
POINTER OPTIMIZATION USING SSA BASED
INTERMEDIATE REPRESENTATION FOR

OPTIMIZING COMPILERS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

By

BARHATE DEODATTA MOHAN

r G2loSp T
ACC .No
Date...719.ly.....

r

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2011

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"POINTER OPTIMIZATION USING SSA BASED INTERMEDIATE

REPRESENTATION FOR OPTIMIZING COMPILERS" towards the partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Computer Science and Engineering submitted in the Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand

(India) is an authentic record of my own work carried out during the period from July

2010 to June 2011, under the guidance of Dr. A. K. Sarje, Professor, Department of

Electronics and Computer Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other Institute.

Date: o5/QGJiI

Place: Roorkee (BARHATE DEODATTA MOHAN)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date:

Place: Roorkee 	 (Dr. A. K. Sarje)

Professor

Department of Electronics and Computer Engineering

IIT Roorkee.

t

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my heartfelt gratitude to my guide and mentor

Dr. A. K. Sarje, Professor, Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, for his invaluable advices, guidance, encouragement

and for sharing his broad knowledge. His wisdom, knowledge and commitment to the

highest standards inspired and motivated me. He has been very generous in providing the

necessary resources to carry out my research. He is an inspiring teacher, a great advisor,

and most importantly a nice person.

I also wish to thank Pushkar Jambhalekar for his valuable suggestions. I am greatly

indebted to all my friends, who have graciously applied themselves to the task of helping

me with ample moral supports and valuable suggestions.

On a personal note, I owe everything to my parents. The support which I enjoyed from

my father, mother and other family members provided me the mental support I needed.

BARHATE DEODATTA MOHAN

ii

Abstract

In optimizing compilers, most of the optimizing algorithms are applied on intermediate

representation. Optimizing algorithms such as constant propagation can be applied on

intermediate code using data flow analysis which is expensive regarding compilation

time. Also for pointer variables, these algorithms cannot be applied directly on pointers

as pointers are difficult to analyze.

In this dissertation entitled "POINTER OPTIMIZATION USING SSA BASED

INTERMEDIATE REPRESENTATION FOR OPTIMIZING COMPILERS", new

approach for applying optimization algorithms such as constant propagation on pointer

variables has been proposed. To avoid data flow analysis, static single assignment (SSA)

form is used for intermediate representation and for pointers, alias classes are used. So

using SSA and each alias class as a single variable, constant propagation algorithm can

be applied on pointer variables very efficiently reducing the number of instructions in a

program.

lff

Table of Contents

Candidate's Declaration & Certificate... i

Acknowledgements .. ii

Abstract..iii

Table of Contents ...iv

Listof Figures ..vi

List of Tables ...viii

1. Introduction 	 1

	

1.1 	Introduction ..1

	

1.2 	Motivation ... 3

	

1.3 	Statement of the Problem ...3

	

1.4 	Organization of the Report3

2. Background and Literature Review 5
2.1 Intermediate Language ..5

2.2 Definition of SSA ...6

2.3 Where to place 	-Functions ...7

2.4 Terminologies ..8

2.4.1 	Control Flow Graph ...8

2.4.2 	Dominance and Dominance Frontiers9

2.5 Other Forms of SSA ...9

2.5.1 	Building Pruned SSA ...9

2.5.2 	Semi-pruned Form to Use Fewer 4, —functions10
2.6 Alias Analysis ...12

2.6.1 	Aliasing and Re-ordering13

2.6.2 	Type Based Alias Analysis ...13

2.6.3 	Flow Based Alias Analysis ...1 4
2.7 Optimizations on SSA14

2.7.1 	Constant propagation ..14

	

2.7.2 	Copy Propagation ..15

	

2.7.3 	Global Value Numbering ...15

	

2.8 	Literature Review ...16

	

2.9 	Research Gaps ..1 8

3. Proposed Work and Implementation 	 19
3.1 Proposed Work ...19
3.2 Technologies used ..20

3.2.1 	Lex and YACC ...20

3.2.2 	Grammar used to parse CFG file ..2 1

3.3 Construction of S SA22

3.3.1 	Constructing Control flow graph from CFG specification file........23

3.3.2 	Computing Dominance Frontier ...23

3.3.3 	Inserting 4-functions ..24

3.3.4 	Renaming of variables ...24

3.3.5 	CFG Specification File ..27

3.3.6 	Construction of Dominance frontier sets27

3.3.7 	Writing output in the file ...28
3.4 Applying Constant Propagation Algorithm30

4. Results. 34
4.1 Results after Applying Constant Propagation Algorithm........34
4.2 Comparison ...3 5

5. Conclusion and Future Work 37
5.1 Conclusion ...3 7
5.2 Future 	Work ..3 7

REFERENCES...38
LIST OF PUBLICATIONS ... 40

V

LIST OF FIGURES

Figure 1.1 Compiler Phases 	...1

Figure 1.2 Using SSA as IR in Compiler ...2

Figure 2.1 Simple C Language Program5

Figure 2.2 Three address Code 	..6

Figure 2.3 Straight Line Code and Its Static Single Assignment Version_....6

Figure 2.4 If-then-else and Its Static Single Assignment Version7

Figure 2.5 Illustrating where to keep (I)-fimction ...7

Figure 2.6 Algorithm to compute non-local names ...10

Figure 2.7 Simple code and it's three forms of SSA ..11

Figure 2.8 Applying constant propagation on SSA ..15

Figure 2.9 After applying GVN on SSA ..15

Figure 2.10 If-then-else and its SSA form........ ..17

Figure 2.11 Construction of alias classes for pointers in intermediate code18

Figure 3.1 Applying constant propagation on SSA with Alias Classes19

Figure 3.2 Optimized code ...20

Figure 3.3 Algorithm to compute dominance frontier23

Figure 3.4 Algorithm to insert 	-functions ..24

Figure 3.5 Algorithm for renaming of variables ...25

Figure 3.6 Structures computed after first module ..26

vi

Figure 3.7 Output after second module ...26

Figure.3.8 C language program and it's Control Flow Graph27

Figure 3.9 CFG and dominance frontier set for each node28

Figure 3.10 Testl program and its SSA form ..31

Figure 3.11 SSA code and optimization of SSA code32

Figure 4.1 Number of instructions for optimized code35

Figure 4.2 % improvement for various approaches36

vii

Chapter 1

INTRODUCTION

1.1 	Introduction

Compiler optimization is the process of tuning the output of a compiler to
minimize or maximize some attributes of an executable computer program. The most
common requirement is to minimize the time taken to execute a program; a less
common one is to minimize the amount of memory occupied.

Most compilers translate the source program first to some form of
intermediate representation and convert from there into machine code. The
intermediate representation is a machine and language-independent version of the

original source code. Although converting the code twice introduces another step, use
of an intermediate representation provides advantages in increased abstraction,
cleaner separation between the front and back ends, and adds possibilities for

retargeting cross-compilation [4]. Intermediate representations also lend themselves to
supporting advanced compiler optimizations and most optimization is done on this
form of the code.

In code optimization, data structure choices directly influence the power and
efficiency of program optimization. Code optimization is generally implemented
using a sequence of optimizing transformations which take a program and transform it
to produce an output program. While the program goes through various levels in
compilation process, the optimization takes place in some levels [1].

source — front 	 back 	achine
code 	end ~R optimizer ~R end 	code

Figure 1.1: Compiler Phases

Front end produces intermediate representation (IR). The optimizer transforms
IR into more efficient program and then back end transforms it to machine code. The

optimization also takes place in back end after generation of machine code but major
work of optimization is done in optimizer phase. An intermediate language is used for
IR.

While optimizing three address code, compiler has to perform data flow
analysis which is very expensive in terms of time complexity. So static single
assignment (SSA) form has been proposed to represent data flow and control flow
properties of program. Static single assignment form is an intermediate representation
(IR) in which every variable is assigned exactly once [5]. SSA is developed to avoid
data flow analysis and to perform certain optimizations efficiently.

source
code

hine
de

Figure I.2: Using SSA as IR in compiler

The three address code is converted to SSA form and then after optimizing
SSA form it is again translated out of SSA. SSA form has to be translated out as 4,-
functions (which are inserted in the program for control flow validation purposes) in
SSA are not recognized by processor.

2

	

1.2 	Motivation

Static Single-Assignment form is an intermediate format that allows

optimizations to be done efficiently and easily. Every variable receives exactly one

assignment during its lifetime, and 4-functions are added at places where program

flow joins. Static single assignment form has been proposed to represent data flow

and control flow properties ofprogram [17].

SSA simplifies some optimization algorithms like constant propagation.

Whenever we apply constant propagation algorithm on SSA code, the occurrence of a

variable is replaced by it's value directly since there is only one definition of that

variable [6]. But we cannot apply constant propagation algorithm directly on pointer

variables since there maybe two or more variables pointing to same memory location.

Any variable changing the value at that location changes the value of other variables.

For pointers, we have to use alias classes. Each alias class represents the set of

variables pointing to same memory location.

1.3 Problem Statement

In this dissertation work, we propose an approach for pointer optimization in

C program using SSA based intermediate representation. We use SSA as intermediate

representation to avoid data-flow analysis. As it is not possible to apply constant

propagation algorithm on pointer variables directly, we use alias classes_ for pointers.

Whenever any variable in alias class is changed, the alias class is also renamed.

	

1,4 	Organization of the report

Chapter 2 gives the basics of SSA and how it can be used as intermediate

representation. This chapter also explains how SSA simplifies some optimizing

algorithms. Various types of SSA are also explained. Literature review and research

gaps are discussed.

Chapter 3 explains proposed work for pointer optimization. It further explains

construction of SSA and alias classes and how to apply constant propagation

algorithm on SSA.

3

Chapter 4 presents results gathered after applying optimization algorithm on some test

programs. It further explains comparison between various approaches of applying

constant propagation algorithm on SSA.

Chapter 5 presents the conclusions of the work and suggests future work that can be

done to extend the work.

4

Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Intermediate Language

An intermediate language is the language of an abstract machine designed to

aid in the analysis of computer programs. Compiler first translates the source code of

a program into a form more suitable for code-improving transformations, as an

intermediate step before generating object or machine code for a target machine.

A popular format for intermediate language is three address code. Each

instruction in three address code can be described as:

result : = operand] operator operand2

such as:

x.=yopz
where x, y and z are variables, constants or temporary variables generated by the

compiler. op represents any operator, e.g. an arithmetic operator.

Expressions containing more than one fundamental operation, such as:

p:=x +yXz

are not representable in three-address code as a single instruction. Instead, they are

decomposed into an equivalent series of instructions, such as

ti:=yxz
p:=x+t1

The term three-address code is still used even if some instructions use more or

fewer than two operands. The key features of three-address code are that every

instruction implements exactly one fundamental operation, and that the source and

destination may refer to any available register. Consider following C language

program.

int main(void)
{

mt i;
int b[l0];
for(i=0; i< 10; ++i)
{

b[i] = i*i;
}

}
Figure 2.1 : Simple C language program

5

The preceding C program, translated into three-address code, might look

something like the following:

i := 0 ; assignment
L1: if i >= 10 goto L2 ; conditional _jump

t0 := i*i
tl :_ &b ; address-of operation
t2 := Cl + i ; t2 holds the address ofb[i]
*t2 := t0 ; store through pointer
is=i+1
goto L1

L2:
Figure 2.2 : Three address code

2.2 Definition of SSA

A procedure is in static single-assignment form if every variable assigned a

value in it occurs as the target of only one assignment [5]. The static single

assignment form of a program provides data flow information in a form which makes

some compiler optimizations easy to perform. A use of a variable may use the value

produced by a particular definition if and only if the definition and the use have

exactly the same name for the variable in the SSA form of the procedure. This

simplifies and makes more effective several kinds of optimizing transformations.

Thus, it is valuable to be able to translate a given representation of a procedure into

SSA form.

As shown in figure 2.3, each assignment to a variable is given a unique name

and all of the uses reached by that assignment are renamed to match the assignment's

new name.

V4-4 Vrf-4

X< 	V+5 X1E-Vi+5

VE-8 V24-8

Y< 	V+3 Y!4-V2+3

(a).Straight line code 	 (b).SSA form

Figure 2.3: Straight line code and its static single assignment version

6

Most programs, however, have branch and join nodes. At the join nodes, a

special function called 4)-function is inserted. 4)-function selects any one of its

arguments as per the control transfers from one node to another node. 4)-functions are

there for validation purpose. They are not recognized by processor. So after

performing optimization on SSA code, it has to be transformed out from SSA [3]. 4)-

functions must be removed.

If (Condition) 	 If (Condition)

their V— 4 	 then Vi <— 4

else V4-8 	 else V21-8

Vi i— 0 (Vi , V2)

(a).Straight line code 	(b).SSA form

Figure 2.4: if-then-else and its static single assignment version

2.3 	Where to place -Functions

At first glance, careful placement might seem to require the enumeration of

pairs of assignment statements for each variable. Checking whether there are two

assignments to V that reach a common point might seem to be intrinsically nonlinear

[11].

VU

If (vo ==4)

X 	 v1 = 	X

Y 	 =V1 Y

F(D(vi,vz) Z
=v

Figure 2.5: Illustrating where to keep (D-function

7

As shown in figure 2.5, suppose that a variable V has just one assignment, in

the original program, so that any use of V will be either a use of the value Vo at entry

to the program or a use of the value Vi from the most recent execution of the

assignment to V. Let X be the basic block of code that assigns to V. so X will

determine the value of V when control flows along any edge X --> Y to a basic block

Y. When entered along X --> Y, the code in Y will see V1, but all paths to Y must still

go through X (in which case X is said to strictly dominate Y), then the code in Y will

always see V1. Indeed, any node strictly dominated by X will always see VI, no

matter how far from X it may be.

Eventually, however, control may be able to reach a node Z not strictly

dominated by X. Z sees V1 along one in-edge but may see Vo along another in-edge.

Then Z is said to be in the dominance frontier of X and is clearly in need of a c~-

function for V. In general, no matter how many assignments to V may appear in the

original program and no matter how complex the control flow may be, 0- functions

for V can be placed by finding the dominance frontier of every node that assigns to V.

2.4 	Terminologies

Construction of SSA involves recognizing where to place 4,-functions and

renaming of variables. To recognize location of 4,-functions the knowledge of

dominance frontiers of nodes in control flow graph is needed. Some of the

terminologies used in the construction of SSA are given below

2.4.1 Control FIow Graph

A control flow graph (CFG) in computer science is a representation, using

graph notation, of all paths that might be traversed through a program during its

execution. The statements of a program are organized into basic blocks, where

program flow enters a basic block at its first statement and leaves the basic block at its

last statement [15]. A control flow graph is a directed graph whose nodes are the basic

blocks of a program and two additional nodes, Entry and Exit.

2.4.2 Dominance and Dominance Frontiers

Let X and Y be nodes in the control flow graph(CFG) of a program. If X

appears on every path from Entry to Y, then X dominates Y [8]. If X dominates Y and

X Y, then X strictly dominates Y. Here, X >> Y indicates strict domination and X

» Y indicates domination. If X does not strictly dominate Y, then X Y' Y is written.

The dominance frontier DF(X) of a CFG node X is the set of all CFG nodes Y such

that X dominates a predecessor of Y but does not strictly dominate Y.

DF(X) = { Y 1 (BP E Pred(Y)) (X ZY P and X >h Y}}

2.5. Other forms of SSA

2.5.1 Building Pruned SSA

Minimal SSA form relies entirely on dominator information to determine

where to insert -functions [11]. The dominance frontier correctly captures the

potential flow of values, but ignores the data-flow facts like knowledge about the

lifetimes of values gleaned from analyzing their definitions and uses. Because of this,

the minimal SSA construction will insert a -node for V at join point where V is not

live.

To improve on minimal SSA, the compiler first performs "liveness analysis"

on the routine [7]. Liveness analysis produces, for each block, a set of values that are

live on entry to the block [18]. The actual construction of pruned SSA is quite similar

to the construction of minimal SSA. The minimal SSA construction inserts a 4-node

for V in every node n 0 DF (A(V)). The pruned SSA construction changes this to

insert a 4-node for V in every node n E DF` (A(V)), where V E LIVE_IN(n). These

changes can drastically reduce the number of 4,-nodes.

The pruned SSA construction algorithm costs more than the minimal SSA

construction. Building liveness analysis increases compilation time and space

requirements for building SSA [7]. The space requirement increases, since each block

has a number of large sets associated with it. These larger memory requirements can

directly degrade performance. So pruned SSA is not used practically to construct SSA

for intermediate representation.

9

2.5.2 Semi-pruned Form to Use Fewer 4> -functions

Minimal SSA form places 4,-nodes by looking only at the dominance frontier

without regard to liveness. It is possible that a 4>-node will be inserted for a name

which is not subsequently used. These extra 4>-nodes waste space and time. Pruned

SSA form relies on liveness analysis to ensure that no such dead 4>-nodes are inserted.

Since the pruned form relies on additional analysis, it may be slower to build.

The third form of SSA called semi-pruned SSA is developed. The speed and

space advantage of this form over the other two relies on the observation that many

names in a routine are defined and used wholly within a single basic block [14]. For

example, the compiler typically generates temporary names to hold intermediate

steps; these compiler-generated names often have short lifetimes. Semi-pruned SSA

capitalizes on this observation by computing the set of names that are live on entry to

some basic block in the program. These are called "non-local" names. The

construction algorithm computes dominance frontiers only for non-local names.

Therefore, the number of 4>-nodes will lie between that of the minimal and pruned

forms, but the non-local names are much cheaper to compute than full-blown liveness

analysis.. Therefore, semi-pruned form represents a compromise between the time

required to perform liveness analysis and the reduction in the number of 4,-nodes that

it allows.

The algorithm to discover the non-local names is as follows:

non-locals 0 .

for each block B

killed < 0

for each instruction v — x op y in B

ifx 	killed then
non-locals F- non-locals U{x}

ify 0 killed then
non-locals <- non-locals U (x J

killed 4-killed U{v}

Figure 2.6: Algorithm to compute non-local names

10

Xl — ... 	Xz F-
1— X1 Xn

Yi f ... Y2 4 ..,

ZI — ...

1
Z2 4 ...

1
Yi — Y2

Z
Z3 <— 4(Zi, z2)

4— Z3

As per the algorithm, the compiler makes a simple forward pass over each

basic block. When it discovers an operand that has not already been defined within

the block (the killed set), it must be a non-local name. This is simpler than performing

the complete live analysis required for pruned SSA construction. Computing non-

local names requires just two sets, non-local and killed. The time and space

requirements for building non-local are, therefore minimal.

x <--- ... X t-- 	...

•— X <— x

y4-... y 4— ...
Z". Z4—...

1 1

L J _ Z

Original Code

4— ... XI F 	... X2 <— ...

4— X1 	4— XZ 	4-- XI E- X2

yl - ... 	Y2 ~---

Zl

1

1 ... 	Z2 4-

y, 	4-- y2

X3 — 4(Xl, X2)

Y3 	4(Yi, Yz)

Z3 -- 4(zi, z2)

~ Z3

yl 4 ... 	Y2 4 ...

Z1 4 ... 	Z2 4—

'I,
Yi 	'— Y2

Z
Y3 -4— O(Y1, Y2)

Z3 i— c(Z1, L2)

~ Z3

Minimal SSA 	 Semi-pruned SSA 	Pruned SSA

Figure 2.7: Simple code and it's three forms of SSA

0

Figure 2.7 illustrates the differences between the three forms of SSA. In the

original code, the three variables, x, y, and z are defined. The three graphs at the

bottom of the figure compare the 4>-nodes which the three forms of SSA insert. The

minimal SSA form contains 4>-nodes for all three variables. Clearly, the 4>-nodes for x

and y are unnecessary; these variables are never used again. The semi-pruned SSA

form does not contain a 4>-node for x because it is not live across any basic block

boundary. However, for y, a 4>-node is inserted, because it is live across some block

boundary, and that is the limit of analysis used. The pruned SSA form contains a 4>-
node for z only.

2.6 Alias Analysis

Alias analysis is a technique in compiler theory, used to determine if a storage

location may be accessed in more than one way [9]. Two pointers are said to be

aliased if they point to the same location. Alias analysis techniques are usually

classified by flow-sensitivity and context-sensitivity. They may determine may-alias

or must-alias information. The term alias analysis is often used interchangeably with

term points-to analysis, a specific case.

In general, alias analysis determines whether or not separate memory

references point to the same area of memory [16]. This allows the compiler to

determine what variables in the program will be affected by a statement. For example,

consider the following section of code that accesses members of structures:
*p

*q = 2;
i= *p+3;

There are three possible alias cases here:

1. The variables p and q cannot alias.

2. The variables p and q must alias.

3. It cannot be conclusively determined at compile time if p and q alias or not.

If p and q cannot alias, then i = *p + 3; can be changed to i = 4. If p and q must

alias, then i = *p + 3; can be changed to i = 5. In both cases, we are able to perform

optimizations from the alias knowledge. On the other hand, if it is not known if p and

q alias or not, then no optimizations can be performed and the whole of the code must

12

be executed to get the result. Two memory references are said to have a may-alias

relation if their aliasing is unknown.

2.6.1 Aliasing and Re-ordering

Aliasing introduces strong constraints on program execution order. If two

write accesses which alias occur in sequence in a program text, they must occur in

sequence in the final machine code. Re-ordering the accesses will produce an

incorrect program result (in the general case) [10]. The same is true for a write access

and a read access.

However, if two read accesses which alias occur in sequence in a program

text, they need not occur in the same sequence in the machine code - aliasing read

accesses are safe to re-order. This is because the underlying data is not changed by the

read operation, so the same value is always read. It is vitally important that a compiler

can detect which accesses may alias each other, so that re-ordering optimizations can

be performed correctly.

In alias analysis, we divide the program's memory into alias classes. Alias

classes are disjoint sets of locations that cannot alias to one another. For the

discussion here, it is assumed that the optimizations done here occur on a low-level

intermediate representation of the program. This is to say that the program has been

compiled into binary operations, jumps, moves between registers, moves from

registers to memory, moves from memory to registers, branches, and function

calls/returns.

2.6.2 Type Based Alias Analysis

If the language being compiled is type safe, the compiler's type checker is

correct, and the language lacks the ability to create pointers referencing . local

variables, (such as ML, Haskell, or Java) then some useful optimizations can be made.

There are many cases where we know that two memory locations must be in different

alias classes:

Two variables of different types cannot be in the same alias class since it is a

property of strongly typed, memory reference-free (i.e. references to memory

locations cannot be changed directly) languages that two variables of different

types cannot share the same memory location simultaneously.

13

2. Allocations local to the current stack frame cannot be in the same alias class as

any previous allocation from another stack frame. This is the case because

new memory allocations must be disjoint from all other memory allocations.

3. Each record field of each record type has its own alias class, in general,

because the typing discipline usually only allows for records of the same type

to alias. Since all records of a type will be stored in an identical format in

memory, a field can only alias to itself.

4. Similarly, each array of a given type has its own alias class.

When performing alias analysis for code, every load and store to memory

needs to be labeled with its class. We then have the useful property, given memory

locations A and BB with iJ alias classes, that if i =j then A; may-alias B,, and if i # j

then the memory locations will not alias.

2.6.3 Flow Based Alias Analysis

Analysis based on flow, unlike type based analysis, can be applied to

programs in a language with references or type-casting [10]. Flow based analysis can

be used in lieu of or to supplement type based analysis. In flow based analysis, new

alias classes are created for each memory allocation, and for every global and local

variable whose address has been used. References may point to more than one value

over time and thus may be in more than one alias class. This means that each memory

location has a set of alias classes instead of a single alias class.

2.7 Optimizations on SSA

SSA simplifies many compiler optimization algorithms as every variable in

SSA has only one definition simplifying data flow analysis [13]. Some of the

optimizations enhanced by SSA are as:

2.7.1 Constant propagation

SSA form simplifies constant propagation: whenever a definition of the form x

c, where c is a constant, is encountered, then all uses of x can be replaced by c.

Moreover, the definition itself can be deleted from the program, as it is now dead.

14

b:=3 	 b1:=3

c:=l+b 	 c1:=1+3

b:=4 	 b2 :4

d:=b+c 	 di =4+ci

Original code 	 SSA

Figure 2.8 : Applying constant propagation on SSA

So in the original code analysis for variable b is needed for constant

propagation as its value is changed in code. But as in SSA,. after renaming every

variable is assigned only once, analysis not needed. Thus, simplifying the

optimization.

2.7.2 Copy Propagation

Copy propagation can be handled in a similar fashion as constant propagation:

definition of the form x — y can be deleted, and all uses of x replaced by uses of y

without analysis.

x1 := yi x1 == yi

ci:=1+xi ci:=1+yi

di =xi+ci di:=yi+ci

Before replace After replace

Here, after replacing x, by yj, xi can be deleted.

2.7.3 Global Value Numbering

Global Value Numbering (GVN) is a compiler optimization based on the SSA

intermediate representation. It sometimes helps eliminate redundant code that

common subexpression elimination (CSE) does not.

w, :=3 	 wi :3

x, := 3 	 x1 := wi

yi := xi + 4 	yi := wi + 4

zi :=wi+4 	zI :=yi

SSA 	After GVN

Figure 2.9 : After applying GVN on SSA

L5

A GVN routine would assign the same value number to w and x, and the same

value number to y and z. For instance, the map w1 i 1, x1 .— I, yl <— 2, zi f- 2

would constitute an optimal value number mapping for this block. The reason that

GVN is more powerful than CSE comes from the fact that CSE matches lexically

identical expressions whereas the GVN tries to determine an underlying equivalence.

For instance, in the code:

a:=cxd

e:=c

f := e x d

CSE would not eliminate the recomputation assigned to f, but a GVN

algorithm should discover and eliminate this redundancy. SSA form is required to

perform GVN.

After performing optimizations, the code in SSA form must be transformed

out of SSA form as processor cannot recognise 0-functions in the SSA "form. So 0-
functions must be removed from code without violating the correctness of the

program. The algorithms are developed for destruction of-functions.

2.8 Literature Review

The first approach to apply SSA on intermediate representation and avoid data

flow analysis is due to Cytron et al[2]. They constructed an algorithm to compute

SSA using the concept of dominance frontiers explained in section 3.3.2. Much of the

subsequent work was based on this technique.

Bilardy and Pingali have constructed algorithms to compute SSA

efficiently[11]. Using these algorithms, the number ofd-functions can be reduced and

then the processing time of applying optimization algorithms reduces. cb-functions are

special functions in SSA inserted at branches and join nodes of the program. D-

function selects any one of it's arguments as the control transfers from one node to

another in control flow graph[12]. As shown in figure 2.10, after if-else, variable V

can have any value depending on the Condition in if loop. So (D-function is necessary

for control validation.

16

iJ(Condition) 	 if(Condition)

then V ~— 4 	 then V] <— 4

else V o- 8 	 else V2 — 8

V3 t— ((V1, V2)
Fig. 2.10: If-then-else and its SSA form

Lenart et at show how to apply constant propagation algorithm on SSA

code[13]. While applying constant propagation algorithm on SSA, the occurrence of a

variable is replaced by its value and after that its definition is deleted from the

program. SSA form simplifies constant propagation since whenever a definition of the

form x <— c, where `c' is a constant, is encountered, and then all uses of x can be

replaced by V. Moreover, the definition itself can be deleted from the program, as it

is now dead[7]. As shown below, b has changed it's value twice, so in normal code,

analysis is needed but in SSA, as it is renamed twice, there are two separate variables

for b. So any use ofb1 or b2 is replaced by its definition.

b,=3 	 b1=3

c1 =1+b1 	c1=1+3

b2=4 	 b2=4

d1=b2±c1 	d1=4+c1

SSA code 	After constant propagation

In original code without SSA, analysis for variable 'b' is needed for constant

propagation as it's value is changed in code. But as in SSA, after renaming every

variable is assigned only once, analysis not needed. Also, variables b1 and b2 will be

deleted after they are replaced.

Chase and Wegman propose an approach for pointer analysis using alias

classes[10]. Sassa et al. apply constant propagation algorithm on pointers using alias

classes[14]. This work does not involve SSA code.

Fig. 2.12 shows alias classes for pointer variables in bracket. The right hand

side value is the value stored at the memory location pointed by pointer. Here, in

original code, `a' cannot be replaced by its value in the assignment to `b' since pointer

`p' points to `a'. So alias class for `p' and `a' is constructed and the value

corresponding to that memory location is assigned to that alias class. Whenever the

occurrence of any variable in alias class takes place, it is replaced by value assigned to

L7

that alias class[9]. But in this approach, data flow analysis is needed as SSA is not

used.

inta=3 inta=3

int *p = &a int *p = &a

*p=4 (*p, a)=3

b=a+5 (*p, a)=4

b=4+5

Fig. 2.11: Construction of alias classes for pointers in intermediate code

2.9 Research Gaps

While applying optimizing algorithm like constant propagation or copy

propagation on SSA code, the algorithm cannot be applied directly on pointer

variables. If it is applied as per normal variables, the output will be incorrect. Also if

we use alias classes for pointer variables, it involves data-flow analysis and applying

data-flow analysis involves more time and space requirements compare to convert

program into SSA code.

18

Chapter 3

PROPOSED WORK AND IMPLEMENTATION

3.1 Proposed Work

So far in applying constant propagation algorithm on pointers, either SSA is

used leaving pointers out of it or using data flow analysis with alias classes for

pointers. But alias classes and SSA are never used combined..

In our approach, we first design alias classes for pointer variables and then

apply SSA on alias classes considering each alias class as a single variable. Whenever

any variable in alias class is changed, the alias class is renamed and the occurrences of

variables are also renamed as per the alias class renaming. Then while applying

constant propagation algorithm on this code, occurrences of variables are replaced by

the value of alias class if the variable is a pointer variable or pointed by a pointer

variable. Otherwise normal SSA and constant folding algorithm are applied on the

variable.

int a = 3 int a, = 3 int a, = 3

int *p = &a int *pi = &a1 int *pI = &ai

b=a+4 (*pi, a,)= 3 (*pl, a,)= 3

*p=5 bi =a1 +4 b,=3+4

c=a+6 *p2 =5 *p7 =5

d= *p+2 (*P2, a2) = 5 (*P2, a2) = 5

c1 =a2 +6 c1 =5±6

d1 =*p2 +5 d1=5 +5

IR SSA with Alias After constant

Classes propagation

Fig. 3.1: Applying constant propagation on SSA with Alias Classes

As shown in figure 3.1, pointer `p' points to variable `a'. So whenever any

occurrence of `a' occurs, it cannot be directly replaced by it's value since pointer `p'

may also change the value. So constant propagation algorithm cannot be applied

directly on `a'. So alias class for `p' and `a' is designed and unique value is assigned

19

to that alias class. Whenever any variable in alias class is occurred at right hand side

of assignment, it is replaced by the value assigned to alias class.

Here, after applying constant propagation algorithm on SSA code and

replacing the variables by their value, the variables which are dead (here a' and `p'),

are deleted. After deleting the dead variables the code becomes,

bi=3+4

c1 =5+6

d,=5+5

Fig. 3.2: Optimized code

If we compare the code in figure 3.2 with original code in figure 3.1, there are

less instructions compared to original code and also while compiling the program,

compiler does not have to access memory for one pointer variable. This reduces

execution time to large extent. Even some time is required to convert intermediate

code to SSA form with alias classes and then to apply constant propagation algorithm,

this approach is still very useful since these transformations take place at compile

time. Only once, while compiling the program, this time is required. Afterward, while

executing the program, it will take less time compare to the execution of original

program.

In this approach, the interprocedural analysis is not considered as it is very

complex regarding the pointer variables. Interprocedural analysis involves function

calls, passing pointer variable from one function to another[15].

3.2 Technologies used

3.2.1 Lex and YACC
Lex and YACC are tools used in compiler generation. Lex generates lexical

analyzer for the compiler. It creates tokens for syntax analyzer. YACC generates

syntax analyzer to parse the given input file. The new grammar (other than C

language grammar) is required for YACC because the CFG file generated by gcc has

separate syntax compared to original C language program.

20

3.2.2 Grammar used to parse CFG file

In implementation of conversion of C program into SSA, CFG specification

file is used(discussed in later sections). Normal C language grammar cannot be
applied to this code since it contains information of nodes corresponding to basic
blocks in the program. So separate grammar is developed to parse the CFG file. The
grammar is as shown:

program : functions

functions : function
I function functions

function : func_head {' body

func_head : identifier '(, func_ head _param ')'
I identifier '(')'

body : declaration blocks

declaration : decl
I decl declaration

decl : TYPE identifier

blocks : block
I block blocks

block : BLOCK PRED statements SUCC

func_head param : identifier ',' func_head_param
I identifier

param : identifier ',' param
I identifier

statements : statement
statement statements

statement : assignment
gotostmt
if stmt
func call

21

I return stint
I comp stmt

assignment : identifier '=' identifier OP identifier
I identifier '_' identifier

goto stmt : GOTO

if stmt : IF '(statements ')' goto_stmt
I if stmt ELSE goto stmt

return stint : RETURN
I RETURN identifier

comp stint : identifier RELOP identifier

func_call : identifier '(' param ')'
I identifier '(' ')'

identifier : ID
CONST
STRING LITERAL
pointer identifier
'&' identifier
identifier '[' identifier '1'
identifier '(' param ')'
identifier (' ')'
identifier '{' '}'

I identifier '{' identifier
} ,

identifier

pointer :
I '*' pointer

Above grammar is different compare to normal C language grammar in a

sense that it contains only if-else loop and also all the statements are in a basic block.

3.3 Construction of SSA

Overview of the SSA Algorithm - Translation to minimal SSA form is done in four

steps :

22

• First the control flow graph is constructed form cfg specification file generated

by gcc.

• The dominance frontier mapping is constructed from the control flow graph.

• Using the dominance frontiers, the locations of the 4-functions for each

variable in the original program are determined.

• The variables are renamed by replacing each mention of an original variable V

by an appropriate mention of a new variable Vi.

3.3.1 Constructing Control flow graph from CFG specification file

Instead of constructing cfg directly from input program, the cfg is constructed

using cfg specification file generated by gcc(gnu compiler collection) [5] . GCC

generates cfg file for a given input file by using command 'gee —fdump-tree-cfg

file.c'.

3.3.2 Computing Dominance Frontier

Dominance frontiers capture the precise places at which 'U-functions are

needed [2]. If the node A defines a certain variable, then that definition and that

definition alone (or redefinitions) will reach every node A dominates.

for each node b
if the number of immediate predecessors ofb > 2

for each p in immediate predecessors of b
runner : = p

while runner ~ doms(b)
add b to runner's dominance frontier set
runner : = doms(runner)

Figure 3.3 : Algorithm to compute dominance frontier

Here, in figure 3.3, an immediate predecessor of node n is any node from

which control is transferred to node n, and doms(b) is the node that immediately

dominates node b(a singleton set).

23

3.3.3 Inserting 4)-functions

The algorithm in figure 3.4 inserts 4)-functions. The outer loop of this

algorithm is performed once for each variable V in the program. Several data

structures are used:

• W is the worklist of CFG nodes being processed. In each iteration of this

algorithm,W is initialized to the set of nodes that contain assignments to V.

Each node X in the worklist ensures that each node Y in DF(X) receives a 4)-

function. Each iteration terminates when the worklist becomes empty.

• HasAlready is an array of flags, one for each node, where HasAlready(X)

indicates whether a 4)-function for V has already been inserted at X.

for each variable V

HasAiready E-- 0

WorkLisi — 0

for each node X that may modem V
WorkLlst — WorkList U {X}

while WorkList 0 0

removeXfrom W

for each Y C DF(X)
if Y 0 HasAlready then

insert a 0-node for Vat Y
HasAlready < HasAlready U {Y}
if Y' WorkList then

WorkList f- WorkList U {Y}

Figure 3.4: Algorithm to insert 4)-functions

3.3.4 Renaming of variables

The algorithm in figure 3.5 renames all mentions of variables. New variables

denoted by Vi, where i is an integer incremented by 1 after every new definition of V

in the program, are generated for each variable V. The visit to a node processes the

24

statements associated with the node in sequential order, starting with any 4'-functions
that may have been inserted. The data structures used are:

• Stacks is an array of stacks, one stack for each original variable V. The stacks

can hold integers. The integer i at the top of S(V) is used to construct the
variable Vi that should replace a use of V.

• Counters is an array of counters, one for each original variable V. The counter
value C:ounters[VJ tell how many assignments to Vhave been processed.

procedure Rename(Block X) 	 L

for each çb-node P in X
GenName(LHS(P)) 	 Date

for each statement A in X 	\ T.
for each variable V E RHS(A)

rep /ace V by Vi, where i - Top(.Stacks[V/)
for each variable V E LHS(A)

GenName(V)
for each Y E Succ(X)

j — position in Y's çb-fienclions corresponding to X
for each c-node P in Y

replace the j!h operand of RHS(P) by Vi
where i = Top (Slacks[Vi)

for each Ye ('hildren(X)
Rename(Y)

for each 0-node or statement A in X
for each Vi E LHS(A)

pop Stacks[VJ

procedure GenNarne(Variahle V)
i i— Counters[VJ
replace Vby Vi
push i onto .Siacks[VJ
Counters[V] .— i + I

Figure 3.5: Algorithm for renaming of variables

25

The program to convert simple C language program into SSA is written. The

program is divided into two modules. In first module, using Lex and YACC, the

parser is designed for CFG file. In this, CFG for input program is generated and

dominance frontier set is constructed from this CFG and also the position of 4r

functions for each variable is computed. In first module, the CFG file is parsed using

grammar given in section 3.2.2. The required structures are constructed by using

algorithms given in sections 3.3.2 and 3.3.3. Each block in CFG file is parsed and the

structures are computed.

CFG

	

o- 	CFG 	 /Dominance

	

Using 	 First module
C file 	► 	

_
ecc 	 file 	 —~ Frontier set

Position of
-flnlctions

Figure 3.6 : Structures computed after first module

In second module, using Lex and YACC, the input CFG file is parsed again to

write actual SSA code in output file. The variables are renamed as per the algorithm

given in section 3.3.4 while writing into output file. Each block in CFG is parsed and

written in output file as it appears in the program after renaming of variables and 4i-

functions are inserted in the blocks. Some data structures are passed from first module

to second module using named pipes (fifos).

CFG
file

	

CFG 	I

Dominance Second

	

Frontier set 	 Module 	— SSA file

Position of
4 -functions

Figure 3.7: Output after second module

26

3.3.5 CFG Specification File

Consider input .0 language program is test.c. So the CFG specification file is

generated using command 'gee —fdump-tree-cfg'. CFG generated from CFG

specification file for C language program as shown in figure 3.8. Entry block is a

starting block through which program starts execution. Exit block is an ending block

through which program exits. Program control jumps from one block to another block

as per the arrow directions.

i p mainp
{

(2)
(3)

ii=1) (3)
{ (31

i=1, (4)
ij(I= I) (4)

1=2; (5)

1=3; (6)

k=k+I; (7)
}
elg~

k=k+ 2; (8)

pn gT%d %d °/ad %ad''n". i,1, k. 1); (9)
a9
{

iftk=1) (10)
1=1+4; (11)

(12)

1+6; (13)

(13)

Figure 3.8 : C language program and it's Control Flow Graph

3.3.6 Construction of Dominance frontier sets

After constructing CFG from CFG specification file, the dominance frontiers

set for each node are constructed by parsing the cfg specification file by first module

of project.

The name of object file created is `dominance'. So dominance frontier sets are

constructed by executing `dominance test.cfg'. Here, test.cfg is CFG specification file

27

generated by gcc. Also, in first module, the positions of 4-functions inserted at each

node are computed. The dominance frontier sets for each node after executing first

module are as:

Entry[-]

2[Exit] 	Exit[-]

3[Exit , 3)

4(9) 	8[s3 	9tEX it,3]

e[7] 	7[9] it. 3.10)

12t Exit,3,lo]
5171 	11[12]

13 [Ezit , 3]

Figure 3.9 : CFG and dominance frontier set for each node

As shown in figure 3.9, the block number in bracket indicates dominate

frontier for the node.

3.3.7 Writing output in the file

In second module, the CFG specification file is parsed again and the SSA for

input program is actually written in the output file. The CFG specification file is given

as input to the second module. Some of the important structures such as CFG,

dominance frontier set, position of ui-functions computed in first module are passed as

input to second module by using named pipes(fifo). The object file of second module

28

is `rename'. So after executing command ' rename test.cfg', the output is written into

the file `ssa.txt' shown as:

Output file : ssa.txt

main ()
{

int 1;
int k;
int j;
int i;

<bb 2>:
1. 	= 1
j 	1 = 1 	;
kl = 1 	;
11 = 1 	;

<bb 3>:
j2 = PHI (j i, j4) ;
12 = PHI(1_1, 1_8) ;
k2 = PHI (k_1, k_4) ;
i_2 = PHI(i_l, i_3) ;
if 	(i_2 == 1

goto <bb 4>;
else

goto <bb 8>;
<bb 4>:

j_3 = i_2 	;
if 	(12 == 1

goto <bb 5>;
else

goto <bb 6>;
<bb 5>:

13 = 2 	;
goto <bb 7>;

<bb 6>:
19 = 3 	;

<bb 7>:
14 = PHI(1_3, 1_9)
k 3= k 2+ 1
goto <bb 9>;

bb 8>:
k5 = k_2 + 2 ;

<bb 9>:
j_4 = PHI(j_3, j_2) ;
15 = PHI (1 4, 1 2)

29

k_4 = PHI(k_3, k_5) ;
printf(&'%d %d %d %d\n"[0], i_2, j_4, k_4,
1_5)

<bb 10>:
16 = PHI(1 5, 1 8)
if (k_4 == 1)

goto <bb 11>;
else

goto <bb 12>;
<bb 11>:

17 = 16 + 4
<bb 12>:

18 = PHI (1 6, 1 7)

if (18 == 3
goto <bb 10>;

else
goto <bb 13>;

<bb 13>:
i_3 = i_2 + 6
if (i_3 == 7

goto <bb 3>;
else

goto <bb 14>;
<bb 14>:
return;

}

3.4 	Applying Constant Propagation Algorithm
After converting C code into SSA, the program to apply constant propagation

algorithm on this SSA code is developed. In this program alias classes for pointer

variables are also constructed and the algorithm is applied for these variables also.

Consider the simple testl program in C language as shown in figure 3.10. This

test program contains constants and pointers. There is also SSA form of this program

obtained after applying SSA construction algorithm on testl program.

30

int memo
0

main 1)
1

int i, 	j, 	k, 	1, a; int *q, 	*p, m, 	1, 	k, 	j i;
int *p 	ej, 	*q = ek; int m.5, 	k.4, 	j.3, 	k.2, 	in.l, 	j.0;

j1 p=&j
k1

sCaflf{'%d", 	tm: j= 1
if{i==1l k1

11=1;
acanf(&%d"[U], 	sin)

= 7. if (i_i 	1
1 	2; goto 1fbb 3>;
in=1+j; else

goto 	 bb6>;
<bb 3>:

else 1_2 = PHI (1_1, 15)
i_2 = PHI (i_i, i_3)
if (1_21

1 = 3; goto fbb 4>;
a 	11- k; else

} goto <bb 5>;
bb 4>:

*p 	7
13 = 2

= j
m.1 = 1_3 + j.0
In = 15.1
Ic. 2 	= 	Ic
j.3
i_3 = k.2 + j.3
goto <bb 6>;

bb 5>;
5

l_3 = 3
= Ic

m.5 = 13 + 	Ic.4
m = m.5

bb 6>;
return;

Figure 3.10 : Testl program and its SSA form

Then constant propagation algorithm is applied. After applying constant
propagation algorithm with alias classes for pointers, the output is as shown at right

hand side of figure 3.11.

31

main ()

int *q, *p, m, 1, k, j i;
int m.5, k.4, j.3, k.2, ml, 3.0;

bb 2>:
p=¢j ;
q = ak
i_1 = 1
] = 1
k=1.
11=1 ;
scanf(s"%d"[0], &m)
if (i_1=1)

goto ob 3>;
else

goto bb 6>;
bb 3>:

1_2 = PHI(1_1, 1 0)
i_2 = PHI (i 1, i_3)
if (1_2=1)-

goto 'bb 4>;
else

goto <bb 5>;
<bb 4>:

*P= 7
13=2 _

0 = j
m.1=1_3+ j.0
m=m.1 ,
k.2=k
1.3 = 1
i_3 = k.2 + j.3
goto <bb 6)-;

4bb 5>:
*q ='
1_3=3
k 4 = k
m.5=13+ k.4
m =m.5

- bb 6>:
return;

main ()
{

int *q, *p, m, 1, k, j• i;
int m.5, k.4, j.3, k.2, ml, 3.0;

tbb 2>:
P=&j ;
q=sk;
scant("td" (01, m):
if (1 =1)

goto -bb 3>;
else

goto bb 6>;
<bb 3>:
12 = PHI(1, 1_8 J ;
i_2 = PHI(1, i_3 I ;
if {1_2=1)

goto 3b 4>;
else

goto <bb 5>;
bb 4>:
j• 0 = 7
m.1 = 2+ j.0
m = m.1
k.2 =1
j.3 = 7
i_3 = k.2 ± j.3
goto <bb 6>;

<bb 5>:
k.4=3
m.5 = 2 + k.4
m = m.5

<bb 6>:
return;

Figure 3.11 : SSA code and optimization of SSA code

The new variables in this program are generated by compiler while generating

three address code in intermediate representation. Above program contains much less

instructions compare to original program in SSA form. If we apply constant

propagation algorithm again(second pass), the program will be as:

32

main C)
{

int *q, *p, m, 1, k, j i;
int m.5, k.4, j.3, k.2, m.1, j.0;

<bb 2>:
p = &j
q = &k ;
scanf("%d" [0], m);
if (1 == 1)

goto <bb 3>;
else

goto <bb 6>;
<bb 3>:
12 = PHI(1, 18) ,
i_2 = PHI(1, i_3
if (12 == 1)

goto <bb 4>;
else

goto <bb 5>;
<bb 4>:

m.1 = 2 + 7 	;

m = m.1 	,
i_3 = 1 + 7
goto <bb 6>;

<bb 5>:
m.5 = 2 + 8
m = m.5

<bb 6>:
return;

}

In second pass, the program in SSA can be further optimized as seen from
above code.

33

Chapter 4

RESULTS

4.1 Results after Applying Constant Propagation Algorithm •

After converting input C program into SSA, constant propagation algorithm

on some special test programs is applied. Test programs are designed in C language

such that they contain more pointer variables.

Table 4.1 Comparison of applying constant propagation algorithm on SSA

SSA Coa Algorithm
Program Applied Instructions Improvement Instructions after

applying
Algorithm

With SSA
without
Alias 51 7.2

Test 1 55 classes

With SSA
and with

Alias 47 14.4

classes

With SSA
without 70 Alias 66 5.7

Test2 classes

With SSA
and with

Alias 60 14.2

classes

With SSA
without
Alias 93 7.0

Test3 100 classes

With SSA
and with

Alias
85 15.0

classes

34

Testl program is already discussed in previous section. Only integers and

pointers pointing to integers are used in test programs to avoid complexity while

applying optimizing algorithm. Also arrays, structures and procedures are not used.

First test programs are converted into intermediate code using GNU C Compiler

(GCC).

4.2 Comparison

Figure 4.1 shows the number of instructions for three test programs before and

after applying constant propagation algorithm. Series "Test Program" at top

corresponds to number of instructions in original SSA code. Series "without Alias

Classes" in middle shows number of instructions after applying constant propagation

algorithm on SSA code without alias classes. Series "with Alias Classes" corresponds

to applying the algorithm with alias classes. Applying the algorithm on SSA with alias

classes yield good results for test programs.

Figure 4.1: Number of instructions for optimized code

35

Figure 4.2 further shows improvement in the SSA code for three test

programs. Series "without Alias Classes" shows % improvement in SSA code after

applying constant propagation algorithm without using alias classes for pointers.

Series "with Alias Classes" corresponds to applying the algorithm without using alias

classes.

Figure 4.2 % improvement for various approaches

36

Chapter 5
CONCLUSION ANI) FUTURE WORK

5.1 	Conclusion

In this dissertation, we have proposed a new approach to apply optimization

algorithm on pointer variables using static single assignment based intermediate

representation with alias classes for pointers. Using SSA, data flow analysis is not

required and using alias classes, pointers can be optimized. Results show that

applying SSA with alias classes produces more optimized code than applying either

on original IR or on SSA without alias classes for the programs which contain large

number of constants and pointer variables.

Though constant propagation algorithm applying on SSA with alias classes

takes more time compared to SSA without alias classes, it produces efficient code.

Also it improves the code twice as compared to applying the algorithm on SSA

without alias classes.

5.2 Future Work

In GCC(Gnu Compiler Collection), SSA is implemented for all variables

except pointers. In future, GCC code can be modified to implement SSA with alias

classes. Also in this dissertation, only constant propagation algorithm is applied on

SSA code with alias classes. Other optimization algorithms like global value

numbering, copy propagation can also be applied. Further SSA itself can be improved

to reduce the number of-Functions in code.

37

REFERENCES

[1] V. Alfred, R. Sethi, and D. U. Jeffrey, Compilers: Principles, Techniques and
Tools: Addison-wesley, 1986.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,

"Efficiently computing static single assignment form and the control

dependence graph," ACM Transactions on Programming Languages and
Systems 	(TOPLAS), vol. 13, pp. 451-490, 1991.

[3] V. Sreedhar, R. Ju, D. Gillies, and V. Santhanam, "Translating out of static

single assignment form," In Proceedings of the Static Analysis Symposium,
Lecture Notes in Computer Science, vol. 1694, pp. 194-210, 1999.

[4] S. S. Muchnick, Advanced compiler design and implementation: Morgan

Kaufmann, 1997.

[5] J. Aycock and N. Horspool, "Simple generation of static single-assignment

form," 9th International Conference in Compiler Construction, Lecture Notes
in Computer Science, vol. 1781, pp. 110-125, 2000.

[6] W. Amme and E. Zehendner, "Efficient calculation of data dependences in

programs with pointers and structures," in Proceedings of the 23rd
EUROMICRO Conference, EUROMICRO 97. New Frontiers of Information
Technology', pp. 55-62, 2002

[7] B. B. S. Hack, D. Grund, F. Rastello, B. D. de Dinechin, and E. N. S. L.

Stmicroelectronics, "Fast Liveness Checking for SSA-Form Programs," In

Proceedings of the Sixth Annual IEEE/ACM International Symposium on

Code Generation and Optimization, vol. 37, pp. 18-36, 2003.

[8] D. Novillo, R. Unrau, and J. Schaeffer, "Concurrent ssa form in the presence

of mutual exclusion," In Proceedings of the International Conference on
Parallel Processing, pp. 356-364, 2002.

[9] L. Semeria and G. De Micheli, "Resolution, optimization, and encoding of

pointer variables for the behavioral synthesis from c," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, pp. 213-
233, 2002.

[10] D. R. Chase, M. Wegman, and F. K. Zadeck, "Analysis of pointers and

structures," ACM. SIGPLANNotices, vol. 25, pp. 296-310, 1990. .

38

[11] G. Bilardi and K. Pingali, "Algorithms for computing the static single

assignment form," Journal of the ACM (JACM), vol. 50, pp. 375-425, 2003.
[12] F. Rastello, F. De Ferriere, and C. Guillon, "Optimizing the translation out-of-

SSA with renaming constraints," In Proceedings of the International
Symposium on Code Generation and Optimization, pp. 265-278, 2005.

[13] A. Lenart, C. Sadler, and S. K. S. Gupta, "SSA-based flow-sensitive type

analysis: combining constant and type propagation," In Proceedings of the
ACM Symposium on Applied Computing, pp. 813-817, 2000.

[14] M. Sassa, Y. Ito, and M. Kohama, "Comparison and evaluation of back-

translation algorithms for static single assignment forms," Computer
Languages, Systems & Structures, vol. 35, pp. 173-195, 2009.

[15] J. Von Ronne, N. Wang, and M. Franz, "Interpreting programs in static single

assignment form," In Proceedings of the ACM SIGPLAN 2004 Workshop on
Interpreters, Virtual Machines and Emulators, pp. 23-30, 2004.

[16] S. Staiger, G. Vogel, S. Keul, E. Wiebe, "Interprocedural Static Single

Assignment Form", In Proceedings of the 14'h Working Conference on
Reverse Engineering, pp. 1-10, 2007.

[17] D. Novillo, "TreeSSA a new optimization infrastructure for GCC", In
Proceedings of the 2003 GCC Developers' Summit, pp. 181-193, 2003.

[18] S. Hack, D. Grund, and G. Goos, "Register allocation for programs in SSA-
form", In 15" International Conference on Compiler Construction, volume

3923 of Lecture Notes in Computer Science, Springer, pp. 247-262, 2006.

39

LIST OF PUBLICATIONS

[1] 	Deodatta Barhate, A. K. Sarje. "An approach for pointer optimization using
SSA based intermediate representation," in Proceedings of International
Conference on Recent Trends in Information Technology, pp. 398 — 401, June
3-5, 2011.

40

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References

