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ABSTRACT

In the present work existing model order reduction
techniques are applied to power system giuplification and to
contr%%%%é design, The thesis deals with frequency domain model
order reduction techniques and controller design based on
transfer function description of the power system. Brief con-

clusions are given at the end of each chapter.

In chapter one we have listed various techniques for
model order reduction.Only methods based on Pade approxima-

tion techniques are applied in the thesis.

In the same chapter we discribe the Pade approximation
technique and its various modified versions aﬁg given by number
of researchers. The methods described in this chapter are
successfully extended to multivariable cases also, For simplicity
the methods are applied to single input single output systems

only.

The second chapter is devoted to develop the transfer
function from a given state space desgcription. The classical
Faddeeva algorithm is applied to the state space equations.
This method gives erronoué results when the dimension of
matrix A 1is large. To eradicate this difficulty, a modified

algorithm of Faddeeva 1is given in the same chapter.

The third chapter describes the development of a power
system model. The problem is taken from [17] and the develop-

ment of the model is also from reference [17] .
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In the fourth chapter describes the . reduction techniques
based on Pade, modified -Pade, Routh - Hurwitz array
are applied to an actual power sSystes model. The transfer
functions obtained from different methods are given in this
chapter and all the reduced models are summarised in the last,
of the same chapter., The final responses show the validity

of each method and their relative drawbacks.

In the fifth chapter a method for sub optimal controller
design is given. This design method applied to the reduced
order models chosen frowm chapter four. The time reSponse}com—
parison of reduced order case with that of the original system

shows the importance of reduced models in controller design.
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INTRODUCTION

Physical systems such as aircraft, chemical plants, elec=
trical power systems etc. can be described mathematically by
state space models or transfer function models. Electric
power systems may be modelled by large number of differential
equations that lead to high order state-space or transfer func-
tion models., From analysis point of view, these high order models
present formidable problems., Thus a need exists for a systematic
procedure to derive a reduced order dynamic equivalent model
in the state-space on in transfer function form from the corres-

ponding high order description.

Several schools of approach to the model reduction
problem have been developed either in the time domain or in
the frequency domain. As far as possible, the lower order
approximates certain dominant characteristics of original

system.

Broadly speaking, the present work consists of three
main parts, In the first chapter the reduction technigues based
on Pade approximation and its variants are described. In
chapter twe methods to obtain transfer functions from state-
space equations have been discussed. All the reduction tech-

niques discussed are for the continuocus time case,

Chapter three describes the development of system

model for a single area power system; 1i.e., a synchronous macnine
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connected tb an infinite bus through a transmission line. 1In
the fourth chapter we obtain the reduced order models for the
power system wusing the methods of chapter one, Time response
comparisons are made to show the closeness of the reduced

model to the original system.

The use of transfer functions and their reduced order
models in design of controllers is dealt within chapter figve.
The entire chapter is devoted to the controller design based
on sub optimal criterion. The time response comparison of
optimal controller to the sub-optimal controller shows the
validity of sub~optimal controller design criterion. The time
response graph attached to this chapter shows the closeness.
The sub-optimal controller design criterion in contfoller design
overeomes the difficulties in solving the equations and it has
the viability in the ganalysis of complex problems such as
Electrical Power Systems where all the control parameters are
not available formeasurewestSo, the strong point goes in favour
0s sub-optimal controller design and it resolves the measurement

problem of all control parameters,

The last chapter; i.e. chapter six deals with the merits
and demerits of the methods which are described in the different

chapters,
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NOTATIONS
U or U(t) Input vector or control vector of (rx1) dimensions
x or x(t) n™ order state vector
A System matrix of order {(nxn)
B Control matrix of (nxr) dimension
c Measurement matrix of order (nxr) dimention
Y oor Y{(t) Output vector of {(mx1) dimension
n Sysﬁem order
r Number of . inputs
m Number of outputs
G(s) System transfer function of anpropriate order

Ag_or A~ Reduced—model SYSEER matrix

*
BR or B Reduced model control matrix
CR or ¢ Reduced model measurement matrix
1 Reduced model system order
GR(S) Reduced model system transfer function
i ith elgenvalues of system
z Transformed state vector of system
v Infinite bus voltage
v Terwinal voltage of the m/c
Vdqu Direct & quadrature axis voltage at the terminals
of the m/c
Id,Iq Direct & guadrature axis currents of the m/c
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Zxcitation voltage or open circuit voltage of the m/c
Exciter input signal

Angular velocity deviation of m/c rotor in rad/sec
Rotor angle of the m/c in rad

ilectrical power output of thne m/c

Moment inertia of the &/o

Damping coefficient of the m/c

Change in input power of m/c due to guvernor action

Time constants of the prime mover governor

Product of governor time constants
Summation of governor time constants
Governor gain constant

Self admittance of the network at the internal

bus of the m/c

Mutual admittance of the network between the internal

bus of the m/c and the infinite bus

Direct axis synchronous reactance
Direct axie transient reactance of m/c
Direct axis field time constants

Incremental operator



CHAPTER -~ 1

DESCRIPTION OF PADE REDUCTION TECHNIQUES

The Pade approximation technique is recogniSed to be
a powerful +tool for obtaining reduced order models. But
occassionally it leads to wunstable models for originally
systems. Mixed methods are available that give a stable model
using partial Pade approximations. In this chapter we give
a brief description of Pade type methods for model order

reduction.

METHOD 1

1.7 FADI APPROXIMATIO: TRECHNIQUE FOR SYSTEM REDUCTION

The Pade approximation technique for system reduction
as proposed by Shamash [ 3, 7, 8, 9] 1is described below.
This technique 1s also useful in case of systems described by

state space equations.
DEFINITION OF PADE APPROXIMANT
Shamash L 7] has defined the Pade approximant as:

'A Pade approximant 1is a rational function Pm(x)/Qn(x)
in o o{,eu.,m m,n

when Pm(x) and Qn(x) are polynomials, im, n! is said to be
the Pade approximant of the function f(x), if and only if,
the power series expansion of [ m, n] is identical with that

of f(x) upto and including terms of order x%tH

Let the function to be apnroximated be defined by the



power Series

2
f(x) = Cq + C4X *+ opx + .

* e @

and the Pade approximant be defined by

. . ‘ 2 m
Pal) p gt A% EX ¥ et Ay )
. [N — ,.,.,_,T
mLn

Since the power series expansion of (2) is to agree with (1)

m+n

ag far ag and including the terms in x , we have the following

set of linear simultaneous eguations.

ag = bO:cO

aq = bOC1 + byCh

2y = Bty * b4y * Byl | (3)
8 = Pt * PiCpar T oeee T Byl

O =90 Cuen * P1%qen-1 * P2%pen-2 T cor T Ppy

which serves uniquely to derive the ccefficients of (2). It
should be noted that either bO or bn is to be taken as unity.

In the present work b, has been taken to beundg

In the above analysis, the Pade approximation was made
about the point x = 0, The generalization of Pade approxima-‘
tion technigue to two (or more) points was first introduced by -
Baker, OSometimes information about the function to be approxi=

mated is available at two or more points. It is suggested that



“Ahis additional information about the function may be taken
into account by requiring the Pade approximant to satisfy,

exactly the conditions at the origin and other prescribed points,

METHOD 2

1.2 MODEL REDUCTION USING ROUTH-HURWITZ ARRAY

Krishnamurthi et. al E13] have presented an interesting
method for the reduction of dimension of a high order transfer
function. Their method makes use of the classical Routh-Hurwitz
stability array and is applicable to SISOsystems, The natural

extension of this method to multivariable systems is given below,

The common denominator polynomal of a general multiva-
riable (1 x m) transfer function [9(5}] may be reduced to a lower
dimension. The numerator polynomials of each of the scalar
functions gij(s) may then be reduced by the method Krishnamurthil
et. al YjBl . This natural extension is included here as it
can form the basis of a computer aided model reduction technigue

as given is the steps below.

Step 1 Find the transfer matrix {Q(s)] from . the: state space

description (4, B, C, D) of a high order system.

Step 2 Find the reduced model [R(s)) of dimension r as given

above

Step 3 Find the numerator by Routh-Hurwitz array as for the

denoninator,



METHOD 3

1.3 PADi APPROXIMATION AND DOMINANT MODE RETENTION

Consider thne following high order systen transfer function

G(s) as shown below:

o 2 _n=1 ,
G(s) = Bo T BqE T B8 T oeer T EnqR (L)
(s+x1) (s+%2) e (s+An)
bO + bqs + bgs U bns

where N(s) denotes numerator of (4).

G(s) can be expanded into a power series about s=0 of the form

G(s) = cy * c48 + c,8° + L., (6)
where o = fg
0 bO
1 X -
C, = s Gy - b. ~3 i K o)
kK~ by [ %k 321 3037 # (7)

with a_ = 0, YKy -
The bi are directly proportional to the time moments of the
system.

Assume that a reduced model GR(S) of order 1, is required

wihich retains the pole at s = -}u1 say,

L * D O
ao + a1s + azs + ,.. * a._qs .
Let GR(S) e e ey 2 SRR (8)
bo + b1§ + b2s + ,., t bls



The order of the numerator of GR(S) and G(s) have been assumed
to be one less than the desominators to simplify the notation.
Then for GR(S) to be Pade approximant of G(s) we have from

equation (3), following set of equation.

¥* B #*
4% = Pg g
a, = bo cy * b1 o
O = bycygtbycy g+ ... +by,cy +bycy (9)
# * *
O = BgCopq ¥ PO * aee F B Oy
with by = 1

But since GR(S) is to have a pole at s = -}, then
using the concept of Pade approximation about more than one

point, the last equation of (9) is replaced by the following

equation.
_ * k2 * 3 1 1
0 = bO - b1 1 + b2,1 - bB _,\»I + ... t ("/') A\d‘ (10)

%
Hence these equations are solved for the coefficients of biy

<l
W
a o

3 (1=0, 1, ..., (1=1))of equation (8).

Now suppose that reduced order model GR(S), retains
the 1 dominant poles (i poles nearest the origin) of the high
order system. Further suppose that the ] dominant poles are

known, GR(S) can then be written as



ar + ar s roan s+ ¥ an 1-1
_ o TP ETE S v el A g ® (11)
GR(S) = o SRS 1 w3t~ o oy Acu ham e Ten e remwms m—— % o— . 4

(s +l;1) (s +25) ... (s +}\l)

From denominators of (11) and (8) all b, for 1 =0, 1, 2,

...(1-1) can be calculated. Then if Gy

G(s) in the Pade sense about s = 0, then the ai(i =0, 1, 2,...,

(s) is to approximate

(L-1) may be deteruined using the first 1. equations of (9).

So far it has been assumed that the dominant poles of
the system are known which in most cases is not necessarily
true. In such cases, the roots of the denominator polynomial

can be obtained by LIN's method,

If the system 1s described in state-vector form

A§.+ sl (12)
CX + o

¥

The system transfer function is given by

G(S) = C(SI - _;'ll)-'/l B + D
- -2 ' -
= (C A 15 + D)+ CABs+(C A 33 s 4 ... (13)
.
=cO+C,'S+CZS +0385-z—0.,
where
¢, = C ATB+D
c; = C A”‘l+1)B iy 0 (14)

Hence the reduction algorithm is applied to the expan-

tion (13) where the coefficients are obtained using equation

(14).



If the system being modelled is unstable, then it is
important that reduced model should be unstable as well. Hence,

unstable mode of G(s) must be retained in the reduced model.
Roenig's theorem and its generalization 7] may be used to

compute the unstable modes as follws:
Given G(s), the following transformatipn is made
s = (z-1) / (z+1) (15)
to‘get a{(z).

The unstable poles of G(s) are mapped outside the unit

"circle in z plane, expand G(z) in the form

-— 3 2 L | 2
G{z) = dy + dqz + dpoz” + .., (16)

Then applying LIN's method we get all the large magnitude
poles of G(z) which in this case will be the »oles outside the
unit circle. Having computed the unstable poles, the coeffiei-

ent of G,(s) are computed as before,
[ )

1.4 REDUCTION OF MULTIVARIABLE SYSTHM

The Pade approximation technigue has been extended
to the reduction of multivariable systens [ 7, 8 ] . However,
the method may inveolve large amounts of computation which may

make the reduction of the system less desirable.
For a multivariable system

v(s) G(s) u(s) (17)

L1}



Where Y(s) is the output m-vector and U is the input
r-vector and G{s) is the transfer function matrix of the system.

Eq. (17) may be rewritten in the form:

, 2 ) n-1
+ A, 8 + A5 8%+ + A s
1 2 T -1
{g{sf) - MOWMWMMW.WMW"W,?LWL.%%Tmp.ﬂ“mE"w,m (18)
+ s
bo b1 + b2 s + + 00 + bn S
d(s) = b~ + Db, s+ b 52 4 + b s (18a)
o* " 2 st 0
Where A, (i=0,1, 2,...,(n=1)) are (m x r) constant

matrices and b, (i =0, 1, 2,...,n) are scalar constants.

G(s) can be expanded in the power series of the dorm:

{g(si)= Co ¥ Cy 8 * Cy %+ .o : (19)
where ¢, (i =0, 1, 2,...) are {(m x r) constant matrices,

i1
_ 1 . . 4= (
°i TEyT LA 0 big 31 1=0h2... (20)

Thus using Eg., (20), the matrix transfer function may be
expanded into a vower series. Let the reduced order model

have a matrix transfer function of the form:

L AT e A s v Ar sS4 L.+ 4 st
G(Sﬂ: O e = (21
R * & L r~2 . 5 cl /
bo hy b,l s + b2 > +°°°‘|‘ bl he)

Where Ai(i = 0,%1,000,(1=1)) re (m x r) counstant
matrices and bi (i = 0,7,...,1) arc constant scalars. By

apnlying the LIN's method, the roots of the denominator



polynomial are couputed. The dominant poles (or any other

desirable poles) of [G(s)]are retained inﬁ@R(sﬂ. The numerator

coefficients of[gq(sj]are chosen such othat[@R(sj]approximates

ig(sj}in Pade sense.

(1)
(ii)

(iii)

The procedure 1s as follows:

The common denominator d{sg) of[g(sﬂ is found.

By applying LId's method or Koenig's theorem and its
generalization to power series expansion of (1/d(s)):
the 1 dominant poles on@(si]are found. This then
determines the coefficients bi (i = 0,1,2,...,(1-1))
in (21). |

The numerator matrices (Ai) ongR(s)]are then computed

as follows:

AO = bo q

A1 = bo Cq * b1 o

o ¢ ik PN
Ay = bO Cy * b, S b2 o 22)
A1-1 = Dy Ciq * by oyt ..l bl-1 cq

Thus {gq(s)]can be chosen such that its first 1 time
I

moments are equal to the first 1 time moments of[@(si}
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The Pade approximation apnroach ‘has three basic

difficulties; viz.

(1) The reduced model may be unstable (stable) although

the parent system is stable (unstable).

(ii)  The Pade approximant often shows poor metching in the
transient zone, although the steady state values are

the same as for the high order systen.

(iii) The Pade apnroximant often shows non-minimum phase
characteristics (i.e. inverse response due to zeros

in the rigat half s-plane),

The techniques reported hereafter attempt to remove

such difficulties.

METHOD &4

1.5 PADE APPROXIMANT USING A MIXED METHOD

The mixed mathod for deriving stable low-order equivalents
of high order systems, given below, is computationally easy to
program and conceptually simple., It combines the Pade’'s

approximation technique and the Routh - Hurwitz array method[13].

1.5.1 Case 1
SINGLI INPUT SINGLE QUTPUT SYSTHEMS

Lot the nth order system transfer function G(s) and its
th . . . ,
r order reduced equivalent R(s® be described by



11

n N T
6(s) = 3 8y s a(e) (23)
J=1 "
2,
= Cp *t ey 8t o, 8T 4L (24)
and
s) = SHVINE) (25)
R(S) N J&»‘ b29J © /Al" s) A
where (n+1) .
A(S) = 3 a,] . S'J-l p
5= 153
A (s) = denominator polynomial of degres r,
P .

Eqn. {24) is the power series expansion of (23} about

s = 0. The method consists of the following steps:

(1) For convenience, the even and odd terms of A(s) mway

be separated and rewritten as:

a(z) =25 a4 54 =23, 522,k Jn-(2k+1) (26)
where

J = 0,1,2,...,n/2 and k = 091,290,,,(n»2Y2 for n eveu

j = 0,1,2,...,(n=1)/2 and k = 0,1,2,...,{(a=1)/2 for n

odd

From the R-H stability array for the denominator poly-

nomial in (26) as follows:
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—
N

a
n,1

%4,

The above array ig formed by the well known algoritam:

= a

a

Where 1 3y 3 and 1¢ J ¢[ (a-1+3}/2 7, '] stands for the

integral part of the quantity. A polynomial of lower order

r may be easily constructed [ 13] with (n+1-r)th and

(nv2=-r)th rows of the above array, to give -~
al - r ~ Oln“"/] - r"z
o r(o) = B(ne1-r), 1% *B(ne2-r), 1% T (n+ier),2® ; N
29)
Tgn. (29) may be put in the convenient form:
A l—,(S) = (S-—.\,I) (S°7‘»2) o (5)‘r)
] N |
= I pud (30)
3=1 4
T‘J\rlt.h b1 , 3‘"":“1 = ,l °

whers the b

(i1) For R(s) of Eqn. (25) to be the Pade approximant of

p—

1,3 i-2,3¢1 ° (alic.z,w.aiuq)J-H)/(ai_“m) (283

o
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cy b ¢ (31)

bzr = b/l Cr\"1 + b2 Cr‘_z + ¢ 00 + b r O

r-1

After substituting the . values of oi(i=0,19°,v,(r~1) ) and
bj(j=1y2,..°9(r+1)) from Equs. (24) and (30) respectively,
the b93(3=1,2,.“‘,r) can be found by solving the above r egne.

Now R(s) is coumpletely determined.

1.5.2 Case 2

MATCHING A COMBINATION OF TIIME MOMENTS AND MARKOV
PARAMETERS

-

The Pade approximation technigque basically matches the
initial few tiie monents of the original and reduced systems
and hence a good matching 1is achieved in the steady -~ state
zone where as the transient response will only be apnroximate.
To have overall good approximations in the low and high frequency
regions, the above mentioned method is modified below to match
a combination of Markov parameters and time - moments of the

original and reduced systenms.

Let the nth crder system transfer function G(s) and its
»™ order reduced equivalent R(s) be described by
S J=1 .
Gls) = 3 2y 457 /als) (32)
=1
_ (o) T -] /" 3\
= I I\Ll S (33)
i=0
= 5 P, st (34)
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and ) r =1 .
R\S> = 321 b2,j 8 /AI‘(S) (55)
where <n+1) 1
als) = z ; a1yjsJ H Ar(s) = denominator polynomial
J:

of degree r.

Eqns, (33) and (34) are the power series expansions of
Zaqn. (32) about & => , and s = 0, respectively. M, and T,
. N, ' th o, . , cth L.
are provortional to the 1 Markov parameter and the 1 time-
moment of G(s) respectively and may easily be obtained by
expanding G(s) either in negative or nositive power of s,

The reduction method consists of the following steps.

—~
| andd
e’

Same a3z step 1 of previous nmethod,

(i1) A3suge that the first time-moments and first  Markov
parameters are identical for the original system and the
reduced models. Then one may solve the following

relations to determine the coefficients b, 3 of fqn.(35).
. ?

P2,1 T P1 %o
g = Pq Tooq * B2 o teem b g Ty R T

= ) / o o
b29 (l"" '@‘,‘ ) br+1lxﬁ_1+br‘1\’jﬁ-‘2+, 0 °+b<r‘mﬁ ':.‘B)M’] i‘D(r"B *2)1\/10

.
.

*
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by o = PqMowh Movb M
P2 pe1 T Preqliy¥oty (36)

K
+

w
I

~

and
a = number of time moments matched.
B = number of HMarkov Parameters matched.
On substituting the values cof M,, T, and b, from
Egns. (33), (34) and (30) respectively, the r linear rela-

tions in Egn. (36) may be solved to find r nunmerator coeffi-

cients b, 5 R(s) is then complétely determined.
$

1.5.3 Case 3
1.5.3.1 1ULTIV RI..BL%S SYSTEMS

Let the n® order transfer function [G(s)] and its o0

order reduced equivalent| R(s) be represented as

| B, s
DR BT (57)
Lats)] = (s) A (s) |
r .
n «J=1
Calan [ 3(s)] _ 321 22,55 5
ae) - L2 - Rt (50)

A (e)
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Where [A(s}], [B(s)] are (m xg) polynomial matrices and

s(s),a (s) are scalar denominator polynomials, r = deg
th

fl

Ar‘(s), and n order denominator

deg. A(S)> r., The n
polynomial of Ig(sz may be broken into the even and odd

terms in the powers of 8 as shown in (26).

(i) Same as the first step of previous method, we finally
form the denominator wvolynomial of{R(sh as given in

Eqn. (30).

(ii) Expand [G(s)' into a power series expansion

|
(about s = 0) +to hget

(G(s) ] = . I c, st (39)
where,

N (i=0,1,2,...,(r=1)) are (m x q) constant matrices.

(iii) For [R(s)} to be a Pade's approximant to EG(s)1,

we have
32,94 0 Cg
Bmy2 = bi 4 + b2 Cq
i (40)
82,0 T 09 Cpuq T By Cpp TeeeT D g 0y ¥ by, Ch

From the above equation, B, 5 (3 = 1,2,...,r) may be
9
easily determined by substituting the values of ci(i=O,1,...

(r=1)) and bj(j=19293,,,,9r) from Iqgns.{(39) & (30) respectivzly.
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1.5.3.2 MULTIVARIABLE SYSTEM REDUCTION BY MATCHING TINME
MOMENTS AND MARKOV PARAMETERS

In this case the transfer functions [G(s)] and the

reduced approximant | R(S)] are given by Eqns (37) and (38,

where
A e
LG(S)} = f; M s (41)
= 3% T, st (k2)
i=0 -

and unlike to quantities defined in (33) and (34), here the

Mi and Ti are matrices,

1.6 METHOD 5

STABLE BIASED REDUCED ORDER MODELS USING A MODIFIED
ROUTH - HURYITZ ARRAY

The method of Krishnamurthi et.al. [13] makes use of
the well established Routh - Hurwitz stability array and is
apnlicable to single input single output systems. Through
an example Krishamurthi reported |[13]  that the poles of
R(s) aporoximate the poles of G(s) that are closest to the
origin. Thus it follows that this method of approximation
is about & = C. Thus, this method gives stable reduced models

but has the following disadvantages:

The reduced models match the steady state response well

but the transient response matching may be poor. To overcome
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this disadvantage a modified algorithm is suggested|p7],

which is basically based on & modified Routh - Hurwitz array.

Let the nob order system transfer function G(s) and its

™ order reduced equivalent R{s) be given by
n .
‘ ;-1
# a
5—":1 1293
G(s) = R . (43)
a (s)
_.'...‘]
= oM, st A
i=0 4 (44)
= zoo T. Si (l‘{'5>
i=0 *
and

r . .
J=1
z b2 S

Hi

" - J
a(s) = =L_7N (46)
A (s)
Let A (s) be given.by
Yo
{(n+e1) .
(s) = T a. . s9”
A LS, J=1 1 J
o | 2 2 n-2
= d,,},]'ra,lz IS d,]B S & ,M-l-a,"nu,l S
N =1 D \
T ,n o T B B (47)

The Routh Hurwitz stability array of a(s) ik (47) may
be formed as in the first step of single input single output
systems (page 10). The poles of reduced model are found by
this method. Tae poles nzarest to the origin are retained

while the poles which are away from the origin are neglected,
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because, the poles which are near to the origin decide the
transient behaviour of the system and are the dominant poles.
However, in order to obtain better approximation of the initial
transient response (i.e. near t = 0) it is important that
The roots of Ar(s) should be chosen to approximate the large
magnitude poles of G(s), as well as the small magnitude poles,
This 1s achieved by the modified Routh - Hurwitz array which

is described below:

The basic idea behind this modification is to retain
the large maghitude poles which are redundant elements in

general. For this, the reciprocal polynomial A(s) defined by

X(s) = s"a(1/8)

ne1 n~2 2

' o, g : <
= a,',l~ ‘ra,IZS +a,]3., «-,,,+a,]9n_,! 19np+a1yn+,]

It siﬁply reverses the order of the polynomial coeffi-
cients of a(s). The basic property of this reciprocal trans-
formation is that it inverts the roots of +he original poly-
nomial, Therefore, if & (8) has all its roots in the left
half plane, then so will x (s), The small magnitude poies
of a(s) will become the large magnitude poles inx (s) and
vice-versa, In fact, the small magnitude poles correspond
the large magnitude poles of 4 (s). Thus of R (s) is used to
form <the standard Routh - Hurwitz stability array, the

1 can be

i

method of single input ° single output systems step
used to arrive at the dominant poles of A(s) i.e. it contains

the large magnitude poles of A(s) because it is inverted. -
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Once this is done, the appropriate number of small as well as
large magnitude poles may be retained to form A-E(s)-, The
numerator terms b2,j(j=1’2"°°?r) of R(s) may then be obtained
by matching a number of Markov parameters and time moments as

shown in Eqn. (36).

1.7  CONCLUSION

In this chapter we have described the classical Pade
approximation technique and its various modifications for
obtaining reduced order models, In the hmixed metnods we
find the stable denominator polynomial and the numerator
terms are then found by matching the appropriate number of
time moments and/or Markov parameters of the original systenm
and its reduced equivalent., This process eliminates the
problem of Pade approximants often given unstable models for

Stable Systéms,
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CHAPTER - 2

ALGORITHM FOR TRANSFER FUNCTION

In this chapter, the algorithm due to leverrier is
described with modifications highfignted in (20] . The
Leverrier algorithm gives numerical errors when the dimension
of matrix A increases., The modified algorithm increases

the accuracy.,.

2.1 FADDERVA LEVERRIZR ALGORITHM

The algorithm widely used té oalculéte the coefficients
of the characteristic polynomial 1is the algorithm of Leverrier;
alterhatively called the algorithm of Souriau, Frame or
Faddeeva, The algorithm calculates the coefficients ay of

the characteristic polynomial p(s) of matrix A4 3

n

- 2 N n n=1 n-2
p(s) = Det (sI-4) = a,s8 ta st +a, tooova (48)

and the matrices B; of the adjoint of (sI~A):

n=1. - ne2

adj (sI-a) = Bs"T4B,s™ e, 4B (49)
then:
B, = I ay =1
a, = m%m Trace (A B, ,) for i =1,n (50
B, = 4By, +a, I

A nice additional test on the accuracy of this algorithm

is given by the equality Bn = 0,
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Though the method is easy to program but it is a well
established fact that nearly all arithmatic operations on a
digital computer introduce an error due @gto the limited
accuracy with which the nos are represented. From equation
(50) it can be calculated that these errors will accumulate
from ay to a, and from B1 to an so that CI and Bi+1

will be less accurate than a; and Bi respectively.

2.2 MODIFIED FADDESZVA LEVERRIER ALGORITHM

Due to the above mentioned deficiency of the ordinary
algorithm, the latter coefficients should be obtain in a
differert manner., Such an approach is possible by using the
coefficients b, of the characteristic polynomial q(s) of the

inverse of A and the matrices D, of the adjoint of (SI-A_1)g

LS (51)

. - - 1 _
g(s) = det (sI - A™') = by ; . N

adj (sI-A-1) = D21 4 D,‘s“‘2 +... v D (52)

0

Then, the following relations between a; and bi and

hetween Bi and Di c'in be used:

o)
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Moreover,

det (sI-471) (sI-a"")

)

adj (sI~A-1)

n—1)

W

R A PRY <L S ;
(d.(;t ‘../1 ) ) ( 1) (I+B»‘U+ooo+8n-»}s

(55)

So, from above analysis, it is evident that by using
one additional matrix inversion and one determinant evaluation,

ARl

the same Faddeeva Leverrier algorithm can be used, First

to calculate a; and Bi from 4 and then bi and Di from A'1,
Only the first (m=-1) elements a; and B, of 4 and the first
(n-m) elements b, and D; of the 471 need to be calculated. The
value of m has to be selected between (n/2) and n. The

critical wvalue on average comes as 2n/3 offers good results

[ 20].

The modified algorithm is nows

B = I3 ay=1.0, m = 2a/3

a, = % Trace (A 31_1) for 1i =1, m=1

Bi = A Bi—1 + ai I

o = Is a,=(-1)" det s

b, = = = Trace (1,"1 Di-1)

D, = 4 b, *b, I for i=1, nm (56)
Gp=i T @y bl

3 = - a 2~y
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2,3 TRANSFER FUNCTION

]

x Ax + Bu

where,

a(s)

i
M S

The B, and a; are calculated from (50), If the determi~-
nant wvalue of A is non zero then the modified algorithm can

be aponlied to calculate a, and B, from (56).

2.4 CONCLUSIONS

The entire chapter is devoted fully to the development
of transfer function [?(SZS from state space equations. The
idea of accuracy is also taken into account which arose due to

the cumulative error in the calculation of a; andrBi.
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CHAPTER - 3

MODEL FOR SINGLE MACHINE POWER SYSTEM CONNZCTED
TO AN INFINITE BUS

The development of tnis model is based on [18] and
taken from [17]. The single machine power system is cconnected
to an infinite bus and shown in Fig. {(1). 1In this power
syétem, generator ig provided with a double time constants

speed governor.

3.1 MODEL DEVELOPMENT

The electro mechanical oscillation of synchronous

generator about a steady state operating point S0 can be given

by
where
D = cyah * o Eq (59)
_W L g e e |
€1 T v T7g v Y’]Q sing (Oo. @12) (60)
b = Z:IP = ) Y cos 9 + '\[Y ) cos /'E.)V__Q ) (6»]\
1 tEq “q 11 R 12 = AP0TF12 /
and |
2 . . ¢ PN
= E 4 < o -
p By Y,, cos @11 +,“q VY,, cos (oo @12) (62)

The electro magnetic oscillation of the power cysten

can be exprzssed by

AEq + p Tdb A}'Eé = AE_eX {63)
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/ /
! = 4 [ { [ !

AEq , Eq (x4 xd) I4 (e4)
I, = Eq Y4 €08 8pq % V Y , cos (bo'g12) (65)
= . : - -

From equations (64) ani (66) AE% can be given by

AEq = - (Xd—Xé) VY, cos (@12~£O) Ab+ 1 + (xd-xé)
Y, . 8in 6,, AE
11 S g0 Ay
E; = Cpbh t by e - (67)
cp = = (xy- d) V ¥y, cos (65,-%,) . (68)
by =1+ (dexé) Y, sin 84, (69)

The terminal voltage Vt is given by

> 2 2

vy = Vd + Vq

v, = (v, +v}/? (70)
t d o]

Vg = Eq - %5 1 (71)
Vg = Xq Iq : - (72)

Substituting for Id ani Iq in the above equation we get

1, EAC) 1 _Yg, 24
. V m,...,g. + ] “+ e AR
v, LV 3% YRS VtL S, Y4 iE ] T
g >)
N b3 a8 (73
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where
a2V Vv
= ey =2 4
°3 7 ¥, L Vg 557 Ve 51 (74)
~V BV
1 e “°d
by = = V_ 5= Vo (75)
3 + L SE, a 3% ]
The governor output 'n' in equation (58) can be given by
d2 d |
a R+ Ry p = oot (76)
dt dt - :
Defining .
w o o=a g
Py = D (77)
AR ’
U = 53
Ta0

We get the following state eguations from (58), (59),
(63), (67) and (76).

- - — } ; mq =
: o o
Tl Tm C e 0 O %y T
NS o o 1 0 0 '{m lo’
w = -b1/M ~c1/M -D/M 1/M 0 g o l+' 0 g u (78]
P o o o 0o 1 ép oi
P
1 5@; ! 0 0 -c/a -1/a -b/a g p1§ ; 0 f

|

!
. H vt - s b g

3.2 CONCLUSION

The model of single machine power system connected to

an infinite bus is developed in well known

.
X = aX * Bu, state space equation form. The matrix

<N
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equation contains the matrix 4 of order ( 5 x 5 ). 1In this
model the fiwe variables are taken into account while the
power eystem contains more variables. The central idea
is to analyse the system with the help of model reduction

techniques and check its effectiveness.
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CHAPTER =~ 4

APPLICATION OF REDUCTION METHODS Iil A POWER SYSTiM

The chapter is devoted entirely for the development of
transfer function from given power system model (78) by LZO]
and then the reduced order models are found out by applications
of reduction techniques especially Pade approximation technique,
Krishnamurthi's [12] Routh - H:urwitz array method, the modi-
fied method of Pal |[14] , and othar mixed methods and by the
retention of dominant poles. The methodsapplied and the developed

reduced order models are presented here,

4.1 SYSTE MATRIX A, B, C

The values of described parameters of A are taken

from. {17] as:

M = 1,000 D = 0.50

B, = 1.482 v, = 1.00

P, = 2.105 o = 60°

Tio = 2.0 sec Yiq = 0.266 - 3 1.530
x, = 0.084 yi, = 0.180 + J 1.080
xqg = 0.320 | a = T,7T,=0.05

T1 = 0.100 sec b = T1+T2 = 0.6 sec

T2 = 0.500 sec c

i
(@)
O
Ut
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with the heln of these values the matrix A is found as:

- 0,183 0,0 0,227 0.0

0.0
' !
L 0.0 0.0 1.0 0.0 0.0
A = '-1.815 -0.57 -0.50 1.0 0.0 |
. 0.0 0.0 0.0 0.0 1.0/
i \
0.0 0.0 «1.0 -20.0 =12.0: (79)
3T = (1.0 0.0 0.0 0.0 0.0 ]
and
T
¢ = [1.0 0.0 0.0 0.0 0.0]
The =state wvector
X = [AEq NS W P ps ]

Using thz set of equations from (50); we get the
transfer function of the power systen with given matrices

Ay, B and C ass

cls) - 11.417.85+26,575°512 52 ws".

1+12,68813+29,3%28+27,7791s"+22,9928s +2.14325
This open loop transfer function can be written in
the forw given below taking the coefficient of 55 ag unity.
% 3 " , - 2 3 4
a(s) 2.:51915x8.32408+12,397358" %5, 8324087 0. 566595 _ .
T J L . vt R e N I R s veer e T

[2
C.45659+5,920128+13, 686085 +12,961465”+10, 728225 s’
(81)
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The power Series about s = 0 (time moments)

G{s) = 11.4-126,804s+1301.08s2-13093.,0s°+151222.0s " (82)
| 2 |
= 001‘015*‘028 +CBSB+ ,,,,,,
he powar Series about & = (Markovaaramefer)
( = ceEge 1, 00 -2 5 = =3 e % -4 o ﬁ'-i
G(s) = 0.40659 +0.82672s ~=2,51957s “+18,2532s -~171,92508 =

(832

<+ -2 -3
= m s’ + m + mAS
o It 1 S nl2

+ 6 o o



4,2

4,2.1

by Pade

G(s) =

or

GR(S) =

APPLICATION OF METHODS

METHOD 1:

Using the equations (9)

approximation technique

Matching time moments only

“45.83045”

0. 45659

: ' 9]
+12.,397355°+8.,3240s
2410, 728225412 . 9614655413 . 626085°+5 . 920125+0. 46659

Cc +C,S8+4C <2+c SB?C SM_
) S - L
o 2 3 L

11,4-126,85+1301.085° 130938 +1312225 - 131416087+ . . .

o= =2 -3
mos rm,l S +m2

t
T

O]

0.46659s” 1 +0.82672s"

friqstiad

3 t3, 6+3 52+“ 35
o /, i 2 [} 3 K

Using Pade set of

A =c¢ B
0

o o 1

Ay = Co By + Oy 31

0 = Cs Bo * CH B1

0 = Cy By ¥ ¢y By
3+

0 = °5 “o 4 By

2

#5519

32

-2.519578 2+13.25520s " *=171.9255 "

linear simultaneous equations

+

D)

reduced model of third order

(85
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Taking 33 as unity and solving last three equations:

we get
3 = 1.0
By = 1.144932
B, = 0.41537h
B, = 0.0310591

Using theze values of B

three ecuations of above set, we get:

A= 0,3540737

0
4, = 0.7969697
Ay = 0.7931754
S0 .
; a 705 2
GR( s) 0.3540737 + 0.7969697s + 0.793 175&5 g (88)

N

0.0310591 + 0.415%74s + 1.1449328° + s

Results are in table 1 and response is shown in Fig.(2).
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TIMZ RESPONSE (METHOD 1)

34

Time (sec)

Original Reduced
0 0.000000 E+00 " 0,000000 E+00
1 0.,704090 E+00 0.757423 E+00
2 0,155366 E+01 0.149002 z+01
3 0.231412 E+01 0.222202 7+01
4 0.297397 =+01 0.294820 E+01
6 0.426036 E+01 . 0,433677 E+01
8 0.555613 E+01 © 0.555615 E+01
9 0.612406 E+01 0,609962 01
10 0.662115 E+01 0,659699 E+01
12 0. 746061 E+01 0,746212 E+01
14 0.817164 E+01 0.817431 &+01
16 0,876170 E+01 0,875837 #+Q1
18 0.923733 &+01 0.923676 501
20 0.962751 %01 0.962850 E+01
30 0.107474 E+02 0.107474 E+02
40 0.111596 £+02 0.1115%6 E+0z
50 0.113114 E+02 0.113114 1+02
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bh,2,2 METAOD 2

"Using the method of Routh Hurwitz array (stability)

and technigue of reduction highlighted by Krishnamurthi

[jé} y the reduced order model of third order is found as:

Reduced Model by Routh Hurwitz array-

The numerator stability array of (84)

4

s 0.46659 12.39735 5.31915
&’ 5.83240 8.3240

R 11, 73143 5.31915

5] 5.6795%

s® 5.31915

The denominator stability array (84)

57 1 12, 96146 5.92012
s 40.72822 13.68608  0.46659
s 11.68575 5,8766%

s° 8.29098 0.46659

s’ 5,21899

s 0.46659

(83)

(90"
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So numerator for third order reduced model is
Ny(s) = 5.31915 + 5.67953s + 11.73143s" (91)
and denominator from (90) is

(s) = 0.46659 + 5.87663s + 8.29098s° + 11.685755° (92

O
U
() = QAS518 % 0686028  1.0039%7 (93)

0.0399% + 0.50289s + 0.709508° + s°

The results are in table 2 and time response 1is

shown in Fig. (3).



TABLE - 2

TIME RESPONSE

(METHEOD 2)

37

'Time (sec) Original Reduced
0 0.000000 1+00 0.000000 E+00
1 0.704090 %+00 0.908732 E+01
2 0.155366 1+01 0.169081 E+01
3 0.231412 E+01 0.241615 E+01
4 0.297397 E+01 0.311818 i+01
6 0.426036 E+01 0.445695 E+01
8 0.555613 +01 0.563169 E+01
9 0.612406 u+01 0.613899 E+01
10 0.662115 #+01 0.659473 E+01
12 0.746061 E+01 0.737660 E+01
14 0.817164 E+01 0.802676 E+01
16 0.876170 Z+01 0.857597 L+01
18 0.923733 Z+01 0.903870 E+01
20 0.962751 301 0.942560 T+01
30 0.107474 T+02 0.105904 ©+02
4o 0.111596 3+02 0.110680 E+02
50 0.113114 +02 0.112636 E+02
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4,2,3 METHOD 3

It is better to consider the poles which are nearer
to the imaginary axis or origin, It is best established fact
that the poles winich are near to the origin have the dominant
role on the overall behaviour of the system. wWith the help

of equations from (87) to {(89) we get:
Pade Approximant -~ Dominant Roots.

Dominant roots (poles) of tramsfer function 84 are

s, = 0,099870356
s; = 0.30111677 . (94
55 = 0.30111677

Froin (94) the denominator of reduced order uwodel is

Dy(s) = (¢ + 0.099870355) (s + 0.30111677)°
3

[}

0.0090554 + 0.6929058 -+ 0.702104s% + s

and numerator

Nq(s) = A, t Ags o A252
and
A, = (B, = 0.1032315
Ay = Cy3, v L3, = 6.7508557
Ay, = C,B ) « CyBy + Cody = -68.07734
o (s) = 9:1032315¢5.75085615:68,077345° . .. (953

0.0090554+0, 69290508 +0, 70210408

The l"eSLll't: are ll] tJ’ble D af]d t;l[ﬂe I‘\f».:[)oﬂoe is ln L‘ién
{ )
\ °



TABLE ~ 3

TIME RESPONSE (METHOD 3)

Time (sec) Original Réduced
0 0.000000 3+00 0,000000 ©+00
1 0.704090 E+00 - 0.429067 3+02
2 0.155366 E+01 - 0.371236 5+02
3 0.231412 FE+01 - 0.126633 3+02
4 0.297397 E+01 . 0.107601 &+02
6 0.426036 ©+01 0.233578 £+02
8 0.555613 5+01 0.121409 £+02
9 0.612406 E+01 | 0.876475 1E+01
10 0.662115 B+01 0.821330 @+01
12 0. 746061 T+01 0,107821 E+02
14 0.817164 +01 0.119512 &+02
16 0.876170 1+01 0.113877 E+02
18 0.925753 w401 0.110601 E+02
20 0.962751 101 0.111851 1+02
30 0.107474 3+02 0.112584 E+02
40 0.111596 w02 0.112736 +02

50 0.113114 3+02 0.112885 2+02
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4,2,4 METHOD 4

A mix method which utilizes the combination of Pade
approximants and Routa Hurwitz array. The denominator of
reduced order model is taken from Routh Hurwitz array while
numerator is by partial Pade approximation. The Case 1 consi-

~dergonly the time moments while Csse 2 and‘Casé 3 take the
compination of time moments and HMarkov parameters to find out

the numerator of reduced model hy partial Pade approximation. .

Case 1 Matching all time moments

From equation (84} and equation (90} the denowinator

comes out to be such as (92) and numerator becomes such as

N(g) = Ay + Ags + AZSZ

Ao = NOBO

A, = CqBO + 3031

A2 = C2Bo + 3131 + COB2

The B,, 3, and B, are known from equation (92) and

SO
AO = 5.319126
A1 = 7.82997
A, = -43.568595
SO
G(s) - B8:319126 + 7.82997s - 43,5685958° (96)
RY” - - ‘o - 2 - 3 ’
: 0.46659 + 5.87663s + 8,29098s” + 11.68575s
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showhn

Case

Routh

The results are in table 5 ani time response is in Fig. (5).

2
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_ 0.45518 * 0.6700442s - 3.7283538°
0.0399281 + 0.502839s + 0.70950s° + 82

The results are in table 4 and time response is

in Fig. (5)

Matching one times moment and two Markov parameters

The denominator of third order reduced model from

Hurwitz array {p'

i

11.68575s° + 8.29098s° + 5.87663s + 0.46659 (97)
bqsmj - b352 * bys b1 (say)

set of equations of {36) from chapter one

it

x = 2, g= 1, r=>
= b, T, = 0.46659 ¥ 11.4 = 5,319126

it

11.68575 x 0.82572 + 8,29098 x 0.46659

= 13.529332

it

Doz = bylig = 11.68575 x 0.46659 = 5.4524541

2
Doq* bpos*hyzs

Dy (2)

5.319126 + 13.529332s + 5, 45245415.”wp

0.46659 + 5.87663s + 8.290985° + 11. 6&57535

0.03995 + 0.50288% ~ 0, 70019552 % &3

A\



Case

G {s)

G (5)

shown

3

42

Matching two time moments and one Markov -‘parameter

The denominator is same as (92);

byq = b, T, = 5.319126

bsy = b1T1+b2To = 0,46659 x (~126.8) + 8.29098 x 11.4

7.82997

L

b23 = oM, = 5.4524541

5.319126 + 7.82997s + 5. 4524)410”“A -
0.40659 + 5.87663s + 8, 290985 + 11, 08575°

0.45518 + 0.6700442s + 0.46659s°
0.059928 + 0.50289s + 0,7094955° « s~

The results are in table & and time response

in Fig. (5).

(9(1|



TABLE -~ 4

TIME RESPONSE (METHOD 4, CASE 1)

Time (sec) Original. Reduced

0 0.000000 E+00 0.000000 E+00
1 0.704090 Z+00 ~ 0.212908 =+01
2 0.155366 Z+01 - 0.160812 E+01
3 0.231412 E+01 0.399478 1+01
4 ©0.297397 @01 0.277078 E+01
6 0.426036 =+01 0.609554 Z+01
8 0.555613 7+01 0.708464L T+01
S 0.612406 Z+01 0.718951 E+01
10 0.662115 #+01 0.728549 E+01
12 0. 746061 =+01 0.771859 Z+01
14 0.817164 S+01 0.836928 1+01
16 0.876170 7«01 0.8 %354 T+01
18 0.923733 i+01 : 0,937504 BE+01
20 - 0.962751 E+01 0.968893 E+01
30 0.107474 T+02 0.106953 £+02
40 0.111596 £+02 0.111107 &+02
50 0.113114 502 0.112811 1+02



et ————b————

TABLZ

-5

TIME RESPONSE (METHOD 4 CASE 2)

R e T

Time (sec)  Original
0 0.000000 E+00
1 0.704090 :+00
2 0.155366 =+01
3 0.231412 E+01
b 0.297397 £+01
6 0.426036 Z+01
8 0.555613 &E+01
9 0.612406 E+01
10 0.662115 i+01
12 0. 746061 i+01
14 0.817164 7+01
16 0.876170 +01
18 0.,923733 T+01
20 0.962751 1+01
30 0.107474 %=+02
40 0.111596 1+02
50 0.1131494 T+02

S LTV g S AR e AL

[,

Coaan me

0, 000000
0.813818
0.204604
0.332986
0.443240
0.586477
0.663993
0.695895
0.728052
0.793557
0.853405
0.902064
0.940743
0.972689
0.107143
0.111187
0.112844

Li

Reduced

1 ncwre cmmiewesares

+00
i+00
5+01
5+071
E+07
3+01
E+01
E+O1
i+07
E+07
z+01
+01
E+01
T+01
Z+02
5+02
E+02

ey

ERTP
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TABLE - 6

TIMZ REZSPONSE (METHOD 4 CASE 3)

Ea:égswwmmwmazé;£MMmmwwmwMEQ&EJMMMwwm
0 0.000000 T+00 0.000000 E+00
1 . 0.70409 E+00 0.626468 7+00
2 0.155366 ©+01 0.149915 E+01
3 0.231412 ©+07 .0}247357 5+01
4 0.,297397 Er01 0.341802 +01
6 ~ 0.426036 +01 0.494922 =+01
8 0.555613 1+01 0.600802 £E+01
9 0.612406 T+01 0.643389 E+01
10 . 0.662115 5+01 0.682539 1+01
12 0.746061 101 0.754579 #+01
14 0.817164 £+01 0.818305 T+01
16 0.876170 &+01 0.871955 £+01
18 0.923733 &+01 0.915974 E+07
20 0.962751 E+01 0.%2352 =+01
30 0.107474 E+02 0.106304 T+02
4Q 0.111596 Z+02 0,110843 ©+02

50 0.113114 ©+02 | 0.112703 E+02



N »w..rm L::./,._)_ !um\u

NOSIHVCD 3914

")

\\\'J//IN'
\\ /
- - "§23S Ui awl] )/ m
g 9l bl 2l o]l 8 9 t /2 o
T T T T T T T 7]
_ _ [ _ | _ T 7 ]
/ /4
/ Vs d
/ \ mnu
\\ \\ N .m._.?
] c
\\ \\\\\\ pl.o.
¢ 80D  —wm \\\\ ! &
2 850)  —-— s —o
(Paonpay) | 8sD)  ———— . \\\
jputbti) ——— e ;. -
- GOHLIN -
- -
\\\\\\ —9
\\\ \\\\
- \ \\\ n
\\\“\ -
=
== —8
\\\H\M\
\i\\\.\\ -



L6

4,2,5 METHOD 5

The reduced order models are obtained by using the
stable biased technique. The method 1is briefly described
in chapter one and from equation (48) to (51) and (36) and

3). e get the reduced nodels as given below. Iilere Case 1

discribes the matching of time moments only while cases (2) sxs=mt

and (3) are the combination of time moments and Markov:

parameters.

Stability Based Reduced Order Models

D(s) = 2 100728225L+ + 12.,9614653 + 13°6860852 + 5.92012¢
+ 0.46659 (100}
Now inverted denominator 'isg: .

4 2

D(s) = 0.4665987 + 5.920125" + 13.686085° + 12.96146s

+ 10.72822s + 1 (101)

R H array of D(s) gives us

Dy(s) = 11.6857587 + 8.29098s° + 5.87663s + 0.46659
= 11.68575 (s°+0.700L040s%+0,5028885s+0,0399281)
D,(s) = 8.29098s° + 5.21899s + 0.46659 (102)

8.29098 (5°+0.6294785+0,0562758)

it

Dq(s) = 5.21899s + 0.46659
= 5,21899 (s+0.0894023)

And R array of (101) gives
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Dy(s) = 12,664532s7 + 7.98332425° + 10.64940Gs + 1.0

= 12.664532 (59+0.630%6865°+0.84088425+0. 0789606 )
Dy(s) = 7.98352425° + 9.0630328s + 1.0

= 9.9833242 (s°+1,13524555+0.1252611) (103}
Bq(s) = 9.0630328s « 1.0

= 9,0530328 (s+0.1103383)

Using the recinrocel transformation again, we have

the equivalent reduced polynomials for D(s) as

D;(s) = s + 9.0630328
Dy(s) = s° + 9.0630328s + 7.9633242 o (10k)
Dé(s) = 82 & 10.6494068° + 7.9833242s + 12664532

Retaining two dominant poles from D2(s) and one from

/

Dq(s far off pole, we have a third order denowizntor poly-

N

nomial as

i

Dy(s) = (s%40.6204785+0.0562768) (s+9.0630328) (105)

s2 + 9.69251085° + 5.76125668 + 0.510038L
3, 2 o
- b[“-u < b:—ﬁs + b2u T b

Case 1 Matching Time lMoments Only

5.8144378

hoot
H
(@]
o’
BN
B

Hq = C1b1 + Cob2'= 1.003416

A, = ch1 w Cyby * cob5 = 43 ,545003
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_ 2
?.‘.81["'4578+ 1‘003416“ +43°545QOBS e 3 (1 06)

C,IR(S) = 2
0.5100384 + 5,7612566s8 + 9,69251088° + s

The results are shown in table 7 and Fig. (6)

Case 2  Matching one time moment and two Markov parameters

o (c) = D:BI44378 + 5.3431486s + 04665987

5 3 (107)
0,5100384 + 5,76125668 + 9,6925108s° + s

The results are shown in table 8 and Fig. (6)

Case 35  Matching two time moments and one Markov parameter

) = 5:B144378 + 10034165 + 0.46659s°

A (108)
0.5100384 + 5.7512566s + 9,06925108s” + s

The results are shown in table 9 and time response

in Fig. (6).

The reduced models are
(1) Now reduced order models from Method 1 is (using Pade
approximant and time moments only)

R(s) = 0354074 * 0.7969697s + 0.7931755°.
" 0.031059 + 0.41537hs « 1.449525°
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S (2) From method 2, using Routh Hurwitz criterion
0.45578 * 0.48602s + 1,00391s°

0.03993 + 0.50289s + 0,70950s8" + s
(3) From method 3,.reduoed model by retaining the dominant

roots and Partial Pade approximants iss

R(s) = Q10323 + 6,75086s - 68,077345%
0.00906 + 0.69291s + 0.70210s° + s°

{4) Froim method 4, wusing the mixed methods:

A combination of Routh Hurwitz array and Partial

Pade approximants gives the reduced models as:

Case 1 Matching time moments only
R(s) = 0=45518 + 0.67004s - 3.728358° ..
0.03993 + 0.50289s + 0.70950s° + s2
Case 2 Mateching one time moment and two Markov parameters

q(s) = 045518 + 1.15776s + 0.46659s°

0.0399% + 0.50289s + 0.709505° + s

(5) From method 5, using stability bf#ased criterion
Case 1 Matching time moments only

5,814k + 1,00342s + 43.5450s°

R(S) = o 'Z' 3
0.51004 + 5,76126s8 + 9.69251s° + ¢
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Case 2 Matching one time moment and two Markov parameters

4 - q2
R(s) = 2:81444 * 5.34910s x 0.480098

0.5100L + 5.76126s + 9.6925%8% + s°

Cace 3 Matching +two time moments and one Markov parameters
(s} = 5:814bb + 1.00342s + 0,466595°
0.51004 + 5,761265 + 9.69251s° + s°
4.3 TIME RESPONSE )7‘95%

S Y
From the above we find that the steady state values

of all the methods match with original are upto second

nlace of decimal, Method 1 gives least error in the described
problem.. The various methods prez€fted herein - are algebraic
in nature and require sizple calculations that can be easily
automated., These methods do not require finding the eigen-
values and eigen vectors of high order system.  The solution

of high order non-linear equaticas is not required. Time
response of each method and model recuires almost same

computation time {CPU) about 0,87 seconds.

4.4 CONCLUSION

The method 1, viz, Pade approximant reduced order
model with matching time moments only gives poor response in
vtransient zone while matching Markov parameters gives poor
response in wteady state zone. ,Although it is a good tool

for model reduction yet in some cases it gives stable (unstable,
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models for unstable (stable) original systems. The method is

computationally simple and it occupies less memory location.

Method 2, makes, use of classical Routh - Hurwitz
stability array and is applicable to single input single output
systems. This method is also computationally simple and gives
satisfactory results. The unit step responses of original to
reduced model shown poor matching in the transient zone.
This is because the method, in effect, retains the most domi-
nant  poles in the reduced models and thus matching in the
transient zone may be sometimes quite ih error. However, the
transient vresponse of synchronous machines in electrical

power systems may be of much importance.

Method 3, retains all dominant poles. The time
response of original with reduced model is in-error in the

transient zone and the cause is the same as in method 2.

Method 4, makes use of method 2 and method 1, This
method also takes into consideration the combination of ‘time
moments and Markov parameters and hence reduces the errors

in the transient zone as well as in the steady - state zone.

Method 5, i1s the duplication of method 2. In method 2,
the poles of the reduced model R(s).approximate the poles of
the original system G(s) that are closest to the origin. Thus
it follows this method of approximation is essentially about

s = 0, which in the time domain corresponds to approximating
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the system response about t =« (i.e, all the emphasis is
placed‘ on approximating the system steady state response).
Though the reduced ﬁodels are stable, it may suffer from the
disadvantage that the reduced models approximate the steady
state portion of the response but the transient response may

be quite in error.



Time (sec) " Original
0 0,000000 1+00
1 0,704090 1+00
2 0.155366 T+01
3 0.232412 1+01
4 0.297397 ©+01
6 0.426036 E+01
8 0.555613 E+01
9 0.612406 E+01
10 0.662115 =+01
12 0.746061 2+01
14 0.817164 E+01
16 0.876170 #+01
18 0.92373% &+01
20 0.962751 3+01
30 0.107474 T+02
40 0.111596 Z+02
50 0.113114 T+02

TABLE -

7

TIME RESPONSE (METHOD 5 CASE 1)

R

e

B ea e g

o O O o O o O O o o o oo o o o o o

Reduced

. 000000
.296520
214942
.209906
.§45880
.367053
4198655
.559868
.6166%0
. 716287
. 797360
.862943
.917207
960755
.107196
. 111740
. 113249

£+00
E+01
+01
E+O1
5+01
E+01
E+O1
5+01
5+01
Z+01
5+01
+01
5+01
+01
2+02
E+02
E+02

53

e O DR s R AT e

A oS eIV Ty /T T

s,

axrs



54

TABLE - 8

TIME REUSPONSE (METHOD 5 CASE 2)

et e e e U VU
Time (sec) Original Reduced
emom it e re e oo e 1 et e et et o e oo+ e s ot e

0 0.000000 E+00 0,000000 E+00
1 0.704090 H+00 0.640314 E+00
2 0.155366 =+01 0.143212 &+01
3 0.231412 7Z+01 0.226839 E+01
4 0.297397 &+01 0.309360 I+01
6 0.426036 @+01 0.460957 E+01
8 66555613 15+07 0.589366 =+01
9 0.612406 TE+01 0.644883 T+01
10 0.662115 E+01 0.695046 T+01
12 0.746061 T+01 0.780989 E+01
14 0.817164 E+01 0.850524 7+01
16 0.876170 01 / 0.906658 i+01
18 0.923733 1+01 0.951930 E+01
20 0.96175'1 E+01 0.988426 T+01
30 0.107474 7+02 0.108846 E+02
40 0.111596 1+02 0.112247 E+02
50 0.113114 i+02 0.113404 Z+02
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Time (sec)
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10
12
14
16
18
29
30
L0
50

TIME

M K Y e AR YT L et 4T

R e (L eneae sme

TABLE - 9

RISPONSAE (METHOD 5 CASE 3)

Cr e

.000000
. 704090
.155366
231412
297397
426036
.555613
.612406
.662115
. 746061
0.817164

o O o O O O O o o O

0,876170
0.3923733
0.962757
0.107474
0.111596
0,113114

Original

E+00
E+00
E+01
Z+01
7401
E+01
E+01
E+07
+01
2+01
I+01
i+01
£+01
5+07
&+02
02
#+02
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Reduced

0.000000
0.317261
0.920076
0.167693
0.248440
0.404937
0.541778
0.601586
0.655837
0.749091
0.824706
0.885807
0.935119
0.974878
0.108380
0.112093
0.113350

E+00
5+00
E+00
E+01
E+01
5+01
E+01
01
z+01
a2+01
501
5+01
E+01
E+01
BE+02
02
E+02
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TABLE - 10

COMPARATIVE STUDY

Method No. Output yr AT Cumulative error J
Time = 50 sec

1 0.113114 T+02 0.264703 E-01
2 © 0.112636 Z+02 0.993987 E+00
3 ©0.112885 £+02 0.455290 7+0k

L Case 1 0.112811 i+02 0.343709 =+02
Case_? 0.112844 E+02 0.140725 o+02
Case 3 0.112703 ii+02 0.215544 E+O1

5 Case 1 0.113249 i+02 0.803555 i+01
Case 2 0.115404 2+02 0.212877 1+01
Case 3 0.115351 E+02 0.166341 E+01
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CHAPTER - 5

SUBOPTIMAL CONTROLLER DESIGN USING MODZL REZDUCTION

TECHNIQUE!

~The optimal control theory has a major drawback that
it requires feedback from all the state variables that are
defined to describe the dynamics of the plant. Unfortunately,
the entire state - vector is never available for measurement.
S0, the question often arises whether‘theee is any alternative
scheme to control the system in the absen82 of one or some
states. The entire chapter is devoted to optimal control for
the specified pbwer systeiun problem and then the rarametery
(unknown) are found out by suboptimal control.

However, in practice it is often impossible, very
expensive and too difficult to measure all the gtate variables
that are defined to describe the dynamics of the system,

The optimal controllers are very complex and thelr use in
higher dimensional systens could be prohibitive a& the cost
of controller increases with its dimension.

1

5.1 SUBOPTIMAL CONTROL USING PADE APPROXIMATION
TECHNIQUS

The closed loop transfer function of the plant with

the optimal coantroller with all states feedback 1is first
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designated as the model transfer function. And, then the
control structure with available states is specified i.e.
some states in feedback are missing. The closed 100D
transfer function of the plant with this specified controller
is determined and it contains the feedback parameter as
unknown gquanties., This closed loop tfansfer function is
matched with the model +transfer function Zusing frequency
domain model reduction techniques and thus the unknown

control parameters are determined.

5.1.1 DESIGN METHOD:

The design based ou [19 , DPP. 1007]

th

Consider the n order SISO 1linear dynamic system

desgcribed by

x(t)

I

Ax(t) + bU{t)

y(t) = of x(t) (109)
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The qguadratic cost function from optimal control theory

J= [ pN(E) ax(t) + rUf(t)] at (110)
o}
where
Q = (n x n) positive semidefinite matrix

positive weight

i

T

It is well known that the optimal feedback contrcl law
is a linear combination of th: state variables

T e x () = - KT

u(t) = -~ r x (t) {(111)
where
P = oyumetric positive definite nmatrix, the elements

of it may be found by Riecati equation:

2T« o - por TP + @ = 0 (112>

The closed loop transfer function with the optimal
controller of (111) is

| -
T [sI ~ 4 + bKT] b

it

T'(s)
botb/ls - bZS +'no+ b S T b S

- 0 e By el B (113)
8y, T a8 * ass +,..7 a

@] i
Eq {114) is the expansion of (1.0) about s = O
e

Now utilizing only the states available for feedback,

the suboptimal controller may be specified as:

o = -®7Tx (t) (115)
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Assuming that such a suboptimal controller existe. The

transfer function for suboptimal controller is

T(s) = e?‘isi - A+ bR % b
. q2 . m="1 m
- Qo B b2%2 Teert BpaqS o T b (116)
= 0. R
fo + f1s : fzs Tooo fn_qv + fns

The incomplete state feedback problem is concerned
. s ~ T . - .
witnn finding the elements of K ° on some basis., For subopti-
mal system response to be favourably comparable with that of
. - : o * ) P .
the optimal T(s} should approximats T (s} im (113) in
some sense. The design technique utilizes the Pade approxi-

mation method to find .unknown K L.

~e

For T(s) to approximatc T (s) in the Pade sense, we have

b, = f,4d,

- - J ) . B \
b, £d, + £id (117)
by = T4, +'f1dm»1_+“°°+ fndo
O = £ d g e..r £ d
O =1 dpen T Ty Gpepaq oot Ty 4

Assuming that 1 state variables (1 < n) are available

for feedback; the 1 elements of X T can pe explicitly deter-

mined in solving the first 1 1linear relations in (117).
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5.1.2 APPLICATICN

Our power system, synchronous machine excitation control

problem analysed, where

-0.188 0.0 0.227 0.0 0.0 .0
0.0 0.0 1.0 0.0 o,o; '0~O§
A= ~1.815  -0.57 -0.5 1.0 0.0 ; b= §0~0§ (118)
% 0.0 0.0 0.0 0.0 1.05 §0~0§
0.0 0.0 ~1.0  -20.0 -12.0 §O°O§

An optimal controller with the following gains is

found suitable [17]

KT = [-1.9068  0.4101 1,133  0.5694  0,0450 ]

11%
From {5) we have

.-—/c .I.‘:
T (s) = %?%% = 0.29406211-0. 344147550, 83947485 ~1,4713089s°
touo (119}
where ., "
Ws) = &7 + 12,587 + 26.575° + 17.84s + 11.4
D(s) = 52414 .58 455, 22359657+103 . 762275%+106.03773%
+38.767319

Assuming only first three states Xgs Xy Xy ArE availaw

ble for feedback, i.e. K, = Kz = 0 we get

sl 5

~T S .
KY = [k K K 0 07
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The overall transfer function of equation (8) becomes as

~ i{(s)
§ " L LD . 5
fo 4 f1s ST SosT qu - f5s
where
fo = 11.4&1 - 36.3§/ - D.765655 - 05 KB + 2.,143199
f1 = 17.84?{.1 - 21,7%K2 1 ;KB - 22,994003

f, = 26.57K1 - 1,815K2 - 21078K5 + 27.779205

£ = 12,5,?{1 - 1.8150, « 29.252001
£, = K, + 12,688
£, = 1.0

Finally, EBgns. (117) Dbecomes:

10.769766 = 3.352307K, - 10.6744505, + 8.132725 - 06K,
11.815911 = 1.3227853%, « 6.007607K, ~ 10.6744 Ky
24515355 = 11.2436510C, ~ 22.5111755, + 6.0879047Ky

Solving the above three equations:

K, = 1.9345537
K, = -0.4013802
ﬁ% = -1.0961199

with the above control paramcters

T(s) = 0.29406211~0.3441475S+O°859470332m19473431955

RPN
'+2,190458154_ seno \120,



63

£(s) = 52 + 14.6225535" - 55.503372s7 + 10%.78228s

+106.03773s - 38.,5752

The time responses for unit otep of optimal and sub-

optimal are given in Fig. (&). -

5.2 CONCLUSION

The major drawback of optimal coatrol theory is that
it requires feedback from all the state variables that are
defined to describe the dynainics of the plant. Unfortunately,
the whole state vector i3 zeldom available for measurement.
The suboptimai controller deszign s free from this constaint,

The Pade. approximation technique Ifor model order reduction

is used for arriving at the controller parameters,

The suboptimal controller design in this chapter is
based on partial state feedback., Tnc Cesign is suboptimal in

the sense that the closed loup trencfer function #£T(s) appro-~

xinates the optimal about s = 0, i.c., for lower frequencies,

&)

Thus, a useful feature of this metiioi is that the steady 'state

values of the output'of the suboptimdl and optimal systens
are the same for polynomial iaputs -7 the form o ti
(1 =0,1, 2,..., v). This is because the method, in effect,

matches the first v time momenis of tne corresponding systems.

B ~
On comparison of power series expansion of T (s) and T(s,,

viz, equations (1M9) and (120), we find that the first



64

v{v = 3) terms are the éame, It shows identical first three
time moments. This procedure shows exact matching in the
steady state region (Fig. 8). The time response comparisoh
in transient zone 1is guite close to optimal one. For overall
good approximations in the transient and steady stéte behavi-
our, the method could be extended by matching a combination
of Markov parameters and time moménts of the optimal and
suboptimal systems. The optimal ratio of the Markov para-~
meters and time moments to be matched depends on particular

preblem and is open to investigate in future.

x
The novel feature of this method is that when only
few states are available for feedback, dynamic compensators

may be included to increase the number of design parameters.
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0.1
0.2
0.3
0.4
0.5
0.6
0.8
1.0
2.0
3.0
4,0
5.0
6.0
7.0
8.0
9.0
10.0
20.0
30.0
40,0
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Optimal
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TABLE - 11

TIME RISPONS
TIME RESPONSE

e e e e

8.985214
1.607567
2.147953
2.540782
2.8006877
2.966331
3.039888
2.895769
1.767807
1.996104
2.,584664
2.829635
2.877358
2,898196
2.,918996
2.931270
2,936192
2.940614
2,940620
2,940620

E-02
1-01
E-01
7-01
E~01
£~-01
£-01
3-01
5-01
5-01
5-01
3-01
3-01
501
2=01
5=01
=01
=01
201
3-01

% (CONTROLLER)

© e

~ e

P T TP

Sub Optimal

8.974176
1.604091
2.141892
2.532584
2.797349
2.956417
3.031856

2,892120 &

1.778623

1.993799 &
2.530350

2,830567 =

2.878899

2.898148
2.918487 B
2.931058 R

2,936160

2.940614 %

2.940620
2.,940620

E-02
301
-01
7-01
5-01
2-01

5-01
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CHAPTER - 6

CONCLUSICN

The developmant of reduceu order models for the analygis
and synthesis of high order systems has been an area of active
research during the past decade, The present work deals with
the application of methods for model order reduction to a power
system model and the design of a suboptimal controller wusing
a model reduction technique. The work included herein deals
with frequency domain model reduction techniques and suboptimal
controller design based on the transfer function description of
the system. Detailed discussions and conclusions are given
at the end of each chapter and hence this concluding chapter
will be primarily devoted to summarizing the main contributions

of this work.

The first introductory chapter describes in brief some
reduction technicues. Model order reduction techniques have
bean developed both in the time and frequency domains. In
this chapter the Pade approximatiocn techniques and its various
variants #f are first described. The Pade approximation tecn=-
nique has an advantage of computaticnal simplicity. The
matching of time moments oniy gives a reduced model, The power
series expansious ofwhach agree with that of the original
system about s ='0 and hence steady state responses are accu=-

rately reproduced; whereas matching of Markov parameters
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engures good matching about s = * i.e. the transient response
matching is good., Hence W appropriate matching of some time
moments and Markov parameters results in overall good appro-
ximation., However, this technique cometimes leads to an
unstable model for a stable system. So mixed methods have
been proposed by various methods to overcome the stability
problem., In such methods the denominator polynomial is pre-
determined by using various #stebility criteria or by retaining
appropriate poles of the original system. The numerator teris
are then determined by the classical Pade approximation tecii-
nigue to match a combination of time moments amd Markov para-
meters, The choice of the number of time moments and Markov
parameters to be matched can not be decided a-priori and 1s
normally determined by trial and error procedure and depends
on the type of the original system being reduced. The relatec
steps in obtaining the reduced order model by such technigues

are described in this chapter.

In chapter two we describe different methods for obtain-
ing the transfer fuaction description from given state variable
equations, The classical Faddeeva approach is first described.
This method is known to give erronous results if the system
matrix A is of a high order. A modified algorithm is intro-
duced that removeg this problem of inaccuracy. Computer

programmes pave been developed for these methods.

The third chapter describes the development of state

space model for a power system which consists of synchronous
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machine connected to an infinite bus. The sSystem model is

developed using well known Parks equations.

In chapter four the various model reduction techniques
described 1in ch.one are applied to the power system model
developed in the previous chapter. A comparative study has
been made and the merits and demerits of the various models

have been broughkout in table 10.

Chapter five deals with the design of suboptimal contro-
ller using the Pade approximation technique. It 1is found
that a sﬁbOptimal controller using restficted state feedback
using the above technique gives a time response that cannot
be distinquished from the optimal one. Hence it is felt that
this method for suboptimal design may be used in practice that
will lead to simple oontrollerel as well as requiring feedback

from measurable variables.

Overall frequency domain reduction techniques have been
found to yield reduced order models for power systems and
practical controllers may also be designed fqr such systems.
This dissertation has been restricted to the apnlication of
above techniques in model order reduction and controller synthe-
sis  for single dinput single output systems only. These
technigues are also anplicable to the umultivariable case and
is left as an exercise for future workers. It is felt that
this apwnlication of frequency domain model order reduction
techniques to a power system problem 1is reported for the

first time.
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