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Abstract 

Text classification is the task of assigning a given text document to one of the predefined 
categories depending on the contents of the document. It has found immense applications 
in fields as diverse as medicine, financial markets, information retrieval etc. Naive 

Bayes' is one of the most widely used algorithms for classification. However, the 
algorithm is significantly slow due to the large amount of calculations it has to perform. 
Thus, there is a need to parallelise the algorithm to reduce the time required for 
classification. The algorithm could be parallelised using grid computing, clusters, CPU 
threads or GPUs. 

Modem Graphics Processing Units (GPUs) have enabled high performance computing 
for general-purpose applications. GPUs are being used as co-processors in order to 
achieve a high overall throughput. CUDA programming model provides adequate C 
language like API, making it simpler to program for the GPU. In this dissertation, a 
CUDA based parallel implementation of Naive Bayes' text classification has been 
proposed. The classification step has been parallelised on GPU using different 
approaches each trying to exploit some property of the GPU. For example, use of shared 
memory against global memory, memory coalescing etc. The performance of the 
implen entation of Naive Bayes' text classification on GPUs has been compared with an 
efficient implementation of the same on a CPU. 

The semantic information of unstructured text can be used to improve the classification 
accuracy. WordNet and POS tagging have been used in this dissertation, to capture the 
semantic information in unstructured text. The dataset used for experiments is Reuters-
21578, which is a collection of news articles that appeared on the Reuters newswire in 
1987. The proposed parallel Naive Bayes' algorithm has been implemented on Nvidia's 
GTS 250 card with 128 processors and 512 MB GDDR3 RAM. The CPU used for the 
serial implementation consist of a Pentium P4 processor operating at 3 GHz and a DDR3 

RAM of 4 GB. Experimental results show that the parallel implementation on GPUs is 
faster than the serial implementation. 
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Chapter 1 

Introduction and Statement of the Problem 

1.1 Introduction and Motivation 

Text classification, is the task of assigning a given text document to one of the 

predefined categories depending on the contents of the document. It has found 

immense applications in areas as diverse as medicine, e-commerce, information 
retrieval, financial markets etc. Traditionally the task of text classification was done 

by human experts and usually required a large amount of time. But, the rapid growth 
of information on the web has led to development of algorithms that could enable 
automatic text classification with accuracy similar to that of a human expert but taking 
a much lesser amount of time. Some of these algorithms are Support Vector Machines 

(SVM), k-nearest neighbours (kNN), Naive Bayes' etc. These algorithms form a part 
of a broader category of algorithms called machine learning algorithms. 

The text classification algorithms operate in 2-steps: learning and classification. In 
the learning step a model is built using already classified documents. Classification 
step uses the model built in the learning step to classify documents to one of the 
available classes. Formally the task of text classification can be stated as follows [1]: 
given a set of classification labels C, and a set of training text documents E, each of 
which has been assigned one of the class labels from C, the system must use E to 
develop a hypothesis that can be used to predict the class labels of previously unseen 
examples of the same type. 

Before a set of documents can be presented to the system, each document must be 

converted to a feature vector because the classification algorithm or the classifier-

building algorithm cannot interpret the text directly. Each element of the feature 

vector may represent a word or a phrase from the given text document. This 

representation of text could be used with many classification algorithms like SVM, 

kNN, Naive Bayes' and so on. The values in the feature vector may be binary or 

integers. 
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Binary values just indicate the presence or absence of a term in the document whereas 

integer values indicate the frequency of term's occurrence in the document. This 

representation of text is termed as bag-of-words and has been used extensively by 

researchers and professionals alike. The information about the order of words is lost 

in this model but Joachims [2] refers that this loss is irrelevant since the information 

lost is little and bringing unnecessary complexity to the task of classification is 

questionable. 

Using the bag-of-words approach, the dimensionality of the feature vector becomes 

very high; the number of features may go up to tens of thousands. This leads to 

increased computational and space complexity. There are a large variety of 

preprocessing steps for feature set reduction. Silva, C.; Ribeiro, B. [3] evaluated the 

performance of three major pre-processing steps, namely stop word removal, 

stemming and the removal of words with low document frequency. Their results 

showed that the use of the pre-processing steps did not lead to much degradation in 

classification accuracy. One drawback of the traditional bag-of-words model is that 

the semantic information like synonyms, antonyms, hyponyms, part-of-speech 

between the words in the text document is not captured and is lost. Hence, there is a 

need to develop systems where the semantic information of text is captured into the 

bag-of-words model. 

Stop words are non-informative words such as articles, prepositions and conjunctions. 

These words have no distinguishing potential between the various categories. 

Stemming is another pre-processing step to avoid feature expansion. In stemming the 

word stem is derived from the occurrence of the word by removing case and inflection 

information. For example, "computer ", "computes " and "computing" are all mapped 

to the stem "comput". 

Naive Bayes' is based on a probabilistic model for text classification. Given a text 

document, the algorithm assigns it to the class that is most probable to have generated 

the document. Over the years the algorithm has found immense applications like stock 

market prediction, information retrieval, e-mail spam filtering, heart-disease 

prediction system and many more. The reason for such a wide use of the algorithm is 

not only the simplicity of its learning step and the classification step, but also that it 

gives satisfactory classification accuracy. However, the algorithm is slow due to the 
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large amount of calculations it has to perform: Thus, there is a need to parallelise the 

algorithm using architectures like grid computing, clusters, CPU multi-threading, 

GPUs etc. 

The amount of information that is processed and maintained has been increasing day 

by day. Moreover, a large part of this information is in the form of unstructured text. 

Text classification is an important task in maintaining the text data. There is a need to 

develop systems that could perform the task of text classification requiring as less 

time as possible. Thus, there is a need to parallelise the task of text classification. 

Graphics Processing Unit, or GPU as it is popularly called, is a programmable logic 

chip that performs parallel computations on graphics data. Recently GPUs are being 

used for a variety of applications that require repetitive computations on multiple sets 

of data. With the advent of CUDA, a parallel programming architecture developed by 

Nvidia, it has become easier to program the GPU than it was possible earlier. CUDA 

enables the programmer to program using variants of high level programming 

languages like C and Java. As a result, there has been a lot of .work towards 

parallelizing text classification algorithms using CUDA. The improvement in 

execution time, obtained by parallelization of classification algorithms like kNN and 

SVM, is a motivating factor for parallelisation of the Naive Bayes' classification 

algorithm on the GPU. 

1.2 Statement of the Problem 

The problem statement of the dissertation is as follows: 

Parallelisation of Naive Bayes' classification for unstructured text data. 

The above problem can be divided into the following sub-problems. 

• Preprocessing Module: To convert a given document to a feature vector 

representation so that it can be used by the classification algorithm. It involves 

a lot of steps like POS tagging, tokenization, stop word. removal and then 

finally generating the feature vector. 
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• Training Module: To determine the parameters, i.e., the class-conditional word 

probabilities and the class prior probability, of the Naive Bayes' model, using 

the training dataset provided. This information is then used in the 

classification step. 

• Classification Module: To classify a given test document, into one of the 

predefined categories, using the model built by the Training Module. Since 

this step is the one to be used recurrently, it is the one that has been 

parallelized. 

1.3 Organization of the Report 

This dissertation report comprises of six chapters including this chapter that 
introduces the topic and states the problem. The rest of the report is organized as 

follows. 

Chapter 2 gives the background of preprocessing, WordNet and PUS tagging, Naive 

Bayes' text classification, GPU architecture and CUDA, literature review of text 

representation using semantics, parallelization of text classification algorithms using 
CUDA and parallelization of Naive 'Bayes' text classification. 

Chapter 3 discusses the proposed framework which includes the preprocessing 

module, training module and the parallel Naive Bayes' classification module. 

Chapter 4 gives the detailed design and implementation of all the modules of the 

proposed framework. It also gives a description about the experiments performed to 

evaluate the proposed model. 

Chapter 5 discusses the experimental results, validation of the system, and comparison 

of the results obtained from different approaches. 

Chapter 6 concludes the dissertation work giving the scope for future work. 
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Chapter 2 

Background and Literature Review 

2.1 Preprocessing 

The text documents need to be processed to convert them to a representation understood 

by the Naive Bayes' classification system. The preprocessing steps used in the proposed 

system are discussed below. 

2.1.1 Feature Vector Generation 

Classification algorithms cannot process the text directly in its raw form. Instead, the text 

documents need to be converted to a representation which can be understood by the 

classifier. One such representation is to use a binary vector, each element of which 

indicates the occurrence or absence of a term in the document. Another approach is the 

use of bag-of-word (BoW) model in which the frequency count of each term in the text 

document becomes an element of the feature-vector. The BoW model is also called the 

Vector Space Model. 

One of the drawbacks of the BoW model is the high dimensionality of the feature-vector. 

To reduce the dimensionality to some extent stop word removal and stemming are used in 

almost all text classification applications. These techniques have been explained in the 

following sections. Another drawback of the BoW model is that it does not capture the 

semantic information that exists among the terms in the text document. 

2.1.2 Stop word Removal 

Text documents contain words like 'a', `an ; "the" etc, which do not convey any 

information about the document. These words occur in all documents irrespective of the 

class of the document. Such words are called stop words. These words should be 

removed from the text document before proceeding with the classification task or the 

results of classification could be misleading 
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The most obvious method for stop word removal is to maintain a list of stop words and 

check each word in the given text for presence in the stop word list. If a word is present 

in the stop word list then the word is removed from the given text and not considered 

during classification. Also it should be kept in mind that there is no definitive list of stop 

words. The list depends on the application under consideration. This list could either by 

supplied by a human expert in the concerned domain or could be a standard one which 

are readily available. 

2.1.3 Stemming 

In stemming, the word stem is derived from the occurrence of the word by removing case 

and inflection information. The stem form need not be identical to the morphological root 

of the word as it is sufficient that related words reduce to the same stem even if the stem 

is not a valid root itself E.g. fishing and fisher get reduced to fish which is the stem for 
those words. 

Though stemming helps to reduce the feature set size, it has one drawback. The use of 

stemming can sometimes lead to errors in the classification task as it is possible that two 

unrelated words get reduced to the same stem, e.g. universal and university get stemmed 
to the same root; and animal and animation get stemmed to the same root. There exist 

several methods for stemming which are listed below: 

• Brute Force Algorithms 

• Suffix-stripping Algorithms 

• Lemmatization Algorithms 

• Stochastic Algorithms 

Suffix-stripping Algorithms are highly popular because they are simple to implement and 

give satisfactory results. Suffix stripping algorithms do not rely on a lookup table that 

consists of inflected forms and root form relations. Instead, a typically smaller list of 

"rules" is stored which provides a path for the algorithm; given an input word form, to 

find its root form. Some examples of the rules include: 
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• if the word ends in'ed', remove the 'ed' 

• if the word ends in'ing', remove the 'ing' 

• if the word ends in'ly', remove the'ly' 

Porter stemming algorithm is a suffix stripping algorithm published by Martin Porter in 

the July 1980 issue of the journal "Program ". It became immensely popular and kind of 

became a standard algorithm used for English language [4]. 

2.1.4 Semantic Information in Text 

The terms in the text document are semantically related by a number of relations like 

synonymy, antonymy etc. Also the part-of-speech of the terms has a profound effect on 

the. semantics of the term. The BoW model does not capture the semantics of the text 

document. Various approaches like ontology based, N-Grams, multi-word features, 

Latent Semantic Indexing (LSI), Locality Preserving Indexing (LPI) have been proposed 

and are in use over the years. In the Literature Review section, some of the techniques 

used for using the semantic information among the terms in the text document, have been 

discussed. 

2.2 WordNet 

WordNet is a lexical database for English language. English nouns, verbs, adjectives, and 

adverbs are organized into sets of synonyms, each representing a lexicalized concept [5]. 

WordNet does not include prepositions, determiners etc. The synsets are connected to 

other synsets via the following semantic relations [5]: 

• Synonymy is WordNet's basic relation, because WordNet uses sets of synonyms 

(synsets) to represent word senses. Synonymy is a symmetric relation between 

word forms. 

• Antonymy (opposing-name) is also a symmetric semantic relation between word 

forms, especially important in organizing the meanings of adjectives and adverbs. 



• Hyponymy (sub-name) and its inverse, hypernymy (super-name), are transitive 

relations between synsets. Because there is usually only one hypemym, this 

semantic relation orginiies the meanings of nouns into a hierarchical structure. 

• Meronymy (part-name) and its inverse, holonymy (whole-name), are complex 

semantic relations. WordNet distinguishes component parts, substantive parts, and 

member parts. 

• Troponymy (manner-name) is for verbs what hyponymy is for nouns, although the 

resulting hierarchies are much shallower. 

• Entailment relations between verbs are also coded in WordNet. 

WordNet also provides the polysemy count of a word: the number of synsets that contain 

the word. The morphology functions of the software distributed with the database try to 

deduce the lemma or root form of a word from the user's input; only the root form is 

stored in the database unless it has irregular inflected forms [5]. 

2.3 Part of Speech Tagging 

A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads text in some 

language and assigns parts of speech to each word (and other token), such as noun, verb, 

adjective, etc., although generally computational applications use more fine-grained POS 

tags like 'noun-plural'. In this thesis the Stanford Log-linear Part-Of-Speech Tagger has 

been used. The tagger is available at [6]. The software requires Java 1.5+ to be installed. 

The tagger takes as input a string of words and returns a string consisting of words 

annotated with their part of speech. The word and part of speech pair is separated by a 

"P". The English taggers in the software use the Penn Treebank POS tag set. For example 

the sentence "I, Nikhil Agrawal hereby declare that this thesis report is a copy of original 

work." would be tagged and returned as "l/PRP , /, Nikhil/NNP Agrawal/NNP hereby/NN 

-declare/VBP that/IN this/DT thesis/NN report/NN is/VBZ a/DT copy/NN of/IN original/JJ 

work/NN. /. " 
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2.4 Naive Bayes' Text Classification 

Naive Bayes' classification is a relaxed version of the Bayesian classifiers which assumes 

the features to be independent of each other. It is based on a probabilistic model for text 

classification. Given a text document d, the algorithm assigns it to the class that is most 

probable to have generated the document. The following equation [7] is used to calculate 

the probability of class c, given the document d. 

P(c I d) = P(d I c) P(c)  
P(d) 

(2.1) 

The estimation of P(dlc) is difficult but with the naive assumption that the features are 

independent of each other it is simply a running product of class-conditional word 

probabilities: Also 'since P(d) is constant for all the classes, and we are interested in 

finding the maximum P(cl d); P(d) can be ignored from the calculations. 

There exist a lot of models for Naive Bayes' text classification like Multinomial model, 

Multivariate Bernoulli model, Poisson model etc. The Multivariate Bernoulli model and 

the Multinomial model are the most popular models of Naive Bayes' text classification. 

The Poisson model of Naive Bayes' text classification has not found many applications 

and hence will not be discussed in this report. The following sub-sections give a brief 

description of the two models. 

2.4.1 Multivariate Bernoulli Model 

In this model, the document is treated as a binary vector, each element of which indicates 

the presence or absence of a word in the document. The model does not record the actual 

number of occurrences of a word in the document. It is called the Multivariate Bernoulli 

model because it treats the document as a collection of many Bernoulli experiments, each 

corresponding to a word in the feature set. The following equations given by [8] are the 

most popularly used equations to implement the Multivariate Bernoulli model. 
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The probability of a document given its class [8]: 

IVI 

P(diIc j;0)= 	(BitP(wr c,;0)+(I-Br)(1-P(wc(c;;9)) (2.2) 

• B jt : 0/1 indicating absence/presence of word wt in document di 

• JII: total number of words in the feature set (also called vocabulary size) 

• P(wt I c;; 0) : Probability of word Wt given class c; 

The estimate far class-conditional word probabilities [8]: 

ewt~C; = P(wt I c3; B) = 

IDI 
I + B~t P(c~ I d ) 

i=1 

IDI 
2+ > P(c1 I d, ) 

(2.3) 

• P(c1 Id): 0 if document d1 does not belong to class c3 

1 otherwise 

• The addition of one and two in the numerator and denominator respectively is 
done to avoid counts of zero or one. 

The class prior probabilities are given by [8]: 

IDI 
EP(Ci id) (2.4) 
z=1 

Dl 

The disadvantage of this model is that it has low classification accuracy as it does not 
capture the word counts. The model is less used as compared to the Multinomial model 
because of its lower classification accuracy. The next sub-section discusses the 
Multinomial model of Naive Bayes' text classification. 
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2.4.2 Multinomial Model 

Multinomial model uses the standard bag-of-words representation in which each element 

of the feature vector gives the frequency of the corresponding word in the document. The 
assumption that the occurrence of a word in the document is independent of its context 

still holds true. The model regards the occurrence of a word as an event. Thus, it can be 
said that each document d, is drawn from a multinomial distribution of words with as 

many independent trials as the length of d1. The estimate of the probability of word w, 
given class c1  is given by equation 2.5 [8]: 

IDI 
1+ 	N,t P(c j Id j 

1=1  
- P(w  f 	 Ivi IDI 

IVI+ZZNiP(cjId;) 
s=1 1=1 

(2.5) 

• IDl: 

• Nit: 
• I y] : 

• P(cj  I d) : 

Total number of documents in the training set 

Number of times word wr  occurs in document d, 

Total number of words in the dictionary (= Number of elements in 
the feature vector). 

1 if document d1  belongs to class c1  

0 otherwise 

The class prior probabilities for this model are calculated in the same way as for the 
Multivariate Bernoulli model (equation 2.4). Once the training information is available 

the classifier can be used to predict the class label, of unknown documents using equation 
2.1. The estimate for the probability of document given its class is calculated using 

equation 2.6 [8]. 

P 
P(d, Icj;O) =- P(1 d, L)Idi I![J 

t=r 

P(W t I 
Nit! 

(2.6) 
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Then, substituting the results obtained from equation 2.6 and that of equation 2.4, in 

equation 2.1, we get the probability of a class given the document. After doing so for all 

the classes, the document is assigned to the class with the maximum probability. 

It has been shown that the Multinomial model is more accurate than the Multivariate 

Bernoulli model [8]-[9]. This is because the Multinomial model unlike the Multivariate 

Bernoulli model captures the word counts when creating the document vector. Also the 

model has been found to be applicable to large datasets without degradation in 

performance. Thus, in this dissertation the Multinomial model has been used for the 

proposed parallel Naive Bayes' text classification. 

2.5 General Purpose Computing on GPUs 

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the 

programmable GPU has evolved into a highly parallel, multithreaded, multiple core 

processor with tremendous computational horsepower and very high memory bandwidth. 

Figure 2.1 [10] illustrates the computational power of the GPUs provided by Nvidia. 

GT200 = GeForce GTX 280 	G71 = GeForce 7900 GTX 	NV35 = GeForce FX 5950 Ultra 

G92 = GeForce 9800 GTX 	070 = Geforce 7800 GTX 	NV3O = GeForce FX 5800 
G80 = GeForce 8800 GTX 	NV4O = GeForce 6800 Ultra 

Figure 2.1 Floating point operations for the GPU and CPU 
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Moreover with the evolution of Nvidia's CUDA programming model it has become very 
easy to program for the GPU. This simplicity has led to a tremendous increase in the use 
GPUs for general purpose computing. 

2.5.1. GPU Architecture 

The reason behind the discrepancy in floating-point capability between the CPU and the 
GPU is that the GPU is specialized for compute-intensive, highly parallel computations 
and is designed such that more transistors are devoted to data processing rather than data 
caching and flow control, as schematically illustrated by Figure 2.2 [10]. 

Cont rot 	ALU _ ; At_U 
3 	3 	 0.m...... 

.ALU AW 

CPU 
	

GPU 

Figure 2.2 GPU devotes more transistors to data processing 

More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations, i.e., the same program is executed on many data 
elements in parallel. The operations must be one with high arithmetic intensity. 
Arithmetic intensity is defined as the ratio of arithmetic operations to the memory 
operations. Data-parallel processing maps data elements to parallel processing threads. 
Many algorithms like pattern matching computational finance etc. that process large data 
sets can be accelerated by using the data parallel programming model. The CUDA 
programming model exposes the parallel computing capabilities of the GPUs and has 
been a hot topic ofresearch recently. 
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2.5.2 CUDA programming model 

CUDA (Compute Unified Device Architecture) is a comprehensive software and 

hardware architecture for GPGPU that was developed and released by Nvidia in 2007. 

CUDA supports heterogeneous computations in a sense that serial parts of an application 

are executed on the CPU and parallel parts on the GPU [ii].  The CUDA programming 

model encourages dividing problems in two steps: At first into coarse independent sub-

problems (grids) and afterwards into finer sub-tasks that can be performed cooperatively 

(thread blocks). The programmer writes a serial C for CUDA program which invokes 

parallel kernels (functions written in C) [11]. The kernel is usually executed in thousands 

of threads, which the programmer organizes in a hierarchy as shown in Figure 2.3 [11]. 

I , 
I 4 

Figure 2.3 Thread Hierarchy in CUDA programming model 
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CUDA threads may access data from multiple memory spaces during their execution as 

illustrated by Figure 2.4. 

Thread 

per-Thread Private 
Lacai Memory , 

Thread Block 

. •per-BlocEr 
Shared Memory_ 

Grid 0 

Figure 2.4 Memory Hierarchy in CUDA programming model 

Each thread has a private local memory. Each thread block has a shared memory visible 

to all threads of the block and with the same lifetime as the block. Finally, all threads 

have access to the same global memory [11]. 

The goal of CUDA programming model is to make GPU programming simple for users 

familiar with C programming. It provides a rich API Library consisting of functions that 

can be used to program the GPU. Using CUDA it is possible to access the GPUs for 

computation as CPUs. Using the CUDA programming model the programmer need not 

worry about the device (GPU) details and just concentrate on developing his application. 

It also provides a runtime library providing functions to control one or more devices 

(GPU) from the host (CPU), device specific functions, and some built-in vector types 

supported on both host and device. Figure 2.5 gives the details of the CUDA software 

stack [11]. 
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Figure 2.5 CUDA Software Stack 

2.6 Literature Review 

This section gives the literature review of parallelisation of text classification algorithms 

using CUDA, parallelisation of Naive Bayes' classification algorithm and the use of 

semantic information in text representation. 

2.6.1 Parallelisation of Text Classification algorithms using CUDA 

One of the first works towards using GPUs for Text Classification was done by Y. Zhang 

et al [12]. They proposed a parallel implementation of the TFIDF text mining algorithm 

utilising the massive compute capabilities of the GPUs. They parallelised the-various 

modules involved in the task of text classification ranging from tokenization, steaming, 

document hash table creation and calculation of TFIDF. They used the CPU/GPU 
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heterogeneous model where the CPU acts as the core processor and the GPU acts as the 

compute accelerator. They developed their algorithm such that when the GPU is busy 

developing the document hashtable the CPU can load the next batch of input, thus 

preventing any of the processor from sitting idle. They published the results comparing 

the time required for GPU implementation of each module against the time required for 

CPU implementation by varying the corpus size. They also gave a few drawbacks of their 

implementation one of which is the non-coalesced memory accesses. Their results 

showed that GPU implementation is up to six times faster than the CPU implementation. 

S. Liang et al [13] proposed a parallel implementation of the k-nearest neighbours 

classification algorithm using CUDA. Their implementation consists of two GPU kernels: 

distance calculation kernel and sorting kernel. It is the distance calculation kernel which 

majorly affected the execution time of the algorithm. The distance calculation kernel 

maximizes the concurrency of the distance calculation between various threads. They 

also made a good use of the shared memory of each core on the GPU. The training 

dataset was loaded into the shared memory of each core and the threads on the same 

block shared the training data with each other. They also applied optimization strategies 

like pipelining and coalesced memory accesses. Once the distances between the training 

objects and the unknown object p are available, the sorting kernel was used to find the k 

nearest neighbours to p. The results published, show that speedup of up to 15X was 

achieved over the CPU implementation. 

2.6.2 Parallelisation of Naive Bayes' classification algorithm 

C. Kruengkrai and C. Jaruskulchai [14] proposed a parallel learning algorithm for text 

classification that made use of the Naive Bayes' algorithm. They combined the learning 

step of Naive Bayes with the Expectation-Maximisation (EM) algorithm to handle the 

unavailability of a large set of labelled training documents. But since the EM algorithm 

does not scale well and slows down as the dataset size grows, they made use of parallel 

processing. Their experiments were performed on PIRUN Cluster at Kasetsart University. 

PIRUN Cluster consists of 72 nodes connected with Fast Ethernet Switch 3COM 

SuperStacki. Each node is a 500 MHz Pentium III with 128 Mbytes of RAM and uses 

Linux as the operating system. Each processor in the system ran its own copy of the same 
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program thereby making use of the Single Program Multiple Data (SPMD) paradigm for 

parallelisation. 20 Newsgroups dataset was used in their experiments. Their results show 

that the parallel implementation with 16 processors was up to 12 times faster than the 

single CPU implementation. Moreover, they also showed that as the number of parallel 

processors decrease the speedup achieved also decreases. 

W. Ding et al [15] proposed a new Naive Bayesian text classifier, Package and Combined 

Naive Bayesian classifier (PC-NB), which relaxed the independence assumption without 

compromising on the efficiency. They also parallelised the prediction step of the existing 

Naive Bayes algorithm and their proposed algorithm on a cluster of FANGZHENG PC 

(Memory: 256M, CPU: 1.6Hz) computers. They used the MPI model for parallel 

programming. Reuters-21578 and the Industry Sector4 datasets were used for 

performance comparisons. The results show that as the parallelism is increased by 

increasing the number of computation nodes, the time required by the naive bayes 

algorithm decreases before saturating beyond which no decrease in time could be 

observed even on increasing the computation nodes. 

V. G. Roncero et al [16] also proposed a parallel learning algorithm for text classification 

using the combination of naive bayes and EM as in [14]. But instead of using a cluster as 

the hardware for parallelisation they made use of the grid environment. The use of grid 

environment allows for distributed collection of training data and distributed processing. 

Their paper does not give any experimental results showing the improvements obtained 

by using the grid environment for text classification. 

2.6.3 Text representation using semantics 

One of the first works towards using WordNet for capturing the semantic information in 

text was published by Rodriguez et al. [17]. They focussed on using WordNet to enhance 

neural network learning algorithms to improve the classification accuracy on Reuters 

21578 corpus. They also retained the bag-of-words representation of text. However, their 

approach only makes use of the synonymy. Their approach also took advantage of the 

fact that the Reuters topic headings are themselves good indicators for classification. This 

makes their work biased towards the Reuters-21578 dataset and may not work with 
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datasets where their assumption is false. 

S. Scott, S. Matwin [18] extended the work of Rodriguez to make use of POS tagging. 

But they also modified the representation of text to make use of English language phrases 

—as features instead of the bag-of-words representation. Specifically they used the part of 

speech information from the Brill tagger and the synonymy and hypernymy relations 

from WordNet to change the representation of documents to hypemym density. 

L.S. Jensen, T. Martinez [19] tested the method suggested by Rodriguez and Scott along 

with other methods on 3 _different datasets: A subset of the Reuters-21578 data; a 

collection of USENET postings; and a repository of folk songs called the Digital 

Tradition. They used 3 different classification algorithms in their work, coordinate 

matching, TF*IDF, and naive Bayes. Their results show that the use of synonyms does 

increase the classification accuracy and can be used easily for tasks where a high 

accuracy is required. 

2.7 Research Gaps 

Based on the literature review the following research gaps have been identified. 

• There is need to parallelise the Naive Bayes' text classification algorithm because 

the serial algorithm is slow and the vast amount of information in the form of text 

needs to be processed as fast as possible. 

• The Naive Bayes' algorithm needs to be parallelised using the GPUs as GPUs 

offer a better price to performance gain ratio as compared to other approaches of 

parallelisation like grid computing, cluster computing etc. 

• With the increase in the number of predefined classes in the task of classification, 

the existing algorithms become slower in classifying a text document to one of the 

predefined categories. Thus there is a need to develop an algorithm, such that the 

amount of time required for classifying a given text document does not increase 

with the increase in the number of classes. 
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Chapter 3 

Proposed Framework 

Figure 3.1 gives the architecture of the parallel Naive Bayes' algorithm for classification 

of unstructured text documents. 
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Figure 3.1 System architecture of Naive Bayes' text classification 
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A brief description of the various modules involved is given in the following sub-

sections. The detailed description has been given in the next chapter. 

3.1 Preprocessing Module 

The first and foremost step is the conversion of a text document to a feature vector 

representation. This is done in the preprocessing module. The module can be divided into 

smaller modules like POS. tagging, tokenizing, stop word removal, and then finally 

converting the document to a feature vector. 

The given text document is passed through the POS tagger, the output of which is a 

string, each word in which is annotated with its part-of-speech. This string is then 

tokenized into a list of tokens. Each token is a word/part-of-speech pair. The word is then 

provided as input to the sub-module for stop word removal. If the word is not a stop 

word, then the token is given as input to the feature vector generation sub-module. The 

module uses the information from the WordNet database and the feature-set to generate 

the feature vector for the document. The feature set used has been constructed using the 

training dataset. 

3.2 Training Module 

The training dataset comprising of text documents in the form of feature vectors, is 

provided as input to the training module. The module processes the feature vector of each 

document one by one through a series of steps. The first step in the module is to 

determine the class of the input document and increase the document count for that class. 

Then it updates the class-conditional word counts for the corresponding class utilizing the 

feature vector of the document. 

Once all the training documents have been processed, the class-conditional word 

probabilities are calculated. The class prior probabilities are also calculated and then the 
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results are written to disk so that the classifier can be used later and there is no need to 

train the classifier whenever a text document needs to be classified. 

3.3 Serial Naive Bayes Classification 

To compare the results of the parallel Naive Bayes' classification algorithm, the serial 

Naive Bayes' algorithm was used. The input to the serial Naive Bayes' classification 

module is the feature vector of the document to be classified and the trained classifier. 

The module calculates the posterior probability of each class for the given document in a 

serial fashion. The calculation of the posterior class probability involves the 

multiplication of all the class-conditional word probabilities for this class. Once the 

probability of each class has been calculated the next step is determine class with the 

maximum probability. 

3.4 Parallel Naive Bayes' Classification 

This module parallelizes the calculation of posterior class probabilities given a text 

document. The module takes the feature vector of the document and the trained classifier 

as input and gives the class of the document as the output. 

Instead of calculating the probability of each class in a serial fashion, the calculations for 

each class are done simultaneously on a GPU. The detailed design and implementation of 

the module has been given in the next chapter. 
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Chapter 4 

Detailed Design and Implementation 

This chapter gives the detailed design and implementation of the proposed parallel Naive 
Bayes' text classification. As discussed in the previous chapter, the task of Naive Bayes' 
text classification could be divided into three major modules which are discussed in the 
following sections. 

4.1 Preprocessing Module 

	

I 	 I 

	

I 	 I 

Tokcnizer 	 stolI 	 Feahue 
c ord list 	Wor(Wet 	Set 

Word/POS 
Input Text 4. 	 Feature 

	

Documents I 	pos 	 Feature Vector 	Vectors 
Stop Word Removal 

lagging 	 Generation 	I  

	

1 	 I  

--------------------------------------I 

Figure 4.1 Block Diagram of pre-processing module 

The input to the system comprises of documents containing unstructured text. These 
documents are converted into a feature vector in a series of steps as shown in Figure 4.1. 
Maxent POS Tagger is used for POS tagging. Stop word removal is done with the help of 
a stop list which is provided as input to the system. Semantic information from WordNet 
is used to finally convert the list of tokens (words) into the feature vector representation. 
The feature set to be used is provided as input to this sub-module. Figure 4.2 gives a 

detailed flowchart of the steps involved for a given text document. 
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Figure 4.2 Flow Chart of the pre-processing module using POS tagging and 

WordNet synsets 

The process begins by reading the input text document, which is then passed through the 

POS tagger. The POS tagger tags each word (term) in the document with its proper part-

of-speech. This tagged string of the document is then tokenized into word/POS tokens. 

Each word is then passed through the stop word removal module after which the token is 

passed to the Getlndex subroutine. The subroutine Getlndex has been described in Figure 

4.3. The routine returns the index of a feature matching the current word/POS token or a -

1. If it returns -1, it means that the token is not in the feature-set and not is used for 

representing the document. After each token has been processed the feature vector of the 

document is available fir use in othermodules. 

25 



Get index 

Input : Feature Set 
Word, PO5 

Return : Index 

Index = position of 	Yes 	Is word/POS in 

word/POS in feature-set 	 feature-set? 

Get synonym sets of 
the word for given P05 

Are there more 
distinct :synonyms 

in this set? 

Index=-1. 

Yes 

No 	is synonymJPOS in 
feature-set? 

Yes 

Index = position of 
synonym/POS in feature-set 

Return 

Figure 4.3 Flow Chart of the Get Index sub-routine using POS tagging and 

WordNet synsets 
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The feature set used in the system could either be provided by human input or constructed 

automatically using the training dataset. In the proposed parallel Naive Bayes' text 

classification, the feature-set has been constructed automatically using the training 

dataset. The steps involved in the generation of feature-set are very similar to those 

outlined in Figure 4.2 and Figure 4.3. The only difference is that when the Getlndex 

subroutine returns a -1, signifying absence of the token from the feature-set, that token is 

added to the feature-set. And when the return value is positive, signifying presence of the 

token in the feature-set, next token is chosen for processing from the list of tokens. 

The preprocessing module was also implemented without using the POS tagging sub-

module. Since the POS tagging was not used, WordNet synsets corresponding to all 

possible uses of the word are retrieved. As a result, it may be possible that unrelated 

synonyms are merged together to point to the same feature resulting in a drop in some 

accuracy. 
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Figure 4.4 Flow Chart of Pre-processing Module using WordNet synsets 



The flowchart in Figure 4.4 gives the outline of the process involved in feature vector 

generation using WordNet. The corresponding Getlndex subroutine is also modified as 

shown in Figure 4.5. 

Figure 4.5 Flow Chart of the Get Index sub-routine using WordNet synsets 
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For comparison purposes the preprocessing module was also implemented without 

making use of any semantic information of the given text documents. In this approach the 

steps involved are exactly those as given in Figure 4.4. However the Getlndex subroutine 

just checks if the given word is in the feature-set and returns its index in the same. 

However, if the word is not present in the feature-set it returns -1. 

4.2 Training Module 

The steps involved in training the classifier have already been outlined in the proposed 

framework. Figure 4.6 gives the detailed flow diagram of the steps involved in training 

the Naive Bayes' classifier. 
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Figure 4.6 Flow Chart of the Training Module of Naive Bayes' text classification 
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The multinomial Naive Bayes' model discussed in section 2.1.2 has been used in the 

implementation of this module. The module takes as input the training dataset consisting 

of text documents in the form of feature vectors. The module requires that the documents 

be grouped class wise such that each class is represented by a directory and contains all 

the documents belonging to that class. All these directories are present in a single root 

directory which is provided as input to the module. After building the classifier, i.e., 

calculating the class-conditional word probabilities and the class prior probabilities, the 

module writes them to disk so that the classifier is available for use later. The classifier 

built is tested on the test dataset using the classification module which is described in the 

next section. 

4.3 Classification Module 

The classification step of the Naive Bayes' model involves the calculation of posterior 

probability of each class given the test document and then finding the class with 

maximum probability. As already mentioned, the multinomial Naive Bayes' model has 

been used to implement the proposed framework. Using the equations in section 2.1.2, 

the relationship given by Equation 4.1, can be deduced for the posterior class probability 

conditional to the document. 

~V P(we I c) M' 	 (4.1) 
P(cjld;)ocP(cj)fl 

t-r 	Nt! 

The terms like P(d) made no changes to the decision as for a given document they 

remained constant even when the class is changed, and were hence removed. The term 

Nit! could also be removed as the product N,o! * Nil ! * N2! * "' * 1V! is constant overthe 

range of classes for a given document d;. Hence the relationship reduces to the one given 

in Equation 4.2 

Iv1 
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The complexity of the algorithm is of the order of O(mn) where m is the number of 

classes and n is the number of features. 

The Naive Bayes' classification module has been parallelised such that the calculation of 

the posterior class probability P(cjl d) of each class is performed simultaneously. The 

calculations for P(cjId), i.e., the multiplication byP(w, I c3)`, are also parallelised such 

that each thread processes a part of the feature vector and calculates a partial product. 

Figure 4.7 gives an outline of the model of the parallel Naive Bayes' classification 

module. 

CPU 	 GPU 

Figure 4.7 Model for parallel Naive Bayes' text classification module 

The class-conditional word probability matrix and the class prior probabilities first need 

to be transferred to the GPU memory. The feature vector of the unknown document also 

needs to be transferred to the GPU memory. Each block accesses the entire feature vector 

but only a row of the class-conditional word probability matrix. The class-conditional 

word probability is stored as an m x n matrix where m is the number of classes and n is 

the number of features. Figure 4.8 gives the details of the data structures used for 

representing the class-conditional word probabilities, feature vectors and the class prior 

probabilities. Figure 4.9 gives the details about the processing done by a multiprocessor. 
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The block calculates the posterior probability for the class corresponding to the row of 

the matrix accessed. This also requires the number of blocks to be equal to the number of 

classes under consideration. More number of classes leads to more number of blocks and 

hence more parallelism. A block is executed on a multi-processor (MP). It may so happen 

that a MP executes more than one block, but it will never be the case that a block is split 

between 2 or more MPs. The class probability vector is used as an input/output vector. 

Initially it stores the class prior probabilities, then the temporary results during the 

execution of the kernel and then the final result which gives the posterior class 

probabilities. This result is then returned to the CPU. Since each block accesses only one 

element of the class probability vector, to speed up the processing, local variable which 

gets stored in a register, is used for storing the temporary results. 

A number of threads are created on each block. Each thread processes some part of the 

feature vector which is divided equally among them. The number of threads that are 

created on each block is a multiple of 32. This is required because each MP consists of 8 

SP and the fastest instruction takes 4 cycles. Therefore each SP can have 4 instructions in 

its pipeline for a total of 8*4 instructions being executed concurrently on a MP. Within a 

warp (number of threads executing concurrently on a MP) threads have sequential 

indices. Thus there is a warp with thread indices 0...31, another with 32...63 and so on. 

The homogeneity of the threads used, makes it possible for all SPs on the MP to execute 

the same instruction in parallel. 

Since the number of threads is a multiple of 32 whereas the number of features may not 

be, some elements of the feature vector and a row of the class-conditional word 

probability matrix are not assigned to any thread. These remaining elements are 

processed by threads To  — Tx  (x < number of threads), once these threads have finished 

processing their batch of input. This leads to some amount of performance degradation 

due to serialization. To avoid this, efforts must be made to keep the number of features a 

multiple of 32. 

Two global memory access strategies have been used in the parallelization of Naive 

Bayes. First, in which the vector was divided into k groups, k being the number of threads 

on the block, and each thread accessed all the elements of a group. Since the addresses 
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generated by the threads in a warp are not sequential but are separated, multiple memory 

accesses are required as the GPU cannot coalesce them into a single access. This slows 

down the module. In the second strategy, the memory accesses are such that the threads 

in a warp access sequential memory addresses. Figure 4.10 will make things clear. 

Tv To ... T. Ti Ti 	... 	T Tr ... T 	Tn-T. 	sequential 
Access 

Address 	0 	1 	... 1 i+1 i~2 ... 21 	.. 	 Remaining 
Elements 

  T T~ Tj ... I f T~ Tj ... 
 ... 	T9 Tl ... Ti I 	Ti 	 Interleaved 11 	Access 

n : number of fentures 
k : number of threads per block 
i = nik : number of element-. per thread 
s : number of remnini g elements 

Figure 4.10 Memory Access Strategies for feature vector and class-conditional word 

probabilities 

Figure 4.11 gives the addresses generated by the threads in a warp for the two memory 

access strategies discussed. 
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Figure 4.11 Addresses generated by threads in a warp 
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Once each thread is done with calculating the partial products, their results are written to 

a vector in shared memory. Shared memory is much faster than global memory and is 

shared by all threads on the block. Each block has its own shared memory. The shared 

memory is limited and must be usedjudiciously. 

The shared memory was also used to store the input class-conditional word probabilities 

and the feature vector. But no improvement was observed over the parallel 

implementation without using shared memory. Instead there was a performance penalty 

when shared memory was used for storing the input data over the GPU. The reason for 

this performance degradation is: In parallel Naive Bayes' classification, an element in the 

class-conditional word probability and the feature vector is accessed only once inside 

each block. With the use of shared memory the memory accesses increase as the data has 

to be first read from global memory and written to shared memory and then read from 

shared memory and used in computations. Whereas, if global memory is used the data is 

read from global memory and directly used in computations. Thus, one global memory 

access has to be present. But with the use of shared memory, an additional memory read 

(write) from (to) the shared memory gets involved, which is a performance overhead. 

The partial products obtained from each thread need to multiplied together to obtain the 

final class probability. Instead of using one thread to accomplish this, multiple threads are 

used in a parallel manner as shown in Figure 4.12. 

The first step involves utilizing the first k/2 threads of the block and each thread 

multiplies the values at indices given by `threadld' and `threadld + k/2' and stores the 

result at index 'threadld'. After this step we are left with a total of k/2 values to be 

multiplied together to obtain the final result. In a similar fashion the second step involves 

utilizing k/4 threads to obtain k14 values and this goes on until we get a single value. 

After the first step of utilising k12 threads we wait till each thread has done its processing 

because the output of this step forms the input of next step. 
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Figure 4.12 Processing done to obtain final class probability 

The final value is then written to the class probability vector at the location corresponding 

to this block which also corresponds to a class. After all the blocks have completed their 

tasks, the posterior probability of each class is available in the vector. Then the maximum 

value is searched in the vector and the corresponding class is assigned as the class of the 

unknown document. Since this step is not computation intensive we let the CPU perform 

this task. 

4.4 Experimental Setup 

This section describes the dataset used for testing the parallel Naive Bayes' text 

classification algorithm. The CPU and GPU hardware used for the experiments have also 

been discussed in this section. 

4.4.1 Data Preparation 

Reuters 21578 dataset has been used to test the parallel naive bayes algorithm. It is a 

collection of news articles that appeared on the Reuters newswire. The dataset has been 

the most widely used one for research on text classification. 
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The dataset is organized into 21 files each having 1000 articles and the remaining are in 

the 22" file. Each article in the file has been tagged with information like title, category, 
article number, train/test document and many more. 

To prepare the input data, each article is written to a separate file whose name is given by 

article number. Also the articles belonging to the same category are grouped into a single 

directory. The train/test documents are also separated by using the information provided. 

We also order the categories (classes) according to the number of documents in them and 

then group them into 16 most frequent categories, 32 most frequent categories and so on. 

4.4.2 Hardware Configuration 

The GPU used for testing the parallel naive bayes text classification algorithm was 

Nvidia GTS 250. Table 4.1 gives the details about the graphics card. To compare the 

results, Pentium P4 processor was used to run an efficient CPU implementation of Naive 

Bayes', the specifications of which are given in Table 4.2. 

Table 4.1 Hardware Specifications of GTS 250 card 

CUDA Cores 128 

Graphics Clock 738 MHz 

Processor Clock 1836 MHz 

Memory Clock 1100 MHz 

Memory 512 MB of GDDR3 RAM 

Memory Interface Width 256 bit 

Memory Bandwidth 70.4 GB/s 
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Table 4.2 Hardware Specifications of the CPU used 

# Cores 2 

Clock Speed 3 GHz 

Cache 2 MB 

FSB Speed 800 MHz 

Memory 4 GB 
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Chapter 5 

Results and Discussions 

The results for the proposed methodology and the experimental setups have been 

explained in this chapter. 

5.1 Comparison of classification accuracy 

To check if the implementation of Naive Bayes' was correct or not, its classification 

accuracy was compared to that given by Weka on the same dataset. Table 5.1 gives the 

results of the two techniques on the datasets formed by selecting documents from 16 and 

32 most frequent classes of the reuters-21578 dataset respectively. 

Table 5.1 Comparison of Classification Accuracy of proposed parallel Naive Bayes' 
text classification with that of WEKA 

Dataset 
Classification Accuracy (%) 

Weka Naive Bayes' 

16 most frequent classes of reuters-21578 69 68.8 

32 most frequent classes of reuters-21578 68.47 68.17 

As is clear from Table 5.1, the results of the implementation presented in this thesis are 

the same as that produced by Weka. Thus it can be said that the implementation is 

correct. The results of using WordNet and POS tagging in the preprocessing module are 

discussed in the next sub-section. 

5.1.1 	Results of integrating WordNet and POS tagging 

To use the semantic information present in the given text documents for improving the 

quality of classification WordNet and POS tagging were used in the preprocessing 

module of the proposed parallel Naive Bayes' text classification algorithm. Table 5.2 
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below gives the results obtained. Tsw different sets of test data were used. Both the 

datasets are a subset of the Reuteis-21578 dataset. 

Table 5.2 Comparison of Classification Accuracy obtained by using WordNet and 
POS tagging 

Classification Accuracy (%) 

Dataset Naive Bayes' + Naive Bayes' + 
Naive Bayes' WordNet WordNet + POS 

Tagging 

16 most frequent classes of 68.8 72.2 73.97 
reuters-21578 

32 most frequent classes of 68.17 71.5 73.49 
reuters-21578 

The results show that the use of WordNet and POS tagging even in the simplest of the 

ways leads to an improvement in the classification accuracy. But the improvements 

observed are not that great suggesting the use of some intermediate steps if highly 

increased classification accuracy is desired. 

5.2 Results of Parallelization 

The results of the GPU implementation of naive bayes text classification are presented in 

this section. 

5.2.1 Determining the number of threads 

To determine the number of threads/block to be made, the implementation was run for 

different values keeping the number of blocks (= number of classes) constant at 112. The 

experiments were made using 32, 64, 128, 256, and 512 threads on each block Table 5.3 
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gives the execution time required by both the memory access approaches (sequential and 
interleaved). Figure 5.1 gives the plot of the results. 

Table 5.3 Comparison of Execution Time of the two parallel Naive Bayes' 
implementations on GPU by varying number of threads/block 

Number of 
threads 

Execution Time (ms) 

Sequential Access Interleaved Access 

32 3.71 1.47 

64 2.67 1.45 

128 2.47 1.43 

256 2.73 1.46 

512 4.28 1.48 

Execution Time (# of classes constant) 
4.5 

4 
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E 2.5 

E 2 

1.5 
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-.0--Interleaved 

0 	100 	200 	300 	400 	500 	600 

# Threads 

Figure 5.1 Comparison of Execution Time of the two parallel Naive Bayes' 
implementations on GPU by varying number of threads/block 
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As is clear from Table 5.3 and Figure 5.1, the thread value of 128/block requires the least 

amount of time as compared to the other values. Thus this value of threadsiblock is 

chosen for the experimental setup. The execution time listed in Table 5.3 does not take 

into consideration the time required to transfer the necessary data to and from the GPU. 

This is not required because both the approaches will require the same amount of data 

transfer time and we are interested only in their relative time requirements. 

5.2.2 Comparison of parallel Naive Bayes' with serial Naive Bayes' 

In Table 5.4, the execution time of CPU implementation of Naive Bayes', parallel Naive 

Bayes' using sequential memory accesses and parallel Naive Bayes' using interleaved 

(coalesced) memory accesses on GPU, has been given. The GPU time is the summation 

of the time required for data transfer from CPU memory to GPU memory and vice-versa, 

and the time required for calculating the posterior class probability. The CPU time is just 

the time required for calculation of posterior class probability. 

Table 5.4 Comparison of Execution Time by varying number of classes 

Number of 
classes Execution Time (ms) 

Speed Up (vs. CPU) 

CPU Time / GPU Time 

CPU 
GPU 

(sequential 
Access) 

GPU 
(coalesced 

access) 

GPU 
(sequential 

access) 

GPU 
(coalesced 

access) 

16 35.97 1.36 1.22 26.45 29.48 

32 75.44 2.47 2.01 30.54 37.53 

48 115.88 3.39 2.77 34.18 41.83 

64 163.44 4.16 3.49 39.29 46.83 

80 205.19 5.14 4.26 39.92 48.17 

96 251.75 5.94 4.89 .42.38 51.48 

112 294.96 6.96 5.73 42.38 51.48 
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The above table gives the time required to classify one of the test documents. When 
comparing the three implementations of Naive Bayes', it is guaranteed that all of them 

classify the test document to the same class generating the same values for the posterior 
class probabilities. As is clear from Table 5.4, as the number of classes increase so does 

the gap between the time required by serial Naive Bayes on CPU and the parallel Naive 
Bayes' implementations on GPU. Figure 5.2 gives a plot of the execution time required 

by the three implementations. 

Execution Time 
R'i'll] 

v 
E 
F 

 

—CPU 

GPU (Coalesced) 

 

10 
—.—GPU (Sequential) 

 

1 

0 	20 	40 	60 	80 	100 	120 

 

*f Classes 

Figure 5.2 Execution Time of Naive Bayes using CPU, GPU (sequential memory 

accesses) and GPU (coalesced memory accesses) by varying number of classes 

Figure 5.3 gives a plot of the speed up obtained by the parallel implementations of Naive 

Bayes' text classification on GPU over the implementation on CPU. It is clear that the 

implementations of Naive Bayes' text classification using GPU are much faster than the 

43 



SpeedUp 
60 

50 

40 
a 

30 

20 

10 

0 

-f—GPU (Coalesced) 

—*--GPU (Sequential) 

implementations using CPU. It is also observed that the parallel Naive Bayes' using 

coalesced memory access is much faster than the one using sequential memory accesses. 

0 20 40 60 80 100 120 

#of Classes 

Figure 5.3 Speed up obtained by using GPU as compared to CPU 

The figure shows that speedup by using the GPU reaches around 42%. When the memory 

accesses were coalesced, the GPU was used in a more concurrent manner and the speed 

increases reaching as high as approximately 52%. 

5.2.3 Comparison between the two parallel Naive Bayes' implementations 

The time required by each implementation of parallel Naive Bayes' text classification 

using the GPU is a sum of the following three components: 

1. Time required to transfer the class-conditional word probabilities, the class prior 

probabilities and the feature vector to the GPU memory from the CPU memory 

2. Time required for execution of kernel 

3. Time required for transferring the posterior class probabilities from the GPU 

memory to the CPU memory. 



Table 5.5 gives the breakup of the time required by the parallel Naive Bayes' text 

classification algorithm using GPU. The time required in 1 and 3 have been merged and 

are together called as the data transfer time. The data transfer time for the two parallel 

implementations of Naive Bayes' remains the same. The two implementations differ in 

their kernel execution times. Hence, to compare the two implementations only their 

kernel executions times have been considered. Figure 5.4 gives a plot of the execution 

time of the two implementations of parallel Naive Bayes'. As is clear from Figure 5.4, the 

coalesced memory accesses greatly reduce the kernel execution time and therefore 

increase the speed of the parallel Naive Bayes' classification for unstructured text data. 

Table 5.5 Comparison of Execution Time of the two parallel implementations of 

Naive Bayes' 

Sequential Memory Coalesced Memory 
Data Access Access 

Number transfer Speed Up 

of time Kernel Kernel 
Total Time Total Time (SKT/CKT) 

classes (ms) Execution Execution o 
(ms) (ms) 

/o  
DT time (ms) time (ms) 

(DT±SKT) 
 

(DT + CKT) 
SKT CKT 

16 0.9 0.46 1.36 0.32 1.22 143.75 

32 1.55 0.92 2.47 0.46 2.01 200 

48 2.13 1.26 3.39 0.64 2.77 196.88 

64 2.58 1.58 4.16 0.91 3.49 173.63 

80 3.19 1.95 5.14 1.07 4.26 182.24 

96 3.63 .2.31 5.94 1.26 4.89 183.33 

112 4.24 2.72 6.96 1.49 5.73 182.55 
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Figure 5.4 Kernel Execution Time of Naive Bayes using GPU (sequential memory 

accesses) and GPU (coalesced memory accesses) by varying number of classes 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In this dissertation, a parallel implementation of Naive Bayes' text classification using 
CUDA has been proposed. The algorithm was modified to make use of WordNet synsets 
and POS tagging. The following conclusions can be drawn from this dissertation work: 

• The classification step of Naive Bayes' text classification was parallelized using 
CUDA. The proposed approach used the global memory, and the data accessed by 
each thread was sequential. Experimental results showed that the parallel 
implementation over GPU was up to 40 times faster than the implementation over 
CPU. 

• The use of memory coalescing to reduce the number of memory accesses resulted 
in a decrease in the time required for classification. Experimental results show 
that this implementation was up to 52 times faster than the implementation over 
CPU and up to 1.75 times faster than the previous approach. 

• The use of WordNet and POS tagging to capture the semantic information 
resulted in an increase in the classification accuracy of the proposed parallel 
Naive Bayes' text classification algorithm. However, the improvements obtained 
were not very significant and ranged between 3-4% over the traditional n~thod. 

6.2 Scope for Future Work 

There are some points where the proposed system's functionality can be extended and 
improved. The possible improvements in future are listed below: 
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• The parallelisation of the training module of Naive Bayes' classifier can be 

explored for applications using the incremental model of learning. In such 

systems the classifier is trained frequently and hence parallelisation is a good 

option to reduce the amount of time spent in training. 

• The parallelisation of the pre-processing module can also be explored. Most of the 

time in the proposed system is spent in pre-processing the text documents. 

• Currently, the system has been designed such that only after a document has been 

processed completely, will another document be accepted for classification. But 

pipelining can be used such that when the GPU is busy calculating the posterior 

class probabilities, the CPU can load anther text document and pre-process it. 

• The use of WordNet and POS tagging has been done a rather simplistic way to 

avoid unnecessary complexities in the system. But they can be integrated into the 

proposed system in a more sophisticated way which could lead to greater 

improvements in classification accuracy. 

C. 
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