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ABSTRACT 

In the present work existing model order reduction 

techniques are applied to power system simplification and to 

contr 	e design. The thesis deals with frequency domain model 

order reduction techniques and controller design based on 

transfer function description of the power system. Brief con-

clusions are given at the end of each chapter. 

In chapter one we have listed various techniques for 

model order reductions Only methods based on Pade approxima-

tion techniques are applied in the thesis. 

In the same chapter we discribe the Pade approximation 

technique and its various modified versions a 	given by number 

of researchers. The methods described in this chapter are 

successfully extended to multivariable cases also. For simplicity 

the methods are applied to single input single output systems 

only. 

The second chapter is devoted to develop the transfer 

function from a given state space description. The classical 

Faddeeva algorithm is applied to the state space equations. 

This method gives erronous results when the dimension of 

matrix A is large. To eradicate this difficulty, a modified 

algorithm of Faddeeva is given in the same chapter. 

The third chapter describes the development of a power 

system model. The problem is taken from [ 17] and the develop-

ment of the model is also from reference I" 17j 



In the fourth chapter describes the reduction techniques 

based on Pade, modified Pade, Routh - Hurwitz array 

are applied to an actual power syste1r; model. The transfer 

functions obtained from different methods are given in this 

chapter and all the reduced models are summarised in the last, 

of the same chapter. The final responses show the validity 

of each method and their relative drawbacks. 

In the fifth chapter a method for sub optimal controller 

design is given. This design method applied to the reduced 

order models chosen from chapter four. The time response com-

parison of reduced order case with that of the original system 

shows the importance of reduced models in controller design. 
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INTRODUCTION 

Physical systems such as aircraft, chemical plants, elec;-

trical power systems etc. can be described mathematically by 

state space models or transfer function models. Electric 

power systems may be modelled by large number o differential 

equations that lead to high order state-space or transfer func-

tion models. From analysis point of view, these high order models 

present formidable problems, Thus a need exists for a systematic 

procedure to derive a reduced order dynamic equivalent model 

in the state-space o!A in transfer function form from the corres-

ponding high order description. 

Several schools of approach to the model reduction 

problem have been developed either in the time domain or in 

the frequency domain. As far as possible, the lower order 

approximates certain dominant characteristics of original. 

system. 

Broadly speaking, the present work consists of three 

main parts. In the first chapter the reduction techniques based 

on Pads approximation and its variants are described. In 

chapter twe methods to obtain transfer functions from state-

space equations have been discussed. All the reduction tech-

niques discussed are for the continuous time case. 

Chapter three describes the development of system 

model for a single area power system,; i.e. a synchronous macnine 
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connected to an infinite bus through a transmission line. In 

the fourth chapter we obtain the reduced order models for the 

power system using the methods of chapter one. Time response 

comparisons are made to show the closeness of the reduced 

model to the original system. 

The use of transfer functions and their reduced order 

models in design of controllers is dealt within chapter fi*ve. 

The entire chapter is devoted to the controller design based 

on sub optimal criterion. The time response comparison of 

optimal controller to the sub-optimal controller shows the 

validity of sub-optimal controller design criterion. The time 

response graph attached to this chapter shows the closeness. 

The sub-optimal controller design criterion in controller, de ign 

overcomes the difficulties in solving the equations and it has 

the viability in the $analysis of complex problems such as 

Electrical Power Systems where all the control parameters are 

not available #o rmeasuremec.So, the strong point goes in favour 

os sub-optimal controller design and it resolves the measurement 

problem of all control parameters. 

The last chapter; i.e. chapter six deals with the merits 

and demerits of the methods which are described in the different 

chapters. 



NOTATIONS 

Ti or U('t) 	Input vector or control vector of (rxl) diwensions 

x or x(t) 	nth  order state vector 

A 	System matrix of order (nxn) 

B 	Control matrix of (nxr) dimension 

C 	Measurement matrix of order (nxr) dimention 

Y or Y(t) 	Output vector of (mxl) dimension 

n 	System order 

r 	Number of , inputs 

m 	Number of outputs 

G(s) 	System transfer function of appropriate order 

R  or A  ---R-e-d-uCred—rrrQd I "yste`:n matrix 
k 

BR  or B 	Reduced model control matrix 

CR  or C" 	Reduced model measurement matrix 

1 	Reduced model system order 

GR(s) 	Reduced model system transfer function 

i 	ith  eigenvalues of system 

z 	Transformed state vector of system 

v 	Infinite bus voltage 

yr 	Teri.r.inal voltage of the m/c 

Vd9 Vq 	Direct & quadrature axis voltage at the'terminals 

of the m/c 

Id,Iq 	Direct & quadrature axis currents of the m/c 



Eq 	Excitation voltage or open circuit voltage of the ni/c 

ex 	Exciter input signal 

Angular velocity deviation of m/c rotor in rad/sec 

Rotor angle of the r/c in rad 

P 	„lectrical power output of the m/c 

M 	Moment inertia of the rn/c 

D 	Damping coefficient of the rn/c 

p 	Change in input power of rn./c due to governor action 

T1  ,T2 	Time constants of the prime mover governor 

a Product of governor time constants 

b Summation of governor time constants 

c Governor gain constant 

y11 Self 	admittance of the network at the internal 

bus of the rn/c 

y12 Mutual admittance of the network between the internal 

bus of the rn/c 	and the infinite bus 

xd  Direct axis synchronous reactance 

xd  Direct axis transient 	reactance of m/c 

Tdo 	Direct axis field time constants 

Incremental operator 



CHAPTER - 1 

DESCRIPTION OF PADE REDUCTION TECHNIQUES 

The Pade approximation technique is recognised to be 

a powerful tool for obtaining reduced order models. But 

occassionally it leads to unstable models for originally 

systems. Mixed methods are available that give a stable model 

using partial Pade approximations. In this chapter we give 

a brief description of Pade type methods for model order 

reduction. 

METHOD 1 

1.1 	APPROXIMATIOL% T 011NIQUE FOR SYSTEM REDUCTION 

The Pade approximation technique for system reduction 

as proposed by Shamash [ 3 9  7, 8, 9] is described below. 

This technique is also useful in case of systems described by 

state space equations. 

DEFINITION OF PADS APPRGXIMANT 

Shamash [7] has defined the Pade approximant as 

'A Pade approximant is a rational function Pm(x)/Qrl(x) 
lLb.y. m,» Wk" 

when Pm(x) and Q(x) are polynomials Lm, n, is said to be 

the Pade approximant of the function f(x),  if and only if, 

the power series expansion of [ m, n] is identical with that 

of f(x) upto and including terms of order xm+n.' 

Let the function to be apn-nroximated be defined by the 
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power series 

f(x) = c0 + c1x + c2x2 +... 	 (1 ) 

and the Pade approximant be defined by 

a0 + a1x + a7x2 + ,.. + axm 

b0
_.._:.1X~..._2X2.. •.+.. pxn 	 (2) 

'h1e- h 
Since the power series expansion of (2) is to agree with (1) 

as far as and including the terms in xm+n , we have the following 

set of linear simultaneous equations. 

a0 = b0:c0 

a1 = b0c1 + b1 c0 f 
a2 = b0c2 + b1c1 + b2c0 	 (3) 

am = b0cm + b1cm-1 + ... + bmc0 

0 ' b0 c"n+n + b1cm+n-1 + b2cm+n-2 + ... + bncm 

which serves uniquely to derive the coefficients of (2). it 

should be noted that either b0 or bn is to be taken as unity. 

In the present work bn has been taken to beu j. 

In the above analysis, the Pade approximation was made 

about the point x = 0. The generalization of Pade approxima-

tion technique to two (or more) points was first introduced by 

Baker'. Sometimes information about the function to be approxi-

mated is available at two or more points. It is suggested that 
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'this additional information about the function may be taken 

into account by requiring the Pade approximant to satisfy, 

exactly the conditions at the origin and other prescribed points. 

METHOD 2 

1.2 MODEL REDUCTION USING ROUTH-HURNITZ ARRAY 

Krishnamurthi et. al [13] have presented an interesting 

method for the reduction of dimension of a high order transfer 

function. Their method makes use of the classical Routh--Hurwitz 

stability array and is applicable to .SISOsystems, The natura-L 

extension of this method to multivariab le systems is given below. 

The common denominator polynomal of a general rnultiva.- -

.riable (1 x m) transfer function LG(s), may be reduced to a lower 

dimension. The numerator polynomials of each of the scalar 

functions gi~(s) may then be reduced by the method Krishnamurthi_ 

et. al 0133 . This natural extension is included here as it 

can form the basis of a computer aided model reduction technique 

as given is the steps below. 

Step 1 	Find the transfer matrix ,G(s)] from the.-: state space 

description (A9 B9 C, D) of a high order system. 

Step 2 	Find the reduced 'model N(s)] of dimension r as given 

above 

Step 3 	Find the numerator by Routh-Hurwitz array as for the 

denominator. 
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METHOD 3 

1.3 PADE APPROXIMATION AND DOMINANT MODE RETENTION 

Consider the following high order system transfer function 

G(s) as shown below.  

a + a s + a 	+ ,. + a 	
n-1 

G(s) = 012 	
. 	

1._. 
(S+Xj 

 (s+i'.2) •.. (s+ n ) 

bo  
= 

+ b1s + b 2 + 	+ 

where N(s) denotes numerator of (4). 

G(s) can be expanded into a power series about s=O of the form 

G(s) = CO + c1s + c2s2  +  

where 	a0 

70 
CQ  

'1 	k 
olC = [ ak_Ib.ckj] ,dKO 	(7) 

with ak  0, 	K ni 

The b are directly proportional to the time moments of thei  

system. 

Assume that a reduced model GR(s)  of order 1, is required 

which retains the pole at s = - / 	say 

* 	* 	* 2 	3'r 
a0  + a1s 4 a2s + •., + a. is 

Let GR(s) = (8) 
+ b1s + b2s + •., + b  s 
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The order of the numerator of GR(s) and G(s) have been assumed 

to be one less than the der-ominators to simplify the notation. 

Then for GR (s) to be Pade approximant of G(s) we have from 

equation (3), following set of equation. 

a0 = 	b0 c0 

a1 = 	bo Cl + b CO 

a2 = 	b0 c2 + b, c1 + b c0 

iC  L  i~ 

0 	= b0 c.11- b7 c 1 1 + .. , + b x 1 c1 + b-~ c0 (9) 

0 	= b0 0211 + b1 0212 + ... + b c1_1 
.3G 

with bl = 1 

But since GR(s) is to have a pole at s = - j\ 1 , then 

using the concept of Pade approximation about more than one 

point, the last equation of (9) is replaced by the following 

equation. 

y 

0 = b - b1 - 	+ b2 .1 - b3 ; 	+ ... + (-1 )l~, 	(10) 

Hence these equations are solved for the coefficients of bi➢  

ai, (1 = 09 1, ... , (1--1 )) of equation (8) . 

Now suppose that reduced order model GR(s), retains 

the 1 dominant poles (1 poles nearest the origin) of the high 

order' system. Further suppose that the 1 dominant poles are 

known, GR(s) can then be written as 



* 	* 2 	* 	1-1 

R 	(s + )r..1 ) (s +•>2) ... (s 	; 1) 

From denominators of (11) and (8) all bi  for i = 09  1, 2, 

can be calculated. Then if GR(s) is to approximate 

G(s) in the Pade sense about s = 0, then the ai(i = 09  1, 2,..., 

(1--1) may be det, r lined using the first l' equations of (9), 

So far it has been assumed that the dominant poles of 

the system are known which in most cases is not necessarily 

true. In such cases, the roots of the denominator polynomial 

can be obtained by LIN's method, 

If the system is described in state-vector form 

x= AX +B ` 	 (12) 
= COX + D 

The system transfer function is given by 

G  (s) = C' (s I  - ) -1 B  + D  

(C a-1  B + D) + C 1!-2B s + C A-3B s2  + ... (13 ) 

= CO + c1  s + c., s2  + c s3  -r 3 	.. 
L 

where 

c0  = C A-1B+D 

ci  = C A—(i+1 )B 	i> 0 	(14) 

Hence the reduction algorithm is applied to the expan-

tion (13) where the coefficients are obtained using equation 

(14) , 
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Lf the system being modelled is unstable, then it is 

important that reduced model should be unstable as well. Hence, 

unstable mode of G(s) must be retained in the reduced model. 

Koenig's theorem and its generalization 7.j may be used to 

compute the unstable modes as follwso 

Given 0(s), the following transformation is made 

s 	_ 	(z.,.1) / (z+1 ) 
	

(15) 

to get 0(z). 

The unstable poles of G(s) are mapped outside the unit 

circle in z plane, expand G(z) in the form 

G(z) = d0  + d1z + d2z2  + ... 	(16) 

Then applying LIN's method we get all the large magnitude 

poles of G(z) which in this case will be the poles outside the 

unit circle. Having computed the unstable poles, the coeffiei- 

ent of GO, (s) are computed as before 
t 

1 ,4 REDUCTION OF NULT;="1ARIABLE SYST : 

The Fade approximation technique has been extended 

to the reduction of m_iltivariable systems [ 7,  8 ] . However, 

the method may involve large amounts of computation which may 

make the reduction of the system less, desirable. 

For a multivariable system 

Y(s) = 0(s) U(s) 	 (17) 
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Where Y(s) is the output rn-vector and U is the input 

r--vector and G(s) is the transfer function matrix of the systems 

;Eq. (17) may be rewritten in the forms 

b0 -, 	b1 S + b2 s 	+ , , , 	+ 	b 	s 

d(s) = b0 ;- b1 S + b2 s2 + e ..+ b sn 	(18a) 

Where Ai (i = 0, 1 , 2 ) , .. , (n--1)) ai c (in x r) constant 

matrices and bi (i = 0, 1, 2,,,,n) are scalar constants. 

G(s) can be expanded in the power series of the dorm: 

CG(s )3= c0 + c1 s + c2 s2 + , , , 	 (1 9) 

where ci (i. = 0, 1, 2, , ..) are (gin x r) constant matrices, 

which satisfy the relation 

i_1 ci = 	 ,•° (Ai -- E 	bird c~~ ; 	i = 0,1,2, o,. 	(20) 
0 	j=0 

with c-1 = 0 and ai = 0,; ̀ J i >, n 

Thus using Eq. (20), the matrix transfer function may be 

expanded into a cower series. Let the reduced order model 

have a matrix transfer function of the form. 

[C~( 
s)~ 	AO ~~-A1 s*A2 .~±,,

.~~....f~`~ 	-o 	(21) 
b 	,- b1 s 4 b2 s 	+ o a-• b1 ,.; 

Where Ai (i = 0,1, 0 0 0 9 (1--1)) are (m x r) constant 

matrices and bi (i = 09 1 , , o a ,1.) ar:.: constant scalars. By 

aprDlying the LIN's method, the root:' of the denominator 
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polynomial are computed. The dominant poles (or any other 

desirable poles) of CG(s )] are retained in CGR (s )i. The numerator 

coefficients of LR (s)]are chosen such othatCGR (s)] approximates 

~(s)in Pad` sense. 

The procedure is as follows- 

(i) The common denominator d(s) of (s) is found. 

(ii) By applying LIN's method or Koenig's theorem and its 

generalization to power series expansion of (1/d(s)); 

the 1 dominaft poles of ~G(s )are found. This then 

determines the coefficients b~ (i = 0,1,2,,.,9 (l1)) 

in (21). 

(iii) The numerator matrices LAJ of lGR (s )l are then computed 

as follows 

A0 + b0 c0 

A 	~ b0 Cl + b1̀  c0 

A2 - b0 c2 + b1 c1 * b 2 c0 
	 (22) 

Al-1 = b0 cl-1 + b1 c1-2 + ...+ bl-1 c0 

Thus CG.(s)]can be chosen such that its first 	1 	time 

moments are equal to the first 	1 time moments of LG(s )~ 
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The Pade approximation approach has three basic 

difficulties; viz. 

(i) The reduced model may be unstable (stable) although 

the parent system is stable (unstable). 

(ii) The Pade approximant often shows poor metching in the 

transient zone, although the steady state values are 

the same as for the high order system. 

(iii) The Pade approximant often shows non-minimum phase 

characteristics (i.e. inverse response due to zeros 

in the right half s--plane), 

The techniques reported hereafter attempt to remove 

such difficulties. 

METHOD 4 

1.5 PAD APPROXIMANT USING " MI ED METHOD 

The mixed mathod for deriving stable low-order equivalents 

of high order systems, given below, is computationally easy to 

program and conceptually simple. It combines the Pade °s 

approximation technique and the Routh - Hurwitz array methodj- 13] L 

1..1 Case 1 

SINGL. INPUT SINGLE OUTPUT SYST ~ZS 

Lot the nth order system transfer function G(s) and its 

rtt1 order reduced equivalent R(s,' he described by 
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G(s) _ _E^ a2sJ s3 h/ (s) 	 (~3) 

2 
cO + 	S 4 02 S ;^  	. 	 (24) 

and 

R(s) - jL1 b22 j s 1 / p r(s) 	 (25) 

,where 	(n+1) 
(s) = 	E 	a  	s3- ; 

j=1 

(s) = denominator polynomial of degree r. r 

Eqn. (24) is the power series expansion of (23) about 

S = 0. The method consists of the f o].-lowing steps 

(i) 	For convenience, the even and odd terns of h (s) may 

be separated and rewritten as 

(„ ) 
- 
_ 	 n--2 j-~ 	 n- (2k+1) 

~ ~ 	a1 ~' J1. s 
	k a2I~.-~1 s 	 (

26 ) 
~ 

where 

j = 0,1,2,...,n/2 and k = O12,~,a 9 (n~2 2 for n even 

j = 0 9 1,2,...,(n~-1)/2 and -k = 0,1,2,,,,,(n..'1)/2 for n 
odd 

From the R-H stability array for the denominator poly•-

norniai in (26) as follows 

all 	a12 a13 a14 

a21 	a22 a23 a24 	... 

a31 	a32 a33 a34 	... 
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a n-1, 1 
	

an-1 ,2  
(27) 

a n,1 

an+1,1 

The above array is formed by the well known a1 ;orit1m 

~i9 J 	ai-2 j+1 - (ai-2,1 • a i°1 J~'1 	(28 ) 

Where i > 3 and) 1< j < (n-i t 3 )/2 ;i , • ] stands for the 

integral Hart of the quantity. A polynomial of lower order 

r may be easily constructed L 13] with (n-~-1-r)th and 

(nv2-r)th rows of the above array, to give 

	

. 	 r 	 r-1 	 r-2 (s) = a 	s +a 	s 	+a 	s 	4• , , , 

29) 

i qn. (29) may be put in the convenient form 

1,(s) = (s-~\.1 ) (s°>.2) ... (s.) 

ri-i X71 1 J,, 	1 b  

with b1 	;.1 	1 . 

where the b1 	coefficients are now known from eqn, (29), 

(ii) 	For R(s) of Eqn. (25) to be the Fade approximant of 

we have j. 14 ] 

b21 = b1 c 

b22 = b1 c1 4 b2 co 
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b2r = b1 cr-1 + b2 cr-2 + ... + br-1 c1 4 b r c0 	(31 ) 

After substituting the , values of c1(i=0 9 1 9 ... 9 (r-1) )and 

b(j=19 2y..0 9(r+1)) from 'qna, (24) and (30) respectively, 

the b21(j=1,29 ..,9 r) can be found by.solving the above r egns, 

Now R(s) is completely determined. 

1.5.2 Case 2 

MATCHING A COP=NBINATIO!l OF TIIJE MOMENTS AND MARKOV 

PARAMETERS 

The Pade approximation technique basically matches the 

initial few time monents of the original and reduced systems 

and hence a good matching is achieved in the steady .v state 

zone where as the transient response will only be apnroxirnateo 

To have overall good approximations in the low and high frequency 

regionsp the above mentioned method is modified below to match 

a combination of PNIarkov parameters and time - moments of the 

original and reduced systems. 

Let the nth order system transfer function G(s) and its 

rth order reduced equivalent R(s) be described by 

c 

	

G(s) = 	E a 	s~-1/ o (") 	 (32 ) j=1 	90 

	

_ 	Ml s-i-1 	
(33 ) 

i=0 

	

= 
	T Si 	 (34) 

i=0 



and 	= i;1 b29 ~ Sj-1/or(s) 

where 	(n+1) 
o(s) = E 	a19 s 	9 p r (s) = denominator polynomial 

-1 	of degree r. 

Eqns. (33) and (34) are the power series expansions of 

Jqn. (32) about s 	, and. s = 0 respectively. N4 and T. 

are prorortional to the ith lNiarkov parameter and the itn time 

moment of G(s) respectively and may easily be obtained by 

expanding G(s) either in negative or positive power of s. 

The reduction method consists of the following steps. 

(i) Same as step 1 of tr©vious method, 

(ii) .3Sui}e that the first 	tinme-moment.: and first 	Markov 

parameters are identical for the original system and the 

reduced models, Then one may solve the following 

relations to determine the coefficients b29 of Erin. (35) . 

b291 = 	b1 TO 

b22 
9 

= 	b1 . T1 + b2 TO 

b2 'a = b1 T~-1 + b2 Ta-2 +...•r bn--1 T1 + br TO 

b2 ( 	1 ~ 	= b r+1 	1 N 	+b P1 2 ~ +...+b i 	t3)M1+b(rp +2)M0 ~ 	~3- r - 

14 

(35) 



b 	= b 	M +b N -ft 	M 2 2 r-2 	r'-i 2 r 1 r-1 0 

b =b M+biI 2r-1 	r+11 r 0 

b2r 	= b11i40  

where 

a 	3 = r 

and 

a 	= number of time moments matched. 

= number of, 1iarkov Parameters matched. 

On substituting the values of N1, Ti  and b from 

Eqns. (33) (34) and (30) respectively, the r linear rela-

tions in Eqn. (36) may be solved to find r numerator coeffi-

cients b2 . R(s) is then completely determined 

1.5,3 Case 3 

1.5.3.1 i;ULTIV:I..EL SYSTEMS 

Let the n 	order transfer function [C(s)] and its r 

order reduced equivalents R(s 	be represented as 

Z 
= iL 	 (37) G(s)] 	= 	(s) 	A (s) 

p. 
B 

[R(s)j = [. Lid. = 	
(38) 

p 	(s) r 

15 

(36) 
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Where [A(s) ], `'B(s) ] are (rn xq) polynomial matrices and 

are scalar denominator polynomials. r = deg 

n r (s ), and n = deg. A(s )> r° The nth order denominator 

polynomial of Li(s)a may be broken into the even and odd 

terms in the powers of s as shown in (26). 

(i) Same as the first step of previous method, we finally 

form the denominator polynomial of (s)1 as given in 

Eqn. (30). 

(ii) -Expand [G(s )j into a power series expansion 

(about s = 0) to hget 

r..tl 1 
[G (s) ] _ 	7; 	c s' 

	
(3 9) 

i=0 

Where, 

c (i=0,1,2,,.°,(rw1)) are (m x q) constant matrices, 

(iii) For [ R(s) -1 to be a Pade°s arproximant to 	[,0(5) 1, 

we have 

B291 = b1 c 

B`9 2 = b1 c1 + b2 c0 
° 

(40) 

32,r = b1 cr._1 + b2 cr _ 2 ~- ° ° ° ' br-1 c1 + br c0 

From the above equation, B
2 	

(j = 1 , 2, .. 9 r) may be 
,J 

easily determined by substituting the va-' ues of 1(i=09 1 9 ... ; 

(r-1)) and b j(j=1,2,3, ° °,,r) from Lgns. (39) & (30) respectively. 
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1.5.3.2  MULTIVARIABLE SYSTEM REDUCTION BY MATCHING TIPL 
M011ENTS AND MARKOV PARAMETERS 

In this case the transfer functions [G(s)]  and the 

reduced approximant [ R(s)] are given by Eqns (37) and (38), 

where 

G(s )] 	- 	E 
 

i=0 
(41) 

_ Z00 
T. 
 si 	 (42) 

i=0 

and unlike to quantities defined in (33) and (34), here the 

Iii  and Ti  are matrices. 

1.6 1"IE IOD 5 

STABLE BIASED REDUCED ORDER MODELS USING A MODIFIED 

ROUTH - HUR`,IITL ARF.AY 

The method of Krishnamurthi et.al, [13] makes use of 

the well established Routh -- Hurwitz stability array and is 

ap-.-licab le to single input single output systems. Through 

an example Krishamurthi reported !13] that the poles of 

R(s) aporoximato the poles of G(s) that are closest to the 

origin. Thus it follows that this method of approximation 

is about s = 0, Thus., this method gives stable reduced models 

but has the following disadvantages: 

The reduced models match the steady state response well 

but the transient response matching may be poor. To overcome 



this disadvantage a modified algorithm is suggested [211. 

which is basically based on a modified Routh - Hurwitz array. 

Let the, n th order system transfer function G(s) and its 

rTh order reduced equivalent R(:) be given by 

n 
 a 1 

G(s ) 	_ 	_,....__.,_ ,... : ,....., 	 (43) 

o (s) 

i=0 1 	 (44) 

T. s 	 (45) 
i=0 1 

and r 	1 
E b S 

.

j_ 

.i (s) 	7 - ~:._ ~. 2,',. ..........s_, 	 (46 ) 

(s) 

Lot o (s) be given by 

(n+1 ) 
(s) =j 1 a y. 

s i 

= a ; 1-~a12 s 	
'1 3 s2 -C , 	a1 n- 1 sn 2 , 

a n sn`1 + a1 n+1 sn 	 (47 1, y  

The Routh Hurwitz stability array of o(s) i j (4.7.) may 

be formed as in the first step of single input single output 

systems, (page 10), The . poles of reduced model are found by 

this method. The poles nearest to the origin are retained 

while the poles which are away from the origin are neglected, 
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because, the poles which are near to the origin decide the 

transient behaviour of the system and are the dominant poles. 

However, in order to obtain better approximation of the initial 

transient response (i.e. near t = 0) it is important that 

the roots of or(S)  should be chosen to approximate the large 

magnitude poles of G(s), as well as the small magnitude poles. 

This is achieved by the modified Routh - Hurwitz array which. 

is described belowf 

The basic idea behind this modification is to retain 

the large magnitude poles which are redundant elements in 

general. For this, the reciprocal polynomial o(s) defined by 

VS) =  

n 	nm1 	n.--2 	2 
= all s +alts 	+a13s 	Y ...+a1  9  n-1  +a1 ns+a1  y n+1 

It simply reverses the order of the polynomial coeffi-

cients of A(s).  The basic property of this reciprocal trans- 

formation is that it inverts the roots of the original poly-

nomial, Therefore, if n (s) has all its roots in the left 

half plane, then so will 	(s). The small magnitude poles 

of A(s) will become the large magnitude poles in Z (s) and 

vice-versa. In fact, the small magnitude poles correspond 

the large magnitude poles of p (s) . Thus of 	(s) is used to 

form the standard Routh - Hurwitz stability array, the 

method o.f single input ' single output systems step - 1 can be 

used to arrive at the dominant poles of o (s) i.e. it contains 
the large magnitude poles of p(s) because it is inverted.. 
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once this is done, the appropriate number of small as well as 

large magnitude poles may be retained to form A r(s). The 

numerator terms b
2J 

 (j=1,2 9 ...,r) of R(s) may then be obtained 
9 

by matching a number of Markov parameters and time moments as 

shown in Eqn. (36). 

1.7 CONCLUSION 

In this chapter we have described the classical Pade 

approximation technique and its various modifications for 

obtaining reduced order models. In the ,)mixed metnods we 

find the stable denominator polynomial and the numerator 

terms are then found by matching the appropriate number of 

time moments and/or Markov parameters of the original system 

and its reduced equivalent. This process eliminates the 

problem of Pade approximants often given unstable models for 

stable systems. 
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CHAPTER - 2 

ALGORITI3I vi  FOR TRANSFER FUNCTION 

In this chapter, the algorithm due to Leverrier is 

described with modifications 4jighfighted in L203 . The 

Leverrier algorithia gives numerical errors when the dimension 

of matrix A increases. The modified algorithm increases 

the accuracy. 

2.1 	FADDEEVA LEV:ERRIER ALGORITHM 

The algorithm widely used to calculate the coefficients 

of the characteristic polynomial is the algorithm of Leverrier;  

alternatively called the algorithm of Souriau, Frame or 

Faddeeva, The algorithm calculates the coefficients ai  of 

the characteristic polynomial p(s) of matrix A 

p(s) = Det (sI-A) = a0sn+a1sn-1+a2sn-2  +e. ,+a0 	(48) 

and the matrices Bi  of the adjoint of (sI--A) 

then. 

adj (sI-A) = BCsnr1+31sn-2+...+Bn_1 	(4  9) 

1.30  = I 	a0  = 1 

a. = 	Trace (A B 1 ) for i = 1 9 n 	(50 

3i  = A Bi-1 + ai  I 

A nice additional test on the accuracy of this algorithm 

is given by the equality 	3n  = 0. 
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Though the method is easy to program but it is a well 

established fact that nearly all arithmatic operations on a 

digital computer introduce an error due to the limited 

accuracy with which the ne3.are represented. From equation 

(50) it can be calculated that these errors will accumulate 

from a to an and from B to 3 	so that ai+1 and B. 

will be less accurate than as and Bi respectively. 

2.2 	MODIFIED FADDEEVA LEVERRI ER ALGORITHM 

Due to the above mentioned deficiency of the ordinary 

algorithm, the latter coefficients should be obtain in a 

different manner. Such an approach is possible by using the 

coefficients bi of the characteristic polynomial q(s) of the 

inverse of A and the matrices D of the adjoint of (sI-A-1), 

q(s) = det (sI •.. A-1 ) = b0sn -'r bIsn-1 	 bn 	(51) 

	

n--1 	 _ adj (sI-A 1 ) = Dos 	+ D1s
n-2 +'. 	Dn-1 	(52) 

Then, the following relations between ai and bi and 

between B. and Di c ~n be used 

an = (-1)n det A 

_  - anbi 	3n-i 	
p=a- 

n !i-1 	y for i = 1 'n 	(53) !). i 
For 

q(s) = det (sI) = det F (--s A-1) (s_1 IA)] 

	

1 	n 	2 	n = (det 1-i- ) (...1) 	(a0 a1 s +-a2s +... -rans ) 	(54) 
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Moreover, 

adj (sI-A-1 ) = det (sI-',-1 ) (sI.1-1 ) 

_ (dot %-1 ) / (-1 ) n-1 (I+B1 s+...+Bn-1 sn-1 ) 

(55) 

So, from above analysis, it is evident that by using 

one additional matrix inversion and one determinant evaluation, 

the same Faddeeva Leverrier algorithm can be used. First 

to calculate ai and B from A and then bi and Di from 

Only the first (m-1) elements al and Bi of A and the first 

(n-m) elements bi and. Di of the ~`:-1 need to be calculated. The 

value of rn has to be selected between (n/2) and n. The 

critical value on average comes as 2n/3 offers good results 

[ 20]. 

The modified algorithm is now, 

SO  = I y  a0 = 1,0 y  m = 2n/3 

a 	= Trace (A 3i1) for 	i = 1 , 	m-1 

iii 	= 

DO  = I an = (-1)n 	det  1 

bi _ - Trace (1=3_1 	D.i1 ) 

Di =  	Di_1 	bi I 	for i = 1, n-m 	(56) 

an=i a b 

Bn-i = - an i 
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2.3 	TRANSFER FUNCTION 

X = 	+ Bu 

Y = cx 

n ~1 	n-i-1 CL I s 	Bl] B 
  i=0 G(s)  

n - 
E ai s~-L 
i=0 

(57) 

n.-1  
C[ E 	Sn-i-1 B

i 	B 
i=0 

o(s) 

where, 

	

n 	r~1 
o(s) = 	I 

 
a . s 

i0 

The Bi and a. are calculated from (50), If the determi•- 

nant value of A is non zero then the modified algorithm can 

be applied to calculate ai and Bi from (56), 

2.4 	CONCLUSI0'fS 

The entire chapter is devoted fully to the development 

of transfer function LG(s) from state space equations. The 

idea of accuracy is also taken into account which arose due to 

the cumulative error in the calculation of a. and B . . 
i 	i 
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CHAPTER -- 3 

MODEL FOR SINGLE MACHINE POWER SYSTEM CONNECTED 
TO AN INFINITE BUS 

The development of this model is based on [18] and 

taken from [17]. The single machine power system is connected 

to an infinite bus and shown in Fig. (1). In this power 

system, generator is provided with a double time constants 

speed governor. 

3.1 	MODEL DEVELOPMENT 

The electro mechanical oscillation of synchronous 

generator about a steady state operating point be can be given 

by 

ML E + DL `, + 	p = p 
	

(58) 

where 

P = c~ 	+ b10 Eq 	 (59)  

3P c1 	= 	_ _Ea V Y12 sing ( 0`®12) 	(60) 

b1 	= 	_ .- o Y11 cos 011 + iTY12 cos ( 0-Q12 ) 	(61) 

and 

p 	E2 i 1 cos 911 + 	t•I Y 12 cos (0O-®12 ) 	(62' 

The electro magnetic oscillation of the power system 

can be expressed by 

AEq + p T 	p :'i' = o EeX 	 (63.) 
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where 
i 

oJq - Eq °- (xd 	xd ) Id 
and 

lq Eq ~ 11 cos 911 	+ ~,1 Y12 	cos 	(,0-®1?_) (65) 

Id - 	FCq Y11 sin 911 - V Y12 cos 	(912 - 0 ) (66) 

Fran equations (64) and (66)  can be given by 

AE J 
q - 	- (xd-xd) V Y12 cos 	(Q12-- 0 ) o 	+ 1 	+ 	(xd-xd) 

Y11 'sin  

E = 	c 2 o + 	'b2 LEEq (67) 

where 

c2 = - (xd-xd) V Y12 cos (®1 -~0) 	 (68) 

b2 = 1 + (xd--xd) Y11 sin ©11  (69) 

The terminal voltage Vt is given by 

2 vt = V + 	q 

vt = (Vd + Vq1 /2 	 (70) 

where 

Va. = Eq - xd Id  (71) 

Vd = xq Iq 	 (72) 

Substituting for Id ani Ie J.n the above equation we get 

a V 	V 	 - V 	1 V 

Vt 	v1 L V
q u :.... + 11 	a 'o + 	V [ Vq 	+ Vd G d J Aq t  q  q 

Vt c30 +b5 o8q 	 (73) 

26 

(64) 
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where 
1 

C3 = 	vt 	L Vq Y I + Vd 	] ~ (74 ) 

b3 = 	V ~.,.o C V
q 	

+ Vd 	E
_(75) 

t   q 

The governor output 'n' 	in equation 	X58) can be given by 

2 
a d -o + b d-2 + p = - c (76)  dt 	dt 

Defining 
w 	=A 

p1 = 	P (77)  
L~ J ex U 	= m'! • 
d0 

6Te get the following state equations 	from (58), (59) ,  

(63), 	(67) 	and 	(76), 

q. 

j 

i 	TdOb2 b2 	 j 	' i q 1 1 

°HH°/ 
_ 	-b 1 /N 	-c1 /M -D/M 	1/i 	0 

p 

+ 	i 0 	u 	(78) 

00 0 	0 	1 p, 	! 0 

i 	0 	0 p ' 

	

aa 	1 -c/a 	- / 	/ 	-b/a I ► p1 0 

3.2 	CONCLUSION 

The model of single machine power system connected to 

an infinite 	bus is developed in well known 

l; 	_ 	Ax + 3u, 	state space equation form, The matrix 
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equation contains the matrix A of order ( 5 x 5 ). In this 

modal the five variables are taken into account while the 

power system contains more variables. The central idea 

is to analyse the system with the help of model reduction 

techniques and check its effectiveness. 
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CHAPTER - 4 

APPLICATION 07 REDUCTION METHODS IN A POWER SYSTEM 

The chapter is devoted entirely for the development of 

transfer function from given -power system.; model '7S) by L20] 

and then the reduced order models are found out by applications 

of reduction techniques especially Pads approximation technique, 

Kri: hnamurthi 2 s [l2j Routh - H_ urwitz array method, the modi- 

fied method of Pal '14] , and oth:.r mixed methods and by the 

retention of dominant poles. The methodVa-pplied and the developed 

reduced order models are presented here, 

4.1 	SY;STEri MATRIX A, D, C 

The values of described parameters of A are taken 

from. ;17 ] as 
4 

N  = 1.000 D  = 0.50 

Eq  = 1.482 Vo  = 1.00 

Po 	= 2.105 c~, 	- 600 

Tdo = 5.0 sec y11 	= 0.266 -- j 1.530 

xd 	= 0.084 y12 = 0.180 + j 1.080 

xd 	= 0.320 a 	= T1 T2 = 0.05 

T1 	= 0.100 sec b 	= T1 +T 	= 0.6 sec 

T2 	= 0.500 sec c  = 0.05 
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with the heln of these values the matrix A irs f.ound as 

0.183 0.0 0,227 0.0 0.0 

0.0 0.0 1,0 0,0 0.0 

A  =  - 1,815 -0.57 •0.50 1.0 0.0 

0.0 0,0 0.0 0,0 1.0~ 

0.0 0.0 --1,0 -20,0 -12.0  (79) 

3T =  1.0  0.0  0.0  0,0  0.0 

and 
T 
C = [1.0 	0.0 0.0 	0.0 0.0] 

The state vector 

1 = 	[oEq 	o ; 	w 	P 	P 1 

Using the set of equations from ('50) s we get the 

transfer function of the Power system with given matrices 

A, 3 and C as 

C(~ 	11 ,4+17,8s-a-26.57s.2412.5s3-1-x4 	 tr,0) 
1-r12 , 68S1+29 , 332s+27.7'791S-r22.9928s+2.1432s5 

This open loop transfer function can be written in 

the for,.a given below talking the coefficient of s5 as unity, 

5.31915-~-8.32440s+12, 39735 s2+5.83240x3 ~0.46659s4 

0.45659-x5 < 92012x+13.68608sG+1 C . 96146s5+10.72822s4-rs` 

(Si) 
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The power series about s = 0 (time moments) 

G(s) = 1i .4_126804s+1301 .Q3s2..13093,0s)±1312220s4 	(82) 

2 	3 

	

C
0  C

i S+C ) S 	CzS 	e.. 

The power series about s 	° (flarkov parameter) 

G(s) 	 .9250e 

-1 	 -3 = me +inS + ms + 
0 	 1 	2 
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4.2 	APPLICATION OF METHODS 

4.2. 1 METHOD 1 

Using the equations (9). reduced model of third order 

by Fade approximation technique 

Matching time moments only 

G(s) = 0.46659s 4 ,8324s 12.39735s2 8, 3240c T5 	 LL 

s5+1O,72822s #12096146s3+13,6L6OBs +5092012s+0,L.6659 

= corc1=-t-c2 2 
S +03S3  -rc4S 4 

= 11.4.126,8s+13Q1.O3s213Q93s3+131222s4131416Qs5+. (65) 

or 

= m 
0 S 

-1 
 --m1  S -2+rn2S 	0 

=  0.46659S -,,0.82672s -2.51957S +13.25320s-  171.925S 

(86)  

A -s+A 
( 	- . o Al 	2 

3ol r.)2 +37.s 
(87)  

Using Pade set of linear simultaneous equations 

A 
0 

= c 
0 

lB 
0 

A 1 c l o B 	+ c o  B l 

A2  02 D o  Cl 0 0 32 

0 0130402 B 1 +01 	B2+c0137 

0 
	=c4Bc7B1c2B9+c1B3 

0 =c5E3+c4B1+c3B2+cB3 
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Taking 33  as unity an 	solving last three equations, 

we get 

33  = 1.0 

B2  = 1.144932 

31  = 0.415)74 

30  = 0.0310591 

Using these values of 33o, B1  , 	32  and. B3  in first 

three 	equations of above set, we get° 

do  = 0.3540737 

-A 1  = 0.7969697 

112  = 0.7931754 

so 

0 C 	0.3540737 +.., 0.7969697=..._ .r,  q:79317 2 	(88) 
R 	0.0310591 + 0.415374s -. 1.144932sZ  + s3  

Results are in table 1 and response is shown in Fig.(2). 



TABLE - 1 

TIMiE RESPONSE (METHOD Ii) 

Time (sec) 	Original 	 Reduced 

0 0.000000 E--0O 0.000000 E+00 

1 0.704090 E+00 0.757423 E+00 

2 0.155366 E+01 0.149002 11+01 

3 0.231412 E+01 0.222202 11+01 

4 0.297397 1+01 0.294820 11+01 

6 0,426036 E+01 0.433077 E+01 

8 0.555613 E+01 0.555615 E+01 

9 0.612406 1+01 0.609962 11+01 

10 0.662115 E-+01 0.659699 E+01 

12 0.746061 1+01 0.746212 E+01 

14 0.817164 E+01 0.817431 E+01 

16 0.876170 E+01 0.875837 +01 

18 0.923733 1+01 0.923676 1-r01 

20 0.962751 1+01 0.962850 E+01 

30 0.107474 11+02 	- 0.107474 E+02 

40 0.1115 96 11+02 0.1115 96 Ei-02 

50 0.113114 E+02 0,113114 2-,02 

34 
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4.2,2 ISET.SOD 2 

'Using the method of Routh Hurwitz array (stability) 

and technique of reduction highlighted by Krishnamurthi 

L122 9  the reduced order model of third order is found as 

Reduced Model by Routh Hurwitz array-

The numerator stability array of (84) 

s4 	0.46659 	12.39735 	5.31915 

C 3 	5.83240 	8.3240 

s2 	11.73143 	5.31915 	 (83) 

s1 	5.67953 

so 	5.31915 

The denominator stability array (84) 

s5 	1 	 12.96146 	5.92012 

S4 	10,72822 	13.68608 	0.46659 

s3 	11.68575 	5.87663 	 (901, 

s2 	8.29098 	0,46659 

s1 	5.21899 

s o 	0.46659 
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So numerator for third order reduced model is 

NR(s) = 5.31915 + 5.67953s - 11,73143s2 	(91) 

and denominator fron, (90) is 

DR(s) = 0.46659 + 5,87663s -, 8.29098s2 + 11,68575:3 	( 2 

0.-45518 + 0.48602s -r 1 <00 91 sL 
GR

(
~ ) 

_ 
0.03993 r 005028.

9s.,+ .0.70950s.2 :

t 

...0 ..... 	 ~?= 

The results are in table 2 anu time, response is 

Shown in Fig. (3). 

0 



TABLE - 2 

TIME RESPONSE (METHOD 2) 

Time (sec) 	Original 	 Reduced 

0 0.000000 E+00 0.000000 E+00 

1 0.704090 Ls+o0 0.908732 E+01 

2 0,155366 E 01 0.169081 E-01 

3 0.231412 E+01 0.241615 E r01 

4 0.297397 E+01 0.311818 +01 

6 0.426036 +o1 0.445695 E+01 

8 0.555613 :,+01 0.563169 E+01 

9 0.612406 E+01 0.613899 E+01 

10 0.662115 +01 0.659473 E+01 

12 0.746061 E+01 0.73 7660 E+01 

14 0.817164 E+01 0.802 676 :E+01 

16 0.8 76170 E+01 0.85 75 97 E+01 

18 0.923733 :F+01 0.903870 +01 

20 0.962751 E+01 0.942560 E+01 

30 0.107474 ' +02 0.105904 +O2 

40 0.111596 E+02 0.110680 E+02 

50 0.113114 %+02 0.112636 E+02 

37 
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4.2.3 METHOD 3 

It is better_ to consider the poles which are nearer 

to the imaginary axis or origin. it is best established fact 

that the poles w rich are near to the on in have the dominant 

role on the overall behaviour of the system„ iith the help 

of equations from (87) to (89) we bet 

Pade Approximant 	Dominant Roots.. 

Dominant roots (poles) of transfer function 84" are 

Si = 0,099870356 

s2 = 0,30111677 
	

(94) 

S3 = 0.30111677 

From (94) the denominator of reduced order model is 

UR(s) ~ ( + 0.099870356) (s + 0.30111677)2 

= 0.0090554 + 0,692905s - 0,70210432 + s3 

and numerator 

1(s) = Ao 	i s + A2s2 

and 

Ao = 0o3o 	0.1032315 

Al 	= C1 :3o -r _Co'31 = 6,7508561 

A2 = 0260 -, C1 i31 + Co;32 = 	68.07734 

CR (s) = 0.,1052315+6.75x8561 s-66 , 07734s2~.. _ ....._, 	(95 ) 
0.0090554+0.6929050s+0,7021040s 	J 

The results are in table 3 and time response is in Fig. 

14) 



J 

TABLE - 3 

TIT E RESPONSE (METHOD 3) 

Time 	(sec) Original Reduced 

0 0.000000 L+00 0.000000 E+00 

1 0.704090 E+00 - 0.429067 E+02 

2 0.155366 E+01 - 0,371236 E+02 

3 0.231412 E+01 - 0.126633 +02 

4 0,297397 E+01 0.107601 E+02 

6 0.426036 E+01 0.233578 E-r02 

8 0.555613 +01 0.121409 Si-02 

9 0,612406  c+01 0.8764 75 jr01 

10 0.662115 E-k-01 0.821330 S, +01 

12 0.746061 x-01 0.107821 E+02 

14 0,817164  'E+01 0,119512 L+02 

16 0,876170 L+01 0.113877 ET02 

18 0.923733 EJ+01 0.110601 E+02 

20 0.962751 Er01 0,111851 E+02 

30 0.107474 i-E±02 0.112584 _E+02 

40 0.111596 E+02 0.112736 E+02 

50 0.113114 ;7.02 0.112885 :x+02 
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4.2.4 Ni=-IOD 4 

A mix method which utilizes the combination of Pade 

approximants and Routh Hurwitz array. The denofiinator of 

reduced order model_ is taken from Routh Hurwitz array while 

numerator is by partial Pad.e approximation. The Cese 1 consi-• 

dere only the time moments while Ce-se 2 and Case 3 take the 

combination of time moments and iarkov parameters to find out 

the numerator of reduced model by partial Pade approximation, 

Case 1 Hatching all time moments 

From equation (84) and. equation (90) the deno.:~inator 

comes out to be such as (92) and numerator becomes such as 

N(s) _ Ao + Al + A2s2 

A0 = 003o 

A1 = 01B0 + '̀3 

r~2 	= 02B0 i- C1 B + CoB2 

The 809 31 and B2 are known from equation (92) and 

and 02 from (85 ) 

A0 = 5.319126 

Al = 7.82997 

A2 = •x43.568595 

so 

G (s) _ 5.319126± 7.82 997s„ - L+3 5685 95s 2 	 (96 ) 1 
R  0.46659 + 5.876639 + 8.29093s2 + 11.68575s3 
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or 

_ 0.45518 + 0.6700442s - 3.723353s
2 

0.0399281 + 0.502889s + 0,70950s~ ~- s3 

The results are in table 4 and time response is 

shown in rig. (5) 

Case 2 ; Matching one time moment and two Markov parameters 

The denominator of third order reduced ►yodel from 

Routh Hurwitz array Io 

D (s) = 11,68575s3 + 8.29098x2 + 5.87663s + 0,46659  (97) 

= b4s + b3s2 + b2s + b1 'say) 

using set of equations of ,36) from chapter one 

t= 2 	p= 1, 	r = 3 

b21 = b1 To = 0.46659 x 11,4 = 5.319126 

b22 = b4 'i1 + b3IN0 

11.68575 x 0.82672 + 8.29093 x 0.46659 

= 13.529332 

b23 = b4 10 = 11.68575 x 0.46659 = 5.4524541 

. 5_,4524541 s2 = 5.3.19.1.26 -; . 13.529332s + ..,,.. ... 	.. 	.., 
0.46659 -+ 5.87663s + 829099s -e 11,69575s3 

_ Oo45518 + 1.15.776s .+ 0.4665922  (98) 
0.03993 + 0.502889= r 0,709495s2 + s3 

The results are in table 5 an.i time response is in Fig. (5) 
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Case 3 Matching two time moments and one Markov parameter 

The denominator is same as (92); 

b21  = b1T0  = 5.319126 

b2-, 	b 
1  T 
 1 2 +b To 

 = 0 0 46659 x ( 	+ 1263) 	829098 x 11 

= 7.82997 

b23  = b4M0  = 5.4524541 

- 5319126 + 782997s + 5452541s2 
0JE659 - 5087663s + 829098s + 11068575s 

G (s) 	055Th 	O067O42sO,6659s2 	 ... 	(90)1. 

0.039928 + 0.50289s + 0.709495s - 

The results are in table & and time response is 

11 shown in Fig. 	(5). 

0 



TABLE - 4 

TIME R:ESPONS.ia (METHOD 4, CASE 1 ) 

Time (sec)  Original  Reduced 

0 0.000000 C+00 0.000000 E+OO 

1 0.704090 E+O0 - 0.212 908 E+01 

2 0.155366 E -01 - 0.160812 E+01 

3 0.231412 E+01 0.399478 E±01 

4 0.297397 +01 0.277076 E+01 

6 0.426036 :+01 0.609554 '.71~-01 

8 0.555613 T3 +C1 0.708464 -01 

9 0.612406 ; +C1 0.718951 E+01 

10 0.662115 E.-01 0.728549 L+01 

12 0.746061 i - O1 0.771859 A",+01 

14 0.817164 E+01 0.836928 :-x+01 

16 0.876170 E-01 O,8354 1+01' 

18 0.923733 3+01 0.937504 13-+01 

20 0.962751 ;a-01 0.968893 +01 

30 0.107474 E+02 0.106953 E+02 

40 0.1115 96 E+02 0,111107  T-r02 

50 0.113114 2402 0.112811 2+02 

43 
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TABLE - 5. 

TIME RESPONSE (IvllTHoD 4 CASE 2) 

Time 	(sac) 
....................... 

Original Reduced 

0 0.000000 E+00 0.000000 E+00 

1 0.704090 QQ 0.813818 F+00 

2 0.155366 +O1 0.204604 2+01 

3 0.231412 i+01 0.332986 2+01 

4 0.297397 2+01 0.443240 2+01 

6 0.426036 +01 0.586477 2+01 

8 0.555613 2+01 0.663993 2+01 

9 0,612406 .2+01 0.695895 2+01 

10 0,662115 2+01 . 	0.728052 2+01 

12 0.746061 2+01 0.793557 .2+01 

14 0.817164 2+01 0.853405 2+01 

16 0.876170 2+01 0,902064 2+01 

18 0.923733 2+01 0.940743 E+01 

20 0,962751 2401 0.972689 E+01 

30 0.107474 02 0.107143 2+02 

40 0,111596 2+02 0.111187 2+02 

50 0,113114 2+02 0.112844 2+02 
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TABLE - 6 

TIM R3'PONSE (METHOD 4 CASE 3) 

Time 	(sec) Original Reduced 

0 0.000000 +00 0.000000 E+00 

1 0.704093 E+00 0,626468 E+00 

2 0.155366 E+01 0.149915 E+01 

3 0.231412 E+01 0.247357 E+01 

4 0,297397 Ei-01 0.341802 E+01 

6 0.426036 E+01 0.494922 E+01 

8 0.555613 E±01 0,600802 E+01 

9 0.612406 :a+01 0.643389 E+01 

10 0.662115 E+01 0.682539 2+01 

12 0.746061 E,01 0.754579 E01 

14 0.817164 2+01 0.818305 .a+01 

16 0.876170 2+01 0.871955 2+01 

18 0.923733 2+01 0.915974 2+01 

20 0.962751 2+01 Q.2352 2+01 

30 0.107474 2+02 0.106304 2+02 

40 0.111596 2+02 0.110843 2+02 

50 0.113114 :2+02 0.112703 E-02 
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4.2.5 METHOD 5 

The reduced order models are obtained by using the 

stable biased technique. The method is briefly described 

in chapter one and from equation (48) to (51) and (36) and 

(3). ode ;het the reduced :yodels as 	given below. Here Case 1 

discribes the matching of time moments only while cases (2) 	.: 

and (3) are the combination of time moments and Markov 

parameters. 

Stability Based Reduced Order Models 

0(s) = s5 	-,- 10,72822s4  + 12,96146s3  + 13.68608s2  + 5,92012s 

+ 	0.46659 (lob; 

Now inverted denominator 'is; 

0(s) = 0,46659s5  + 5,92012x4  + 13.68608x3  + 12.96146s2  

+ 10.72822s + 1 	 (101) 

R H array of 0(s) gives us 

D3  (s) = 11.68575s - 8.29098s2  + 5.87663s -, 0.46659 

= 11 .68575 (s3+0.7094949s2-+0.5028885s+0.0399281 ) 

D2 (s) = 8.29098s2  + 5,21899s + 0.46659 	 (102) 

= 8.29098 (s2..-0.629478s+0,0562768) 

01 (s) = 5.21899s r 0.46659 

= 5.21899 (s+0.6894023 ) 

And Ft-I array of (101) gives 
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U3 (s) = 12.664532x3 + 7.9833242x2 + 10.649406s + 1.0 

= 12.664532 (s3 -0.6303686s2+0.8408842s+0.0789606) 

N 	 T 

D2(s) = 7,9333242s2
2 
 9,0630328s + 1.0 

= 9.9853242 (s2-.°1 ,1352455s+0.1252611 ) (1 03) 

N 

D1 (s) = 9.063032 	r 1.0  

= 9,0630328 (s-',-0.1103383 ) 

Using the reci]?rocal transformation again, we Piave 

the equivalent reduced polynomials for ID(s) as 

D1 (s) = s + 9.0630328 

D2(s) = s 9.0530328s 7.9833242 	(104) 

r 
= 53 + 10.64940652 	7.9833242s -r 12.664532 

etaiini ~ two dominant poles from U2 (s) and one from 
i 

(s) far off pole, we have a third order denoxiantor poly- 

nomial as 

0R(s) _ (s2+0.629478s+0.0562768) 0+90630328) 

= S3 + 9.6925108s2 + 5.7612566s 	0.5100384 

3 = b4s 	b- s2 + 	+ b2s T b1 

Case 1 	Matching Time Moments Only 

Rio = cob1 = 5.8144378 

1 = c1b1 + cob_, = 1.003416 

A2 = c2b1 -'- c1b2 + c0b3 = 45,545003 

(105) 



C R(s) 	5.8144378+ 1.003416s + 43,545003s2 	
3 	(106) 1 	0.5100384 + 5.7612566s + 9.6925108s + S 

The results are shown in table 7 and Fig. (6) 

Case 2 Matching one time moment and two Markov parameters 

- 5,8144378 + 5,3491486s + 0,46659s2  - 	 ( °' 
0,5100384 + 5,7612566s + 9,6925108s + s 

The results are shown in table 8 and Fig. (6) 

Case 3 Matching two time moments and one Markov parameter 

G (s) = 1.003416s + 	 (be) 
0.5100384 	 5.7612566s + 9,6925108s + s 

The results are shown in table 9 and time response 

in Fig. (6). 

I 

The reduced models are 

(1) 	Now reduced order models from Method 1 is (using Pads 

approximant and time moments only) 

0354O74 + 0.7969697s 	 O .79175 s2  
R - 

 

0.031059 + 0.415374s - 1.44932s 
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(2) From method 2, using Routh Hurwitz criterion 

045578 + 048602s + 1OC391s2  E'(s) = 	 ., 

003993  0.50289s + 0.70950s + 

(3) From method 3, reduced model by retaining the dominant 

roots and Partial Pade approximants is: 

- 010323 + 675086s  
6807734s2 

R(s)
000906 + 0.69291s + 070210s + s 

(4) From method 4, using the mixed methods 

A combination of Routh Hurwitz array and Partial 

Pade approximants gives the reduced models ass. 

Case 1 	Matching time moments only 

045518 + 067004s  372835s2  Rs j  - .. ,......  .....  .  .. 
003993 + 0.50289s + 0 070950s + S3  

Case 2 	Mateching one time moment and two Markov parameters 

- P5518 + 115776s + 0046659s2  
003993 + 0.50289s + 070950s + s 

(5) From method 5, using stability biased criterion 

Case I 	Matching time moments only 

- .  56144 + 1000342s + 43545Os2  
H(s) - ......  .,.... 

0.51004 + 5.76126s + 9069251s + s 
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Case 2 	Matching one time moment and two Markov parameters 

_ 5.8144-4 + 5,34915s + 0,46659s2 
0 0 51004 + 5 .76126s -~ 9.69251's + s3 

Case 3 	Matching two time moments and one Markov parameters  

R(s) - 5,.81444 +1.00342s + 0.46659s2 
0.5100/4 + 5.76126s + 9,69251s + s 

4.3 	TIME RESPONSE  

From the above we find that the steady state values 

of all the methods match with original are upto second 

place of decimal. Method 1 gives least error in the described 

problem,. The various methods pre;sP??ted herein - are algebraic 

in nature and require siple calculations that can be easily 

automated. These methods do not require finding the eigen-

values and eigen vectors of high order. system. The solution 

of high order non-linear equations is not required. Time 

responJe of each method and model requires almost same 

computation time (CPU) about 0087 seconds. 

4,4 	CONCLUSION 

The method 1, viz, Fade approximant reduced order 

model with matching time moments only gives poor response in 

transient zone while matching Markov parameters gives poor 

response in steady state zone. Although it is a good tool 

for model reduction yet in some cases it gives stable (unstable; 
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models for unstable 	(stable) original systems. The method is 

computationally 	simple and it occupies less memory location. 

I'Iethod 2 9  makes, use of classical Routh 	Hurwitz 

stability array and is applicable to single input single output 

systems. This method is also computationally simple and gives 

satisfactory results. The unit step responses of original to 

reduced model shown poor matching in the transient zone. 

This is because the method;  in effect, retains the most domi•W 

nant poles in the reduced models and thus matching in the•

transient zone may be sometimes quite in error. However, the 

transient response of synchronous machines in electrical 

power systems may be of much importance. 

Method 3, retains all dominant poles. The time 

response of original with reduced model is in error in the 

transient zone and the cause is the same as in method 2. 

Method 4 9  makes use of method 2 and method 1. This 

method also takes into consideration the combination of time 

moments and Markov parameters and hence reduces the errors 

in the transient zone as well as in the steady -• state zone. 

Method 5, is the duplication of method 2. In method 2 9  

the poles of the reduced model R(s) approximate the poles of 

the original system G(s) that are closest to the origin. Thus 

it follows this method of approximation is essentially about 

S = 09  which in the time domain corresponds to approximating 
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the system response about t = c* (i.e, all the emphasis is 

placed on approximating the system steady state response). 

Though the reduced models are stable, it may suffer from the 

disadvantage that the reduced models approximate the steady 

state portion of the response but the transient response may 

be quite in error. 
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TABLE - 7 

TIME RESPONSE (METHOD 5 CASE 1) 

Time 	(sec) Original Reduced 

0 fl.000000 +00 0.000000 E-rOO 

1 0.704090 E-t-00 0.296520 E+01 

2 0.155366 E+01 0.214942 1i-01 

3 0.232412 E+01 0.209906 E+01 

4' 0.297397 E+01 0.245880 E+01 

6 0.426036 E+01 0.367053 E+01 

8 0.555613 E+01 0.498655 E+01 

9 0.612406 E+01 0.559868 E+01 

10 0.662115 E+01 0.6166. E+01 

12 0.746061 o  0.716287 +01 

14 0.817164 E+01 0.797360 E+01 

16 0.876170 01 0.862943 Ei-01 

18 0.923733 E401 0:917207 E+01 

20 0.962751 E+01 0.960755 E+01 

30 0.107474 E+02 0.107196 +02 

40 0.111596 3+02 0.111740 E+02 

50 0.113114 E+02 0.113249 E+02 
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TABLE - 8 

TIME RESPONSE (NEr-loD 5 CASE, 2) 

rTi12 	(sec) Original Reduced 

0 0.000000 E+00 0.000000 5+00 

1 0.704090 5+00 0.640314 5+00 
2 0.155366 E+01 0.143212 5+01 

3 0.231412 5+01 0.22689 5+01 

4 0..297397 5+01 0.309360 5+01 

6 0.426036 "+01 0.460957 5+01 

8 0.555613 5+01 0.589366 5+01 

9 0.612406 E+01 0.644883 5+01 

10 0.662115 5+01 0.695046 5+01 

12 0.746061 s+01 0.780989 5-4-01 

14 0,817164 5+01 0.850524 5+01 

16 0.876170 5+01 0.906658 5+01 

18 0.923733 5+01 0.951930 5+01 

20 0.961751 5+01 0.988426 5+01 

30 0.107474 5+02 0.108846 5+02 
40 0.111596 5+02 0.112247 5i.02 

50 0.113114 E+02 0.113404 E+02 



55 

TABLE - 9 

TIME R:SPONSE (METHOD 5 CASE 3) 

Time (sec) Original Reduced 

0 0.000000 E+00 0.000000 E+00 

1 0.704090 E+00 0.317261 3+00 

2 0.155366 E+01 0.920076 E+00 

3 0.231412 +01 0.167693 E+01 

4 0.297397 Er01 0.248440 E01 

6 0.426036 '+01 0.404937 E+01 

8 0.555613 E+01 0.541778 E+01 

9 0.6124-06 E+01 0.601586 O1 

10 0.662115 E+01 0.655837 E+01 

12 0.746061 +01 0.749091 E-t-01 

14 0.817164 E+01 0.824706 +01 

16 0.876170 +01 0.885807 E+01 

18 0,23733 2+01 0.935119 E+01 

20 0.962757 Ei-01 0.974678 2+01 

30 0.107474 2+02 0.108380 2+02 

40 0.111596 2+02 0.112093 2+02 

50 0.113114 2+02 0.113350 E+02 
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TABLE 	10 

COMPARATIVE STUDY 

Nethod No. 	Output. yr AT 	 Cumulative error J 
Tine = 50 sec 

1 0.113114 1#02 0.264703 E-01 

2 0,11636 02 0.993987 E+00 

3 0.112885 0,455290 +04 

4 	Case 1 0,112811 +02 0.343709 E+02 

Case 2 0.112844 E+02 0.140725 ]T+02 

Case 3 0,112703 +02 0.215544 E+01 

5 	Case 1 0.113249 '+02 0.803555 Li1 

Case 2 0.113404 +02 0,21 2877 • +01 

Case 3 0113351 +02 0.166341 E+01 



LL 
C) 

0 
CL 

0 
U 

LL 



57 

CHAPTER - 5 

SUBOPTIMAL CONTROLLER DESIGN USING MODEL RCDUCTION 

TECHNIQUE: 

The optimal control theory has a major drawback that 

it requires feedback from all the state variables that are 

defined to describe the dynamics of the plant. Unfortunately, 

the entire state -- vector is never available for measurement. 

So, the question often arises whether there is any alternative 

scheme to control the system in the absense of one or some 

states. The entire chapter is devoted to optimal control for 

the specified power system problem and than the parameter 

(unknown) are found out by suboptimal control, 

However, in practice it is often impossible, very 

expensive and too difficult to measure all the state variables 

that are defined to describe the dynamics of the system. 

The optimal controllers are very complex and their use in 

higher dimensional systems could be prohibitive as the cost 

of controller increases with its dimension. 
J 

5.1 	SUBOPTIMAL CONTROL USING PADE APPROXIMATION 
TEC%INIQU 

The closed loop transfer function of the plant with 

the optimal controller with all states feedback is first 



designated as the model transfer function. And, then the 

control structure with available states is specified 	i.e. 

some states in feedback are missing. The closed loop 

transfer function of the plant with this specified controller 

is determined and it contains the feedback parameter as 

unknown quanties. This closed loop transfer function is 

matched with the model transfer function Busing frequency 

domain model reduction techniques and thus the unknown 

control parameters are determined. 

5.1 .1 	DESIGN METHOD 

The design based on L19 	, pp. 1007' 

Consider the nth  order SISO linear dynamic system 

described by 

x(t) = A-K(t) -Y bU(t) 

y(t) = CT  ;;(t) 	 (109) 
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The quadratic cost function from optimal control theory 

J = 	 x̀T(t) Qx(t) + rU2(t',j dt 	(110) 
a 

where 

Q = (;.i x n) positive sernidefiruite matrix 

r = positive weight 

It is well kno"vin that the optimal_ feedback control law 

is a linear combination of the state variables 

u(t) = -- r-1  bT  P x (t) = -- KT  x (t) 	(111 ) 

Wliere 

P - Symmetric positive definite matrix, the elements 

of it may be found by Riecati equation 

ATP + PA - Pbrr1bTP + u = 0 	(112, 

The closed loop transfer function with the optimal 

controller of (111) is 

-1 
T(s) = cT  [sI -- A. 4 bKT] 	b 

bo  + b1s 	b2s2+.. o+ bin-l5m-1  + bmsm  
-_ 	.....,. 	 (115; 

ao  + a4 6 + a2s Y e < ..+ a11W1 sn f + ansn 

do  + d1s + d2s2  +. . 	(114) 

Eq  (1i4,) is the expansion of (1  ) about s = 0 

Now utilizing only the states available for feedback, 

the suboptimal controller may be specified as 

u = 	T 	(t) 	 (115 ) 



Assuming that such a suboptimal controller exists. The 

transfer function for sub optimal controller is 

T(s) = 	T 51 -- A + b11 1 	b 

b m 2 s+ 	s_ 	 m-1 + 	s o 	1 	2 	° ° 	m 1 s 	rn = 	f 	+ f . 	'2s 	To.° ......._...1_.ri_.~:._.,,. fnSp ,.. 	(116 j 

The incomplete state feedbac. problem is concerned 

	

witxi finding the elements of 	1 on soi-ne basis ° For subo.)ti-- 

mal system response to be favourably comparable with that of 

the optimal T(s) should approximate T(s) in (113) in 

some sense, The design technique utilizes the Pads approxi-

mation method to find . unknown K T ° 

For T(s) to approximate T (s) in the Fade senses we have 

b 	f 0 do 

b1 = f od1 + f1d0 	 (11 7 

b 	= f odri: --' f . dm-1 	m ° ° °+ f do 

0 	= fodrami-1 +° ° °-" fm-r1do 

0f o dm~,n +f dm+n`.1 ~'° . °+ f ry dm 

Assuming that 1 state variables (1 ( n) are available 

for feedback, the 1 elements of K T can be explicitly det: r-- 

flhinod in solving the first 1 linear relations in (117). 
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5.1.2 APPLICATION 

Our power system, synchronousmachine excitation control 

problem analysed, where 

-0,188 0.0 0,22.7 0.0 0,0' '1.0 

0.0 0.0 1.0 0,0 0,0 

A. = 	-1.815 -0.57 0.5 1.0 0,0 	; 	b= 0.0 	(118) 

0.0 1.0. 

0.0 0.0 1.0 -20,0 12,0 0.0 

An optimal controller with the following gains is 

found suitable [17] 

KT = [-1.9068 	0.4101 	1,1  0.5694 	0,0450 

ils 
From ()• we have 

T 	=  Ni l, S  .4713089s-"  

0 	 (119) 

where 
N(s) = 4 + 12,5s 	26,57s2 	17.84s 	11,4 

D(s) = s14,5948s4+55,23396+103,75227s2i-106,03773s 
+38. 767319 

Assuming only first three states 1 , x2 , x3  are avails 

ble for feedback s  i.e. K 	K5  = 0 we get 

T = K K2  K 0 0 1 
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The overall transfer function of equation (8) becomes as 

where 

ev 
T 	(s) 

r( 

s 3' 

f 0 	= 11,4K 36.3:, + 7665 05 	1- 2.143199 

f 1 = 17.84K1  - 21,7K2  3C 	K-. 22.994003 

= 26.57i 1  1.815K2  - 2.78K. 27.779205 

= 12,5K1 	- L815.2  29J200i 

4 = ± 12.688 

f 5  = 1.0 

inally, Eqns. (117) becomes:; 

10.769766 = 3,352307K1 	1O.67445!2 + 8,13272E 	06K3  

11 ,815911 = 1.3227863Ki v 6.3'7'b3K - 10.6744 K3  

24,515355 = 11,243651]:c 	 + 6,0879047K3  

Solving the above three equations 

K1  = 1,9345531 

K2  = -0,4013842 

K3  = --1.0961199 

with the above control parimctrs 

2 T(s) = 0.29406211-0,3441475s+0,33947/'3s 14734319s 
4 -2,1904581s - ,... 
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f(s) = s5 + 14,622553s4 -- 55.503372-,3 -`- 103.78228s2 

+106.03773s 	33.,5732 

The time responses for unit c op of optimal and sub-

optimal are given in rig. (8),  

5.2 	CONCLUSION 

The major drawback of opJtima1, control theory is that 

it requires feedback from all the state variables that are 

defined to describe the dynamics of the -plant, Unfortunately, 

the whole state vector is seldom available for measurement. 

The suboptimal controller design is free from this constaint. 

The Pade. approximation technique for model order reduction 

is used for arriving at the controller parameters. 

The suboptimal controller design in this chapter is 

based on partial state feedback. I'Nc c'e^in is suboptimal in 

the sense that the closed loop transfer function IT(s) appro- 

x- inmates the optimal about s = 0, i.(-., F o.r logger frequencies. 

Thus, a useful feature of this meti,,.o i is that the steady 'state 

values of the output of the sub on ,im..: l an I optimal systems 

are the same for polynomial inputs 	the form a tl 

(i = 09 1 9 2,..., v). This is because the method, in effect; 

matches the first v tim momen'GE oi the corresponding systems 

On comparison of power Series expansion of (s ) and T(s;, 

viz, equations (~19) and (20) ; we find that the first 



64 

v(v = 3) terms are the same. It shows identical first three 

time moments, This procedure shows exact matching in the 

steady state region ( Fig. 8) , The time response comparison 

in transient zone is quite close to optimal one. For overall 

good approximations in the transient and steady state behavi-

our, the method could be extended. by matching a combination 

of Markov parameters and time moments of the optimal and 

suboptimal systems. The optimal ratio of the Markov para-

meters and time moments to be matched depends on particular 

problem and is open to investigate in future. 

T 
The novel feature of this method is that when only 

few states are available for feedback, dynamic compensators 

may be included to increase the number of design parameters. 
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TABLE - 11 

TILE RESPONSE (CONTROLLER) 
TIME RESPONSE 

Time (sec) Optimal Sub Optimal 

0.1 8.985214 E-02 8.974176 E02 

0.2 1.607567 2-01 1,604091 2-01 

0.3 2.147953 2-01 2.141892 E-01 

0.1+ 2.540782 2-01 2.532584 2-01 

0.5 2.806877 E-01 2.797349 2-01 

0.6 2.966331 E-01 2.956417 2-01 

0.8 3.039888 2-01 3.031856 E.-01 

1 .0 2.895769 2-01 2.892120 E-01 

2.0 . 	1.767807 E-01 1.778623 E01 

3.0 1.996104 E-01 1.993799 2-01 

4.0 2.584664 -01 2.580350 E-01 

5.0 2,82635 2-01 2,830567 E-01 
6,0 2.877358 .2-01 2.878899 2-01 

7.0 2.898196 '2-01 2,898148 2-01 

8.0 2.918996 2-01 2.918487 &01 

9.0 2.931270  2-01 2.931058 E-01 

10.0 2.936192 2-01 2.936160 E-01 

20.0 2.940614 E-01 2.940614 2-01 

30.0 2,940620 2-01 2.940620 2-01 

40,0 2.940620 .2-01 2,940620 E-01 
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CHAPTER 6 

CONCLUSION 

The development of reduceu order models for the analysis 

and synthesis of high order systems has been an area of active 

research during the past decade. The present work deals with 

the application of methods for model order reduction to a power 

system model and the design of a suboptimal controller using 

a model reduction technique. The work included herein deals 

with frequency domain model reduction techniques and suboptimal 

controller design based on the transfer function description of 

the system. Detailed discussions and conclusions are given 

at the end of each chapter and hence this concluding chapter 

will be primarily devoted to summarizing the main contributions 

of this work. 

The first introductory chapter describes in brief some 

reduction techniques. Model order reduction techniques have 

been developed both in the time and frequency domains. In 

this chapter the Pade approximation techniques and its various 

variants .ref are first described. The Pade approximation tecu-

nique has an advantage of computational simplicity. The 

matching of time moments only gives a reduced model the power 

series expansions ofLbich agree with that of the original 

system about s ='0 and hence steady state responses are accu-

rately reproduced; whereas matching of Narkov parameters 
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ensures good matching about s = A i.e. the transient response 

matching is good. Hence 7 appropriate matching of some time 
moments and AIarkov parameters results in overall good appro-

ximation. However, this technique sometimes leads to an 

unstable model for a stable system. So mixed methods have 

been proposed by various methods to overcome the stability 

problem. In such methods the denominator polynomial is pre 

determined by using various istability criteria or by retaining 

appropriate poles of the original system. The numerator terns 

are then determined by the classical Pade approximation tec:'-

nique to match a combination of time moments ad Markov para 

meters. The choice of the number of time moments and Markov 

parameters to be matched can not be decided a-priori and is 

normally determined by trial and error procedure and depends 

on the type of the original system being reduced. The related: 

steps in obtaining the reduced order model by such techniques 

are described in this chapter. 

In chapter two we describe different methods for obtain--

ing the transfer function description from given state variable 

equations. The classical Faddeeva approach is first described. 

This method is known to give erronous results if the system 

matrix A is of a high order. A modified algorithm is intro-

duced that removes this problem of inaccuracy. Computer 

programmes have been developed for these methods. 

The third chapter describes the development of state 

space model for a power system which consists of synchronous 
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machine connected to an infinite bus, The system model is 

developed using well known Parks equations. 

In chapter four the various model reduction techniques 

described in ch.orl~e are applied to the power system model 

developed in the previous chapter. A comparative study has 

been made and the merits and demerits of the various models 

have been brougFout in table 10. 

Chapter five deals with the design of suboptimal contro-

ller using the Pade approximation technique, It is found 

that a subo.rtimal controller using restricted state feedback 

using the above technique gives a time response that cannot 

be distinquished from the optimal one.  Hence it is felt that 

this method for suboptimal design may be used in practice that 

will lead to simple controllers as well as requiring feedback 

from measurable variables. 

Overall frequency domain reduction techniques have been 

found to yield reduced order models for power systems and 

practical controllers may also be designed for such systems. 

This dissertation has been restricted to the apnnlication of 

above techniques in model order reduction and controller synthe--

siti for single input single output systems only. These 

techniques are also applicable to the _:ultivariabl` case and 

is left as an exercise for future workers. It is felt that 

this ap-oolication of frequency domain model order reduction 

techniques to a power system problem is reported for the 

first time. 
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