC),Ti	NORMALISED TEMP
23.	440	1.602	40 .0 48	1.014
24.	460	1.609	40.214	
25.	480	1.614	40.333	1.103
26.	500	1.620	40.476	
27.	520	1,612	40.268	1.083
28.	540	1.611	40.262	
29.	560	1.605	40.119	1.036
30.	580	1.599	39.976	
	*			

Initial Temperature = $36.772^{\circ}C$ Steady State Temp. = $40^{\circ}C$ $\Delta T = 40 - 36.772 = 3.228^{\circ}C$.

AF	PENDIX	В
----	--------	---

DETAILS OF PIN ASSIGNMENT ON MULTIBUS AND CONNECTORS

1.

PIN ASSIGNMENT OF BUS SIGNALS ON MULTI-BUS BOARD CONNECTOR:

	••••••		-		
1.	-	GND	26.	Yete	NC
2.	-	GND	27.	-	BHEN
3.	-	+5V	28.	-	MA16
4.	`	+5V	29.		CBRQ
5.	-	+5V	30.	-	MA17
6.	••••	+ 5V	31.		CCLK
7•	-	+12V	32) war	MA18
8.		+12V	33.	77	SINTA
9.	-	-5V	34.	••• • •	MA19
10.	~	- 5V	35.	-	INTE
11.	-	GND	36.	- 7	INT7
12.	-	GND	37.	-	INT4
:13.	-	BCLK	38.	-	INT5
14.	trap.	INIT	39. •		NC
15.	د انیو	BPRN	40 •		INT3
16.	-	BPRQ	41.	144	NC
17.		BUSY	42.		NC
18.	-	BREQ	43.	-	MA14
19.	-	SMRD	44.	-	MAIS
20.	-	SMWR	45.	-	MA12
21.		SIRD	46.		MA13
22.	-	SIWR	47.	-	MAIO
23.	-	XACK	48.	-	MAII
24.	-	NC	49.	-	MAS
25.	.	NC	50.	-	MA9

51.	-	MAG	79.		-12V
52.	-	MA7	80.	-	-12V
53•	-	MA4	81.	-	+ 5V
54.	-	MA5	82.	-	∔ 5V
55•	-	MAZ	83.	-	+ 5V
56.)	MA3	84.	***	+ 5₹
57.		MAO	85.	-	GND
58.	÷	MAI	86.	-	GND
59.	-	SD14			
60.		SD15			
61.	-	SD12			
62.	-	SD13			
63.		SDIO			
• • •					
64.	The state	SD11			
64.	** -× 	SD11			
	•• ••		,		
64 • 65 •	•• •• •• •• •	SD11 SD8			
64. 65. 66.		SD11 SD8 SD9			
64. 65. 66. 67.		SD11 SD8 SD9 SD6			
64. 65. 66. 67. 68.		SD11 SD8 SD9 SD6 SD7	,		
64. 65. 66. 67. 68. 69.		SD11 SD8 SD9 SD6 SD7 SD4			
64. 65. 66. 67. 68. 69. 70.		SD11 SD8 SD9 SD6 SD7 SD4 SD5			
64. 65. 67. 68. 69. 70. 71.		SD11 SD8 SD9 SD6 SD7 SD4 SD5 SD2			
64. 65. 66. 67. 68. 69. 70. 71. 72.		SD11 SD8 SD9 SD6 SD7 SD4 SD5 SD2 SD3			
64. 65. 66. 67. 68. 69. 70. 71. 72. 73.		SD11 SD8 SD9 SD6 SD7 SD4 SD5 SD2 SD3 SD3			
64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74.		SD11 SD8 SD9 SD6 SD7 SD4 SD5 SD2 SD3 SD0 SD1			
64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75.		SD11 SD8 SD9 SD6 SD7 SD4 SD5 SD2 SD3 SD2 SD3 SD0 SD1 CND			

.

2)

DETAILS OF CONNECTOR J1

The 24 I/O Lines of 8255-1 are brought out at this connector.

Pin	Signal	Pin	Signal
1.	PIC4	14.	PIBL
2	P1 C5	15.	PIA6
3.	P1C2	16.	PLA7
4.	P1C3	17.	P1A4
5.	PlCO	18.	P1A5
6.	PICL	19.	P1A2
7.	P1B6	20.	P1A3
8.	P1B7	21.	PLAO
9.	P1B4	22.	PIAL
10.	P1 B5	23.	P1C6
11.	P 1B2	24.	P1C7
12.	P1B3	25.	GND
13.	PlBO	26.	GND

3) DETAILS	OF CONNECTOR J2		
1.	P 2C4	14.	P2B1
2.	P 2C5	15.	P2A6
3.	P 2C2	16.	P 2A7
4.	P2C3	17.	P2A4
5.	P 200	18.	P2A5
6.	P 2C1	19.	P2A2
7.	P2B6	20.	P2A3
8.	P 2B7	21.	P2A0
9.	P 2B4	22.	P2AL
10.	P 2B5	23.	P2C6
11.	P 2B2	24.	P2C7
12.	P 2B3	25	GND
13.	P 2B0	26.	GND

.

.

4)	DETAILS OF	CONNECTOR J3		
	<u>Pin</u>	Signal	<u>Pin</u>	Signal
	1.	P 3C4	14.	P 3B1
	2.	P 3C5	15.	P3A6
	3.	P3C2	16.	P3A7
	4.	P3C3	17.	P3A4
	5.	P3C0	18.	P3A5
	6.	P 301	19.	P3A2
	7.	P 3B6	20.	P3A3
	8.	P <i>3</i> B7	21.	· P 3A0
	9.	P 3B4	22.	P3A1
	10.	P 3B5	23.	P 306
	11.	P 3B2	24.	P307
•	12.	P 3B3	25.	GN D
	13.	P 3BO	26.	GND

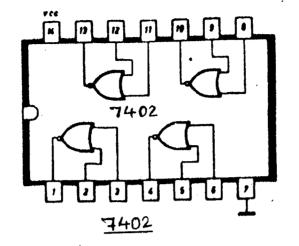
:

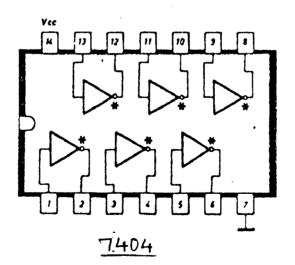
. 4

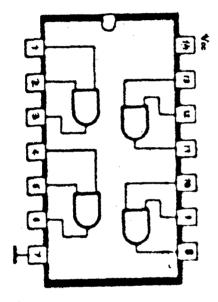
DETAILS OF C	ONNECTOR J4		
Pin	<u>Signal</u>	<u>Pin</u>	Signal
1.	GND	8.	NC
2.	Vcc	9.	-12V
3.	GND	10.	+12V
4.	Vcc	11.	NC
5.	Vcc(CM OS)	12.	24V
6.	GN D	13.	NC
7.	NC		

)

.

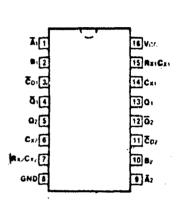

6) <u>DETAILS</u>	OF CONNECTOR J5		
1.	GND	~ 2.	GND
3.	NC	4.	NC
5.	NC	6.	GATE2
7.	OUT2	8.	CLK2
9.	OUTL	10.	GATEL
11.	CLK1	12.	GATEO
13.	OUTO	14.	CLKO
15.	NC	16.	NC
17.	NC	18.	NC
19.	NC	20.	NC
21.	NC	22.	PCLK
23.	DRQ2	24.	DRQ1
25.	EXTL	26.	EXT2


7.	DETAILS	OF CONNECTOR J6		
	1.	NC	8.	EAR OUT
	2.	NC	9.	GND
	3.	(-Rx)	10.	NC
	4.	(+Rx)	11.	(-12V)
	5.	(-Tx)	12.	(+12V)
	6.	(+Tx)	13.	Vcc
	7.	(MIC IN)		
8.	DETAILS	OF CONNECTOR J7		
	1.	GND	14.	NC
	2.	$T\mathbf{x}$	15.	NC
	3.	Rx	16.	NC
	4.	RTS	17.	NC
	5.	CTS	18.	NC
	6.	DSR	19.	NC
	7.	GND	20.	DTR
	· 8.	NC	21.	NC
,	9.	NC	22.	NC ·
	10.	NC	23.	NC
	11.	NC	24.	NC
	12.	NC	25.	NC
	13.	NC		


9)	DETAILS OF C	ONNECTO	<u>r j8</u>		
	1.	GND		14.	NC
	2.	$T_{\mathbf{X}}$		15.	NC
	3.	Rx		16.	NC
	4.	RTS		17.	NC
	5.	CTS		18.	NC
	6.	DSR		19.	NC
	7.	GND		20.	DTR
	8.	NC		21.	NC
	9.	NC		22.	NC
	10.	NC		23.	NC
	11.	NC		24.	NC
	12.	NC		25.	NC
	13.	NC			· · ·
	مطروب مید فقا هم بین _{ما} دین _ک ور ورومین استرو		میں اور _{کر ک} ی کا میں اور اور اور	ييو، درواند ويوکنو ورواندو ويواندو رواندورو ويواندو ويواندو ويواندو رواندورو ويواندو ويواندو ويواندو	میں ہوتے ہیں۔ اس وہ ایک اور ایک میں میں ایک اور ایک
	Rx	·	Receive	Data	
	$\mathbf{T}\mathbf{x}$	4	Transmi	t Data	· ·
	CTS	-	Clear t	o send	
	RTS	-	Request	to Send	
	DER	-	Data Se	nd Ready	
	DTR	F -r	Data Te	rminal Rea	dy

APPENDIX C

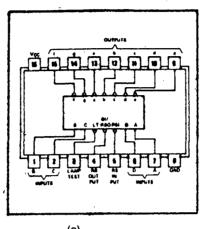
PIN DIAGRAMS OF THE I C'S USED

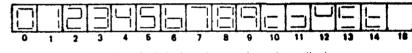


7408

TRIGGERING TRUTH TABLE

INP	UTS	RESPONSE
A B	ζo	
хх	L	No Trigger
$\sim c$	X	No Trigger
Υн	H	Trigger
н 🖍	X	No Trigger
ι Γ	H	Trigger
LH	5	Trigger


L = LOW Voltage X = immaleriei

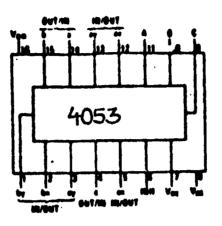

74123

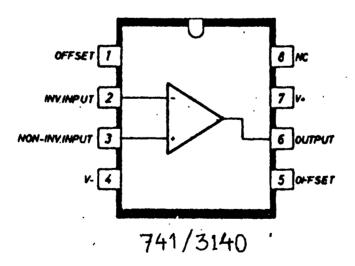
,

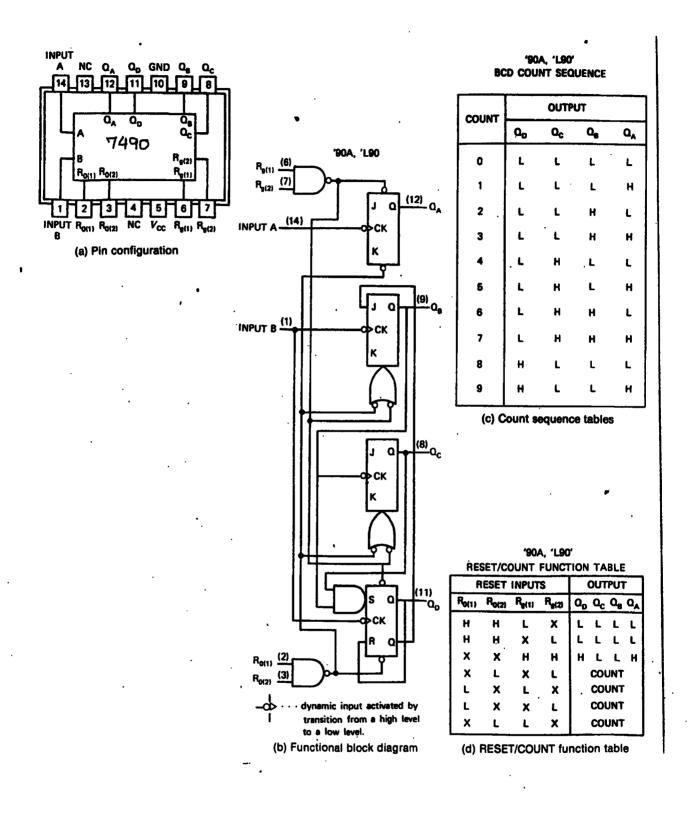
.

٠

(b) Segment Identification

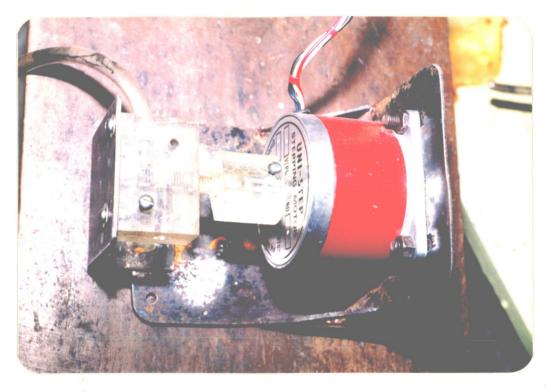

(c) Numerical designations and resultant displays


.

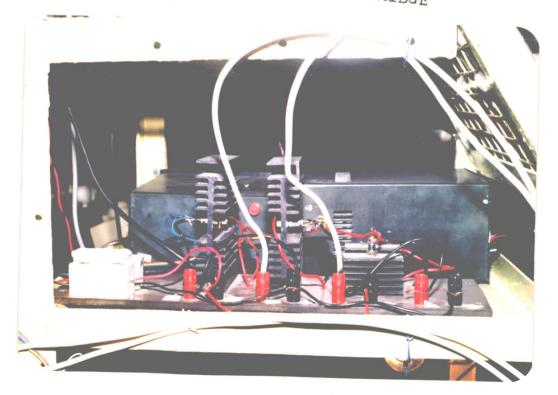

DECIMAL	INPUTS						81/R80 [†]	OUTPUTS							NOTE
FUNCTION	LT	RBI	Ð	· C				•	Ь	e	d	•	•		
0	н	H	L	L	L	L	н	ON	ON	ON	ON	ON	ON	OFF	1
1	н	X	L	L	Ł	н	н	OFF	ON	ON	OFF	OFF	OFF	OFF	•
2	н	X	4	Ł	H	L	н	ON	ON	OFF	ON	ON	OFF	ON	
3	H	X	L.	L.	H	H	н	ON	ON	ON	ON	OFF	OFF	ON	
4	H	X	L	н	L	L	н	OFF	ON	ON	OFF	OFF	ON	ON	
5	н	X	. L.	H	L	H	н	ON	OFF	ON	ON	OFF	ON	ON	
6	н	X	1 L 1	H	H	L	н	OFF	OFF	ON	ON	ON	ON	ON	
7	H	x	L	н	н	H	N	ON	ON	ON	OFF	OFF	OFF	OFF	
. 8	н	X	H	L	L.	L	н	ON	ON	ON	ON	ON	ON	ON	
9	н	x	н	L	L	H	H	ON	ON	ON	OFF	OFF	ON	ON	
10	Г н I	X	H	L	н	L	н	OFF	OFF	OFF	ON	ON	OFF	ON	
11	н	X	н	L	н	н		OFF	OFF	ON	ON	OFF	OFF	ON	
12	Н	X	H	н	L	L	н	OFF	ON	OFF	OFF	OFF	ON	ON	
13	4	X	H	H.	L	H	н	ON	OFF	OFF	ON	OFF	ON	ON	
14	н.	X	н	H	н	L	н	OFF	OFF	OFF	ON	ON	ON	ON	
15	н.	X	н	н	н	н	н	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
81	X	X	X	X	X	X	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2
Aei	н	L	L	L	Ļ	L	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
LT	L	X	X	X	x	x	н	ON	ON	ON	ON	ON	ON	ON	4

Function table

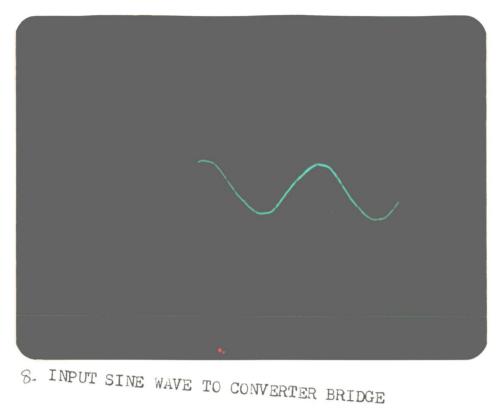
The 7447 display driver.

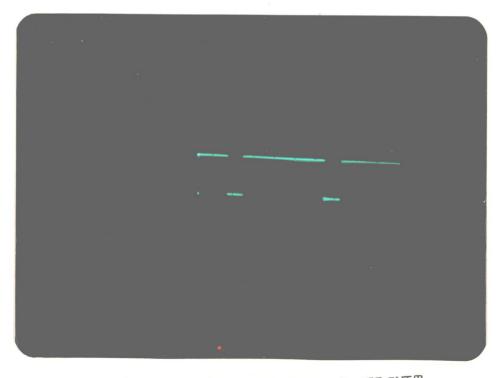


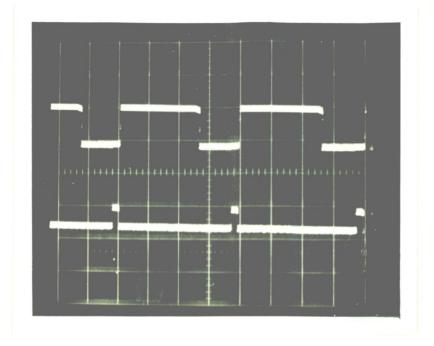
) 2) SYSTEM ASSEMBLY

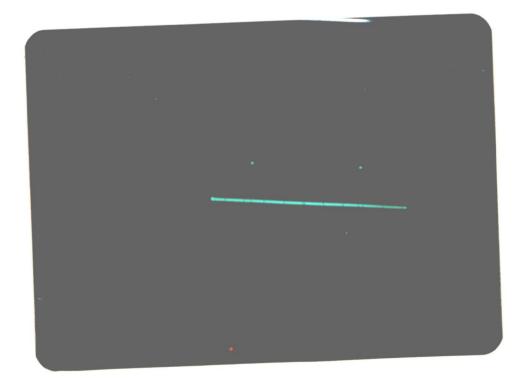

3) CSTR WITH STEPPER MOTOR CONTROLLED VALVE

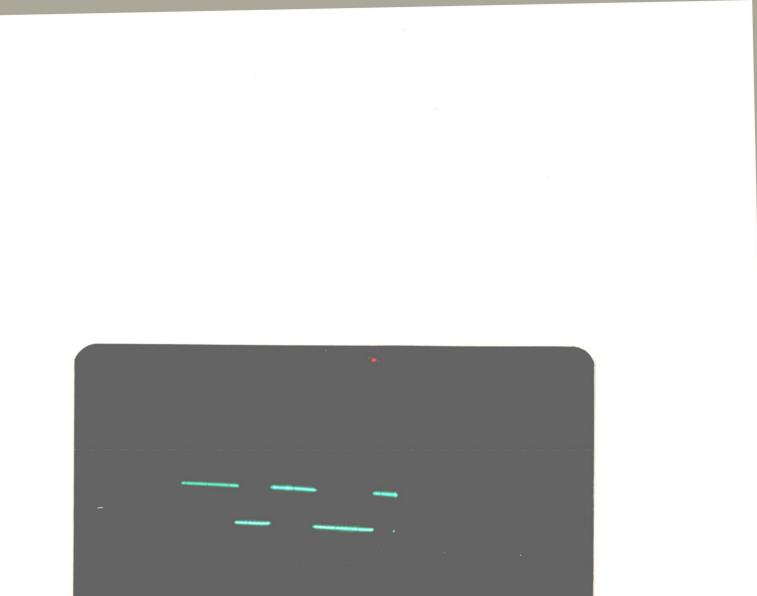
4) STEPPER MOTOR CONTROLLED VALVE


5) SCR CONVERTER BRIDGE




6-7. 8086 µp KIT WITH SCR FIRING CIRCUIT MODULE, ADC MODULE AND STEPPER MOTOR DRIVER CARD




9. ZERO CROSSING O/P IN SCR FIRING CIRCUIT

10. TIMER O/P IN SCR FIRING CIRCUIT

11. FIRING PULSES TO SCRS

12. C-F CONVERTER O/P