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Abstract 

In optimizing compilers, most of the optimizing algorithms are applied on intermediate 

representation. Optimizing algorithms such as constant propagation can be applied on 

intermediate code using data flow analysis which is expensive regarding compilation 

time. Also for pointer variables, these algorithms cannot be applied directly on pointers 

as pointers are difficult to analyze. 

In this dissertation entitled "POINTER OPTIMIZATION USING SSA BASED 

INTERMEDIATE REPRESENTATION FOR OPTIMIZING COMPILERS", new 

approach for applying optimization algorithms such as constant propagation on pointer 

variables has been proposed. To avoid data flow analysis, static single assignment (SSA) 

form is used for intermediate representation and for pointers, alias classes are used. So 

using SSA and each alias class as a single variable, constant propagation algorithm can 

be applied on pointer variables very efficiently reducing the number of instructions in a 

program. 
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Chapter 1 

INTRODUCTION 

1.1 	Introduction 

Compiler optimization is the process of tuning the output of a compiler to 
minimize or maximize some attributes of an executable computer program. The most 
common requirement is to minimize the time taken to execute a program; a less 
common one is to minimize the amount of memory occupied. 

Most compilers translate the source program first to some form of 
intermediate representation and convert from there into machine code. The 
intermediate representation is a machine and language-independent version of the 

original source code. Although converting the code twice introduces another step, use 
of an intermediate representation provides advantages in increased abstraction, 
cleaner separation between the front and back ends, and adds possibilities for 

retargeting cross-compilation [4]. Intermediate representations also lend themselves to 
supporting advanced compiler optimizations and most optimization is done on this 
form of the code. 

In code optimization, data structure choices directly influence the power and 
efficiency of program optimization. Code optimization is generally implemented 
using a sequence of optimizing transformations which take a program and transform it 
to produce an output program. While the program goes through various levels in 
compilation process, the optimization takes place in some levels [1]. 

source — front 	 back 	achine 
code 	end ~R optimizer ~R end 	code 

Figure 1.1: Compiler Phases 

Front end produces intermediate representation (IR). The optimizer transforms 
IR into more efficient program and then back end transforms it to machine code. The 



optimization also takes place in back end after generation of machine code but major 
work of optimization is done in optimizer phase. An intermediate language is used for 
IR. 

While optimizing three address code, compiler has to perform data flow 
analysis which is very expensive in terms of time complexity. So static single 
assignment (SSA) form has been proposed to represent data flow and control flow 
properties of program. Static single assignment form is an intermediate representation 
(IR) in which every variable is assigned exactly once [5]. SSA is developed to avoid 
data flow analysis and to perform certain optimizations efficiently. 

source 
code 

hine 
de 

Figure I.2: Using SSA as IR in compiler 

The three address code is converted to SSA form and then after optimizing 
SSA form it is again translated out of SSA. SSA form has to be translated out as 4,-
functions (which are inserted in the program for control flow validation purposes) in 
SSA are not recognized by processor. 
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1.2 	Motivation 

Static Single-Assignment form is an intermediate format that allows 

optimizations to be done efficiently and easily. Every variable receives exactly one 

assignment during its lifetime, and 4-functions are added at places where program 

flow joins. Static single assignment form has been proposed to represent data flow 

and control flow properties ofprogram [17]. 

SSA simplifies some optimization algorithms like constant propagation. 

Whenever we apply constant propagation algorithm on SSA code, the occurrence of a 

variable is replaced by it's value directly since there is only one definition of that 

variable [6]. But we cannot apply constant propagation algorithm directly on pointer 

variables since there maybe two or more variables pointing to same memory location. 

Any variable changing the value at that location changes the value of other variables. 

For pointers, we have to use alias classes. Each alias class represents the set of 

variables pointing to same memory location. 

1.3 Problem Statement 

In this dissertation work, we propose an approach for pointer optimization in 

C program using SSA based intermediate representation. We use SSA as intermediate 

representation to avoid data-flow analysis. As it is not possible to apply constant 

propagation algorithm on pointer variables directly, we use alias classes_ for pointers. 

Whenever any variable in alias class is changed, the alias class is also renamed. 

	

1,4 	Organization of the report 

Chapter 2 gives the basics of SSA and how it can be used as intermediate 

representation. This chapter also explains how SSA simplifies some optimizing 

algorithms. Various types of SSA are also explained. Literature review and research 

gaps are discussed. 

Chapter 3 explains proposed work for pointer optimization. It further explains 

construction of SSA and alias classes and how to apply constant propagation 

algorithm on SSA. 
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Chapter 4 presents results gathered after applying optimization algorithm on some test 

programs. It further explains comparison between various approaches of applying 

constant propagation algorithm on SSA. 

Chapter 5 presents the conclusions of the work and suggests future work that can be 

done to extend the work. 
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Chapter 2 

BACKGROUND AND LITERATURE REVIEW 

2.1 Intermediate Language 

An intermediate language is the language of an abstract machine designed to 

aid in the analysis of computer programs. Compiler first translates the source code of 

a program into a form more suitable for code-improving transformations, as an 

intermediate step before generating object or machine code for a target machine. 

A popular format for intermediate language is three address code. Each 

instruction in three address code can be described as: 

result : = operand] operator operand2 

such as: 

x.=yopz 
where x, y and z are variables, constants or temporary variables generated by the 

compiler. op represents any operator, e.g. an arithmetic operator. 

Expressions containing more than one fundamental operation, such as: 

p:=x +yXz 

are not representable in three-address code as a single instruction. Instead, they are 

decomposed into an equivalent series of instructions, such as 

ti:=yxz 
p:=x+t1 

The term three-address code is still used even if some instructions use more or 

fewer than two operands. The key features of three-address code are that every 

instruction implements exactly one fundamental operation, and that the source and 

destination may refer to any available register. Consider following C language 

program. 

int main(void) 
{ 

mt i; 
int b[l0]; 
for(i=0; i< 10; ++i) 
{ 

b[i] = i*i; 
} 

} 
Figure 2.1 : Simple C language program 
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The preceding C program, translated into three-address code, might look 

something like the following: 

i := 0 ; assignment 
L1: if i >= 10 goto L2 ; conditional _jump 

t0 := i*i 
tl :_ &b ; address-of operation 
t2 := Cl + i ; t2 holds the address ofb[i] 
*t2 := t0 ; store through pointer 
is=i+1 
goto L1 

L2:  
Figure 2.2 : Three address code 

2.2 Definition of SSA 

A procedure is in static single-assignment form if every variable assigned a 

value in it occurs as the target of only one assignment [5]. The static single 

assignment form of a program provides data flow information in a form which makes 

some compiler optimizations easy to perform. A use of a variable may use the value 

produced by a particular definition if and only if the definition and the use have 

exactly the same name for the variable in the SSA form of the procedure. This 

simplifies and makes more effective several kinds of optimizing transformations. 

Thus, it is valuable to be able to translate a given representation of a procedure into 

SSA form. 

As shown in figure 2.3, each assignment to a variable is given a unique name 

and all of the uses reached by that assignment are renamed to match the assignment's 

new name. 

V4-4 Vrf-4 

X< 	V+5 X1E-Vi+5 

VE-8 V24-8 

Y< 	V+3 Y!4-V2+3 

(a).Straight line code 	 (b).SSA form 

Figure 2.3: Straight line code and its static single assignment version 
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Most programs, however, have branch and join nodes. At the join nodes, a 

special function called 4)-function is inserted. 4)-function selects any one of its 

arguments as per the control transfers from one node to another node. 4)-functions are 

there for validation purpose. They are not recognized by processor. So after 

performing optimization on SSA code, it has to be transformed out from SSA [3]. 4)-

functions must be removed. 

If (Condition) 	 If (Condition) 

their V— 4 	 then Vi <— 4 

else V4-8 	 else V21-8 

Vi i— 0 (Vi , V2) 

(a).Straight line code 	(b).SSA form 

Figure 2.4: if-then-else and its static single assignment version 

2.3 	Where to place -Functions 

At first glance, careful placement might seem to require the enumeration of 

pairs of assignment statements for each variable. Checking whether there are two 

assignments to V that reach a common point might seem to be intrinsically nonlinear 

[11]. 

VU 

If (vo ==4) 

X 	 v1 = 	X 

Y 	 =V1  Y 

F(D(vi,vz) Z 
=v 

Figure 2.5: Illustrating where to keep (D-function 
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As shown in figure 2.5, suppose that a variable V has just one assignment, in 

the original program, so that any use of V will be either a use of the value Vo at entry 

to the program or a use of the value Vi from the most recent execution of the 

assignment to V. Let X be the basic block of code that assigns to V. so X will 

determine the value of V when control flows along any edge X --> Y to a basic block 

Y. When entered along X --> Y, the code in Y will see V1, but all paths to Y must still 

go through X (in which case X is said to strictly dominate Y), then the code in Y will 

always see V1. Indeed, any node strictly dominated by X will always see VI, no 

matter how far from X it may be. 

Eventually, however, control may be able to reach a node Z not strictly 

dominated by X. Z sees V1 along one in-edge but may see Vo along another in-edge. 

Then Z is said to be in the dominance frontier of X and is clearly in need of a c~-

function for V. In general, no matter how many assignments to V may appear in the 

original program and no matter how complex the control flow may be, 0- functions 

for V can be placed by finding the dominance frontier of every node that assigns to V. 

2.4 	Terminologies 

Construction of SSA involves recognizing where to place 4,-functions and 

renaming of variables. To recognize location of 4,-functions the knowledge of 

dominance frontiers of nodes in control flow graph is needed. Some of the 

terminologies used in the construction of SSA are given below 

2.4.1 Control FIow Graph 

A control flow graph (CFG) in computer science is a representation, using 

graph notation, of all paths that might be traversed through a program during its 

execution. The statements of a program are organized into basic blocks, where 

program flow enters a basic block at its first statement and leaves the basic block at its 

last statement [15]. A control flow graph is a directed graph whose nodes are the basic 

blocks of a program and two additional nodes, Entry and Exit. 



2.4.2 Dominance and Dominance Frontiers 

Let X and Y be nodes in the control flow graph(CFG) of a program. If X 

appears on every path from Entry to Y, then X dominates Y [8]. If X dominates Y and 

X Y, then X strictly dominates Y. Here, X >> Y indicates strict domination and X 

» Y indicates domination. If X does not strictly dominate Y, then X Y' Y is written. 

The dominance frontier DF(X) of a CFG node X is the set of all CFG nodes Y such 

that X dominates a predecessor of Y but does not strictly dominate Y. 

DF(X) = { Y 1 (BP E Pred(Y)) (X ZY P and X >h Y}} 

2.5. Other forms of SSA 

2.5.1 Building Pruned SSA 

Minimal SSA form relies entirely on dominator information to determine 

where to insert -functions [ 11 ]. The dominance frontier correctly captures the 

potential flow of values, but ignores the data-flow facts like knowledge about the 

lifetimes of values gleaned from analyzing their definitions and uses. Because of this, 

the minimal SSA construction will insert a -node for V at join point where V is not 

live. 

To improve on minimal SSA, the compiler first performs "liveness analysis" 

on the routine [7]. Liveness analysis produces, for each block, a set of values that are 

live on entry to the block [18]. The actual construction of pruned SSA is quite similar 

to the construction of minimal SSA. The minimal SSA construction inserts a 4-node 

for V in every node n 0 DF (A(V)). The pruned SSA construction changes this to 

insert a 4-node for V in every node n E DF` (A(V)), where V E LIVE_IN(n). These 

changes can drastically reduce the number of 4,-nodes. 

The pruned SSA construction algorithm costs more than the minimal SSA 

construction. Building liveness analysis increases compilation time and space 

requirements for building SSA [7]. The space requirement increases, since each block 

has a number of large sets associated with it. These larger memory requirements can 

directly degrade performance. So pruned SSA is not used practically to construct SSA 

for intermediate representation. 
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2.5.2 Semi-pruned Form to Use Fewer 4> -functions 

Minimal SSA form places 4,-nodes by looking only at the dominance frontier 

without regard to liveness. It is possible that a 4>-node will be inserted for a name 

which is not subsequently used. These extra 4>-nodes waste space and time. Pruned 

SSA form relies on liveness analysis to ensure that no such dead 4>-nodes are inserted. 

Since the pruned form relies on additional analysis, it may be slower to build. 

The third form of SSA called semi-pruned SSA is developed. The speed and 

space advantage of this form over the other two relies on the observation that many 

names in a routine are defined and used wholly within a single basic block [14]. For 

example, the compiler typically generates temporary names to hold intermediate 

steps; these compiler-generated names often have short lifetimes. Semi-pruned SSA 

capitalizes on this observation by computing the set of names that are live on entry to 

some basic block in the program. These are called "non-local" names. The 

construction algorithm computes dominance frontiers only for non-local names. 

Therefore, the number of 4>-nodes will lie between that of the minimal and pruned 

forms, but the non-local names are much cheaper to compute than full-blown liveness 

analysis.. Therefore, semi-pruned form represents a compromise between the time 

required to perform liveness analysis and the reduction in the number of 4,-nodes that 

it allows. 

The algorithm to discover the non-local names is as follows: 

non-locals  0 . 

for each block B 

killed < 0 

for each instruction v — x op y in B 

ifx 	killed then 
non-locals F- non-locals U{x} 

ify 0 killed then 
non-locals <- non-locals U (x J 

killed 4-killed U{v} 

Figure 2.6: Algorithm to compute non-local names 
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Xl — ... 	Xz F- 
1— X1 Xn 

Yi  f  ... Y2 4  .., 

ZI  —  ... 

1 
Z2 4 ... 

1 
Yi — Y2 

Z 
Z3 <— 4(Zi, z2) 

4— Z3 

As per the algorithm, the compiler makes a simple forward pass over each 

basic block. When it discovers an operand that has not already been defined within 

the block (the killed set), it must be a non-local name. This is simpler than performing 

the complete live analysis required for pruned SSA construction. Computing non-

local names requires just two sets, non-local and killed. The time and space 

requirements for building non-local are, therefore minimal. 

x  <---  ... X  t-- 	... 

•— X <— x 

y4-... y 4— ... 
Z". Z4—... 

1 1 

L J _ Z 

Original Code 

4—  ...  XI  F 	... X2  <—  ... 

4— X1 	4— XZ 	4-- XI E- X2 

yl - ... 	Y2 ~--- 

Zl 

1 

1 ... 	Z2 4- 

y, 	4-- y2 

X3 — 4(Xl, X2) 

Y3 	4(Yi, Yz) 

Z3 -- 4(zi, z2) 

~ Z3 

yl 4 ... 	Y2 4 ... 

Z1 4 ... 	Z2 4— 

'I, 
Yi 	'— Y2 

Z 
Y3 -4— O(Y1, Y2) 

Z3 i— c(Z1, L2) 

~ Z3 

Minimal SSA 	 Semi-pruned SSA 	Pruned SSA 

Figure 2.7: Simple code and it's three forms of SSA 
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Figure 2.7 illustrates the differences between the three forms of SSA. In the 

original code, the three variables, x, y, and z are defined. The three graphs at the 

bottom of the figure compare the 4>-nodes which the three forms of SSA insert. The 

minimal SSA form contains 4>-nodes for all three variables. Clearly, the 4>-nodes for x 

and y are unnecessary; these variables are never used again. The semi-pruned SSA 

form does not contain a 4>-node for x because it is not live across any basic block 

boundary. However, for y, a 4>-node is inserted, because it is live across some block 

boundary, and that is the limit of analysis used. The pruned SSA form contains a 4>-
node for z only. 

2.6 Alias Analysis 

Alias analysis is a technique in compiler theory, used to determine if a storage 

location may be accessed in more than one way [9]. Two pointers are said to be 

aliased if they point to the same location. Alias analysis techniques are usually 

classified by flow-sensitivity and context-sensitivity. They may determine may-alias 

or must-alias information. The term alias analysis is often used interchangeably with 

term points-to analysis, a specific case. 

In general, alias analysis determines whether or not separate memory 

references point to the same area of memory [16]. This allows the compiler to 

determine what variables in the program will be affected by a statement. For example, 

consider the following section of code that accesses members of structures: 
*p  

*q = 2; 
i= *p+3; 

There are three possible alias cases here: 

1. The variables p and q cannot alias. 

2. The variables p and q must alias. 

3. It cannot be conclusively determined at compile time if p and q alias or not. 

If p and q cannot alias, then i = *p + 3; can be changed to i = 4. If p and q must 

alias, then i = *p + 3; can be changed to i = 5. In both cases, we are able to perform 

optimizations from the alias knowledge. On the other hand, if it is not known if p and 

q alias or not, then no optimizations can be performed and the whole of the code must 
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be executed to get the result. Two memory references are said to have a may-alias 

relation if their aliasing is unknown. 

2.6.1 Aliasing and Re-ordering 

Aliasing introduces strong constraints on program execution order. If two 

write accesses which alias occur in sequence in a program text, they must occur in 

sequence in the final machine code. Re-ordering the accesses will produce an 

incorrect program result (in the general case) [10]. The same is true for a write access 

and a read access. 

However, if two read accesses which alias occur in sequence in a program 

text, they need not occur in the same sequence in the machine code - aliasing read 

accesses are safe to re-order. This is because the underlying data is not changed by the 

read operation, so the same value is always read. It is vitally important that a compiler 

can detect which accesses may alias each other, so that re-ordering optimizations can 

be performed correctly. 

In alias analysis, we divide the program's memory into alias classes. Alias 

classes are disjoint sets of locations that cannot alias to one another. For the 

discussion here, it is assumed that the optimizations done here occur on a low-level 

intermediate representation of the program. This is to say that the program has been 

compiled into binary operations, jumps, moves between registers, moves from 

registers to memory, moves from memory to registers, branches, and function 

calls/returns. 

2.6.2 Type Based Alias Analysis 

If the language being compiled is type safe, the compiler's type checker is 

correct, and the language lacks the ability to create pointers referencing . local 

variables, (such as ML, Haskell, or Java) then some useful optimizations can be made. 

There are many cases where we know that two memory locations must be in different 

alias classes: 

Two variables of different types cannot be in the same alias class since it is a 

property of strongly typed, memory reference-free (i.e. references to memory 

locations cannot be changed directly) languages that two variables of different 

types cannot share the same memory location simultaneously. 

13 



2. Allocations local to the current stack frame cannot be in the same alias class as 

any previous allocation from another stack frame. This is the case because 

new memory allocations must be disjoint from all other memory allocations. 

3. Each record field of each record type has its own alias class, in general, 

because the typing discipline usually only allows for records of the same type 

to alias. Since all records of a type will be stored in an identical format in 

memory, a field can only alias to itself. 

4. Similarly, each array of a given type has its own alias class. 

When performing alias analysis for code, every load and store to memory 

needs to be labeled with its class. We then have the useful property, given memory 

locations A and BB  with iJ alias classes, that if i =j  then A;  may-alias B,, and if i # j 

then the memory locations will not alias. 

2.6.3 Flow Based Alias Analysis 

Analysis based on flow, unlike type based analysis, can be applied to 

programs in a language with references or type-casting [10]. Flow based analysis can 

be used in lieu of or to supplement type based analysis. In flow based analysis, new 

alias classes are created for each memory allocation, and for every global and local 

variable whose address has been used. References may point to more than one value 

over time and thus may be in more than one alias class. This means that each memory 

location has a set of alias classes instead of a single alias class. 

2.7 Optimizations on SSA 

SSA simplifies many compiler optimization algorithms as every variable in 

SSA has only one definition simplifying data flow analysis [13]. Some of the 

optimizations enhanced by SSA are as: 

2.7.1 Constant propagation 

SSA form simplifies constant propagation: whenever a definition of the form x 

c, where c is a constant, is encountered, then all uses of x can be replaced by c. 

Moreover, the definition itself can be deleted from the program, as it is now dead. 

14 



b:=3 	 b1:=3 

c:=l+b 	 c1:=1+3 

b:=4 	 b2 :4 

d:=b+c 	 di =4+ci 

Original code 	 SSA 

Figure 2.8 : Applying constant propagation on SSA 

So in the original code analysis for variable b is needed for constant 

propagation as its value is changed in code. But as in SSA,. after renaming every 

variable is assigned only once, analysis not needed. Thus, simplifying the 

optimization. 

2.7.2 Copy Propagation 

Copy propagation can be handled in a similar fashion as constant propagation: 

definition of the form x — y can be deleted, and all uses of x replaced by uses of y 

without analysis. 

x1 := yi x1 == yi 

ci:=1+xi ci:=1+yi 

di =xi+ci di:=yi+ci 

Before replace After replace 

Here, after replacing x, by yj, xi  can be deleted. 

2.7.3 Global Value Numbering 

Global Value Numbering (GVN) is a compiler optimization based on the SSA 

intermediate representation. It sometimes helps eliminate redundant code that 

common subexpression elimination (CSE) does not. 

w, :=3 	 wi :3 

x, := 3 	 x1  := wi 

yi := xi + 4 	yi := wi  + 4 

zi :=wi+4 	zI  :=yi 

SSA 	After GVN 

Figure 2.9 : After applying GVN on SSA 
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A GVN routine would assign the same value number to w and x, and the same 

value number to y and z. For instance, the map w1 i 1, x1  .— I, yl  <— 2, zi  f- 2 

would constitute an optimal value number mapping for this block. The reason that 

GVN is more powerful than CSE comes from the fact that CSE matches lexically 

identical expressions whereas the GVN tries to determine an underlying equivalence. 

For instance, in the code: 

a:=cxd 

e:=c 

f := e x d 

CSE would not eliminate the recomputation assigned to f, but a GVN 

algorithm should discover and eliminate this redundancy. SSA form is required to 

perform GVN. 

After performing optimizations, the code in SSA form must be transformed 

out of SSA form as processor cannot recognise 0-functions in the SSA "form. So 0-
functions must be removed from code without violating the correctness of the 

program. The algorithms are developed for destruction of-functions. 

2.8 Literature Review 

The first approach to apply SSA on intermediate representation and avoid data 

flow analysis is due to Cytron et al[2]. They constructed an algorithm to compute 

SSA using the concept of dominance frontiers explained in section 3.3.2. Much of the 

subsequent work was based on this technique. 

Bilardy and Pingali have constructed algorithms to compute SSA 

efficiently[11]. Using these algorithms, the number ofd-functions can be reduced and 

then the processing time of applying optimization algorithms reduces. cb-functions are 

special functions in SSA inserted at branches and join nodes of the program. D-

function selects any one of it's arguments as the control transfers from one node to 

another in control flow graph[ 12]. As shown in figure 2.10, after if-else, variable V 

can have any value depending on the Condition in if loop. So (D-function is necessary 

for control validation. 
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iJ(Condition) 	 if(Condition) 

then V ~— 4 	 then V] <— 4 

else V o- 8 	 else V2 — 8 

V3 t— ( (V1, V2) 
Fig. 2.10: If-then-else and its SSA form 

Lenart et at show how to apply constant propagation algorithm on SSA 

code[13]. While applying constant propagation algorithm on SSA, the occurrence of a 

variable is replaced by its value and after that its definition is deleted from the 

program. SSA form simplifies constant propagation since whenever a definition of the 

form x <— c, where `c' is a constant, is encountered, and then all uses of x can be 

replaced by V. Moreover, the definition itself can be deleted from the program, as it 

is now dead[7]. As shown below, b has changed it's value twice, so in normal code, 

analysis is needed but in SSA, as it is renamed twice, there are two separate variables 

for b. So any use ofb1 or b2 is replaced by its definition. 

b,=3 	 b1=3 

c1 =1+b1 	c1=1+3 

b2=4 	 b2=4 

d1=b2±c1 	d1=4+c1 

SSA code 	After constant propagation 

In original code without SSA, analysis for variable 'b' is needed for constant 

propagation as it's value is changed in code. But as in SSA, after renaming every 

variable is assigned only once, analysis not needed. Also, variables b1 and b2 will be 

deleted after they are replaced. 

Chase and Wegman propose an approach for pointer analysis using alias 

classes[10]. Sassa et al. apply constant propagation algorithm on pointers using alias 

classes[14]. This work does not involve SSA code. 

Fig. 2.12 shows alias classes for pointer variables in bracket. The right hand 

side value is the value stored at the memory location pointed by pointer. Here, in 

original code, `a' cannot be replaced by its value in the assignment to `b' since pointer 

`p' points to `a'. So alias class for `p' and `a' is constructed and the value 

corresponding to that memory location is assigned to that alias class. Whenever the 

occurrence of any variable in alias class takes place, it is replaced by value assigned to 
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that alias class[9]. But in this approach, data flow analysis is needed as SSA is not 

used. 

inta=3 inta=3 

int *p = &a int *p = &a 

*p=4 (*p, a)=3 

b=a+5 (*p, a)=4 

b=4+5 

Fig. 2.11: Construction of alias classes for pointers in intermediate code 

2.9 Research Gaps 

While applying optimizing algorithm like constant propagation or copy 

propagation on SSA code, the algorithm cannot be applied directly on pointer 

variables. If it is applied as per normal variables, the output will be incorrect. Also if 

we use alias classes for pointer variables, it involves data-flow analysis and applying 

data-flow analysis involves more time and space requirements compare to convert 

program into SSA code. 
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Chapter 3 

PROPOSED WORK AND IMPLEMENTATION 

3.1 Proposed Work 

So far in applying constant propagation algorithm on pointers, either SSA is 

used leaving pointers out of it or using data flow analysis with alias classes for 

pointers. But alias classes and SSA are never used combined.. 

In our approach, we first design alias classes for pointer variables and then 

apply SSA on alias classes considering each alias class as a single variable. Whenever 

any variable in alias class is changed, the alias class is renamed and the occurrences of 

variables are also renamed as per the alias class renaming. Then while applying 

constant propagation algorithm on this code, occurrences of variables are replaced by 

the value of alias class if the variable is a pointer variable or pointed by a pointer 

variable. Otherwise normal SSA and constant folding algorithm are applied on the 

variable. 

int a = 3 int a, = 3 int a, = 3 

int *p = &a int *pi = &a1 int *pI = &ai 

b=a+4 (*pi, a,)= 3  (*pl, a,)= 3  

*p=5 bi =a1 +4 b,=3+4 

c=a+6 *p2 =5 *p7 =5 

d= *p+2 (*P2, a2) = 5 (*P2, a2) = 5 

c1 =a2 +6 c1 =5±6 

d1 =*p2 +5 d1=5 +5 

IR SSA with Alias After constant 

Classes propagation 

Fig. 3.1: Applying constant propagation on SSA with Alias Classes 

As shown in figure 3.1, pointer `p' points to variable `a'. So whenever any 

occurrence of `a' occurs, it cannot be directly replaced by it's value since pointer `p' 

may also change the value. So constant propagation algorithm cannot be applied 

directly on `a'. So alias class for `p' and `a' is designed and unique value is assigned 
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to that alias class. Whenever any variable in alias class is occurred at right hand side 

of assignment, it is replaced by the value assigned to alias class. 

Here, after applying constant propagation algorithm on SSA code and 

replacing the variables by their value, the variables which are dead (here a' and `p'), 

are deleted. After deleting the dead variables the code becomes, 

bi=3+4 

c1 =5+6 

d,=5+5 

Fig. 3.2: Optimized code 

If we compare the code in figure 3.2 with original code in figure 3.1, there are 

less instructions compared to original code and also while compiling the program, 

compiler does not have to access memory for one pointer variable. This reduces 

execution time to large extent. Even some time is required to convert intermediate 

code to SSA form with alias classes and then to apply constant propagation algorithm, 

this approach is still very useful since these transformations take place at compile 

time. Only once, while compiling the program, this time is required. Afterward, while 

executing the program, it will take less time compare to the execution of original 

program. 

In this approach, the interprocedural analysis is not considered as it is very 

complex regarding the pointer variables. Interprocedural analysis involves function 

calls, passing pointer variable from one function to another[15]. 

3.2 Technologies used 

3.2.1 Lex and YACC 
Lex and YACC are tools used in compiler generation. Lex generates lexical 

analyzer for the compiler. It creates tokens for syntax analyzer. YACC generates 

syntax analyzer to parse the given input file. The new grammar (other than C 

language grammar) is required for YACC because the CFG file generated by gcc has 

separate syntax compared to original C language program. 
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3.2.2 Grammar used to parse CFG file 

In implementation of conversion of C program into SSA, CFG specification 

file is used(discussed in later sections). Normal C language grammar cannot be 
applied to this code since it contains information of nodes corresponding to basic 
blocks in the program. So separate grammar is developed to parse the CFG file. The 
grammar is as shown: 

program : functions 

functions : function 
I function functions 

function : func_head {' body 

func_head : identifier '(, func_  head _param ')' 
I identifier '( ')' 

body : declaration blocks 

declaration : decl 
I decl declaration 

decl : TYPE identifier 

blocks : block 
I block blocks 

block : BLOCK PRED statements SUCC 

func_head param : identifier ',' func_head_param 
I identifier 

param : identifier ',' param 
I identifier 

statements : statement 
statement statements 

statement : assignment 
gotostmt 
if stmt 
func call 
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I return stint 
I comp stmt 

assignment : identifier '=' identifier OP identifier 
I identifier '_' identifier 

goto stmt : GOTO 

if stmt : IF '( statements ')' goto_stmt 
I if stmt ELSE goto stmt 

return stint : RETURN 
I RETURN identifier 

comp stint : identifier RELOP identifier 

func_call : identifier '(' param ')' 
I identifier '(' ')' 

identifier : ID 
CONST 
STRING LITERAL 
pointer identifier 
'&' identifier 
identifier '[' identifier '1' 
identifier '(' param ')' 
identifier (' ')' 
identifier '{' '}' 

I identifier '{' identifier 
} , 

identifier 

pointer : 
I '*' pointer 

Above grammar is different compare to normal C language grammar in a 

sense that it contains only if-else loop and also all the statements are in a basic block. 

3.3 Construction of SSA 

Overview of the SSA Algorithm - Translation to minimal SSA form is done in four 

steps : 
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• First the control flow graph is constructed form cfg specification file generated 

by gcc. 

• The dominance frontier mapping is constructed from the control flow graph. 

• Using the dominance frontiers, the locations of the 4-functions for each 

variable in the original program are determined. 

• The variables are renamed by replacing each mention of an original variable V 

by an appropriate mention of a new variable Vi. 

3.3.1 Constructing Control flow graph from CFG specification file 

Instead of constructing cfg directly from input program, the cfg is constructed 

using cfg specification file generated by gcc(gnu compiler collection) [5] . GCC 

generates cfg file for a given input file by using command 'gee —fdump-tree-cfg 

file.c'. 

3.3.2 Computing Dominance Frontier 

Dominance frontiers capture the precise places at which 'U-functions are 

needed [2]. If the node A defines a certain variable, then that definition and that 

definition alone (or redefinitions) will reach every node A dominates. 

for each node b 
if the number of immediate predecessors ofb > 2 

for each p in immediate predecessors of b 
runner : = p 

while runner ~ doms(b) 
add b to runner's dominance frontier set 
runner : = doms(runner) 

Figure 3.3 : Algorithm to compute dominance frontier 

Here, in figure 3.3, an immediate predecessor of node n is any node from 

which control is transferred to node n, and doms(b) is the node that immediately 

dominates node b(a singleton set). 
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3.3.3 Inserting 4)-functions 

The algorithm in figure 3.4 inserts 4)-functions. The outer loop of this 

algorithm is performed once for each variable V in the program. Several data 

structures are used: 

• W is the worklist of CFG nodes being processed. In each iteration of this 

algorithm,W is initialized to the set of nodes that contain assignments to V. 

Each node X in the worklist ensures that each node Y in DF(X) receives a 4)-

function. Each iteration terminates when the worklist becomes empty. 

• HasAlready is an array of flags, one for each node, where HasAlready( X) 

indicates whether a 4)-function for V has already been inserted at X. 

for each variable V 

HasAiready E-- 0 

WorkLisi — 0 

for each node X that may modem V 
WorkLlst — WorkList U {X} 

while WorkList 0 0 

removeXfrom W 

for each Y C DF(X) 
if Y 0 HasAlready then 

insert a 0-node for Vat Y 
HasAlready < HasAlready U {Y} 
if Y' WorkList then 

WorkList f- WorkList U {Y} 

Figure 3.4: Algorithm to insert 4)-functions 

3.3.4 Renaming of variables 

The algorithm in figure 3.5 renames all mentions of variables. New variables 

denoted by Vi, where i is an integer incremented by 1 after every new definition of V 

in the program, are generated for each variable V. The visit to a node processes the 
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statements associated with the node in sequential order, starting with any 4'-functions 
that may have been inserted. The data structures used are: 

• Stacks is an array of stacks, one stack for each original variable V. The stacks 

can hold integers. The integer i at the top of S(V) is used to construct the 
variable Vi that should replace a use of V. 

• Counters is an array of counters, one for each original variable V. The counter 
value C:ounters[VJ tell how many assignments to Vhave been processed. 

procedure Rename(Block X) 	 L 

for each çb-node P in X  
GenName(LHS(P)) 	 Date .................... 

for each statement A in X 	\ T. 
for each variable V E RHS(A) 

rep /ace V by Vi, where i - Top(.Stacks[V/) 
for each variable V E LHS(A) 

GenName(V) 
for each Y E Succ(X) 

j — position in Y's çb-fienclions corresponding to X 
for each c-node P in Y 

replace the j!h operand of RHS(P) by Vi 
where i = Top (Slacks[ Vi) 

for each Ye ('hildren(X) 
Rename(Y) 

for each 0-node or statement A in X 
for each Vi E LHS(A) 

pop Stacks[VJ 

procedure GenNarne(Variahle V) 
i i— Counters[VJ 
replace Vby Vi 
push i onto .Siacks[VJ 
Counters[V] .— i + I 

Figure 3.5: Algorithm for renaming of variables 
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The program to convert simple C language program into SSA is written. The 

program is divided into two modules. In first module, using Lex and YACC, the 

parser is designed for CFG file. In this, CFG for input program is generated and 

dominance frontier set is constructed from this CFG and also the position of 4r 

functions for each variable is computed. In first module, the CFG file is parsed using 

grammar given in section 3.2.2. The required structures are constructed by using 

algorithms given in sections 3.3.2 and 3.3.3. Each block in CFG file is parsed and the 

structures are computed. 

CFG 

	

o- 	CFG 	 /Dominance 

	

Using 	 First module 
C file 	► 	

_ 
ecc 	 file 	 —~ Frontier set 

Position of 
-flnlctions 

Figure 3.6 : Structures computed after first module 

In second module, using Lex and YACC, the input CFG file is parsed again to 

write actual SSA code in output file. The variables are renamed as per the algorithm 

given in section 3.3.4 while writing into output file. Each block in CFG is parsed and 

written in output file as it appears in the program after renaming of variables and 4i-

functions are inserted in the blocks. Some data structures are passed from first module 

to second module using named pipes (fifos). 

CFG 
file 

	

CFG 	I 

Dominance Second 

	

Frontier set 	 Module 	— SSA file 

Position of  
4 -functions 

Figure 3.7: Output after second module 
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3.3.5 CFG Specification File 

Consider input .0 language program is test.c. So the CFG specification file is 

generated using command 'gee —fdump-tree-cfg'. CFG generated from CFG 

specification file for C language program as shown in figure 3.8. Entry block is a 

starting block through which program starts execution. Exit block is an ending block 

through which program exits. Program control jumps from one block to another block 

as per the arrow directions. 

i p mainp 
{ 

(2) 
(3) 

ii=1) (3) 
{ (31 

i=1, ( 4 ) 
ij(I= I) (4)  

1=2; (5)  

1=3; (6)  

k=k+I; (7)  
} 
elg~ 

k=k+ 2; (8)  

pn gT%d %d °/ad %ad''n". i,1, k. 1); (9)  
a9 
{ 

iftk=1) (10)  
1=1+4; (11)  

(12)  

1+6; (13)  

(13) 

Figure 3.8 : C language program and it's Control Flow Graph 

3.3.6 Construction of Dominance frontier sets 

After constructing CFG from CFG specification file, the dominance frontiers 

set for each node are constructed by parsing the cfg specification file by first module 

of project. 

The name of object file created is `dominance'. So dominance frontier sets are 

constructed by executing `dominance test.cfg'. Here, test.cfg is CFG specification file 
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generated by gcc. Also, in first module, the positions of 4-functions inserted at each 

node are computed. The dominance frontier sets for each node after executing first 

module are as: 

Entry[-] 

2[Exit] 	Exit[-] 

3[ Exit , 3) 

4(9) 	8[s3 	9tEX it,3] 

e[7] 	7[9] it. 3.10) 

12t Exit,3,lo] 
5171 	11[12] 

13 [ Ezit , 3] 

Figure 3.9 : CFG and dominance frontier set for each node 

As shown in figure 3.9, the block number in bracket indicates dominate 

frontier for the node. 

3.3.7 Writing output in the file 

In second module, the CFG specification file is parsed again and the SSA for 

input program is actually written in the output file. The CFG specification file is given 

as input to the second module. Some of the important structures such as CFG, 

dominance frontier set, position of ui-functions computed in first module are passed as 

input to second module by using named pipes(fifo). The object file of second module 
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is `rename'. So after executing command ' rename test.cfg', the output is written into 

the file `ssa.txt' shown as: 

Output file : ssa.txt 

main () 
{ 

int 1; 
int k; 
int j; 
int i; 

<bb 2>: 
1. 	= 1 
j 	1 = 1 	; 
kl = 1 	; 
11 = 1 	; 

<bb 3>: 
j2 = PHI (j i, j4) ; 
12 = PHI(1_1, 1_8) ; 
k2 = PHI (k_1, k_4) ; 
i_2 = PHI(i_l, i_3) ; 
if 	( i_2 == 1 

goto <bb 4>; 
else 

goto <bb 8>; 
<bb 4>: 

j_3 = i_2 	; 
if 	( 12 == 1 

goto <bb 5>; 
else 

goto <bb 6>; 
<bb 5>: 

13 = 2 	; 
goto <bb 7>; 

<bb 6>: 
19 = 3 	; 

<bb 7>: 
14 = PHI(1_3, 1_9) 
k 3= k 2+ 1 
goto <bb 9>; 

bb 8>: 
k5 = k_2 + 2 ; 

<bb 9>: 
j_4 = PHI(j_3, j_2) ; 
15 = PHI (1 4, 1 2) 
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k_4 = PHI(k_3, k_5) ; 
printf(&'%d %d %d %d\n"[0], i_2, j_4, k_4, 
1_5) 

<bb 10>: 
16 = PHI(1 5, 1 8) 
if ( k_4 == 1 ) 

goto <bb 11>; 
else 

goto <bb 12>; 
<bb 11>: 

17 = 16 + 4 
<bb 12>: 

18 = PHI (1  6, 1  7) 

if ( 18 == 3 
goto <bb 10>; 

else 
goto <bb 13>; 

<bb 13>: 
i_3 = i_2 + 6 
if ( i_3 == 7 

goto <bb 3>; 
else 

goto <bb 14>; 
<bb 14>: 
return; 

} 

3.4 	Applying Constant Propagation Algorithm 
After converting C code into SSA, the program to apply constant propagation 

algorithm on this SSA code is developed. In this program alias classes for pointer 

variables are also constructed and the algorithm is applied for these variables also. 

Consider the simple testl program in C language as shown in figure 3.10. This 

test program contains constants and pointers. There is also SSA form of this program 

obtained after applying SSA construction algorithm on testl program. 
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int memo 
0 

main 1) 
1 

int i, 	j, 	k, 	1, a; int *q, 	*p, m, 	1, 	k, 	j i; 
int *p 	ej, 	*q = ek; int m.5, 	k.4, 	j.3, 	k.2, 	in.l, 	j.0; 

j1 p=&j 
k1 

sCaflf{'%d", 	tm: j= 1 
if{i==1l k1 

11=1; 
acanf(&%d"[U], 	sin) 

= 7. if ( i_i 	1 
1 	2; goto 1fbb 3>; 
in=1+j; else 

goto 	 bb6>; 
<bb 3>: 

else 1_2 = PHI (1_1, 15) 
i_2 = PHI (i_i, i_3) 
if (1_21 

1 = 3; goto fbb 4>; 
a 	11- k; else 

} goto <bb 5>; 
bb 4>: 

*p 	7 
13 = 2 

= j 
m.1 = 1_3 + j.0 
In = 15.1 
Ic. 2 	= 	Ic 
j.3 
i_3 = k.2 + j.3 
goto <bb 6>; 

bb 5>; 
5 

l_3 = 3 
= Ic 

m.5 = 13 + 	Ic.4 
m = m.5 

bb 6>; 
return; 

Figure 3.10 : Testl program and its SSA form 

Then constant propagation algorithm is applied. After applying constant 
propagation algorithm with alias classes for pointers, the output is as shown at right 

hand side of figure 3.11. 

31 



main () 

int *q, *p, m, 1, k, j i; 
int m.5, k.4, j.3, k.2, ml, 3.0; 

bb 2>: 
p=¢j ; 
q = ak 
i_1 = 1 
] = 1  
k=1. 
11=1 ; 
scanf(s"%d"[0], &m) 
if (i_1=1 ) 

goto ob 3>; 
else 

goto bb 6>; 
bb 3>: 

1_2 = PHI(1_1, 1 0) 
i_2 = PHI (i 1, i_3) 
if (1_2=1 )-  

goto 'bb 4>; 
else 

goto <bb 5>; 
<bb 4>: 

*P= 7  
13=2 _  

0  = j 
m.1=1_3+ j.0 
m=m.1 , 
k.2=k 
1.3 = 1 
i_3 = k.2 + j.3 
goto <bb 6)-; 

4bb 5>: 
*q =' 
1_3=3 
k 4 = k 
m.5=13+ k.4 
m =m.5 

- bb 6>: 
return; 

main () 
{ 

int *q, *p, m, 1, k, j• i; 
int m.5, k.4, j.3, k.2, ml, 3.0; 

tbb 2>: 
P=&j ; 
q=sk; 
scant( "td" (01, m ): 
if (1 =1 ) 

goto -bb 3>; 
else 

goto bb 6>; 
<bb 3>: 
12 = PHI( 1, 1_8 J ; 
i_2 = PHI( 1, i_3 I ; 
if {1_2=1) 

goto 3b 4>; 
else 

goto <bb 5>; 
bb 4>: 
j• 0  = 7  
m.1 = 2+ j.0 
m = m.1 
k.2 =1 
j.3 = 7  
i_3 = k.2 ± j.3 
goto <bb 6>; 

<bb 5>: 
k.4=3 
m.5 = 2 + k.4 
m = m.5 

<bb 6>: 
return; 

Figure 3.11 : SSA code and optimization of SSA code 

The new variables in this program are generated by compiler while generating 

three address code in intermediate representation. Above program contains much less 

instructions compare to original program in SSA form. If we apply constant 

propagation algorithm again(second pass), the program will be as: 
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main C) 
{ 

int *q, *p, m, 1, k, j i; 
int m.5, k.4, j.3, k.2, m.1, j.0; 

<bb 2>: 
p = &j 
q = &k ; 
scanf( "%d" [0], m ); 
if ( 1 == 1 ) 

goto <bb 3>; 
else 

goto <bb 6>; 
<bb 3>: 
12 = PHI( 1, 18 ) , 
i_2 = PHI( 1, i_3 
if ( 12 == 1 ) 

goto <bb 4>; 
else 

goto <bb 5>; 
<bb 4>: 

m.1 = 2 + 7 	; 

m = m.1 	, 
i_3 = 1 + 7 
goto <bb 6>; 

<bb 5>: 
m.5 = 2 + 8 
m = m.5 

<bb 6>: 
return; 

} 

In second pass, the program in SSA can be further optimized as seen from 
above code. 
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Chapter 4 

RESULTS 

4.1 Results after Applying Constant Propagation Algorithm • 

After converting input C program into SSA, constant propagation algorithm 

on some special test programs is applied. Test programs are designed in C language 

such that they contain more pointer variables. 

Table 4.1 Comparison of applying constant propagation algorithm on SSA 

SSA Coa Algorithm 
Program Applied Instructions Improvement Instructions after 

applying 
Algorithm 

With SSA 
without 
Alias 51 7.2 

Test 1 55 classes 

With SSA 
and with 

Alias 47 14.4 

classes 

With SSA 
without 70 Alias 66 5.7 

Test2 classes 

With SSA 
and with 

Alias 60 14.2 

classes 

With SSA 
without 
Alias 93 7.0 

Test3 100 classes 

With SSA 
and with 

Alias 
85 15.0 

classes 
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Testl program is already discussed in previous section. Only integers and 

pointers pointing to integers are used in test programs to avoid complexity while 

applying optimizing algorithm. Also arrays, structures and procedures are not used. 

First test programs are converted into intermediate code using GNU C Compiler 

(GCC). 

4.2 Comparison 

Figure 4.1 shows the number of instructions for three test programs before and 

after applying constant propagation algorithm. Series "Test Program" at top 

corresponds to number of instructions in original SSA code. Series "without Alias 

Classes" in middle shows number of instructions after applying constant propagation 

algorithm on SSA code without alias classes. Series "with Alias Classes" corresponds 

to applying the algorithm with alias classes. Applying the algorithm on SSA with alias 

classes yield good results for test programs. 

Figure 4.1: Number of instructions for optimized code 
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Figure 4.2 further shows improvement in the SSA code for three test 

programs. Series "without Alias Classes" shows % improvement in SSA code after 

applying constant propagation algorithm without using alias classes for pointers. 

Series "with Alias Classes" corresponds to applying the algorithm without using alias 

classes. 

Figure 4.2 % improvement for various approaches 
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Chapter 5 
CONCLUSION ANI) FUTURE WORK 

5.1 	Conclusion 

In this dissertation, we have proposed a new approach to apply optimization 

algorithm on pointer variables using static single assignment based intermediate 

representation with alias classes for pointers. Using SSA, data flow analysis is not 

required and using alias classes, pointers can be optimized. Results show that 

applying SSA with alias classes produces more optimized code than applying either 

on original IR or on SSA without alias classes for the programs which contain large 

number of constants and pointer variables. 

Though constant propagation algorithm applying on SSA with alias classes 

takes more time compared to SSA without alias classes, it produces efficient code. 

Also it improves the code twice as compared to applying the algorithm on SSA 

without alias classes. 

5.2 Future Work 

In GCC(Gnu Compiler Collection), SSA is implemented for all variables 

except pointers. In future, GCC code can be modified to implement SSA with alias 

classes. Also in this dissertation, only constant propagation algorithm is applied on 

SSA code with alias classes. Other optimization algorithms like global value 

numbering, copy propagation can also be applied. Further SSA itself can be improved 

to reduce the number of-Functions in code. 
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