
MOBILIM : INTEGRATED LICENSE
MANAGEMENT & ECONOMIC RESOURCE
ALLOCATION FOR CLOUD COMPUTING

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

PANKAJ B. THORAT

Acc NO'3~
Date.....

71

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
• INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2011

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"MOBILIM: AN INTEGRATED LICENSE MANAGEMENT AND RESOURCE

ALLOCATION FOR CLOUD COMPUTING" towards the partial fulfillment of the

requirement for the award of the degree of Master of Technology in Computer Science

and Engineering submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand (India) is an

authentic record of my own work carried out during the period from July 2010 to June

2011, under the guidance of I)r. Anil K. Sarje, Professor, Department of Electronics

and Computer Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other Institute.

Date: 	i.—o6 -2o ,J

Place: Roorkee 	 (PANKAJ B. THORAT)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date:

Place: Roorkee 	 (Dr. Anil K. Sarje)

Professor

Department of Electronics and Computer Engineering

lIT Roorkee.

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my heartfelt gratitude to my guide and mentor

Dr. Anil K. Sarje, Professor, Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee, for his invaluable advices, guidance,

encouragement and for sharing his• broad knowledge. His wisdom, knowledge and

commitment to the highest standards inspired and motivated me. He has been very

generous in providing the necessary resources to carry out my research. He is an inspiring

teacher, a great advisor, and most importantly a nice person.

I am greatly indebted to all my friends especially Abhishek Bichhawat, who have

graciously applied themselves to the task of helping me with ample moral supports and

valuable suggestions.

On a personal note, I owe everything to the Almighty and my parents. The support which

I enjoyed from my father, mother and other family members provided me the mental

support I needed.

PANKAJ B. THORAT

Abstract

Cloud computing is a recent trend in IT that moves computing and data away from

desktop and portable PCs into large data centers. It refers to applications delivered as

services over the Internet as well as to the actual cloud infrastructure — namely, the

hardware and systems software in data centers that provide these services. Cloud

computing is on-demand computing in which the computing resources are owned and

managed by a service provider and the users access the resources via the Internet. But

cloud computing potential doesn't begin and end with the personal computer's

transformation into a thin client. The mobile platform is going to be heavily impacted by

this technology as well. License management and economic resource allocation is a

major issue faced by cloud computing paradigm.

In this dissertation we propose MobiLim, a framework which addresses major problems

related to license management and economic resource allocation in cloud computing.

This framework named MobiLim is managed by independent software vendor (ISVs),

who controls access to the resource provider resources. MobiLim provides a secure and

robust license management solution as well as allocate resources economically to the

customers. MobiLim acts as an intermediate entity between customer and resource

provider which accepts customers request for the resources. If MobiLim is capable of

allocating the resource to customer then it performs negotiation over price between

customer and resource provider. If the negotiation is successful then MobiLim grants a

valid license to the customer. A license allows the customer to gain access to the resource

provider resource which customer needs. The proposed framework is modular due to

which it is possible to make it more robust and secure with the help of advanced

cryptographic techniques. The framework is tested with a set of customer requests and

the results validate correctness of proposed framework.

Table of Contents

Candidate's Declaration & Certificate...

Acknowledgements .. ii

Abstract.. iii

Table of Contents .. iv

Listof Figures .. vii

List of Tables .. viii

1. Introduction 	 1
1 .1 	Introduction ... 1

1 .2 	Motivation ... 2

1.3 	Statement of the Problem......... ...4

1.4 	Organization of the Report ..5

2. Background and Literature Review
2.1 	Cloud Computing ...6

2.1.1 	Types of cloud. ..7

21 	Services of Cloud Computing ...9

2.2.1 	SaaS - Software-as-a-Service ..9

2.2.2 	IaaS - Infrastructure-as-a-Service ..9

2.2.3 	PaaS - Platform-as a-Service ...9

2.3 	Literature Review .. 10

2.4 	Research Gaps .. 12

3. Proposed Framework for MobiLim 	 14

	

3.1 	Resource provider14

	

3.2 	MobiLim server ..1 4

3.2.1 	Resource information table ...15

3.2.2 	Customer information table ...15

iv

	

3.2.3 	Granted license table ...1 5

	

3.3 	User/ customer ...1 6

	

3.4 	License request agent lifecycle ...16

	

3.5 	Cryptographic Algorithms ...18

3.5.1 	Passphrase Encryption Algorithm19

3.5.1.1 	Salt ...1 9

3.5.1.2 	Md51 9

3.5.1.3 	DES ...2 0

	

3.6 	Negotiation Strategies ...2 0

	

3.6.1 	Determining Customer Price Based on the Number of Remaining

Copies of Resource ...22

	

3.6.2 	Determining Customer Price Based on the Deadline23

	

3.6.3 	Calculating the final customer price value23

	

3.6.4 	Determining the service provider price value 24

	

3.6.5 	Auctioneers role ..24

4 Implementation of the Proposed Framework 	 26

4.1 	Algorithm for sub-module RmiClient.java 24

4.1.1 	StringEncrypter Subclass ..24

4.2 	Algorithm for sub-module RmiServer.java 29

4.3 	Algorithm for sub-module ServiceProvider.java 30

5 Results and Discussions 	 X31

5.1 Determining Customer Price Value Based on the Number of Remaining

Resources...3 2

5.2 	Determining Customer Price Value Based on the Remaining Time.......33

5.3 	Determining Resource Provider Price Value Based on the Remaining

Time...3 3

V

5.4 	Determining Final Price Value Using Customer Price and provider

price...3 4

6 Conclusion and Future Work

	

6.1 	Conclusion ...3 6

	

6.2 	Future Work ..3 7

REFERENCES 	 38

LIST OF PUBLICATIONS
	

41

vi

List of Figures

Fig.1.1 Cloud computing in Google trends ..2

Fig. 3.1 Basic Architecture of MobiLim ..14

Fig. 3.2 License Agent Migration in MobiLim ...17.

Fig. 3.3 Negotiation Model of MobiLim ...21

Fig. 6.1 Customer resource value based on workload ..32

Fig. 6.2 Customer resource value based on Remaining Time33

Fig. 6.3 Provider Resource Value based on remaining resources34

Fig. 6.4 Final Resource Value ...35

LAI

List of Tables

Table 2.1 Deployment models of cloud ...8

Table 5.1 Resource types and specification ...32

Chapter 1

Introduction and Statement of the Problem

1.1 	Introduction

A Cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented as

one or more unified computing resources based on service-level agreements established

through negotiation between the service provider and consumers [1, 2]. A cloud

computing platform dynamically provisions, configures, reconfigures, and de-provisions

services as needed. Cloud computing is a paradigm in which computing resources such as

processor, memory, software applications and storage are not physically present at the

user's location. Instead, a service provider owns and manages these resources, and users

access them via the Internet [3]. Unlike applications that are downloaded and installed

onto the end user's devices, these applications run inside the cloud and can be accessed

by any device running a browser.

Cloud computing is emerging as a new distributed system which aims to provide reliable,

customized and QoS guaranteed dynamic computing environments for end users [3]. In a

Cloud computing, different users demand various resources of service provider according

to their requirement and are charged for that by the service provider. But before getting

the access to the resources which are owned by some service provider, user needs to

acquire a valid license depending on his requirement and budget. Cloud computing is

usually offered with a pay per use model [4] in which you pay for just the cloud resources

that a particular job requires. It is an on-demand service, users pay only for what they

have used. The usage based billing model of cloud computing makes it preferable to the

small and medium enterprises which cannot afford a dedicated infrastructure of this size.

So, for the benefit of customers and service provider, resource allocation must be

economic. The success of achieving this goal in proper time and to obtain higher quality

of results in these dynamic and distributed environments depends on implementing an

appropriate collaboration mechanism between service providers and customer.

1.2 Motivation
Cloud computing emerge as a hot topic since 2007 due to its abilities of offering flexible

dynamic IT infrastructures, QoS guaranteed computing environments and configurable

software services. As reported in Google trends [5] (Figure 1.1), Cloud computing (blue

line), which is enabled by Virtualization technology (yellow line), has outpaced Grid

computing (red line).

-rarh VO JOIe nth..

Cocçk Ti
i_ F

400 A

_0.4

1 	 1 	I 	(1 	! 	f
2004 	 2005 	 200 	 2007 	20CU3

Fig. 1.1 Cloud computing in Google trends

"Cloud" computing — a relatively recent term, builds on decades of research in

virtualization, distributed computing, utility computing, and more recently networking,

web and software services. It implies a service oriented architecture, reduced information

technology overhead for the end-user, great flexibility, reduced total cost of ownership,

on demand services and many other things. A recent report by M. Armbrust et al. [6]

states that license management is one of ten issues which needs to be tackled for the

success of cloud computing. License management is the most important factor for the

successful adoption of cloud computing for a service provider. The licensing scheme

should be beneficial and compatible for both user as well as service provider. Service

providers and consumers compete for providing and employing resources, trade handling

in a fair and stable way is also a challenging task. The fairness must be in terms of price

settings with right incentives and offering of cloud services should be supported by a

suitable resource allocation, accounting, and pricing scheme. Economic resource

allocation exploits the capability of resources efficiently and satisfies the user's

reasonable requests. A sustainable economic cloud has two characteristics: it must allow

resource providers and resource consumers to make autonomous decisions, and both

parties of providers and consumers must have sufficient incentives to stay and play in the

market [7]'.

In this report, we propose and implement MobiLim, a novel model for integrated license

management and economic resource allocation model for cloud computing, which issues

licenses to users and provides a secure mechanism to manage the digital identity and

authorization mechanisms required to describe the users, license issuers, and the cloud

server by using cryptographic techniques. MobiLim allows the ISVs to manage the

licenses in a distributed environment as well as its act as a resource broker whose job is

to allocate the resources to the customer in a reasonable price depending on the resource

availability and other parameters. Cloud computing is dynamic in terms of resource

availability because at the same time multiple customers may request the resources or

release them after use. The price of a resource depends on its availability, budget of

customer and the deadline within which resources should be allocated. In cloud

computing, there are different resource providers, each having various resources at

various prices. The price of the resources depends upon the quality of service, availability

of the resources and requirement of the user. There are multiple self-interested agents that

supply or consume multiple types of resources, but the problems with these agents are

1) Consumers dynamically enter and leave the market.

2) Consumers have some bounded flexibility over when they require resources.

3) A single provider cannot satisfy consumers' resource requirements.

The first two characteristics are evident in current cloud platforms that are available to

the general public, which allows them to execute tasks that may or may not have hard

deadlines. As cloud computing environments becoming more commonplace and

complex, users will have a difficult time integrating the various cloud services and

ensuring their integrity. To tackle this problem there is a need of cloud service brokerages

which will essentially negotiate the relationship between the end users and service

providers and make it easier for businesses to manage their cloud services [8].

3

1.3 Statement of the Problem

The aim of the dissertation is to develop and implement a new technique for providing an

integrated License Management and Economic Resource Discovery and Allocation

model for cloud computing.

The various technological goals for building a robust, secure licensing mechanism

integrated with economic resource allocation for cloud computing includes the following:

• Establishing reliable interconnected network of digital authorization and

identification among various software vendors, cloud infrastructures, licensing

servers, and cloud provisioning servers.

• Software vendors must be able to describe their course of action in a license

expression language which differentiates between the end client of the resources,

independent of the hosting organization, or the organization that is configuring

and installing the software.

• Enabling vendor to choose, preserve their existing licensing approach on the

cloud, or adopt a usage- based or subscription-based model by allowing

flexible pricing models, and assign the task of billing and pricing to some third

party providers that are specialized in that field.

• Enabling the agencies to aggregate, resell and provide integrated software on the

cloud, along with custom licenses and prices for reselling agreements.

• Providing a single interface which brings together multiple cloud services for

billing and metering, monitoring, single sign on and value added services.

• Providing a cloud management tool to track, measure, monitor, and enforce

policies across interactions. It can also be used for authorization and access

management, creating and managing user profiles.

• Providing resources at some mutual agreeable price through negotiation between

customer and resource provider.

• Billing should be usage based, i.e., pay per use.

• The architecture must be flexible enough to incorporate with existing software

modules as well as improved framework.

El

1.4 Organization of the Report

This dissertation report comprises of six chapters including this chapter that introduces

the topic and states the problem. The rest of the report is organized as follows.

Chapter 2 gives the background of cloud computing, services provided by cloud, its type.

Besides this, it states various negotiation techniques used in e-commerce application and

its limitations and brief literature review of related work including research gaps.

Chapter 3 describes the framework designed for integrated license management and

economic resource allocation. It describes important modules of framework which

includes negotiation strategy of MobiLim, cryptographic algorithm used in the design of

MobiLim and working of customer, MobiLim server and server provider.

Chapter 4 gives the implementation details of the proposed framework, details of

experiments performed.

Chapter 5 discusses the results obtained after negotiation based on various strategies of

MobiLim.

Chapter 6 concludes the dissertation work and gives suggestions for future work.

5

Chapter 2

Background and Literature Review

2.1 Cloud computing

A Cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented as

one or more unified computing resources based on service-level agreements established

through negotiation between the service provider and consumer [9]. Cloud computing

describes both a platform and a type of application. A cloud computing platform

dynamically provisions, configures, reconfigures, and deprovisions servers as needed.

Cloud applications are extended to be accessible through the Internet. These cloud

applications use large data centers and powerful servers that host Web applications and

Web services. A cloud is a pool of virtualized computer resources. A cloud can:

• Host a variety of different workloads, including batch-style back-end jobs and

interactive, user-facing applications

• Allow workloads to be deployed and scaled-out quickly through the rapid

provisioning of virtual machines or physical machines

• Support redundant, self-recovering, highly scalable programming models that

allow workloads to recover from many unavoidable hardware/software failures

• Monitor resource use in real time to enable rebalancing of allocations when

needed

• Cloud computing offers immediate access to large numbers of the world's most

sophisticated supercomputers and their corresponding processing power,

interconnected at various locations around the world, proffering speed in the tens

of trillions of computations per second.

• The concept incorporates infrastructure as a service (laaS), platform as a service

(PaaS) and software as a service (SaaS). Examples of SaaS vendors include

Salesforce.com [11] and Google Apps [12] which provide common business

6

applications online that are accessed from a web browser, while the software and

data are stored on the servers.

2.1.1. Types of cloud

As we focus on building the cloud, a number of models have been developed for

deploying a cloud infrastructure [10].

• Public cloud: Public cloud or external cloud describes cloud computing in the

traditional mainstream sense, whereby resources are dynamically provisioned on a

fine-grained, self-service basis over the Internet, via web applications/web

services, from an off-site third-party provider who shares resources and bills on a

fine-grained utility computing basis [10]. The main benefits of using a public

cloud service are: easy and inexpensive set-up because hardware, application and

bandwidth costs are covered by the provider, scalability to meet needs, no wasted

resources because you pay for what you use.

• Private cloud: A private cloud offers many of the benefits of a public cloud

computing environment, such as being elastic and service based. The difference

between a private cloud and a public cloud is that in a private cloud-based service,

data and processes are managed within the organization without the restrictions of

network bandwidth, security exposures and legal requirements that using public

cloud services might entail. In addition, private cloud services offer the provider

and the user greater control of the cloud infrastructure, improving security and

resiliency because user access and the networks used are restricted and

designated. The term has also been used in the logical rather than physical sense,

for example in reference to platform as service offerings, though such offerings

including Microsoft's Azure Services Platform [I1] are not available for on-

premises deployment.

• Community Cloud: A community cloud is controlled and used by a group of

organizations that have shared interests, such as specific security requirements or

7

a common mission. The members of the community share access to the data and

applications in the cloud.

Following is the table which compares between different deployments models [5].

Table 2.1: Deployment models of cloud.

Managed by Infrastructure Infrastructure Accessible

owned by located and

consumed by

Public Third 	party Third 	party Off premise Untrusted

provider provider

Managed. Third 	party Third 	party Off premise Untrusted 	&

provider provider trusted

Third 	party Off premise

provider Organization
On premise

Private Trusted

Organization Third 	party Off premise

provider
On premise

Both organization Both organization Both Off premise

Hybrid & & & Both Trusted.

Third 	party Third 	party On premise &

provider provider Untrusted

• Hybrid cloud: A hybrid cloud is a cloud computing environment in which an

organization provides and manages some resources in-house and has others

provided externally. For example, an organization might use a public cloud

service, such as Amazon Simple Storage Service (Amazon S3) [12] for archived

data but continue to maintain in-house storage for operational customer data.

Ideally, the hybrid approach allows a business to take advantage of the scalability

and cost-effectiveness that a public cloud computing environment offers without

exposing mission-critical applications and data to third-party vulnerabilities.

2.2. Services of cloud computing

There are different types of cloud services such as. infrastructure, storage, hardware etc.

These services are delivered and consumed over Internet. We discuss some of these

services in details below:

2.1.1 SaaS - Software-as-a-Service

It is a model of software deployment whereby a provider licenses an application to

customers for use as a service on demand. Software or an application is hosted as a

service and provided to customers across the Internet. This mode eliminates the need to

install and run the application on the customer's local computers. SaaS therefore

alleviates the customer's burden of software maintenance, and reduces the expense of

software purchases by on-demand pricing. One example of SaaS is the Salesforce.com

[13] a customer relationship management application.

2.2.2 IaaS - Infrastructure-as-a-Service

It is the delivery of computer infrastructure (typically a platform virtualization

environment) as a service. Rather than purchasing servers, software; data center space or

network equipment, clients instead buy those resources as a fully outsourced service. As

the result of rapid advances in hardware virtualization, IT automation and usage metering

& pricing, users could buy IT hardware, or even an entire data center, as a pay-as-you-go

subscription service. The HaaS is a flexible, scalable and manageable to meet your needs

examples could be found at Amazon EC2 [15], IBM's Blue Cloud project [16], Nimbus

[17], Eucalyptus [18] and Enomalism [19].

2.2.3 PaaS - Platform-as a-Service

It is the delivery of a computing platform and solution stack as a service. It facilitates the

deployment of applications without the cost and complexity of buying and managing the

underlying hardware and software layers. The consumer uses a hosting environment for

0

their applications. The consumer controls the applications that run in the environment

(and possibly has some control over the hosting environment), but does not control the

operating system, hardware or network infrastructure on which they are running.

2.3 Literature Review

Cloud computing [1] is emerging as a new distributed system which aims to provide

reliable, customized and QoS guaranteed dynamic computing environments for end users.

The success of achieving this goal in proper time and/or to obtain the higher quality of

results in these dynamic and distributed environments depends on implementing an

appropriate collaboration mechanism between service provider and customer in the cloud.

Moreover, this appropriate collaboration mechanism should include a negotiation

technique to allow service providers to require cooperation from other providers mainly

because they are unable to provide a particular set of services.

In the future years, with the increase in the number of cloud service providers and the

number of users, there is a need of some third party who will regulate the resource

allocation and license management. MobiLim is designed to manage licenses and allocates

resources through negotiation. The following are the currently most commonly used

licensing techniques which are:

• In system fingerprinting solution [19], a fingerprint of the user's system, i.e., the

system on which user is going to access the resources composed of CPU

identification numbers and other hardware specific identifiers, is sent to the ISV

and the ISV creates a license key and sends it to the user which unlocks the

software or utility for the requested hardware.

• In dongle solution, before the execution of the program a token is presented.

Depending on the communication with this hardware token, the access to

particular feature is granted and checks which feature is licensed. This means that

on a single physical machine, the dongle can only be accessed.

` 	 10

The above mentioned license management schemes are not suitable for Cloud

environment because the above license management mechanisms licenses are restricted to

small IP ranges or single machines. These mentioned mechanisms do not support usage

based licensing on an arbitrary machine. The Hardware dongle solution is not applicable

for distributed environments of cloud computing. Server based licensing mechanism [20]

uses IP address for authentication which is not useful for the cloud environment because

licenses should be mobile. The problem of allocating networked resources in dynamic

environment, such as cloud computing platforms, where providers strategically price

resources to maximize their utility, where both providers and consumers are "selfish

agents", presents numerous challenges since the number of consumers and their resource

demand is highly dynamic. There are numerous auction-based approaches have been

proposed till now to tackle the problems occurred during the resource allocation.

An auction negotiates a mutually acceptable solution for the buyer and the seller [22] (it

uses market forces to negotiate a clearing price for the auction item). The auction

mechanism sets out rules for bidding, and allocates the computing resources to a certain

bidder based on its predefined rule set. For example, in an auction, the auctioneer begins at

the seller's reservation price, and solicits progressively higher oral bids from the audience

until only one bidder is left. The winner claims the item, at the price it last bid. This

auction carries the additional benefits that it makes bidder reservation prices publicly

known and is efficient in the sense that it will give the object to the bidder who values it

the most. Since resource demand and supply can be dynamic and uncertain, a distributed

negotiation mechanism was proposed where agents negotiate over both a contract price

and a de-commitment penalty, which allows agents to decommit from contracts at a cost.

There are various reasons to prefer bargaining over auction mechanism some of them are:

1. Most auctions only allow negotiation for price, not other attributes (delivery time, loyal

customer etc.).

2. Auctions usually are scheduled in advance and with time restrictions, e.g. some online

auctions range from 1 hour to 1 week. Intrinsically, auctions need multiple buyers or

sellers in order to work well, therefore needing some time for gathering participants. Some

buyers/sellers may not want to wait until an auction opens or finalizes.

11

3. In some circumstances, non-attribute factors are important, e.g., trusteeships,

friendships, etc. auctions cannot accommodate these factors.

Raiffa [22] established and compiled the mathematical basic of the negotiation models. He

classified the different negotiation models in base to the characteristics of the environment

and the negotiated goods. But it was just a mathematical model. Nipur et al. [19] propose a

fault tolerant comparison internet shopping system BestDeal. The authors have conducted

the simulation by launching nine shopping mobile agents where each has to visit five

supplier sites to get the best deal for different products. Performance is measured in terms

of execution steps as well as execution time of the simulation.

Faratin et al [23] applied and extended some existing model for service-oriented decision

functions in bilateral negotiatioii between autonomous agents. It concentrates in many-

parties nlany-issues, single-encounter negotiations with an environment of limited

resources. Since computing services are qualitative in nature rather than quantitative,

Faratin extends this model by adding qualitative values and associates fuzzy sets to them

in order to express better the quality in the negotiations.

Venugopal et al. [25] introduced a bilateral negotiation Protocol, based on the Alternate

Offers mechanism. The offers/counteroffers cycle of this paper is predefined finite, and in

the Alternate Offer, sit can continue indefinitely until one or the other part decides to stop

the negotiation. As cloud computing is a relatively new field, very less research has been

done for tackling the issue of resource management, bargaining and negotiation.

2.4 Research Gaps

Till now there is no solution proposed which provides integrated license management and

economic resource allocation. In the earlier licensing techniques, the contracts were made

between the service provider and its customers in which customer buys the software and

installs it on local resources in order to use it. But in cloud computing environment, this

type of licensing is not possible and valid. In cloud computing, users use the services

provided by service providers as needed. In order to preserve this business as a practice

and requirement, licenses should be mobile i.e. a license must be location independent

12

and the user who has acquired the license must be able to use it from any device while

ensuring that all legal restrictions are fulfilled. Also the resources should be provided in

the reasonable price in accordance with market prices. Because customers are going to

want to see an ecosystem of cloud computing services from multiple vendors that will

allow them to dynamically allocate various jobs based on the capabilities and pricing

offered through negotiation by the cloud computing service. When building an

autonomous agent which is capable of flexible and sophisticated negotiation, two broad

areas need to be considered.

• Which negotiation protocol will be used?

• What are the issues over which negotiation takes place?

There are various issues which need to be considered while choosing negotiation

protocol. Negotiation with uncertainty is both the most challenging problem in the

negotiation and the most practical problem for real cloud computing platforms. Bilateral

bargaining considers only one type of uncertainty, such as a negotiation deadline [26] or

reserve price [27]. In contrast, the negotiation between multiple agents in dynamic

environments where there are multiple types of uncertainty that increases the difficulty of

computing agents' rational equilibrium strategies. However, we think that the feature of

time-dependence cannot reflect the real situations of online negotiation. There are two

reasons.

• The Internet consists of a large number of heterogeneous sub-networks and their

communication qualities are different from each other, which results into price

offer that may not mean its real value and the same offer may mean different

values for different agents.

• Time-dependent negotiations are inflexible because the deadline to close the

negotiation process is determined in advance. The long preservation of

negotiation will result in a time-consuming process and the short preservation

may not achieve a satisfactory solution. A generic definition of online negotiation

can be described as the time-independent process in which two or more

participants search through the space of alternative ways to reach an acceptable

agreement through Internet-based electronic interactions.

13

Chapter 3

Proposed Framework for MobiLim

The central idea of MobiLim is to accept the request of users/customers for the service

and according to the requirements of the user specified in the license request token and

the availability of the resources at that time, MobiLim server negotiates with the service

provider. If the negotiation is successful then a license is granted to the customer. A

license allows customer to access the resources on the resource provider site. In MobiLim

there are three components: users/customer, resource providers, ISV that we have

outlined below. The MobiLim client is used by the user for acquiring license before

accessing the resources. MobiLim server is managed by ISV whose job is to issue license

and negotiate between customer and service provider and third one is resource provider

who is the owner of the resources. The basic architecture of MobiLim is shown in Fig.

3.1 and these three entities are explained below.

Multiple Customers selects a Resource
Provider according to their requirement

MobiLini Seaver
(managed by
Independent :Service
pro\rider)

Pool of Resource
Providers liaviiia vaiieh, of
resources at different price

Fig. 3.1 Basic Architecture of MobiLim

3.1 Resource provider

Resource provider is the owner of resources and wants to sell his resources through

MobiLim server. Resource provider submits his resource information like resource name,

resource minimum prices, types of service, available number of copies of resource and

maximum number of copies of a resource to the MobiLim server -which is managed by

14

some independent software vendor. Different service provider owns different kind of

resources like software, hardware and platform which they want to provide as a service to

the customer. After issuing the license to customer, the service provider handles the

request and allows the customer to access his resources.

3.2 MobiLim server

MobiLim server is managed by the ISV whose job is to negotiate between customer price

value and price set by the service provider as well as to issue new licenses to new

customers MobiLim sever maintains a database of various resources which belongs to

different resource providers along with their attributes like its price, available number of

copies and type of service. The MobiLim server is an entity that can legally issue

software licenses, such as a vendor or reseller. Since MobiLim server has near-complete

knowledge of the design of a provisioned software application, the MobiLim server is

able to enforce a license's thresholds on unique usage metrics instead of the typical per-

CPU or per-seat constraints. MobiLim server maintains a database that holds 3 tables:

3.2.1 Resource information table

This table stores the information about the resources. Resource information table has

various fields which includes resource name, resource provider name, resource provider

IP address, resource price, and number of instances or copies available of a particular

resource.

3.2.2 Customer information table

This table stores the information about the requests arrived for license. Fields of this table

are resource name, resource provider name, current IP address of the machine on which

the user working, the customer accounts ID and usage time.

3.2.3 Granted license table

15

This table stores the information about the license requests which are granted by the

MobiLim server. Fields of this table are resource price, resource name, resource provider

name, current IP address of the machine on which the user working.

3.3 User/ customer

User is a customer who wants to access the resources which are owned by some service

provider according to his requirement. User is at the client side of MobiLim who

accesses the services offered by service provider when needed and pay for that according

to pricing policies of the MobiLim server. User, who is a customer, has access to the

client side of the MobiLim. User can choose the service and depending on the selected

service, the request is redirected to the MobiLim server which handles it.

A request agent is generated by the client program at the users site which carries license

request token for a given set of input data which consist of user requirements like name

of service, budget, time for which he wants to use the service. The license request token

is a file that can be transferred together with the input data to the compute site. We call

this agent as license request agent who has all information that the license verifier needs

in order to check the identity of user and validity of the software license. The lifecycle of

license request agent is explained in details below.

3.4 License request agent lifecycle

In order to clarify the concept of license agent we outline the lifecycle of license agent in

figure 3.2. An agent consists of encrypted license terms specification and input

requirement of the user which are software-specific. The encryption is done by

passphrase encryption algorithm [27]. When a user submits his requirements, a request

agent is generated to encapsulate the submitted requirement by the MobiLim client and it

migrates to the MobiLim server. After arrival of request agent at MobiLim server, it

decrypts the request agent and extracts the requirements from the request agent.

Negotiation takes place over the customer budget and resource price. Various checks are

16

performed .depending upon the requirement of customer, if the negotiation is successful

and it is possible to execute the job within customers deadline then a license is granted.

MobiLim server licenses the job which enables it to execute at the service provider site.

Before the job startup the license is evaluated again.

MobiLim 	MobiLim 	Resource
Client. 	 Server 	 Provider

- License request agent

2. Negotiation over price
is carried.
Check is performed if
the Conditions are
satisfied_ then on v
:icense is granted.

3. Notification regarding.
License approval is sent

4 Resource provider. grants access to the customer.

",. User sends his data and input

Fig. 3.2 License Agent Migration in MobiLim

User specifies his requirement called as license terms which are MobiLim server specific.

It includes name of the resource, time for which user wants to access it. After submitting

the requirements, the MobiLim client side program encrypts the requirement which

includes the current IP address of the machine on which the user is working and license

term specifications. License terms specifications are used by the ISV to decide the type of

license to be issued to the user for this particular job. MobiLim client generates one agent

which encapsulates the request token and migrates to MobiLirn server. At the server site,

these encrypted token is decrypted and server extracts the license terms specifications

which includes customer budget and the user's identity from the license agent. The

17

MobiLim server which is implemented by the ISV uses this information to enforce the

ISV's business policies.

When a request for the license arrives at MobiLim server, it checks the identity of user

and compares it with the customer database. MobiLim server negotiates over the

customer price and price set by the resource provider and if negotiation is successful then

only MobiLim server grants a license to the customer else a notification is sent to the

customer regarding unavailability of the resource. Depending upon the requirements of

the user, he is charged and the billing record is stored in the database. After issuing the

license to the user, MobiLim server uses its own passphrase to sign the request which is

then redirected to service provider site. This signed request agent is act as a license which

enables resource provider to identify the customer on receiving input data from customer.

After arrival of request agent, service provider verifies whether the grated license is valid

or not by decrypting the notification. If the license is valid, service provider allocates the

resources according to specifications of request and notifies customer to send his input

and data with the help of license agent. The MobiLim servers signed request is

considered as a valid license.

3.5 Cryptographic. Algorithms

Encryption is the process of taking data (called cleartext) and a short string (a key), and

producing data (ciphertext) meaningless to a third-party who does not know the key.

Decryption is the inverse process: that of taking ciphertext and a short key string, and

producing cleartext.

3.5.1 Passphrase Encryption Algorithm

In the design of MobiLim, passphrase algorithm [27] is used to make MobiLim secure

and robust. In this section, the description of passphrase cryptographic technique is

explained in details that we have used in the MobiLim. This encryption algorithm uses

the DES mechanism [29] with a key generated by MD5 [30] hashing the passphrase,

combined with a salt string (random number, known as a salt, used to create the key.).

DES is the archetypal block cipher — an algorithm that takes a string of plaintext bits and

transforms it through a series of complicated operations into another cipher text bit string

LI

of the same length. The MD5 Message-Digest Algorithm is a widely used cryptographic

hash function with a 128-bit (16-byte) hash value. MD5 has been employed in a wide

variety of security applications, and is also commonly used to check data integrity. DES

allows the input string to be repeatedly MD5-hashed a number of times. The 16-byte

MD5 string is then split into two halves, an 8-byte DES key and an 8-byte initial seed for

DES.

3.5.1.1 Salt

A salt in password-based cryptography has traditionally served the purpose of producing

a large set of keys. corresponding to a given phrase, among which one is selected at

random according to the salt. This has two benefits:

• It is difficult for an opponent to precompute all the keys corresponding to a

dictionary of passwords, or even the most likely keys. If the salt is 64 bits long,

for instance, there will be as many as 2^64 keys for each password. An opponent

is thus limited to searching for passwords after a password-based operation has

been performed and the salt is known.

• It is unlikely that the same key will be selected twice. Again, if the salt is 64 bits

long, the chance of "collision" between keys does not become significant until

about 2^32 keys have been produced, according to the Birthday Paradox. This

addresses some of the concerns about interactions between multiple uses of the

same key, which may apply for some encryption and authentication techniques.

3.5.1.2 Md5

MD5 processes a variable-length message into a fixed-length output of 128 bits. The

input message is broken up into chunks of 512-bit blocks (sixteen 32-bit little endian

integers); the message is padded so that its length is divisible by 512. The padding works

as follows: first a single bit, 1, is appended to the end of the message. This is followed by

as many zeros as are required to bring the length of the message up to 64 bits less than a

multiple of 512. The remaining bits are filled up with a 64-bit little endian integer

representing the length of the original message, in bits. It is conjectured that it is

19

computationally infeasible to produce two messages having the same message digest, or

to produce any message having a given prespecified target message digest.

3.5.1.3 DES

DES is a block cipher--means it operates on plaintext blocks of a given size (64-bits) and

returns ciphertext blocks of the same size [29]. Thus DES results in a permutation among

the 2^64 (read this as: "2 to the 64th power") possible arrangements of 64 bits, each of

which may be either 0 or 1. DES is the archetypal block cipher — an algorithm that takes

a fixed-length string of plaintext bits and transforms it through a series of complicated

operations into another ciphertext bitstring of the same length. In the case of DES,' the

block size is 64 bits. DES also uses a key to customize the transformation, so that

decryption can supposedly only be performed by those who know the particular key used

to encrypt. The key ostensibly consists of 64 bits; however, only 56 of these are actually

used by the algorithm. Eight bits are used solely for checking parity, and are thereafter

discarded. Hence the effective key length is 56 bits.

3.6 Negotiation Strategies

Two categories of market based models that are used for cloud resource management are

commodities market models and auction models. In commodity market model, service

providers specify their resource price and charge users according to the amount of

resource they consume. But in other model, each provider and consumer acts

independently and they agree privately on the selling price. In this model resources are

considered as service provider agent and users are considered as consumer agent as

shown in figure 3.3. All provider agents submit their minimum price for their resource

(known as ask) and all consumer agents also submit their budget i.e. maximum price for

the requested resource to the resource broker. The job of MobiLim server is to decide

which resource to allocate to which user and at what cost using negotiation. The

negotiation strategy conducted by MobiLim server is inspired from [31] which are

explained below:

20

Customer Agent

aer agent (Broker)

customer

Fig. 3.3 Negotiation Model of MobiLim.

MobiLim server maintains a list of various resources which belongs to some resource

provider and is ready to rent them at some price. Resources which are rented on the basis

of time are characterized by four-tuples R; (r,, mc;, Cr;, te;), where for resource R; . r; is

reserve price below which negotiation can't takes place, mc; is maximum number of

instances or copies of R; , cr; is number of instances or copies available of R1 , te; is time

to execute all the current jobs. The jobs i.e. a customer request for resource are also

characterized on the basis of their service type. Jobs which are requested on the basis of

time are characterized by four-tuples Jj=(b~ , d~, tj), where for job Jj, b1 represents the

budget allocated to Jj , d; determines job deadline by which the consumer desires the job

to be finished, t3 represents the actual amount of time customer wants to access the utility.

The cost of execution job must not exceed its allocated budget. The customer price is

generated on the basis of two conditions which are explained below. The following

21

equations are proposed in order to generate proper value for the negotiation from both

customer and service provider

3.6.1 Determining Customer Price Based on the Number of Remaining Copies of

Resource:

Request for a resource is accepted only if the resource can perform the job within its

deadline and the minimum price of the resource (in form of $/hour) is less than or equal

to the maximum value the customer can pay. For the resources which are rented on the

basis of time, this is determined using is calculated by using proposed equation 1.

d; — te; — t >- 0
	

(1)

Where d; determines job deadline by which the consumer desires the job to be finished, tj

represents the actual amount of time customer wants to access the utility, te; is time to

execute all the current jobs which are running on the resource.

The customer price is generated on the basis of number of remaining copies. If the

resources are in demand, service provider can earn profit by increasing the resource price.

The customer price for the resources which are rented on the basis of time is generated by

equation 2 which is from [31].

i, t 	 (crr-1) customer pricereinaining resources " Iri + (bj — ri) * (1 — me)1/a] 	 (2)

In the equation 2, r; is reserve price below which negotiation can't takes place, mc; is

maximum number of instances or copies of R; , crit is number of instances or copies

available of R; , b; represents the maximum budget allocated to execute the job. When a <

1, the equation generates low consumer price value until the number of the remaining

resources gets close to zero. On the other hand, when a >1 the equation starts with a

consumer price value close tob1.

22

3.6.2 Determining Customer Price Based on the Deadline:

In this method, if the resources are not available temporarily and user is able to wait for

the completion of existing jobs then server generates a customer price value on the basis

of deadline of job within which job must be completed. The remaining time to start a job

which is rented on the basis of number of instructions is calculated by using equation

proposed 5.

rt = [d1— tei—t}
	

(5)

If rte <0 then job cannot be performed in its deadline. At the time of submitting the job

the value of rte is equal to rt nax. The customer price value is generated by customer

agent using proposed equation 6.

Customerrice`'` 	9 	= r + ~b ~ — r) * (1 — rtt ~ 	 (6) p 	remainin time 	i 	 i 	 rtax/
L

In the equation 6, r; is reserve price of the resource below which negotiation can't takes

place, rtf is remaining time for executing job , rte job deadline, bb represents the

maximum budget allocated to execute the job.

3.6.3 Calculating the final customer price value

For generating the final customer price value, the values based on remaining time and

remaining resource are combined. Final customer price value is obtained by using

equation 7.

Final customer price i• t = A * customer priceremaining resources + (1 — A)

customer priceremaining time 	 (7)

Where, 0 < A < 1.

23

Customer pricemain(ng resources is a customer price value generated by customer

based on the number of remaining copies of resource and customer pricemainjng time

is a price value generated by customer based on deadline. .

3.6.4 Determining the service provider price value

The price of the resource is generated by provider agent who aims at obtaining more

profit. The price of the resource depends on the availability of the resources. If the

workload is more and resource is busy then provider agent automatically increases the

price of the resource. Initially the price of the resource is set to minimum reserve price

but as the demand increases provider agent increases the resource price. The provider

agent determines the resource price which is rented on the basis of number of instructions

to be executed using proposed equation 8.

provider price = r~ + (mph — r~) * (Wir)
stt o 	

(8)

Where, 0 < 8 < 1. wl; is the workload of resource np; after the last allocation, r; is the

reserve price below and st , is the current workload or start time of the new job if it is

accepted at time t.

3.6.5 Auctioneers role

In each time unit, consumer agents and provider agents determine their resource price

values and send them to the auctioneer. The auctioneer generates final price of the

resource using equation 10 and then the trade occurs at that price.

price = (bid + ask)/2
	

(10)

MobiLim server makes a database entry of successful deal and grants a license to the

customer.

24

r

J RL L LIAR

Chapter 4 	 ACCNO:.:..........'~-c
DateI

Implementation of the Proposed Framework \i

Implementation

The proposed system model of MobiLim has been designed for implementation on

Windows as well as Linux based mobile devices (laptops). For implementation we have

used Java as a programming language and simulation is performed on Intel Dual core

processor with 4 GB RAM and 320 GB disk is used. In order to study the efficiency of

this approach, we simulated cloud environment in which there are three participants i.e.

customer, MobiLim server, and service providers. We have designed three different

programs for customers, MobiLim server and service providers. The customer program

RmiClient.java is designed to take input requirements from the customer and encrypt

those requirements with pass phrase algorithm and send it to MobiLim server.

RmiServer.java program is designed to perform operations of MobiLim server which

includes handling multiple requests from customer, maintaining the resource information

of various resource providers, decrypting the request received from user, performing the

negotiation over customer price and resource provider. If negotiation is successful and

resource provider is capable of accepting customer request then MobiLim server grant a

license to requesting customer. MobiLim server maintains a database which consists of

three tables' resource information table, customer information table and granted license

table. Resource information table maintains information about resources of the service

provider, customer information table maintains information about request from each

customer and granted license table stores successful transactions. After decrypting a

request, MobiLim server searches the appropriate service provider in his database who

has the resources demanded by the client and deal is taken place at some mutually

agreeable price. Depending on the billing policies of the service provider customer is

charged and informed whether the request is successfully granted or not. After

negotiation, server forwards the request to that particular service provider and then

communication takes place between Service provider and customer.

25

4.1 Algorithm for RmiClient.java
RmiClient.java program collects the user requirements encrypt them with pass phrase

algorithm and send it to MobiLim server. The requirements of user are MobiLim specific

which consists of following parameters:

• uti_name: Name of the resource i.e. utility.

• uti time: Time for which user wants access to the utility.

• max_bid: Budget of the user i.e. maximum amount a user can pay to execute his

job.

• del_dead: Maximum time for which a user can wait before the resource gets

allocated.

• tpser: Type of service. (SAAS, IAAS, PAAS)

These requirements are taken as an input from the user and program adds address of the

customer from which the user is accessing MobiLim server. After receiving input

requirements from the client, client program encrypts the input requirement using

passphrase algorithm. For this purpose, we have implemented a StringEncrypter subclass

in the main class RmiClient.

4.1.1 StringEncrypter Subclass
StringEncrypter Subclass handles the encryption mechanism of MobiLim user which uses

passphrase algorithm to encrypt the user requirements.

1. Call the StringEncrypter function and pass a string.

2. Obtain the iteration count c for the key derivation function.

3. Define salt which consists of random bits that are used as one of the inputs to a

one-way function.

4. Generates a SecretKeyFactory object for the specified secret-key algorithm DES.

5. Returns a Cipher object that implements the DES.

6. Constructs a parameter set for pass phrase based encryption.

26

7. Initialize cipher with a key and a set of algorithm parameters. The cipher is

initialized for one of the following four operations: encryption, decryption, key

wrapping or key unwrapping, depending on the value of opmode.

8. Encrypt the input requirement

9. Send the encrypted requirement to MobiLim server.

4.2 	Algorithm for RmiServer.java
RmiServer.java program handles the functioning of the MobiLim server whose job is to

negotiate between customer price value and price value set by the service provider as

well as to issue new license to new customers. RmiServer.java program consist of a

subclass StringEncrypter which handles cryptographic functioning of the MobiLim. For

the purpose of negotiation, program consists of two sub modules generate_bid and

generate_ask. The customer price value is generated using generate_bid function and

price value from service provider side is generated using generate_ask function. When

MobiLim server receives a request from customer it decrypts it using passphrase

algorithm which works as follow:

1. Call the StringDecrypter function and pass a string.

2. Obtain the salt S for the operation. Salt consists of random bits that are used as

one of the inputs to a one-way function

3. Obtain the iteration count c for the key derivation function.

4. Generate a secret key

5. Returns a Cipher object.that implements the DES:

6. Constructs a parameter set for pass phrase based encryption.

7. Initializes this cipher with a key and a set of algorithm parameters. The cipher is

initialized for one of the following four operations: encryption, decryption, key

wrapping or key unwrapping, depending on the value of opmode.

8. Call decrypt(String str).

9. Extract the input requirements.

27

After decrypting the user requirements, server extracts following information:

• uti_name: Name of the resource i.e. utility.

• cust addr: IP address of the customer machine.

• uti_time: Time for which usef wants access to the utility.

• max_bid: Budget of the user i.e. maximum amount a user can pay to execute his

job.

• del dead: Maximum time for which a user can wait before the resource gets

allocated.

• tpser: Type of service. (SAAS, IAAS, PAAS)

MobiLim server stores this information into request_info table of database ISVDatabase.

To perform this operation we have written a SQL insert query which performs the

insertion operation in the database table. After storing request information in the table,

MobiLim searches in the respro_info table of database ISVDatabase for checking

whether requested resource is available or not and is it possible to execute the job within

customer budget. For performing this operation, we have written a SQL select query

which selects the resource provider having requested resource and cost of his resource is

less than or equal to customers budget. Actual negotiation starts over providers specified

resource price and customers budget, if the resource is available. MobiLim server extracts

the resource provider information from respro_info table of the desired resource provider.

The resource provider includes following information:

• resprov_addr: Address of resource provider

• min_ask: Minimum price set by Resource provider up to which resource provider

is willing to sell his resource.

• copy_remng: the remaining number of instances remaining after aloocating them

to customer. Initially copy_remng is equal to the value of maxm_copy.

• maxm_copy: Maximum number of instances of resource available at the resource

provider.

• time_2_cur: Total time required to execute all current jobs. Jobs are queued if the

value of time 2 cur value is zero.

All this information is collected in local variables and sends to generate_bid function

which generates a final customer price for the demanded resource on the basis of two

parameters which are:

• On the basis of remaining resources.

• On the basis of remaining time for executing job (this parameter is

considered only when the request id queued due to temporary

unavailability of the requested resource).

After generating a customer price by customer agent, the generate_ask function is called

which generates resource price on behalf of resource provider. Based on the values

generated by provider agent and customer agent, deal takes place and license is granted to

customer. License allows customer to access the resource on the resource provider site.

After issuing a license to customer, an entry is made which consists of following

parameters:

• cust adds: IP address of the customer.

• respro_name: Name of the requested resource provider.

• res_name: Name of the requested resource.

• final_price: Final price at which deal occurred.

• Req_DateTime: Time and date at which request arrived at MobiLim server.

After granting a license to the customer, MobiLim server will send a notification about

customer request approval along with encrypted information related to customer and deal

which includes:

• uti_name: Name of the resource i.e. utility.
• cust addr: IP address of the customer.

• uti_time: Time for which user wants access to the utility.

• del dead: Maximum time for which a user can wait before the resource gets
allocated.

• final_price: Final price at which deal occurred.

29

4.3 	Algorithm for ServiceProvider.java

Resource provider recover's above information by decrypting the notification sent

MobiLim server with pass phrase algorithm and stores this information into his

Respro_dbase table of database. Resource provider allocates the resources according to

specifications of the request and sends a link to customer, which indicates that a resource

has been allocated to the customer and customer can start utilizing it. Decryption

algorithm work as follow:

1. Call the StringDecrypter function and pass a string.

2. Obtain the salt S for the operation: Salt consists of random bits that are used as

one of the inputs to a one-way function

3. Obtain the iteration count c for the key derivation function.

4. Generate a secret key

5. Returns a Cipher object that implements the DES.

6. Constructs a parameter set for pass phrase based encryption.

7. Initializes this cipher with a key and a set of algorithm parameters. The cipher is

initialized for one of the following four operations: encryption, decryption, key

wrapping or key unwrapping, depending on the value of opmode.

8. Call decrypt(String str).

9. Extract the input requirements.

Chapter 5

Results and Discussions

SIMULATION AND EXPERIMENTAL RESULTS

The entities in cloud environment are users (resource consumers) and resource owners.

Users have jobs for execution and are willing to pay for it. Also resource owners have

computational resources and are willing to rent them for profit. We use resource

consumer agents that work on behalf of the users and resource provider agents that work

on behalf of resource owners. The consumer agents and provider agents are two

intelligent entities having their own specific objectives. They interact with each other in
form of a double auction protocol for obtaining their objectives.

As mentioned in the previous Section, consumer agents aim at executing jobs within their

corresponding deadlines and with the minimum cost. Also the allocated budget for each

job determines the maximum cost that a user is willing to pay for executing it. On the

other hand, the provider agents aim at obtaining more profit. For this purpose, they try to

sell their resources at higher prices. In MobiLim, consumers and providers prices are

generated autonomously based on the basis remaining resources and remaining time. In

this simulated system, consumers and providers modeled as two kinds of agents. Also we

assume that there are three types of resources with the specifications presented. in Table

5.1

Table 5.1: Resource types and specification

Resource Resource Minimum price Number 	of Maximum number
provider Name ($/hour) copies of copies available
name available

IBM XEON Server 12 20 20

rackspace Server 10 20 20

GOOGLE GOOGLE 5 50 50
DOCS

31

After submitting the request to the MobiLim server, server decrypts the request and.

negotiates between customer budget and provider price. Customer request is

characterized by four tuples which are Resource provider name, Resource Name, Budget,

Deadline. We have submitted jobs one by one and recorded the price at which deal took

place for the corresponding resource. Consumer agent generates customer price on the
basis of remaining resources and remaining time to start executing job.

5.1 Determining Customer Price Value Based on the Number of

Remaining Resources

A customer agent generates customer price value for the requested resource based on the

remaining resource. In this method the consumer price value increases, as the remaining

copies of resources decreases. When there is more demand to the resources and resources

are less, then the customer price value for the requested resource automatically increases.

MobiLim server can control the values generated by customer agent by changing the

value a. Figure 6.1 shows the different curves at a = 2, 3, 4, 5. In this method, the value
of resource depends on the availability of resource.

14

13—

•L
Q

	

10 	 a=3

O 	 a=2 y 	 n

a=5

	

$ 	 a=4

6
-15 	-10 	-5 	0 	5 	10 	15 	20 	25

Remaining resources

Fig. 6.1 Customer Resource Value Based on Workload

32

5.2 Determining Customer Price Value Based on the Remaining

Time.

If the resource is not available and customer is ready to wait for some time then consumer

agent generates customer price value for the requested resource on the basis of remaining

time to start executing job. Customer agent can control the customer price values by

using the value of 03. Figure 6.2 shows the different curves with 0 = 1, 2, 3, 4, 5. In this

method, the consumer price value increases as the remaining time to start executing job

decreases.

13

12

11

	

10 	 i1
P=2

	

7 	 ~i=5

6
0 	50 	100 	150 	200 	250

Remaining time

Fig. 6.2 Customer Resource Value Based on Remaining Time.

5.3 Determining Resource Provider Price Value Based on the
Remaining Time.

The provider agent aims at obtaining more profit. For this purpose, it tries to sell its

resource at a higher price. We assume that at the starting, the workload of resource is zero

and the provider sets the price to minimum reserve price for accepting a job. After

accepting a job it updates its workload (start time for a new job) and sets its price to the

33

maximum price, mp. Gradually, the workload of the resource is decreased and gets close
to zero. By decreasing the workload, the provider decreases its resource price and in the
case the workload is equal to zero, it sets the price to the reserve price. Provider agent
generates the resource price from the service provider side. MobiLim server can control

the provider value with the help of 6. Figure 6.3 shows the different curves with 6 = .2, 1,
5. In this method, resource price increases, as the workload increases.

16

15

14

13
d
c 12 6=1

11 —5=2
0 10 W 6=3 ae

9 5=4

8 5=5
7

6

0 	50 	100 	150 	200 	250

RemainingTime

Fig. 6.3 Provider Resource Value Based on Remaining Time.

5.4 Determining Final Price Value Using Customer Price and

provider price.

Final price value is an average of service provider price value and customer price value.

Cust_price line indicates customer price, sp price indicates resource provider price and
fmal_price indicates the price at which deal occurred. Customer is put into a queue if the
resource is not temporarily available and customer could wait for the resource until it gets
freed. The final price value is derived from customer price value and resource provider
price value. The graph is plotted between customer price value, resource provider price
value and final price value in figure 6.4.

34

---344

Z3

u 	1Q

-cusr_price

LL 	 sp_price

-final_price

-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

Remaining resources

Fig. 6.4 Final Resource Value

If the negotiation is successful then a license is granted to the customer. Customer is
charged for the requested resource according to final price generated by MobiLim server.

35

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this report, we have proposed and implemented MobiLim, an integrated license

management and economic resource allocation framework for cloud computing.

MobiLim ensures security for both the customer and resource provider. MobiLim

provides a licensing solution to manage the increased complexity of software licensing in

the cloud computing and economic resource allocation for both resource owners and

resource consumers. Our proposed license management scheme satisfies the requirements

which are necessary for execution of licensing mechanism in distributed environment like

cloud computing. MobiLim supports requirements like usage based licensing, access

control, Billing and accounting and economic resource allocation.

In our proposed solution, we have considered three participants: users/customer, resource

providers and ISVs. User is a resource consumer who needs resources and is willing to

pay for them. Resource provider is a owner of the resources and willing to rent them. The

independent software vendor job is to negotiate between customer and resource provider

and license the customer to enable him to access the resources of the resource provider.

This work is concentrated on a particular class of negotiation. In this context, customer

agent who represents a customer requires a service to be performed within the budget of

customer. Service provider agent represents service provider and try to sell the resources

at maximum profit. Negotiation involves determining a mutually agreeable contract

under certain terms and conditions.

For economic allocation resource, we developed two agents: provider agents which bid

value based on its workload on behalf of the resource owner and consumer agents which

generate bid value based on two constraints remaining time for bidding and remaining

resources for bidding on behalf of the resource customer. An important feature of our

license management architecture is the accounting and billing part, which allows a

flexible license cost model.

36

6.2 Future Work

In the future the improvements can be done in the following areas:

Implementation of licenses scheduling depending on the priority of the jobs.

Priority will depend on the quality of service demanded by the customer.

. Implementation of some new pay per usage policies other than time.

37

REFERENCES

[1] Buyya, R., Chee Shin Yeo, Venugopal, S., "Market-Oriented Cloud Computing:

Vision, Hype, and Reality for Delivering IT Services as Computing Utilities,"

10th IEEE International Conference on High Performance Computing and

Communications, 2008. HPCC'08., pp.5-13, 2008

[2] Pankaj B. Thorat, Anil K. Sarje, "Programming Models for Cloud Applications

and Systems: Requirements and Approaches," In the Proceedings of International

Conference on Computing, ISBN no. 978-81-920305-1-7, pp 1-6, 2010.

[3] Foster, I., Yong Zhao; Raicu, I.; Lu, S.; , "Cloud Computing and Grid Computing

360-Degree Compared," Grid Computing Environments Workshop, 2008. GCE

'08 , pp.1-10, 2008

[4] Lizhe W., Jie, A., Kunze, M., Castellanos, A.C., "Kramer, D. Karl, et. al.:

Scientific Cloud Computing: Early Definition and Experience," In the 10th IEEE

International Conference on High Performance Computing and Communications,

2008. HPCC '08, pp. 825-830, 2008.

[5] "google trends", [URL] http://www.google.com/trends, accessed on May. 2011.

[6] Armbrust, M., Fox, A., Griffith, R, "Above the Clouds: A Berkeley View of

Cloud Computing," EECS Department, University of California Berkeley, Tech.

Rep. UCB/EECS 2009-28, 2009.

[7] P.Faratin, C.Sierra, and N.R.Jennings, "Negotiation decision functions for

autonomous agents," International Journal of Robotics and Autonomous Systems,

vol.24, pp.3-4, 1998.

[8] Paletta, M.; Herrero, P.; "A MAS-Based Negotiation Mechanism to Deal with

Service Collaboration in Cloud Computing," Intelligent Networking and

Collaborative Systems, 2009. INCOS '09. International Conference on , vol., no.,

pp.147-153, 2009.

[9] Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A., "Cloud

Computing: Distributed Internet Computing for IT and Scientific Research,"

Internet Computing, IEEE , vol.13, no.5, pp.10-13,. 2009.

[10] Rimal, B.P.; Eunmi Choi; Lumb, I., "A Taxonomy and Survey of Cloud

Computing Systems," INC, IMS and IDC, 2009. NCM '09. Fifth International

Joint Conference on, vol., no., pp.44-51, 2009.

[11] "Window azure" [URL] http://www.microsoft.corn/windowsazure/, accessed on

May 2011.

[12] "Amazon 	Simple 	Storage 	Service 	(Amazon 	S3)", 	[URL]

http://aws.amazon.com/s3/, accessed on May 2011.

[13] "Salesforce a CRM application", [URL] www.salesforce.com, accessed on May

2011.

[14] "Amazon Elastic Compute Cloud", [URL].http://aws.amazon.com/ec2/, accessed

on May. 2011.

[15] "IBM 	 Blue 	 Cloud 	 project" 	 [URL]

http://www.03.ibm.com/press/us/en/pressrelease/22613.wss/, accessed on May

2011.

[16] "Eucalyptus Project" [URL] http://eucalyptus.cs.ucsb.edu/, accessed on May

2011.

[17] "Enomolism Project", [URL] http:// www.enomaly.com /, accessed on May 2011.

[18] "Application Virtualization and Software Licensing: Best Practices for Software

Vendors," [URL] http://www.softwaremag.com/linkservid/, accessed on May

2011.

[19] "Server-Based Licensing: How it Affects Your ROI," [URL]

www.logixml.com/content, accessed on May 2011.

[20] M. Dalheimer, F. Pfreundt, "GenLM: License Management for Grid and Cloud

Computing Environments," 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, pp.132-139, 2009.

[21] H. Raiffa, "The art and science of negotiation. Cambridge", Mass: Belknap Press

of Harvard University Press, 1982.

[22] P.Faratin, C.Sierra, and N.R.Jennings, "Negotiation decision functions for

autonomous agents," International Journal of Robotics and Autonomous Systems,

vol.24, pp.3-4, 1998.

39

11

[23] H. P. Nipur, K. Garg, "A Fault Tolerant Comparison Internet Shopping System:

BestDeal by using Mobile Agent", International Conference on Information

Management and Engineering, pp. 541-544, 2009.

[24] S.Venugopal, X.Chu, and R.Buyya, "A negotiation mechanism for advance

resource reservations using the alternate offers protocol," 16th International

Workshop on in Quality of Service (IWQoS 2008), pp.40- 49, June 2008.

[25] N. Gatti, F. D. Giunta, and S. Marino, "Alternating-offers bargaining with one-

sided uncertain deadlines: an efficient algorithm" Artificial Intelligence, vol. 172,

pp. 1119-1157, 2008.

[26] B. An, N. Gatti, and V. Lesser, "Bilateral bargaining with one-sided two-type

uncertainty" In Proc. of the 9th IEEE/WIC/ACM International Conference on

Intelligent Agent Technology, pp. 403-410, Sep. 2009.

[27] "RFC 4226: HOTP: An HMAC-Based One-Time Password Algorithm,"

http://www.ietf.org/rfc/rfc4226.txt, accessed on May 2011.

[28] "RFC: 2405 The ESP DES-CBC Cipher Algorithm", [URL]

http://www.ietf.org/rfc/rfc2405.txt, accessed on May 2011.

[29] "RFC 	1321: 	The 	MD5 	Message-Digest 	Algorithm", 	[URL]

http://www.ietf.org/rfc/rfc1321.txt, accessed on May 2011.

[30] Izakian, H.; Ladani, B.T.; Zamanifar, K.; Abraham, A.; Snasel, V.; , . "A

continuous double auction method for resource allocation in computational grids,"

IEEE Symposium on Computational Intelligence in Scheduling, pp.29-35, 2009.

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

