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ABSTRACT 

Channel estimation plays a crucial role in wireless communication receivers with 

coherent detection. In contrast to training-based methods, the blind (self-recovering) 

approach to channel estimation in which the estimate is done purely based on the knowledge 

of channel output is addressed in this work. Currently in practice, most of the wireless 

standards employ training-based methods or pilot subcarriers for estimation of CIR. Blind 

techniques are being researched on from past three decades. The advantage of adopting blind 

techniques is the conservation of signal bandwidth through the elimination of training/ pilot 

symbols. This transforms into higher spectral efficiency and thus higher information rates can 

be achieved at given channel bandwidth. 

Recently, orthogonal frequency division multiplexing (OFDM) has become an attractive 

choice in wireless standards. Further, use of multiple antennas at both ends of a wireless link: 

multiple-input multiple-output (MIMO) technology has been demonstrated to have the 

potential of achieving extraordinary data rates. The use of MIMO technology in combination 

with OFDM, i.e., MIMO-OFDM, therefore seems to be an attractive solution for future 

broadband wireless systems. 

Blind channel estimation using second-order statistics in SISO-OFDM and MIMO-
OFDM systems are addressed. To be more specific, the two most sought out approaches 

namely: subspace decomposition method and precoder-induced-correlation averaging method 

are described and compared in terms of their performance and practical applicability. Finally, 

the techniques to resolve the constant complex scalar estimation ambiguity fundamental to all 

second-order statistics based methods are addressed. A novel completely/ totally blind 

channel estimation technique via source constellation-splitting and modified phase-directed 
algorithm for SISO-OFDM systems is proposed and evaluated. 
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Chapter 1 

INTRODUCTION 

In a digital communication link, prior to coherent detection, the incoming information 

symbol needs to be removed of the distortion caused due to imperfect channel variations in 

order to prevent erroneous decisions. This is termed as channel equalization [1-2]. In the case 

of non-coherent detection, equalization is not compulsory, but use of non-coherent detection 

causes SNR loss of around 3 dB. The channel equalization can be achieved in two ways: 

either directly or indirectly. In the former case, a filter tuned to function as inverse-channel is 

designed to work as an equalizer. The channel impulse response (CIR) knowledge is utilized 

implicitly. In the latter scenario, it is achieved in two steps; first the channel is estimated 

explicitly and then the incoming signal is recovered by de-convolution. Given any arbitrary 

channel, direct equalization is more challenging since modelling the inverse function is not 

always practically feasible (e.g. non-minimum phase and/ or singular channel, ill-conditioned 

channel function). As far as second approach is concerned, the channel estimation can be 

achieved in two ways: via training or in blind manner. The former involves transmitting a 

known set of data through the channel. At the receiver, the channel response is estimated 

simply by solving the channel input-output relation. In blind (self-recovering) techniques, the 

channel response is estimated purely based on the knowledge of the channel output as 

illustrated in fig. 1.1. 

(Source) 	 (Channel output) 
S 	Channel 1H 	 ' 

To be estimated 	 N 
(Noise) 

Unknown 	 Known 

Figure 1.1: Illustration of blind channel estimation problem 

Currently, most of the wireless standards employ training based methods for estimation of 

CIR. For example, GSM (Global Systems for Mobile or Groupe Special Mobile) standard 

dedicates almost a 50% of the total bandwidth for training on an average. In 3GPP-LTE 

(Long term evolution), in OFDM frames, known symbols called pilots are inserted at specific 

1 



locations in the time-frequency grid in order to facilitate channel estimation (The pilot 

spacing in frequency direction equals 6 subcarriers, while in time direction there are 2 OFDM 

symbols per slot containing pilots, at a distance of 4 and 3 OFDM symbols from one 

another). Around 33% of total subcarriers per frame are reserved for pilots/ reference 

symbols. The advantage of adopting blind techniques is the conservation of signal bandwidth 

through the elimination of training/ pilot symbols. This transforms into higher spectral 

efficiency and thus higher information rates can be achieved for given channel bandwidth. 

The essence of blind techniques rests on the exploitation of structures of the channel and 

certain statistical properties of the input. 

1.1. LITERATURE SURVEY 
Blind techniques are being researched for past three decades. Several blind algorithms 

have been proposed, each significantly different from the other. Most of the blind channel 

estimation approaches irrespective of the communication platform can be classified under 

one or more of the groups [3-5] as depicted in fig. 1.2. 

	

MOME.'4T 8A$ED 
	

BAYE$  TYPE 

LThPROSSiNG 	 NLDMAR?oc .ss c 
(Based on SOS) 	 I sad on H1 

Via:. 
, .~ 	.s e 	' ea• 

Figure 1.2: The classification tree for blind channel estimation techniques 

As depicted by the classification tree, most of the blind techniques mainly fall into either 

Bayesian or moment-based methods. Bayesian techniques (ML/ MAP) are non-linear in 

nature and use higher-order statistics of the channel output. Bayesian techniques in turn can 

be classified as recursive or batch-processing approaches. Recursive techniques are not 

feasible in busty or asynchronous transmission systems. Bayesian batch-processing 

techniques normally exhibit fast-convergence but demand high computational complexity. 

Moment-based approaches on the other hand are batch-processing techniques, which rely on 
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the estimate of channel output signal statistics obtained by time-averaging. Moment-based 

approaches can be classified as linear or non-linear depending upon whether they rely on 

SOS or HOS respectively. HOS-based methods are computationally complex and exhibit low 

convergence. Each of these can further be divided into frequency-domain or time-domain 

approaches depending upon the domain in which the processing is done for channel 

estimation. In the following, we give a brief introduction to some prominent moment-based 

(especially SOS-based) blind channel estimation algorithms. 

1.1.1. SINGLE CARRIER SYSTEMS 

For a single-carrier SISO communication link, wherein the channel transfer function is 

non-minimum phase, the unique relationship does not exist between the amplitude and phase 

responses of the channel. Hence, one of the solutions for these systems is to estimate both 

amplitude and phase response which is possible by utilizing the HOS contained in the 

channel output. The earliest works on blind channel estimation includes the works of Godard 

[6], Sato [7], Bellini (Bussgang algorithm) [8]. They are a form of blind stochastic gradient 

channel equalization algorithms which consists of minimizing a non-convex cost function. 

They can be extended to work as blind channel estimators under the assumption that the 

channel is linear and has zero initial condition. Unlike above methods, HOS can be explicitly 

employed in channel estimation as proposed in [9-12]. As far as these approaches are 

concerned, HOS are represented in time-domain by higher-than-second-order cumulants and 

moments. Their frequency domain counterparts obtained by multidimensional Fourier 

transforms are called poly-spectra and moment spectra. In general, HOS are useful in 

situations where-in non-linearity and coloured noise is to be accounted for. Extracting 

information from HOS means large variance and non-linear processing. Thus, they require 

large number of data samples and have low convergence rate. This is unacceptable in 

applications where the channel is fast time-varying (mobile channels); data rates are high or 

sent in short bursts (TDMA). Further, HOS provides only an incomplete probabilistic 

characterization of the signal and suffer from local convergence. 

These problems were partially overcome by an algorithm presented by L. Tong, G. Xu 

and T. Kailath (TXK algorithm) [ 13], which use linear processing via second order statistics 

(SOS) and oversampling in time-domain. This algorithm is better than those using HOS in a 

sense that they require less number of computations and data samples for estimation. Over-

sampling the channel output (virtual SIMO systems) at the receiver makes it cyclo-stationary. 

The cyclo-stationarity can also be induced by employing physical SIMO systems, MISO/ 
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multi-rate transmission systems and periodic modulation [14-16]. This second-order cyclo-

stationarity (SOCS) property is utilized for channel estimation. By utilizing SOCS, the SISO 

channel can be estimated irrespective of the location of channel zeros, noise characteristics 

(colour), and channel order over-estimation errors [13]. Apart from cyclo-stationary based 

methods, many SOS-based algorithms have been proposed. They normally utilize the channel 

structure for estimation purpose. 

Sub-channel matching (correlation matching) method by H. Liu, G. Xu, and L. Tong [ 17] 

was presented as deterministic approach (i.e., the channel noise is assumed to be negligible) 

and later as statistical approach to include the effect of noise. A sub-space (decomposition) 

method was proposed by E. Moulines et al. [18]. This approach is a direct descendent of the 

TXK approach. The algorithm is based on the channel structure introduced due to 

oversampling at the receiver and the orthogonality property of the signal and the noise 

subspaces. Owing to SIMO structure of the channel, a linear parameterization of the noise 

subspace in terms of the channel parameters is possible. This yields a cost function that can 

be minimized in least-squares sense to obtain the channel estimate. Subspace methods can be 

divided into deterministic subspace methods and statistical subspace methods. Deterministic 

methods do not assume that the input source has a specific ,statistical structure. In statistical 

subspace methods, a stochastic source with known SOS is assumed. All practical channel 

impulse responses are IIR in nature. But, owing to receiver sensitivity issues, for non-sparse 

channels, most of the energy is concentrated in first few samples allowing the FIR 

approximation to be feasible. The length of the approximate FIR model is known as 

"effective length". This corresponds to significant part of the channel impulse response and 

provides a good approximation to the true channel response. The estimation of effective 

length is crucial and the analysis of performance degradation of the blind estimation 

algorithm due to errors in channel length estimation is important. Although, subspace based 

approaches have significant advantage of being simple in structure, they suffer from 

estimation errors when the order of the channel is unknown. The subspace algorithm can be 

made robust to channel order over-estimation by utilizing the specular structure of the 

channel as mentioned in [ 19]. This leads to parametric formulation of subspace approach. An 

extension to the original approach which is robust to both over-estimation and lack of channel 

disparity (e.g. the sub-channels have common zeros) was proposed by Hoteit [20]. When the 

channel roots are close to unit circle or in SIMO case when the common zeros of the sub-

channels are close to unit circle, the FIR equivalent filter length required to model the inverse 
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filter becomes exceedingly large and hence is practically not feasible. To overcome this 

problem, sufficient-order equalizers wherein equalization structure that is based upon two IIR 

filters and an FIR filter together with two block-based time reversers have been proposed by 

Lamotharan [21]. A sub-space fitting approach for channel-order estimation for non-

minimum phase channels by utilizing distance between subspace matrices was proposed by 

G. Panel et al [22]. As far as subspace approaches are concerned, either linear or quadratic 

parameterizations (constraints) of signal subspace or noise subspace can be used for 

estimation purpose [23-25]. The noise subspace methods are deterministic subspace methods. 

The variation of subspace approach that uses parametric noise subspace is also known as 

weighted-subspace method. In practice, the impulse response of communication channel will 

normally be time-varying and can assume an arbitrary impulse response at any instant of 

time. 

Linear predictor error based methods (linear prediction approach: LPA) by K. Abed 

Meraim et al. [26] and Yifeng Zhou et al [27] utilize only partial SOS information of channel 

output. The basic idea behind the linear prediction approach is to recognize that the channel 

input-output relation; which is a moving-average (MA) process is also a finite-order 

autoregressive (AR) process. Only the first few columns of channel output's auto-covariance 

matrix, where leading channel coefficients dominate, are utilized. Hence, the estimation error 

can be very large if the channel has a weak precursor impulse response [28]. The Outer-

product decomposition approach (OPDA) proposed by Zhi Ding [29] unlike LPA is more 

robust to channel noise. This approach utilizes the block Hankel structure of channel matrix 

for channel estimation. The above mentioned algorithms (LPA and OPDA) assume that the 

channel input is temporally white. This can be relaxed if linear smoothing (in contrast to 

prediction) is used. The formulation of L-S smoothing leads to joint order and channel 

estimation, as well as robust lattice implementation as proposed by L. Tong and Q. Zhoa [30 

and 31]. The main drawbacks of SOS-based time domain methods are that most of them 

require a good estimate of channel order/ length. This can be overcome by frequency 

response sampling and second order cyclostationarity (see Gardner, 1991 [32] and L. Tong et 

al. [33]). These approaches are based on the fact that the magnitude response of the channel 

can be estimated by PSD and the phase response of a band-limited channel (true for most of 

the practical communication channels) can be estimated up to a constant phase ambiguity 

[28] by making use of the relationship between Spectral Correlation Density (SCD) and the 

channel response H(jco) with cycle frequency a = k/T with k = 1 (has the largest support). 
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As signal processing tools became more powerful with VLSI technologies, Kalman and 

Particle filters [34] have begun to occupy researcher's interest, which in addition to 

estimation are capable of tracking the time variation in the channel. These approaches use 

HOS implicity and unlike block estimation techniques, exhibit fast convergence but are not 

suitable for communication links with busty transmission (TDMA). Blind estimation of 

sparse channels (hilly-terrain communication link, under-water acoustic communication 

systems) has been proposed in [35]. 

Most of the blind estimation algorithms assume that the source covariance matrix is 

diagonal with known variance. This is not true for practical communication links wherein 

channel coding is employed to combat AWGN and residual ISI after equalization. Blind 

channel estimation algorithms applicable for channel-coded systems are reported in literature 

[36-37]. These algorithms use relaxed/ modified input conditions and/or utilize the coded 

input structure for channel estimation. Coding introduces inputl transmitter diversity that can 

be used at the receiver end for channel estimation. Apart from SOS and HOS, the derivatives 

of generalized characteristic function of the channel output evaluated at arbitrary non-zero 

points can be used for channel estimation by formulating LS equations [38]. This type of 

approach can be viewed as a compromise between SOS- and HOS-based methods and are 

known as "fixed-order statistics (FOS)" approaches. 

1.1.2. MULTI-CARRIER SYSTEMS 

During past few years, the digital transmission system structure has been altered owing to 

advances in signal processing and VLSI technologies. Multi-carrier transmission has been 

adopted in most of the wireless standards owing to higher-data rates that can be achieved due 

to reduction in ISI. Among them, orthogonal frequency division multiplexing (OFDM) also 

called as Discrete Matrix Multi-Tone (DMMT) is the most commonly used [39]. OFDM has 

been adopted as a standard in DAB, DVB (HDTV), Wireless LAN (IEEE 802.11), WiMAX 

(IEEE 802.16), 3 GPP Long-Term Evolution (LTE) etc. The classical approaches are being 

extended and generalized so as to be compatible with the technological advances. The 

performance and applicability of symbol detection and channel estimation algorithms have 

improved drastically compared to their classical counterparts. This sub-section provides a 

brief survey of blind channel estimation approaches available in the literature for single and 

multiple antenna OFDM systems. 



Amongst the various blind estimation techniques, subspace decomposition based methods 

have been proposed owing to their structural simplicity. By employing OFDM modulation 

schemes, the shortcomings of subspace methods can be overcome by making the algorithm 

robust to channel nulls (singularity). In OFDM systems, the channel estimation can be 

achieved either in time-domain or in frequency-domain. In time-domain, the redundancy 

introduced due to virtual carriers (VC) and/ or cyclic prefix (CP) is utilized in formulating the 

subspace structure at the receiver end. This can be used to decompose the channel output 

auto-covariance matrix into two orthogonal subspaces viz, channel or signal subspace and the 

noise subspace. The orthogonality condition is used for blind estimation of FIR channels 

subject to channel disparity conditions (conditions to be satisfied for channel identifiability) 

[40]. In literature, many types of subspace-based approaches are available of which, 

techniques that utilize the redundancy information induced by employing CP [41] and using 

VC [42] to estimate the channel dominate. The virtual carriers are used in commercial 

systems for signal shaping purpose. The cyclic prefix converts the linear time-domain 

convolution between the channel and the input into cyclic convolution. After DFT operation 

at the receiver end, this transforms into complex multiplicative factor on each sub channel in 

the frequency domain. This facilitates use of computationally efficient single-tap complex 

equalizer in frequency-domain at the receiver [39]. The CP is also known to introduce cyclo-

stationarity at the transmitter. This can be used to formulate a time-domain channel 

estimation algorithm at the receiver [43]. The cyclic prefix can be viewed as redundant time-

domain precoding technique. The redundancy introduced at the transmitter can be utilized to 

form a time-domain subspace-based algorithm at the receiver for channel estimation [41]. 

The minimum requirement on the length of CP and/ or VC is that it should be greater than 

the channel support. The VC-based subspace approach can perform even under in-sufficient 

CP or no-CP conditions. The same analogy holds for the CP-based approach. From the 

applications of CP and VC respectively, it is clear that employing CP makes way for a 

computationally efficient channel equalizer in frequency-domain which is more attractive. 

Whereas VC is used for signal shaping, which is also important; but the VC length can be 

kept minimal. Using too much virtual carriers causes reduction in spectral efficiency and 

worst of all, tends to increase peak-to-average-power ratio (PAPR) of the OFDM frame. High 

PAPR can cause power amplifiers to saturate unless they are operated with sufficiently high 

back-off. This can cause inter-modulation interference and adjacent channel interference 

(ACI). With proper signal shaping ACI can be kept minimal, but even then spectral efficiency 
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would be low without any other advantage. Thus between subspace approaches that adopt 

either CP or VC, CP-based approaches (with minimal VC) are more attractive. 

Further, analogous to subspace approach in single-carrier modulation system, wherein 

SIMO channel model is employed as an aid for channel estimation, the same can be utilized 

to formulate subspace based channel estimation algorithm in case of OFDM systems [44]. 

This type of channel formulation utilizes receiver diversity (in contrast to precoding where 

transmitter diversity is used) and leads to time-domain algorithms that can function without 

CP. Other than CP, any redundant precoding at the transmitter can be used to create low-rank 

correlation matrix at the receiver via which subspace based channel estimation can be 

performed [45]. It has been found that, it is simpler in terms of system complexity if 

cyclostationary is induced at the transmitter [15]. Insufficient or no-CP systems can at most 

estimate the channel up to complex scalar (amplitude plus phase) ambiguity. 

The magnitude/ amplitude ambiguity can be resolved in frequency-domain using 

precoding techniques. Lately, arbitrary precoding has been adopted in blind channel 

estimation for OFDM based transmission systems [46-51]. These methods are similar except 

for slight changes in precoder design and structure. The method of [46] uses a linear precoder 

to induce partial correlation structure on one of the subcarriers per OFDM frame. The 

approaches given by [49 and 51] are generalized version of [46] i.e., the correlation is 

induced on every sub-carrier of the OFDM frame. The channel estimation is done via row-

column correlation averaging of output auto-covariance matrix in frequency-domain. Due to 

higher-order of correlation introduced in the latter method, the estimation accuracy is 

improved. The approach given in [50] uses SVD based algorithm at receiver for channel 

estimation. 

1.1.3. MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) OFDM SYSTEMS 
The use of multiple antennas at both ends of a wireless link: multiple-input multiple-

output (MIMO) technology has been demonstrated to have the potential of achieving 

extraordinary data rates [52]. The main performance improvements using MIMO systems are 

antenna gain, diversity gain (both of which increase coverage and QoS), multiplexing gain 

(increases spectral efficiency) and co-channel interference reduction (increases cellular 

capacity). MIMO is an important part of modern wireless communication standards such as 

IEEE 802.11n (Wifi), 3GPP Long Term Evolution, WiMAX and HSPA+. The use of MIMO 
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technology in combination with OFDM, i.e., MIMO-OFDM, seems to be an attractive 

solution for future broadband wireless systems [53]. 

Blind channel estimation techniques have been generalized so as to be applicable for 

MIMO-OFDM systems. Of them, as far as SOS-based approaches are concerned, subspace-

based approach and non-redundant frequency-domain linear precoding approaches mentioned 

above have occupied a special place. The extension of subspace-based approach in both the 

scenarios viz. number of transmit antenna greater than or equal to number of receiver antenna 

and vice-versa are presented in [54]. The proposed method of [54] is a unification of sub-

space approach via CP and VC for SISO-OFDM and hence is a generalized version of their 

SISO-OFDM counterpart. For the case when the number of transmit antenna is greater than 

the number of receive antenna, the channel output is oversampled at suitable rate such that 

the total number of virtual output channels/ antenna are greater than transmit antenna; thereby 

rendering the channel matrix tall-thin low (column) rank. This structure is used along with 

redundancy introduced due to CP and/ or VC for subspace decomposition and eventually the 

channel estimation. The performance analysis and identifiability issues of subspace based 

algorithm are given in [55]. A reformulation of subspace-based approach via reduced-time 

averaging is proposed in [56] for fast time-varying FIR channels. This approach employs 

frequency-grouping induced via space-time-frequency (STF) to reduce the effective 

dimensions of data blocks used to estimate channel output's auto-covariance matrix and sub-

space decomposition. 

In contrast to SISO-OFDM systems, wherein subspace based approaches could at most 

estimate the channel vector up to a complex scalar constant ambiguity; in MIMO-OFDM, the 

estimate suffers from a constant complex matrix ambiguity. The channel estimate can be 

obtained with just a scalar ambiguity per transmit antenna by adopting precoding as described 

in [57]. The linear non-redundant precoding of [51] has been extended for MIMO-OFDM 

systems. The precoder is used to induce correlation among transmitted OFDM frames which 

can be used at the receiver for channel estimation via row-column averaging. Unlike the case 

of SISO-OFDM, wherein the precoding matrix is time-invariant; this MIMO-OFDM channel 

estimation algorithm demands use of periodic block-time-variant precoding matrix. 
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1.2. PROBLEM STATEMENT 
This work mainly concentrates on SOS-based approaches. The scope of this work is as 

follows: 

1) Study of SOS-based subspace decomposition method and TXK algorithm for blind 

channel estimation in single-carrier systems using SIMO channel model. 

2) Study of subspace decomposition method for SISO-OFDM and MIMO-OFDM 

systems. 

3) Study of precoding techniques for blind channel estimation in SISO-OFDM and 

MIMO-OFDM systems.. 

4) A comparison of two approaches: time-domain subspace decomposition based 

method and blind channel estimation using linear non-redundant frequency-domain 

generalized arbitrary precoding induced correlation-averaging in terms of 

performance analysis for SISO-OFDM and MIMO-OFDM systems. 

5) A study of techniques available to resolve the inherent estimation ambiguity in blind 

channel estimation approaches using SOS for SISO-OFDM systems and design. 

1.3. REPORT ORGANIZATION 
The report is organized into five chapters (including Chapter 1) as follows: 

Chapter 1  provides a literature survey of various blind channel estimation techniques 

and problem statement. 

Chapter 	presents a blind channel estimation technique using subspace 

decomposition approach for both single-carrier and multi-carrier (OFDM) systems in 

both SISO and MIMO antenna scenarios. TXK approach which is the basis for all the 

SOS-based approach is also described for single-carrier systems. The performance 

evaluation of subspace method via MATLAB simulations for single-carrier systems is 

also presented. 

Chapter 3  presents a brief overview on use of precoding technique for blind channel 

estimation. Blind channel estimation via linear non-redundant frequency-domain 

arbitrary precoding-induced-correlation-averaging approach is described for SISO-

OFDM and MIMO-OFDM systems. 
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Chapter 4  provides the MSE performance analysis of above mentioned approaches; a 

comparison is provided using MATLAB simulations on practical applicability of the 

same in both SISO-OFDM and MIMO-OFDM systems. 

Chapter S  provides a brief overview of completely/ totally blind channel estimation 

techniques for SISO-OFDM systems. Completely blind channel estimation techniques 

for SISO-OFDM systems using constellation-splitting and modified phase-directed 

algorithm are proposed. The performance analysis of the same via MATLAB 

simulation is also presented. 

Chapter 6  concludes the report. 

The following notations are used in this report: The vectors and matrices are represented 

by bold (a) and bold-uppercase (A) alphabets respectively. The transpose, complex conjugate, 

Hermitian, inverse and Moore-Penrose pseudo-inverse of the matrix A are denoted by AT, 

A%, AH, A-1  and At, respectively; aR  and aI represent the real and imaginary parts of a vector 

a (similar notations are used in case of matrix); tr(A) stands for the trace operation; diag(a) 

denotes the diagonal matrix with the diagonal element constructed from a; ® and 0 stand for 

the Kronecker and Hadamard products respectively; vec(A) represents the vectorization 

operation of A; Ip  is p xp identity matrix; 0,n  and 0,,,,t  represents m xm and m xn zero matrices 

respectively; IJAll2  represents the Forbinius norm of a matrix and E{•} denotes the statistical 

expectation. MATLAB notations are used. For example, A(m, q) and A(:, q) represent the (m, 

q)-th entry and the q-th column of matrix A respectively; "./ " represents element-wise 

division of two matrices or vectors of same size. The following words are used 

interchangeably: 

1. OFDM vector, OFDM frame and OFDM block. 

2. Channel support, channel order and channel length. 

They have the same meaning unless otherwise mentioned. 
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Chapter 2 

SUBSPACE BASED BLIND CHANNEL ESTIMATION 

As far as SOS-based blind channel estimation techniques are concerned, the subspace 

decomposition based technique has been mainly considered in the literature owing to its 

structural simplicity. In this chapter, we discuss subspace based approach for single-carrier 

and multi-carrier systems. 

2.1. BLIND CHANNEL ESTIMATION FOR SINGLE-CARRIER SYSTEMS 

The subspace decomposition approach proposed in [18] and the TXK algorithm [13] for 

single-carrier system is described in this section. The channel model and the algorithm 

formulation are presented. The performance analysis through MATLAB simulation for 

subspace approach for single-carrier systems is also presented. 

2.1.1. CHANNEL MODEL 

This sub-section provides a description of channel model adopted by SOS-based 

algorithms [18]. Consider a SISO baseband equivalent digital communication link as shown 

in the fig. 2.1. 

~Gh~nnel 

AWGN 

Figure 2.1: SISO baseband equivalent digital communication link 

The received signal x(t) is represented as, 
00 

x(t) = I Snh(t — nT) + v(t) 
n=-oo 

... (2.1) 

where, s„'s are the transmitted symbols with symbol duration T; h(t-nT) represents the shifted 

versions of channel impulse response h(t) by times nT and v(t) is additive wide-sense 

stationary circular complex Gaussian channel noise with zero mean and variance o~. The 

channel impulse response h(t) is assumed to be of finite order/ support and is assumed to 
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encompass the effects of transmitter filter, receiver filter and modulator/ demodulator which 

are assumed to be linear. Most of the SOS-based algorithms depend upon the channel matrix 

structure or cyclostationarity introduced due to single-input multiple-output (SIMO) like 

structure of the communication link. The SIMO like structure can be introduced either by 

taking several measurements of incoming channel output signal during the interval T or by 

adopting multi-rate transmission. Further, several measurements of the channel output at the 

receiver can be taken in the following two ways [18]: 

A. Oversampling approach for SISO system (Virtual SIMO system) 

B. Using multiple receiving antenna (Physical SIMO system) 

Both the techniques result in similar channel model. For the present discussion, virtual 

SIMO model is described. 

A. Oversampling approach for SISO system (Virtual SIMO system) - 

The received signal, x(t) is assumed to be oversampled at rate A in order to construct P = 

T/0 sequences corresponding to P virtual channels according to xn = x(to + iA + nT) for 

0 <_ i < P — 1. Each sequence xn is sampled with period T, with a sampling epoch to+id 

depending on the sequence. Assuming that the channel order is L, we get, 

L 

_ Y, sn_kh(to + iA + kT) + vn`~ 
k=0 

... (2.2) 

where, vv` = v(to + iA + nT) are the samples of v(t). The SIMO model with P virtual 

channels is shown in fig. 2.2. 

Sh 

v') 

Figure 2.2: Representation of an oversampled SISO (virtual SIMO) channel model 
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Each sequence xn` ) depends upon a discrete-time impulse response characterized by i h̀ 

channel given by: 

h(`) = [ho`) ••• h(')]T = [h(to + till) •.• h(t° + i0 + LT)]T 	(2.3) 

Let N be the number of received sequence samples collected to form a block. The virtual 

SIMO channel model can be written as: 

x(` ) = H(`)s + v 	for 0 S i < P — 1 	 (2.4) n 	N n 	n 

where, Xni) = [Xni) ... Xǹ )N+1JT, vni) = [v 	77n1)N+1]T and Sn = [Sn ... Sn-N-L+1]T 

represents the output, noise and input sequences respectively; HN` ) is the Nx(N+L) channel 

convolutional matrix given by, 

hot) h(') ... 0) 0 ... 0 

	

HW = 0 	h 	h(')1 h(') ... 	0 	 (2.5) N  ) 

0 0 ... h(i) h(i ) ... h(~) 

	

0 	1 	L Nx(L+N) 

The fmal channel model is given by, 

x(°) 
= 

N H(°) 	v(°) n 	 n 
sn + 

	

(P-1) 	(P-1) 	(P-1) 	
(2.6) 

	

Xn 	H I 	 vn 

The above equation can be represented in a compact form by a linear system of dimension 

PN x (L+N) given by: 

Xn = HNSn + Vn 	 (2.7) 

x(°) 	 H(°) 	 v(°) n 	 N  
where, Xn = 	, HN = 	and Vn = 

x(P-1) 	H(P-1) 
	

V 

 
n 	 N 	 n 

Note: 

1. The channel matrix HN given in eqn. 2.7 can be reformulated and represented instead 

as PN x (L+N) block-Toeplitz (or Sylvester resultant) matrix by grouping the P 

virtual channel coefficients having same delay index together [2]. 
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2. Instead of introducing receiver diversity as mentioned above by oversampling, 

transmitter diversity can be introduced by employing multi-rate transmission [28]. 

This technique yields the channel model similar to the one given by eqn. 2.7. 

3. In contrast to virtual SIMO channel model obtained by employing oversampling at the 

receiver (or equivalently up-sampling at the transmitter) described above; physical 

SIMO channel can be realized using multiple-receiving antennas [2]. 

4. The multi-rate transmission (up-sampling by A) and over-sampling the channel 

output at the receiver (by factor Ar.> A1) can be combined to form a virtual multiple-

input multiple-output (MIMO) systems on which the subspace decomposition method 

can be applied. 

2.1.2. ALGORITHMS FOR BLIND CHANNEL ESTIMATION 

A SOS-based method for blind channel estimation known as time-domain TXK algorithm 

was proposed by Tong, Xu, and Kailath [13]. This approach forms the basis for rest of the 

SOS-based approaches that followed, including the famous subspace-decomposition method 

for single-carrier systems. This sub-section describes the TXK approach followed by the 

subspace approach. 

A. TXK algorithm 

As mentioned earlier, oversampling the channel output induces cyclostationarity. This 

cyclostationarity can be utilized in channel estimation. This is the basis for the working of 

TXK algorithm. The main features of this algorithm are [ 13]: 

i. Since the signal sub-space and over-sampling is employed, the algorithm is immune to 

noise, timing recovery errors, interference and frequency-selective fading. 

ii. The algorithm relies on only SOS making it more computationally efficient and faster. 

iii. If the correlation function of the received signal is known exactly (or can be estimated), 

the algorithm can be applied to possibly non-minimum phase systems asymptotically. 

iv. There is no restriction imposed on the probability distribution of the source symbols. 

The random source may be real or complex, continuous or discrete. 

It is assumed that the received signal x(t) is wide-sense cyclostationary i.e. E[x(tJ)x*(t2)J 

= E[x(t1+T)x*(t2+T)J. The sampled signal x(nT) may or may not be cyclostationary 

depending on whether the sampling was done at baud rate or at rate higher than baud rate 
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respectively. If sampling is done at baud rate, then the signal is only wide-sense stationary 

and does not contain any phase information. On the other hand, if the sampling rate is higher 

than the baud rate, the resulting output sequence is wide sense cyclostationary. The SOS of 

the over-sampled observation contains the phase information of the channel. Thus, virtual 

SIMO channel structure described in previous sub-section is utilized. Using eqn. 2.7, the 

correlation function of X, can be written as, 

R(k) = E(XfXn-k) = HNRs(k)H H + R,(k) 
	

(2.8) 

where, R,(k) is noise correlation matrix of order PN x PN. Assume that the input signal s, 

(eqn. 2.7) is white with zero mean and unit variance such that its correlation matrix is: 
 ,k>0 

R5(k) = Efsnsn-k) _ 
~ jk 

 j" , k < 0 

where, J is the forward shifting matrix defined as, 
0 0 ." 0 0 

J= 1 0 ••• 0 0 

0 0 "' 1 0 (N+L)x(N+L) 

The channel coefficient vector h = [11(0)T ... h(P-1)T] p(L+1)x1 is to be estimated. 

Note that, for noiseless scenario: R(0) = HN HN and Rx(1) = H NJH H . Denote the SVD of 

R(0) as 

v2 1 

UHRx(0)U = 
. 6Z 

d 
0 

0 PNxPN 

(2.9) 

where, d = N+L. Let u1 be the i`h column of U and construct, 
~z 
1 

US = [U ... Ud] and X S = 
Qd 

(2.10) 

Form a whitening matrix, F = L-'USH. Since channel input is uncorrelated, using the 

expression: Rx(0) = HNH in eqn. 2.9, we get [13]: 

H N = U S ESV S 	 (2.11) 
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where VS is an unknown unitary d xd matrix yet to be identified from RX(1). Eqn. 2.11 implies 

that the signal subspace is spanned by the columns of channel matrix. This renders the linear 

parameterization of noise subspace in terms of channel coefficients (elaborated in next sub-

section) and thus forms the basis for subspace approach. Thus, we have: 

FHN = £S 'UHU S ESVS = VS 

Construct a new matrix: 

D = FRx(1)FH = FHNIH H F H = VsJVs 	 (2.12) 

This relationship allows the identification of the unknown unitary matrix V. More 

specifically, there are two ways of obtaining VS [ 13]: the first one is based on the fact that 

since V. is unitary, right side of above equation is Jordan decomposition of D (which is 

computationally tedious comparatively) and the second one is based on the fact that vd (d`h 

column of Vs) is the right singular vector of D. Let the SVD of D be: 

[ yl ... yd ]HD[zl ... Zd] = dia9(y ,... , yd) 	 (2.13) 

Also, 
D H D = Vdiag(1, •••,1,0)V H 

Thus, there exists a p such that, 
Vd = Zd eJ~P 

From the Jordan chain, we have, 

Dvk=vk+1, k=1,•• ,d-1 
Dvd = 0 

Thus, we have: 
-i 

vi = (Dt )
d 

Ud 

Thus, 
V = [V1 ... Vd] l = [(D

t)d-1Ud (Dt)d-2Ud...Vd
] 

Then channel matrix estimate can be fo und through: 

[~ )d-1 d ( )d-2 
	= 	[( )d-1 ( )d-2 	1 AN =US ES pt 	v 	Dt 	vd • • Vd] 

  U sEs L Dt 	Zd Dt 	Zd .. Zd J eiw 

...(2.14) 

The term cp is the phase ambiguity inherent to the problem. 
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Note:  For noisy case, the noise part is eliminated from the auto-covariance matrices at lag-0 

and lag-I respectively to obtain: 

R[O] = R(0) — a7I and Rx[ 1] = Rx(1) — R,t(1) = Rx(1) — o-nJTS°  

where, TS  is the symbol rate and A is the oversampling rate. Modified auto-covariance 

matrices R[O]  and Rx[1J are used with equations: 2.9 to 2.14 instead of R(0) and Rx(1) to 

obtain the channel estimates. 

The TXK algorithm utilizes only channel output's SOS to obtain the channel estimate in 

blind manner. This approach forms the basis of existing SOS-based blind channel estimation 

techniques. The drawback is that, assuming that the channel order is known at the receiver, 

TXK algorithm uses two Eigen-value decompositions (eqn. 2.9 and 2.13), which is 

computationally costly. Further, compared to subspace based technique described in the next 

sub-section, TXK algorithm has slower convergence rate [18]. 

B. Subspace decomposition based algorithm 

From the previous discussions it is clear that the auto-covariance matrix can be 

decomposed into two subspaces, the signal subspace and the noise subspace. The channel 

identification is based on this property of autocorrelation matrix RX  of the channel output X„ 

estimated via time-averaging [181. Using eqn. 2.7 and eqn. 2.8, Rx  can be written as: 

Rx  = E{XnXn} = H N RS HN + 6.fIPN 	 (2.15) 

Note:  R(0) = Rx  and RS(0) = RS  

Let the PN number of Eigen-values obtained from Eigen-value/ singular-value 

decomposition (SVD) of R,, be denoted as 1, Z1, ..., 2PN-r. Assuming that the Eigen-values are 

arranged in non-increasing order and that RS  is full rank, the signal part of the covariance 

matrix R,, has rank L+N, hence: 

A- >Qn, fori=0,---,L+N-1 

Ai =an,  fori=L+N,••-,PN-1 

Denoting the unit-norm Eigen-vectors associated with the Eige -values A0, ..., 	as uo, 

, uL+N 4; and those unit-norm Eigen-vectors associated with the Eigen-values ' L+N, ..., APN-1 
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as go. 	, gpN-L-N-J, we can define: 	US = [Uo "' uL+N-1]pNx(L+N) and 

G = [g0 	.9PN-L-N-1]PNX(PN-L-N). Thus the covariance matrix can be represented as: 

Rx = Usdiag (A0, • • • , 5tL+N-1) US + an GGH 	 (2.16) 

The columns of matrix US span the signal subspace, while the columns of G span its 

orthogonal complement, the noise subspace. From eqn. 2.11 it is clear that the signal 

subspace is a linear space spanned by the columns of channel filtering matrix HN. By 

orthogonality between noise and signal subspaces, the columns of HN are orthogonal to any 

vector in the noise subspace. This leads to linear parameterization of noise subspace bases in 

terms of channel coefficients. The orthogonality condition can be written as: 

gHH N = 0, 	for 0 < i < PN - N — L 	 (2.17) 

The noise subspace can uniquely determine the channel up to a constant multiplicative 

factor (inherent to the problem) provided the following theorem is satisfied [18]: 

Theorem: Assume that 

i) N > L 

ii) Matrix HN-1 is full rank i.e., rank(HN J) = L+N-1. 

Let HN be a non-zero filtering matrix with the same dimensions as HN. The 

range of HN is included in the range of HN if and only if the corresponding 

vectors H and H" (H is defined in eqn. 2.19) are proportional. 

In practice, the covariance matrix is estimated via time-averaging. Thus, only estimates of 

noise Eigen-vectors gi are available and the orthogonality condition can only be satisfied in 

least-squares sense. This leads to minimization of following quadratic problem: 

PN-L-N-1 

q(H) _ 	I9'HNI 
2 

. (2.18) 

By exploiting the block Toeplitz structure of HN, the above equation can be put in terms 

of H. To be more precise, it can be shown that [58]: 

gHHN = HHG~ 



F

G~°) 1 	 HN°) 1 	 H(°) 

where, G~ _ 	 ; H,, _ 	 ; H = 	1 
H(P-1) 	

H(P-1) P(L+1)x1 i 	P(L+i)x(L+N) 	 N 	PNx(L+N) 

(1) 	... 	
9i

(1) 	p 	... 	... 	p 
9i3 O 	,0 

and Gar) = p 	9 	.. 	.L o 	0 	D 	
(2.19) 

0 	... 	... 	0 	(Z) 	... 	(l) 91,0 	9110 (L+1)x(L+N) 

Proof: Partitiongi as 

(o) 	 (1) 
9l 	 9i,o 

g i = 	where gJ ) _ 
gip-1) 	

9 ,N1
U) 

Now, 

P-1 

gHHN = y(gil)}
H 

H(l) 
l=0 

Expanding, each term in above equation yields: 

h(l) h(l) ... h(i) 0 	0 

	

0 	1 	 L 

	

(g~'))"H(') N = [g 0' ... gi N-1~ 0 	h(l) ... h
(')1 h(l)  

0 0 ... ho1 ) h1l) ... hLl) 

It is clear from the structure of above equation that the operation corresponds to 

convolution of two vectors and since convolution satisfies the commutative law, the above 

equation can be re-written as: 

9ii g1,1 i 	0 	••• 	0   9i N-1 
(gci) )H HNi) = [h(1 	... h] 0 	9110 ... íi- 	—' 9i,N-1 	

0 	_ [H(1)JH G 1) 

 00 	91,0 9i,N-2 9,N_1 

Thus, 

P-1 	P-1 

	

H 1
gHHN = 	

(g~,))
H HNl) _  	(H(i) y Gi ) = HH Gi 

t=0 	1=0 
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Thus, the cost function can be written as: 

PN-L-N-1 

q(H) = 	I9HHNI2  _ 

i=o 

PN-L-N-1 

IHI2=' hI ,  t=o 

PN-L-N-1 

where Q = I G i GH 
i=o 

... (2.20) 

The eqn. 2.20 can be minimized subjected to quadratic criterion if 	= 1 to obtain the 

estimate of the channel. The solution of above minimization problem is the unit-norm Eigen-

vector associated with the smallest Eigen-value of matrix Q [58]: 

Proof:  Assume that I IHf I = HHH = I 

The minimization of eqn. 2.20 can be done using Lagrange's multipliers. Let, 

J = q(H) + 2(1-H"H) = HHQH + A(1 IIHH) 

Differentiating the above equation with respect to HH  and equating the result to zero: 

a'_  
aHH=QH—A.H=0 

Thus, QH = AH Substituting this result in eqn. 2.20: 

q(H) = HHQH = HHAH= 2HHH = 2 

Since the estimate of H can be obtained by minimizing q(H), H corresponds to Eigen-

vector corresponding to smallest Eigen-value (A) of Q. 

Q.E.D 

From the above discussion, it is clear that the subspace based technique for blind channel 

estimation depends upon the intrinsic SIMO like structure of the oversampled channel and is 

based on the fact that for a SIMO channel, a linear parameterization of the noise subspace in 

terms of the channel parameters is possible. A quadratic cost function is formed, which can 

be minimized to obtain the channel estimate up to a constant complex scalar ambiguity 

factor. The ambiguity term can be resolved by employing periodic reference symbols [18]. 
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2.1.3. PERFORMANCE ANALYSIS OF SUBSPACE TECHNIQUE 

The performance analysis of subspace decomposition approach [ 18] supported by 

MATLAB simulations is presented in this subsection. 

A. Simulation Parameters 

The simulation parameters are given as follows: 

➢ The discrete baseband equivalent channel is assumed to be complex FIR with support 

length (L) = 2. 

➢ Number of virtual channels assumed (P) = 3. 

➢ The channel power-delay-profile is assumed to be uniform. 

➢ Smoothing factor i.e., the length of data samples per block (N) = 5. 

➢ The total length of data blocks used unless otherwise mentioned (Mj = 1000. 
➢ SNR (unless otherwise mentioned) = 25 dB. 

➢ Baseband modulation/ mapping: 16-QAM 

➢ Reference symbol value = VT0 

➢ The results are averaged over 100 Monte-Carlo simulation runs. 

It is assumed (pre-checked) that the channel response satisfies the necessary identifiability 

conditions mentioned in [18] for unique determination of channel estimate. The flowchart 

depicting the procedure to obtain channel estimates using subspace based technique is shown 

in fig. 2.3. The channel estimate which is the Eigen-vector corresponding to the smallest 

Eigen-value of Q (as mentioned earlier) is obtained as follows. The SVD of matrix Q in 

MATLAB yields three matrices, the left singular vector matrix (U), diagonal singular value 

matrix (D) and right singular vector matrix (P). The Eigen-values are arranged in non-

increasing order in matrix D. The corresponding left Eigen-vectors are arranged column-wise 

in the matrix U. Thus, the last column of U corresponds to the Eigen-vector corresponding to 

the smallest Eigen-value of Q. The complex scalar ambiguity inherent to the approach is 

resolved by using reference symbols inserted at a period of 25 data symbols. 

B. Simulation results and conclusion 

The plot of MSE versus varying length of channel output (data) blocks (M) at 25 dB SNR 

is shown in fig. 2.4. It can be seen that the performance improves exponentially as the length 

of data blocks is increased. From the figure it can be seen that, when the length of data blocks 

is 100, the MSE is 1.86 x 10-3. It can be seen that the MSE reduces by a factor of 12 when 
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the data block length is increased by a factor of 10 (i.e., the MSE value is 1.55 X 10-4  when 

the length of data blocks is 1000). Similarly, the reduction in value of MSE by a factor of 2 

can be observed when the data block length is increased from 1000 to 2500 (2.5 times 

increase). 

The plot of MSE versus varying SNR (dB) values assuming that the length of data blocks 

(M) equal to 1000 is shown in fig. 2.5. It can be seen that the MSE curve is almost linear and 

falls at a steady rate. At 0 dB SNR, the MSE achieved is 2.112 (of the order of 100 ). As SNR 

is increased, in the range from 0 dB to 15 dB, the MSE reduces by a factor of 1000. Further 

increase in SNR does not reflect much reduction in MSE comparably, but yet the 

improvement is signification. Around 5 times reduction in MSE on an average; per 5 dB 

increase in SNR can be observed. At 25 dB, the MSE value is 1.8 x 
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r~i~JRAL L1~R 

ACCNo ................. 

Date.................... 

Start 
 

/&T RO©# 

Set all the parameters as given in 
the specifications 

NumSim = 0 

Generate a sequence of source bits, group 
the bits by taking 4 at a time and map the 

bits using a 16-QAM mapping table 

Generate P virtual channel coefficient vectors; each of 
length L as per eqn. 2.3. Each coefficient is a zero-mean 
Gaussian random variable with unit variance_ Each vector 

is normalized such that the peak coefficient is unity 

Pass the source symbols through P FIR filters; each of 
whose impulse response vectors are as obtained from 
the previous step. Add AWGN at 25 dB SNR (unless 

otherwise mentioned) to the filter outvut to get rxd. sequence 

By collecting Nconsecutive recieved symbols per sub-channel; 
foi m PN x 1 block X1„ as deefined by eqn. 2.7 

Collect M such X„ blocks and estimate the sample covariance 
matrix by. 	 1 Sf 

Rx = M X X"Xg 

Obtain the estimates of signal and noise subspace bases 
(Ui and G) by applying SVD on Rr as given by eqn. 2.16 

Arrange the noise subspace bases to form 
a matrix Gi as given by eqn. 2.19 

I Obtain matrix Q from eqn. 2.20 

No 

is NumSim = 1001 

Obtain the channel estimate as Eigen-vector 
corresponding to the smallest Eigen-value 

of matrix Q up to a complex scalar ambiguity 

Yes 

I Calculate average MSE for given parameters 

Resolve the ambiguity by utilizing reference 
symbols at a period of every 25 symbols 

Calculate the mean square error between the 
true channel and the estimated channel 

Simulated for all the parameters (SNR's or No 
number of received blocks to be collected) 

Yes 

Stop 

I NumSim = NumSim + 1 

Figure 2.3: Blind channel estimation using subspace decomposition technique (flowchart for 

generation ofplots given in fig. 2.4 and fig. 2.5) 

25 



A plot of MSE versus SNR 

.~2 A plot of MSE versus Number of data blocks used to estimate the output auto-covariance matrix 

uI 
U) 

1 

0 
Number Of data blocks ---> 

Figure 2.4: The plot of MSE versus length of data blocks at SNR = 25 dB. 

10 0  5  10  15  20  25  30  35  40  45  50 

SNR (dB) ---> 

Figure 2.5: The plot of MSE versus SNR (dB) with 1000 data blocks collected for covariance 

matrix estimation 
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2.2. BLIND CHANNEL ESTIMATION FOR MULTI-CARRIER SYSTEMS 

2.2.1. SISO-OFDM SYSTEMS 

The subspace decomposition approach proposed in [41] for SISO-OFDM system is 

described in this section. 

A. SISO-OFDM channel model 

The time-domain channel model for SISO-OFDM communication link as applicable to 

subspace decomposition approach given in [41] is described in this sub-section. Consider, a 

baseband equivalent SISO-OFDM channel model shown in fig. 2.6. 

s(r) 	 Physical chumel 	 r(n) 

PfS 	~ P t) 	Wit) 	Pmt) fit) 	s,P 
d(()—~ S. P d{a 	=n) 	(n? IFFT 	 I 	r{n) 	FFT Yin) WS 	W) 

D 
X 

i-ii 

 

Discrete bGu.battd equivalent zh n, el 

Figure 2.6: Discrete baseband equivalent SISO-OFDM system 

The channel model is presented as a special case (Mt = Mr = J) of that given in [54] for 

MIMO-OFDM systems for the sake of uniformity. A precoder block is included to make the 

model compatible with the blind channel estimation via precoding-induced correlation-

averaging (Chapter 3). Addition of the precoder block does not alter the channel model and 

the algorithm formulation. 

Assume N subcarriers per OFDM frames, and let the subcarriers numbered ko to (ko + D — 

1) represent the information data. Let the n'h block of the frequency-domain information 

symbols be written as, d(n) = [d(n, ko), d(n, ko + 1), ... , d(n, ko + D — 1)]T. Each symbol 

d(n,k) is taken from a baseband frequency-domain signal constellation (map). The precoder 

block multiplies the incoming OFDM frame by a predefined matrix W to yield x(n). The 

precoding matrix W is assumed to be an identity matrix (IN) as far this section is concerned. 

Hence, d(n) = x(n). The function of precoder block in the context of blind channel estimation 

is taken up in detail in Chapter 3. Assuming that the length of the CP is P, the OFDM 

modulator adds N — D zeros for virtual carriers to the data block in above equation, applies 
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an N-point inverse fast Fourier transform (IFFT) to this block, and inserts the CP in front of 

the IFFT output vector, which is a copy of the last P samples of the IFFT output. This results 

in the time-domain sample vector of the nth OFDM symbol written as s(n) = [s(n, N — P), .. . 

, s(n, N-1), s(n, 0), ... , s(n, N — 1)J T. To generate the continuous-time signal to be sent on 

the channel, each element in the vector s(n) is pulse-shaped by a transmit filter g,, (t), 

00 N+P-1 	 00 

Sig(t) = 	— P + k)N)gtx[t — (k + n(N + P))T] = Y s(aT)gtx[t — aT] 
n= —oo k=0 	 a=—co 

(2.21) 

During the transmission, the transmitted signal Sig,(t) passes through a dispersive 

channel with an impulse response c(t), it gets corrupted by an uncorrelated additive white 

Gaussian noise n(t), and it finally enters the front-end receive filter g,x(t). Let the composite 

impulse response be h(t) = g(t) * c(t) * g(t) which is assumed to be of finite support 

[0, (L+N)T] with L < P, with the filtered noise at the receive antenna as i(t) = n(t) * g,.(t), the 

received signal r(t) can be expressed as, 

CO 

r(t) _ 	s(aT)h[t — aT] +(t) 
a=-~ 

(2.22) 

As mentioned in Chapter 1, the redundancy introduced by VCs and/or CP can be utilized 

in channel estimation. This work deals with the system with no virtual carriers i.e., ko = 0 and 

D = N and the CP length equal to the channel support i.e., P = L. The signal r(t) is sampled at 

baud rate i.e., t = 1T. Assuming perfect time-synchronization at the receiver, the sampled 

sequence r(l) can be written as: 

r(1) = I s(a)h[l — a] + (l) = Y. s(a)hi_a + r7(1) 
 a=—co 

... (2.23) 

The redundancy introduced by CP in time-domain is used along with subspace 

decomposition for channel estimation purpose [41]. The authors in [41 ] consider channel 

estimation based on subspace decomposition for N = 4L (which is not always true for any 

practical system). The channel model is provided for its generalization to any N and L in 
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Appendix A of [41]. In this work, we present a formulation of subspace decomposition 

approach based on this generalized channel model. The generalized model is presented next. 

The received sequence, r(l) is grouped into (N+L) xI dimension vectors to form received 

time-domain OFDM frames r(n) where n indicates the block number. Assuming that the 

channel impulse response vector length L is smaller than the number of subcarriers N per 

OFDM frames, the present OFDM block suffers from IBI (inter-block interference) due to 

previous OFDM block only. Let, Ho be a (N+L) x (N+L) lower triangular Toeplitz matrix 

with first column [ho ... hL 0 ... 0]T and first row [ho 0 ••• O]T. Let H1 be a 

(N+L) x (N+L) upper triangular Toeplitz matrix with first column [0 •• ~ Of and first row 

[0 • • • 0 hL • • • hl]T. The relationship between the nth time-domain transmitted block 

s(n) and the time-domain received block r(n) before CP is discarded is given by [41]: 

rcp(n) = H os(n) + H ls(n — 1) + i,(n) 	 (2.24a) 

where, 77(n) represents the (N+L) x I noise vector corrupting the nth OFDM block. The above 

equation is the vector-matrix representation of the convolution operation between the source 

symbols and the channel impulse response coefficients given in eqn. 2.23. The vector s(n) 

can be partitioned into three sub-vectors of size L, N-L, L, respectively represented by 

s(n) = [so(n)T sl(n)T s2(n)T ]T with so(n) = s2(n). Similarly, both the r(n) and 77(n) 

can 	be 	written 	as: 	rte, (n) = [ro(n)T ri (n)T r2 (n)T ]T 	and 

71(n) = [no (n)T 	1()T n2 (n)T ]T respectively. The components of r p(n) and 77(n) are 

defined below. 

Let, Co be a L <L Toeplitz matrix with first column [ho ... hL-1 ]T and first row 

[ho 0 • • • Of and C1 be L xL Toeplitz matrix with first column [hL 0 • • • Of and 

first row [hL ••• hl]T. Thus, eqn. 2.24a can be rewritten as: 

r0(n) Co  0  0 s2(n) 0  0  C1 s2(n — 1) o(n) 

r(n) = r1(n) = C  C  0 s1(n) + 0  0  0 sl(n — 1) + (n) rn, (2.24b) 

r2(n) 0  C1  Co s2(n) 0  0  0 s2(n — 1) 2(n) 

where, Co is a (N-L) x(N-L) Toeplitz matrix with first column [ho ... hL 0 ••• Of and 

first row [ho 0 ••• 0]T; C1 = [Cr OLX(N-2L)]T and Ci = [OLX(N-2L) C1]. By, 

collecting two consecutive received OFDM symbols, the following input-output relation can 

be formed which is used for subspace decomposition [41], 
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Co 	Ci 	0 	0 
s1(n — 1) 

nl (n — 1) 
r2(n — 1) Ci'  Co 	0  0 

s2{n — 1) 
n2(n — 1) 

r(n) = 

r2 (n 

—1)1 r0(n) = 0  C1 	0  CO + no(n) = H(h)s(n) + n(n) 

rl(n) 0  0  Co  C1 SZ(n~ nl(n) 
rr2(n) 0  0  C1 	Co n2(n) 

... (2.25) 

B. Generalized subspace-based algorithm 

Using eqn. 2.25, the auto-covariance matrix Ry of r(n) is evaluated by time-averaging 

and can be written as: 

Rr,. = E{1-(n)?(n)H } = H(h)RSS H(h)H + QfI2N+L 	 (2.26) 

where, the source covariance matrix is given by: RSS = E{s(n)g(n)H ) with s(n) as defined 

in eqn. 2.25. If Rss is full rank, the matrix H(h)RSS H(h)H has rank 8L. Therefore the null-

space has dimension L and is spanned by a basis of L vectors go, ... , gL_1 [41]. This subspace 

is referred to as noise subspace and it is orthogonal to the channel/ signal subspace. Further, 

as mentioned earlier, noise subspace bases can be found by applying SVD on R. 

The generalized subspace algorithm for the channel model with N >_ 2L is presented. 

Analogous to single-carrier case, the left null-space of Rr,. of dimension (2N+L) x L can be 

represented by: 

9i=([
gjT 2T 3T 4T sT]')for 0<i<L-1 (2.27) i 9i 	9i 9i 	9i 1 (2N+L)x1 

where, 

9i = ([9i (1) ... 	— L)]T )(N- L)x2 = ([g(1) ... gi (N - L)]T)(N-L)xl 

9i = ([gi(N — L + 1) ... 9i(N)]T )Lx1 = ([g (1)  

9i = ([gi(N + 1) ... 9i(N + L)]T )LX1 = ([q(1)  

9r = ([9(N + L + 1) 	9i ( 2N)]T )(N-L)x1 = (LNi~(1) ... g (N — L)]T )(N-L)xl 

9i = ([9(2N + 1) ... 9(2N + L)]T )Lx1 = ([g(1)  

The orthogonality between signal/ channel and noise subspace can be mathematically put 

as, 

g~'H(h)=0, 	 for05i<—L-1 	 (2.28) 
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Eqn. 2.28 gives the linear parameterization of the noise subspace in terms of the channel 

parameters. As mentioned earlier, since the covariance matrix is calculated by time-

averaging, in practice, above condition can be minimized in least-squares sense to obtain the 

channel coefficients. Looking at the structure of unknown channel matrix in eqn. 2.28, 

solving for channel coefficients using eqn. 2.28 is difficult. A dual form of eqn. 2.28, whose 

minimization is simpler and more straight-forward, must be formed. The details of derivation 

of dual form of the eqn. 2.28 by mathematical induction are described in Appendix A of the 

dissertation report. The result of the derivation is summarized here. The dual form can be 

defined by the following set of equations: 

1) For j = 1, 4; define the following matrices- 

gj(N-2L+1) ••• gj(N—L)  

and Bi = 0 	
g  (1) 

g (N—L) 	... 	0 
0 	 0 	(L+1)xL 	

g((1) ... g(  L) 
(L+1)xL 

2) For j = 2, 3 and 5; define the following matrices- 

g(1) ... g(  L) 	 0 	... 	0 

	

A? = ' 	 and Bi =  
0 	 . 

	

o 	"' 	0 	(L+1)XL 	 g? (1) •.. g(  L) (L+1)xL 

Now, the components of noise subspace bases matrices can be written as: 

g(1) 	9i(2) 	... gi(N — 2L) 

gi (L + 1) gL (L + 2) ... g (N — L) (L+1)x(N-2L) 

G?=Ai+B? 

G3= A? +Bj+B! 

94( 1) 	94( 2 ) 
G4 

9i (L + 1) g4(L + 2) 

Gi = Ai + BL 

G6 =A +B +A 

••• g4(N — 2L) 

... g4(N — L) 
(L+1)x(N-2L) 

Combining these sub-matrices, the dual noise-subspace matrix can be formed as: 

Gi  = [G 	G? G3  G! GI G6J(L+1)x2N 
	 (2.29) 
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Thus, the dual orthogonality condition can be written as: 

hH Gi = 01x2N for 0 < i — L — 1 	 (2.30) 

where, h = [ho h1 ... hL]T  is the channel impulse response vector. Eqn. 2.30 can be minimized 

in least-squares sense to obtain the channel estimate in time-domain up to complex scalar 

ambiguity factor. The quadratic cost function given by: 
L-1 

q(H) = h'Qh, where Q = 	GiGy 
i=o 

... (2.31) 

is solved subjected to condition I IhI I = 1 to obtain an estimate of h. It is a well known fact 

that the channel impulse response estimate It is the unit-norm Eigen-vector associated with 

the smallest Eigen-value of Q. 

Note: The persistence of excitation assumption (p.o.e) [41] states that the minimum number 

of OFDM blocks that should be used for estimation of covariance matrix should be greater 

than or equal to 2N. 

2.2.2. MIMO-OFDM SYSTEMS 

We next present a generalization of the subspace based approach of [41] proposed in [54] 

for MIMO-OFDM systems. 

A. MIMO-OFDM channel model 

In continuation with the channel model presented in the previous sub-section, we provide 

a brief description of generalization of the same for MIMO-OFDM systems. Consider the 

discrete baseband equivalent channel model of MIMO-OFDM system with Mt  transmitting 

antenna and M, receiving antenna as shown in the fag. 2.7. 
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Figure 2.7: Discrete baseband equivalent MIMO-OFDM system model 

Analogous to the SISO model, assuming zero VC and N subcarriers per OFDM frame, the 

frequency-domain transmitted OFDM frame from the j`h transmitter antenna is given by dj(n) 

_ [d,,(n, 0), dj(n, ko + 1), ... , d/n, N)J T. Each symbol d;(n,k) is taken from a baseband 

frequency-domain signal constellation (map). As in SISO case, the precoding matrices are 

assumed to be identity matrices (IN ) as far this section is concerned. Hence, d1(n) = x/n). The 

time-domain sample vector of the nth OFDM symbol can be written as s/n) [s/n, N — P),. . 

. , s/n, N-1), s/n, 0), ... , s1(n, N — 1)1T. To generate the continuous-time signal to be sent on 

the channel, each element in the vector s,(n) is pulse-shaped according to eqn. 2.21. Denoting 

the composite impulse response between the jrh transmitter antenna and i h̀ receiving antenna 

by h(t) (assumed to be of finite support [0, (L+N)T] with L < P as previously stated), the 

received signal at ith receiving antenna ri(t) can be expressed as, 

Mt co 

r(  t) _ I I sl (aT)hll [t — aT] + q (t) 

where, pi(t) is the filtered noise at i" receiving antenna. The signal ri(t) is sampled at baud 

rate as mentioned in previous sub-section to obtain sampled time-domain sequence. 

Depending on the values of Mr and M,, the analysis can be carried out for two cases, Mr > Mr 

and Mr < M, [54]. In this work, the second case is taken up in detail. The alterations to make 

the model compatible with the first case are described in the footnote. Construct a composite 

frequency-domain signal vector, 

d(n, k) = [di (n, k) ... dMt (n, k)]T 

and 
 

(2.32a) 

do = [d(n, 0)T ... d(n, N)TJT 
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where, d1(n, k) is an information symbol loaded on the k`h  subcarrier in the nth  OFDM block to 

be transmitted from the j h  transmitter antenna. By collecting J consecutive OFDM frames 

from M, transmitting antennas, the information symbol vector d(n) is constructed as: 

d(n) = [d7 ... do_J+1]T 	 (2.32b) 

Define the IFFT matrices as: 

W(i) =—[1  u,N 	wN ] 

WN  = [w(N -1)T ... W(0)T W(N -1)T ... W(N - p)T]T 	(2.33) 

W=IJ®WN®IMt  

Further, construct a similar composite time-domain OFDM frame as: 

s(n, k ) = [ si (n,  k) ... SMt (n,  k)]T 

Sn  = [ s(n,  N — 1)T ... S(n, O)T s(n, N — 1)T  ... s(n, N — p)T ]T 	(2.34) 

S(n) _ [ Sn ... Sn-J+1]T 

Combining eqn. 2.32, 2.33 and 2.34, we can obtain a composite relationship representing 

the function of both IFFT block and CP insertion operations as: 

s(n) = Wd(n) 	 (2.35) 

As mentioned earlier, assuming that the length of channel impulse response vector 

between each of i h̀  receiving antenna and. h  transmitting antenna is upper-bounded by L, the 

M, x Mt  channel matrix H(l) between all pairs of transmitting and receiving antennas at lag-i 

can be constructed as: 

h11(1) ... hjMt(l) 
H(l) _ 	 (2.36) 

hMrl(l) ... hMrMt(l) 

The sampled received signal from eqn. 2.23 is similarly stacked to form a composite 

time-domain vector as given by: 

r( n,  k) = [rl (n,  k) ... rMr (n, k)]T 

rn  = [ r (n,  Q — 1)T ... r(n, 0)T ]T 	 (2.37) 
rT  _J+1 [1: (Q — L)Mr ]]

T  
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where, Q = N+P = N+L and the term [1: (Q-L)M] denotes that. the dimension of each r,_ p 

(for all p = 0 to J-1) is (Q-L)M, x 1. The composite noise vector 'j(n) can similarly be formed. 

Define the (JQ-L)Mr x JQM, channel matrix as: 

H(0) 	••• 	H(L) 	0 	••• 	0 

H= 0 H(0) 	H(L) ... 0 	 (2.38) 

0 	... 	0 	H(0) ... H(L) UQ-L)MTXJQMt 

The channel input-output relationship can be expressed in terms of composite transmit-

receive vector and channel matrix as: 

r(n) = Hs(n) + (n) = HWd(n) + i (n) = Ad(n) + il(n) 	(2.39) 

Note: For a MIMO-OFDM system with Mt >Mr, the sampling rate at the receiver is set to q/T 
with q > Mt/Mr [54] such that the number of effective (virtual) receiving antennas after 

oversampling is greater than or equal to the number of physical transmitting antenna. The 

relevant alterations for the channel model are described as follows: 

The channel sub-matrix of eqn. 2.36 can be re-framed as: 

h°(l) 	... 	
h(') (1) 

-1) h1q-1) (l) 	... 	h1M 1) (l) c 

H(l)= 
h~Mt(l) 

"Mn 	
M r1(1) 

h(q 11) (l) 	"Mq 	t (l) 

Hence, the channel matrix can be written as: 

11(0) 	••• 	H(L) 	0 	... 	0 
H= 0 H(0) ••• H(L) ••• 0 

0 	... 	0 	11(0) ... H(L) (JQ-L)gMrxJQMt 

Analogous to eqn. 2.37, representing the oversampled received signal vector as: 

r(n, k) _ [r(°)(n, k) 	r 0)(n, k) ... r _1)(n, k) ]T 

pn = [I•(n, Q r. 1)T  

P(n) = [Pn ... rn-I+1[1: (Q — L)gMr] 
T 
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The channel model is given by: 

r(n) = Hs(n) + j(n) = HWd(n) + 4(n) = Ad(n) + i(n) 	(2.40) 

Similar subspace algorithm formulation can be obtained for channel estimation [54]. 

B. Subspace based algorithm 

Analogous to the subspace decomposition method for SISO-OFDM, the composite 

channel output auto-covariance matrix estimated via time-averaging is used for channel 

estimation. Assuming that the source covariance matrix is diagonal with known variance, 

from eqn. 2.39, the composite channel output auto-covariance matrix can be written as: 

Rrr  = E fr(n)r(n)H} = 6aAAH  + 6,IUQ-L)Mr 	 (2.41) 

Singular-value decomposition (SVD) of the output auto-covariance matrix yields two 

subspaces namely, signal subspace spanned by columns of the channel matrix A and an 

orthogonal null-space referred to as noise subspace. For the MIMO-OFDM channel to be 

identified by the noise subspace method, the matrix A in eqn. 2.39 (or matrix A in eqn. 2.40) 

should have a full column rank. Theorem 1 gives a necessary and sufficient condition for the 

full column rank requirement [54]: 

Theorem 1: In the case of Mt  < Mr  and L < (Q --N), the matrix A has a full column rank, if 

and only if rank (H(w i)) = Mt  V i E [k}k=o where, H(z) is given by: 

L 
H(z) = Y. h(l)z 1  

t=0 

Note: The above theorem can be re-phrased for M M  > Mr  [54] by replacing A by A; h(l) by 

Ii(1) and hence H(z) by H(z) where: 

L 

H(z) _ 	h(l)z 
1=0 

The condition to be satisfied for full rank requirement remains the same as given above. 

The diagonalization of auto-covariance matrix yields Eigen-values and corresponding Eigen-

vectors U which can be partitioned into two subspaces viz, signal subspace Us  and noise 

subspace U„ as: 



U = [Us (Un1 = [U1 ... UINMt I UJNMt+1 ... h(JQ—L)Mr} 	(2.42) 

Since span(A) and span(US) share the same JNMM dimensional space and are orthogonal to 

span(U„), the following orthogonality relationship holds and can be used in channel 

estimation: 

uk A = 0, 	V k E {n}n = NMt+1 	 (2.43) 

Define, (L+1)Mr X I channel response vector associated with the channel impulse 

responses between the i h̀ transmit antenna and Mr receive antennas as, 

h = [h(0) [: , i]T ... h(L) [: , i]T ]T for 1 < i:5 Mt 

Define the channel coefficient matrix He as: 

H~ = [hi, ... , hMJ = [h(0)T ... , h(L)T]T 

Under the appropriate conditions given by Theorem 2 [54], the noise subspace can 

determine the channel coefficient matrix He up to an Mt x MM multiplicative matrix 

ambiguity. The following notations are used in the theorem. Let H be a matrix that has same 

dimension as that of H. Let H' be a non-zero matrix constructed from H' in the same 

manner as the matrix H is constructed from H., Denote H'W as A' and let H' (z) 

Z 0 h' (1)z 1 . Theorem 2 can be stated as follows [54]: 

Theorem 2: Assume that the matrix A in eqn. 2.39 has a full column rank with J? 2, M,. > Mt 

and (Q-N) > L. Then, H' is equal to H,f2 with an Mt x M invertible matrix 92, if 

and only if span(A') is equal to span(A). 

Since, the output auto-covariance matrix is estimated using time-averaging; the 

orthogonality condition of eqn. 2.43 is solved in least-squares sense to obtain the channel 

coefficient estimates. The quadratic cost function defined by eqn. 2.44 is minimized under the 

criterion that I 	= 1 for 1 <_ i < M1 to estimate the channel up to a complex matrix 

ambiguity (follows from Theorem 2) [54]: 

(JQ — L)Mr 

C(H) _ 	HukA1I2 
k=JNMt+1 

.. (2.44) 
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The estimate of H can be obtained by solving the dual form of egn2. 2.44 under the 

condition I Ih; I 2 = I given by: 

Mr 

II = [ i1 	hMt ] = arg min 
Y 

hHYfhi 
Ilhtllz=l  

.. (2.45) 

where, 
UQ-L)Mr 

1= j Vk(IJ ®W*WT )Vk 
k=JNMt+1 

.. (2.46) 

and the estimate of Vk `s are constructed by partitioning the estimate of k`h noise subspace 

basis vector Uk as given below: 

V(k) 1 _(k) -L 0 ...  0 JQ (k) 

v,k _ 0 (k) 17 (k) 
VjQ-L Q 

V1 
where 	llk = 

(k) 

0 0 v(k) ~J(k) vJQ-L 

1 JQ-L (L+1)MrXJQ 

... (2.47) 

Note: Analogous to SISO-OFDM case, the persistence of excitation assumption (p.o.e) for 

MIMO-OFDM states that the minimum required number of OFDM blocks for channel 

estimation using subspace decomposition to be feasible is equal to JNMt: 

Note that the above treatment is valid for SISO-OFDM system, where Mt = 1. Further, for 

SISO-OFDM case, p. o. e. assumption can be stated as the minimum number of OFDM 

blocks required is equal to IN and when J = 2, (i.e., 2 consecutive OFDM blocks are taken at 

a time) it is equal to 2N which is same as mentioned before for SISO-OFDM case in the 

previous sub-section. 
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Chapter 3 

PRECODING-INDUCED CORRELATION 

AVERAGING APPROACH 

As mentioned earlier, the blind channel estimation employing subspace method uses 

receiver diversity, introduced by oversampling the channel output for channel estimation in 

single-carrier system. Subspace techniques for SISO-OFDM and MIMO-OFDM systems 

utilize the redundancy introduced due to CP (and oversampling for MIMO case) as described 

in Chapter 2. These techniques are capable of estimating the channel up to a constant 

complex scalar ambiguity for SISO-OFDM channels and up to a constant complex matrix 

ambiguity for MIMO-OFDM channels. By using precoding, the amplitude ambiguity in the 

SISO-OFDM channel estimate can be resolved and the matrix ambiguity can be reduced to 

complex scalar ambiguity per transmitter in MIMO-OFDM. An introduction to precoding and 

its applications in the context of blind channel estimation problem is described in this chapter 

followed by a joint estimation algorithm via precoding-induced correlation-averaging method 

for both SISO-OFDM [51] and MIMO-OFDM [57] systems. 

3.1. PRECODING 
Precoding is a transmitter end technique used to introduce certain redundancy or 

correlation (or both) among the subcarriers in an OFDM frame. This information can be 

utilized at the receiver end for the purpose of blind channel estimation. Further, precoding 

can be used to add resilience to impulsive noise and multiplexing (e.g. STF coding). The 

precoding techniques can be classified as shown in fig. 3.1 depending upon whether the 

transmitter has the knowledge of the CSI or not. As far as blind channel estimation problem 

is concerned, the channel knowledge at the transmitter is assumed to be unknown; in which 

case the arbitrary precoding techniques are used. One type of precoding: CP (cyclic prefix), 

which was mentioned in previous chapters can be classified as redundant precoding 

technique, in which partial knowledge of the channel (FIR channel impulse response length 

in this case) is used to decide the minimum CP length. Apart from this, the details of the 

precoding techniques in which CSI knowledge is necessary are not considered in this work. 
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Precoding Techniques 

Aribitrary precoding 	 CSI based 

Redundant 	 Non-redundant 	Full CSI 	 Partial CSI 

Linear 	I 	E 	Non-linear 

Frequency-domain I 	I Tine-domain 

Figure 3.1: Classification tree for Precoding techniques 

The precoder can either be linear or non-linear. The non-linear type precoders are 

generally optimum precoders; in terms of performance but are highly complex and hence 

rarely used. The redundant type of precoding is analogous to error-correction coding (or 

modulated coding: ECC over complex field) which has been used to mitigate ill-effects of 

AWGN (block codes) and ISI (convolutional decoders) [59]. A redundancy is introduced by 

appending or prefixing a part of either time-domain (e.g. CP) or frequency-domain 

information frame to be transmitted. Owing to the redundancy introduced at the transmitter, 

the blind equalization is feasible at the receiver even when there is no receiver diversity (e.g. 

oversampling the channel output). 

Redundancy introduced does not change the time or frequency characteristics of the 

transmitted signal frame. The spectrum is simply spread making the algorithm insensitive to 

spectral nulls. The redundant precoders results in waste of bandwidth, but if the number of 

subcarriers of OFDM frame are chosen sufficiently large compared to the channel length, the 

wastage can be considered insignificant for all practical purposes. The non-redundant or 

block precoders are still preferred over redundant precoders. Further, as mentioned earlier, 

precoding can either be in time-domain (after IFFT block) or in frequency-domain (before 

IFFT block) in an OFDM transmitter. Some systems use both redundant and non-redundant 

precoding (e.g. CP-OFDM with linear block precoding [51]). 
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3.2. BLIND CHANNEL ESTIMATION FOR SISO-OFDM SYSTEMS 
3.2.1. FREQUENCY-DOMAIN EQUIVALENT SISO-OFDM CHANNEL MODEL 

In continuation with the SISO-OFDM channel model described in fig. 2.6, a frequency-

domain equivalent model which is the basis for the blind approach given in [51] is described. 

In contrast to the channel model of Chapter 2, in which the precoding matrix W was assumed 

to be an identity matrix; for the present discussion, the precoding matrix W is assumed to be a 

linear frequency-domain non-redundant matrix of dimension NxN. The equivalent parallel-

carrier channel model [41 ] with the precoder is shown in fig. 3.2. 

r — — — — — — — - — - -I 

OFDM transceiver ui6aient 

Figure 3.2: Frequency-domain parallel-carrier equivalent OFDM transceiver model 

As mentioned in the previous chapter, for SISO-OFDM systems, we consider a discrete 

baseband equivalent FIR channel impulse response with a known length L represented by a 

L x 1 vector as: h = [ho, ... , h1f.  . Define the normalized NxN DFT matrix defined as: 

1 	1 	••• 	1 
F - 	1 fN 	... 	fN -1 	

3.1
N

T  ( ) 
1 .N -1 	c(N-1)(N-1) 

where, fN = exp (- ~N) is the Wronskian or Kernel of DFT. The frequency response vector 

H can be obtained by taking N-point DFT of h as: 

H = [Ho ••• H N _1] = DFT(h) _ iF(:,1: L + 1)h 	(3.2) 

Assuming that the n 1̀' frequency-domain transmitted OFDM frame and received OFDM 

frame is given as (fig. 2.6 and fig. 3.2): x(n) = [x(n, 0), x(n, 1), ... , x(n, N - 1)]T and y(n) = 
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[y(n, 0), y(n, 1), . . . , y(n, N — 1)]T  respectively, the frequency-domain received OFDM 

vector can be expressed as [51]: 

	

y(n) = Hx(n) + n(n) 	 (3.3) 

where, n(n) is the post-DFT N x 1 noise vector and H is a diagonal NxN channel matrix 

given by: 

H0  0 •.. 0 

	

1I= diag{H}= 0 Hl  :: 	0 	 (3.4) 
0 0 ••• HN_l 

The precoder block multiples the incoming OFDM block with a precoding matrix Was: 

x(n) = Wd(n) 	 (3.5) 

Thus, 

	

y(n) = HWd(n) + n(n) 	 (3.6) 

3.2.2. CORRELATION-AVERAGING ALGORITHMS FOR BLIND ESTIMATION 

Two precoding techniques for correlation-averaging based channel estimation are 

considered in the following. The first method uses a simple (partial) precoder, which induces 

correlation on a single subcarrier [46] and forms a basis for rest of the precoding-induced 

correlation-averaging techniques that followed. The second approach (a generalization of first 

technique) uses a joint precoder, which induces correlation in entire OFDM block [51]. 

A. Blind channel estimation using simple precoding 

Consider, a precoded OFDM system model defined by eqn. 3.6. The linear precoder 

transforms the n`h  source block of N subcarriers denoted by: d(n) = [d(n, 0), d(n, 1), ... , d(n, 

N — 1)]T  according to [46]: 

x(n, k) = 	1 	(d(n, k) + (-1)k Ad(i, R)), 	k = 0, ...,N —1 
1 +JA12  

(3.7) 

where, the predefined precoding constants A and R are assumed to be known to the receiver. 

R is an integer in the range [0, N-1] and A is a purely imaginary number with A I <1 [46]. 

The features of this precoding technique are [46]: 
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1) Introduces no redundancy to the transmitted data, which makes it bandwidth efficient. 

2) Since the normalization factor is driven by A: an imaginary number, the approach 

preserves transmitted power on each subcarrier. 

3) Maintains zero-mean of the signal transmitted on each subcarrier. 

4) Maintains zero DC offset in each OFDM block. 

5) Introduces a correlation structure in the transmitted signal that can be utilized at the 

receiver for channel estimation. 

Referring to the OFDM transceiver model of fig. 3.2 and eqn. 3.6; the nth  frequency-

domain received OFDM symbol can be written as: 

y(n, k) = H k x(n, k) + n(n, k) = 	1 	Hk (d(n, k) + (-1)k Ad(i, R)) + n(n, k) 
1 + IA1z 

... (3.8) 

where, Hk is the frequency-domain channel coefficient on kt" subcarrier as defined by eqn. 

3.2. It is assumed that the source covariance matrix is diagonal: cd 'N  and the channel length 

L < N. Consider the correlation of the signals on kt  and R h̀  subcarriers given by [46]: 

(-1)k A +  
Z(k,R) = E(y(n, k)y*(n, R)) = 	1 + 1Al2 	-d HRHk , k = 0, .,., N — 1;k R 

Qd HRHR  + an, 	 k = R 

... (3.9) 

Observe that in practice, the expectation in eqn. 3.9 can be realized by time-averaging 

over successive OFDM frames. Assuming that the source statistics is known at the receiver, 

the estimate of frequency-domain channel coefficient on k subcarrier Hk can be obtained by: 

1+(Al2  	2(k, R) 

	

_ (-1)kA + (-1)k+R JA I ? 62 	
k = 0, ..., N — 1; k R 

Ilk 	2(k, R)  
2 	 k=R 

ad 

... (3.10) 

The channel estimate can be further improved by performing IDFT on fl; setting to zero 

the last N-L samples of IDFT output, then performing N-point DFT on the result. This 

procedure is known as de-noising [46]. Thus, by above procedure, the channel estimate is 

obtained in frequency-domain up to a constant complex scalar quantity. Assuming that the 

noise variance is small, observe on the R h̀  subcarrier, the estimate obtained is HR  - HRH R  
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I 
HR  1 2 . Thus an estimate of magnitude of R`h  subcarrier coefficient can be obtained. Dividing 

the whole estimate by this estimate, the ambiguity factor can be reduced to constant phase 

ambiguity. A potential problem with the estimate might arise when the R`h  subcarrier is in 

deep fade, in which case 2(k, R) is close to zero for all k's. This problem can be solved by 

introducing correlation on more than one subcarrier, as described in [51]. 

B. Blind channel estimation using generalized precoding 

This method uses a generalization of precoding technique that was employed in 

previously described technique and leads to better estimation accuracy. The channel output 

signal, y(n)'s auto-covariance matrix denoted as R,,y  estimated via time-averaging is used for 

channel estimation purpose in frequency-domain [51]. Using eqn. 3.6, the auto-covariance 

matrix of y(n) can be written as: 

Ryy  = E{y(n)y(n)H } = IHWRdW H H r' + Rn 	 (3.11) 

Assuming that the source symbols are iid, with variance od and noise samples are also iid 

and are distributed according to —N(0, Q„2); we have- 

Ryy  = E{y(n)y(n)H } = Ud HPH H  + URN = ud (HH H )OP + 6n I N 	(3.12) 

where, P = WT3. The elements of P and hence W are designed according to following 

criterion [51]: 

1) Distortion criterion: In practice, the number of snapshots received within the channel 

coherence time is not infuiite. Therefore, we can at best obtain a sample estimate of 

signal auto-covariance matrix. Each entry of Ryy  contains the distortion due to the effect 

of both the noise and the lack of the number of snapshots. If one entry of P is much 

smaller than the other entries, the distortion in the corresponding entry of Ryy  will be 

greatly enlarged after the elimination of the effect of P. Hence, the entry of Ryy  with 

possibly large distortion should be discarded, or the corresponding entry of P should be 

assigned a relatively large value. However, no prior information of the distortion can be 

obtained due to all unknown factors. A reasonable way is to assign equal value to all the 

non-diagonal entries and at the same time as large as possible. 

2) Power constraint: The precoding matrix elements must be chosen such that the 

transmitted signal power is kept constant i.e., 

Power = E{d(n)HW HWd(n)} = cr trace(P) = cr N 
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Thus, trace (P) = N. 

Combining 1) and 2), we get: 

3) Symbol Error Constraint: Due to the quadrature form of eqn. 3.12, P should be a positive 

semi-definite matrix. It can be proved that one Eigen-value of P is (N - 1) p + 1, and all 

the other Eigen-values are 1 - p. Hence, for channel estimation, the range of p is - (1/N - 

1).<p<Iandp~0. 

The P matrix is designed according to these criterions. The precoding matrix W can be 

obtained by taking square-root of P. It is reasonable to assume that the knowledge of 

precoding matrix W is known at the receiver end. Obtain the matrix R as: 

crd IHo I2 + Qn 	o Ho HI 	Cr H0 HN-1 

R = (R)•/P = 	
a 111 Ho 	ffy I H1.I 2 + cr 	ad HiHN_1 	(3.13) 

QdHN-lHo 	adHN-lHl 	Qd~HN-1I Z + 6n 

Define, 

rq = [R(1: q — 1, q)T R(q + 1: N, q)T ]T , 	q = 1, • • • , N 

Fq = [F(1: q — 1,1: L + 1)r F(q + 1: N,1: L + 1)T]T, 	q = 1, ••• , N 	(3.14) 

Set, 

Heq = F(:,1: L + 1)Farq = 6aHq_1H 	 (3.15) 

Assuming the knowledge of source statistics at the receiver, the steps for frequency-

response estimation of the channel from eqn. 3.13 are given as follows [51]: 

Step 1: Obtain the estimate of od IHo I 2 and hence IHo I as the first element of Heq from eqn. 

3.15 with the value of q set to 1. Assuming an arbitrary phase q, set the estimate of 

Ho as Ho = IHo Ieiw. 

Step 2: From R(2,1), obtain an estimate for Hj as: Hi = R(2,1)/Ho* . 
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Step 3: From R(3,1. 2) solve the over-determined function using Ho and Hi to get an estimate 

Ifli* 

~ jfi 

of H2 as H2 = °
1 

R(3,1: 2)T. 

Step 4: Calculate all the estimates of Hq_1 from R(q,1. q-1) until all the elements of H are 

estimated. 

Step 5: De-noising the whole estimate vector H = [Ho ••• RN _i ], obtain the final estimate 

of the channel vector in frequency-domain as H = F(:,1: L + 1)F(:,1: L + 1)1111. 

This algorithm estimates the channel in frequency-domain as against subspace approach 

of Chapter 2 that estimated the channel in time-domain. The time-domain impulse response 

estimate of the channel up to a constant phase ambiguity factor (unlike subspace method 

which estimates channel up to constant scalar ambiguity) can be obtained by taking inverse 

Fourier transform of the frequency-domain estimate. 

3.2.3. CRAMER-RAO BOUND FOR BLIND PRECODING-BASED ESTIMATOR 

The Cramer—Rao bound (CRB) states that the variance of any unbiased estimator is at 

least as high as the inverse of the Fisher information matrix. An unbiased estimator which 

achieves this lower bound is said to be efficient. This sub-section discusses the derivation of 

CRB for blind precoder-induced-correlation-averaging technique-based channel estimator. 

There are two different types of system models: 

1. Conditional model (CM) - Assumes that the input signal is non-random (i.e., same 

in all realizations) 

2. Unconditional model (UM) - Assumes that the input signal is random. 

The CRBs can accordingly be classified as Conditional/ deterministic CRB and 

unconditional/ stochastic CRB. For the problem underhand, it is assumed that the input signal 

is random whose covariance matrix is multiple of identity matrix and hence, derivation of 

stochastic CRB is discussed. The covariance matrix of frequency-domain received blocks i.e., 

y(n) cannot be used since only L+1 elements of frequency-domain channel vector H are 

linearly independent. Instead, the signal covariance matrix of time-domain received vector 

r(n) (refer fig. 2.6) is considered. From eqn. 2.24a after discarding CP (i.e., deleting first L 

rows from Ho and Hi and flipping and adding first L columns to last L columns of Ho and 

Hl), the IBI term is rejected; we get [51]: 
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r(n) = HFHx(n) + ri(n) = HF HWd(n) + F](n)  (3.16) 

where, n(n) is the N x 1 noise vector before the DFT block at the receiver after the CP part 

(first L samples) are discarded from (n) in eqn. 2.24a and H is the N x N circulant channel 

matrix defined by: 
ho  0 ..• hl  
hi  h0  ... hz  

H = hL  hL-1  ... 0 	 (3.17) 
0 hL  ••. 0 

0 	0 	... h0 NXN 

The signal covariance matrix is thus given by, 

Rrr  = E(r(n)r(n)") = 00I-IFNPFHH  + QnI N 	 (3.18) 

The noise statistics is not altered by DFT operations [51]. In general, for a circular complex 

zero-mean Gaussian random variable: r = r1? + jr, with signal covariance matrix defined as 

Rrr  = E{rr) parameterized by a real vector 0 = [01  ••• BK ]T, the Fisher information 

matrix (FIM) is given by [60, 51]: 

FIM(m, q) = M trace 
(dRrr 

Rrr 
 dRrr Rrr) for m, q = 1, ", K 

m 	q 
(39) 

where, M is the number of available snapshots for sample-covariance matrix estimation." The 

CRB is obtained by taking inverse of FIM (see eqn. 3.24). For this case, the signal covariance 

matrix is assumed to be parameterized by the (2L + 4) x 1 vector: 9 = [h j hI Qd vn ]T 

The following mathematical properties are used in derivation of CRB [51]: 

trace(XY) = vec(XH )Hvec(Y) 

vec(XYZ) = (ZT  ® X)vec(Y) 

(X ® Y)(Z ® W) = (XZ) ® (YW) 

which holds for any matrices X, Y, Z and W. Using these properties we can write eqn. 3.19 

as: 
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dR H 

— FIM(m, q) = vec (dOm)rr vec ~R~.,i R q rr Rr i j 

H 

= veC (dBrrl (Rrr ®Rrr }UeC B rl 
m 	 ql 

... (3.20) 

Define: 

	

rrr = vec(Rrr ) = Qd(H* ® H)vec(F H PF) + cYnvec(I N ) 	 (3.21) 

Thus, 
H 

M FIM = (drrr  d 9T) (Rrr ®Rrr) { 07 ) 
(3.22) 

The eqn. 3.22 can be partitioned as [51]: 

M FIM = [AH] [G A] 

... (3.23) 

where, 

[G I 0] — R- z ®R 2 	 r . R-T/2 R-1/2} drrr drrrdrrrdrrr  rr 	rr (~d T) _ (Rrr ® rr 
(drrr 

 dhT dal dan l I 	d 	/ 

Since, FIM is a singular matrix [51]; certain constraints have to be put on FIM to 

obtain CRB as its inverse. Defining [51]: 

CRB=FIMt 
	

(3.24) 

We have the following theorem using which CRB can be analytically calculated (see 

[51 ] and references therein): 

Theorem: Suppose the FIM for 9 = [01 02 ]T is given by, 

FIM = 
Z 0

1 let©2]
01 10202 

Assuming that FIM is singular but 10202 is non-singular; CRB can be obtained as, 

CRB = 110x01 —lel0210202 110201 it 
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Define an N x N matrix H! with (m, q)-th entry as: 

Hl (m, q) =  f
1, ((m — q)mod N) = I — 1 
0, 	otherwise  

For this case, 01 = [h 	hf ]T and 02 = [Qd .y,?]T; hence from eqn. 3.23 the 
expression for CRB can be written as: 

CRB = 1- [G HG — GHA(AHA)-11HG]t 	 (3.25) 

The values of G and a are calculated as follows [51]: 

[G 1 A] = [GI I G2 I V I u] = (Rrr ~z ®Rrr 'Z) 
(~rrr

d I dhT d~z I d~z J` 
R 	I 	d 	n/ 

where, 
1 	 1 

A, = Qd Rrr H I F H PFHI Rrr 

	

T 	I 

('1{ , l) _ (R ®Rrr vec (dRrrl = vec (Rrr dRrr rr=veC(A1 +A ) 
dhR" 	dhRi 

G z(:, ~) = Rrr ® 	vec (dRrrl = vec (Rrr dRrr Rrr = vec(/A1 — JAi ) C 	) 	 dhl,l l 	\ 

rr dhl ̀  

v 
 = (

T 	11 	dR 	/ -1 dR 	1 	 1 	 1 
Rrr 0 Rr 2 ) vec 

(dad2 
} =vec { Rrr d ,? Rrr - vec(RrrI1F''PFH H Rr, 
 ` 

and 

u = (Rrr ®R) vec ( d
- 2

) = vec (Rrr d62 Rrr 
) = vec(Rrr ) n 	\ 	n 

3.2.4. PERFORMANCE ANALYSIS OF SIMPLE-PRECODING BASED METHOD 

The performance analysis of blind channel estimation using simple-precoding induced 

correlation-averaging [46] supported by MATLAB simulations is presented. 

A. Simulation Parameters 

The simulation parameters are given as follows: 

➢ 	Complex discrete baseband equivalent FIR channel is assumed to be of length (L) = 2. 

➢ 	The channel power-delay-profile is assumed to be exponential [511: 
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E(1h1 1 2 )=e( _lob, 	1=0,...,L 

> Number of sub-carriers/ OFDM frame (N) = 64 

➢ Number of OFDM frames collected for estimation purpose (M) = 250 

> Precoding normalization constant (A) = 0.5j 
> Precoding symbol index (R) = 1 

➢ Pilot symbol index (P) = 1 

➢ Pilot symbol value = 10 

➢ SNR (unless otherwise mentioned) = 30 dB. 

➢ Baseband modulation/ mapping: 16-QAM 

> The results are averaged over 100 Monte-Carlo simulation runs. 

The flowchart depicting the procedure to obtain the channel estimates using simple-

precoding based technique is shown in fig. 3.3. The timing and frequency synchronization are 

assumed. The estimation ambiguity is resolved by using pilot carriers. 

B. Simulation results and conclusion 

The plot of MSE versus varying length of output OFDM blocks used at 30 dB SNR is 

shown in fig. 3.4. It can be seen that the MSE performance improves exponentially as the 

length of OFDM blocks is increased. From fig. 3.4, it can be seen that the MSE of 10"3  is 

achieved when length of OFDM blocks is 500 and an improvement in the performance by a 

factor of 2 can be seen as length of blocks is doubled (at a block length of 1000, MSE is 

5x]0).  

The plot of MSE versus varying SNR (dB) values assuming that the length of OFDM 

blocks used is equal to 250 is shown in fig. 3.5. In contrast to subspace approach for single-

carrier system described in Chapter 2 (see fig. 2.5), it can be seen that the MSE curve 

saturates when SNR is increased beyond 15 dB at approximately 2 x 10-j. This is because, 

unlike Eigen-vector based approach (subspace technique), the correlation-averaging 

technique is more sensitive to distortion due to non-availability of infinite number of OFDM 

blocks for time-averaging than AWGN. The advantage over subspace approach is that even at 

SNR of 0 dB, MSE is of the order of 10-' which is 10 times better than that for subspace-

based method. 
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Start 

Set all the parameters as given in 
i 	the specifications 

NumSim = 0 

Generate the channel impulse response vector of length L+ I 
given by h = [ho ... hUf r. Each coefficient is a zero-mean 
Gaussian distributed random variable with variances as per 
the channel's power delay profile given in the specification 

Generate a sequence of source. bits, group the bits by 
taking 4 at a time and map the bits using a 16-QAM 

mapping table_ Combine 64 such QAM symbols at a time 
to form an frequency-domain OFDM frame 

Precode the frequency-domain OFDM frame d(n) 
according to eqn. 3.7 to obtain preceded frame x(rt 

Take N-point IFFT on precoded OFDM frame x(n) and 
insert CP (by prefixing a copy of last L symbols to the original frame) 

to obtain the time-domain OFDM frame to be transmitted 

Pass the time-domain OFDM frame through a FIR filter whose 
impulse response vector is given by h. Add AWGN at desired SNR 
to the filter output to obtain the time-domain received OFDM frame 

Receive the time-domain OFDM frame and remove CP_ Take N-
point FFT to obtain frequency-domain received OFDM frame y(n) 

~oRect kf such OFDM frames y(nj and calculate the estimate 
of auto-covariance between ku1 subcarrier denoted by y(n,k) 
and Rth subcarrier denoted by y(n,J) by time-averaging as: 

M 

z(k,R)= 	S(n,k:)y°(n,R) 
n=i 

Repeat for I s k s N 
Calculate the estimate of k`h coefficient of channel frequency 

response vector H denoted as Hk using eqn, 3.10 

I NumSim = NnmSim + 1 

Denoise the estimate ofHby taking N-point IFFT on Ii; setting to 
!ero the last r L samples of the result, then performing N-point FFT 

on the result to obtain the final estimate H 

Calculate the mean square error between the 
true channel and the estimated channel. 

No 

— ` 	Is NumSim = 100? 

Yes 

Calculate average MSE for given parameters 

Simulated for all the parameters (SNR's or No 
number of received blocks to be collected) 

Yes 

Stop 

Figure 3.3: Blind channel estimation using subspace decomposition technique (flowchart for 
generation of plots given in fig. 3.4 andfig. 3.5) 
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A plot of MSE versus Number of OFDM blocks used to estimate the output auto-covariance matrix 

104  
J 	100 	200 	300 	400 	500 	600 	700 	800 	900 	10 9 

Number of OFDM blocks ---> 

Figure 3.4: The plot of MSE versus length of QFDM blocks used at SNR = 30 dB. 

A plot of MSE -versus SNR 

1031  
0 	5 	10 	15 	20 	25 	30 	35 	40 	45 

SNR (dB) ---> 

Figure 3.5. The plot of MSE versus SNR (dB) with length of OFDM blocks equal to 250 

Sc 
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3.3. BLIND CHANNEL ESTIMATION FOR MIMO-OFOM SYSTEMS 
This section presents a generalization of precoding-induced-correlation-averaging method 

to blind channel estimation for MIMO-OFDM systems [57]. As mentioned earlier, unlike the 

time-domain subspace approach of Chapter 2 for MIMO-OFDM, this approach with a proper 

design of precoding block can estimate the channel in frequency-domain up to a constant 

scalar ambiguity factor per transmit antenna. For this purpose, in .contrast to the precoding 

matrix for SISO-OFDM case which was time-invariant; the precoder is block-time-variant. 

3.3.1. FREQUENCY-DOMAIN EQUIVALENT MIMO-OFDM CHANNEL MODEL 

The block diagram of MIMO-OFDM communication link as shown in fig. 2.7 is 

considered as reference for discussion. The frequency-domain model for MIMO-OFDM 

system [57]: an extension of the frequency-domain model for SISO-OFDM is presented in 

this sub-section. Consider a MIMO-OFDM transceiver with M, transmit antenna and Mr 

receiving antenna. Define the impulse response vector of the channel between j h transmitter 

antenna and i' receiving antenna as 	= [h~, 0 , ... , h;;,iJ T and its corresponding frequency 

response vector as 	= DFT(hfl) _ [H~;,o, ... , Hj1,N_1]7 . It is assumed that, the OFDM block 

from the j" transmitter antenna is precoded, by the NxN matrix W in frequency-domain. The 

frequency-domain received OFDM vector at ith receiving antenna is given by (generalization 

of eqn. 3.6): 

Mt 

yt (n) = I FijiW d1(n) + nt (n) 
j=1 

... (3.26) 

where, ff ji = diag(HJ L ) is the ji-th channel sub-matrix of dimension NxN; d/n) is the 

frequency-domain transmitted OFDM frame from j`h transmitting antenna (see Chapter 2); 

ni (n) is the post-DFT additive white zero-mean Gaussian noise vector of dimension N x 1 at 

i h̀ receiving antenna with variance v„2. The NM1 x NM, frequency-domain channel matrix is 

given by: 

jell 	HMtl 

IAN - 	 (3.27) 
111Mr ... 1'MtMr 
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Define the composite frequency-domain transmitted vector as: 

d(n) = [dl(n)T ••• dMt(n)T ]T . The composite frequency-domain received vector can be 

written as: 

y(n) = [yl(n)T ... ym,(n)T]T = H NWcd(n) + n(n) 	(3.28) 

where, n(n) is the composite noise vector given by: n(n) = [IIi (n)T • • • nM, ()r ]T and 

We is the composite block-diagonal precoding matrix of dimension NM, x NM, given by: 

We = diag(W1, W 2, ..., WMt ) 

If block-time-variant precoding is used, eqn. 3.28 must be refrained as: 

y(nMt + r) = [yl (nMt + T)T • • • yMr (nMt + T)T] = H NWc.rd(nMt + r) + n(nMt + r) 

... (3.29) 

T 
where, d (nMt + T) = [d, (nMt + T)T • • • d.r (nMt + T)T] for r = 1, ... , M, ; n = I ... 

(M/M,) (M is the total length of OFDM blocks used for time-averaging) is the composite 

transmit vector and the composite block-time-variant precoding matrix W, is defined as: 

WcT = diag(Wi~, W2T , ..., WMtT) 

with each of its sub-matrices as defined in next sub-section. 

Note: Since the input is assumed to be stochastic; d(n) for n = 1, ... , M is statistically same 

asd(nM,+r)forr=1,...,M,;n=1... (M/M,). 

3.3.2. GENERALIZED CORRELATION-AVERAGING ALGORITHM 

The channel matrix is estimated via SVD and joint correlation-averaging in frequency-

domain using the estimate of auto-covariance matrix of the composite receiver vector [57]. 

Consider, for time being a composite time-invariant block diagonal precoding matrix given 

by: 

PC = diag{Pi , P2 •• • P MJ where, P1 = W1W7 

Let the source covariance matrix be Rd = E(d(n)d(n)H ) _ crdI NMr . From eqn. 3.28, the 

output signal covariance matrix can be expressed as [57]: 
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RY,11 ... RY,1Mr 
Ry  = E(y(n)y(n)H } = Qd H N PC HN + 0n'NMr  = 	 (3.30) 

RY.Mrl ... RY,MrMr 

with its (b, d)`" sub-block given by, 

	

Mt 	 Mt 

Ry,bd = 6d > 1jb Pj1 d + S(b — d)vaI N  = ud Z(HjbHjHd)OPj  + 8(b — d)QiI N  

	

j=1 	 j=1 

(3,31) 

By utilizing covariance matrix of eqn. 3.30; correlation-averaging algorithms for MIMO-

OFDM systems can estimate the channel matrix up to a constant complex matrix ambiguity. 

For estimation of the channel matrix up to scalar ambiguity per transmitting antenna to be 

possible, as mentioned earlier, block-time-variant precoders must be employed [57]. Suppose 

at the (nM + r)-th time interval, r = 1, ... , M,; the symbol block from the j h  transmitter is 

precoded by Wt. Then, the corresponding PST  is represented by: Pfl  = W T  W ty  for, , r = 1, ... , 
M,. Using eqn. 3.29, M, covariance matrices can be defined as: 

Ry  = E(y(nMt  + i)y(nMt + i)H ), 	T = 1, ... , Mt  

The eqn. 3.31 can thus be re-written as: 

	

Mt 	 M't 

RyT,bd = Qd Z Fi jbPiT H d + 8(b — d)QnIN = Ud j(HjbHjHd)opjT + S(b — d)a IN 

	

j=1 	 j=1  

(3.32) 

Consider the following two cases [57]: 

Case 1:  b d. For this case, the (m, q)-th entry of R,hd can be expressed as: 

Mt 

[RyT,bd]mq  = Ud 
j[pjrl

ma Hjb,m-1Hjd,Q-1 
j=1 

... (3.33) 
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It can be seen that, above expression contains M, equations and M, unknowns. Assuming 

time-synchronization and the knowledge of precoding matrices at the receiver, these 

equations can be solved to obtain the unknown parameters as: 

P ~d Hib,m-1Hid,q-1 	11 mq 

F
z  r 

C'd HMtb,m-1HMtd,q-1 	[P iMt]mq 

... [PMtllmq -1 

L 
[Ryl,bd]mq 

(3.34) 
... [ PMtMt]mq 	[ RyMt,bdl mq 

Since, the solution for above matrix equation exists if and only if the inverse of precoding 

matrix exists, the precoding matrices PST must be designed such that the matrix in eqn. 3.34 is 

non-singular [57]. By considering, all pairs of (m, q) and organizing the terms, we can obtain: 

Q j,bd QaH jbHld for] = 1,...,Mt 	(3.35) 

Case 2: b = d. For this case, the diagonal entries of covariance matrix cannot be directly used 

as they are corrupted with unknown noise. Thus, we can rely upon non-diagonal (m 

~ q) entries only. Consider, 

Mt 

2 
[Ryr,bd] mq = ad 	{Pjt1 mgHjb,m-1Hjd,q-1 

j=1 

T = 1, • • • , Mt , 	b = d, 	m # q 

... (3.36) 

We can obtain the estimates of QdHjb,m-1Hjd,q_1 for j = 1, ••• , Mt from eqn. 3.34. 

Combining all the pairs (m, q) with m q, a new vector can be formed as: 

T 
rbd,jq 

- 

 ̀ " 'd
2 

	
... 6dHjb,q-2Hjd,q-1 UdHjb,gHjd.q-1 ... QdHjb,N-1"jd,q-11 

forq=1,...,Nand j=1,...,M, 

As long as (M-1) ? (L+1), the estimate of QdHjbH1d,q_1 (analogous to eqn. 3.15) can be 

obtained as: 

JJ H jb H jd,q-1 = F(: ,1: L + 1)Fgrbd,jq 	 (3.37) 

where, Fq is as defined in eqn. 3.14. 

Combining all adH jbH7d;q _1 for q = 1, ... , N, we can obtain: 
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Q,bd = [a,HibHjd o ... QdHjbH~d,,V-1] = c Hj bH7 for] = 1,•••,Mt (3.38) 

Define, 

Q1.11 	Q1,iMr 
Q = 	 f or j = 1, ... , Mr 	 (3.39) 

Q) Mri 
... Qj,M'1rMr 

and 

H11 ... HMt1 
U — 	 (3.40) 

[
HiMr ... H MtMr 

It can be seen that, 

Q 	ad U j Uj H 	 (3.41) 

where, UI = [H11T • • • HTMr }T represents the NM,. x] channel response vector from the j'" 

transmitter to all the receivers i.e, the j" column of U. 

Let Ul denote the Eigen-vector of Q~, corresponding to its largest Eigen-value. From 

subspace detection theory, span{U1 } = span(U1 } when M, < M,N [57]. Therefore U I can be 

considered as an estimate of U~ corrupted by a constant complex scalar factor as given by, 

Uj=al U1 

Thus the estimate of U~ can be obtained from the Eigen-vector of Q1, corresponding to its 

largest Eigen-value obtained by singular value decomposition (SVD) up to a constant 

complex scalar ambiguity. 

Note: Since N> 1 for all OFDM systems, this approach is applicable to the systems with the 

number of transmitting antennas greater than the number of receiving antennas (i.e., 

MISO-type systems) without need for oversampling at the receiver unlike subspace 

decomposition approach. 
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Chapter 4 

SIMULATION RESULTS FOR BLIND TECHNIQUES 

Using simulation techniques, this chapter describes the performance of blind channel 

estimation using subspace-based and precoding-induced correlation-averaging techniques for 

SISO-OFDM and MIMO-OFDM systems in terms of mean square error (MSE) over different 

baseband modulation (mapping) schemes and channel power delay profiles. Some common 

parameters used for simulation purpose are given below: 

> The discrete baseband equivalent FIR channel impulse response is assumed to be 

static over the interval of estimation process with length/ order (L) equals to 2. The 

channel coefficients are assumed to be complex zero-mean Gaussian distributed 

random variable with variances given according to either of the following power-

delay-profiles (PDP) [61]: 

• Exponential- 

• IT 
 E{Ihi I 2 ) = eT 1 , 	l = 0, ..., L 

• Uniform- 

E{1h11 Z) = 1, 	1 = 0, ..., L 

where, T is the baud-interval and i is the rms delay spread of the channel. For present 

discussion, the value of r/T is taken to be equal to 10 [51]. 

➢ Number of subcarriers per OFDM frame (N) = 64 

➢ Number of OFDM block used to estimate channel output auto-covariance matrix by 

time-averaging unless otherwise mentioned (M) = 1000 

> SNR (unless otherwise mentioned) = 30 dB 

➢ The estimation ambiguities are resolved using pilot carriers or reference symbols as 

far as this chapter is concerned. 

0 ➢  The time and frequency synchronization are assumed. 
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4.1. SISO-OFDM SYSTEMS 
4.1.1. CRAMER-RAO BOUND FOR BLIND PRECODER-BASED ESTIMATOR 

The stochastic CRB for blind precoding-induced-correlation averaging technique based 

channel estimator for SISO-OFDM system (Chapter 3) is calculated over varying SNR (dB) 

values for the following values of p = (0.1, 0.5, 0.9) (see eqn. 4.1) using eqn. 3.18 and eqn. 

3.25. The procedure given in flowchart of fig. 4.1 is used to estimate the channel using 

precoding-based technique over varying SNR (dB) values for 100 Monte-Carlo runs. The 

mean-square-error variances for the estimator are calculated and compared with the CRB. 

A linear non-redundant frequency-domain time-invariant precoding matrix employed for 

channel estimation is given as: 

1  P P ... p 

W= P1/2 , 	where P= 
	

(4.1) 

P P P "' 1  NxN 
A plot of statistical CRB and mean-square-error variance versus SNR (dB) values for 

blind precoder-induced-correlation-averaging based channel estimator with 16-QAM 

baseband mapping for p = 0.1 is given in fig. 4.2 and fig. 4.3 for exponential and uniform 

channel PDP respectively. Similar simulation results are obtained for p = 0.5 and p = 0.9 and 

are shown in fig. 4.4 —fig. 4.7. 



Start 

Set all the parameters as given in 
J 	the specifications 	J 

Numsim =0 

Generate the channel impulse response vector of length L+1 
given by Ix = [ho ... h1]T. Each coefficient is a zero-mean 

Gaussian distributed random variable with variances as per 
the channel`s power delay profile given in the specification 

Generate a sequence of source bits, group the bits and map the bits 
using a mapping table designed as per the required modulation 

scheme given in specific.ations. Combine 64 such modulated 
symbols at a time to form a frequency-domain OFDM frame 

Precode the frequency-domain OFDM frame d(n) according to eqn. 3.3 
with Was given by the specifications to obtain precoded frame. x(n) 

Take N-point IFFT on precoded OFDM frame x(n) and 
insert CP (by prefixing a copy of last L symbols to the original frame) 

to obtain the time-domain OFDM frame to be transmitted 

Pass the time-domain OFDM frame through a FIR filter whose 
impulse response vector is given by h. Add AWGN at desired SNR. 
to the filter output to obtain the time-domain received OFDM frame 

No  
Receive the time-domain OFDM frame and remove CP_ Take N-
point FFT to obtain frequency-domain received OFDM frame v(n) 

Is NumSim = 100? 
Collect M such OFDM frames y(n) and calculate the 
estimate of channel output auto-covariance matrix as. 

M 
AIX Al  y(n)y(n)' 	

Yes 

n=1 	 Calculate average VISE for given parameters 

Obtain matrix R from eqn 3.13 and follow Steps 1- Son page 
numbers 45-46 to obtain the channel estimate in frequency-domain 	Simulated for all the parameters (SNR's or No  

number of received blocks to be collected) 

Calculate the mean square error between the 	 Yes 
true channel and the estimated channel 

Stop 

NumSim = NumS m + 1 

Figure 4.1: Blind channel estimation using precoding-induced correlation-averaging for 

SISO-OFDM systems 
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Figure 4.2: CRB and MSE variance versus varying SNR (dB) values for blind precoding- 

based algorithm with precoding constant (p) = 0.1 for exponential channel PDP 

--Estimate of h(0) 
—4--Estimate of h(1) 
t  Estimate of h(2) 

61SE var 
100 
	

CRB 

w 
U) 

C 
Co 

U 

10' 

10  

0 	 5 	 10 	 15 	 20 	 25 
SNR (dB) --> 

Figure 4.3: CRB and MSE variance versus varying SNR (dB) values for blind precoding- 

based algorithm with precoding constant (p) = 0.1 for uniform channel PDP 
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Figure 4.4: CRB and MSE variance versus varying SNR (dB) values for blind precoding- 

based algorithm with precoding constant (p) = 0.5 for exponential channel PDP 
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Figure 4.5: CRB and MSE variance versus varying SNR (dB) values for blind precoding- 

based algorithm with precoding constant (p) = 0.5 for uniform channel PDP 
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Figure 4.6: CRB and MSE variance versus varying SNR (dB) values for blind precoding- 

based algorithm with precoding constant (p) = 0.9 for exponential channel PDP 
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Figure 4.7: The plot of CRB and MSE variance versus varying SNR (dB) values for blind 

precoding-based algorithm with precoding constant (p) = 0.9 for uniform channel PDP 
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The following observations can be made from fig. 4.2 —fig. 4.7: 

Note: The phrase `on an average' refers to average over three time-domain channel 

coefficients {ho = h(0), hi = h(1) and h2 = h(2)}. 

❖ For a given channel PDP and the value of p, the MSE variance achieved is, on an 

average, at least 100 times more than the CRB. 

❖ As the SNR is varied over the range, both CRB and MSE variance achieved by the 

estimator improves by a factor 10 dB on an average irrespective of channel PDP 

and the value ofp. 

❖ From fig. 4.2 —fig. 4.7, it can be observed that when SNR is increased beyond 15 

dB, the performance saturates and no further improvement in either CRB or MSE 

variance achieved by the estimator can be observed. 

❖ As p is increased, both the CRB and the MSE variance achieved by the estimator 

decreases irrespective of the channel PDP. At 0 dB SNR, from fig. 4.2 - fig. 4.5, 

i.e., when p is increased from 0.1 to 0.5, an improvement of around 5 dB and 10 

dB on an average for exponential and uniform channel PDPs respectively, can be 

observed in both CRB and MSE variance. At 25 dB SNR, an improvement of 10 

dB in MSE variance can be observed irrespective of channel PDP. Further, an 

improvement of 2 dB and 10 dB can be observed in CRB for exponential and 

uniform channel PDP. Similar observations can be made, from fig. 4.4 - fig. 4.7, 

i.e., when p is increased from 0.5 to 0.9. 

•:• For a given value of p, the estimator achieves the lowest MSE variance when the 

channel PDP is exponential. At 0 dB, from fig. 4.2 and fig. 4.3, a difference of 13 

dB in MSE variance on an average can be observed between the cases when the 

channel PDP is exponential and uniform. Similar observations can be made at 0 

dB SNR from fig. 4.4 and fig.4.5 (a difference of 7 dB) and fig. 4.6 and fig. 4.7 (a 

difference of 5 dB) for MSE variances. Similarly, at higher SNR values, for 

instance at 25 dB, from fig. 4.2 - fig. 4.7 differences of 6 dB, 4 dB and 0 dB in 

MSE variances respectively can be observed between the cases when the channel 

PDP is exponential and uniform. 
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4.1.2. COMPARISON OF SUBSPACE AND PRECODING-BASED TECHNIQUES 

This sub-section presents a comparison of subspace-based and precoding-based blind 

channel estimation techniques in terms of MSE performance over varying length of OFDM 

blocks and varying SNR (dB) values for 4-PAM, 8-PSK and 16-QAM over two different 

channel PDP as given in the specifications. The linear non-redundant precoding matrix 

mentioned in previous sub-section with precoding constant (p) = 0.5 is used along with the 

procedure given in flowchart of fig. 4.1 to obtain the channel estimate using precoding-based 

technique. The procedure given by the flowchart shown in fig. 4.8 is used to obtain the 

channel estimate using subspace-based technique. It is assumed that two consecutive OFDM 

blocks are combined (J = 2) to form a composite OFDM block for subspace technique. 

The MSE performance of two blind techniques versus length of OFDM blocks used at 30 

dB SNR with exponential and uniform channel PDP are shown in fig. 4.9 and fig. 4.10 

respectively. Similarly, the MSE performance of the same versus SNR (dB) values assuming 

that the length of OFDM blocks used is 1000 with exponential and uniform channel PDP are 

shown in fig. 4.11 and fig. 4.12 respectively. 
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Start 

Set all the parameters as given in 
the specifications 

Ntmsim=0 

Generate the channel impulse response vector of length L+I 
given by it = [ho ... hrjT. Each coefficient is a zero-mean 

Gaussian distributed random variable with variances as per 
the channels power delay profile given in the specification 

;renerate a sequence of source bits, group the bits and map the bit: 
using a mapping table designed as per the required modulation 

scheme given in specifications. Combine 64 such modulated 
symbols at a time to form a frequency-domain OFDM frame d(n) 

Take N-point IFFT of d(n) and 
insert CP (by prefixing a copy of last L symbols to the original frame) 

to obtain the time-domain OFDM frame to be transmitted 

Pass the time-domain OFDM frame through a FIR filter whose 
impulse response vector is .given by h. Add. AWGN at desired SNR 
to the filter output to obtain the time-domain received OFDM frame 

Receive the time-domain OFDM frame rp(n) . By combining two 
such consecutive frames according to eqn. 2.25, form E (n) 

Collect M such frames; r(n) and calculate the 
estimate of channel output auto-covariance matrix as: 

M 

R _~ r(n)t{n)x 
n=1 

Obtain the estimate of noise subspace bases for 0 g i <_ L-1 
according to eqn. 2,27 by applying SVD on 

Arrange the noise subspace bases to form a matrix G; 
according to eqn. 2.29 

Obtain matrix Q from eqn. 2.31 

Obtain the channel estimate as the Eigen-vector associated with the 
smallest Eigen-value of Q up to a complex scalar ambiguity. 

Resolve the ambiguity by utilizing pilot carriers 

Calculate the mean square error between the 
true channel and the estimated channel 

No 

~~ 	Is NlumSim = 100? 

Yes 

Calculate average RISE for given parameters 

Simulated for all the parameters (SN-R's or No 
number of received blocks to be collected) 

Yes 

Stop 

I NumSim = NumSim + 1 

Figure 4.8: Blind channel estimation using generalized subspace-based technique for SISO- 

OFDM systems 
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Figure 4.10: MSE versus length of OFDM blocks used at SNR = 30 dB for uniform channel 

PDP 
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Following observations can be made from fig. 4.9 and fig. 4.10: 

❖ The performance is independent of the modulation/ mapping scheme used for both the 

estimation techniques irrespective of channel PDP. 

❖ As stated by p. o. e. assumption, since J = 2 and N = 64, the minimum length of OFDM 

frames required for proper formation of subspaces and hence the reliable channel estimates 

is 128. From the fig. 4.9 and fig. 4.10, significant difference in performance of subspace 

algorithm can be observed around this point (N = 128). 

❖ Unlike subspace-based method, the precoding-based technique provides a good estimate 

of the channel even when the length of OFDM frames is small. From fig. 4.9 and fig. 4.10, 

it can be seen that MSE value of order of 10-3  is achieved even when the length of OFDM 

blocks is as low as 25. 

❖ The performance of both the techniques improves as the length of the OFDM blocks used 

is increased. The performance improvement is exponential (gradual) for precoding-based 

method and is step-like for subspace method. The step-like characteristics is due to p. o. e. 

assumption (restriction). On the right side of the threshold, the performance shows an 

exponential behaviour. 

❖ The performance of precoding-based technique is worse than that for subspace-based 

method when the length of OFDM blocks used exceeds the minimum threshold put forth 

by p. o. e. assumption. When the length of OFDM blocks is 1000, the difference in the 

MSE performances of the two approaches is around 14 dB for exponential channel PDP 

case and 20 dB for uniform channel PDP case. 

❖ The asymptotic performance of precoding-based method is similar irrespective of channel 

PDP under consideration. When the length of OFDM blocks is 5000, the MSE value for 

exponential PDP case is 6.41 x 10-6  and for uniform PDP case, is 7.467 x 106  (a 

difference of 1 dB). In contrast to the former, the subspace method shows an improvement 

of around 7 dB when uniform PDP is considered, compared to exponential PDP. 

❖ Comparing fig. 3.4 and fig. 4.9, it can be seen that the generalized precoding-based method 

is at least 10 times better than simple-precoding based method at lower lengths of OFDM 

blocks and is almost 20 times better asymptotically. This is because, unlike simple-

precoding, the generalized-precoding induces correlation among all the subcarriers and all 

the columns of output auto-covariance matrix are utilized for channel estimation. This 

makes the latter more robust to AWGN and distortion due to non-availability of infinite 

blocks for time-averaging and hence leads to better channel estimate. 
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Figure 4.11: MSE versus SNR (dB) with length of OFDM blocks equal to 1000 for 

exponential channel PDP 
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Figure 4.12: MSE versus SNR (dB) with length of OFDM blocks equal to 1000 for uniform 

channel PDP 



Following observations can be made from fig. 4.11 and fig. 4.12: 

❖ The performance is independent of the modulation/ mapping scheme used for both the 

estimation techniques irrespective of channel PDP. 

❖ Analogous to single-carrier case (fig.  2.5), the performance of subspace-based method is 

almost linear with varying SNR (dB) values. Similarly, precoding-based technique shows 

an exponential improvement in the performance with increasing SNR values. 

❖ The asymptotic performance of precoding-based technique is similar irrespective of 

channel. PDP under consideration. At 35 dB SNR, the MSE is 3.89 X10-5for exponential 

PDP and MSE is 4.2 x 10"5  for uniform PDP case. For subspace method, the asymptotic 

performance when exponential PDP is used is slightly better (by 4 dB) than when uniform 

PDP is used. 

❖ Over the range the SNR values from 0 dB to 35 dB, the performance improvement for the 

case of precoding-based method is 7 dB irrespective of channel PDP under consideration. 

In contrast to this, the subspace-based method shows an improvement of around 60 dB. 

❖ For lower SNR values, the precoding-based technique performs better than the subspace-

based method. At 0 dB, precoding technique achieves an MSE of 0.000203 (fig.  4.11) and 

0.000257 (fig. 4.12) on an average whereas the subspace method achieves an MSE of 

0.1053 (fig 4.11) and 0.115 (fig  4.12) on an average. At higher SNR values, the precoding 

method performance is comparably worse than that for the subspace technique. At 35 dB, 

precoding technique achieves MSE of 3.89 x10-5  (fig  4.11) and MSE of 4.2 x 10"1  (JIg. 

4.12); whereas subspace approach achieves MSE of 2.36x10 7  (Jig. 4.11) and MSE of 

1.004x10 7  (g. 4.12). 

❖ The saturation observed in the performance of precoding-based technique is due to the fact 

that the channel estimates in this case are more sensitive to distortion due• to non-

availability of infinite OFDM blocks for time-averaging (as mentioned earlier) than 

distortion due to SNR. 

❖ In the case of precoding-based technique, at lower SNR (say 0 dB), the MSE performance 

is of the order of 10-3, which is at least 100 times better than that observed for subspace 

method. This is because, since the length of OFDM blocks used is 1000 and joint-

correlation-averaging (all the columns of auto-covariance matrix) is used for channel 

estimation, the effect of AWGN is nullified. 

❖ The `cross-over' in the performance occurs at around 17 dB for exponential channel PDP 

case and at around 12 dB for uniform channel PDP case. 
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4.2. COMPARISON OF SUBSPACE- AND PRECODING-BASED 

METHODS IN MIMO-OFDM SYSTEMS 

This sub-section presents a comparison of subspace-based and precoding-based blind 

channel estimation techniques with 16-QAM mapping in terms of MSE performance over 

varying length of OFDM blocks and over varying SNR (dB) values in MIMO-OFDM system 

for two different channel PDPs as given in the specifications. The procedure given in the 

flowchart shown in fig. 4.13 is used to obtain the channel estimate using subspace-based 

technique. As mentioned earlier, it is assumed that J = 2 for subspace technique. The linear 

non-redundant block-time-variant precoding matrix is given by: W jj  = Pik  where, 

N 

	

11.2 	m=q=1,...,a 

	

[Ptj I mq = 0.8 	m=q=z+1,••-,N 	fort =j 	 (4.2a) 
z otherwise 

N 

3 

	

0.8 	m=q=1,...,z 

	

[Ptj ] mq  = 1.2 	m = q = z + 1, ... , N 	 for i * j 	 (4.2b) 

otherwise 
3 

is used along with the procedure given in flowchart of fig. 4.14 to obtain the channel estimate 

using precoding-based technique. The range of values the variable indices, i and j in eqn. 4.2 

can assume depends upon the number of transmitting antenna: 

Case 1:  M, = 2 

i =j = {1, 2} 

Case 2:  M, = 4 
i = j = {1, 2, 3, 4) 

The comparison of MSE performance for the two methods over varying length of OFDM 

frames at 30 dB SNR for two different channel PDPs in 2x2, 2x4,  4x4 and 2x] (with 

oversampling rate: q = 2) MIMO-OFDM systems are shown in fig. 4.15 — fig. 4.18 

respectively. Similar comparison of MSE performance over varying SNR (dB) values 

assuming that the length of OFDM blocks is 1000 are shown in fig. 4.19 — fig. 4.22 

respectively. 
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Set all the parameters as given in 
the specifications 

NumSim=0 

Generate the channel impulse response vector of length L+ I between f'h transmit 
antenna and i1h receiving antenna hjj = [hg o, ... , ht LIT  for all the pairs of transmit and 

receiving antennas. Each coefficient is a zero-mean Gaussian distributed random 
variable with variances as per the channel's ?DP given in the specifications. Using. eqn. 

2,36 and 2.38, construct the time-domain channel matrix H. 

Generate a sequence of source bits to be transmitted by/5  transmit antenna, group 
the bits and map the bits using a mapping table designed as per the required 

modulation scheme given in specifications. Combine 64 such modulated symbols at a 
time to form a frequency-domain OFDM frame to be transmitted by J transmit 

antenna dd(n). Repeat the above steps for all I c j < Ah. Using eqn. 2.32, construct 
a composite frequency-domain signal vector d(n) 

Construct a composite (IFFT + CP) matrix W using eqn. 2.33 and using egn. 2, 35, 
obtain the composite time-domain OFDM frame s(n) to be transmitted. 

Using eqn. 2.39, obtain the composite time-domain received OFDM 
frame r(n) as defined in eqn. 2.3.7 

No 

NumSim = 100? 

Yes 

Calculate average RISE for given parameters 

4 
Simulated for all the parameters (SNTR's or No 
number of received blocks to be collected) 

Yes 

Stop 	Th 

Collect Msuch frames: r(n) and calculate the 
estimate of channel output auto-covariance matrix as: 

M 

n=1 

Obtain the estimate of noise subspace bases L n 
according to eqn, 2.41 by applying SVD on R,..,. 

the noise subspace bases to form a matrix Vt as per eqn. 

Obtain matrix yr from eqn. 2.46 

Obtain the channel matrix estimate ,Nith Aft Eigen-vectors 
associated withal. least Eigen-vahies of ep as its 1L columns 

arranged in non-increasing order up to a matrix ambiguity 

Resolve the ambiguity by utilizing pilot carriers 

Calculate the mean square error between the 
true channel and the estimated channel 

I NumSim = NumSim + 1 

Figure 4.13: Blind channel estimation using subspace-based technique for MIMO-OFDM 

systems 
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Set all the parameters as given in 
the specifications 

NumSim =0 

Generate the channel impulse response vector of length L + 1 between j' transmit 
antenna and i'h receiving antenna Iz, = [hy o, ... , h,,LJT for all the pairs of transmit and 

receiving antennas, Each coefficient is a zero-mean Gaussian distributed random 
variable with variances as per the channel's PDP given in the specifications. Using, eqn, 

3,27 construct the freauencv-domain channel matrix Ha- 

Generate a sequence of source bits to be transmitted byjh transmit antenna, group 
the bits and map the bits using a. mapping table designed as per the required 

modulation scheme given in specifications. Combine 64 such modulated symbols at a 
time to form a frequency-domain OFDM frame to be transmitted by jth transmit 
antenna: d4(n). Repeat the above steps for all I <j < Mr. Construct a composite 

frequency-domain transmit vector: d(n) _ [dl( l)T.,. dm,(n)TJT 

Using eqn. 3.29 and the block tine-variant precoding matrices as given in the 
specifications, obtain the composite receivedfrequency-domain tectory(n:Lfz + r) 

Collect Mreceived frames and calculate the estimates of 
M channel output auto-covariance matrices as: 

Lwi-~ 
for T=1  

„=o 

loo 

Is IumSim = 100? 

Yes 

Calculate average MSE for given parameters 

Simulated for all the parameters (SNR's or No 
number of received blocks to be collected) 

Yes 

Stop 

Using eqn. 3.39, 3,38 and 3.35, construct a 
matrix QJ for atl j = I ... M, 

Obtain the estimate of channel response vector fromJlh 
transmitter to all f, receivers (0f )as the Eigen-vector of , 

associated with its largest Eigen-value up to a constant 
complex scalar ambiguity for all I <f <M 

I Resolve the ambiguity by utilizing pilot carriers 

Calculate the mean square error between the 
true channel and the estimated channel 

NumSim = NumSim + 1 

Figure 4.14: Blind channel estimation using block-time-variant precoding-based technique 

for MIMO-OFDM systems 
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Figure 4.15: MSE versus length of OFDM blocks at 30 dB SNR for 2x2 MIMO-OFDM 

system for 16-QAM 

10° 
—~— Exp10 PDP 
-- Uniform POP 

10` 
	

— Via Block-Tear Prec [571 
---- Subspace Algorithm [54) 

10" 

10• 
I' 

Si 
N 

10
-4 

10-s 

10 

10 r 

Length of OFOM blocks used --> 

Figure 4.16: MSE versus length of OFDM blocks at 30 dB SNRfor 2 x4 MIMO-OFDM 
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Figure 4.17: MSE versus length of OFDM blocks at 30 dB SNRfor 4 x 4 MIMO-OFDM 

system for 16-QAM 
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Following observations can be made from fig. 4.15 -fig. 4.18: 

❖ The performance is independent of the channel PDP under consideration for all the 

combinations of M, and Mr  shown. 

❖ As stated earlier using p. o. e. assumption, since J = 2 and N = 64, the minimum 

length of OFDM frames required for proper formation of subspaces and hence the 

reliable channel estimates is 128M. For M, = 2 (i.e., 2 x2, 2 x4 and 2 x1 MIMO), the 

threshold is hence 256 and for A = 4 (4x4 MIMO), the threshold is 512. From the 

fig. 4.15 - fig. 4.18, significant difference in performance of subspace algorithm can 

be observed around this point (M = 256 for M, = 2 and M = 512 for M, = 4). 

❖ Unlike subspace-based method, the precoding-based technique is not restricted by p. 

o. e. assumption. The algorithm provides a good estimate of the channel even when 

the length of OFDM frames is small. From fig. 4.15 and fig. 4.16, it can be seen that 

irrespective of channel PDP, MSE value of around 3.5 x10 3  is achieved in 2 x2 

MIMO and 2 x4 MIMO systems on an average even when the length of OFDM blocks 

is as low as 25. Further, from fig. 4.17, MSE value of 7X10-3  (degradation in 

performance by a factor of 2 compared to MIMO systems with M, = 2) is achieved 

when the length of OFDM blocks is 25. 

❖ Analogous to SISO-OFDM case, the performance of both the techniques improves as 

the length of the OFDM blocks used is increased. As mentioned earlier, the 

performance improvement is exponential (gradual) for precoding-based method and is 

step-like for subspace method. On the right side of the threshold, the performance 

shows an exponential behaviour. 

❖ The performance of precoding-based technique is worse than that for subspace-based 

method when the length of OFDM blocks used exceeds the minimum threshold of p. 

o. e. assumption. When the length of OFDM blocks is 1000 (a value above the 

threshold), the difference in the MSE performances of the two approaches is around 

15 dB on an average for 2 x2 MIMO case (fig. 4.15), 10 dB for 2 x4 MIMO case (fig. 

4.16) and 8.3 dB for 4x4 MIMO case (fig. 4.17). 

❖ Comparing the performance curves of fig. 4.15 - fig. 4.17, it can be seen that the 

precoding-based technique does not show significant change in its performance over 

the complete range of OFDM block-length. The performance of precoding-based 

method degrades by just 1 dB when M, is increased from 2 to 4 on an average. But, 

increase in Mr  does not alter the performance of precoding based method. In contrast 
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to this, when the length of OFDM blocks is lower than the threshold, the performance 

of subspace-based approach is almost constant for 2 x2 MIMO case and is linear with 

a negative slope (converging faster) for 2 x4 MIMO case. Towards the right of the 

threshold point, the subspace approach shows an improvement of around 1 dB in 

average asymptotic MSE performance (i.e., when length of blocks is 5000) when Mr  

is increased from 2 to 4 keeping M, = 2 (between 2 x2 and 2 x4  MIMO systems) and 

by around 8 dB when M, is increased from 2 to 4 keeping M, constant at 4 (between 

2 x4 and 4 x4 MIMO systems). 

❖ In continuation with the previous point, the convergence properties are not altered 

when M, and M,. are varied for precoding-based method. In contrast to this, the 

convergence property of subspace method is significantly altered with varying M, and 

M,. As Mr  is increased, slower convergence rate can be observed, but asymptotically, 

similar performance level is achieved (1 dB difference in MSE performance as seen in 

the last point). As Mt  is increased, owing to p. o. e. assumption, the threshold is 

increased and hence the convergence is affected. 

❖ From fig.  4.15 and fig. 4.16, the asymptotic performance of subspace approach is 

better than that of precoding-based method by around 18 dB for both 2X2 and 2X4 

MIMO case. From fig. 4.17 (4x4 MIMO), performance difference is 12 dB. 

❖ Comparing with SISO-OFDM systems (Jig. 4.9 and fig. 4.10), the precoding-based 

method performance has degraded by 5 dB for M, = 2 (2 x2 or 2 x4 MIMO) and by 7 

dB for A = 4 (4x4 MIMO). Whereas for subspace method, the asymptotic 

performance degradation of around 1 dB for 2 x2 and 2 x4 MIMO-OFDM case and 

degradation of around 9 dB when M, = M,. = 4 can be observed compared to SISO-

OFDM systems. The convergence, as mentioned earlier, becomes slower when 

compared to SISO-OFDM system owing to p. o. e. assumption. 
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Figure 4.20: MSE versus SNR (dB) with length of OFDM blocks equal to 1000 for 2 x4 - 
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Following observations can be made from fig. 4.19 -fig. 4.22: ' 

❖ The performance is independent of the channel PDP under consideration. 

❖ Analogous to SISO-OFDM case (fig. 4.11 and fig. 4.12), precoding-based technique 

shows an exponential improvement in the performance with increasing SNR values. For 

2 x2 and 2 x4 MIMO systems, the performance is similar to that in SISO-OFDM case. For 

4X4 MIMO, the MSE performance degrades by around 4 dB over the complete range of 

SNR values on an average compared to SISO-OFDM and MIMO-OFDM with M, = 2. 

❖ Unlike SISO-OFDM case, the subspace method performance for 2 x2 MIMO-OFDM 

system resembles a reflected tan-sigmoid function {A function of the form f(x) = c + 

tanh(-x), where c is a constant} with c = 5x10 4.  Similar to SISO case, MSE value of 

around 10-' can be observed when M, = 2. As SNR value is increased the performance 

improvement is comparably slower than that in SISO-OFDM case. As a result, at 35 dB, 

the MSE value is 5 dB higher as compared to SISO case. For 2 x4 MIMO-OFDM system, 

the performance curve is almost constant at lower SNR values (0-5 dB) and thereafter 

shows linear characteristics. The MSE value of 10`6  is achieved at 35 dB SNR. Similarly, 

for 4 x4 MIMO, the convergence is much slower. The MSE curve remains almost constant 

for SNR values ranging from 0-10 dB and thereafter linear characteristics can be seen. At 

35 dB SNR, the MSE value is 4 x 10-6. 

❖ Over the range the SNR values, between 0 dB and 35 dB, the performance improvement 

for the case of precoding-based method is 6 dB, 3 dB and 5 dB for 2X2, 2x4 and 4x4 

MIMO-OFFDM systems respectively. In contrast to this, the subspace-based method 

shows an improvement of around 52 dB for 2X2 and 2X4 MIMO systems and an 

improvement of 45 dB for 4 x4 MIMO system. 

❖ For lower SNR values, the precoding-based technique performs better than the subspace-

based method. At 0 dB, precoding technique achieves an MSE of 0.0004 (Jig. 4.19 and fig. 

4.20) and 0.000847 (Jig. 4.21) on an average whereas the subspace method achieves an 

MSE of around 0.1 on an average. At higher SNR values, the precoding method 

performance is comparably worse than that for the subspace technique. At 35 dB, on an 

average, precoding technique shows an MSE of 7.19 x10 (fig 4.19), 1.0 x 10-̀ ' ( fig. 4.20) 

and 1.54 x10 4  (fig.  4.21) whereas subspace approach achieves much better MSE of 

5.87 x 10-7, 9.492 x]  0 and 4.672 x] 0 6   respectively. 

❖ As mentioned in SISO-OFDM case, the saturation observed in the performance of 

precoding-based technique is due to higher sensitivity of the estimate to time-averaging 

81 



distortion than distortion due to AWGN. Since the length of OFDM blocks used is 1000 
and joint-correlation-averaging (all the columns of auto-covariance matrix) is used for 

channel estimation, the effect of AWGN is nullified. 

❖ The `cross-over' in the performance occurs at around 20 dB for 2 x2 MIMO-, at 22 dB for 

2 x4 MIMO- and at 25 dB for 4 x4 MIMO-OFDM system. 

Note:  As mentioned earlier, since N > 1, the precoding-based correlation-averaging 

algorithm is applicable for any number of transmit and receiving antenna. In contrast to this, 

for MIMO-OFDM systems with M, > M„ the full-rank criterion of the matrix (A) of eqn. 

2.39 is not satisfied for subspace-based method to be applicable. Hence, the redundancy 

introduced due to oversampling at the receiver is utilized along with that of CP for channel 

estimation (Chapter 2). For present discussion, the performance of a 2x1 MIMO-OFDM 

system with an oversampling factor (q) of 2 is considered. 

Due to oversampling, the effective number of receiving antenna turns out to be 2, which 

is equal to the number of transmitting antenna. Thus, there are four pairs of paths for signal 

propagation. Even though the physical mechanism employed is different, this leads to 

channel model structure similar to that of 2 x2 MIMO-OFDM system. Since, for simulation 

purpose, the input is assumed to be stochastic, the statistical performance of the modified 

algorithm is similar as that for 2x2 MIMO-OFDM case as it can be observed by comparing 

fig. 4.15 with frg. 4.18 and fig. 4.19 with fig. 4.22. Thus the discussion and conclusions made 

for 2 X2 MIMO-OFDM systems is valid for 2x1 MIMO-OFDM system with an oversampling 

factor of 2 at the receiver. 
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Chapter 5 

COMPLETELY BLIND CHANNEL ESTIMATION 

TECHNIQUES FOR OFDM 

As mentioned in the previous chapters, the channel estimate obtained by utilizing only 

SOS of the channel output suffers from an ambiguity. This ambiguity is inherent to the 

problem. As far as SISO-OFDM systems are concerned, the channel estimate obtained by 

using subspace-based method (Chapter 2) suffers from a complex scalar ambiguity. The 

amplitude ambiguity can be resolved by precoding at the transmitter as mentioned in Chapter 

3. Thus, the channel estimate obtained by precoding-based techniques suffers only from a 

constant phase ambiguity. The phase ambiguity can be resolved either by using pilots 

(Chapter 4) or by utilizing the information regarding the characteristics of the source in blind 

manner [37, 62-64]. The former approach of using pilot carriers has been widely researched 

on owing to its practical simplicity. But by using pilots, the charm of blind approaches is-lost. 

A brief survey of different blind schemes to resolve the phase ambiguity for SISO-OFDM 

systems is presented in this chapter, followed by design and performance analysis of a 

completely blind channel estimation technique using constellation-splitting technique for 

PAM systems [65]. A generalization of the same for applicability over different modulation 

schemes by using hybrid time-frequency algorithm is also presented along with, the 

performance analysis. 

5.1. ON BLIND TECHNIQUES TO RESOLVE PHASE AMBIGUITY 

A brief survey of blind techniques to resolve the phase ambiguity in SISO-OFDM 

systems is presented. The thumb rule is that, more the information about the source known at 

the receiver, better the estimation accuracy is. As per the author's knowledge, not much work 

has been done as far as completely/ totally blind approaches are concerned. A very few 

handful of references are available in the literature. As far as SISO-OFDM systems are 

concerned, some characteristics like channel coding [37], finite alphabet property of the 

source [62], utilizing asymmetric constellation [63], mixed-order modulation [64] and source 

statistics information are employed. In some methods, it is assumed that the source symbols 

are taken from a finite alphabet set [62]. For example, consider a system in which Mary-PSK 

modulation is used. This scheme has constant modules property, with the symbol phase 
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chosen from a finite known set. These source properties can be used to resolve the phase 

ambiguity. Some of known algorithms [62] are minimum-distance (MD), phase-directed (PD) 

and decision-directed (DD) approaches. MD aims to minimize the Euclidian distance 

measure and involves searching over all possible values of channel vectors; PD is an iterative 

process in which ambiguity is resolved by searching over phase values and DD consists of 

equalizing k h̀  subcarrier and projecting it on to a valid symbol from the set. This equalized 

symbol is then used to estimate the channel co-efficient. Since M-PSK modulation which has 

constant modulus property is used, this method is not applicable for any other mapping 

schemes like M-PAM and M-QAM. Some approaches wherein, in the source constellation, 

one or more symbol point is skewed so as to get an asymmetrical arrangement [63] have been 

proposed. The phase relationship information due to this variation is utilized for phase 

correction. 

In [63], a posteriori probability (APP) estimator is used for first stage estimation. Further, 

this algorithm is applicable to any modulation schemes. The disadvantage is that, since 

asymmetry is induced in the source constellation, the dc level in an OFDM data frame is non-

zero in statistical sense. This may cause significant do power dissipation and hence not 

feasible for power-limited systems like handheld and mobile transceiver devices. As far as 

PSK is concerned, mixed-order modulation among alternate subcarriers can be employed as 

proposed by Necker [64]. This type of mapping induces a unique phase relationship among 

alternate subcarriers that can be employed in phase-correction. 

For instance, a 3-PSK and 4-PSK can be combined and assigned among alternate 

subcarriers in a given OFDM frame. Since, the symbol phases are non-overlapping, phase 

correction is possible. But, Mary-PSK mapping with M 2" (n E Z') means non-binary 

coding. For example, 3-PSK can be generated by mapping a ternary symbol set S = 10, 1, 2) 

on to three phase values. This means quantizer design has to be altered which leads to 

encoding/ decoding design issues. Further, the approach proposed in [64] is applicable for 

PSK mapping which has constant modulus property. Further, this approach uses ML-type 

estimator to obtain first approximation of the channel. ML estimator demands high 

implementation complexity and hence is not practically feasible. 
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5.2. SYSTEM MODEL 

Consider the block diagram of the proposed baseband equivalent model of completely 

blind channel-estimator for SISO-OFDM systems shown in fig. 5.1. 

W 
P R 	Phase corrector 	Ilpc  

d(n) E  x(n) 	 y(n) 
C 	OFDM Transceiver 	

Channel Estimation 
0 	 up to a constant eW 
D 	 H 
E 	 H 	Phase Ambiguity 
R 	 Estimator 

Figure 5.1. Baseband equivalent model of blind phase-correct channel-estimator/or SISO- 

OFDM systems 

As mentioned earlier, the precoder block multiplies the incoming frequency-domain 

OFDM frame: d(n) = [d(n, 0), ... , d(n, N-1)J7  by a precoding matrix W of dimension NxNto 
yield x(n). The function of OFDM transceiver block (see fig. 3.2) can be mathematically 

described by eqn. 3.3 and eqn. 3.4. Combining the function of precoder and the OFDM 

transceiver, the frequency-domain channel model can hence be mathematically described as 

given by eqn. 3.6. The channel estimator block estimates the channel up to a constant phase-

ambiguity factor using any of the standard methods of Chapter 2 and/ or Chapter 3. The 

phase-ambiguity-estimator estimates the ambiguity using the side information provided by 

the source mapping techniques and thus the output of phase-corrector block is a phase-correct 

channel estimate in frequency-domain. 

5.3. PHASE-AMBIGUITY CORRECTION FOR PAM SYSTEMS 

The problems of dc-level, synchronization, non-uniform quantization/ coding and non-

applicability to non-constant modulus mapping have been overcome by an algorithm 

proposed by Sameera Bharadwaja H. and D. K. Mehra [65] for SISO-OFDM systems with 

Mary-PAM mapping. The channel is estimated in frequency-domain up to a constant phase 

ambiguity factor by precoding-based technique (Chapter 3). The channel estimate obtained is 

thus of the form (Chapter 3): 

ii = He 	 (5.1) 

where, H is the true frequency-domain channel vector and cp is the unknown phase ambiguity 

factor. 
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5.3.1. CONSTELLATION-SPLITTING 

This technique provides the required side-information to the phase-ambiguity-estimator-

corrector unit for blind phase-correct channel estimation [65]. Consider an OFDM frame 

d(n), with each of the alternate subcarrier symbol chosen from an (M/2)-ary PAM 

constellation instead of M-ary constellation. For even numbered subcarriers, the constellation 

points are shifted to right by (M/2) such that the symbols have zero phases and for odd 

numbered subcarriers, they are shifted to left by (M/2) such that they have a phase of 1800  

each. This is analogous to splitting the M-ary constellation along the axis of symmetry into 

two subsets; assigning the right subset to even numbered subcarriers and the left subset to 

odd numbered subcarriers. This is known as `Constellation-splitting' [65]. The concept is 

illustrated in frg. 5.2 for 8-PAM system. 

Subcarrier number: k-.2 k-1 k 3c+1 k+2 

+7 +7 +7 +7 +7 
+S +5 +5 +5 +5 

+3 +3 +3 +3 +3 

+1  +1 +1 +1 +1 

 1 -1 -1 -1 

-.3 -3 -3 -3 -3 

Figure 5.2: Illustration of constellation subset assignment scheme among alternate 

subcarriers in an OFDMframe for 8-PAM mapping 

Single OFDM frame thus consists of symbols chosen from M-ary constellation and have 

zero dc in statistical sense. Also, a unique phase relationship is introduced among the 

alternate subcarriers. This information can be used at the receiver for phase-ambiguity 

estimation and correction. 

5.3.2. PHASE-AMBIGUITY ESTIMATION AND CORRECTION ALGORITHM 

Assuming that each subcarrier symbol of the frequency-domain OFDM frame d(n) is 

constructed as per the rules of constellation-splitting technique, we can write: 

d(n) = [d(n, 0 )Ie'°  Id(n,1 )le'" 
where, 

d(n, k) E [Left
Right signal subset, 	k even 

 signal subset, 	k odd 

I d(n, N — 1) Iei"]T 	(5.2) 

for 05k:5N-1 
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The precoder matrix W is chosen such that the phase relationship among the subcarriers is 
retained. Thus, 

	

s(n) = Wd(n) _ [Is(n, 0)1 eie ... Is(n, N —1)I 	(5.3) 

Assuming sufficient CF and noiseless situation, from eqn. 3.6, the received signal vector 
can be written as: 

Is(n, 0)IIHoIe!(e+e~) 
y(n) _ 	 (5.4) 

I s(n, N — 1) I I HN-1I e'(0+n+0N_1) 

where, H is the frequency-domain channel vector (eqn. 3.2): 

H = [I Ho l e jol ... I HN _ l l e j9N _1 lT 

The first-order estimate of H given by eqn. 5.1 can be expanded as, 

	

i=i = tlHoleJ(e~+(v) ... I HN-ll ei(B(v-)+w)1T 	 (5.5) 

where, IRk I is the estimate of HkI; 0k is the estimate of 6k and rp is the phase ambiguity. 
From eqn. 5.4 and eqn. 5.5, it is clear that the phase ambiguity per subcarrier can be obtained 

as (with 0 = 0), 

	

~pk = Angle[A) — Ang(e{y(k)) + B for k = 0 -4 N — 1 	 (5.6) 

where, B = [0, 1800, 0, ... , 18001T is the bias vector. The bias vector represents the possible 

phase values the source symbols can take for a given subcarrier. For present discussion, 

owing to constellation splitting, the source values are fixed at 00 for even subcarriers and at 

1800 for odd subcarriers. For noisy-channel, the value of Pk is averaged over sufficient 

number of OFDM frames and over the subcarriers to combat the ill-effects of AWGN. The 

final estimate of ambiguity term: Cp is given by, 

~p = Mean{E[cpk ]) 	 (5.7) 

Using the result of eqn. 5.7 in eqn. 5.5, the phase error in A can be corrected to obtain the 

phase-correct channel estimate, Hpc as: 

	

Angle{f pc(k)) = Angle{H (k)} — cp for k = 0 -, N — 1 	(5.8) 

Since no pilots/ reference symbols are used, this method is completely blind. The 

disadvantage is that, since (M/2)-ary constellation points are allotted per subcarrier instead of 
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M-ary constellation points, the communication link suffers from a rate loss of one 

bit/subcarrier-symbol. This can be made insignificant for all practical purposes if the 

constellation size chosen is sufficiently large. 

5.3.3. PERFORMANCE ANAYLSIS OF COMPLETELY BLIND ESTIMATOR FOR 

PAM 

A. Simulation Parameters 

➢ Complex discrete baseband equivalent FIR channel is assumed to be of length (L) = 2. 

> Each channel coefficient is a zero-mean Gaussian random variable with variances given 

according to either of the two channel PDP (Chapter 4). 

➢ Number of sub-carriers/ OFDM frame (N) = 64 
> Number of OFDM frames collected for estimation purpose = 1000 
> SNR (unless otherwise mentioned) = 30 dB. 

➢ The `phase-retaining' precoder matrix W used is given by: 

1 —p p ... —p 
W  _ 	... p  

_p  p _p ... 1  NXN 

where, 0 <p < 1. The results are shown for p = 0.5. 
➢ The results are averaged over 500 Monte-Carlo simulation runs. 

The frequency-domain OFUM frame d(n) of size Nxl is constructed according to the 

rules of constellation-spitting technique for a given value of M (Mary-PAM). The channel 

estimate up to a constant phase ambiguity is obtained using the procedure illustrated by the 

flowchart of fig. 4.1. The phase ambiguity is estimated and corrected by utilizing the side-

information provided by source mapping using eqn. 5.6 — eqn. 5.8. For present discussion, the 

simulation results are shown for 4- and 8-PAM. The timing and frequency synchronization 

are assumed. 

B. Simulation results and conclusion 

The MSE performance of the completely blind technique versus the length of OFDM 

blocks used at 30 dB SNR with exponential and uniform channel PDP is shown in fig. 5.3. 
Similarly, the MSE performance of the same versus SNR (dB) values assuming that the 

length of OFDM blocks used is 1000 for both the channel PDP is shown in fig. 5.4. 
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Figure 5.3: MSE versus length of OFDM blocks at 30 dB SNR of completely blind estimator 

for SISO-OFDM system for PAM mapping 
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Figure 5.4: MSE versus SNR (dB) with length of OFDM blocks equal to 1000 of completely 

blind estimator for SISO-OFDM system for PAM mapping 
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The following observations can be made from fig. 5.3 and fig. 5.4: 

> The performance is independent of the modulation scheme and the channel PUP used. 

> From fig. 5.3, it can be observed that the MSE performance improves exponentially as the 

length of OFDM blocks is increased. The value of MSE is around 2<102   when the length 
of OFDM blocks is 25 and around 1.8 x10-4  when the length is 5000 blocks (an 
improvement of around 20 dB). 

> From fig. 5.4, it can be observed that the MSE performance decreases from 0.94 at 0 dB 
to around 8.8x10 4  at 20 dB in nearly linear manner. When the SNR is increased beyond 

20 dB, no further improvement in performance can be observed. 

> Compared to its semi-blind counterpart, the performance of the completely blind 

estimator is worst by at least 10 dB. For example, comparing fig. 4.9 and fig. 4.10 with 
fig. 5.3, the performance of completely blind estimator is worst by around 11 dB when the 
length of OFDM blocks is 25 and around 14 dB when the length of the OFDM blocks is 

5000. Similarly, comparing, fig. 4.11 and fig. 4.12 with fig. 5.4, the performance is worst 

by 38 dB at 0 dB SNR and by around 14 dB at 50 dB SNR. 

5.4. GENERALIZED PHASE-AMBIGUITY CORRECTION ALGORITHM 

A generalization of constellation-splitting based method applicable for Mary-PAM, 

Mary-QAM and Mary-PSK mapping schemes is described followed by a generalized phase-

estimator-corrector algorithm based on time-frequency hybrid estimation technique. 

5.4.1. GENERALIZED CONSTELLATION-SPLITTING TECHNIQUE 

The constellation splitting scheme for Mary-QAM is described. This can be used without 

much alteration for Mary-PAM (one-dimensional version of QAM) and also for Mary-PSK 

(degenerative case of QAM). The constellation-splitting can be done in any of the three ways: 

a) The constellation is split into two halves, along x-axis (horizontal/ in-phase axis). 

b) The constellation is split into two halves, along y-axis (vertical/ quadrature-phase axis). 

c) The constellation is split into four halves, along both x-axis and y-axis. 

Note: Types a) and c) are not applicable for Mary-PAM mapping. 

We consider 16-QAM and illustrate the third case. The other two are straightforward 

simplified versions of this scenario. The concept of constellation-splitting and signal point 

assignment to subcarriers of OFDM frame for 16-QAM mapping is shown in fig. 5.5. Each 

m 



group of four subcarriers has any of the 3 unique phase points associated with them. It is 

reasonable to assume that the blind algorithm at the receiver has the knowledge of these 
phase values. 

Assignment table 

Quadrant number Assigned to subcarriers 
k—> 0—N-1 if 

I kmod4=0 
2 (k-1) mod 4 = 0 
3 (k-2)mod4=0 
4 (k-3)mod4=0 

Constellation diagram: 16-QAM 

• -3+3i 	:3+3iI 	91+3i  
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3+i 	..I4.  1 	•1+i 	® 3+i 
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Figure 5.5: Illustration of constellation-splitting concept (Type c) for 16-QAM mapping 

5.4.2. PHASE-AMBIGUITY ESTIMATION AND CORRECTION ALGORITHM 

We propose a generalized phase-estimator-corrector algorithm is this section. The nth 

OFDM frame to be transmitted: d(n) is constructed according to the rules of generalized 

constellation-splitting technique described above. The QAM signal points even though are 

from a finite alphabet set for a given quadrant, can be random within that quadrant (For 

example, four possible values of signal points exists per quadrant for 16-QAM). Hence, 

designing the precoder with phase-retaining property is not feasible. Thus, the phase 

estimates obtained via precoding-based technique (Chapter 3) cannot be used as an input for 

phase-ambiguity-estimator block. 

Assuming that the channel response remains more or less static for To time units 

(spanning over M OFDM frames), during the first T, (Ti < To) units of time (spanning over 

Ml OFDM frames) the transmitted OFDM frames are not precoded. During this time, the 

precoding matrix W is assumed to be an identity matrix of size NxN. The first approximation 

of the channel phase in time-domain is obtained at the receiver during this time by subspace 

method in time-domain using the redundancy induced by CF at the transmitter (Chapter 2). 

By taking N-point DFT of this estimate, the frequency-domain phase estimate of the channel 

which is used as an input for phase-correction algorithm can be obtained. The time duration 

T, is chosen such that subspace decomposition is feasible (see p. o. e. assumption, Chapter 

2). The channel amplitude estimates obtained using the subspace method is useless since they 
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suffer from an ambiguity. During last TO-T1 units, the OFDM frames are precoded using the 
precoding matrix given by eqn. 4.1 with p = 0.5. The precoding-based algorithm (Chapter 3) 
is used to obtain channel's magnitude estimate in frequency-domain by tracing over different 

starting points (q) in eqn. 3.13 to eqn. 3.15. The amplitude and phase estimates thus obtained 

are combined to obtain the channel estimate which is of the form given by eqn. S.S. Thus, a 
hybrid time-frequency algorithm is used to obtain the first estimate of the channel. 

The phase-ambiguity estimate cannot be obtained directly by using eqn. 5.6 since the 

source-phase values are random from a given known set and hence the bias vector B is not 

fixed, unlike for the Mary-PAM case. Finding the bias vector involves a search over different 

phase values from the given valid-phase-value set. It can be concluded that, since the 

ambiguity term is theoretically same for all the subcarriers (zero variance), for a given test 

vector, the ambiguity-estimate vector: i~ _ [VO "' e,N _1]T has the least variance over the 

subcarriers if the phase values of test vector are same as that of the original source vector. 

This criterion is used as the search parameter. Further, since the ambiguity term is a constant 

over all the subcarriers; a subset of OFDM frame can be used for testing purpose. This 

reduces the number of test . vector combinations that must be traced. For the present 

discussion, it is assumed that the test vector combinations are traced over first 4 subcarriers 

(Nj, = 4). For l 6-QAM, the set of first-quadrant-phase-values is given by: {p, = [18.43490 450 

71.56510]. Since the constellation is symmetric, the phase-value set for II, III and IV quadrant 

can be thus written as: ~pf, = (pj + 7r/2; cl» _ 91 + 7r and quiv =Cpl + 312 respectively. 

As mentioned earlier, for noisy-channel, the value of ipk should be averaged over 

sufficient number of OFDM frames and over the subcarriers to combat the ill-effects of 

AWGN. For present discussion, the average is done over M1 OFDM frames. Assuming that 

all the angles are in radians, the pseudo-code to obtain the phase-ambiguity estimate is given 

on Page 91. The proposed procedure is known as modified phase-directed (MPD) algorithm. 

This algorithm is similar to PD, but owing to constellation splitting which reduces the 

number of phase-values over which the search is to be performed and since phase-ambiguity 

is constant over all the subcarriers which facilitates the search over partial frame, MPD is 

computationally efficient compared to PD approach. The disadvantage is that, as mentioned 

earlier, splitting the constellation into two halves leads to a rate loss of one bit/subcarrier-

symbol. Similarly, splitting the constellation into four halves leads to rate a loss of two bits/ 

subcarrier-symbol. This can be made insignificant for all practical purposes if large 

constellation size is used. 
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AmbiguityEstimate = [0 0 ... 0] 	 Initialization (Dim: M I X1) 

for Iter = 1 -. M I  
Check = 1; 

for SI  = 1 — length(p1 ) 

for S2  = 1 - length(p11 ) 

for S3  = 1 -. length(cp1II) 
for S4  = 1 -. length (cplv) 

BiasVector = [ ( pI (S1) cII (S2 ) 

% Bold-case denotes vectors 

% Search over all source vectors 

pII (S3) 	 pII (S4) 1 T  

% Estimate of ambiguity-vector to be analysed for least-variance 

for k = 1 --. 4 

ToAnalyse(k) = fl(k)-y(k)+ BiasVector(k) 

end 

% Choose that source-phase vector as BiasVector which yields the lowest-variance-

% Ambiguity-Estimate vector 

if (Check == 1) 

AmbiguityEstimate (Iter) = mean (ToAnalyse) 

DecisionParameter = variance (ToAnalyse) 

Check = 0 

else 
if ((variance(ToAnalyse)) < DecisionParameter) 

AmbiguityEstimate (Iter) = mean (ToAnalyse) 

DecisionParameter = variance (ToAnalyse) 

end 

end 

end 

end 

end 

end  

end 
AmbiguityEstimate = mean (AmbiguityEstimate) 	% Average over MI  OFDM frames 

Note:  For a symmetric signal constellation, the error in the decision occurs when two or more 

source-phase vectors theoretically (noiseless case) yields zero-variance-ambiguity-

vector estimate, or analogously in noisy channel case, the decision on the correct 

source-phase vector cannot be made with enough confidence. This condition occurs if 

and only if Angle(s1(n)) = Angle(s2 (n)) + K, where s1(n) and Mn) are two 

possible estimates of the source-phase vectors that yield zero-variance-ambiguity-

vector estimate and K is a constant angular-shift. The probability of occurrence of this 

situation is very low in practice. Further, this problem can be overcome if the average is 

taken over number of OFDM frames. 
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5.4.3. PERFORMANCE ANAYLSIS OF COMPLETELY BLIND ESTIMATOR FOR 
16-QAM 

A. Simulation Parameters 

➢ Complex discrete baseband equivalent FIR channel is assumed to be of length (L) = 2. 

➢ Each channel coefficient is a zero-mean Gaussian random variable with variances given 

according to either of the two channel PDP (Chapter 4). 

➢ Baseband modulation: 16-QAM 

➢ Number of sub-carriers/ OFDM frame (Al) = 64 

➢ Total length of OFDM frames used unless otherwise mentioned (Ad)= 1000 

➢ The length of OFDM frames assumed to be received during time duration Tl (MI) = 2 xN 

> SNR (unless otherwise mentioned) = 30 dB. 

> The precoder matrix W of eqn. 4.1 is used with the value p = 0.5. 

➢ The results are averaged over 250 Monte-Carlo simulation runs. 

The frequency-domain OFDM frame d(n) of size Nx1 is constructed according to the 

rules of generalized constellation-spitting technique for 16-QAM. The channel magnitude 

estimate, as mentioned earlier, is obtained via precoding-based method using the procedure 

given in the flowchart of frg. 4.1 and eqn. 3.13 to eqn. 3.15 by tracing over all the values of q 

N) and the channel phase estimate is obtained by using subspace-based method as 

given by the procedure shown in flowchart of fig. 4.8. The phase ambiguity is estimated and 

corrected by utilizing the side-information provided by source mapping using the generalized 

MPD algorithm as given by the pseudo-code (Page 93). 

B. Simulation results and conclusion 

The MSE performance of the generalized completely blind technique versus the length of 

OFDM blocks used at 30 dB SNR with exponential and uniform channel PDP for 16-QAM 

mapping is shown in fig. 5.6. Similarly, the MSE performance of the same versus SNR (dB) 

values assuming that the length of OFDM blocks used is 1000 for both the channel PDP with 

16-QAM mapping is shown in fig. 5.7. 
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Figure 5.7: MSE versus SNR (dB) with length of OFDM blocks equal to 1000 of generalized 

completely blind estimator for SISO-OFDM system for 16-QAM 
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The following observations can be made from fig. 5.6 and fig. 5.7: 

> The performance is independent of the channel PDP used. 

> Since hybrid algorithm is used to obtain the first approximation of the channel, as per p. 

o. e. assumption, the minimum number length of OFDM blocks required to obtain reliable 

phase-estimate using subspace method is 128. This restricts the practical applicability of 

the estimator for fast-varying channels. 

➢ From fig. 5.6, it can be observed that the MSE performance improves exponentially as the 

length of OFDM blocks is increased. The value of MSE is around 5.3 x 10-2  when the 
length of OFDM blocks is 250 and around 1.2 x 10-3  when the length is 5000 blocks (an 

improvement of just 16 dB for 20 times increase in the length of OFDM blocks used). 

➢ From fig. 5.7, it can be observed that the MSE performance decreases from 2.053 at 0 dB 

to around 0.172 at 25 dB in nearly linear manner. Similarly, a linear improvement with a 

slightly higher falling rate can be observed between 25 dB and 35 dB SNR values. When 

the SNR is increased beyond 40 dB, no further improvement in performance can be 

observed. At 50 dB SNR, the MSE value is around 1.3 x10 3  on an average. 

> The performance of completely blind hybrid estimator is worst than either of the two of 

its semi-blind counterparts: the precoding-based method and the subspace-based method. 

Comparing fig. 4.9 and fig. 4.10 with fig. 5.6, the performance difference between 

precoding-based method and the hybrid method is around 27 dB and the difference 

between subspace-based method and the hybrid method is around 39 dB when the length 

of OFDM blocks is 250. Similarly, when the length of the OFDM blocks is 5000, the 

differences are 24 dB and 55 dB. 

> Similarly, comparing fig. 4.11 and fig. 4.12 with fig. 5.7, the performance difference, at 0 

dB SNR, between precoding-based method and the hybrid method is around 40 dB and 

the difference between subspace-based method and the hybrid method is around 12 dB. 

The performance of the estimator is very poor at lower and middle-order values of SNR 

compared to its two semi-blind counterparts. At 35 dB SNR, the differences in MSE 

performances are respectively, 6 dB and around 40 dB compared to two semi-blind 

methods. 
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CONCLUSION 

Among the various blind channel estimation techniques, moment-based techniques have 

been researched owing to their wide range of applicability including burst-type/ 

asynchronous communication links. In particular, SOS-based techniques are preferred owing 

to their structural simplicity and faster convergence compared to HOS-based methods. These 

techniques rely on the channel structure for estimation purpose. 

In this work, we describe TXK algorithm which essentially exploits the SOCS of the 

received signal to identify the FIR channels using SIMO model. A Subspace decomposition 

technique in single-carrier systems for which TXK algorithm forms a basis is described. This 

algorithm is based on the SIMO channel structure and the orthogonality property of the signal 

and the noise subspaces which makes it structurally simpler and fast converging. Owing to 

SIMO structure of the channel, a linear parameterization of the noise subspace in terms of the 

channel parameters is possible. This yields a cost function that can be minimized to obtain the 

channel estimate. Further, the performance analysis of subspace-based method for three-tap 

exponential PDP channel is presented using MATLAB simulations. From the simulation 

results, it can be concluded that reasonable MSE performance (of order of 10"3) is achieved at 

30 dB SNR when the length of data samples exceeds 250 and for SNR > 15 dB when the 

length of data samples is 1000. 

Recently, OFDM and MIMO-OFDM have been adopted in most of the wireless standards 

owing to higher-data rates that can be achieved with reasonably good QoS. The classical 

approaches have been extended and generalized so as to be compatible with the technological 

advances. In literature, subspace-based techniques have been proposed owing to their 

structural simplicity. As far as OFDM systems are concerned, subspace-based techniques rely 

on the redundancy introduced either due to cyclic prefix, virtual carriers or oversampling (at 

the receiver). The latter two techniques can function even in the in-sufficient CP situation. 

For the present discussion, the CP-induced-redundancy-based technique is considered. 

A generalized subspace-based technique applicable for any number of subcarriers and 

channel length for SISO-OFDM is presented in Chapter 2. This algorithm can estimate the 

channel in time-domain up to a complex constant scalar estimation ambiguity. The simulation 

results are shown in Chapter 4. The improvement in MSE performance resembles a falling-

step as length of OFDM blocks is increased at a given SNR. This is due to p. o. e. 
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assumption. Similarly, improvement in MSE performance is linear with varying SNR (dB) 

values. The generalization of the subspace-based method for MIMO-OFDM systems is 

presented in Chapter 2. The channel is estimated in time-domain up to a complex constant 

matrix ambiguity. For the MIMO-OFDM systems with number of transmitting antennas 

greater than the number of receiving antennas, CP along with oversampling (at the receiver) 

is utilized to aid in channel estimation. The simulation results are shown in Chapter 4. 
Analogous to SISO-OFDM systems, the improvement in MSE performance resembles a 
falling-step as length of OFDM blocks is increased. As the size of MAID is increased, the 

convergence rate of subspace technique becomes slower. The improvement in MSE 

performance is linear with varying SNR (dB) values at higher SNR values (SNR > 15 dB). 

For lower SNR values, the performance is exponentially decaying for 2X2 MIMO and 

approaches a constant level as size of MIMO is increased (e.g. 4 x4 MIMO). An MSE value 

of the order of 10"3  is achieved when the length of OFDM blocks is more than that demanded 

by p. o. e. assumption or when SNR > 15 dB. 

The amplitude ambiguity can be resolved by using a transmitter-end technique known as 

precoding as mentioned in Chapter 3. Precoding induces certain correlation among the 

subcarriers in a given OFDM frame which can be utilized at the receiver for channel 

estimation in frequency-domain by simple correlation-averaging. This fact makes the 

technique computationally simpler than Eigen-value based subspace methods. For the present 

discussion, two linear non-redundant frequency-domain precoding based methods for SISO-

OFDM systems have been presented. 

A simple-precoding based approach in which the correlation is induced on a single-

subcarrier is presented in Chapter 3 along with performance analysis using MATLAB 

simulations. This approach estimates the channel in frequency-domain up to a constant 

complex ambiguity. From the simulation results, an exponential improvement in MSE 

performance can be seen when the length of OFDM blocks is increased. Similarly, 

improvement in MSE performance is exponential as SNR is increased. MSE converges to a 

lower limit of around 10-3  and no further improvement can be observed as SNR is increased 

beyond 20 dB. A generalized algorithm which uses joint (row-column) correlation-averaging 

algorithm and hence is more robust to presence of channel nulls and noise can be used as 

described in Chapter 3 for channel estimation up to a constant phase-ambiguity in frequency-

domain. The simulation results are shown in Chapter 4. The performance similar in nature to 

that of simple-precoding based method can be observed. The performance is better at lower 



SNR values than that of simple-precoding based technique. A comparison of the statistical 

CRB and MSE variance of blind precoding-based estimator is presented in Chapter 4 for 

various channel PDP and precoding-constant values. It can be concluded that the MSE 

performance of the estimator is at least 100 times worst than the CRB. Further, as the 

precoding constant is increase from 0 to 1, the estimator performance improves. 

The generalization of generalized precoding based technique has been described for 

MIMO-OFDM systems in Chapter 3. Unlike subspace-based technique, this algorithm is 

applicable to MIMO systems with any number of transmitting and receiving antennas without 

any modifications. Further, a block-time-variant precoder is used which makes the channel 

estimation possible up to a complex constant scalar ambiguity per transmitting antenna as 

against matrix ambiguity. The simulation results are shown in Chapter 4. The performance 

characteristics similar to that of SISO-OFDM case can be observed. The convergence rate is 

not affected by the size of the MIMO system. 

The performance comparison of subspace- and precoding-based channel estimation 

techniques for SISO- and MIMO-OFDM systems have been presented in Chapter 4'using 

MATLAB simulations. The MSE variations over varying length of OFDM frames and 

varying SNR (dB) values are also presented. From the results, it can be concluded that, at 

lower lengths of OFDM blocks and lower SNR values, precoding-based approach performs 

better than the subspace based technique. This makes the former a suitable candidate for low 

power and high-mobility applications. Further, at higher SNRs and lengths of OFDM blocks, 

the performance of subspace technique surpasses that of the precoding-based technique. The 

performance improvement observed in precoding-based technique is very low compared to 

subspace-based technique as the length of OFDM frames and SNR values are increased. 

The blind techniques, as mentioned earlier, suffer from an estimation ambiguity. Using 

precoding, the amplitude ambiguity has been resolved. In practice, the phase-ambiguity has 

been resolved by employing pilot carriers. We have proposed a completely blind channel 

estimation technique for SISO-OFDM with PAM mapping using constellation splitting in 

Chapter S. This algorithm has an advantage over its predecessors: the OFDM frame has zero-

dc, the algorithm is structurally simpler and computationally efficient with an efficient 

encoding/ decoding logic. The performance analysis over different PAM constellation sizes 

and channel PDP are presented using MATLAB simulations. Further, a generalization of 

constellation splitting technique applicable for any modulation schemes and a modified phase 



directed technique for phase-ambiguity estimation and correction is proposed in Chapter 5. 

The performance analysis using MATLAB simulations have been presented for 16-QAM 

mapping over different channel PDP. It can be seen from the simulation results that the 

completely blind techniques perform slightly worse than their semi-blind blind counterparts 

but yet can estimate the channel within acceptable MSE tolerance for all practical purposes. 

SCOPE FOR FUTURE WORKS: 

From the previous discussions, it can be concluded that the precoding-based approach for 

blind channel estimation proves to be a promising candidate for low-power and high-mobility 

communication systems. Future works should aim at development of fast computationally 

efficient completely blind algorithms which may involve proper signal design technique for 

MIMO-OFDM system. 

Further, most of the blind techniques ignore the channel coding and assume that the 

source covariance matrix is diagonal with known variance. This restricts the practically 

applicability of most of the blind approaches [37]. Thus design of blind algorithms for 

practical standards and/ or modification of existing techniques to be applicable in practical 

standards can be considered as one of the research topics. Further, it is assumed that the 

channel length is known. Precoding based approaches are highly sensitive to channel order 

estimation errors due to de-noising step involved in channel estimation. This can be resolved 

by estimation of channel order using Eigen-value based techniques [19 and 20] in time-

domain. This calls for hybrid time-frequency channel estimation algorithms (Chapter 5). 

100 



BIBLIOGRAPHY 

[1] John Proakis, "Digital Communications," 4 h̀  edition, McGraw-Hill, 2000. 
[2] S. Haykin, "Adaptive filter theory," 4th  edition, Prentice Hall, 2002. 
[3] H. Liu, G. Xu, L. Tong and T. Kailath, "Recent developments in blind channel 

equalization: from cyclostationarity to subspaces," Elsevier, Signal Processing (SP) - 50 

(1996), pp. 85-99, 1996. 

[4] Lang Tong, Perreau S., "Multichannel blind identification: from subspace to maximum 

likelihood methods," Proceedings of the IEEE, vol. 86, no. 10, pp. 1951-1968, Oct 1998. 

[5] S. Haykin (Editor), "Blind Deconvolution," PTR Prentice Hall, 1994. 

[6] Godard D., "Self-Recovering Equalization and Carrier Tracking in Two-Dimensional 

Data Communication Systems," IEEE Transactions on Communications, vol. 28, no. 11, 

pp. 1867- 1875, Nov 1980. 

[7] Sato Y., "A Method of Self-Recovering Equalization for Multilevel Amplitude-

Modulation Systems," IEEE Transactions on Communications, vol. 23, no. 6, pp. 679-

682, Jun 1975. 

[8] Bellini S., "Bussgang Techniques for Blind equalization," IEEE Global 

Telecommunication Conference (GLOBECOM' 86), Houston, TX, pp. 1634-1640, 1986. 

[9] J. A. R. Fonollosa and J. Vidal, "System Identification using a Linear Combination of 

Cumulant Slices," IEEE Trans. on Signal Processing, SP-41 (7): 2405-2412, July 1993. 

[ 101 D. Boss, B. Jelonnek, and K. Kammeyer, "Eigenvector Algorithm for Blind MA System 

Identification," Elsevier, Signal Processing, SP-66 (1): 1-26, April 1998. 

[11] J. K. Tugnait, "Identification of linear stochastic system via second and fourth-order 

cumulant matching," IEEE Transactions on Information Theory, vol. 1 T-33, May 1987. 

[12]Jing Liang, Zhi Ding, "Blind MIMO system identification based on cumulant subspace 

decomposition," IEEE Trans. on Signal Proc., vol. 51, no. 6, pp. 1457- 1468, June 2003. 

[13] Lang Tong, Guanghan Xu, Kailath T., "Blind identification and equalization based on 

second-order statistics: a time domain approach," IEEE Transactions on Information 

Theory, vol. 40, no. 2, pp. 340-349, Mar 1994. 

[14] Serpedin E., Giannakis G. B., "Blind channel identification and equalization with 

modulation-induced cyclostationarity," IEEE Transactions on Signal Processing, vol. 46, 

no. 7, pp. 1930-1944, Jul 1998. 

[15]M. Tsatsanis and G. B. Giannakis, "Transmitter induced cyclostationarity for blind 

channel equalization," IEEE Trans. on Signal Processing, vol. 45, pp.1785 - 1794, 1997. 

101 



[16]Ching  An Lin, Jwo Yuh Wu, `Blind identification with periodic-modulation: a time-

domain approach," IEEE Transactions on Signal Processing, vol. 50, no. 11, pp. 2875-

2888, Nov 2002. 

[ 17] Hui Liu, Guanghan Xu, Lang Tong, "A deterministic approach to blind identification of 

multi-channel FIR systems," IEEE International Conference on Acoustics, Speech, and 

Signal Processing (ICASSP), Adelaide, SA, Australia, vol. 4, pp. TV/581-584, Apr 1994. 

[18]Moulines E., Duhamel P., Cardoso J.-F., Mayrargue S., "Subspace methods for the blind 

identification of multichannel FIR filters," IEEE Transactions on Signal Processing, vol. 

43, no. 2, pp. 516-525, Feb. 1995. 

[19]Perros-Meilhac L., Moulines E., Abed-Meraim K., Chevalier P., Duhamel P., "Blind 

identification of multipath channels: a parametric subspace approach," IEEE 

Transactions on Signal. Processing , vol.49, no.7, pp.1468-1480, Jul 2001 

[20] Hoteit L., "Extending the subspace method for blind identification," Fourth International 

conference on Signal Processing Proceedings (ICSP-1998), Beijing, China, vol, 1, pp. 

347-350, 1998. 

[21] Lambotharan S., Chambers J. A., "A new blind equalization structure for deep-null 

communication channels," IEEE Transactions on Circuits and Systems II: Analog and 

Digital Signal Processing, vol. 45, no. 1, pp. 108-114, Jan 1998. 

[22] Panci G., Scarano G., Jacovitti G., "Blind identification and order. estimation of FIR 

communications channels using cyclic statistics," IEEE International Conference on 

Acoustics, Speech and Signal Processing 1998, Seattle, Washington, USA, vol. 4, pp. 

2389-92, 12-15 May 1998. 

[23] Lisheng Fan, Feifei Gao, Yunkai Feng, Xianfu Lei, Yongquan Jiang, "On the use of 

signal subspace information in blind FIR channel estimation," 3rd International 

Symposium on Systems and Control in Aeronautics and Astronautics (ISSCAA), Harbin, 

China, pp.1174-1177, 8-10 June 2010. 

[24] Ayadi J., Slock D. T. M., "On linear channel-based noise subspace parameterizations for 

blind multichannel identification," IEEE Third Workshop on Signal Processing 

Advances in Wireless Commn. (SPAWC — 2001), Taoyuan, Taiwan, pp. 78-81, 2001. 

[25] Kristensson M., Ottersten B., "A statistical approach to subspace based blind 

Identification," IEEE Transactions on Signal Processing, vol. 46, no. 6, pp. 1612-1623, 

Jun 1998. 

102 



[26] Abed Meraim K. et al, "Prediction error methods for time-domain blind identification of 

multichannel FIR filters," International conf. on Acoustics, Speech, and Signal 

Processing, 1995. ICASSP-95, Detroit, MI, USA, vol. 3, no., pp. 1968-1971, May 1995. 

[27] Yifeng Zhou, Henry Leung, Patrick Yip, "Blind identification of multichannel FIR 

systems based on linear prediction," IEEE Transactions on Signal Processing, vol. 48, 

no. 9, pp. 2674-2678, Sep 2000. 

[28] Zhi Ding and Ye Li, "Blind Equalization and Identification," Marcel Dekker, 2001 

[29] Zhi Ding, "Matrix outer-product decomposition method for blind multiple channel 

identification," IEEE Transactions on Signal Processing, vol. 45, no. 12, pp. 3053-3061, 

Dec 1997. 

[30] Lang Tong and Qing Zhao, "Joint order detection and blind channel estimation by least 

squares smoothing," IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2345-

55, Sep 1999. 

[31]Qing Zhao, Tong L., "Adaptive blind channel estimation by least squares smoothing," 

IEEE Transaction on Signal Processing, vol. 47, no. 11, pp. 3000-3012, Nov 1999. 

[32] Gardner W.A., "A new method , of channel identification," IEEE Transactions on 

Communications, vol. 39, no. 6, pp. 813-817, Jun 1991. 

[33] Lang Tong, Guanghan Xu, Hassibi B., Kailath T., "Blind channel identification based on 

second-order statistics: a frequency-domain approach," IEEE Transaction on Information 

Theory, vol. 41, no. 1, pp. 329-334, Jan 1995. 

[34]Bordin C. J., Bruno M. G. S., "Particle Filters for Joint Blind Equalization and Decoding 

in Frequency-Selective Channels," IEEE Transactions on Signal Processing, vol. 56, no. 

6, pp. 2395-2405, June 2008. 

[35] Insung Kang, Fitz M. P., Gelfand S. B., "Blind estimation of multipath channel 

parameters: a modal analysis approach," IEEE Transactions on Communications, vol. 47, 

no. 8, pp. 1140-1150, Aug 1999. 

[36] Lopes R. R., Barry J. R., "Exploiting error-control coding in blind channel estimation," 

Global Telecommunication conference (GLOBECOM), San Antonio, Texas, vol. 2, pp. 

1317-1321, 2001. 

[37] Scherb A., Kuhn V., Kammeyer K. D., "On phase correct blind de-convolution of flat 

MIMO channels exploiting channel encoding," IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, Pennsylvania, USA, 

vol. 3, pp. iii/1045- iii/1048, 18-23 March 2005. 

103 



[38] Yeredor A., "Blind channel estimation using first and second derivatives of the 

characteristic function," IEEE Signal Proc. Letters, vol. 9, no. 3, pp. 100-103, Mar 2002. 

[39] C-C Jay Kuo, Michele Morelli and Man-On Pun, "Communication and Signal 

Processing vol. 3: Multi-Carrier Techniques for Broadband Wireless Communications- A 

signal processing perspective," Imperial College Press, 2007. 
[40] Yonghong Zeng, Tung Sang Ng, "A proof of the identifiability of a subspace-based blind 

channel estimation for OFDM systems," IEEE Signal Processing Letters, vol. 11, no. 9, 

pp. 756- 759, Sept. 2004. 

[41]B. Muquet, M. de Courville, and P. Duhamel, "Subspace-based blind and semi-blind 

channel estimation for OFDM systems," IEEE Transactions on Signal Processing, vol. 

50, no. 7, pp. 1699-1712, Jul. 2002. 

[42] Chengyang Li, Roy S., "Subspace-based blind channel estimation for OFDM by 

exploiting virtual carriers," IEEE Transactions on Wireless Communications, vol. 2, no. 

1, pp. 141- 150, Jan. 2003. 

[43] Heath R. W. Jr., Giannakis G. B., `Exploiting input cyclostationarity for blind channel 

identification in OFDM systems," IEEE Transactions on Signal Processing, vol. 47, no. 

3, pp. 848-856, Mar 1999. 

[44] Roy S. Chengyang Li, "A subspace blind channel estimation method for OFDM systems 

without cyclic prefix," IEEE Transactions on Wireless Communications, vol. 1, no. 4, 

pp. 572- 579, Oct 2002. 

[45] Ruifeng Zhang, "Blind OFDM channel estimation through linear precoding: a subspace 

approach," Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 

Pacific Grove, California, vol. 1, pp. 631- 633, 3-6 Nov. 2002. 

[46] Petropulu A., Ruifeng Zhang, Lin R., "Blind OFDM channel estimation through simple 

linear precoding," IEEE Transactions on Wireless Communications, vol. 3, no. 2, pp. 

647- 655, March 2004. 

[47] Yi Ma, Yi Huang, Na Yi, "Exploiting subcarrier correlation for blind channel estimation 

in block precoded OFDM systems," The Joint Conference of the 10th Asia-Pacific 

Conference on Communications and the 5th International Symposium on Multi-

Dimensional Mobile Communications, vol. 1, pp. 338- 342, 29-Aug. to 1-Sept. 2004. 

[48] Liang Y., Luo H. Huang J., "Redundant Precoding Assisted Blind Channel Estimation 

for OFDM Systems," 8th International Conference on Signal Processing, Guilin, China, 

vol.3, 16-20 2006. 

104 



[49] Lin R., Petropulu A. P., "Linear precoding assisted blind channel estimation for OFDM 

systems," IEEE Trans. on Vehicular Technology, vol. 54, no. 3, pp. 983- 995, May 2005. 

[50] Taejoon Kim, Iksoo Eo, "Blind Channel Estimation and Equalization in OFDM System 

With Circular Precoding," IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), Toulouse, France, vol. 4, pp. IV, 14-19 May 2006. 

[51]Gao F., Nallanathan A.,. "Blind Channel Estimation for OFDM Systems via a 

Generalized Precoding," IEEE Transactions on Vehicular Technology, vol. 56, no. 3, pp. 

1155-1164, May 2007. 

[52] A.J. Paulraj, D.A. Gore, R.U. Nabar, H. Bolcskei, "An overview of MIMO 

communications - A key to gigabit wireless," Proceedings of the IEEE, Vol. 92 , Issue: 2, 

pgs: 198-218, Feb. 2004. 

[53] Helmut Bolcskei, "MIMO-OFDM Wireless Systems: Basics, Perspectives, and 

Challenges," Communication Technology Laboratory, ETH Zurich, 2007 

[54] Shin C., Heath R.W., Powers, E.J., "Blind Channel Estimation for MIMO-OFDM 

Systems," IEEE Trans. on Vehicular Technology, vol.56, no.2, pp.670-685, March 2007 

[55] Feifei Gao, Yonghong Zeng, Nallanathan A., Tung-Sang Ng, "Robust subspace blind 

channel estimation for cyclic prefixed MIMO ODFM systems: algorithm, identifiability 

and performance analysis," IEEE Journal on Selected Areas in Communications, vol. 26, 

no. 2, pp. 378-388, February 2008. 

[56] Chao-Cheng Tu, Champagne B., "Subspace-Based Blind Channel Estimation for MIMO-

OFDM Systems With Reduced Time Averaging," IEEE Transactions on Vehicular 

Technology, vol. 59, no. 3, pp. 1539-1544, March 2010. 

[57] Feifei Gao, A. Nallanathan, "Blind Channel Estimation for MIMO OFDM Systems via 

Nonredundant Linear Precoding," IEEE Transactions on Signal Processing, vol. 55, no. 

2, pp. 784-789, Jan. 2007. 

[58] Vudata Swarupa Gandhi, "Blind channel estimation for OFDM systems", M. Tech. 

Dissertation, Indian Institute of Technology Roorkee, Roorkee, June 2008. 

[59]G. B. Giannakis, Y. Hua, P. Stoica and L. Tong (Editors), "Signal Processing Advances 

in Wireless and Mobile Communications — Trends in Channel Equalization and 

Equalization," Vol. 1, PTR Prentice Hall, 2001. 

[60] P. Stoica, E. G. Larsson, and A. B. Gershman, "The stochastic CRB for array 

processing: A textbook derivation," IEEE Signal Processing Letter, vol. 8, no. 5, pp. 

148-150, May 2001. 

105 



[611 R. van Nee and R. Prasad, "OFDM for Wireless Multimedia Communications," Boston, 

MA: Artech House, 2000. 

[62] Shengli Zhou, Giannakis G. B., "Finite-alphabet based channel estimation for OFDM 

and related multicarrier systems," IEEE Transactions on Communications, vol. 49, no. 8, 

pp. 1402-1414, Aug 2001. 

[63] Sanzi F., Necker M. C., "Totally blind APP channel estimation for mobile OFDM 

systems," IEEE Communications Letters, vol. 7, no. 11, pp. 517- 519, Nov. 2003. 

[64]Necker M. C., Stuber G. L., "Totally blind channel estimation for OFDM on fast varying 

mobile radio channels," IEEE Transactions on Wireless Communications, vol. 3, no. 5, 

pp. 1514- 1525, Sept. 2004. 

[65] Sameera Bharadwaja H and D. K. Mehra, "A completely blind channel estimation 

technique for OFDM using constellation-splitting," Proceedings of ICEIT national 

conference in Wireless Cellular Telecommunications: Technologies and Services, New 

Delhi, pp: 74-79, 14-15 Apr. 2011. 

106 



APPENDIX A 

DERIVATION OF DUAL CONDITION FOR ANY N AND L (N > 2L) 

The derivation of the dual equation for the orthogonality condition given in eqn. 2.28 for 

the generalized subspace-based blind channel estimation technique in SISO-OFDM system 

(Chapter 2) by mathematical induction is illustrated. 

Case I:N= 4, L = 1 

From eqn. 2.24b, we get: 

Co = h(0) = ho and Cj =h1 

h° 0 0  hl 

	

Co = hl h° 0 ; Ci = 0 	and Ci = [0 0 hl] 
0 hl h°  0 

Hence, from eqn. 2.25, the channel matrix can be written as: 

	

I 	I 	e 

h° 0 	0 hl ; 0 	0 	0; 
hl h° 0 0 0 0 0; 0 0 h1h0 ®-4-----®-----~= 0 -- 

- 0---0 hi . h° ; 0 	0 	0- 0 
H(h) ------0----------110 --  	 - ---- 6---0-- ho - 

• hl 
 0 0 0 ;hl h° 0 0 

0 	0 	0 :_0 :o hl ho : 0- 

 

---- --  -  --------- -  -- 
0 0 0 0 0 0 hl ' h° 

 

s  ~  , 

From eqn. 2.27, the left null-space vector of size (2N+L) x L = 9x 1 can be written as: 

g(1) 
,q(2) 

_ 91 (3) 
g(1) 

9=9i=9i(1) 	 for 0<i<L-1 —* i=0 

.g(2) 
9~(3) 9(1) -- 

Eqn. 2.28 gives the orthogonality condition: gHH(h) = 0 for i = 0 
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Expanding, 

9i (1)*ho + 9i(2)*h1 
9i(2) *ho + 9i(3)*hi -- ------- ---------- ------------ - 
9 C3)`ho + 9LC1)*hi 	

- 

-- 9 IC1)*h 	
-- 

g (1)`h0 + 9t(2)*hl 
94(2)"ho + 9t(3)*hi -- 

~9i  

Taking Hermitian and splitting the above vector in dual form, 

9i (1) g'(2) g'(3) . 	g(1) 	9i(1) 94(2) ,q(3) 9i (t) + g(1)1 = [h~ hi~ 1 	i 	i 1 	3 ~ 4 	4 i 	~ 	4 	l 19i (z) g(3) g(1) : g(1) + g(1) : g(2) g(3) g(1)  g(1) 	1 

... (A.1) 

C* 	h''Gi=O for i=0 

Case II: N 8, L = 2 

From eqn. 2.24b, we get: 

Co = [ho ho] and Cl = [ 
h2 h11 
 0 hz! 

ho 0 0 0 0 0 h2 hl 
hl ho 0 0 0 01 0 hZ 

= 
Co = 

h2 
0 

hl 
hZ 

ho 
hl 

0 
ho 

0 
0 

0 
0 

. 	, _ 
' C1 — 

0 
0 

0 
0 

	

„ = r0 	0 	0 	0 	h2 	h1
1 

	

and C1 = l0 	0 	0 	0 	0 	hZ 
0 0 h2 hl ho 0 0 0 
0 0 0 hz hl h0i 0 0 

Hence, from eqn. 2.25, the channel matrix can be written as: 
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1 	I 	 1 

ho 0 0 0 0 0 h2 hi; 0 0 0 0 0 0; 0 0- 
hl ho 0 	0 	0 	0; 0 h2 ; 0 	0 	0 	0 	0 	0; 0 	0 
h2 hx ho 0 0 	0 	0 	0 1 0 	0 	0 	0 	0 	0 e 0 	0 
0 h2 hl ho 0 	0: 0 	0; 0 	0 	0 	0 	0 	0; 0 	0 

I 	I 	 I 

00 h2 hl ho 00 0 0 0 0 0 0 0; 0 0 
0 0 0 h2 hl ho i 0 	0 0 0 0 0 0 0: 0 0 
0 	0 	0 	0 h2 h1 : h0 0 s 0 	0 	0 	0 	0 	0 1 0 	0 
0 	0 	0 	00 h2 ;hl ho ; 0 	0 	0 	0 	0 	0; 0 	0 
--------------  ----------------------------------------r-------• 

H(h) = 0 
	0 	0 	0 	0 	0 h2 hl 1- - 0 	0 	0 	0 	0 	0 1 ho 0 

0 	0 	0 	0 	0 	0 	0 h2_1 _0 - 0 	0 	0 	0 	0 hl ho 
--------------------------4------- r  ---------------------- -----  
0 0 0 0 0 0.;o 0;ho 0 0 0 0 0 h2 hl 
0 	0 	0 	0 	0 	00 	0 e h1 ho 0 	0 	0 	0 0 0 h2 
0 	0 	0 	0 	0 	0 1 0 	0 h2 hl ho 0 	0 	0 1 0 	0 
0 	0 	0 	0 	0 	0; 0 	0; 0 h2 hl ho 0 	0; 0 	0 
0 	0 	0 	0 	0 	0 1 0 	0 1 0 	0 h2 h1 ho 0 1 0 	0 

-0 	- -- ----- - -- --;----- Q-r-- 	- -- --- ~_-hl--hD- ----- - 
0 	0 	0 	0 	0 	0; 0 	0; 0 	0 	0 	0 h2 hl ; ho 0 
0 	0 	0 	0 	0 	0 1 0 	0 1 0 	0 	0 	0 	0 h2 1 hl ho _ 

From eqn. 2.27, the left null-space of size (2N+L) x L = 18x2 can be written as: 

g = [9i 92] where, 

91(2) 

g'(3) 

g' (4) 

91(5) 

g(6)  
g(1) 
9?(2) 

9i = 93(2) 

94(2) 

94(3) 

94(`t) 
94{5) 

94(6)  

g(1) 

g(2) g5(2) 

1 
9E 
a 

- 9i 
93 

94 

g5 

for 0<_i<L-1 --> i=(0,1) 

Eqn. 2.28 gives the orthgonality condition: g'H(h) = 0 for i = {0,1} 
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g(1) 	g(2) 9i (3) 	9i (4) i .q'(5) 	g(6) 	0 	0 
,q(2) 	g(3) ,g(4) 	1(5) ; g(6) 	0 	0 	g(1) 
g(3) 	1(4) 9i (5) 	g(6) : 	0 	0 	: 	g(  l) 	,q'(2) 

- 
-  -  -  -- - -----7-  -  --  --- --  I-------- 

-  -- ---------  -------  -----*------±------ --- --------  -- 
0 	0 	: 	g(1) 	g(2) 

[ho 	hi 	hz] 0 	g(1) 	g(2) 	0 	... 

'  +  -  --  +--  --  - 
' 	0 	0 

0  g3(1) 
• g(1) 	g(2) 

g(1) 	g(2) 	g(3) 	g(4) : g4(5) 	g(6) ; 	0 0 
94(2) 	g(3) 	g(4) 	gii(5) ; g4(6) 	0 	0 9i(1) 

----------------------------'}-  --  ----y----- 

0 	0 	; 95(
-

1) 
-----. 

g(2) 
0 	gs(1) 	gs(2) 0 

----------------------------! 9s(1)-------  -- ---- --- I 	, 
.
---------------------------- - --_---h 

----------------- 

g(1) gi(2) 
g3(2) 0 

, 	 I '  0 
I 	 ~ 

0 

=0 

.. (A.2) 

Expanding, 

9(1)`ho + 9i(2)`hx + 9i(3)`hz 

g (2)' ho + gi (3) `hi + g (4)- hz 
g (3) `ho + 9i (4) `hl + 9i (5) `hz 

9i~6)`h2---------- 
gi(S)`ho + gi(6)"h1 + gi(1)'h2 

---- ---9i(6)h~ + IC1)*h 	gic2)*h".--------- 
g(1)h0 +9?(2)`h1 + [g(1) +9i (1)`]hz 

9(2)`h0 +[g(1)* + 9i(1)`]h1 + [gi(2)` + 9i(2)`]hz 

-------- 9t(1)h0 +9i(2)`hi +94(3)`h2------- - 
97(2)`ho + 94(3)`hi + 9i(4)`hz 
g(  3)'h0 + 94(4)`h1 + 94 (5)`hz 

+gf(6)'hz----  
9i(5)`ho + g4(6)`h1 + g7(1)'h2  

---- - 

---------9i(6rAD 
[93(1)` + 95(1)`]ho + [g3(2)` + 95(2)`]h1 + 94(1)`h2 

• [g3(2)' + 95(2)`]ho + 94(1)`h1 + g(2)h2 

Taking Hermitian and splitting the above vector in dual form, 

-=0 

h'Gi = 0 for i = (0,1) 

Observe that eqn. A.] and A.2 has a definite structure that can be generalized by using 

mathematical induction for any null-space bases matrix of dimension (2N+L) x L (N? L) to 

obtain the results as given in eqn. 2.29 and eqn. 2.30. 
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