
PARALLELISATION OF NAIVE BAYES
CLASSIFICATION FOR UNSTRUCTURED TEXT

DOCUMENTS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

NIKHIL AGRAWAL

I

C, N'T LCle
f

Acc ,yoga.9~~
~ Date.....

L ROORKø

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2011

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"PARALLELISATION OF NAIVE BAYES CLASSIFICATION FOR

UNSTRUCTURED TEXT DATA" towards the partial fulfillment of the requirement

for the award of the degree of Master of Technology in Information Technology
submitted in the Department of Electronics and Computer Engineering, Indian Institute

of Technology Roorkee, Roorkee, Uttarakhand (India) is an authentic record of my own

work carried out during the period from July 2010 to June 2011, under the guidance of

Dr. Durga Toshniwal, Assistant Professor, Department of Electronics and Computer
Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other Institute.

Date:

Place: Roorkee 	 (NIKHIL AGRAWAL)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date:

Place: Roorkee (Dr. D. Toshniwal)

Assistant Professor

Department of Electronics and Computer Engineering

IIT Roorkee.

1

ACKNOWLEDGEMENT

First and foremost, I would like to extend my heartfelt gratitude to my guide and mentor
Dr. Durga Toshniwal, Assistant Professor, Department of Electronics and Computer
Engineering, Indian Institute of Technology Roorkee, for her invaluable advice,
guidance, and encouragement and for sharing her broad knowledge. Her wisdom,
knowledge and commitment to the highest standards inspired and motivated me. She has
been very generous in providing the necessary resources to carry out my research. She is
an inspiring teacher, a great advisor, and most importantly a nice person.

I am thankful for the useful comments and suggestions from faculty members of our
institute. I am greatly indebted to all my friends, who have graciously applied themselves
to the task of helping me with ample moral supports and valuable suggestions.

On a personal note, I owe everything to the Almighty and my parents. The support which
I enjoyed from my father, mother and other family members provided me the mental
support I needed.

NIKHIL AGRAWAL

ii

Abstract

Text classification is the task of assigning a given text document to one of the predefined
categories depending on the contents of the document. It has found immense applications
in fields as diverse as medicine, financial markets, information retrieval etc. Naive

Bayes' is one of the most widely used algorithms for classification. However, the
algorithm is significantly slow due to the large amount of calculations it has to perform.
Thus, there is a need to parallelise the algorithm to reduce the time required for
classification. The algorithm could be parallelised using grid computing, clusters, CPU
threads or GPUs.

Modem Graphics Processing Units (GPUs) have enabled high performance computing
for general-purpose applications. GPUs are being used as co-processors in order to
achieve a high overall throughput. CUDA programming model provides adequate C
language like API, making it simpler to program for the GPU. In this dissertation, a
CUDA based parallel implementation of Naive Bayes' text classification has been
proposed. The classification step has been parallelised on GPU using different
approaches each trying to exploit some property of the GPU. For example, use of shared
memory against global memory, memory coalescing etc. The performance of the
implen entation of Naive Bayes' text classification on GPUs has been compared with an
efficient implementation of the same on a CPU.

The semantic information of unstructured text can be used to improve the classification
accuracy. WordNet and POS tagging have been used in this dissertation, to capture the
semantic information in unstructured text. The dataset used for experiments is Reuters-
21578, which is a collection of news articles that appeared on the Reuters newswire in
1987. The proposed parallel Naive Bayes' algorithm has been implemented on Nvidia's
GTS 250 card with 128 processors and 512 MB GDDR3 RAM. The CPU used for the
serial implementation consist of a Pentium P4 processor operating at 3 GHz and a DDR3

RAM of 4 GB. Experimental results show that the parallel implementation on GPUs is
faster than the serial implementation.

iii

Table of Contents

Candidate's Declaration and Certificate

Acknowledgement

Abstract

Table of Contents

List of Figures

List of Tables

1. Introduction and Problem Statement

1.1 Introduction and Motivation

1.2 Statement of the Problem

1.3 Organization of the Report

2. Background and Literature Review

2.1 Preprocessing

2.1.1 	Feature Vector Generation

2.1.2 	Stop Word Removal

2.1.3 	Stemming

2.1.4 	Semantic Information in Text

2.2 WordNet

2.3 Part of Speech tagging

2.4 Naive Bayes' text classification

2.4.1 	Multivariate Bernoulli Model

2.4.2 	Multinomial Model

2.5 General Purpose Computing on GPUs

1

1

3

4

6

6

6

6

7

8

8

9

10

10

12

13

iv

2.5.1 	GPU Architecture 14

2.5.2 	CUDA programming model 15

2.6 Literature Review 17

2.6.1 	Parallelisation of Text Classification algorithms using 17

CUDA

2.6.2 	Parallelisation of Naive Bayes' classification algorithm 18

2.6.3 	Text representation using semantics 19

2.7 Research Gaps 20

3. Proposed Framework 21

3.1 Preprocessing Module 22

3.2 Training Module 22

3.3 Serial Naive Bayes' classification 23

3.4 Parallel Naive Bayes' classification 23

4. Detailed Design and Implementation 24

4.1 Preprocessing Module 24

4.2 Training Module 29

4.3 Classification Module 30

4.4 Experimental Setup 36

4.4.1 	Data Preparation 36

4.4.2 	Hardware Configuration 37

5. Results and Discussions 39

5.1 Comparison of classification accuracy 39

5.1.1 	Results of Integrating WordNet and POS tagging 39

V

5.2 Results of Parallelisation

	

5.2.1 	Determining the number of threads 	 40

	

5.2.2 	Comparison of parallel Naive Bayes' with serial Naive 42

Bayes'

	

5.2.3 	Comparison between the two parallel Naive Bayes' 44

implementations

6. Conclusions and Future Work 	 47

6.1 Conclusions 	 47

6.2 Scope for Future Work 	 47

References 	 49

List of Publications 	 52

vi

LIST OF FIGURES

Figure 2.1 Floating Point operations for GPU and CPU 	 13

Figure 2.2 	GPU devotes more transistors to data processing 	 14

Figure 2.3 Thread hierarchy in CUDA programming model 	 15

Figure 2.4 Memory hierarchy in CUDA programming model 	 16

Figure 2.5 CUDA software stack
	

17

Figure 3.1 	System architecture of Naive Bayes' text classification 	 21

Figure 4.1 Block diagram of Preprocessing Module 	 24

Figure 4.2 Flow chart of the preprocessing module using POS tagging and 25
WordNet synsets

Figure 4.3 Flow chart of the GetIndex subroutine using POS tagging and 26
WordNet synsets

Figure 4.4 Flow chart of the preprocessing module using WordNet synsets 	27

Figure 4.5 Flow chart of the GetIndex using WordNet synsets 	 28

Figure 4.6 Flow chart of the Training module of Naive Bayes' text classification 29

Figure 4.7 Model for parallel Naive Bayes' text classification module 	31

Figure 4.8 	Representation of class-conditional word probabilities, feature vector 32
and class probability

Figure 4.9 Processing done by a GPU block 	 32

Figure 4.10 Memory access strategies for class-conditional word probability 34
matrix and feature vector

VII

Figure 4.11 Addresses generated by threads in a warp 	 ME

Figure 4.12 Processing done to obtain the final class probability 	 36

Figure 5.1 	Comparison of execution time of the two parallel Naive Bayes' 41

implementations on GPU by varying the number of'threadsiblock

Figure 5.2 Comparison of execution time of Naive Bayes' using CPU, GPU 43

(sequential memory accesses) and GPU (interleaved memory

accesses) by varying number of classes

Figure 5.3 Speed up obtained by using GPU as compared to CPU 	 44

Figure 5.4 Comparison of kernel execution time of Naive Bayes' GPU 46

(sequential memory accesses) and GPU (interleaved memory

accesses) by varying number of classes

VIII

LIST OF TABLES

Table 4.1
	

Hardware specification of GTS 250 card. 	 37

Table 4.2
	

Hardware specifications of the CPU used

Table 5.1
	

Comparison of classification accuracy of proposed Naive Bayes' text 39
classification with that of WEKA

Table 5.2 	Comparison of classification accuracy obtained by using Wordnet 40
and POS tagging

Table 5.3 	Comparison of the execution time of the two parallel Naive Bayes' 41
implementations on GPU by varying the number of threads/block

Table 5.4 	Comparison of the execution time by varying the number of classes 	42

Table 5.5 	Comparison of Execution Time of the two parallel implementations 45
of Naive Bayes'

ix

Chapter 1

Introduction and Statement of the Problem

1.1 Introduction and Motivation

Text classification, is the task of assigning a given text document to one of the

predefined categories depending on the contents of the document. It has found

immense applications in areas as diverse as medicine, e-commerce, information
retrieval, financial markets etc. Traditionally the task of text classification was done

by human experts and usually required a large amount of time. But, the rapid growth
of information on the web has led to development of algorithms that could enable
automatic text classification with accuracy similar to that of a human expert but taking
a much lesser amount of time. Some of these algorithms are Support Vector Machines

(SVM), k-nearest neighbours (kNN), Naive Bayes' etc. These algorithms form a part
of a broader category of algorithms called machine learning algorithms.

The text classification algorithms operate in 2-steps: learning and classification. In
the learning step a model is built using already classified documents. Classification
step uses the model built in the learning step to classify documents to one of the
available classes. Formally the task of text classification can be stated as follows [1]:
given a set of classification labels C, and a set of training text documents E, each of
which has been assigned one of the class labels from C, the system must use E to
develop a hypothesis that can be used to predict the class labels of previously unseen
examples of the same type.

Before a set of documents can be presented to the system, each document must be

converted to a feature vector because the classification algorithm or the classifier-

building algorithm cannot interpret the text directly. Each element of the feature

vector may represent a word or a phrase from the given text document. This

representation of text could be used with many classification algorithms like SVM,

kNN, Naive Bayes' and so on. The values in the feature vector may be binary or

integers.

I

Binary values just indicate the presence or absence of a term in the document whereas

integer values indicate the frequency of term's occurrence in the document. This

representation of text is termed as bag-of-words and has been used extensively by

researchers and professionals alike. The information about the order of words is lost

in this model but Joachims [2] refers that this loss is irrelevant since the information

lost is little and bringing unnecessary complexity to the task of classification is

questionable.

Using the bag-of-words approach, the dimensionality of the feature vector becomes

very high; the number of features may go up to tens of thousands. This leads to

increased computational and space complexity. There are a large variety of

preprocessing steps for feature set reduction. Silva, C.; Ribeiro, B. [3] evaluated the

performance of three major pre-processing steps, namely stop word removal,

stemming and the removal of words with low document frequency. Their results

showed that the use of the pre-processing steps did not lead to much degradation in

classification accuracy. One drawback of the traditional bag-of-words model is that

the semantic information like synonyms, antonyms, hyponyms, part-of-speech

between the words in the text document is not captured and is lost. Hence, there is a

need to develop systems where the semantic information of text is captured into the

bag-of-words model.

Stop words are non-informative words such as articles, prepositions and conjunctions.

These words have no distinguishing potential between the various categories.

Stemming is another pre-processing step to avoid feature expansion. In stemming the

word stem is derived from the occurrence of the word by removing case and inflection

information. For example, "computer ", "computes " and "computing" are all mapped

to the stem "comput".

Naive Bayes' is based on a probabilistic model for text classification. Given a text

document, the algorithm assigns it to the class that is most probable to have generated

the document. Over the years the algorithm has found immense applications like stock

market prediction, information retrieval, e-mail spam filtering, heart-disease

prediction system and many more. The reason for such a wide use of the algorithm is

not only the simplicity of its learning step and the classification step, but also that it

gives satisfactory classification accuracy. However, the algorithm is slow due to the

2

large amount of calculations it has to perform: Thus, there is a need to parallelise the

algorithm using architectures like grid computing, clusters, CPU multi-threading,

GPUs etc.

The amount of information that is processed and maintained has been increasing day

by day. Moreover, a large part of this information is in the form of unstructured text.

Text classification is an important task in maintaining the text data. There is a need to

develop systems that could perform the task of text classification requiring as less

time as possible. Thus, there is a need to parallelise the task of text classification.

Graphics Processing Unit, or GPU as it is popularly called, is a programmable logic

chip that performs parallel computations on graphics data. Recently GPUs are being

used for a variety of applications that require repetitive computations on multiple sets

of data. With the advent of CUDA, a parallel programming architecture developed by

Nvidia, it has become easier to program the GPU than it was possible earlier. CUDA

enables the programmer to program using variants of high level programming

languages like C and Java. As a result, there has been a lot of .work towards

parallelizing text classification algorithms using CUDA. The improvement in

execution time, obtained by parallelization of classification algorithms like kNN and

SVM, is a motivating factor for parallelisation of the Naive Bayes' classification

algorithm on the GPU.

1.2 Statement of the Problem

The problem statement of the dissertation is as follows:

Parallelisation of Naive Bayes' classification for unstructured text data.

The above problem can be divided into the following sub-problems.

• Preprocessing Module: To convert a given document to a feature vector

representation so that it can be used by the classification algorithm. It involves

a lot of steps like POS tagging, tokenization, stop word. removal and then

finally generating the feature vector.

3

• Training Module: To determine the parameters, i.e., the class-conditional word

probabilities and the class prior probability, of the Naive Bayes' model, using

the training dataset provided. This information is then used in the

classification step.

• Classification Module: To classify a given test document, into one of the

predefined categories, using the model built by the Training Module. Since

this step is the one to be used recurrently, it is the one that has been

parallelized.

1.3 Organization of the Report

This dissertation report comprises of six chapters including this chapter that
introduces the topic and states the problem. The rest of the report is organized as

follows.

Chapter 2 gives the background of preprocessing, WordNet and PUS tagging, Naive

Bayes' text classification, GPU architecture and CUDA, literature review of text

representation using semantics, parallelization of text classification algorithms using
CUDA and parallelization of Naive 'Bayes' text classification.

Chapter 3 discusses the proposed framework which includes the preprocessing

module, training module and the parallel Naive Bayes' classification module.

Chapter 4 gives the detailed design and implementation of all the modules of the

proposed framework. It also gives a description about the experiments performed to

evaluate the proposed model.

Chapter 5 discusses the experimental results, validation of the system, and comparison

of the results obtained from different approaches.

Chapter 6 concludes the dissertation work giving the scope for future work.

r

Chapter 2

Background and Literature Review

2.1 Preprocessing

The text documents need to be processed to convert them to a representation understood

by the Naive Bayes' classification system. The preprocessing steps used in the proposed

system are discussed below.

2.1.1 Feature Vector Generation

Classification algorithms cannot process the text directly in its raw form. Instead, the text

documents need to be converted to a representation which can be understood by the

classifier. One such representation is to use a binary vector, each element of which

indicates the occurrence or absence of a term in the document. Another approach is the

use of bag-of-word (BoW) model in which the frequency count of each term in the text

document becomes an element of the feature-vector. The BoW model is also called the

Vector Space Model.

One of the drawbacks of the BoW model is the high dimensionality of the feature-vector.

To reduce the dimensionality to some extent stop word removal and stemming are used in

almost all text classification applications. These techniques have been explained in the

following sections. Another drawback of the BoW model is that it does not capture the

semantic information that exists among the terms in the text document.

2.1.2 Stop word Removal

Text documents contain words like 'a', `an ; "the" etc, which do not convey any

information about the document. These words occur in all documents irrespective of the

class of the document. Such words are called stop words. These words should be

removed from the text document before proceeding with the classification task or the

results of classification could be misleading

C~

The most obvious method for stop word removal is to maintain a list of stop words and

check each word in the given text for presence in the stop word list. If a word is present

in the stop word list then the word is removed from the given text and not considered

during classification. Also it should be kept in mind that there is no definitive list of stop

words. The list depends on the application under consideration. This list could either by

supplied by a human expert in the concerned domain or could be a standard one which

are readily available.

2.1.3 Stemming

In stemming, the word stem is derived from the occurrence of the word by removing case

and inflection information. The stem form need not be identical to the morphological root

of the word as it is sufficient that related words reduce to the same stem even if the stem

is not a valid root itself E.g. fishing and fisher get reduced to fish which is the stem for
those words.

Though stemming helps to reduce the feature set size, it has one drawback. The use of

stemming can sometimes lead to errors in the classification task as it is possible that two

unrelated words get reduced to the same stem, e.g. universal and university get stemmed
to the same root; and animal and animation get stemmed to the same root. There exist

several methods for stemming which are listed below:

• Brute Force Algorithms

• Suffix-stripping Algorithms

• Lemmatization Algorithms

• Stochastic Algorithms

Suffix-stripping Algorithms are highly popular because they are simple to implement and

give satisfactory results. Suffix stripping algorithms do not rely on a lookup table that

consists of inflected forms and root form relations. Instead, a typically smaller list of

"rules" is stored which provides a path for the algorithm; given an input word form, to

find its root form. Some examples of the rules include:

7

• if the word ends in'ed', remove the 'ed'

• if the word ends in'ing', remove the 'ing'

• if the word ends in'ly', remove the'ly'

Porter stemming algorithm is a suffix stripping algorithm published by Martin Porter in

the July 1980 issue of the journal "Program ". It became immensely popular and kind of

became a standard algorithm used for English language [4].

2.1.4 Semantic Information in Text

The terms in the text document are semantically related by a number of relations like

synonymy, antonymy etc. Also the part-of-speech of the terms has a profound effect on

the. semantics of the term. The BoW model does not capture the semantics of the text

document. Various approaches like ontology based, N-Grams, multi-word features,

Latent Semantic Indexing (LSI), Locality Preserving Indexing (LPI) have been proposed

and are in use over the years. In the Literature Review section, some of the techniques

used for using the semantic information among the terms in the text document, have been

discussed.

2.2 WordNet

WordNet is a lexical database for English language. English nouns, verbs, adjectives, and

adverbs are organized into sets of synonyms, each representing a lexicalized concept [5].

WordNet does not include prepositions, determiners etc. The synsets are connected to

other synsets via the following semantic relations [5]:

• Synonymy is WordNet's basic relation, because WordNet uses sets of synonyms

(synsets) to represent word senses. Synonymy is a symmetric relation between

word forms.

• Antonymy (opposing-name) is also a symmetric semantic relation between word

forms, especially important in organizing the meanings of adjectives and adverbs.

• Hyponymy (sub-name) and its inverse, hypernymy (super-name), are transitive

relations between synsets. Because there is usually only one hypemym, this

semantic relation orginiies the meanings of nouns into a hierarchical structure.

• Meronymy (part-name) and its inverse, holonymy (whole-name), are complex

semantic relations. WordNet distinguishes component parts, substantive parts, and

member parts.

• Troponymy (manner-name) is for verbs what hyponymy is for nouns, although the

resulting hierarchies are much shallower.

• Entailment relations between verbs are also coded in WordNet.

WordNet also provides the polysemy count of a word: the number of synsets that contain

the word. The morphology functions of the software distributed with the database try to

deduce the lemma or root form of a word from the user's input; only the root form is

stored in the database unless it has irregular inflected forms [5].

2.3 Part of Speech Tagging

A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads text in some

language and assigns parts of speech to each word (and other token), such as noun, verb,

adjective, etc., although generally computational applications use more fine-grained POS

tags like 'noun-plural'. In this thesis the Stanford Log-linear Part-Of-Speech Tagger has

been used. The tagger is available at [6]. The software requires Java 1.5+ to be installed.

The tagger takes as input a string of words and returns a string consisting of words

annotated with their part of speech. The word and part of speech pair is separated by a

"P". The English taggers in the software use the Penn Treebank POS tag set. For example

the sentence "I, Nikhil Agrawal hereby declare that this thesis report is a copy of original

work." would be tagged and returned as "l/PRP , /, Nikhil/NNP Agrawal/NNP hereby/NN

-declare/VBP that/IN this/DT thesis/NN report/NN is/VBZ a/DT copy/NN of/IN original/JJ

work/NN. /. "

01]

2.4 Naive Bayes' Text Classification

Naive Bayes' classification is a relaxed version of the Bayesian classifiers which assumes

the features to be independent of each other. It is based on a probabilistic model for text

classification. Given a text document d, the algorithm assigns it to the class that is most

probable to have generated the document. The following equation [7] is used to calculate

the probability of class c, given the document d.

P(c I d) = P(d I c) P(c)
P(d)

(2.1)

The estimation of P(dlc) is difficult but with the naive assumption that the features are

independent of each other it is simply a running product of class-conditional word

probabilities: Also 'since P(d) is constant for all the classes, and we are interested in

finding the maximum P(cl d); P(d) can be ignored from the calculations.

There exist a lot of models for Naive Bayes' text classification like Multinomial model,

Multivariate Bernoulli model, Poisson model etc. The Multivariate Bernoulli model and

the Multinomial model are the most popular models of Naive Bayes' text classification.

The Poisson model of Naive Bayes' text classification has not found many applications

and hence will not be discussed in this report. The following sub-sections give a brief

description of the two models.

2.4.1 Multivariate Bernoulli Model

In this model, the document is treated as a binary vector, each element of which indicates

the presence or absence of a word in the document. The model does not record the actual

number of occurrences of a word in the document. It is called the Multivariate Bernoulli

model because it treats the document as a collection of many Bernoulli experiments, each

corresponding to a word in the feature set. The following equations given by [8] are the

most popularly used equations to implement the Multivariate Bernoulli model.

10

The probability of a document given its class [8]:

IVI

P(diIc j;0)= 	(BitP(wr c,;0)+(I-Br)(1-P(wc(c;;9)) (2.2)

• B jt : 0/1 indicating absence/presence of word wt in document di

• JII: total number of words in the feature set (also called vocabulary size)

• P(wt I c;; 0) : Probability of word Wt given class c;

The estimate far class-conditional word probabilities [8]:

ewt~C; = P(wt I c3; B) =

IDI
I + B~t P(c~ I d)

i=1

IDI
2+ > P(c1 I d,)

(2.3)

• P(c1 Id): 0 if document d1 does not belong to class c3

1 otherwise

• The addition of one and two in the numerator and denominator respectively is
done to avoid counts of zero or one.

The class prior probabilities are given by [8]:

IDI
EP(Ci id) (2.4)
z=1

Dl

The disadvantage of this model is that it has low classification accuracy as it does not
capture the word counts. The model is less used as compared to the Multinomial model
because of its lower classification accuracy. The next sub-section discusses the
Multinomial model of Naive Bayes' text classification.

11

2.4.2 Multinomial Model

Multinomial model uses the standard bag-of-words representation in which each element

of the feature vector gives the frequency of the corresponding word in the document. The
assumption that the occurrence of a word in the document is independent of its context

still holds true. The model regards the occurrence of a word as an event. Thus, it can be
said that each document d, is drawn from a multinomial distribution of words with as

many independent trials as the length of d1. The estimate of the probability of word w,
given class c1 is given by equation 2.5 [8]:

IDI
1+ 	N,t P(c j Id j

1=1
- P(w f 	 Ivi IDI

IVI+ZZNiP(cjId;)
s=1 1=1

(2.5)

• IDl:

• Nit:
• I y] :

• P(cj I d) :

Total number of documents in the training set

Number of times word wr occurs in document d,

Total number of words in the dictionary (= Number of elements in
the feature vector).

1 if document d1 belongs to class c1

0 otherwise

The class prior probabilities for this model are calculated in the same way as for the
Multivariate Bernoulli model (equation 2.4). Once the training information is available

the classifier can be used to predict the class label, of unknown documents using equation
2.1. The estimate for the probability of document given its class is calculated using

equation 2.6 [8].

P
P(d, Icj;O) =- P(1 d, L)Idi I![J

t=r

P(W t I
Nit!

(2.6)

12

Then, substituting the results obtained from equation 2.6 and that of equation 2.4, in

equation 2.1, we get the probability of a class given the document. After doing so for all

the classes, the document is assigned to the class with the maximum probability.

It has been shown that the Multinomial model is more accurate than the Multivariate

Bernoulli model [8]-[9]. This is because the Multinomial model unlike the Multivariate

Bernoulli model captures the word counts when creating the document vector. Also the

model has been found to be applicable to large datasets without degradation in

performance. Thus, in this dissertation the Multinomial model has been used for the

proposed parallel Naive Bayes' text classification.

2.5 General Purpose Computing on GPUs

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the

programmable GPU has evolved into a highly parallel, multithreaded, multiple core

processor with tremendous computational horsepower and very high memory bandwidth.

Figure 2.1 [10] illustrates the computational power of the GPUs provided by Nvidia.

GT200 = GeForce GTX 280 	G71 = GeForce 7900 GTX 	NV35 = GeForce FX 5950 Ultra

G92 = GeForce 9800 GTX 	070 = Geforce 7800 GTX 	NV3O = GeForce FX 5800
G80 = GeForce 8800 GTX 	NV4O = GeForce 6800 Ultra

Figure 2.1 Floating point operations for the GPU and CPU

13

Moreover with the evolution of Nvidia's CUDA programming model it has become very
easy to program for the GPU. This simplicity has led to a tremendous increase in the use
GPUs for general purpose computing.

2.5.1. GPU Architecture

The reason behind the discrepancy in floating-point capability between the CPU and the
GPU is that the GPU is specialized for compute-intensive, highly parallel computations
and is designed such that more transistors are devoted to data processing rather than data
caching and flow control, as schematically illustrated by Figure 2.2 [10].

Cont rot 	ALU _ ; At_U
3 	3 	 0.m......

.ALU AW

CPU
	

GPU

Figure 2.2 GPU devotes more transistors to data processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations, i.e., the same program is executed on many data
elements in parallel. The operations must be one with high arithmetic intensity.
Arithmetic intensity is defined as the ratio of arithmetic operations to the memory
operations. Data-parallel processing maps data elements to parallel processing threads.
Many algorithms like pattern matching computational finance etc. that process large data
sets can be accelerated by using the data parallel programming model. The CUDA
programming model exposes the parallel computing capabilities of the GPUs and has
been a hot topic ofresearch recently.

14

2.5.2 CUDA programming model

CUDA (Compute Unified Device Architecture) is a comprehensive software and

hardware architecture for GPGPU that was developed and released by Nvidia in 2007.

CUDA supports heterogeneous computations in a sense that serial parts of an application

are executed on the CPU and parallel parts on the GPU [ii]. The CUDA programming

model encourages dividing problems in two steps: At first into coarse independent sub-

problems (grids) and afterwards into finer sub-tasks that can be performed cooperatively

(thread blocks). The programmer writes a serial C for CUDA program which invokes

parallel kernels (functions written in C) [11]. The kernel is usually executed in thousands

of threads, which the programmer organizes in a hierarchy as shown in Figure 2.3 [11].

I ,
I 4

Figure 2.3 Thread Hierarchy in CUDA programming model

15

CUDA threads may access data from multiple memory spaces during their execution as

illustrated by Figure 2.4.

Thread

per-Thread Private
Lacai Memory ,

Thread Block

. •per-BlocEr
Shared Memory_

Grid 0

Figure 2.4 Memory Hierarchy in CUDA programming model

Each thread has a private local memory. Each thread block has a shared memory visible

to all threads of the block and with the same lifetime as the block. Finally, all threads

have access to the same global memory [11].

The goal of CUDA programming model is to make GPU programming simple for users

familiar with C programming. It provides a rich API Library consisting of functions that

can be used to program the GPU. Using CUDA it is possible to access the GPUs for

computation as CPUs. Using the CUDA programming model the programmer need not

worry about the device (GPU) details and just concentrate on developing his application.

It also provides a runtime library providing functions to control one or more devices

(GPU) from the host (CPU), device specific functions, and some built-in vector types

supported on both host and device. Figure 2.5 gives the details of the CUDA software

stack [11].

16

Figure 2.5 CUDA Software Stack

2.6 Literature Review

This section gives the literature review of parallelisation of text classification algorithms

using CUDA, parallelisation of Naive Bayes' classification algorithm and the use of

semantic information in text representation.

2.6.1 Parallelisation of Text Classification algorithms using CUDA

One of the first works towards using GPUs for Text Classification was done by Y. Zhang

et al [12]. They proposed a parallel implementation of the TFIDF text mining algorithm

utilising the massive compute capabilities of the GPUs. They parallelised the-various

modules involved in the task of text classification ranging from tokenization, steaming,

document hash table creation and calculation of TFIDF. They used the CPU/GPU

17

heterogeneous model where the CPU acts as the core processor and the GPU acts as the

compute accelerator. They developed their algorithm such that when the GPU is busy

developing the document hashtable the CPU can load the next batch of input, thus

preventing any of the processor from sitting idle. They published the results comparing

the time required for GPU implementation of each module against the time required for

CPU implementation by varying the corpus size. They also gave a few drawbacks of their

implementation one of which is the non-coalesced memory accesses. Their results

showed that GPU implementation is up to six times faster than the CPU implementation.

S. Liang et al [13] proposed a parallel implementation of the k-nearest neighbours

classification algorithm using CUDA. Their implementation consists of two GPU kernels:

distance calculation kernel and sorting kernel. It is the distance calculation kernel which

majorly affected the execution time of the algorithm. The distance calculation kernel

maximizes the concurrency of the distance calculation between various threads. They

also made a good use of the shared memory of each core on the GPU. The training

dataset was loaded into the shared memory of each core and the threads on the same

block shared the training data with each other. They also applied optimization strategies

like pipelining and coalesced memory accesses. Once the distances between the training

objects and the unknown object p are available, the sorting kernel was used to find the k

nearest neighbours to p. The results published, show that speedup of up to 15X was

achieved over the CPU implementation.

2.6.2 Parallelisation of Naive Bayes' classification algorithm

C. Kruengkrai and C. Jaruskulchai [14] proposed a parallel learning algorithm for text

classification that made use of the Naive Bayes' algorithm. They combined the learning

step of Naive Bayes with the Expectation-Maximisation (EM) algorithm to handle the

unavailability of a large set of labelled training documents. But since the EM algorithm

does not scale well and slows down as the dataset size grows, they made use of parallel

processing. Their experiments were performed on PIRUN Cluster at Kasetsart University.

PIRUN Cluster consists of 72 nodes connected with Fast Ethernet Switch 3COM

SuperStacki. Each node is a 500 MHz Pentium III with 128 Mbytes of RAM and uses

Linux as the operating system. Each processor in the system ran its own copy of the same

18

program thereby making use of the Single Program Multiple Data (SPMD) paradigm for

parallelisation. 20 Newsgroups dataset was used in their experiments. Their results show

that the parallel implementation with 16 processors was up to 12 times faster than the

single CPU implementation. Moreover, they also showed that as the number of parallel

processors decrease the speedup achieved also decreases.

W. Ding et al [15] proposed a new Naive Bayesian text classifier, Package and Combined

Naive Bayesian classifier (PC-NB), which relaxed the independence assumption without

compromising on the efficiency. They also parallelised the prediction step of the existing

Naive Bayes algorithm and their proposed algorithm on a cluster of FANGZHENG PC

(Memory: 256M, CPU: 1.6Hz) computers. They used the MPI model for parallel

programming. Reuters-21578 and the Industry Sector4 datasets were used for

performance comparisons. The results show that as the parallelism is increased by

increasing the number of computation nodes, the time required by the naive bayes

algorithm decreases before saturating beyond which no decrease in time could be

observed even on increasing the computation nodes.

V. G. Roncero et al [16] also proposed a parallel learning algorithm for text classification

using the combination of naive bayes and EM as in [14]. But instead of using a cluster as

the hardware for parallelisation they made use of the grid environment. The use of grid

environment allows for distributed collection of training data and distributed processing.

Their paper does not give any experimental results showing the improvements obtained

by using the grid environment for text classification.

2.6.3 Text representation using semantics

One of the first works towards using WordNet for capturing the semantic information in

text was published by Rodriguez et al. [17]. They focussed on using WordNet to enhance

neural network learning algorithms to improve the classification accuracy on Reuters

21578 corpus. They also retained the bag-of-words representation of text. However, their

approach only makes use of the synonymy. Their approach also took advantage of the

fact that the Reuters topic headings are themselves good indicators for classification. This

makes their work biased towards the Reuters-21578 dataset and may not work with

19

datasets where their assumption is false.

S. Scott, S. Matwin [18] extended the work of Rodriguez to make use of POS tagging.

But they also modified the representation of text to make use of English language phrases

—as features instead of the bag-of-words representation. Specifically they used the part of

speech information from the Brill tagger and the synonymy and hypernymy relations

from WordNet to change the representation of documents to hypemym density.

L.S. Jensen, T. Martinez [19] tested the method suggested by Rodriguez and Scott along

with other methods on 3 _different datasets: A subset of the Reuters-21578 data; a

collection of USENET postings; and a repository of folk songs called the Digital

Tradition. They used 3 different classification algorithms in their work, coordinate

matching, TF*IDF, and naive Bayes. Their results show that the use of synonyms does

increase the classification accuracy and can be used easily for tasks where a high

accuracy is required.

2.7 Research Gaps

Based on the literature review the following research gaps have been identified.

• There is need to parallelise the Naive Bayes' text classification algorithm because

the serial algorithm is slow and the vast amount of information in the form of text

needs to be processed as fast as possible.

• The Naive Bayes' algorithm needs to be parallelised using the GPUs as GPUs

offer a better price to performance gain ratio as compared to other approaches of

parallelisation like grid computing, cluster computing etc.

• With the increase in the number of predefined classes in the task of classification,

the existing algorithms become slower in classifying a text document to one of the

predefined categories. Thus there is a need to develop an algorithm, such that the

amount of time required for classifying a given text document does not increase

with the increase in the number of classes.

20

Chapter 3

Proposed Framework

Figure 3.1 gives the architecture of the parallel Naive Bayes' algorithm for classification

of unstructured text documents.

-.----------------------_---__—_-----

Preprocessing

Stops ord 	 Feahue
I 	Tokenizes 	list 	WorcMet 	Set
i 	 1

Input. Text I
Documents 	Stop Word 	Feature vector

Tagging 	Removal 	Generation 	I

r— — — — — — — — — — — — — -

Find Class of Document

	

Update class-conditional 	I
word count

Update class document count 	I

I 	 I

Calculate class-conditional
word probabilities

1 	 1
Calculate class prior

probabilities 	I

I 	~
Trained Classifier

----I

I
I

---------------------------- 1 	.------•------•-------•-----------------------------------•---- 	,-1
I; 	 ~I Calculate class Calculate class Calculate class

posterior posterior posterior
probability for probability for probability for

doss Co class C, class C„

GPU

i---------------------- ------
1

Find class with maximum posterior probability

I 	' i
I~------....-....---------------

I~
CPU 	j 	l

------------------------------'
I

1.... ---_.—_-----------

I Parallel Naive Bayes classification

i 	 I
Calculate class posterior

probability for each class

! 	 I
i 	 I

Find class 'with maximum
posterior probability

~ 	 I
I 	 I

Serial Naive Bayes classification
1 	 f
L--------------..a

Figure 3.1 System architecture of Naive Bayes' text classification

21

A brief description of the various modules involved is given in the following sub-

sections. The detailed description has been given in the next chapter.

3.1 Preprocessing Module

The first and foremost step is the conversion of a text document to a feature vector

representation. This is done in the preprocessing module. The module can be divided into

smaller modules like POS. tagging, tokenizing, stop word removal, and then finally

converting the document to a feature vector.

The given text document is passed through the POS tagger, the output of which is a

string, each word in which is annotated with its part-of-speech. This string is then

tokenized into a list of tokens. Each token is a word/part-of-speech pair. The word is then

provided as input to the sub-module for stop word removal. If the word is not a stop

word, then the token is given as input to the feature vector generation sub-module. The

module uses the information from the WordNet database and the feature-set to generate

the feature vector for the document. The feature set used has been constructed using the

training dataset.

3.2 Training Module

The training dataset comprising of text documents in the form of feature vectors, is

provided as input to the training module. The module processes the feature vector of each

document one by one through a series of steps. The first step in the module is to

determine the class of the input document and increase the document count for that class.

Then it updates the class-conditional word counts for the corresponding class utilizing the

feature vector of the document.

Once all the training documents have been processed, the class-conditional word

probabilities are calculated. The class prior probabilities are also calculated and then the

22

results are written to disk so that the classifier can be used later and there is no need to

train the classifier whenever a text document needs to be classified.

3.3 Serial Naive Bayes Classification

To compare the results of the parallel Naive Bayes' classification algorithm, the serial

Naive Bayes' algorithm was used. The input to the serial Naive Bayes' classification

module is the feature vector of the document to be classified and the trained classifier.

The module calculates the posterior probability of each class for the given document in a

serial fashion. The calculation of the posterior class probability involves the

multiplication of all the class-conditional word probabilities for this class. Once the

probability of each class has been calculated the next step is determine class with the

maximum probability.

3.4 Parallel Naive Bayes' Classification

This module parallelizes the calculation of posterior class probabilities given a text

document. The module takes the feature vector of the document and the trained classifier

as input and gives the class of the document as the output.

Instead of calculating the probability of each class in a serial fashion, the calculations for

each class are done simultaneously on a GPU. The detailed design and implementation of

the module has been given in the next chapter.

23

Chapter 4

Detailed Design and Implementation

This chapter gives the detailed design and implementation of the proposed parallel Naive
Bayes' text classification. As discussed in the previous chapter, the task of Naive Bayes'
text classification could be divided into three major modules which are discussed in the
following sections.

4.1 Preprocessing Module

	

I 	 I

	

I 	 I

Tokcnizer 	 stolI 	 Feahue
c ord list 	Wor(Wet 	Set

Word/POS
Input Text 4. 	 Feature

	

Documents I 	pos 	 Feature Vector 	Vectors
Stop Word Removal

lagging 	 Generation 	I

	

1 	 I

--------------------------------------I

Figure 4.1 Block Diagram of pre-processing module

The input to the system comprises of documents containing unstructured text. These
documents are converted into a feature vector in a series of steps as shown in Figure 4.1.
Maxent POS Tagger is used for POS tagging. Stop word removal is done with the help of
a stop list which is provided as input to the system. Semantic information from WordNet
is used to finally convert the list of tokens (words) into the feature vector representation.
The feature set to be used is provided as input to this sub-module. Figure 4.2 gives a

detailed flowchart of the steps involved for a given text document.

24

~a

ACC NCOP

Date

ROORK~~

Yes

Is theworda
Stc)pWord3

No

Get Index

Index >0

featu reVector[index]++

Start

Read the text document
Initialise featureVector to 0

POS tagging

Tokenize the text into
word/POS

Are there more
words?

Index = -1

No 	Write featureVectorto
disk

Figure 4.2 Flow Chart of the pre-processing module using POS tagging and

WordNet synsets

The process begins by reading the input text document, which is then passed through the

POS tagger. The POS tagger tags each word (term) in the document with its proper part-

of-speech. This tagged string of the document is then tokenized into word/POS tokens.

Each word is then passed through the stop word removal module after which the token is

passed to the Getlndex subroutine. The subroutine Getlndex has been described in Figure

4.3. The routine returns the index of a feature matching the current word/POS token or a -

1. If it returns -1, it means that the token is not in the feature-set and not is used for

representing the document. After each token has been processed the feature vector of the

document is available fir use in othermodules.

25

Get index

Input : Feature Set
Word, PO5

Return : Index

Index = position of 	Yes 	Is word/POS in

word/POS in feature-set 	 feature-set?

Get synonym sets of
the word for given P05

Are there more
distinct :synonyms

in this set?

Index=-1.

Yes

No 	is synonymJPOS in
feature-set?

Yes

Index = position of
synonym/POS in feature-set

Return

Figure 4.3 Flow Chart of the Get Index sub-routine using POS tagging and

WordNet synsets

26

The feature set used in the system could either be provided by human input or constructed

automatically using the training dataset. In the proposed parallel Naive Bayes' text

classification, the feature-set has been constructed automatically using the training

dataset. The steps involved in the generation of feature-set are very similar to those

outlined in Figure 4.2 and Figure 4.3. The only difference is that when the Getlndex

subroutine returns a -1, signifying absence of the token from the feature-set, that token is

added to the feature-set. And when the return value is positive, signifying presence of the

token in the feature-set, next token is chosen for processing from the list of tokens.

The preprocessing module was also implemented without using the POS tagging sub-

module. Since the POS tagging was not used, WordNet synsets corresponding to all

possible uses of the word are retrieved. As a result, it may be possible that unrelated

synonyms are merged together to point to the same feature resulting in a drop in some

accuracy.

Stara

Read the text document
I:rbitialise featureVector to 0

Tokenize the text into words

Yes 	Are there :more
words?

Is it a 	 Yes
StopWerd?

No

Get Index 	Index =-1

Index .0

featureVecto r{in dexj++

No 	Write featureVectorto
disk

Stop

Figure 4.4 Flow Chart of Pre-processing Module using WordNet synsets

The flowchart in Figure 4.4 gives the outline of the process involved in feature vector

generation using WordNet. The corresponding Getlndex subroutine is also modified as

shown in Figure 4.5.

Figure 4.5 Flow Chart of the Get Index sub-routine using WordNet synsets

28

For comparison purposes the preprocessing module was also implemented without

making use of any semantic information of the given text documents. In this approach the

steps involved are exactly those as given in Figure 4.4. However the Getlndex subroutine

just checks if the given word is in the feature-set and returns its index in the same.

However, if the word is not present in the feature-set it returns -1.

4.2 Training Module

The steps involved in training the classifier have already been outlined in the proposed

framework. Figure 4.6 gives the detailed flow diagram of the steps involved in training

the Naive Bayes' classifier.

Start

Read directory for Class
Ci

Yes

Yes 	re there more
documents in this

directory.'

into 	Are there
more classes?

No

Increment document count for
current class

Increment Total Document Count

Read feature vector of document

Calculate Class Prior
Probability

Calculate class-conditional
word probabilties

For each element in feature vector
update corresponding word count

for current class
Stop

Figure 4.6 Flow Chart of the Training Module of Naive Bayes' text classification

29

The multinomial Naive Bayes' model discussed in section 2.1.2 has been used in the

implementation of this module. The module takes as input the training dataset consisting

of text documents in the form of feature vectors. The module requires that the documents

be grouped class wise such that each class is represented by a directory and contains all

the documents belonging to that class. All these directories are present in a single root

directory which is provided as input to the module. After building the classifier, i.e.,

calculating the class-conditional word probabilities and the class prior probabilities, the

module writes them to disk so that the classifier is available for use later. The classifier

built is tested on the test dataset using the classification module which is described in the

next section.

4.3 Classification Module

The classification step of the Naive Bayes' model involves the calculation of posterior

probability of each class given the test document and then finding the class with

maximum probability. As already mentioned, the multinomial Naive Bayes' model has

been used to implement the proposed framework. Using the equations in section 2.1.2,

the relationship given by Equation 4.1, can be deduced for the posterior class probability

conditional to the document.

~V P(we I c) M' 	 (4.1)
P(cjld;)ocP(cj)fl

t-r 	Nt!

The terms like P(d) made no changes to the decision as for a given document they

remained constant even when the class is changed, and were hence removed. The term

Nit! could also be removed as the product N,o! * Nil ! * N2! * "' * 1V! is constant overthe

range of classes for a given document d;. Hence the relationship reduces to the one given

in Equation 4.2

Iv1
P(c;Id)ocP(cj)UP(wtic;)N" 	 (4.2) t-,

The complexity of the algorithm is of the order of O(mn) where m is the number of

classes and n is the number of features.

The Naive Bayes' classification module has been parallelised such that the calculation of

the posterior class probability P(cjl d) of each class is performed simultaneously. The

calculations for P(cjId), i.e., the multiplication byP(w, I c3)`, are also parallelised such

that each thread processes a part of the feature vector and calculates a partial product.

Figure 4.7 gives an outline of the model of the parallel Naive Bayes' classification

module.

CPU 	 GPU

Figure 4.7 Model for parallel Naive Bayes' text classification module

The class-conditional word probability matrix and the class prior probabilities first need

to be transferred to the GPU memory. The feature vector of the unknown document also

needs to be transferred to the GPU memory. Each block accesses the entire feature vector

but only a row of the class-conditional word probability matrix. The class-conditional

word probability is stored as an m x n matrix where m is the number of classes and n is

the number of features. Figure 4.8 gives the details of the data structures used for

representing the class-conditional word probabilities, feature vectors and the class prior

probabilities. Figure 4.9 gives the details about the processing done by a multiprocessor.

31

Co

NY0 	11r, 	. . . 	wa
P.O

Cl

PD.

Pxs PI

P 10 Pm Pirn

Class-conditional word probability matrix

"o W, . w,

~i 	tfio 	to 	. _ . . 	tf.

Feature Vector

C, 	C1 	. . . 	Cm
Pp 	F, 	 Pm

Cbss Probability Vector

Pw : Probabilih• of wordo gi en classo

tf;[: frequency ofword) in document;

Figure 4.8 Representation of class-conditional word probability, feature vector and
class probability

Cs

Class Probability Vector

Array size num of classes 	 MP- Multi processor

SM- Shared Memory

Figure 4.9 Processing done by a block (or MP)

32

The block calculates the posterior probability for the class corresponding to the row of

the matrix accessed. This also requires the number of blocks to be equal to the number of

classes under consideration. More number of classes leads to more number of blocks and

hence more parallelism. A block is executed on a multi-processor (MP). It may so happen

that a MP executes more than one block, but it will never be the case that a block is split

between 2 or more MPs. The class probability vector is used as an input/output vector.

Initially it stores the class prior probabilities, then the temporary results during the

execution of the kernel and then the final result which gives the posterior class

probabilities. This result is then returned to the CPU. Since each block accesses only one

element of the class probability vector, to speed up the processing, local variable which

gets stored in a register, is used for storing the temporary results.

A number of threads are created on each block. Each thread processes some part of the

feature vector which is divided equally among them. The number of threads that are

created on each block is a multiple of 32. This is required because each MP consists of 8

SP and the fastest instruction takes 4 cycles. Therefore each SP can have 4 instructions in

its pipeline for a total of 8*4 instructions being executed concurrently on a MP. Within a

warp (number of threads executing concurrently on a MP) threads have sequential

indices. Thus there is a warp with thread indices 0...31, another with 32...63 and so on.

The homogeneity of the threads used, makes it possible for all SPs on the MP to execute

the same instruction in parallel.

Since the number of threads is a multiple of 32 whereas the number of features may not

be, some elements of the feature vector and a row of the class-conditional word

probability matrix are not assigned to any thread. These remaining elements are

processed by threads To — Tx (x < number of threads), once these threads have finished

processing their batch of input. This leads to some amount of performance degradation

due to serialization. To avoid this, efforts must be made to keep the number of features a

multiple of 32.

Two global memory access strategies have been used in the parallelization of Naive

Bayes. First, in which the vector was divided into k groups, k being the number of threads

on the block, and each thread accessed all the elements of a group. Since the addresses

33

generated by the threads in a warp are not sequential but are separated, multiple memory

accesses are required as the GPU cannot coalesce them into a single access. This slows

down the module. In the second strategy, the memory accesses are such that the threads

in a warp access sequential memory addresses. Figure 4.10 will make things clear.

Tv To ... T. Ti Ti 	... 	T Tr ... T 	Tn-T. 	sequential
Access

Address 	0 	1 	... 1 i+1 i~2 ... 21 	.. 	 Remaining
Elements

 T T~ Tj ... I f T~ Tj ...
 ... 	T9 Tl ... Ti I 	Ti 	 Interleaved 11 	Access

n : number of fentures
k : number of threads per block
i = nik : number of element-. per thread
s : number of remnini g elements

Figure 4.10 Memory Access Strategies for feature vector and class-conditional word

probabilities

Figure 4.11 gives the addresses generated by the threads in a warp for the two memory

access strategies discussed.

Interleaved Access 	 Sequential Access

warp
 warp

rt 	 ►

T© Tt T2 T3 ... Tk

0 1 23... k

TO T1 T= T3 ... Tk

o 1+1- 2i~1 3i+1 ... ki±1

Thread Id

Address generated

Sequential Address 	 Separated Addresses
generated by threads 	generated by threads in a

in awaip 	 wasp

Figure 4.11 Addresses generated by threads in a warp

34

Once each thread is done with calculating the partial products, their results are written to

a vector in shared memory. Shared memory is much faster than global memory and is

shared by all threads on the block. Each block has its own shared memory. The shared

memory is limited and must be usedjudiciously.

The shared memory was also used to store the input class-conditional word probabilities

and the feature vector. But no improvement was observed over the parallel

implementation without using shared memory. Instead there was a performance penalty

when shared memory was used for storing the input data over the GPU. The reason for

this performance degradation is: In parallel Naive Bayes' classification, an element in the

class-conditional word probability and the feature vector is accessed only once inside

each block. With the use of shared memory the memory accesses increase as the data has

to be first read from global memory and written to shared memory and then read from

shared memory and used in computations. Whereas, if global memory is used the data is

read from global memory and directly used in computations. Thus, one global memory

access has to be present. But with the use of shared memory, an additional memory read

(write) from (to) the shared memory gets involved, which is a performance overhead.

The partial products obtained from each thread need to multiplied together to obtain the

final class probability. Instead of using one thread to accomplish this, multiple threads are

used in a parallel manner as shown in Figure 4.12.

The first step involves utilizing the first k/2 threads of the block and each thread

multiplies the values at indices given by `threadld' and `threadld + k/2' and stores the

result at index 'threadld'. After this step we are left with a total of k/2 values to be

multiplied together to obtain the final result. In a similar fashion the second step involves

utilizing k/4 threads to obtain k14 values and this goes on until we get a single value.

After the first step of utilising k12 threads we wait till each thread has done its processing

because the output of this step forms the input of next step.

43.1

voo vo1 va_ 	 • ... 	 vok

v oa

* l 2+11O of }Z`a =r±=t'ii 	 Vag 2*170h=v1 	Not Used

V10 * a~ a=ti'io
~7-0

i Z'oi ax'11 	 Not Used

Partial Products

Step I: Proccessing
done by k:2 threads

Step 2: Proccessing
done by k14 threads

Step logk: Proccessing "Va,,k t)i=~ oo * VOI * V02... " A'ok 	 tiof Used 	
done by i thread

Figure 4.12 Processing done to obtain final class probability

The final value is then written to the class probability vector at the location corresponding

to this block which also corresponds to a class. After all the blocks have completed their

tasks, the posterior probability of each class is available in the vector. Then the maximum

value is searched in the vector and the corresponding class is assigned as the class of the

unknown document. Since this step is not computation intensive we let the CPU perform

this task.

4.4 Experimental Setup

This section describes the dataset used for testing the parallel Naive Bayes' text

classification algorithm. The CPU and GPU hardware used for the experiments have also

been discussed in this section.

4.4.1 Data Preparation

Reuters 21578 dataset has been used to test the parallel naive bayes algorithm. It is a

collection of news articles that appeared on the Reuters newswire. The dataset has been

the most widely used one for research on text classification.

36

The dataset is organized into 21 files each having 1000 articles and the remaining are in

the 22" file. Each article in the file has been tagged with information like title, category,
article number, train/test document and many more.

To prepare the input data, each article is written to a separate file whose name is given by

article number. Also the articles belonging to the same category are grouped into a single

directory. The train/test documents are also separated by using the information provided.

We also order the categories (classes) according to the number of documents in them and

then group them into 16 most frequent categories, 32 most frequent categories and so on.

4.4.2 Hardware Configuration

The GPU used for testing the parallel naive bayes text classification algorithm was

Nvidia GTS 250. Table 4.1 gives the details about the graphics card. To compare the

results, Pentium P4 processor was used to run an efficient CPU implementation of Naive

Bayes', the specifications of which are given in Table 4.2.

Table 4.1 Hardware Specifications of GTS 250 card

CUDA Cores 128

Graphics Clock 738 MHz

Processor Clock 1836 MHz

Memory Clock 1100 MHz

Memory 512 MB of GDDR3 RAM

Memory Interface Width 256 bit

Memory Bandwidth 70.4 GB/s

37

Table 4.2 Hardware Specifications of the CPU used

Cores 2

Clock Speed 3 GHz

Cache 2 MB

FSB Speed 800 MHz

Memory 4 GB

38

Chapter 5

Results and Discussions

The results for the proposed methodology and the experimental setups have been

explained in this chapter.

5.1 Comparison of classification accuracy

To check if the implementation of Naive Bayes' was correct or not, its classification

accuracy was compared to that given by Weka on the same dataset. Table 5.1 gives the

results of the two techniques on the datasets formed by selecting documents from 16 and

32 most frequent classes of the reuters-21578 dataset respectively.

Table 5.1 Comparison of Classification Accuracy of proposed parallel Naive Bayes'
text classification with that of WEKA

Dataset
Classification Accuracy (%)

Weka Naive Bayes'

16 most frequent classes of reuters-21578 69 68.8

32 most frequent classes of reuters-21578 68.47 68.17

As is clear from Table 5.1, the results of the implementation presented in this thesis are

the same as that produced by Weka. Thus it can be said that the implementation is

correct. The results of using WordNet and POS tagging in the preprocessing module are

discussed in the next sub-section.

5.1.1 	Results of integrating WordNet and POS tagging

To use the semantic information present in the given text documents for improving the

quality of classification WordNet and POS tagging were used in the preprocessing

module of the proposed parallel Naive Bayes' text classification algorithm. Table 5.2

39

below gives the results obtained. Tsw different sets of test data were used. Both the

datasets are a subset of the Reuteis-21578 dataset.

Table 5.2 Comparison of Classification Accuracy obtained by using WordNet and
POS tagging

Classification Accuracy (%)

Dataset Naive Bayes' + Naive Bayes' +
Naive Bayes' WordNet WordNet + POS

Tagging

16 most frequent classes of 68.8 72.2 73.97
reuters-21578

32 most frequent classes of 68.17 71.5 73.49
reuters-21578

The results show that the use of WordNet and POS tagging even in the simplest of the

ways leads to an improvement in the classification accuracy. But the improvements

observed are not that great suggesting the use of some intermediate steps if highly

increased classification accuracy is desired.

5.2 Results of Parallelization

The results of the GPU implementation of naive bayes text classification are presented in

this section.

5.2.1 Determining the number of threads

To determine the number of threads/block to be made, the implementation was run for

different values keeping the number of blocks (= number of classes) constant at 112. The

experiments were made using 32, 64, 128, 256, and 512 threads on each block Table 5.3

40

gives the execution time required by both the memory access approaches (sequential and
interleaved). Figure 5.1 gives the plot of the results.

Table 5.3 Comparison of Execution Time of the two parallel Naive Bayes'
implementations on GPU by varying number of threads/block

Number of
threads

Execution Time (ms)

Sequential Access Interleaved Access

32 3.71 1.47

64 2.67 1.45

128 2.47 1.43

256 2.73 1.46

512 4.28 1.48

Execution Time (# of classes constant)
4.5

4

3.5

3

E 2.5

E 2

1.5

1

0.5

0

--Sequential

-.0--Interleaved

0 	100 	200 	300 	400 	500 	600

Threads

Figure 5.1 Comparison of Execution Time of the two parallel Naive Bayes'
implementations on GPU by varying number of threads/block

41

As is clear from Table 5.3 and Figure 5.1, the thread value of 128/block requires the least

amount of time as compared to the other values. Thus this value of threadsiblock is

chosen for the experimental setup. The execution time listed in Table 5.3 does not take

into consideration the time required to transfer the necessary data to and from the GPU.

This is not required because both the approaches will require the same amount of data

transfer time and we are interested only in their relative time requirements.

5.2.2 Comparison of parallel Naive Bayes' with serial Naive Bayes'

In Table 5.4, the execution time of CPU implementation of Naive Bayes', parallel Naive

Bayes' using sequential memory accesses and parallel Naive Bayes' using interleaved

(coalesced) memory accesses on GPU, has been given. The GPU time is the summation

of the time required for data transfer from CPU memory to GPU memory and vice-versa,

and the time required for calculating the posterior class probability. The CPU time is just

the time required for calculation of posterior class probability.

Table 5.4 Comparison of Execution Time by varying number of classes

Number of
classes Execution Time (ms)

Speed Up (vs. CPU)

CPU Time / GPU Time

CPU
GPU

(sequential
Access)

GPU
(coalesced

access)

GPU
(sequential

access)

GPU
(coalesced

access)

16 35.97 1.36 1.22 26.45 29.48

32 75.44 2.47 2.01 30.54 37.53

48 115.88 3.39 2.77 34.18 41.83

64 163.44 4.16 3.49 39.29 46.83

80 205.19 5.14 4.26 39.92 48.17

96 251.75 5.94 4.89 .42.38 51.48

112 294.96 6.96 5.73 42.38 51.48

42

The above table gives the time required to classify one of the test documents. When
comparing the three implementations of Naive Bayes', it is guaranteed that all of them

classify the test document to the same class generating the same values for the posterior
class probabilities. As is clear from Table 5.4, as the number of classes increase so does

the gap between the time required by serial Naive Bayes on CPU and the parallel Naive
Bayes' implementations on GPU. Figure 5.2 gives a plot of the execution time required

by the three implementations.

Execution Time
R'i'll]

v
E
F

—CPU

GPU (Coalesced)

10
—.—GPU (Sequential)

1

0 	20 	40 	60 	80 	100 	120

*f Classes

Figure 5.2 Execution Time of Naive Bayes using CPU, GPU (sequential memory

accesses) and GPU (coalesced memory accesses) by varying number of classes

Figure 5.3 gives a plot of the speed up obtained by the parallel implementations of Naive

Bayes' text classification on GPU over the implementation on CPU. It is clear that the

implementations of Naive Bayes' text classification using GPU are much faster than the

43

SpeedUp
60

50

40
a

30

20

10

0

-f—GPU (Coalesced)

—*--GPU (Sequential)

implementations using CPU. It is also observed that the parallel Naive Bayes' using

coalesced memory access is much faster than the one using sequential memory accesses.

0 20 40 60 80 100 120

#of Classes

Figure 5.3 Speed up obtained by using GPU as compared to CPU

The figure shows that speedup by using the GPU reaches around 42%. When the memory

accesses were coalesced, the GPU was used in a more concurrent manner and the speed

increases reaching as high as approximately 52%.

5.2.3 Comparison between the two parallel Naive Bayes' implementations

The time required by each implementation of parallel Naive Bayes' text classification

using the GPU is a sum of the following three components:

1. Time required to transfer the class-conditional word probabilities, the class prior

probabilities and the feature vector to the GPU memory from the CPU memory

2. Time required for execution of kernel

3. Time required for transferring the posterior class probabilities from the GPU

memory to the CPU memory.

Table 5.5 gives the breakup of the time required by the parallel Naive Bayes' text

classification algorithm using GPU. The time required in 1 and 3 have been merged and

are together called as the data transfer time. The data transfer time for the two parallel

implementations of Naive Bayes' remains the same. The two implementations differ in

their kernel execution times. Hence, to compare the two implementations only their

kernel executions times have been considered. Figure 5.4 gives a plot of the execution

time of the two implementations of parallel Naive Bayes'. As is clear from Figure 5.4, the

coalesced memory accesses greatly reduce the kernel execution time and therefore

increase the speed of the parallel Naive Bayes' classification for unstructured text data.

Table 5.5 Comparison of Execution Time of the two parallel implementations of

Naive Bayes'

Sequential Memory Coalesced Memory
Data Access Access

Number transfer Speed Up

of time Kernel Kernel
Total Time Total Time (SKT/CKT)

classes (ms) Execution Execution o
(ms) (ms)

/o
DT time (ms) time (ms)

(DT±SKT)

(DT + CKT)
SKT CKT

16 0.9 0.46 1.36 0.32 1.22 143.75

32 1.55 0.92 2.47 0.46 2.01 200

48 2.13 1.26 3.39 0.64 2.77 196.88

64 2.58 1.58 4.16 0.91 3.49 173.63

80 3.19 1.95 5.14 1.07 4.26 182.24

96 3.63 .2.31 5.94 1.26 4.89 183.33

112 4.24 2.72 6.96 1.49 5.73 182.55

45

3

2.5

2

E
• 1.5

E

1

0.5

0

0

GPU (Coalesced)

• GPU (Sequential)

20 	40 	60 	80 	100 	120

#of Classes

Execution Time

Figure 5.4 Kernel Execution Time of Naive Bayes using GPU (sequential memory

accesses) and GPU (coalesced memory accesses) by varying number of classes

46

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, a parallel implementation of Naive Bayes' text classification using
CUDA has been proposed. The algorithm was modified to make use of WordNet synsets
and POS tagging. The following conclusions can be drawn from this dissertation work:

• The classification step of Naive Bayes' text classification was parallelized using
CUDA. The proposed approach used the global memory, and the data accessed by
each thread was sequential. Experimental results showed that the parallel
implementation over GPU was up to 40 times faster than the implementation over
CPU.

• The use of memory coalescing to reduce the number of memory accesses resulted
in a decrease in the time required for classification. Experimental results show
that this implementation was up to 52 times faster than the implementation over
CPU and up to 1.75 times faster than the previous approach.

• The use of WordNet and POS tagging to capture the semantic information
resulted in an increase in the classification accuracy of the proposed parallel
Naive Bayes' text classification algorithm. However, the improvements obtained
were not very significant and ranged between 3-4% over the traditional n~thod.

6.2 Scope for Future Work

There are some points where the proposed system's functionality can be extended and
improved. The possible improvements in future are listed below:

47

• The parallelisation of the training module of Naive Bayes' classifier can be

explored for applications using the incremental model of learning. In such

systems the classifier is trained frequently and hence parallelisation is a good

option to reduce the amount of time spent in training.

• The parallelisation of the pre-processing module can also be explored. Most of the

time in the proposed system is spent in pre-processing the text documents.

• Currently, the system has been designed such that only after a document has been

processed completely, will another document be accepted for classification. But

pipelining can be used such that when the GPU is busy calculating the posterior

class probabilities, the CPU can load anther text document and pre-process it.

• The use of WordNet and POS tagging has been done a rather simplistic way to

avoid unnecessary complexities in the system. But they can be integrated into the

proposed system in a more sophisticated way which could lead to greater

improvements in classification accuracy.

C.

REFERENCES

[1] Tom Mitchell, Machine Learning, Tata McGraw Hill, 97

[2] T. Joachims. "Learning to Classify Text Using Support Vector Machines- Methods,
Theory and Algorithms", in The Kluwer International Series in Engineering and
Computer Science, Kluwer Academic Publishers, 2001.

[3] C. Silva, B. Ribeiro, "The importance of stop word removal on recall values in text
categorization," Neural Networks, 2003. Proceedings of the International Joint
Conference on , vol.3, no., pp. 1661- 1666 vol.3, 20-24 July 2003.

[4] (February 10). Stemming and lemmatization. Available: http://nlp.stanford.edu/IR-
book/html/htmledition/stemming-and-lemmatization- l .html

[5] G. A. Miller, "WordNet: A Lexical Database for English," Communications of the

ACM, vol. 38, pp. 39-41, 1995.

[6] (April 28). Stanford Log-linear Part-Of-Speech Tagger. Available:
http://nlp. stanford. edu/soflware/tagger_ shtml

[7] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2" ed., Elseveir,
2006, pp. 290-350.

[8] A. McCallum and K. Nigam, "A comparison of event models for Naive Bayes text
classification," in AAAI-98 Workshop on Learning for Text Categorization, 1998,

[9] Karl-Michael Schneider, "A Comparison of event Models for Naive Bayes Anti-
spam E-mail Filtering" 2003.

[10] NVIDIA Corporation. NVIDIA CUDA programming guide, Version 2.0, July
2008.

[11] NVIDIA Corporation. NVIDIA CUDA programming guide, Version 3.1, May
2010.

49

[12] Y. Zhang, F. Mueller, X. Cui, T. Potok, "GPU-Accelerated Text Mining," in
Workshop on Exploiting Parallelism using GPUs and other Hardware-Assisted
Methods, 2009.

[13] S. Liang, C. Wang, Y. Liu and L. Jian, "CUKNN: A parallel implementation of K-
nearest neighbor on CUDA-enabled GPU," YC ICT '09: IEEE Youth Conference on
Information, Computing and Telecommunication, 2009. , vol., no., pp.415-418, 20-
21 Sept. 2009

[14] C. Kruengkrai and C. Jaruskulchai, "A parallel learning algorithm for text
classification," in Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, Edmonton, Alberta, Canada,
pp. 201-206, 2002.

[15] Wang Ding; Songnian Yu; Qianfeng Wang; Jiaqi Yu; Qiang Guo;, "A Novel Naive
Bayesian Text Classifier," Information Processing (ISIP), 2008 International

Symposiums on, vol., no., pp.78-82, 23-25 May 2008.

[16] V. G. Roncero, M. C. A. Costa, and N. F. F. Ebecken, "Text classification on a grid
environment," in Proceedings of the 9th international conference on High

performance computing for computational science, Berkeley, CA, 2011, pp. 251-
262.

[17] M. Rodriguez, J. Gomez-Hidalgo, and B. Agudo. Using WordNet to complement
training information in text categorization. In Proceedings of the International

Conference on Recent Advances in Natural Language Processing, 1997

[18] S. Scott and S. Matwin, "Text Classification Using WordNet Hypernyms," in
Proceedings of the conference on Use of WordNet in Natural Language Processing

Systems, pp. 38-44, 1998.

[19] Lee S. Jensen, Tony Martinez. 2000. "Improving Text Classification by Using
Conceptual and Contextual Features."

50

[20] Lin Lv; Yu-Shu Liu; , "Research of English text classification methods based on

semantic meaning," Information and Communications Technology, 2005. Enabling

Technologies for the New Knowledge Society: ITI 3rd International Conference on

, vol., no., pp.689-700, 5-6 Dec. 2005

[21] Jian Yang, Mei Sun and Wenjun Zhou, "Study on Massive Text Classification

Mining Grid System," 2nd International Symposium on Information Engineering

and Electronic Commerce (IEEC), 2010, vol., no., pp.1-6, 23-25 July 2010.

51

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

