A FORMAL FRAMEWORK
FOR
WEB SERVICE COMPOSITION

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree
of
MASTER OF TECHNOLOGY
in
INFORMATION TECHNOLOGY

By
VIJAY VERMA

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE -247 667 (INDIA)

JUNE, 2011

CANDIDATE’S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled “A
FORMAL FRAMEWORK FOR WEB SERVICE COMPOSITION” towards the
partal fulfillment of the requirement for the award of the degree of Master of
Technology n Information Technology submitted in the Department of Flectronics and
Computer Engineering, Indian Institute of Technology Roorkee, Roorkee. Uttarakhand
(India) 1s an authentic record of my own work carried out during the period from July
2010 to Junc 2011, under the guidance of Dr. Rajdeep Nivogi, Assistant Professor,

Department of Electronics and Computer Engineering, 11T Roorkee.

T'he matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other Institute.

’
. 1)5}/
Date: CRICESROU Q}L)U/
Place: Roorkee (VIJAY VERNMA)

CERTIFICATE

Thisis to certify that the above statement made by the candidate 1s correct to the best of

my knowledge and beliet.

Date: \;L//
Place: Roorkee (Dr. RAJDEEP NIYOGI)

Assistant Professor
Department of Electronics and Computer Lngineering

[T Roorkee.

Table of Contents

Candidate’s Declaration & Certificate...................... ... 1
Acknowledgements......................... e S i1
A DS AC . e 111
Tableof Contents.....................coiiiiiiiiiiniin.... e Ly

LSt Of FogureS. ..o e e e Vi
1. Introduction and Statement of the Problem | | 1
1.1 Introduction...........cooveeeiiiiinanneen... e 1

1.2 G Le TR TZ: 13 1o 1 D 2

13 Statement of the Problem.... 2

1.4 Organization of the Report. 3

2. Background and Literature Review 4
2.1 Web Services.....oooiiiiii e | U -

2.2 Understanding the basics of web seﬁrice ... 7
2.2.1 Simple Object Access Protocol(SOAP). ...t 8

2.2.2 Web Service Description Language(WSDL). ..o, 9

2.2.3 Discovering Web Services.cioiiiiiioiiiiiiii i 10

224 More About WSD L. e 11

23 Web Service COmPOSItiON.uneeoii e 13

3. Formal Model For Web Service Composition 14
3.1 The Formal Model...................... et et 14

3. L. IMeSSagE T Y. .. ettt 15

3.1.2 For Single Service................ e 16
3.1.3 For Web Service Composition............ooiiiiiiiiiiiiii e, 17

32 Features included in Formal Model.............cccoovviuieiiiiieiiiiiiiii 19
3.2.1 Activeness Constraints.ooiiiiiiiitiie i 19

3.2.2 Relationships between Component Web Services......... SRR 19

v

3.2.4 Verification byusing Pi-calculus...................... 21
3.2.5Q0S Parameters.t 23
4. Implementation | | 25
4.1 Implementation of the service as a single service.............................. 25
4.2 Implementation of the service as a composite service........................ 32
4.2.1 JOpera for Eclipse............ e 32
4.2.2 Some Definitions related with JOpera..................................... 32
S. Results and Discussions - 40

5.1 The Result of the service as a single web service.....................ccc.c........ 40

5.2 The Result of the service as a composite web service...............c.ccc..... 41

5.3 Mapping of composite web service........................ 42
54 Verification Using Pi-calculus.......... e 45
6. Conclusion and Future Work } 48
6.1 (00e) 41313 o) + I 48

6.2 Future Work 48

REFERENCES................. eetetetsettetaeteeennsntctsatesatitactreasoseranrenes 49
APPENDIXES....cutttiiiiiiiiiiiiiitittteriinentseeeeeneoccrtronmmsormmnmenes 52

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

Figure 4.10

LIST OF FIGURES

The basic layers of Web services ..., 5
A common scenario of Web services in use............ccccoovevvieeeiiiiiciiieici . 6
The Model—Viéw-Controller para&i 24 ¢ 7
Structure of a Web-based SOAP messageoeiiin . 8
Dynamic communication by inspecting. WSDL.......... e 9
A UDDI Registry as a conceptual phone book 10
The WSDL Specification imanutshell.......................... 12

A kind of single servicemodelcoiiiiiii i 14

The classification of message typescccvvvviieiiinnnnnn... e 16
Verification Framework Using Pi-Calculus 22
Adding class to the package PP B 27
Build Successful messagecoooiiiiiiiii 28
Successful Run Message at console...................ooiii i 29
WSDL binding details.................. e eeeeeeee et erarareeaeterrarenaaaaaaaat e e e eane e enias 30
The Result of invoking enrollDecipher ... 31
Creating a program in JOpera...................ooi 34
Java Snippet component for getcourse program............ovveeevinnnnnen. .35
Running the program as a process...................... P 36
Data Flow Diagram for the Processccoooviuireieieininiienann, 37
Run configuration for the process:vvvieeiiiiiniiiiiiiiciiiinine 38

Vi

Figure 4.11 Control Flow Diagram of the Composite Process.................... e 39

Figure 4.12 Data Flow Diagram of the Composite Process.............................. 39
Figure 5.1 The Result of service as single web service 40
Figure 5.2 The Result of service as composite web service;...................v..........41
Figure 5.3 Message Interaction Diagram........c...coeeeiiiiiiiiiiiiiiiiiiiiiiiiii, 42
Figure 54 Channels and Messages interaction for composite servic................. 45
Figure 5.5 Channels and Messages interactiop between components................. 45

vii

Chapter I

Introduction and Statement of the Probl_em

1.1 Introduction

Web services provide a standard way to ensure the interoperability "among different
software applications running on a variety of platforms. Organizations use the Web
service technology in Enterprise applications and business-to-business integration on the
Internet. In each of these two categories, the Web services can vary in complexity from
simple functions of query- answer type, to sophisticated long term transactions among
several business partners. Regardless of the application, the web services are used for

| flexible integration of loosely coupled systems that can be decomposed and recomposed
to reflect the dynamic nature of the business. The Web services promise to turn the Web
from a static collection of documents into a vast library of programs. This is the reason
why the notion of service is of a considerable interest from both the industry and the
academic research [1].
Web services are merging as a promising téchnology for the development of next
generation distributed heterogeneous software systems [2]. Roughly, a Web service is a
self-describing software component universaliy accessible supported by three
technologies:

e Simple Object Access Protocol SOAP [3],

e Web Services Description Language WSDL [4],

e Universal Description, Discovery, and Integration UDDI [5].
The appearance of web services makes web application convenient through providing
services on web [7]. There are momentous advances in the theory and technology of Web
service in the last years. Besides the reuse of service itself, a promising way of
developing a new service which can implement the extra function is through the
orchestration of existing web services in which every of web services merely hold sub-
function respectively. Web service sometimes requires combining more than one to meet

our requirement [6]. This is so-called web services composition. A web service-oriented

system refers to a system that integrates multiple web services components [8] . That is to

say, a single business transaction usually invokes a number of web services [9].
1.2 Motivation |

Web service composition (WSC) offers an effective way to organize different Web
services distributed in the networks in order to ﬁnish more complicated business tasks.
However, with the increasing complexity and variety of business logics and network
environments, Web services in a WSC might become unavailable due to some
unexpected exceptions, which makes the whole WSC fail and brings a lot of loss to
enterprises and users [10].

Web services composition is not always in an ideal environment. There are many
potential problems. So the problem of web services composition is needed to be solved.
Web service composition involves the combination of a number of existing Web services
to produce a more complex and useful service [11]. But different Web services are
always written in different language and on different platform in distributed environment.
The existing standard published By W3C, such as Simple Object Access Protocol
(SOAP), Web Services Description Language (WSDL) and Universal Description,

Discovery, and Integration (UDDI), can not standardize the merging of web services.

1.3 Statement of the Problem
A Formal Framework For Web Service Composition.

In this dissertation, I have made an attempt to implement the formal model for web
service composition and add some features so that with the help of featured model one
can verify the some web service composition properties. With following considerations:

(1) Additional constraint on web service composition.

(ii) Relationships between component web services

(ii1)) Flow web services

(iv) Composite service verification.

(v) Some QoS parameters.

1.4 Organiz_atidn of the Report

This dissertation report comprises of six chapters including this chapter that introduces

the topic and states the problem. The rest of the report is organized as follows.

Chapter 2 gives the background of web service and web service related technologies such
as SOAP, WSDL and UDDL. Here- the web service composition is also explained.
Chapter 3 describes the basics of formal model for web service cémposition. Along with
the overview of the proposed featured model of web service composition.

Chapter 4 gives fhe implementation details of the'service both as a single web service as
well as a composite web service. '

Chapter 5 discusses the result and analysis part.

Chapter 6 concludes the dissertation work and gives suggestions for future work.

Chapter 2

Background and Literature Review

2.1 Web Services

Web services are software applications that can be discovered, described, and accessed
based on XML and standard Web protocols over intranets, extranets, and- the Internet.

?

The beginning of that sentence, “Web services are software applications,” conveys a
main point: Web services are software applications available on the Web that perform
specific functions. Next, we will look at the middle of the definition where we write that
Web services can be “discovered, described, and accessed based on XML and standard

»

Web protocols.” Built on XML, a standard that is supported and accepted by thousands
of vendors worldwide, Web services first focus on interoperability. XML is the syntax of
messages, and Hypertext Transport Protocol (HTTP), the undérlying protocol, is how
applications send XML messages to Web services in order to communicate.

Web services technologies, such as Universal Description, Discovery, and Integration
(UDDI) and ebXML registries, allow applications to dynamically discover information
about Web services—thé “discovered” part of our definition. The message syntax for a
Web service is described in WSDL, the Web Se_rvice Definition Language. When most
technologists think of Web services, they think of SOAP, the “accessed” part of our Web
services definition. SOAP, developed as the Simple Object Access Protocol, is the XML-
based message protocol (or API) for communicating with Web services.

The last part of our definition mentions that Web services are available “over intranets, -
extranets, and the Internet.” Not only can Web services be public, they can exist on an
internal network for internal applications. Web services could be used between partnering
organizations in a small B2B solution. |

Figure 2.1 gives a graphical view of that definition, shown as layers. Relying on the
foundation of XML for the technologies of Web services, and using HTTP as the

underlying protocol, the world of Web services involves standard protocols to achieve the

capabilities of access, description, and discovery.

Figure 2.2 shows these technologies in use in a common scenario:

In Step 1, the client application discovers information about Web Service A in a UDDI
registry.

In Step 2, the client application gets the WSDL for Web Service A from the UDDI
registry to determine Web Service A’s API Finally,

In Steps 3 and 4, the client application communicates with the Web service via SOAP,
using the API found in Step 2. We’ll get more into the details of these technologies later
in the chapter.

DISCOVER
(UDDILebXML REGISTRIES)

DESCRIBE
(WSDL)

ACCESS
(SOAP)

XML

COMMUNICATION LAYER
(HTTP,SMTP,Other protocols)

Figure2.1 The basic layers of Web services.

This example scenario in Figure 2.2 shows the basics of client and Web service
interaction. Because of these processes, such as discovery, the client application can
automate interactions with Web services. Web services provide common standards for
doing business and software integration—complementing a user-driven, manual

navigation architecture to one where automated business process can be the focus.

UDDI

REGISTRY
WSDL For
web Service A
Client c.nad\Wd) -
. _a* ” k'“
Appllcation m Nescripail &W

Web Service A

Figure2.2 A common scenario of Web services in use.

It 1s important to understand that Web services can be completely independent of the
presentation, or the graphical user interface (GUI) of applications. Instead, Web services
send data in XML format, and applications can add style and formatting when they
receive the data. An example of a Web service could be a “driving directions finder” Web
service that provides the capability to get text-based car directions from any address to
any address, listing the driving distances and estimated driving times. The service itself
usually provides no graphics; simply speaking XML messages to a client application.
Any application, such as a program created in UNIX, a Microsoft Windows application, a
Java applet, or server-side Web page, can take the information received from that
application and style it to provide graphics and presentation.. Separating business logic
from presentation is commonly known in software engineering as the Model-View-

Controller (MVC) paradigm.

Web services support this paradigm. Shown in Figure 2.3, the user interface details (the
view) and business logic (the model) are separated in two different components, while the
component layer between them (the controller) facilitates communication.

Because the presentation is separate, the client application can present the information to
the user in many different ways. This is an important concept because many browsers
make it easier for you by offloading this processing with style sheets, using XSL
Transformations (XSLT) [12].

VIEW MODEL

Client CONTROL Web
Application service
Facilitate
Styles the Communication ;
User between View & PrOYldGS .
Interface Model Business Logic
: of the

Annlication

Figure2.3 The Model-View-Controller paradigm

2.2 Understanding the Basics of Web Services:

This section gives a high-level overview of some of the basic Web services technologies.
In this section, we discuss the following concepts that are fundamental in understanding
Web services [13]:

e Simple Object Access Protocol(SOAP)

e Web Service Description Language(WSDL)

e Discovering Web Service(UDDI)

2.2.1 Simple Object Access Protocol (SOAP):

SOAP i1s the envelope syntax for sending and receiving XML messages with Web
services. That is, SOAP is the “envelope” that packages the XML messages that are sent
over HTTP between clients and Web services. As defined by the W3C, SOAP is “a
lightweight protocol for exchange of information in a decentralized, distributed
environment.”

It provides a standard language for tying applications and services together. An
application sends a SOAP request to a Web service, and the Web service returns the
response in something called a SOAP response. SOAP can potentially be used in
combination with a variety of other protocols, but in practice, it is used with HTTP.

The syntax of SOAP, in its basic form, is fairly simple, as shown in Figure 2.4. A SOAP
message contains the following elements:

m A SOAP envelope that wraps the message

m A description of how data is encoded

m A SOAP body that contains the application-specific message that the backend

application will understand.

HTTP Header
SOAP Envelope
SOAP Header
Headers
SOAP Body
Application-Specific Message data

Figure2.4 Structure of a Web-based SOAP message.
8

2.2.2 Web Service Definition Language (WSDL):

Whereas SOAP is the communication language of Web services, Web Service Definition
Language (WSDL) is the way we describe the communication details and the application-
specific messages that can be sent in SOAP. WSDL, like SOAP, is an XML grammar.
The W3C defines WSDL as “an XML format for describing network services as a set of
endpoints operating on messages containing either document-oriented or procedure-
oriented information.” To know how to send messages to a particular Web service, an
application can look at the WSDL and dynamically construct SOAP messages. WSDL
describes the operational information—where the service is located, what the service
does, and how to talk to (or invoke) the service. When we create a Web service from our
enterprise applications, most toolkits create WSDL for us. Figure 2.5 shows an example

of how this process works.

Webk ﬁ

Web Service | | Inspection 2 WSDL Client App
& WSDL Inspection
Generation & SOAP
message
generation

3. Communication

Figure2.5 Dynamic communication by inspecting WSDL.

2.2.3 Discovering Web Services:

Finding Web services based on what they provide introduces two key registry
technologies:

UDDI (Universal Description, Discovery, and Integration) and ebXML registries. Both
of these technologies are worth discussing, and while they may seem to be competing
technologies, it is possible that they may complement each other in the evolution of Web
Services.

Universal Description, Discovery, and Integration (UDDI):

Universal Description, Discovery, and Integration is an evolving technology and is not
yet a standard, but it is being implemented and embraced by major vendors. Simply put,
UDDI is a phone book for Web services. Organizations can register public information
about their Web services and types of services with UDDI, and applications can view
information about these Web services with UDDI. The information provided in a UDDI
business registration consists of three components: white pages of company contact
information, yellow pages that categorize businesses by standard taxonomies and green
pages that document the technical information about services that are exposed. Figure 2.6

demonstrates this concept.

UDDI REGISTRY

WHITE YELLOW GREEN

PAGES PAGES PAGES

Business name Services and Products eBusiness

Contact Information Industry Codes Rules, WSDL
Service Description

Figure2.6 A UDDI Registry as a conceptual phone book.

10

2.2.4 More about WSDL :

WSDL is a specification defining how to describe web services in a common XML
grammar. WSDL describes four critical pieces of data:

e Interface information describing all publicly available functions

e Data type information for all message requests and message responses

¢ Binding information about the transport protocol to be used

e Address information for locating tﬁe specified service
Using WSDL, a client can locate a web service and invoke any of its publicly available
functions [14].
The WSDL Specification:

WSDL is an XML grammar for describing web services. The specification itself is
divided into six major elements:

Definitions:

The definitions element must be the root element of all WSDL documents. It defines the
name of the web service, declares multiple namespaces used throughout the remainder of
the document, and contains all the service elements described here.

Types:

The types element describes all the data types used between the client and server. WSDL
is not tied exclusively to a specific typing system, but it uses the W3C XML Schema
specification as its default choice. If the service uses only XML Schema built-in simple
types, such as strings and integers, the types element is not required.

Message:

The message element describes a one-way message, whether it is a single message
request or a single message response. It defines the name of the message and contains
zero or more message part elements, which can refer to message parameters or message
return values.

PortType:

The portType element combines multiple message elements to form a complete one-way

or round-trip operation. For example, a portType can combine one request and one

11

response message into a single request/response operation, most commonly used in
SOAP services. Note that a portType can (and frequently does) define multiple
operations.

Binding:

The binding element describes the concrete specifics of how the service will be
implemented on the wire. WSDL includes built-in extensions for defining SOAP
services, and SOAP-specific information therefore goes here.

Service:

The service element defines the address for invoking the specified service. Most
commonly, this includes a URL for invoking the SOAP service.
To keep the meaning of each element clear, Figure 2.7 shows a concise representation of

the WSDL specification.

<definitions>: Root WSDL Element

<types>:What data types will be transmitted?

<message>: What messages will be transmitted?

<portType>: What operations(functions) will be supported?

<binding>: How will the messages will be transmitted on the
wire?
What SOAP-specific details are there?

<service>: Where is service is located?

Figure2.7 The WSDL Specification in a nutshell

12

2.3 Web Service Composition:

Web service composition as an important value-added function provides an application
foundation for reusing services and automating composition. Service composition may be
defined from different perspectives and aspects.

From the perspective of structure and technology, service composition is a technique, by
which relatively simple services may be composed as more complex ones. The
perspéctive of dynamic process stresses that service composition is a process integrating
dynamic discovery, composition and executing existing services with a certain order for
creating a new service. From the perspective of work flow, service composition is
defined that web services provided by different enterprises are linked each other for
certain business goals through an apparent process model. From the perspective of
enterprise functions, web services composition will- integrate some basic services

obtained from different enterprises to provide a value-added service [15].

13

Chapter 3

Formal Model for Web Service Composition

3.1 The Formal Model:

In this model [16], web services are classified into single service and composite service,
which are defined informally as follows respectively:

Single Service: It is an independent service entity that can be invoked by other
services, and it realizes its service functionality by calling other services to provide
service support.

Composite service: It is a service which is the composition of many single services so
as to fulfill more complicate service functionality. The single service that doesn’t depend
on other services is called aromic service;, it provides its independent functionality
without calling other services. Composite service depends on either single services or
other composite services.

Single service model is the basis of composite service model; A new single service model

is introduced and depicted in Fig 3.1.

Set of Set of States Set of Rules
Message Types

Controller

Fig.3.1 A kind of single service model.

14

The model is composed of four parts:

(i) Set of message types: it includes all message types that can be received and sent by
the single service.

(7i) Set of srares: there is a corresponding state element in this set for each message type.
A state element may have multiple different attributes, each attribute value represents an
attribute state of message type itself, where attribute value received denotes that whether
or not a message has been received, if receivea'=frue, the message has been received by
the service, otherwise, it hasn’t been received, attribute value sent denotes whether or not
a message has been sent, and attribute value ready denotes whether or not a service is
ready to receive a message, etc.

(i) Set of rules: it denotes the relationship among all kinds of message types, including
the relationship between request and response, input request and output request, etc.

(iv) Controller: it takes charge of the control logic for receiving and sending messages,
and further takes next action and modifies the data in relevant set by judging related data
information. Controller is an execution mechanism in a single service.

According to this model, the basic processing procedure of service is as follows: firstly,
the controller is ready to receive a message and judge whether or not the message is a
type that can be received? If the answer is positive, receive the méssage and mark it with
received. In the meanwhile, the controller decides what action should be taken next step
according to the state of the received message. If the value of state is ready, next action is

taken according to the set of rules.

3.1.1 Message Type:

Based on the direction of message being passed, the message types are classified into
input message and oufput message. Input message denotes the message that can be
received by a single service, and output message denotes the message that can be sent by
a single service. Based on the charactéristics of message, messages are classified into
request message and response message. Request message has two types, one 1s response-
required request message that needs a response, the message waits and receives a
response message after its instance was created; the other is no-responsé-required request

message without requiring a response, the message needn’t wait a response after its

15

instance was created. For a response-required request message, there must be a response

message type against it. In order to keep up consistency for processing, we introduce an

empty message type © as the response type for a no-response-required request message,

i.e., a service needs to receive a @ message as a response after it sent a no-response-

required request message.

Meanwhile, to differentiate all message types in a single service, different no-response-

required request message types should be corresponded to different empty message types.

Request Message

Input Output
Message Message

Fig.3.2 The classification of message types.

3.1.2 For Single Service:

Now, we can describe the formal model of a single service as follows:

Single service model: A single service model S is a quintuple: S=(3.3,A,P.F) where:

Y = (MM......... M,) is the set of message types received or sent by the
service, each M; denotes a message type. We have n=[}| and for V M; M; €)
if i#j then M; # M;. Further we have : Y™ Y™ Y™ ¥ yresin
yresout sredin and LM obyiously, they all are the subsets of Y.

§: Y9 Y™ it defines the corresponding relationship between request message

type and response message type.

16

o A:Y™Lm _yvesout j @t defines the mapping relationship between a request-
input message type and a request-output message type. Empty set ® denotes that a
request-input message needn’t to correspond a request-output message.

e P = (p1p2...pn) is the set of states of all corresponding message types. n=[3’| , p;
denotes the state information of message type M; and it is a complex data type.
Following two cases should be differentiated when we deal with p; : (1) if M; €
™ p; has two types of attribute variables, thereinto variable ready denotes
whether or not it is ready to receive message type M; ,while the variable received |
denotes whether or not the message type M; has been received . (2)If M; € 3™
has one attribute variable senz, it dehotes whether or not it has sent a message type
M; If we use ’.” operator- to obtain a corresponding attribute value p;.ready=true
denotes that the service is ready to interact with other service with message M;,
otherwise, .pi.ready=false denotes that the service is not ready to interact with
others with message M;. The sufficiency and necessary condition for a message
M; to start to execute is that: pjready=true and pireceived=true hold
simultaneously, i.e., a service is ready to receive a message and at the same time

the message has been received.

e F is the computation controller that completes the processing based on the
received message and the data in relevant set. For single service S if : 3" = y™¢
and Y °"= " then the service is an atomic service that can be called by other

services, but it provides functionalities without depending on other services.

3.1.3 For Web Services Composition:

A single service can’t offer a complicated functionality; the collaboration of multiple
services is needed. A service can call other services, many services can collaborate to
complete complicated functionality by interactive call between them, therefore, there is a
call.relationshij) between some services.

Basic Call Relationship: Let Sy and S, be two services, both }'; and Y’ denote the

set of messages of two services, respectively. If there is a message type M, satisfying: M

17

€ 3" and M € Y24 there is a call relationship between S; and S, marked as
S1— Sa.

Interactive logic Relationships:

Here, we only discuss the interactive logic among request-output messages that includes
four basic types, i.e., sequence, selection, loop and parallel, which can be defined as
follows respéctively: ’ | |

[Sequence ¢]: Let M|, M; M, € 3" if M; must be executed after the
execution end of M. there exists sequence relationship between M; and M;.; furthermore,
there exists sequence relationship among M, My M, marked as: MM,
e....°My.

[Selection |[]: Let M, Mg M, € Y ™L°"If there is one and only one of them
be selected at a time based on different conditions, there is a selection relationship among
M, My M, marked as M1|M2 |....[M,.

[Loop *]: Let M € Y™™ If a condition is satisfied, _ is executed repeatly till the
condition is not satisfied, M has a loop relationship, marked as M.

[Parallel [f]: Let Let My, My M, € Y™ Starting from a time point, if
these messages can start to execute simultaneously and their execution time can be
overlapped, there is a parallel relatiohship among M;, M, M, marked as
- MIM2]|[[Mq.

Now we describe, the service composition model(or SM) based on a kind of service
composition pattern (or SC), therefore we define the SC as folloW:

Sercice Composition Pattern: A SC is triple (Q,T,R), where:

o Q={ Sy, Sz Sz.......... Su} is a set of n services that are used to compose a new
composite service;

e T:YNMU™MU. ... S Sy PUYL UL 5" is the set of all
call relationships between services, which denote the relationships between output
messages and input message of different services.

¢ R : the set of interactive logic relationships between messages.

If we regard all services composed together as a service, concerning the outside interface

regardless of internal structure, the whole composite service can be regarded as a single

18

service, it has the properties of single service and can take part in other services
composihg process. Composition pattern reflects the calling and interactive logic
relationships between services composed.
3.2 Features included in the Formal Model:
The existing formal model for web service composition may be featured with respect to
following dimensions.
3.2.1 Activeness Constraints:
In the process of web service composition, we must check whether the component web
services are active or not .There may be various reasons due to which a component web
service may not be active such as:

e The component web service is itself has some problems.

s The component web service in engaged with some other business transaction.
It is difficult to judge whether web services is active. So a tuple L is added to describe
web services’ status so'a web service with status is denoted as : S=(3,5,A,P,F,L),L.: {0,1}
Constraint 1: Web service can be used only when it is active.
Constraint 2: A web services can be used only when has finished last comp-osition. When
the composition is started web services should be locked.
Constraint 3: Composition of a set of web services can be possible only when all the web
services in the set are active at the time of composition. -
3.2.2 Relationships between component web services:
Let service Si and service Sj be sub-services of the composite service S while service Si
provides a different type of service from service Sj. The relationship R between sub-
services Siand Sj can be identified as follows[17]:
Independent Relationship: |
Each sub-service is freely independent of the other. The order of execution of these two
sub-services does not affect the composition service, which means that the result is the
same in either case.
Prerequisite Relationship:
The prerequisite relationship means that one service has to finish before the other starts.

Service Si has to finish before service Sj starts.

19

Parallel-Prerequisite Relationship:
Service Si executes at the same time as service Sj but service Sj has to wait for the result
from service Si before completing its process. This relationship differs from prerequisite
in respect of the time which the service processes must start.
Parallel-Dependency Relationship:
Service Si and service Sj process or execute in parallel (simultaneously) but the results of
each service need to be compromised with the other. This kind of relationship needs
negotiation and deadlock-free mechanisms.
Substitute Relationship:
Service Si can be substituted by service Sj. The service Si and Sj seem to provide the
same service but they have some different attributes.
3.2.3 The Flow web service:
In a business transaction, involved in the process of web service composition, an
intermediate web service is said to be “flow web service” if it satisfies the following
conditions: |
(i) It takes at least one request input message from a web service wsy (from set of
web services involved in the transaction) and
(i) Corresponding to that request input message, it triggers at least one request output
message to other web service(s) (other than wsy) with out responding to the web
service wsy and
(iii) (i) and (i1) are satisfied for at least one request input message that the web service
can accépts in that business transaction. |
These web services behaves like a pipe in the process of web service composition so can
also be named as pipe web services. |
Properties of the ﬂbw services:
e A web service may behave like a flow web service in a business transaction while
in another business transaction it doesn’t.
e If the point (iii) in the definition is satisfied for all request input messages that
web service can accept in a particular business transaction, then the service is called

pure flow web service otherwise it is called partial.

20

Flow terminating web service:
In a chain of flow web services a web service is said to be “flow terminating web
service” if it satisfies.the following:
(i) it takes at least one “request input message” from a web service wsi (from the set
of web services involved in flow chain) and .
(i) Corresponding to that request input message, it triggers at least one “responsé
output message” to the web service which originates the chain of the flow web
services. |

(iii) (i)and (ii) are satisfied for at least one “request input message”.

3.2.4 Verification by using Pi-Calculus:
The following framework shown in Figure 3.3 can be used to verify the correctness of
composite web service with the help of Pi-calculus:

The Pi-calculus[19]:

The Pi-calculus is a concurrency theory proposed by Robin Milner to research
communication between processes, whose basis is CCS (Calculus of Communication
System). The basic elements in pi-calculus are process and name, where process denotes
concurrent entities and the communication between processes is done by transferring
names. Name stands for Variableé, identifiers and channels.
A composite service is a kind of concurrency system where atomic service communicates
with each other by sending and receiving messages.
A process ? can be defined as follows: |
t::=0lc<x>.Plc<x>.P|t.P|P+Q|P|Q\(vc)P|ifx =y then P.
e 0: anull process, which does not execute any operation and can also be expressed
as NIL; -

e C< x> P:denotes to send x from path ¢ and then execute process P. In pi-
calculus, “P. Q " denotes the sequential execution of process P and Q ;

e ¢ <x>.P:denotes to receive x from path c and then execute process P ;

21

(Service Requester)

Target
composite
Service

Service
Requireme

Composite
Service w Service Composite
Composition Service
Module J Verification

e o

Pi-calculus
Process
service
lihrarv

Description i-Calculus Process

Service Description

(Service Provider)

Figure3.3 Verification Framework Using Pi-Calculus

1 .P : denotes to execute process P directly. t is a dummy action, which do
nothing;

P +Q : denotes to select one process from P and Q to be executed,;

P | Q : denotes that P and Q are concurrently executed. P and Q can exchange
messages through path.

(ve)P : denotes that P can not communicate with environment through path ¢,
but communication through path c can go on inside P ;

if x =y then P : denotes that if name x is equal to y ,then execute process P.

22

Composite service verification using Pi-calculus:
". The equivalent pi-calculus description of a web service description is as follows:
Let the service described in WSDL is shown as follows[20]:
<service name = “s”> '
<input message = “m”/>
<output message = “n”/>
</service> _
So it can be expressed as pi-calculus process a<m.> a<p> , which means that input

message m through channel a and then send message n through channel a.

3.2.5 QoS parameters:

For Single Service:

To meet the quality requirement on composite web services of users, it needs to choose
component services from the several ones that have similar functionality according to
QoS metrics. The main QoS metrics of Web service 1s the QoS metric set defined by
W3C [21], including performance, reliability, and robustness etc. Among all these
metrics, response time, reliability and availébility'are most concerned by users. Besides,
cost (i.e. price of the Web services) and reputation (i.e. the evaluation of the Web
services by the users) are also the important factors to consider when composing Web
services. Therefore, one can focuses on these four metrics when selecting component web
services [22].

Response time q,,(ws) . The time required to complete a Web service request
between service consumer and provider, denoted as qup(ws)=Ta(ws)-Ti(ws), where
Ta(ws) is the timestamp when the service ws is delivered and Tj(ws)is the timestamp
when the service ws is invoked.

Cost qes(Ws): The fee paid by service consumer for using Web service ws to service
provider.

Reputation q,p“(ws),: The evaluation by service consumers after using the service ws .
Reputation is always the statistical average of the service consumers’ evaluation

calculated as qrpu(ws)=2."=1 Rank i /n where Rank; is the feedback rank given by service

23

consumers after using the service ws which is a value between 0 and 1 (the larger the -
value, the higher the reputation) and n is the

statistical times. |

Availability qg;,(Ws): The probability that service ws will be available, denoted as
Qati(WS)=Tam(Ws)/ Tioa(Ws): , where Tim(ws) is the total test time and Tap(ws) is the
time in () total Tws that service ws is available.

- For Composite service:

There are multiple ways to measure the performance of a system. The most commonly
used performance metrics are response time (R) and throughput (X) [23].

Response time: To a composite web service, the response time is defined as the time
interval from a request arriving at the service to the instant the corresponding reply
begins to appear at the requestor’s terminal, and it is determined by two factors: the
quaiity of network transmission, and the processing capacity of the service. Here, we only
consider the processing capacity of the service. The quality of network is considered to
be very wide and difficult to analysis.

Throughput: The throughput is generally considered as a measure of the service’s
productivity, that is, the number of requests served successfully during the measurement
period. - ‘

Relation with Queuing network model [18]:

The use of queuing network models for evaluating the performance of composite Web
services is justified by many reasons. It is straightforward to map the request behavior of
a Web Service into a queuing network. Web services are modeled by service centers and
~the requestors are modeled by customers. Another important reason is that queuing
network models have a good balance between a relative high accuracy in the performance
results and the efficiency in model analysis and evaluation. For a composite Web service,
the queuing network model can be seen as some interconnected queuving systems for
single Web services. The interconnections between sub-services form the topology of the
queuing network. The topology of a queuing network shows the relationships between

the services and the movement of the requests among them.

24

SENTRA S
C)‘:'NT L Lf__l-,,?

Chapter 4

Implementation

4.1 Implementation of the service as a single web service:

In this section we describe the implementation details of the service as a single web
service. The following software tools are needed for implementation.

e JavaSE o

e Lclipse IDE forjava developers.

Java SE 6:
The following are various new features of Java SE 6[24}:
» Performance enhancements. Running a Java 5 app on Java 6 even without
recompilation will run faster.
e Pluggable Annotation Processing API
« (ommon Annotations.
o Java APl for XML Based Web Services - 2.0
« Web Services Metadata.
e Streaming API for XML.
e XML Digital Signature.

Lclipse IDI:

Fhe Lclipse IDE for Java EE Developers contains everything we need to build Java and
Java Enterprise idition (Java EE) applications. Considered by many 1o be the best Java
development tool available, the Eclipse IDE for Java I:E Developers provides superior
Java editing with 1ncremental compilation, Java EE 5 support. a graphical
HTML/JSP/JSF editor, database management tools, and support for most popular

application servers[25].

After successful installation of Java SE 6 , we configure Eclipse IDE to use Java SE 6
instaﬂed earlier.
Configuring Eclipse IDE:
e We select Window > Preferences > Java > Installed JREs, and click the Add
button.
e We then enter a name, such as Java SE 6, to éasily identify what version it is.
e Click the Browse button and locate the directory where JRE 6 was installed.
e Click OK.
e Select the Java SE 6 check box and then click OK.
After configuring Eclipse IDE the following steps are executed in order to create the
seryice as single web service:
Stepl: Create a project
e We select File > New > Project.
e Then we expand the Java folder and click Java Project.
e Click Next.
* Enter a project name, such as wsVijay3Example, when prompted.
e We select the Use default JRE radio button if it was previously selected by
default; otherwise we select the Use a project specific JRE radio button, ensuring
that it's Java SE 6.
e Click Finish to associate our project with the Java JDK we installed earlier.
e If we're prompted to switch Java perspective, then we click Yes.

Step2: Create the Server:

e We select File > New > Package.
e When the New Java Package window-opens, we enter a name for the package,
such as com.myfirst.wsServer.
Right-click the package name we just created, then select New > Class.

Configuring it as shown in Figure 4.1.

26

) New Java Class

Java Class b :
Create a new Java dass. U
Source folder: wsVijay 3Examplejsrc | Browse...
Package: com.myfirst. wsServer Browse...
[CJenclosing type:
Name: VijayServer
Modifiers: () public) defauk
[Jabstract [Jfinal
Super class: java.lang.Object] Browse. .. I
o
Which method stubs would you like to create?
[} public static void main{String[] args)
[Constructors from superclass
[“]1nherited abstract methods
Do you want to add 7 (Configure and default value here)
[[]Generate comments
? s

Figure 4.1 Adding class to the package

We create our class as public with no main method stub. Now that we have provided our

package with a class, we can write the code for the server, as shown in Appendix A.

Step3: Generate the Server code with ant:

We right-click the project and select New > File.
And then enter the name build.xml when prompted, then click Finish.
We open this file with the Ant Editor by right-clicking it and selecting Open With

> Ant Editor. From now on, whenever we double-click this file, it opens with the
Ant Editor.

Enter the Ant script shown in Appendix B.1.

To run the Ant build.xml file, we right-click Run As and select Ant Build,

which executes the Ant file.

Here we make sure that this results in a BUILD SUCCESSFUL message in the

Eclipse Console window, as shown in Figure 4.2.

27

File Edt Navigete Search Project Run Window Help
r - - Q- W o - S - S - i B9 r0pers Monkor !p»p--o-ym &’ save «® davaEe
@ Javadoc [Dedarstion [Console (% Problems x " : - § -

W>Wh~xﬁ(~umcwmmmmy , 2011 3:49:04 PM) 5
C:\Documents and Settings\Vijay\ -o:k-_g.c-\v-v LyeyIExample\build. xml =

o

@

Figure 4.2 Build Successful message

e We return to the Eclipse project and refresh the project by right-clicking
wsVijay3Example and selecting Refresh. We now see the generated code to run
the web service created under the new package called
com.myfirst. wsServer.jaxws.

Step4:Publish the web service:

After we have generated the code for the web service's server, we need to publish it

SO we can start using it:

e We create a new class under the com.myfirst. wsServer package we created, and call it
something like RunService.

e Right-click the package and select New > Class, but this time select the option to
create the main method stub.

e We write the code to publish our web service, as shown in Appendix B.2.

e Run this class by right-clicking it and selecting Run As > Java Application.

The Eclipse IDE Console window should display. We see an indication that the web

server has started, as shown in Figure4.3

28

File Edt Navigate Search Project Run Window Help
PO~ QU FGT- e S 1 K9 j0pera Montor [0 10para Design &7 Jave +* JavasEE

S s D O MRS 2 Frotter (pers voree porspectie) 77 - TIT T
RunService (3) [Java 1¢C (May 14, 2011 3:58:08 PM) @
Arollment number web service started by Vijay <

Figure4.3 Successful Run Message at console

Step5:View the wsdl:
e We open the internal Web browser in Eclipse by selecting Window > Show View
> Other > General > Internal Web Browser.
e Now we type the URL, such as
http://localhost:8080/wsVijay3Example?wsdl, which should display the web
service's WSDL text, as shown in Appendix C
e When we have finished, we can stop the web service by clicking the red square in
the Eclipse Console view.
Step6: Test the server:
Next we use the Eclipse Web Services Explorer tool to invoke the operations of a web
service via native WSDL and SOAP to test the methods enrollDecipher and getCourse
of the web service we just created.
e We need to change to the Java EE perspective. Click Window > Open Perspective
> Other.
e When the window appears we select Java EE.
e Then we select Run > Launch the Web Services Explorer. Maximize the view by

double- clicking its tab.
29

e Next we click the icon for WSDL page , this displays the WSDL page,
e In the Navigator pane, we click WSDL Main, and then enter the WSDL URL, in

this case http://localhost:8080/wsVijay3Example?wsdl, then click the
Go button.

e The WSDL is successfully opened, and we see a screen similar to Figure4.4

{2} Java fE - http:£/127.0.0,1:237BMwselwsexplorerwsexplorer. jspZorg.eclipse wst.ws. explorer-0 - Eclipse

Fie Edit Navigate Search Project Run Window Help

> fod HQ- Q- 36 dS 4 D3 77 K0 joperamontor K0 Joperadesign & Java <@ JavaEE
4] RunService.java . Web Services Explorer - “ O 55 oune [E] Taskuis ot m
Web Services Explorer 7 o &
- bt b:! & - \ = ".‘]
<= Navigator # Actions = L) AP Activate
£ WSDL Main 7 wsDL Binding Details 4 L Uncategorized
=1 22 http:/flocakhost: 8080 /wsVijay3
= 2 VijayServerService
*® _ Shown below are the details for this SOAP <binding> element. Click on an operation to
fill in its parameters and invoke it or specify additional endpoints.
- Operations
Name Documentation
enroliDecipher -
getCourse

~ Endpoints Add Remove

R T SR

http://locathost:8080 fwsVijay3Example

Go | Reset |

i Status

IWABQO381I http://locahost:8080/wsVijay 3Example?wsdl was successfully opened.

$ i Ll 2

5 Markers [Properties i Servers ¥ Data Source Explorer [Console (7

Lo Done

Figure4.4 WSDL binding details

Next we invoke an operation by clicking enrollDecipher under Operations (shown
in Figure4.4).

e Under the Body section, click the Add link (as shown in Figure4.5) to add a new
row to the values table.

e Enter an enrollment number (here, 09536019), and click the Go button.

30

e In the Status section, enrollDecipher response displays the result.
We should see a result like return (string):
“hello ji.....Your Enroliment Number is:019 Your Branch is: IT Your Admission
year 15:2009”.

{2 Java FE http:/1127.0.0.1:3561 wselwsexplorer Awsexplorer, jsp?org.eclipse.wst.ws explorer=0 - Eclipse
Fle Edt Navigate Search Project Run Window Help

BrQ- Q- 2 ARE 1-WARE B | =1 10 soperamontor [0 J0peraDesign &' Java |8 JavakE
U] RunService java 4 Web Services Explorer =SDRNY. 0
Web Services Explorer SO ER AR ;
S — B 1 TS S o) W XS T N LHE
| Navigator 3 2 Actions o X
| Zws0LMan A
| = 4 http://locahost:8080/wsviay © Invoke a WSDL Operation S 9
| = @ VijayServerService | al b A
= .EW’““@ Enter the parameters for the WSDL operation "enrollDecipher* and click Go to invoke. 2
® etCourse Endpoints
‘ http://localhost:8080 wsvijay2Example v
|
\
i - Body
|
‘» v enrolDecipher

~ &g strng 4gd Remove

g

[] 09536019

Go | Reset|

<

i Stats

% ~ enrollDecipherResponse
retun (string): Hello ji !!!Your EnroliMent Number is: 019 Your Branch is: IT Your Admission Year is: 2009 =
€ I e ¥ >

* Markers © Properties Jit Servers W Data Source Explorer & Console [- Y j,-_:i‘}i‘— = 420
RuniService (2) [Java Application] C:\glassfish3tjdkibin|javaw.exe (May 26, 2011 5:46:07 PM)

Enrollment number web service started by Vijay

2 Done

Figure4.5 The Result of invoking enrollDecipher.

31

4.2 Implementation of the service as a composite web service:

To implement the same service as a composite web service, we need to install JOpera,
JOpera is built as a collection of plugins for Eclipse IDE.

4.2.1 JOperu for Eclipse[26]:

"JOpera targéts developers of Service-Oriented Business Applications and provides them
with~tools for rapid service composition. It includes a visual modeling environment, a
light-weight execution engine, and also powerful- debugging/refactoring tools which
natively support the iterative nature of service composition. Service composition models
in JOpera are defined at a higher level of abstraction than traditional BPM/BPEL
languages and cover both architectural (structural) aspects as well as behavioral (flow)
ones. | _

4.2.2 Some definitions related with JOpera[27]:

Process template: A process template describes how the tasks, its components, are
connected together. It contains a control flow graph, which specifies the partial order to
follow when starting the tasks as well as the data flow graph, which defines how tasks
exchange data. A process templates is stored in an OML file.

Process instance: A process instance represents a running process template and
contains the state of one execution, including all data that is produced and consumed by
the tasks. Mulﬁple instances of the same template can be active at the same time. We can
use the Instance Navigator view in of the JOpera Monitor perspective to check what are
the instances currently managed by the JOpera Kemel.

Task: A task is a basic process component. It can either be an activity or a subprocess.

An activity: An activity represents the invocation of an external program (or service)
through a variety of protocols.
Program: A program is any software component or external system which can be

accessed by JOpera using one of the following protocols.
o UNIX pipes (stdin/stdout) - for standard UNIX applications
o SOAP messages - for Web services
e Java local method invocations - for Java classes and Java snippets

e SSH - for remote UNIX command-line applications

32

* JDBC - to send SQL queries to a database directly from a process
o RESTful interactions on top of HTTP

" The following steps are needed to implement the composite web service with J Opera.
Stepl: Crealing a new project:

In order to create a new Project, we right-click in the JOpera Navigator

and then select New > JOpera Project. We choose an appropriate "Project name"
("my web_service" in this case) and click on the "Finish" button.

Step2: Creating a new OML file:

Now that we have an empty JOpera project, we can add OML files into it by right-
clicking the project in the JOpera Navigator and selecting New > OML File. Enter an
appropriate file name ("corhposite.oml" in this case) and click on the "Finish" button.
Step3: Setting up the Composite service Process:

Before we can create a composition service process we need to define what the
components are. In JOpera, we need to create some programs that will be later connected
into a process. Here our process uses the following programs:

getcourse, getyears, getrollno, output, start and validity.

These programs are used as components to form the'composite Service process.

Step4: Creating a program:

(i) Click on the Add button in the Programs overview.

(ii) Click on the Edit button to edit the New Program.

(ii) Rename the program to getcourse.

(iv) The program is going to receive an input string and produce an output message. To
exchange data, JOpera programs use input and output parameters.

e Add an Input Box Parameter and call it “enrolls”.

e Add an Output Box Parameter named “course”.(as shown in Figure4.6)

33

£ JOpera Design - myfine/rollmain.omi - Eclipse

Flle Edit View Navigate

Search Project Run Window Help

ree B O Qs © T

[s0pera Navigator

+ = Factorial

+ = my_web service

+ 4= myelo

+ = myfactorial

+ 3= myfactwsd

= 4= myfine

= & ws
= > locathost

B vitey.oml

B rolmain.om
2P viay2.wsd

1= myrol2wsd

1= myrobwsdl

1= mysnipper

1= rolisnipper

L= weServerF xample

= wsvilay2e xample

& wsVijay3E xample

1= wsVijayExample

T T

"2 W) rolmain.oml

Program: getcourse 1.0

v General Information

[TJabstract [] Comment

Name. Yetcourse
Author : vijay
Yersion: 1.0

» Execution Settings
v Parameters

Inbox Parameters (1)
[envols (string)

= Qutbox Parameters (1)
"[course (String)

v Adapters

= 1 20pera Montor R0 soperaDesign & Java ¥ JavakE

Stable

Defauk Value:

Overview Program: getcourse 1.0 Adapter: JAVA_SNIPPE TAdapter (JAVA.SNIPPET)

* Problems [" Properties

v | Create New version | | Delete this version |

Figure4.6 Creating a program in JOpera

(v) We add an adapter describing how JOpera is going to run this program, we click on

the Add... button within the Adapter (Access Method) section and

e Choose the JAVA.SNIPPET component type from the list in the dialog box and

click Ok.

Click on Edit.
Then we enter the following java code shown in figure 4.7 that will perform the

desired task:

34

course=enrolls.substring(3,5);
int courseid=Integer.parselnt(course);
switch(courseid) {

case 35

course="CSE";

break;

case 36

course="IT";

break;

default:

course="NA":

break;

Figure4.7 Java Snippet component for getcourse program

(vi) Running the Program with a test Process:

Now that we have setup the getcourse program, we can run it by calling it from a test

process.

Select the getcourse Program and click on the Test button.

This will create a new process which contains a single activity which references
the program we just added. The process has the same input and output parameters
and, if we check the data flow view, they are already comnected to your program,
which is now ready to test.

Save the OML file.

Click on the Start button to start the process. The button is located in the
Overview tab next to the list of processes, , Since this is the first time, JOpera will
prompt us to enter some values for its input parameters. Enter 09536019 for the

input parameter in and click Run.

35

(vii) Checking the Results:
If all went well, the process runs very fast and is finished by the time Eclipse has

switched to the JOpera Monitor perspective. We can look in the Properties view for the

values of the output parameters as shown in the figure4.8.

o JOpera Monitor - my_web service/composite.oml - Eclipse
Fie Edt View Navigate Search Project Run Window Help

- .) PO Q- S P . 7 K@ 30pera Monitor KO operaDesign &' Java +® davaEE
: F S, 100% v
B9 0perana 2 “ 0 M) composite.oml] 9= Parameter Viewe i Tasks State [= 0 [90per i Instan
+ = Factorial ~
= 3= my_web service Search: ~
: B} composite.omi _ : 4, Factoriallter ativeProcess [1.0]
* 5= myello . FactorialRecursiveProcess [1.0]
+ =2 myfactorial 4 Test_multiple [1.0)
+ :.—JI- myfactwsdl T Test_SOAP_getCourse [1.0)
= = myfine % Test_getcourse [1.0] (1)
* & ws I®e0
B rolmain.oml 4 Test_halloworid [1.0]
2P vilay2.wsdl 4 Test_rolino [1.0)
¥ 3= myrolowsdl 4 Factorial_ierative [1.0]
+ = myroliwsdl | myenrolidecipher [1.0)
= mysnipper
=% rolisnipper v
55 Outline e
ControlFlow DataFlow
+ Processes (1) T Properties t | 3k bt * [
+ Programs (1) Property Yalue
~ Design
Abstract faise
Author vijay
Description Automatically generated test process for getcourse
Name Test_getcourse
@ Overview Pubkshed true
Subprocess faise
= Input Parameters
enrolls 09536019
= - Output Parameters
course I
< >

4 start) 3, Hello Warld ... B 3 WindowsE... =~ T3 10_chaps[Co...) Document2 - M... LY 30pera Monitor

Figure4.8 Running the program as a process
Step5: Creating other component programs.:
Similar to step4, we can create the other programs like getyears, getrollno, output, start

and validity. The input and output parameters for each program with java snippet code

are listed in Appendix C.
Step6: Creating the new Process :

(1) Click on the Add button in the Processes overview
(11) Click on the Edit button to edit the New Process

(ii1) Rename the process to myenrolldecipher

36

(iv) The process is going to receive an input string and produce an output message. To
exchange data, JOpera processes use input and output parameters.
e Add an Input Box Parameter and call it “enrollmentno”.

e Add an Output Box Parameter named “yourstatus™.

(V)Populating the Process:

After having created the process, we populate it with tasks. In order to do this we can
simply drag programs from the "Outline" view and drop them on the data flow of the
process we wish to populate.

(vi)Draw Data Flow Connections:

In order to draw the data flow connections, we first have to switch to the "Data Flow"
view of this process. Then the input and output parameters of the process need to be
displayed. As soon as this has been done, the input/output parameters of the process are

connected with input/output parameters of various tasks so that correct flow of data is

maintained. In case of this process the data flow is defined as shown in Figure4.9:

L J0pera Design - myfine/rollmain.oml - Eclipse
Fle Edt View Navigate Search Project Run Window Help

Overview 1 my: lidecipher 1.0 Ci Ik DataFlow

Figure4.9 Data Flow Diagram for the Process

37

Step7 Compilation of the Process:

Compilation of the process is simply done by saving the OML file. Given that there are
no problems (check the "Problems" view), the process should be compiled upon saving
the corresponding OML file. All we need to make sure is that in the menu "Project”,

"Build Automatically” is selected.

Step8. Executing and Monitoring the Process:

In order to run the process, we switch to the overview page, and select the process name
we want to start and then click on the Start button. Make sure that the oml file has been
saved.. The process will be started as soon as we click on Run. The next time we start the
process, it will be immediately executed. If we want to change the input parameter
values, we should use the Run.. menu and look for the launch configuration
corresponding to our process.

The control flow and data flow diagrams of the process are shown in figure4.11 and

figure4.12 respectively.
E p— T or— A S R i.,\\, ,~;;,,-.f:w.t,\'.‘,_..v;;.—;tv;',r.u»_‘x':,,';r:n BQQ}

g $-0-Q- B I~ 1 K0 Jopera Monor N0 JoperaDesign &}’ Java ¥ JavaEE
N3 - *, =L 100% v

9 30perana
-
+ = Factorial
* 33 my_web service
+ 1= myslo
3= myfactorial .
+ =3 myfactwsd x = P Name: {rolimain}myenrolidecipher(1.0]
= = ©9= Arguments Start Options . Common
* = ws
B) rolimain.oml :'z {rolf}Test_rolino{1.0] ~ Process Name: 3
{rolimain}myerrolidecipher(1.0] {roimain} myerwolldecipher(1.0 Browse...
it "‘;m"’d ¥ (rolmain}Test_getcourse{1.0]) ::
w o W"n"""l ## {rolmain}Test_getrolino{1.0] Input Perameters:
+ 1. mysnipper :; {rolimain}Test_getyears(1.0] Parameter Type Value
® 33 rolsnipper {rokman} Test_showoutpal 1.0} envolmentro String 09536019
o xarmole 4 {rokmain}Test_start{1.0]
] mﬁ“m' 'ME gl a@ ## (rolimain) Test_validity{1.0]
(timeoutclient} TestTimeoutClient{1.0)
55 outine i (treetaps}GetThreeTaps{1.0]
& {viewerdemo} viewerDemo{1.0]
W {ws.localhost.Fact_vif} Test_factorial_terativeRequest_1[1.0]
+ . Processes (1) #8® (ws.localhost fact_vij} Test_SOAP_factorial_ierativeRequest{1.0]
* Programs (6) ## (ws.locathost.math_factorisl} Test_SOAP_Factorisilter ativeProcesst
W {ws.locathost muktipleTest_Mukiple1}Test_SOAP_Test_MultipleReqe
¥ {ws.localhost.roll} Test_SOAP_Test_SOAP_enroliDecipherRequest] 1
#® {ws.locahost. wsvilayZE xample}roliprocess{1.0]
P {ws_localhost. wsvijay2E xample} Test_SOAP_enrolDecipher(1.0]
(ws.localh Test_SOAP_getCourse{1.0)
=M 1 {ws.localhost wsVijayExample} Test_SOAP_snrollDecipher(1.0]
Ju une
R = + JU Junt Plug-in Test
“# 0sGl Framework
Juy Task Context Test v
< >
Filter matched 55 of 55 tems
2 (e [oo]

Figure4.10 Run configuration for the process

38

) Jpera Monitor myhineZrotimain.omt. | clipse

- =

- -
2 e
-
-
3_— -
[~
- "
Re3
Controifiow DataFlow
»

P

{7 JOpera Monitor - myfinefrollmain.oml - Eclipse

Fle Edt View Navigate Search Project Run Window Help

Y B0 Q- B~ = W9 10peramontor KO JoperaDesign &’ Java +® JavakE
3 -
rolimain.oml =
& =
& (o
4
o= &
® C
Q
C_ Properties - *
Property -~
= Input Parameters
envolimentno 09536019
= Output Parameters
yourstatus Hello #0Your year of admission is: 20090 your branch is:IT D Your roll no is:019
v
s =

Figure4.12 Data Flow Diagram of the Composite Process

39

Chapter S

Results and Discussions

We have implemented the same service as a single web service and as a composite web
service. Both the implementations provide the same result.

5.1 The Result of the service as a single web service:

We implement the service as single web service with the help of Eclipse IDE, and when
we explore the single web service with the help of web service explorer tool ,the result

can be seen in the status window as shown in Figure 5.1

43 Java EI hittp:21127.0.0.1: 4884 Awsewsexplorerfwsexplorer. jsplorg.eclipse wst.ws.explorer-0 - Eclipse
File Edt Navigate Search Project Run Window Help

i Wwr QG- 56 ™S 49 3 71 K0 0peramontor 0 JoperaDesign & Java < ® JavaE
1] RunService.java) Web Services Explorer | "
Web Services Explorer r Y B i
. Navigator # Actions L X
- & -
&5 WSDL Main 2! Invoke a WSDL Operation e =
- 28 http://locahost:8080/wi 3
= 2 VijayServerService
2 @ VigyServerPortpy | Enter the parameters for the WSDL operation *enroliDecipher* and click Go to mvoke. Aj b A
] [E— e
& oetCourse
http://localhost:8060/wsvijay2Example v
- Body
- enroliDecipher
v arg0 string Add Remove
0
[] 09536019
Go | Reset |
v
i Status
~
- Body
~ enroliDecipherResponse
return (string): Hello ji !!!Your EnroliMent Number is: 019 Your Branch is: IT Your Admission Year is: 2009
v
< » ¢ >
 Markers [Properties . Servers % Data Source Explorer) Console {7 - x LD |88 ree
(o Done

Figure5.1 The Result of service as single web service

40

5.2 The Result of the service as a composite web service:

We implement the service as composite web service with the help of Eclipse IDE and
JOpera, and when we explore the composite web service with the help of JOpera Monitor
perspective the data flow graph and control flow graph both show the successful finished

tasks. The result can also be seen in the properties window as shown in figure5.2.

{3 JOpera Monitor - myfine/rolimain.oml - Eclipse

Fle Edt View Navigate Search Project Run Window Hep

" $-0-Q- G- 75 10 20pera onitor [0 J0peraDesion & Java ¢® JavakE

) rolman.oml © 8

G o

)=

Y-

N

Property

= Input Parameters
enrolimentno 09536019

= Qutput Parameters
yourstatus Hello ji0Your year of admission is:20090your branch is:ITOYour roll no is:019

Figure5.2 The Result of service as composite web service

41

5.3 Mapping of composite web service:

The following diagram figure 5.3 shows the message interaction between component web

services and composite web service.

Figure5.3 Message Interaction Diagram

For Each single service we can write single service model as:
For web service BaseWsS:
BaSCWS:(Zbaseasbase,Abasmeaseanase) where

Zbase—t M1 Mz, M3 My} |

=M M;) Y ={ MMy}

Zin:{ M]’M4} zoul= {,M27 M}}
Zrc(Lin:{ Ml } ZI‘C(]_OU[={ M;}

42

I =My} Y ={ My}

Obase 18 defined as follows:

Bbase(M1)= M2 ,0base(M3)= My

Avase is defined as: Apase(M1)= M3

F of web service WS1:

WS 1= ws1,0ws1,Aws1,Pws1,Fwsi) where

>wsi={ Ms,Mg}

Y ={Ms Mg} 2° =0

Z={Ms} T={Me}

Y= Ms} T ={ M}

Sws1 1s not defined and Ayg is defined as: Ays1(Ms)= M.
For web service WS2:

WS2=(3 ws2,0ws2,Aws2, Pws2,Fws2) where

2ws2={ M7,Mg Mjo,Mi2}

Y9 ={ M7,Ms M;o,M1p} ¥ =0

SP={ My} X={ Ms, Mio,Miz}

Y= My} Y ={ Mg, Mo, M2}

Sws2 is not defined and Aws; is defined as: Aws2(M7)= { Mg, Mj0,M2}.

FFor web service WS3.:

WS3=(3 ws3,0ws3,Aws3, Pws3,Fws3) where
2wss={ Mo, M4}

Y ={ My M} X =0

Y= { Mo} X "={Ms}

Y= M} YL ={ M)

Sws3is not defined and Ay is defined as: Awsa(Mo)= M.
For web service W54.

WS4=(2 wsa,Orests Avsa, Prosa, Fusa) where
Yowsa={ M11,M}6} '
2 ={ My, Mg} YT =D

Y=t My} Y '={Mis}

43

Zreq_in= { M]] } zreq_am — { M16 }
Swsq 1S NOL defined and Awss is defined as: Aysa(M11)= Mg,

FFor web service WSS5:

WS5=(2 wss,0wss,Awss, Pwss,Fwss) where

Swes={ Mi3,Mis}

> ={Mi, Mg} >° =@

YP={ M} X™={Mig}

S Mis) 5 = Mg}

Oussis not defined and A.ss is defined as: Auwss(M13)= Mjs.

For web service WS6:

WS6=(ws6,0ws6,Aws6, Pwss,Fwss) where
2 wss=1{ M1s,Mi17, M19o,Mao}
> ={ Mis,M17, M1o} X ={ Mao}
Y= {Mis,Mi7, M} T™={Mo}
Y= Mys, Mz, Mo} 370" =0
Y = TN ={ Mg}
dwss 18 not defined and Ayss is also not defined.
The Service Composition pattern is SC =(Q,T,R) where:
Q={ BaseWsS , WS1, WS2, WS3, WS4, WS5, WS6}
T: T(Ms)= Ms, T(Mes)= M7, T(Ms)= My, T(Mi10)= M11, T(Mi2)= Mi3, T(M14)= Mjs,
T(Mi6)= Mz, T(Mig)= M.
R: Ms[[Mof] M2,
So the Service Composition Model is SM={}_,6,A,P,F ,SC} where:
Z={ M1, Mo}, 3" ={ MiLZ™ ={ Mo}, 2 ={ M1}, X% ={ M2}, (Mu)= M;

A is an empty set,the algorithm of F is consistent with single service model.

44

5.4 Verification using Pi-calculus:

The Pi-calculus based verification of our composite web service can be performed by
expressing both the composite web service and the service requirement as pi-calculus
process.

The service requirement can be expressed as Pi-calculus process:

P servioccRequirement = 8<enroll>.e<status>

Where a and e are channel names.

enroll Base WS status
a | e

Figure5.4 Channels and Messages interaction for composite service

As our composite service is composed of five component web services, the interaction
between component services with channels and messages can be graphically described as

shown in the figure5.6:

Figure5.5 Channels and Messages interaction between components

45

The pi-calculus expression for each component can be written as:

Pyaia = a<enroll>.(b <enroll> | € <enroll>} 9 <enroll>)
Poousse= b<enroll>. & <course>
Pyear = c<enroll>. ¢ <year>

Pon= d<enroll>. ;_ <roll>

Poupur = (&' <course> | ¢ <year> | d <course>). e <status>

Now we can write the pi-calculus expression for composite web service as:

PCompositeService: Pvalid-(Pcourse I Pyear |Proll)- Poutput

= a<enroll>.(? <enroll> | ¢ <enroll> | E<enroll>)('b<enroll>. b <course>|

c<enroll>.¢ <year>| d<enroll>. d <r011>).
(b <course> | € '<year> | d '<r011>). t;<status>
Now we have formalized the service requirement and composite service with pi-calculus
processes,we can reason about the correctness of composite service formally.
PcompositeService— a<enroll>.(b <enroll> | _E<enroll> | d <enroll>)(b<enroll>. b <course>
c<enroll>. ¢ <year5| d<eﬁroll>. d <roll>).
(b' <§ourse> | C'<yeax> | d ‘<r011>). e <status>
Ly a<em'oll>,(5 <enroll> | E<enr011> | 3.<enroll>)(b<enroll>.|
c<enroll>. ¢ <year>| d<enroll>. d <roll>). |
(C’<year> | 4 "<roll>).g<status> |
— 25 a<enroll>.(b <enroll> | E<enroll> | d <enroll>)(b<enroll> |
c<’en1_'oll>.| d<en_roll>. Z’T<r011>'). |

(d <roll>). € <status>

46

ot a<enroll>.(b <enroll> | € <enroll> | E<enr011>)(b<enroll>.|

c<enroll>.| d<enroll>.). ¢ <status>

3 times » a<enroll> € <status>

Now we perform verification:

PCompositeServicel P serviceRequirement a<enroll>. ¢ <status> I a<enr 011>.e_<status>

enroll status OIO
From the above verification process, the transition sequence of the composite service and
service requirement terminates at a null process, it indicates that both composite service

and service requirement process can come to an end after sending and receiving

messages. Thus the composite service can achieve the goal of service requirement.

47

Chapter 6

Conclusion and Future Work

- 6.1 Conclusion

On the modeling of service composition, there are many research topics in both academia
and industries. Building models for sefvice composition is not only helpful to under stand
the service composition precisely, but also helpful to analyze and verify some properties
specific to service composition and assure the correctness and quality of service.
In this dissertation, we have discussed how a formal model of web service is described
based on some composition pattern ideas. The model concentrates on message interaction
between services, so it can be used to simulate message interaction between services.
Here,we have implemented the same service as a single service as well as composite
service. The single service is implemented with Eclipse IDE while the composite service
- is implemented with JOpera plugins.
The formal model is also featured with the following dimensions:

e Additional constraint on web service composition.

e Relationships between component web services.

» Flow web services.

o Composite service verification.’

e QoS parameters.

6.2 Future Work

The described formal model is just a initial model of service composition, in future work,
complex service composition properties should be studied in more details, the merits of
all kinds of related models should be absorbed to improve the model’s expression ability
so as to simulate the execution of service composition. |

Also the implementation of composite service verification framework is an important
research aspect that can be done in future. The relation of formal model with queuing

network model can be explored to evaluate performance measures of interest.

48

REFERENCES
[1] Chifu V.R,, Salomie I. and St. Chifu E., “Fluent calculus-based Web service

composition —From OWL-S to fluent calculus™. In: JCCP 4th International Conference
on Intelligent Computer Communication and Processing, Cluj-Napoca, 28-30 Aug. 2008,
pp.161 — 168.

[2] Huaiguang Wu and Guoqing Wu, “Formal Depiction of Composition of Web
Services Based on CCS and Modal p-calculus”. In: IEEC International Symposium on
Information Engineering and Electronic Cominerce, Ternopil, 16-17 May 2009,

pp.- 408 —412.

[3] Simple Object Access Protocol[Online]. Available: http ://www.w?».org/TR/sbap.

[4] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana. Web
ServicesDescriptLanguage(WSDL)1.1[Online].Available:
http://www.w3.0rg/TR/2001/NOTE-wsdl-20010315.

[5] Universal Description, Discovery and Integration of Web Services[Online].

Available: http://www._uddi.org.

[6] Zuohua Ding, Mingyue and JiangJing Liu, “Model Checking Service Component
Composition by SPIN”.In -8" IEEE/ACIS International Conference on Computer and
Information Science, Shanghai, 1-3 June 2009,pp. 1029 — 1034.

[7] Web Services [Online]. Available: http://www.w3.0rg/2002/ws/Activity.

[8] Jia Zhang, Chang, C.K.,Jen-Yao Chung and Kim, S.W., “WS-Net: A Petri-net Based
Specification Model for Web Services”. In: Proc. IEEE International Conference on Web
Services, 6-9 July 2004,pp. 420 —427.

[9] Thomas, J.P., Thomas, M., and Ghinea, G., “Modeling of Web Services Flow”. In:
« IEEE International Conference on E-Commerce, 24-27 June 2003,pp. 391 — 398.

[10] Jin-dian Su, Shan-shan Yu and He-qing Guo, “Dynamic Substitutability Analysi‘s of
Web Service Composition via Extended Pi-Calculus”. In: [EEE/IFIP International
Conference on Embedded and Ubiquitous Computing, Shanghai, 17-20 Dec. 2008,

pp. 447 — 452,

[11] Yu Tang, Luo Chen, Kai-Tao He and Ning Jing, “SRN: An Extended Petri-Net-
Based Workflow Model for Web Services”. In: Proc. IEEE International Conference on
Web Services, 6-9 July 2004,pp. 591 — 599.

49

[12] Michael C. Daconta, Leo J.Obrst,Kevin T.Smith “Understanding Web Services” in
The Semantic Web Ed.,1* ed.Indianapolis, Indiana: Wiley Publishing, Inc.,2003,pp.57-61.

[13]Michael C. Daconta, Leo J.Obrst,Kevin T.Smith “Understanding Web Services” in
The Semantic Web,Ed., 1* ed.Indianapolis, Indiana: Wiley Publishing, Inc.,2003,pp.65-70.

[14] Ethan Cerami “WSDL Essentials” in Web Services Essentials, Ed.,1¥ ed. New York:
O'Reilly,2002,pp.102-105.

[15] Huigui Rong,Ning Zhou,Hongqin Chen and Hongli Cheng, “Research on Strategy of
Web Service Composition based on Software Life Cycle”. In: WiCOM'4th International
Conference on Wireless Communications, NetWorkiizg and Mobile Computing, Dalian,

12-14 Oct. 2008,pp. 1 — 4.

[16] Bixin Li, Yu Zhou,Ying Zhou and Xufang Gong, “A Formal Model forWeb Service
Composition and Its Application Analysis”. In: 2nd IEEE Conference on Asia-Pacific
Service Computing, Tsukuba Science City,2007, 11-14 Dec. 2007, pp. 204 —210.

[17] B. Benatallah, M. Dumas and M-C. Fauvet, “Towards Patterns of Web Services
Composition”,In Patterns and Skeletons for Parallel and Distributed Computing, Springer

Verlag, UK, “citeseer.ist.psu.edu/benatallah02towards.html”.

[18] Kaiyu Wang and Naishuo Tian, “Performance Modeliﬁg of Composite Web
Services”. In : PACCS P&cz‘ﬁc-Asz‘a Conference on Circuits, Communications and
Systems, Chengdu, 16-17 May 2009,pp. 563 — 566.

[19] The Pi-calculus [Online]. Available: http://en wikipedia.org/wiki/pi-calculus .

[20] Yanbin Peng, Lv Ye, Zhijun Zheng, Jian Xiang, Ji Gao,Jieqing Ai; Zhenyu Lu,Yu
Jin and Xueqin Jiang, “Automatic service composition verification based on Pi-
calculus™. In : EBISS '09 International Conference on E-Business and Information System
Security, 23-24 May 2009,pp. 1 — 4.

[21] QoS for Web Services: requirements and possible approaches[Online]. Available:
http://www.w3c.or kr/kr-office/TR/2003/ws-qos/.

50

[22] Aijun Jiang, Xiaoyong Mei, Shixian Li and Fudan Zheng, “A QoS Tool Framework
for Developing Composite Web Service”. In: ISISE '08 International Symposium on
Information Science and Engineering, 20-22 Dec. 2008,pp. 663 — 668.

[23] E. Lazowska, J. Zahorjan, S. Graham and K. Sevcik, Quantitative System
Performance: Computer System Analysis Using Queueing Network Models, Prentice
Hall, Englewood Cliffs, N. J., 1984,pp.203-300.

[24] Java SE 6[Online]. Available: o
http://www.oracle.com/technetwork/java/javase/documentation/index.html .

[25] Eclipse IDE[Online]. Available: http://www . eclipse;org/ .

[26] JOpera plugins [Online]. Available: http://www.jopera.org/

[27] FAQs of JOpera[Online]. Available: http://www jopera.org/docs/help/jop_7.html/

Appendix A

Java class: VijayServer

package com.myfirst.wsServer;,
immport javax.jws, WebService;
@WebService
public class VijayServer {
public String enrollDecipher(String enrollS) {
enrollS =enrollS.trim();
String s = null;
if (enrollS.length() < 8){
s = "Invalid enrollment Number";
return s; 1
String yearS = enrollS.substring(0, 2);
String courseS = enrol.ls.substring(l 5
int courselD = Integer.parselnt(courseS);
String EN = enrollS.substring(5, 8);
yearS ="20" + yearS;
String course = getCourse(courselD);
s = "Hello ji......\n" +"Your EnroliMent Number is; " + EN + "\n" + "Your Branch is: " + course
+"\n" + "Your Admission Year is: " + yearS;
retum s, H
public String getCourse(int courseID) {
String s = null;
switch (courselD) {
case 35:
s ="CSE";
break;
case 36;
s="IT";
break:
default:
s ="NA";
break; }
return s; }

52

Appendix B
Ant Script : build.xml

B.1 Ant Script build xml:
<project default="wsgen">
<target name="wsgen">
<exec executable="wsgen">
<arg line="-cp ./bin -keep -s ./src -d ./bin
com.myfirst. wsServer. VijayServer"/>
</exec> |
</target>

</project>

B.2 Java Class RunService:
package com.myfirst.wsServer;
import javax.xml.ws.Endpoint;
public class RunService {
public static void main(String[] args) {
System.out.println("Enrollment number web service started by Vijay");
Endpoint.publish("http:/localhost:8080/wsVijayExample", |

new VijayServer());

53

Appendix C

Programs Code

C.1 Program Start:
Inbox parameters: eninstart(String)

Outbox parameters: enoutstart(String)

JAVA.SNIPPET:

If (eninstart.length()<8)
enoutstart= ""invalid enrollment”;
else

enoutstart=eninstart;

C.2 Program Validity:

Inbox pzirameters: enin(String)
Outbox parameters: enout(String)
JAVA.SNIPPET:

enout=enin;

C.3 Program getrollno:

Inbox parameters: enrolls(String)
Outbox parameters: rollno(String)
JAVA SNIPPET:

rollno=enrolls.substring(5,8);

C.4 Program getyears:

Inbox parameters: enrolls(String)
Outbox parameters: year(String)
JAVA SNIPPET:

year=enrolls.substring(0,2);

year= “20”+year;

C.5 Program showoutput:

Inbox parameters: courseR(String)
rollnoR(String)
yearR(String)

Outbox parameters: s(String)

JAVA.SNIPPET:

S= ‘(Hello ji)7+ (C\n)‘)_'_
“Your year of admission is:”+year +“\n”+
“Your branch is:™+courser+“\n”+

“Your roll no is:”+rollnoR;

55

Appendix D
WSDL File of single web service

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!- Published by JAX-WS RI at hitp.//jax-ws.dev.java.net. RI's version is JAX- W SRI
2.1.6in JDK 6. -->

<.-’—~ Crenerated /n JAX-WS RI at htip:/fjax-ws.dev. /ava net. RI's version is JAX-WS RI
246 JDK 6. -->

<definitions xmins="htp.//schemas.xmlsoap.org/wsdal/"
xmlins:soap="htip.//schemas.xmisoap.org/wsdl/soap/"
xmlns:ins="http://wsServer.myfirst.com/"
xmins:xsd="htip://www.w3.0rg/2001/XMLSchema” name="VijayServerService"
targetNamespace="http://wsServer.myfirst.com/">

<fypes>

<xsd:schema>

<xsd:import namespace="http://wsServer.myfirst.com/"
schemalLocation="http://localhost:8080/ wsvijay2Example?xsd=1"/>
</wsd:schema>

<npes

<message name="enrollDecipher">

<part element="tns:enrollDecipher" name="parameters"/>

</message>

<message name="enrollDecipherResponse'>

<part element="tns:enrollDecipherResponse” name="parameters"/>
</message> '
<message name= getCourse >

<part element="tns:getCourse” name="parameters"/>
</message>

<message name="getCourseResponse">

~purt element="ms:getCourseResponse” name="paramelers”;
</message>

<portType name="VijayServer”>

<operation name="enrollDecipher">

<input message="tns:enrollDecipher"/>

<output message="tns:enrollDecipherResponse"/>
</operation> ‘
<operation name="getCourse”>

<input message="tns:getCourse"/>

<wutpul message="rns:getCourseResponse"/>
<foperation> ‘

porrlvper

<binding name="VijayServerPortBinding” type="ins: VijayServer"”
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/htip"/>
<operation name="enrollDecipher">

56

<soap:operation soapAction=""/>
<tnpnt>

- “soup:hody use="literal"/>
<finputr>

<ouiput>

<soap.body use="literal"/>
</output>
</operation>
<operation name="getCourse">

<soap:operation soapAction=""/>

<input>

<soap.body use="literal"/>

</inpur>

COMIPIEE

<soup:body use="literal"/>

<loutpirt>

<Joperation>

</binding>

<service name="VijayServerService">

<port binding="tns: VijayServerPortBinding" name="VijayServerPort">
<soap:address location="http://localhost:8080/wsvijay2Example"/>
</port> ' :

</service>

<fdefinitions>

57

	Title
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

