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ABSTRACT 

The inverted pendulum is a classical control problem, which involves developing a 
control system to balance a pendulum. The aim of this study is to stabilize the Inverted 

Pendulum such that the position of the cart on the track is controlled quickly and 

accurately so that the pendulum is always erected in its inverted position during such 
movements. 

This thesis present a design methodology for stabilization of an IP (Inverted 

Pendulum) with reference tracking using ANFIS (Adaptive Neural Fuzzy Inference 
System) with a single linguistic variable and two membership function only hence two 

rules. The proposed FLC (Fuzzy Logic Controller) is the simplest FLC that retains all the 

merits of four input linguistic variable FIS tuned by ANFIS and is more robust than the 
conventional PD controller. Experiments are carried out in MATLAB Simulink to 

demonstrate the performance of the purposed controller. The design procedure is 

conceptually simple and natural. 

In this design procedure firstly two independent PD controllers are tuned one for 

angle and another for cart position on the rail. Now training data is taken from these 

controllers and FIS is tuned with the help of ANFIS. Once FIS is tuned, then further work 
is carried out to reduce the numbers of input linguistic variables, by adding one variable 

to another and tuning the gain parameters using trial and error method. 

Systems are simulated in the presence of disturbance. Overshoot and settling time 
are also kept in mind while comparing between two simulation results, because these two 

entities are mutually dependent on each other, if we reduce one the other will increase, 

and vice-versa. 
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Chapter .1 

INTRODUCTION 

The Inverted Pendulum (IP) System offers a very .good example for control 

engineers to verify modem control methods. This system is a highly nonlinear and open-

loop unstable one. This means that standard linear techniques cannot model the nonlinear 

dynamics of the system. When the system is simulated the pendulum falls over quickly. 

The IP system has the property of being unstable, of higher order, multi variable and is 

highly coupled, which can be treated as a typical nonlinear problem [1, 2]. The 

characteristics of the inverted pendulum makes identification and control more 

challenging. The system's characteristics are an unstable equilibrium point at the upright 

position of the pendulum, a stable equilibrium point at the pendant position, as well as 

two uncontrollable points when the pendulum is at the horizontal position [4]. Inverted 

Pendulum is a model for the altitude control of a space booster rocket and a satellite, an 

automatic aircraft landing system, aircraft stabilization in the turbulent air-flow, 

stabilization of a cabin in a ship etc. 

The inverted pendulum is an interesting subject from the control point of view due 
to its inherent nonlinearity. The problem is to balance a pole on a mobile platform that 

can move in only two directions, to the left or to the right._. This control problem is 

fundamentally the same as those involved in rocket or missile propulsion. Common 

control approaches such as Proportional-Integral-Derivative (PID) control and Linear 

Quadratic control (LQ) require a good knowledge of the system and accurate tuning in 

order to obtain desired performances [5, 15]. However, it is often impossible to specify an 

accurate mathematical model of the process, or the description with differential equations 

is extremely complex. 

In order to obtain control surface, the inverted pendulum dynamics should be locally 

linearized [15]. Moreover, application of these control techniques to a two or three stage 

inverted pendulum may result in a very critical design of control parameters and difficult 

stabilization. However, using artificial intelligence controllers such as artificial neural 
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network and fuzzy logic controllers, the controller can be design without requiring the 

model to be linearized [3, 6, 9, 14]. The non-linearized model can be simulated directly 

using the Matlab application to see result. Therefore, in this thesis following controllers 

have been simulated. Which may be divided into two categories. 

1. Conventional Controller . 
Proportional Derivative (PD) 

2. Artificial Intelligence Controller 

Fuzzy Logic Controller (FLC) tuned with the help of ANFIS (Adaptive 

Neuro Fuzzy Inference System) 

1.1 Motivation 

My educational experience, at IIT Roorkee has given me a broad background in 

designing different types of control strategy to control various systems available in 

control system laboratory like Ball-Beam System, Inverted Pendulum, Magnetic 

Levitation, Robot Arms etc. Since my current interests lie within Fuzzy Logic Controller 

(FLC) and Neural Network (NN), I decided to design a controller using FLC and NN to 

stabilize an unstable system. 

The following reasons help explain why the inverted pendulum on a cart has been 

selected as the system on which the findings of this thesis will be implemented. 

1. It is a non-linear system, yet can be approximated as a linear system if the operating 

range is small (i.e. slight variations of the angle from the norm). 

2. Intuition plays a large part in the human understanding of the inverted pendulum 

model. When the control method is supplemented with a fuzzy logic and artificial 

neural network optimization techniques, the result will provide an insight into the 

measure of ability of the method to provide control. 

3. The cart/pole system is a common test case for fuzzy logic, so any result can be 

compared to previous work in the field. A proportional, derivative (PD) will be used 

as a reference because it is one of the basic approaches for controlling the system 

performance. 
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1.2 Objective and Scope of Work 

Although many investigations have been carried out on the inverted pendulum 

problem, like PD, hybrid PD + Fuzzy, FIS, ANFIS and so on, each investigation has its 

own merits [1-8]. One most popular method is the FIS tuned with the help of ANFIS. A 

common FIS controller controls both angle as well as reference position, consist four 

linguistic variables at the input and one at the output [1]. If each linguistic variable has 

two MFs (Membership Function) then rule base requires total 16 rules. If we takes three 

MFs in place of two, than number of rules are 81. Therefore, a huge number of rules for 

multi input FIS is a problem of FIS. 

The aim of this work is to implement a FLC on inverted pendulum, tuned with the 

help of Adaptive Neuro Fuzzy Inference System (ANFIS). The implemented FLC must 

have minimum numbers of linguistic variables hence the minimum numbers of rules, 

without degrading the performance of FIS, tuned by ANFIS. To satisfy the intended 

objective, the following scope of work was carried out. 

1. Determine the mathematical model for an inverted pendulum system. 

2. Design a conventional PD controller, simulate it using Matlab and tune it for 

optimal performance controller. 

3. Design an ANFIS controller and trained it using training data obtain from PD 

controller. 

4. Reduced the numbers of linguistic variables of ANFIS controller. 

5. Comparison of the simulation results of conventional PD controller and ANFIS 

controller with reduced number of linguistic variable. 

1.3 Literature Review 

The classic control problem of the inverted pendulum is interesting in that it can be 

solved using a wide variety of systems and solutions. Numbers of literature are available 

regarding suggestion to design a controller for inverted pendulum with some merits and 

demerits. Robustness and disturbance rejection properties are two important performance 

criterions for any control system and important parameters to compare various controlling 

schemes. 
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The PID controller and the general LQR, linear quadratic optimal controller, are 

designed mostly by use of the approximate linear model of the inverted pendulum system 

[5, 15]. Although the designed controller can stabilize the inverted pendulum system, the 

control object in the simulation test is still approximately linear model rather than the 

actual inverted pendulum system. 

Many studies have been reported on fuzzy logic controllers which have enjoyed 

successful industrial applications and have demonstrated significant improvements in 

performance over conventional techniques [3, 5, 6, 9, 10, 14, 16]. In most applications, 

however, the design of the controllers is accomplished by "trial and error" methods using 

computer simulation. 

Many of the literature are available on hybrid method to control the inverted 

pendulum system [4, 13]. The neuro-fuzzy controllers are the popular controllers of this 

century because of their remarkable effectiveness, involve human expertise, learning 

capability and broad applicability [2, 7, 8]. Some of the literature suggest tuning of fuzzy 
controller with the help of artificial neural network [1, 12]. 

1.4 Organization of the thesis 

The report has been organized into seven chapters. Chapter 1 gives an impression 
of the subject, basics, literature survey and objective of the study. Chapter 2 briefly 

discussed the Inverted Pendulum and its classifications. Chapter 3 describes the 

modeling of single stage linear inverted pendulum and various control strategy. Chapter 
4 contains the introduction of fuzzy logic systems. Chapter 5 gives an overview of the 

artificial neural network. Chapter 6 presents the simulation results for controller 

designed using PD and ANFIS (Adaptive Neuro Fuzzy Inference System). Chapter 7 
presents the conclusion of the study and suggestions are given for further study of this 

work. 
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Chapter 2 

INVERTED PENDULUM 

2.1 Introduction 
Inverted pendulum (IP) problem is the combination of research area like robotics, 

control theory, computer control, etc. The IP system has the property of unstable, high 
order, multi-variable and highly coupled, which can be treated as a typical nonlinear 
control problem. IP system provides an excellent experimental platform for examining 
specific control theories or typical solutions and thus promoting the development of the 
new theories. They are widely applied in different fields such as semiconductors, delicate 
devices processing, robot control technology, artificial intelligence, missiles interception 
control systems, aviation docking control technology and general industrial applications. 

2.2 Inverted Pendulum classification 

There are many series of IP systems and are classified as follows: - 
- Linear Inverted Pendulum 
- Circular Inverted Pendulum 
- Planar Inverted Pendulum 
- Configurable Inverted Pendulum 

Linear IP has pendulum plant on a linear motion module with one degree of 
freedom. The cart moves on the sliding shaft horizontally. 

Fig. 2.2.1 Linear Inverted Pendulum 
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Circular IP system has the pendulum plant on a circular motion module with one 

degree of freedom. The pendulum is on the arm end and rotates around the center of the 

circle. 

Fig. 2.2.2 Circular Inverted Pendulum 

Planar IP system has the pendulum plant on the planar motion module with two 

degrees of freedom. 

Fig. 2.2.3 Planar Inverted Pendulum 

Configurable IP is a new class of IP systems whose pendulum plant is composed of 

pendulum rod and connection rod. The connection rod can be configured to three modes: 

level, vertical up and vertical down. 

0 
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Fig. 2.2.4 Configurable Inverted Pendulum 

2.3 Inverted Pendulum properties 

All Inverted Pendulum (IP) systems have the following properties:- 

1. Nonlinearity: IP is a typical nonlinear control system. In real control, the system 

model is usually linearized. 

2. Uncertainty: Most uncertainties come from model uncertainty, mechanical 

transmission error and other resistances. In real control, uncertainties are reduced by 

controlling errors. 

3. Open loop instability: There are two equilibrium states for IP systems, vertical up 

and vertical down, in which the vertical up is the unstable equilibrium point and 

vertical down is the stable equilibrium point. 

4. Limitations: The IP system performance is limited by mechanisms like motion 

module travel distance, motor torque etc. The effect of travel distance to IP swing 

up is especially evident, short travel distance easily gets the cart exceed the limit 

switch. 
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Chapter 3 

SINGLE STAGE LINEAR INVERTED PENDULUM 

SYSTEM MODEL AND ANALYSIS 

The problem involves a cart, able to move backwards and forwards, and a 

pendulum, hinged to the cart at the bottom of its length such that the pendulum can move 

in the same plane as the cart. That is, the pendulum mounted on the cart is free to fall 

along the cart's axis of motion. The system is to be controlled so that the pendulum 

remains balanced and upright and is resistant to a disturbance. Free body diagram of the 

inverted pendulum system is shown in Fig. 3.1. 

The mechanical modeling is based on the foundation of understanding the motion 

patterns through physical and mathematical means to set up the internal input/output 

relationship in the system. There are difficulties in IP system modeling because of its 

instability. The dynamic equation will be obtained in the inertial frame by classical 
mechanics theory. 

urn 

Cart 

• 4• 	 • 	Wheels 

Fig. 3.1 Free body diagram of the inverted pendulum system 
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3.1 Newton's mechanics 

Single stage linear IP can be simplified as a system of cart and even quality rod, as 
shown in Fig. 3.1.1 

The Parameters and their symbols are as follows: 
M - cart mass 
m - rod mass 
b - friction co-efficient of the cart 
i -distance from the rod axis rotation center to the rod mass center 
I - rod inertia 
F - force acting on the cart 
x - cart position 
(D - angle between the rod and vertically upward direction 
0 - angle between the rod and vertically downward direction 

Fig. 3.1.1 is the force analysis of cart and rod system. N and P denote the interactive 
force of cart and rod in the horizontal and vertical direction respectively. 

bx 

 

X 

z 

 

N 

Fig. 3.1.1 Cart and Rod Force analysis 

From the forces in the horizontal direction 

=F—bx—N 	 (3.1.1) 
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From the force acting on the rod in horizontal direction 

N= m  d  2  (x + l sin 0) 	 (3.1.2) 
dt  

That is 

N = mI + ml9 cos & — mlO2  sin 0 	 (3.1.3) 
Combining equation (3.1.3) with equation (3.1.1), the first dynamic equation is 

obtained as 

(M+m)x+bz+mlecose—mI92  sing =F 	 (3.1.4) 

To get the second dynamic equation, analyze the force in the vertical direction 

P—mg = m  -t2  (lcosO) 	 (3.1.5) 

P—mg =—mlBsin0—mlB2  cosO 	 (3.1.6) 

By moment conservation 

—Pl sine—NI cos0=ls 	 (3.1.7) 

Note: the direction of moment is negative because 0 = a + (D, cosD = -cosO, 
sin OD = -sin 0. 

Combining the above two equation, the second dynamic equation is obtained as: 

(I + m12  )B + mgl sin 0 = —mlz cos 0 	 (3.1.8) 

Let 0 = a + 11' (di is the angle between the rod and vertically upward direction), 
assume 1 is relatively small to 1 (unit in radian), which means 1 << 1, then following 

a 

approximation can be obtained: cosO = -1, sine = -i, 	el = 0. Let u denote the input 

force of the object, linearize the two dynamics equations. 
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(I+ml 2 )o—mglci=mu 
=u 

(3.1.9) 

The Laplace transformation of equation (3.1.9) is as follows 

(I+mlz )T?(s)sz —mglc(s)=mlX(s)s2 
(3.1.10) 

(M + m)X(s)s2 + bX(s)s — ml(s)s2 = U(s) 

Note: 	the initial condition is assumed - to be 1 when deducing the transfer 

function. 

The output angle is 'JI, solving the first equation 

X (s) _ 
[ o1m1)

l 	— 4 (D(s) 	 (3.1.11) 

Or 

(D(s) — 	mis2 
X(s) (I +m12 )s 2 —mgl 	

(3.1.12) 

Let v = z, then 

L(s) = 	ml 	 (3.1.13) 
V (s) (I + ml 2 )s z — mgl 

Substituting the above equation to the second one in equation (3.1 .10) 

(I+ml 2 )g 	2 (I+ml 2 ) g 	 2 = (M + m) 	
ml 	s m(s)s 

 +b[  ml + sz m(s)s — ml~(s)s — U(s) 

(3.1.14) 

The transfer function is obtained after simplification 
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ml 2  
(b(s) 	 q 
U(s) s  4  + b(I + m12 )  s  3  _  ( M + m)mgl  2  — bmgl  s  

q 	 q 	q 

in which 

q = (M + m)(l + m12 ) — ( m! 2 ) 

Assume the system state space equations are 

X =AX +Bu 
y=CX+Du 

(3.1.15) 

(3.1.16) 

Solve the algebraic equation of x, ç, the solutions are as follows 

x=x 

—(I+ml 2 )b 	mZ g12 	 (I+m12 )  0+ I(M+m)+Mm12 x+ I(M+m)+Mm12  I(M+m)+Mmlz u 

_ 	— mlb 	mgl(M+ m) 	 ml 
0  — I(M+m)+Mm12 

x+ 
 I(M+m)+Mm12 

0
+  I(M+m)+Mm12 

 

(3.1.17) 

The state space equation can then be written as 

	

0 	1 	 0 	0 
x 	0 	—(I+m12 )b 	m 2 g12 	0  x 
x 	I(M+m)+Mm12  I(M+m)+Mm12 	x + = 

0 
II 	1 

 0 	 0 	1 0 

	

LØ]
0 	— mlb 	mgl (M + m) 	

oj[qj  
I (M + m) + Mm12  I (M + m) + Mm12  

0 
(I-i-m12 ) 

I (M + m) + Mm12  
0 
ml 

I(M+m)+Mm12  
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x 

_ x_ 1 0 0 0 z 	0 
y 	0 0 1 0 + 0 u 	

(3.1.18) 

LØJ 

The first equation of (3.1.9) is 

(I+m12 )O—mg1O=mlx 

For a rod of even quality, the moment of inertia is 

I=3ml 2 	 (3.1.19) 

Substituting (3.1.19) in (3.1.9), 

(3 m12 + ml 2 )qS — mg1O = mlz 	 (3.1.20) 

After simplification, 

ø=+41 x 	 (3.1.21) 

Let X = {x, i, 0, 0}, u' =1, then 

x 0 	1 0 0 x 0 
x 0 	0 0 0 x 1 
= 0  0 0 1 0 + 0 u  (3.1.22) 

0 0 	0 
3g 

0 ~ 
3 

41 41 

x 
[xl rio 0 	0 x 

y 

[XI 
0 0 0 1 	0 0+ 

[01U, 
0 

0 
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3.2 Real System Model 
2 

M=0.455 kg, m=0.21 kg, 1=0.61/2 m, g=9.8 m/s2, I = 3~ = 0.026047 kg.m2 

Considering the parameters as defined above, the transfer function of pendulum rod 
angle and cart displacement is given by: 

cIa(s) 	0.0366s2 	
(3.2.1) 

X(s) 0.03721s2 —0.62769 

The transfer function of pendulum rod and cart acceleration is: 

(D(s) _ 	0.0366 	
(3.2.2) 

V(s) 0.03721s2 -0.62769 

The transfer function of pendulum angle and external force acting on the cart is: 

c(s) — 	0.13964s 
(3.2.3) 

U(s) s3 +0.0014197s2 —1.59257s-0.02395 

Analysis of the inverted pendulum with root locus, frequency response, cascade PD 
controller, swing up control and LQR controller were carried out. 

3.3 Root Locus Analysis 

The open loop transfer function of the inverted pendulum is 

1(s) _ 	0.0366 
V(s) 0.03721s2 —0.62769 

Let the input be cart acceleration and output be IP system pendulum rod angle. 
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r(s) = 0 	 y(s) 

Controller 	 Plant 

Fig. 3.3.1 Single Stage Linear IP Close Loop Diagram 

The closed loop transfer function root locus is as shown below:- 

3 

1 

---- - ---• - F ------ ------}--• --- ------ f ------ i ------  ------ ----- 

-3 

-S 	-4 	-3 	-2 	-1 	0 	1 	2 	3 	4 	S 
AMIAMM 

Fig. 3.3.2 Root Locus of Closed Loop Transfer Function of 1-Stage Linear IP 

There are two symmetrically located closed loop poles on the real axis, one on the 

right half plane and one on the left half plane. The root loci start from these points and 

intersect at the origin and terminate at infinity. This means however the system gain 

changes, the locus will stay on the right half plane. Hence the system is always unstable. 

A controller is to be designed to make the system satisfying the following 

performance criteria 

Response time is  = 0.5 seconds (2%) 

Peak Overshoot Mp  < 10% 
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With the above specifications, the system controller can be obtained as 

G. (s)  299(s + 5.27) 
s+22.70 

The root locus of the compensated system and step response of the closed loop is as 

shown below 
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Fig. 3.3.3 Root Locus of the Compensated System 

and Step Response of the Closed Loop 

Though the system has good stability but there is certain steady state error and large 

overshoot. In order to reduce the peak overshoot to less than 1.5%, the damping ratio is 

increased from 0.6 to 0.8, and the system controller is obtained 

G. (s) — 254(s + 5.02) 
s+24.4 

The root locus of the compensated system and step response of the closed loop is as 

shown below; 
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Fig. 3.3.4 Root Locus of the Compensated System 

and Step Response of the Closed Loop 

An attempt was made to stabilize the inverted pendulum using a double PD 

controller in cascade configuration. The compensator transfer function worked out as 

G. (s) = 
338(s + 4.8)(s + 1.18) 

(s + 0.01)(s + 28.6) 
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Fig. 3.3.5 Root Locus of the Compensated System (Double PD Controller) 

and Step Response of the Closed Loop 
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As seen from Fig. 3.3.5, the peak overshoot has increased to 62% and the settling 

time has increased to 2 seconds. Thus it is not meeting both the performance criteria. 

Conclusion of Root Locus Analysis 

The inverted pendulum being a highly unstable system needs theoretically a PD 

type controller to compensate. Since one of the poles of the open loop system is on the 

right half plane, by selecting proper amount of gain with compensation will stabilize the 

rod in the unstable equilibrium position. The transfer function considered was of the 

pendulum rod angle and not both rod angle as well as cart position. 

3.4 Frequency response analysis 

The open loop transfer function of the inverted pendulum is 

'b(s) _ 	0.0366 

V(s) 0.03721s2 —0.62769 

Bode plot of the uncompensated system is as shown below 
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Fig. 3.4.1 Bode Plot of the Uncompensated 1-Stage Linear IP 
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The system has no zero but two poles, one of which is on the right half of s-plane. 

According to Nyquist stability criterion, the sufficient and necessary condition of closed 

loop system to be stable is: when co change from -co to +c, the open loop transfer function 

G(j co) encircle the point -1+j0 p times , in which p is the number of poles of open loop 

transfer function on the right half of s plane. The open loop transfer function has a pole on 

right half of s plane, so G(j co) needs to encircle the point -1+j0 once. From the Fig. 3.4.2, 

the Nyquist plot does not encircle the point -1+j0 once. So the system is unstable. Further, 

a controller design is required to stabilize the system. 
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Fig. 3.4.2 Nyquist Plot of The Uncompensated System 

The performance requirements are static position constant be 10, phase margin 500 , 

gain margin larger than or equal to 10 dB. 

After going through the controller, it can be established as 

G0 (s) = 
617(s+6.03) 

(s±55.3) 
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Fig. 3.4.3 Bode Plot of the Compensated System 

and Step Response of the Closed Loop 

It is observed that there is certain steady state error. To ensure small steady state 

error, lag-lead controller can be used. This ensures increase in low frequency gain, 

decrease in steady state error and the system bandwidth as well as stability margins will 

both increase. The lag-lead controller transfer function can be worked out as 

G, (s)489(s 
+ 0.247)(s + 5.22) = 

(s + 0.000347)(s + 44.2) 
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Fig. 3.4.4 Bode Plot of the Compensated System (Double PD Controller) 

and step response of the closed loop 
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Conclusion of Frequency Response Analysis 

From the step response Fig. 3.4.4, it is obvious that steady state error has reduced 

considerably but this is at the cost of increase in peak overshoot, settling time. The 

controller transfer function so derived cannot stabilize the physical inverted pendulum 

system as the gain is very high and the given transfer function takes into account the 

stabilization of pendulum rod angle only and not the cart position. 

3.5 PID control analysis 

r(s) = 0 

Plant 	 ---- 

J Controller  

Fig. 3.5.1 Single Stage Linear IP Closed Loop Control System 

PID controller transfer function will be 

K Ds 2 +K ps+K, 
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Fig. 3.5.2 Step Response of Open Loop System 
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The step response of the open loop system alone (without any controller) is depicted 

above. With increase in proportional gain alone, the step response can be modified to 

oscillations. By including the derivative gain, the oscillations in the step response of the 

open loop system dies out and the system exhibits non-zero steady state error. By 

increasing the integral gain, the steady state error can be reduced considerably but results 

in increase in settling time. A set of values for proportional, derivative and integral is 

worked out as 70, 12 and 80 respectively. The step response of the system with PID 

controller in feedback configuration is as shown below. 
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Fig. 3.5.3 Step Response of the System with PID Controller 

in Feedback Configuration 

Conclusion of PID control analysis 

The PID controller is SISO (Single Input Single Output) system. It only controls 

the pendulum rod angle not the cart position. The cart might move towards one direction 

only. For cart position control we need to design one more controller working 

independently from the angle controller. 
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3.6 	State Space Analysis 

Pole placement method places the closed loop pole of MIMO system to the 
expected place by designing state feedback controller, thus to satisfy system transient and 
steady state performance requirement. Designing of controller by pole placement method 
and its application to 1-stage linear IP system is presented below. 

For control system X = AX + Bu 

X State vector (n dimension) 
u Control vector 
A n x n constant matrix 
B n x 1 constant matrix 

Select control signal to be u = -KX and the state feedback gain matrix K is decided 
by the equation: K = [an-an:an-l—an-1:......a2-a2:al-al]T-1, where, al,a2,... a„ are the 
coefficients of the expected polynomial and al, a2... an  are coefficients of the 
characteristic equation. T is a matrix that transforms the state space equations to 
controllable canonical form. T=MW, where M is the controllability matrix M = [B: AB: 

an_1 a»_2 ... 	al  1 

a„_2 a„_3 1 	0 0 
W = 

al  1 ••• 	0 0 

1 0 ••• 	0 0 

The state space equations using cart acceleration as input are: 

z 01 	0 	Ox 0  
00 	0 	0 x 1 

0 00 	0 	10 
+ 0 

 
U 

0 0 	'0 	24.1 	0 ¢ 2.5 
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y 00 0 1 0 	+  0  

Fig. 3.6.1 State Feedback Close Loop Control Diagram 

The controller is to be designed for a system settling time to be about 3 seconds and 

the damping ratio is about 0.5. In the case of inverted pendulum, cart position, cart 

displacement, angular position and angular displacement are considered as state variables 

as is evident in the above matrix-differential equations. Using pole placement technique, 

the state feedback gain matrix K can be computed as K = [-66.3485 -29.8755 95.3394 

21.5302] 	and 	the 	control 	variable 	becomes 

au = —KX = 66.3485x + 29.8755± — 95.33940 — 21.5302O 

The impulse response of the system using state feedback pole placement technique 

is as shown below 
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Conclusion of state feedback analysis 	 ROOR~ 

The state feedback pole placement techniques takes the state value of cart position, 

cart speed, pendulum rod angle and pendulum angular speed and provides the 

compensation. In real time control, the 1-stage linear IP system is adjusted manually to 

make the pendulum rod at n and then the compensation is applied. As shown in the 

impulse response of the system, the 1-stage linear IP system stabilizes with a marginal 

cart displacement. 

3.7 Linear Quadratic Regulator Optimal control 

The LQR optimal control principle is defined by the system equations: 

X=AX+Bu 

Determine a matrix K that gives the optimal control vector 

u(t) = -K*x(t) 

such that the performance index is minimized: 



J = j(X'QX +u'Ru)dt 
0 

Q is a positive definite (or semi-positive definite) hermitian or real symmetric 

matrix and R is a positive defmite hermitian or real symmetric matrix. 

u 
X 

X=AX +Bu 

-K 

Fig. 3.7.1 Optimal LQR Control Diagram 

The 1-stage linear IP system state space equations are: 

z 0 1 0 0 x 0 
z 0 0 0 0 x 1 _ I + 0 0 0 0 1 q 0 
o 0 0 24.1 0Jçô 2.5 

x 
1 0 	0 0 z 

y
_ [XI  

1=1 
0 	1 

I 
 0Jb 

[01U . 
0 

Applying linear feedback controller, suppose R is a impulse input acting on the cart 

and the four state variables x, z, 0, b represents cart position, cart velocity, pendulum rod 

angle and pendulum rod velocity respectively. The output y = [x, 'p] includes cart 

position and pendulum angle. The objective is to design a controller such that, when 

acting on an impulse input signal to the system, the pendulum rod will be back to 

vertically up after oscillation. 
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1 0 0 0 
0 0 0 

Q=C *C= 
0 0 1 0 
0 0 0 0 

Q,.+  is the cart position coefficient and Q3.3 is the pendulum rod angle coefficient 
and the input coefficient R is 1. Using MATLAB command 1 LQR, the value of K is 

K= [-1 -1.8241 25.6773 5.2265] 

The LQR control impulse response is depicted in Fig. 3.7.2. It can be observed from 

the Fig. 3.7.2, closed loop system response overshoot is small, but the settling time is 

long. Control gain can be increased to decrease the settling time. 
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Fig. 3.7.2 LQR Control impulse Response 

It can also be observed that in Q matrix, both the settling time and pendulum rod 

angle movement will decrease as Q1 ,1  increase, Let Q1 , +  =1000 and Q3,3 = 200, then 

K=[-31.623 -21.3 78.846 15.801 

The system response will be as follows. 
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Fig. 3.7.3 LQR Control Impulse Response with Reduced Settling Time 

and Pendulum Rod Angle Movement 

From Fig. 3.6.6, it is obvious that system response time improved dramatically. 

Conclusion of LQR Optimal control analysis 

In the LQR Optimal control, stabilization of the system is achieved through a 

definition of performance index. The response can be made faster by increasing Qf,f and 

Q3,3. But for real discrete time control system, large control may result in oscillation or 

saturation. 
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Chapter 4 

FUZZY LOGIC AND FUZZY CONTROLLER 

Conventional control system design depends upon the development of a 

mathematical description of the system's behavior. This usually involves assumptions 

being made in relation to the system dynamics and any non-linear behavior that may 

occur. In cases where assumptions in respect of non-linear behavior cannot be made, the 

need to describe mathematically, ever increasing complexity becomes difficult and 

perhaps infeasible. 

Fuzzy logic is the application of logic to imprecision and has found application in 

control system design in the form of Fuzzy Logic Controllers (FLCs). Fuzzy logic 

controllers facilitate the application of human expert knowledge, gained through 

experience, intuition or experimentation, to a control problem. Such expert knowledge of 

a system's behavior and the necessary intervention required to adequately control that 

behavior is described using imprecise term known as "linguistic variables". The 

imprecision of linguistic variables reflects the nature of human observation and judgment 

of objects and events within our environment, and there use in FLCs thus allows the 

mapping of heuristic, system-related information to actions observed to provide adequate 

system control. In this way, FLCs obviate the need _ for complex mathematical 

descriptions of non-linear behavior to the nth degree and thus offer an alternative method 

of system control. 

4.1 Fuzzy Logic Controller 

Fig. 4.1.1 shows the structure of Fuzzy controller. It consists of a preprocessing, 

fuzzification interface, knowledge base, fuzzy inference system, defuzzification interface 

and a post processing unit. The preprocessing block transforms the input (e and e) on the 

actual universe of discourse (UOD) to the normalized universe of discourse, using the 

input scaling factors KP, KD and KC for computational simplicity. The fuzzification 

block converts crisp inputs to appropriate fuzzy sets using the membership functions. 
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Linguistic Variable, Rule Bases and Membership Functions 

Linguistic variables are descriptive terms that might be used, and best understood, 
by an expert of the system under consideration, which describe the behavior of a system 
and the applied actions required to control that system. For the FLC in this study, the 
linguistic variables are based upon the error e(t), and the rate-of-change of error, de/dt. 

Fuzzy Controller 
-------------------------------, 

I 	 I 
I 	 I 
I 	 I 

Rule 
I 	 Base 	 I 

Preprocessing 	Fuzzification 	 Defuziification 	Postprocessing 

Inferenc 
Engine  

-----------------------------

Fig. 4.1.1 Structure of Fuzzy Controller 

The rule base of a FLC consists of a set of behavior/action constructs that describe 
the action to be taken on the occurrence of particular observed/measured system behavior 
or state. The constructs consist of a premise (i.e. system behavior/state) and the associated 
consequent (i.e. the action to be taken in order to achieve adequate system control under 
the observed system behavior/state) used in an `if premise then consequent' form. 
Combinations of multiple premises and consequents are possible which enhance the 
precision of the rule-base. The rule base of a FLC must adequately cover all possible 
system behavior in respect of applied actions, in order for the FLC to provide reliable 
system control. 

The above descriptions of linguistic variables and rule-bases do not in themselves 
render the controller `fuzzy', since, as defined, they could be adequately used in a 
boolean-based system. What makes the controller `fuzzy' is the use of membership 
functions (MFs) to quantify to what degree of certainty each rule is true (i.e. fired) in 
respect of the system state at any particular time. The `shapes' and relative spacing of the 
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MFs form a critical element of the FLC and describe expert understanding of the meaning 

of the linguistic variables. Typical MF shapes are triangular, trapezoidal, sigmoid or 

custom-based, with several MFs used to partition the domain of the numeric value under 
consideration (i.e. the universe of discourse UOD). 

The use of MFs ensures that certainty, as defined within a FLC, is based upon the 

subjective interpretation of an expert rather than upon a probability distribution. Degrees 

of certainty (i.e. degree of membership of a fuzzy set) range from 0 to 1 in value and 

hence partial membership is possible. The FLC aggregates the levels of certainty for the 

entire rule -base to obtain an aggregate fuzzy output set, which is subsequently used to 

obtain a crisp (i.e. numerically valued), control action. The combination of the rule —base 

(RB), and associated membership functions (MF), constitute the controller knowledge 

base (KB), which in effect represents the embedded expert system knowledge. In general, 

two forms of FLC are defined, 

- Mamdani 

-Sugeno 

Both of these architectures are similar in all respects except for the formulation of 

the output crisp value. In the Mamdani FLC, the output is formulated using fuzzy sets 

whereas the Sugeno type FLC uses single -spike output MFs (i.e. singletons) rather than 
distributed functions. 

Fuzzification 

This is the process of transforming numeric inputs to fuzzy values. The premise(s) 

of each rule is evaluated in respect of its degree of membership of the fuzzy sets defined 

across the range of possible values that the input may assume (i.e. the universe of 

discourse). For example, Fig. 4.1.2 below shows the MFs for the error input as generated 

using the MATLAB fuzzy GUI. An error input value of 0.4375 for the position controller, 

corresponds to a degree of membership of approximately 0.75 for the ZERO fuzzy set and 

a degree of membership of approximately of 0.25 for the PS (positive small) fuzzy set 

(i.e. tZERO[e(t)]=0.75 gNS[e(t)]=0.25). Degree of membership of all other fuzzy sets in 

the universe of discourse for the error, where e(t) = 0. 4375, is zero. 
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Inference 

Having fuzzified the controller inputs, the inference process consists of two phases; 

Rule Matching: The controller evaluates the applicability of each of the rules with 

respect to the current system state using fuzzy operators (e.g. min). Where a rule contains 

only a single premise then this stage will return the value obtained from the fuzzification 

process. FLCs commonly use multiple premises within each rule and therefore the 

certainty as to what degree the rule as a whole applies to the current system state must be 

evaluated. To perform the evaluation, the controller applies a logic operator to the 

fuzzified values of the inputs. Two operators commonly used for the AND conjunction 

are the minimum and product operators (for OR conjunction, the max operator is 

commonly used). For the position controller, the min operator was used. 

j1tao4c(t )J=0.7 

µ.,[e(t )]=U? 

0 	0.2 	0.4 	0.6 	0.8  
input vaiiaMe "e' 

Fig. 4.1.2 Degree of Membership ofZ and NS for Input, e = 0. 4375 

Implied Conclusions: The consequent of each rule is a fuzzy set, which is truncated in 

accordance with the degree of certainty that the premise or conjunction of premises, of 

the rule applies to the current system state. The degree of certainty for the rule is 

evaluated by matching rules to the current system state using the FLC inputs as is 

outlined in the previous section. For all rules therefore deemed to be `fired' (i.e. that 

apply) an implication operator is applied to the consequent fuzzy set in order to truncate 

the set relative to the p.ZERO[e(t)]=0.75 gNS[e(t)]=0.25 degree of firing for the rule. So 

32 



example above where the min operator was used to evaluate a degree of certainty for the 
rule to be 0.25, then accordingly the consequent fuzzy set is truncated by this amount. 

Rule Base 

As stated, the rule-base consists of a set of linguistic variable constructs in the form 
of; 

if premise _1 and/or.... premise_n then consequentl and/or..... consequent_m 
which describes the system behavior or states to a level of resolution considered to 
adequately cover all expected states or behavior and the required actions. The number of 
rules is dependent upon the number of controller inputs and the number of linguistic 
variables used to describe those variables. For the position controller in this study, 2 
inputs are used with 5 linguistic values to describe the nature of those inputs relative to 
their universe of discourse, which results in at most 52  = 25 rules. Although in this case, 
every scenario has an associated entry, it is possible to leave a particular space blank, 
which would infer that the controller takes no action (i.e. output remains the same as 
previously). 

For systems with 1, 2 or 3 inputs, a tabular form of the rule-base can be constructed. 
Fig. 4.1.3 illustrates the rule-base used for the heuristic position controller in tabular form. 

e 

NB NS Z PB PS 
NB NS NS NB NB Z 
NS NS NS NB Z PB 
Z NB NB Z PB PB 

PB NB Z PB PS PS 
PS Z PB PB PS PS 

Fig. 4.1.3 Heuristically-Tuned FLC Rule-Base 
The rule -base above was arrived at through intuition and trial, using Simulink, and 

is not necessarily optimal for the system. A feature of the rule-base used is the symmetry 

e 
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across the diagonal. This feature occurs in systems where the physical behavior of the 
system exhibits symmetry, which is consistent in the case of the cart positioning model 
used in this study where the surface upon which it travels is even and considered identical 
in both possible directions of travel. Where systems display such symmetry, obtaining, or 
optimizing a rule-base may prove quicker if the symmetrical feature can be exploited to 
some extent. 

Defuzzification 

The final process of the FLC is to aggregate the fuzzy sets resulting from the 
inference mechanism to produce a decision (i.e. crisp output), which is the "most certain" 
in respect of the current system behavior. 

A number of methods can be used for defuzzification (e.g. center-average, meanof-
maxima), however the most commonly used method is the equation for computation of 
center-of-gravity (COG), or centroid, which ensures a smooth control action but which 
requires more complex calculations particularly for non-linear MFs. 

4.2 Takagi-Sugeno Fuzzy Systems 

This section defines a "functional fuzzy system," of which the Takagi-Sugeno fuzzy 
system is a special case. For the functional fuzzy system, we use singleton fuzzification, 
and the ith  MISO (Multi Input Single Output) rule has the form 

If ul is Al and u2 is A2k  and,...., and u is Any  Then bi = g;(.) 
where "•" simply represents the argument of the function gi and the bi are not output 

membership function centers. 

The consequents of the rules are different, however. Instead of a linguistic term with 
an associated membership function, in the consequent we use a function bi = gi(.) (Hence 
the name "functional fuzzy system") that does not have an associated membership 
function. Notice that often the argument of g; contains the terms u;, i = 1, 2,....,n. but 
other variables may also be used. The choice of the function depends on the application 
being considered. Below, discussed linear and affine functions but many others are 

possible. For instance, may be to choose 
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b1  = g1(.) = a1,o + ai,l(u;)2  +.....+a,,n(un)2  

Virtually any function can be used (e.g., a neural network mapping or another fuzzy 

system), which makes the functional fuzzy system very general. For the functional fuzzy 

system we can use an appropriate operation for representing the premise (e.g., minimum 

or product), and defuzzification may be obtained using 

)R 1bip i 
y 	R EE_1 µi 

It is assumed that the functional fuzzy system is defined so that no matter what its 
inputs are, we have 

One way to view the functional fuzzy system is as a nonlinear interpolator between 

the mappings that are defined by the functions in the consequents of the rules. 
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Chapter 5 

NEURAL NETWORK 

The key element of this ,control is the novel structure of the information processing 
system. It is composed of a large number of highly interconnected processing element 
(neurons) working in unison to solve specific problems. An artificial neural network 
(ANN) is configured for a specific application, such as pattern recognition or data 
classification, through a learning process. Learning is biological systems involves 
adjustment to synaptic connections that exists between the neurons. This is true of ANN's 
as well. Neural networks, with their remarkable ability to drive meaning from 
complicated or imprecise data, can be used to extract patterns and detect trends that are 
too complex to notice by either human or computer techniques. A trained neural network 
can be thought of as an "expert" in the category of information it has been given to 
analyze. 

5.1 Biological Neural Network 

A biological neuron or a nerve cell consists of synapses, dendrites, the cell body (or 
hillock), and the axon. The "building blocks" are discussed as follows: 
1. The synapses are elementary signal processing devices 

A synapse is a biochemical device, which convert a pre-synaptic electrical signal 
into a chemical signal and then back into a post-synaptic electrical signal. 
The input pulse train has its amplitude modified by parameters stored in the 
synapse. The nature of this modification depends on the type of synapse, which can 
be either inhibitory or excitatory. 

2. The postsynaptic signal are aggregated and transferred along the dendrites along the 

nerve cell body. 
3. The cell body generates the output neural signal, which is transferred along the axon 

to synaptic terminal of other neurons. 
4. The frequency of firing of a neuron is proportional to the total synaptic activities 

and a controlled by the synaptic parameters (weights). 
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5. The pyramidal cell can receive 104 synaptic input and it can fan-out the output 
signal to thousands of target cells—a connectivity difficult to achieve in the 
artificial neural network. 

In general the function of the main elements can be given as, 
Dendrites 	-Receive signal from the other neuron 
Soma 	-Sums all incoming signals 
Axon 	-When a particular amount of input is received, then the cell 

fires. It transmits the signal through axon to other cell. 

The fundamental processing element of a neural network is a neuron. This building 
blocks of human awareness encompasses a few general capabilities. Basically, a 
biological neuron receives input from other sources, combines them in some way, 
performs a generally nonlinear operation on the result, and then outputs the final result. 
Fig. 5.1.1 shows the relationship of these four parts. 

4 Parts of a Typical Nerve Cell 

Dendrites: Accept inputs 

Soma: Process the inputs 

%xon: Turn the processed inputs into outputs 

Synapses: The electrochemical contact between neurons 

Fig. 5.1.1 A Biological Neuron 

The properties of the biological neuron pose some features on the artificial neuron, 
they are; 
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1. Signals are received by the processing elements. This element sums the weighted 
input. 

2. The weight at the receiving end has a capability to modify the incoming signal. 
3. The neuron fires (transmitted output), when sufficient input is obtained. 
4. The output produced from one neuron may be transmitted to other neurons. 
5. The processing of information is found to be local. 
6. The weight can be modified by experience. 
7. Neurotransmitters for the synapse may be excitatory or inhibitory. 
8. Both artificial and biological neuron have inbuilt fault tolerance. 

Fig. 5.1.2 indicates how the biological neural net is associated with the artificial 
neural net. 

Cell Body 

Dendrites 	Threshold 

Summation 	Axon 

Fig. 5.1.2 Association of Biological Neural Network 

5.2 Artificial Neural Network 

Artificial neural networks are nonlinear information (signal) processing devices, 
which are built from interconnected elementary processing device called neurons. 

An Artificial Neural Network (ANN) is an information-processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 
The key element of this paradigm is the novel structure of the information processing 
system. It is composed of a large number of highly interconnected processing elements 
(neurons) working in union to solve specific problems. ANNs, like people, learn by 

example. An ANN is configure for a specific application, such as pattern recognition or 
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data classification, through a learning process. Learning in biological systems involves 

adjustment to eh synaptic connections that exit between the neurons. This is true of ANNs 

as well. 

ANNs are a type of artificial intelligence that attempt to imitate the way a human 

brain works. Rather than using a digital modal, in which all computations manipulate 

zeros and ones, a neural network works by creating connections between processing 

elements, the computer equivalent of neurons. The organization and weight • of the 

connections determine the output. 

A neural network is massively parallel-distributed processor that has a natural 

propensity for storing experimental knowledge and making it available for use. It 

resembles the brain in two respects: 
1. Knowledge is acquired by the network through a learning process, and, 
2. Inter-neuron connection strengths known as synaptic weights are used to store the 

knowledge. 

Neural network can also be defined as parameterized computational nonlinear 

algorithms for (numerical) data/signal/image processing. These algorithms are either 

implemented on general-purpose computer or are built into a dedicated hardware. 

Artificial Neural Networks thus is an information-processing system. In this 

information-processing system, the elements are called as neurons, process information. 

The signals are transmitted by means of connection links. The links posses an associated 

weight, which is multiplied along with the incoming signal (net input) for typical neural 

net. The output signal is obtained by applying activation to the net input. 

An artificial neuron is characterized by: 

1. Architecture (connection between neurons) 

2. Training or learning (determining weight on the connection) 

3. Activation function 

The structure of the simple artificial neural network is shown in Fig. 5.2.1. 



xl  

Input 	 i 	i 

i 	t 

X2 "----1 
Input Layer 

w1 (weight) 

~• 1 

Output 

W2 (weight) 

Output Layer 

Fig. 5.2.1 A Simple Artificial Neural Net 

Fig. 5.2.1 shows a simple artificial neural network with two input neurons (x i and 
x2) and one output neuron (y). The interconnected weights are given by w, and w2. An 

artificial neuron is a p-input single-output signal-processing element, which can be 

thought as a simple modal of a non-branching biological neuron. In Fig. 5.2.1, various 

input to the network are represented by the mathematical symbol, x(n). Each of these 

input are multiplied by a connection weight. These weight are represented by w(n). In the 

simplest case, these products are simply summed, fed through a transfer function to 

generate a result, and then delivered as output. This process land itself to physical 

implementation on a large scale in a small package. This electronic implementation is still 

possible with other network structures, which utilize different summing functions as well 

as different transfer functions. 

5.3 Why Artificial Neural Network 

The long course of evolution has given the human brain many desirable 

characteristics not present in Von Neumann or parallel computers. These include 

- Massive parallelism, 

- Distributed representation and computation, 

- Learning ability, 

- Adaptivity, 

- Inherent contextual information processing, 

- Fault tolerance and 

- Low energy consumption 
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It is hoped that devices based on biological neural network posses some of these 

desirable characteristics. Modern computers outperform human in the domain of numeric 

computation and related symbol manipulation. However human can effortlessly solve 

complex perceptual problems (like recognizing a man in a crowd from a mere glimpse of 

his face) at such high speed and extent as to dwarf the world's fastest computer. Why is 

there such a remarkable difference in their performance? The biological neural system 

architecture is completely different from the Von Neumann architecture. The difference 

significantly affects the type of functions each computational modal can best perform. 

Numerous efforts to develop "intelligent" programs based on Von Neumann's 

centralized architecture have not resulted in any general-purpose intelligent programs. 

Inspired by biological neuron networks, ANNs are massively parallel computing systems 

consisting of an extremely large number of simple processors with many 

interconnections. ANN modals attempts to use some "organization" principles believed to 
be used in human brain. 

Either human or other computer technique can use neural networks, with their 

remarkable ability to drive meaning from complicated or imprecise data, to extract 

patterns and detect tends that are too complex to notice. A trained neural network can be 

thought as an "expert" in the category of information it hab been given to analyze. This 

expert than can be used to provide projections given new situations of interest and answer 
"what if" questions. 

Other advantages include: 

1. Adaptive learning: An ability to learn how to do task based on the data given for 

training or initial experience. 

2. Self- organization: An ANN can create its own organization or representation of the 

information it receive during learning rule. 

3. Real-time operation: ANN computation may be carried out in parallel, using special 

hardware devices designed and manufacture to take advantage of this capability. 

4. Fault tolerance via redundant information coding: Partial distribution of a network 

leads to a corresponding degradation of performance. However, some network 

capabilities may be retained even after major network damage due to this feature. 
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5.4 Network Architecture 

The arrangement of neurons into layers and the patterns of connection within and 

in-between layer are generally called as the architecture of the net. The neurons within a 

layer are found to be fully interconnected or not interconnected. The number of layer in 

the net can be defined to be the number of layers of weighted interconnected links 

between the particular slabs of neurons. If two layers of interconnected weights are 

present, then it is found to have hidden layers. There are various type of network 

architectures: Feed forward, feedback, fully interconnected net, competitive net, etc. 

Artificial neural networks (and real neural network for that matter) come in many 

different shapes and size (see Fig. 5.4.1). In feed forward architectures, the activations of 

the units are set and then propagated through the network until the values of the output 

units are determined. The network acts as a vector-valued function taking one vector at 

the input and returning another vector on the output. For instance, the input vector might 

represent the characteristic of a bank customer and the output might be a prediction of 

whether that customer is likely to default on a loan. Or the inputs might represent the 

characteristic of a gang member and the output might be a prediction of the gang to which 

that person belongs. 

A discussion on some commonly used nets follows. 

Outnut 

Input 

Fig. 5.4.1(a) Single Layer Feedforward 

42 



Output 

) 

Hidden 

Input 
Fig. 5.4.1(b) Multi Layer Feedforward 

Fig. 5.4.1(c) Fully Recurrent Network 

Output 

• .1 

Input 
Fig. 5.4.1(d) Competitive Network 
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Feed Forward Net 

Feed forward networks may have a single layer of weights where the inputs are 
directly connected to the outputs, or multiple layers with intervening sets of hidden units 
(see Fig. 5.4.1). Neural network use hidden units to create internal representations of the 
internal patterns. In fact, it has been shown that given enough hidden units, it is possible 
to approximate arbitrarily any function with a simple feed forward network. This result 
has encouraged people to use neural network to solve many kinds of problems. 

1. Single Layer net: It is a feed forward net. It has only one layer of weighted 
interconnections. The input may be connected fully to the output units. But there is a 
chance that none of the input units respectively. There is also a case where, the input 
units are connected with other input units and output units with other output units. 
In a single layer net, the weights from one output unit do not influence the weight 
for other units. 

2. Multi Layer Net: It is also feed forward net i.e., the net where the signals flow from 
the input units to the output units in a forward direction. The multi-layer net pose 
one or more layers of nodes between the input and output units. This is 
advantageous over single layer net in the sense that, it can be used to solve more 
complicated problems. 

Competitive Net 

The competitive net is similar to a single-layered feed .forward network except that 
there are connections, usually negative, between the output nodes. Because of these 
connections the output nodes tend to complete to represent the current input pattern. 
Sometimes the output layer is completely connected and sometimes the connections are 
restricted to units that are close to each other (in some neighborhood). With an 
appropriate algorithm the latter type of network can be made to organize itself 
topologically. In a topological map, neurons near each other represent similar input 

patterns. Network of this kind have been used to explain the formation of topological 
maps that occur in many animal sensory systems including vision, audition, touch and 
smell. 
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Recurrent Net 

The fully recurrent network is perhaps the simplest of neural network architectures. 

All units are connected to all other units and every unit is both an input and an output. 

Typically, a set of patterns is instantiated on all of the units, one at a time. As each 
patterns is, instantiated the weight are modified. When a degraded version of one of the 

patterns is presented, the network attempts to reconstruct the pattern. 

Recurrent networks are also useful in that they allow networks to process sequential 

information. Processing in recurrent networks depends on the state of the network at the 

last time step. Consequently, the response to the current input depends on previous inputs. 

Fig. 5.4.1 shows two such networks: the simple recurrent network and the Jordan 

network. 

5.5 Neurofuzzy function approximation 

Consider a standard rule base for a fuzzy proportional controller with the error e as 

input and a control signal x with singleton membership functions as the output, 

If e is Pos then x is 100 

If e is Zero then x is 0 

If e is Neg then x is -100 

e 

Sum 2 

Fig. 5.5.1 Three Rules Perceived as a Network 
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The inference mechanism can be drawn in a block diagram somewhat like a neural 

network (Fig. 5.5.1). The network has an input layer, one hidden layer, and one output 

layer. The input node connects to the neurons in the hidden layer, this corresponds to the 

if-part of the rules. Each neuron only consists of an activation functions, there is no 

summation, because each neuron has only one input. The singleton control signals appear 
as weights on the outputs from the neurons. The one neuron in the output layer, with a 
rather odd appearance, calculates the weighted average corresponding to the centre of 

gravity defuzzification in the rule base. The network can be generalized to multi-input-

multi-output control, but then the diagram becomes very busy. 

Backpropagation applies to this network since all layers are differentiable. Two 

possibilities for learning are apparent. One is to adjust the weights_in the output layer, i.e. 

all the singletons w; until the error is minimized. The other is to adjust the shape of the 
membership functions, provided they are parametric. 

The network can be described as a feedforward network with an input layer, a single 

hidden layer, and an output layer consisting of a single unit. The network performs a 

nonlinear mapping from the input layer to the hidden layer, followed by a linear mapping 
from the hidden layer to the output layer. 

5.6 Adaptive Neuro Fuzzy Inference System (ANFIS) 

The network in Fig. 5.5.1 may be extended by assigning a linear function to the 
output weight of each neuron, 

Wk  = akTu + bk, k = 1,2,.....,K 
where akcRm  is a parameter vector and bk is a scalar parameter. The network is then 

equivalent to a first order Sugeno type fuzzy rule base (Takagi and Sugeno). The 

requirements for the radial basis function network to be equivalent to a fuzzy rule base is 

summarised in the following:- 

• Both must use the same aggregation method (weighted average or weighted sum) to 
derive their overall outputs. 

• The number of activation functions must be equal to the number of fuzzy if-then 

rules. 
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a 	When there are several inputs in the rule base, each activation function must be 

equal to a composite input membership function. One way to achieve this is to 

employ Gaussian membership functions with the same variance in the rule base, and 

apply product for the DQG operation. The multiplication of the Gaussian 

membership functions becomes a multi-dimensional Gaussian radial basis function. 

• Corresponding activation functions and fuzzy rules should have the same functions 

on the output side of the neurons and rules respectively. 

If the training data are contained in a small region of the input space, the centres of 

the neurons in the hidden layer can be concentrated within the region and sparsely cover 

the remaining area. Thus only a local model will be formed and if the test data lie outside 

the region, the performance of the network will be poor. On the other hand, if one 

distributes the basis function centres evenly throughout the input space, the number of 

neurons depends exponentially on the dimension of the input space. 

ANFIS Architecture 

Without loss of generality we assume two inputs, ui and u2, and one output, y. 

Assume for now a first order Sugeno type of rule base with the following two rules 

If ul is Al and u2 is B1 then yl = cllul + C12U2 + CiO 

If ul is A2 and u2 is B2 then y2 = c21u1 + C22U2 + 020 

Incidentally, this fuzzy controller could interpolate between two linear controllers 

depending on the current state. If the firing strengths of the rules are al and a2 

respectively, for two particular values of the inputs ul  and u2, then the output is computed 

as a weighted average 

alyl +  a2y2 
a1 + a2 = a1y1 + a2y2 
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Layer 1 	 Layer 2 	Layer 3 	Layer 4 	Layer 5 

1 	1 	1 	1 	1 
U I  

U2 

Fig. 5.6.1 Structure of the ANFIS Network 

The corresponding ANFIS network is shown in Fig. 5.6.1. A description of the 
layers in the network follows:- 

Each neuron i in layer 1 is adaptive with a parametric activation function. Its output 

is the grade of membership to which the given input satisfies the membership 
function, i.e., tA1(u1), µ$1(u2), p (ul) or pB1(u2),An example of a membership 
function is the generalized Bell function 

_  1  
t(x) 1+Ix-cl2b 

a 

where {a, b, c} are the parameter set. As the values of the parameters change, the 

shape of the bell-shaped function varies. Parameters in that layer are called premise 
parameters. 

2. Every node in layer 2 is a fixed node, whose output is the product of all incoming 

signals. In general, any other fuzzy AND operation can be used. Each node output 

represents the firing strength a; of the ith  rule. 

3. Every node in layer 3 is a fixed node which calculates the ratio of the i h̀  rule's firing 
strength relative to the sum of all rule's firing strengths, 

of  aq= 

	

	i= 1,2 al+ a2 
The result is a normalized firing strength. 

4. Every node in layer 4 is an adaptive node with a node output 
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at = aa(cllu1+ Cj2u2 + c,O), 	i = 1, 2 

where ãì is the normalized firing strength from layer 3 and {ci i , cj2u2, c;o} is the 
parameter set of this node. Parameters in this layer are called consequent 

parameters. 

5. Every node in layer 5 is a fixed node which sums all incoming signals. 

It is straight forward to generalize the ANFIS architecture in Fig. 5.6.1 to a rule base 
with more than two rules. 

The ANFIS learning Algorithm 

When the premise parameters are fixed, the overall output is a linear combination of 

the consequent parameters. In symbols, the output y can be written as 
_ ai + a2 

y  a1+ a2y1  a1+ a2y2  

= a (cllul± e12u2 + cr0) + a2(C21u1+ C22u2 + e20) 

= (a ul)cil + (alu2)cl2 + aicio+ (ã2u2)c21 + (a2u2)c22+ a2c2O 

which is linear in the consequent parameters c (i = 1, 2; j = 0, 1, 2). A hybrid 

algorithm adjusts the consequent parameters cij in a forward pass and the premise 

parameters {ai, b;, c;} in a backward pass. In the forward pass the network inputs 

propagate forward until layer 4, where the consequent parameters are identified by the 

least-squares method. In the backward pass, the error signals propagate backwards and 

the premise parameters are updated by gradient descent. 

Because the update rules for the premise and consequent parameters are decoupled 	I 

in the hybrid learning rule, a computational speedup may be possible by using variants of 

the gradient method or other optimisation techniques on the premise parameters. Since 

ANFIS and radial basis function networks (RBFNs) are functionally equivalent under 

some minor conditions, a variety of learning methods can be used for both of them. 
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Chapter 6 

SIMULATION WORK 

The inverted pendulum and ANFIS controller systems modeled are implemented 

and simulated in the Matlab environment using Simulink and ANFIS editor. 

If we control the IP with the help of a fuzzy controller, we need four linguistic 

variables. How to design a simplest fuzzy controller with reduced no of linguistic variable 

and hence reduced no of rules with the help of ANFIS without altering the performance of 

fuzzy controller is explained here. 

Following steps required for reducing the linguistic variable:- 
1. Design a PD controller for the modal of inverted pendulum; here we need two 

controllers one for angle and another for position as shown in Fig. 6.1. 

2. Replace the PD controller 2 (angle controller) of Fig. 6.1 with a fuzzy controller as 

shown in Fig. 6.2. Fuzzy controller must have the linear control surface. For linear 

control surface we take the help of ANFIS because ANFIS tunes the FIS in such a 

way that the controller surface remains linear. Hence we got controller as below in 

Fig. 6.2. 

Fig. 6.1 Position and Angle of IP Controlled by Separate PD Controller 
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Re#rence PQS3tEon 	 ~~ 	 U 

~n Carf 	 .t 	 + 	Pendulum 	--~ 
Pen~iuEum 	Positi©n i~P2 	 and 

duldt 1 	 n~le 
FLC (ANGLE 

KD2 

Fig. 6.2 Position Controlled by PD and Angle Controlled by FIS 

3. Now replace the PD controller 1 (position controller) of Fig. 6.2 with the FIS tuned 

for angle in step 2. Tuned by adjusting the gain parameters KPI and KD1 up to best 

performance. Now we have a FLC controller as in Fig. 6.3. 

• x 
dUldt K 

FLC (POSITION) 
Refrence Pasittan 	~1 

on cart 	 y 

uFdi 1 
FLC (ANGLEi) 

K02 

Pendulum 
E9 

 

Position 
and 

Angle 

Fig. 6.3 Position and Angle of IP Controlled by Separate Fuzzy Controller 

4. From Fig. 6.3 the output of fuzzy controller can be written as follows:- 

Y = Y1 + Yz 
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y = f (kpix, kDix) + f (kp2O, kd2O) 

Here FLC (ANGLE) and FLC (POSITION) both are same and have a linear control 

surface. So we can rewrite the above equation 

y = f (k pl x+k p2 B, kDl.k+kd26) 

As a result we can replace the FIS (ANGLE) and FIS (POSITION) of Fig. 6.3 with 

a single FIS as shown in Fig. 6.4. 

5. With the help of same concept explain in step 3 we can further reduced the two 

linguistic variable of Fig. 6.4 in two one, as shown in Fig. 6.5. 

+ 

L-L j-  L J I t/ 
Refrence Position 	 KD1  

on cart 	 i 
2
'- F1 I 	0  Fuzzy Logic 	Pendulum 	position 

Controller 

Fig. 6.4 Position and Angle both of IP Controlled by a Common tow Input 

Linguistic Variable Fuzzy Controller 
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KD2 

Fig. 6.5 Position and Angle both of IP Controlled by Common Single Input 

Linguistic Variable Fuzzy Controller 

RESULTS 

Fig. 6.6(a) and 6.6(b) are the plots of the angle and position of IP with a disturbance 

as square wave of time period 20 seconds with 50% duty cycle. Fig. 6.7(a) and 6.7(b) are 

the same with disturbance as a random signal. The origin position of cart on rail is zero 

and pendulum is balanced upward with angle zero radian. The graph shows that the FLC 

Reduced Linguistic Variable controller gives smaller overshoot and shorter settling time 

for both angle as well as reference position. 
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Fig. 6.6(a) Position with Disturbance as a Square Wave of Time Period 20 seconds 

(Duty Cycle of 10 seconds) 

0.01 

0.008 -------------------._--__--_--_--_-_  _--- _ -_-__-  ---_----i---------1  ------T------__ 

0.006 ............................._.___.._ _.._._.._._.._.__._.._._....__...... ....._..________ 

0.004 

S 0.002 --  ---  -i---------L-  t--i .------  -----i------------  i----.---  .---.i•------- 

w 

-0 	 --- 	 - 

	

1 	 I!  t•_ 

-0.004 -- -----~  ----- -  i  r 

-0006--------------------------- 
-0.008 	= 	' 

5  10  15  20  25  30  35  40  45 
Title (Second) 

Fig. 6.6(b) Angle with Disturbance as a Square Wave of Time Period 20 seconds 

(Duty Cycle of 10 seconds) 
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Fig. 6.7(b) Angle with Disturbance as a Random Signal 

Fig. 6.8(a) and 6.8(b) are the plots when mass of IP changed to 1.00 kg and mass of 

cart to 0.95 kg. Initially the IP is in balanced position. After 5 seconds of simulation the 

reference position is changed from zero to 0.2 meter. The graphs show that the 
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performance of conventional PD controller degrades rapidly, while FLC Reduced 

Linguistic Variable exhibits small performance degradation due to the parameters change. 
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Fig. 6.8(a) Desired Position versus Cart Position Response (Mass of Cart and 

Pendulum Changed) 
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Chapter 7 

CONCLUSION AND FUTURE SCOPE 

In this thesis FLC Reduced Linguistic Variable has been implemented in the 

MATLAB environment, using the ANFIS editor and simulink. It has been used to control 

an Inverted Pendulum system. Experiments for its performance have been carried out and 

analyzed. Disturbance rejection and change in the parameters of inverted pendulum are 

considered. The results are compared with the conventional PD controller. It is shown that 

the implemented controller has better performance than the conventional PD controller in 
the presence of external disturbance and IP parameters variation. The implemented FLC 

controller is a controller with one linguistic variable and two rules, while the existing FLC 

has four linguistic variables and a numbers of rules, which depends on numbers of 

membership function. So we conclude that .the purposed controller is the simplest FLC for 

Inverted Pendulum System without degrading the performance of existing FLC tuned by 

ANFIS. 

Further future work is to improve the controller by way of producing the 

nonlinearity in the control surface, with the help of varying parameters of membership 

function or varying the shape or modifying the rule written in rule base. Due care must be 

taken while creating a nonlinear control surface because, created nonlinearity may 

improve one performance criteria and degrade another one. This method may not work 

successfully with one input linguistic variable, so two input linguistic variable may be 

chosen because, more number of input variable means more freedom of tampering with 

control surface. 

The explained method can be implemented to the other multi input linguistic 

variable FLC also. A further research direction is to implement the reduced linguistic 

variable FLC in a controller which have more than four input linguistic variables (say 8 or 

more) and have more than one output. 
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