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ABSTRACT 

In this thesis an attempt has been made to calculate 

switching surge overvoltage using Laplace transform technique. 

The merits and demerits of various methods for the calcu-

lation of switching surge overvoltage, namely, field tests, analog 

and digital techniques, have been discussed in Chapter-I. 

A comparative study of different digital techniques has 

been made in Chapter-II. subsequently an indepth study of the 

Laplace transform technique and its application towards 

(i) unloaded line energization~ 

(ii) energization of resistance loaded line, 

(iii) energization of inductance loaded line, om. 

Case study of a system for various line conditions has 

been done and simulated on DEC-2050 Computer System in FORTRAN-IV 

(a listing of program is given in Appendix-II).The results obtained 

have been plotted on CALCOM plotter, and are given in Chapter-V. 

The concluding chapter, namely Chapter-VI, discusses the 

future scope of work in the related field. 



NOMENCLATURE 

x  line length 

Ro 	zero sequence resistance of the line per unit length 

Lo  zero sequence inductance of the line per unit length 

Co  zero sequence capacitance of the line per unit length 

Ri 	positive sequence resistance of the line per unit length 

L~  positive sequence inductance. of the line per unit length 

C1  positive sequence capacitance of the line per unit length 

El  voltage of phase-1 with respect to ground 

E2 voltage of phase-2 with respect to ground 

E3 voltage of phase-3 with respect to ground 

I1 current in the conductor of phase-1 

I2 current in the conductor of phase-2 

13 current in the conductor of phase-3 

[-I] surge impedance matrix of the system 

[Lg]  generator inductance matrix 

[Rg]  generator resistance matrix 

[LL]  load inductance matrix 

[RL]  load resistance matrix 
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CHAPTER-I 

INTRODUCTION 

The fundamental requirement for reliable and uninterrupted 

power system operation is the elimination of disturbances to as 

great extent as possible. Such disturbances may be caused by 

overvoltages which exceed the insulation level and hence lead to 

flashovers. It is not an economic proposition to raise the insu-

lation level of high voltage power systems to such an extent as to 

withstand all possible overvoltages: instead the latter must be 

restricted to a certain level. Infact UHV voltage levels are 

economically feasible only if some type of transient voltage 

control is used. Therefore, the prerequisite to a better system 

design is an indepth knowledge of various types of overvoltages 

that can occur in a power system, and their effect on the system 

insulation level. 

1.1  OVERVOLTAGES IN POWER SYSTEMS 

The various types of overvoltages that may arise on a 

transmission network as classified for the purpose of insulation 

co-ordination are given below. The definitions given to these 

classifications relate essentially to the wave shape of the over-

voltage rather than to their origin. 

(a) Lightning overvolta,ges:They have fast wavefronts and are 

usually generated by lightning strokes. 

(b) Switching overvoltages;  They have slower wavefronts and can 

be generated during the switching of lines, transformers, 

C 
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reactors  and the occurrence of faults. 

(c) Temporary overvoltages= They have frequency near to or an 

harmonic of the power frequency. Undamped overvoltages of 

power frequency may be produced on load rejection and 

during switching of lines or cables with relatively high 

charging currents. Overvoltages which may be only slightly 

damped and which may persist from a few cycles to a few 

seconds 	with a frequency equal to the supply frequency 

or one of its harmonics, may be encountered when transfor-

mers are energised from networks with certain configurations 

and parameters. 

Overvoltages originating from more than one of the above 

causes may occur in rapid succession but only in exceptional cases 

simultaneously. Various causes may lead to an earthfault or a 

switching operation. A lightning stroke may, but need not, cause 

an earth fault. In all cases, however, an earthfault results in a 

switching operation to clear the fault. Generally a switching 

operation in a power system changes the state of the system from 

those conditions existing prior to the switching to those existing 

after the operation. The transients thus generated usually exhibit 

complex waveforms for which the fundamental frequency usually lies 

in the range 100 Hz to 1000 Hz but in some cases a very steep 

voltage rise or collapse can occur. In UHV and EHV systems there 

are a number of switching operations [i] which require special 

consideration as they may lead to magnitudes of the switching 

transients which influence the choice of the system insulation 

levelb Moreover, with the increasing voltage of transmission 



systems switching surge overvoltages determine the insulation 

design rather than lightning overvoltages, as considerable tech-

nological progress has been made in controlling the magnitude of 

lightning overvoltages. Thus the determination of the magnitudes 

and waveshapes of switching surge overvoltages is imperative for 

an economical design of power system. 

1.2  METHODS FOR DETERMINING $WITCHING SURGE OVERVOLTAGES 

The methods for determining switching surge overvoltages, 

that can occur in a power system, can be broadly classified as 

1.2.1 Field Tests 

1.2.2 Analog or Model Methods 

1.2.3 Digital or Analytical Methods. 

1.2.1 Field Tests- Some field test have been reported in the 

literature [2,3,4]. These are reliable ways of determining the 

switching surge overvoltages on a line, as they take into account 

all the practical factors that can affect the surges. Tests are 

carried out on existing 	or experimental lines, and the surge 

magnitude and waveshape is recorded. Direct study of these proces-

ses in an actual network is possible only on very rarest occassions, 

as a system is either not available for such involved measurements 

or is Still in the designing stage. The extensive field investi-

gations to cover all possible system configurations are prohibi-

tively expensive and time consuming. Moreover, the results obtained 

by field tests on a particular system can 	not be generalized for 

all the systems. 



1.2.2 Analog or Model Methods* The technique is essentially that 

of designing an electrical model or analog of a dynamic system in 

such a manner that measurement on the model gives useful and pro-

portional information about the actual system. The computing 

tools available for such type of studies are 

1.2.2.1 Transient Network Analyzer (TNA) 

1 . 2. 2. 2 Electronic Differential Analyzer (EDA) 

1.2.2.1 Transient Network Analyzer (TNA) [ 5]'.  The TNA has been 

and still the 'work horse' of the switching surge overvoltage 

studies. It comes close to being a direct electrical model of the 

system represented and is therefore easy to understand. It is 

much faster than other tools, usually operating in real time, 

though time scaling can be used. 

The TNA extends to transient conditions the idea of the 

steady state analyzer or a-c calculating board. On TNA the equi-

valent network is built up with inductors, resistors, capacitors, 

coupling transformers, sources of sinusoidal e.m.f. and synchronous 

switches. Conventional resistors and capacitors are satisfactory 

in TNA models, but specially designed inductors are used to simulate 

frequency dependent characteristics as closely as possible to that 

of the real network elements. The transmission lines are repre-

sented by a. tandem connection of three-phase 7r-units, and the 

ground return path is built up by series and parallel connected 

inductors and resistors. The number of IT-units required to repre-

sent a line has to be chosen carefully as an insufficient number 

of IT-units  can lead to unwanted distortion on overvoltage wa.ve- 

shape and affect the maximum 	overvoltage peak [6]. The 
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output  of TNA is observed on oscilloscopes. 

1 . 2. 2. 2 Electronic Differential Analyzer (EDA) : This analyzer is 

well suited for solving electrical transient problems in lumpy 

circuits, and it is especially attractive for investigations of 

the affects of varying one, or more of circuit elements over a 

range of values. 

The EDA, also known as Analog Computer (ANACOM), comprises 

a variety of units. They are integrators, inverters, summers, 

coefficient potentiometers and signal generators. In addition to 

these devices it has a. display unit. 

The physical system is represented by its differential and 

algebraic equations, and EDA basically solves the representative 

differential equations. Although, best suited for lumpy circuits, 

its use for circuits with distributed constants is also possible. 

Thomas and Hedin [7] have used EDA to solve switching surge problems 

involving single phase transmission lines by travelling wave method. 

The simulation was achieved by constructing a multichannel pure 

transport delay time unit which is not a standard component of 

EDA. This is capable of storing surge waveshapes of arbitrary 

form, operating on them, and delivering them back to EDA after a 

preselected time interval. For three phase circuits the amount of 

equipment required is considerable. This approach is therefore 

limited to relatively simple circuit arrangements. 

1.2.3 Digital or Analytical Methods% The application of the digital 

computer to power system transient studies has been and remains a 

burgeoning field of endeavor. The appeal of digital computer is 

its ability to process a vast amount of data in a systematic way, 



and do so in an extremely short time. The computer is very adept 

at storing, retreiving, operating on, and restoring volumes of 

data. System transient studies can be stated in these terms, for 

they are concerned with describing events in space and time at 

many different locations, which may be set down as a large number 

of differential equations. Many techniques varying in mathematical 

approach and sophistication have been developed for solving the 

transient problem on digital computers. 

The solutions for a large number of cases, as required for 

rational system design, can be computationally expensive. Hence 

in order to strike a balance some accuracy has to be sacrificed[8]. 

A co-ordinated use of TNA and digital computers can be economical 

for such studies [9]. To reduces computing time, a.hybrid compu-

tation system has been developed in which the switching surge is 

simulated on TNA and the digital computer is used for data process-

ing and control of TNA [i0]. 

With the continuous development of system modelling tech-

niques on TNA and digital computers, the results obtained from 

them show good agreement in general to the field tests. Some 

discrepancy occurs because of factors which can affect the accuracy 

of switching surge calculations. Basically three possible sources 

of error must be considered: 

- Incomplete knowledge of the parameters of the real system 

- Simplifications of the equivalents of the network elements 

- Limitation of model simulation on TNA's and the limitations 

of mathematical simulation in digital programmes. 



GdAPIER-II 

REVIEW OF DIGITAL TECHNI C FOR CALCULATION OF 
SWITCHING SURGE OVERVOLTAGES 

For switching surge overvoltage determination many computer 

programs are being implemented with the intention of minimizing 

the computer running time w'Ale improving the theoretical and 

technical quality of the solution. The digital simulation of a 

physical process is achieved by (1) formulating a mathematical 

model of the process (2) computing an approximate solution to the 

equation. Naturally the accuracy of the results obtained depends 

both on the fidelity of. the model and the errors generated by the 

computation procedure. The various techniques developed for solv-

ing the transmission line transient problems are as follows: 

2. 1 Schynder-Bergeron Method. 

2.2 Lattice Diagram Method. 

2.3 Fourier Transform Method. 
2.+ X-Transform Method. 

2.5 Z-Transform Method. 

2.6 System Approach Method. 

2.7 Laplace Transform Method. 

2.1 SCHYNDER-BERGERON METHOD 

This method was first visualized as a graphical method for 

the calculation of transients in penstocks. This graphical method 

was modified to render it applicable to digital computers by Frey 

et.al.[11]. They studied few very simple cases and the calcula-

tions and computation time reported was quite large. In this 



method a. relation is established between the voltage and the 

current at each end of the lines depending upon the voltage and 

the current at the opposite end, including transit. time. The 

distributed parameter circuit elements are sectioned using a 

basic time interval. Initial conditions define the voltages exis-

ting at all busbars and hence at intermediate points. Surge 

propagation is initiated by connecting all sources to the circuit 

to be energized. The voltage and current is computed at each 

discrete point for every basic time interval. The overhead line 

parameters are in the form of modal surge impedances and attenua-

tion factors are included approximately by introducing series 

resistance into the modal domain. 

2.2 LATTICE DIAGRAM METHOD 

This method is a digital computer adaptation of a graphical 

method of Bewley's lattice diagram [12]. The application of this 

method to single phase representations has been described by 

Barthold and Carter [13]. This method is capable of accomodating 

any specified input waveshape, real or complex line terminations, 

any system configuration. Basically this method is an application 

of superposition combined with an ingenious system of book keeping. 

The calculations are made in terms of the voltage wave increments 

which travel on the line comprising of the-equivalent circuit and 

the behaviour of these travelling waves at junction and termina-

tions is determined by reflection and refraction coefficients. 

They have assumed that the incoming unit wave proceeds through the 

discontinuity undiminished, but generates a. new wave equal to the 

reflection coefficient at the instant it reaches the discontinuity. 



This new wave emanates from the discontinuity in both directions, 

and the sum of the original wave and the newly generated wave 

represents the total response of the discontinuity to the imping-

ing wave. The response of a complex network, in a similar manner, 

can be represented as the superposition of the undiminished trans-

mission of the original input, plus similar transmission of second-

ary wave components generated as the original wave arrives at each 

bus in the system. The secondary waves produce a third generation 

of waves; and the process continues ad infinitum. Although this 

method is basically applicable to distributed parameter elements 

such as lines and cables it has been extended to include lumped 

parameters of, generators, transformers and capacitor banks [i+]. 

They have been represented as transmission line stubs , while 

certain non-linear elements are expressed by piecewise linear 
techniques. 

This method has been extended to Viree phase circuits [9]. 

Whereas for single phase calculations the reflection and refraction 

coefficients are calculated from the individual line surge impe-

dances for three phase calculations these surge impedances are 

replaced by surge impedance matrices and in this way the mutual 

effects between phases are included in calculation. The surge 

Impeda ce matrix used to r,  present the transmission line is calcu-

lated at the predominant frequency of the transient or if this is 

not known, at a frequency based on the travel time of the line 

being switched. 

The computer memory storage and running time required by 

this method are quite high. 
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2.3 THE FOURIER TRANSFORM METHOD 

When a switching operation takes place, the elements of 

power system are subjected to voltages and currents having a wide 

range of frequency. The values of some electrical parameters do 

not remain constant but exhibit frequency dependency. While for 

some parameters (generator- and transformer-inductance, positive 

sequence line inductance) this variation is small or even negli-

gible; other parameters (generator transformer resistance, line 

resistance, zero sequence line resistance and inductance) show a 

substantial variation with frequency, which is owing to skin 

effects and earth penetration [6]. Carson 	has shown that the 

mutual coupling, distortion and attenuation of travelling waves on 

the transmission line are frequency dependent. Hence the frequency 

dependence of parameters should be taken into account in the calcu-

lation of switching surges. This suggests the use of Fourier 

transforms method. 

Fundamentally this method requires the calculation of the 

response of the system over a range of frequencies and the use of 

the inverse Fourier transform to transform the response from the 

frequency domain into time domain. 

Fourier transform method has certain disadvantages associa-

ted with it. The analytical evaluation of inverse transform is 

very difficult to obtain, however, it can be evaluated numerically 

by integrating it within a finite range. This truncation of infi-

nite range can give rise to Gibbs oscillations, which are quite 

pronounced and slow to die, and integrand to peak if the step 

length is large [16]. The results thus obtained will be peaky in 

nature and will not represent the true nature of system response. 
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The remedy to these problems as suggested by Day et.al.[17] is 

to use modified Fourier transform. The unwanted oscillations are 

removed by incorporating 'Sigma' factor in the transform.Battison 

et.al.[18] and Day [19] have demonstrated the use of this method 

for single phase and three-phase systems. Wedephol [20] has used 

a method which combines the modified Fourier transform and the 

steady-state theory of natural modes for the solution of line 

transient problem and discussed the problem of non-simultaneous 

closure of circuit breaker poles. 

The disadvantage of Fourier transform method is the anti-

cipated excessive computer running time resulting both from the 

calculation of frequency dependent transmission line solution of 

the problem at each frequency and also the multiple integration 

required to numerically evaluate inverse fourier transform. It 

also requires considerable data from the system which frequently 

are not ava.ilable[21 ]. 

2.+ X-TRANSFORM METHOD 

This method has been used by Raghavan and Sastry [22] for 

the switching surge overvoltage calculations. In this method 

reflection and refraction coefficients at all points of disconti-

nuity and surge travel times of different lines are calculated. 

They are then represented by a block diagram. The transfer 

function of the system is determined with the help of system 

signal flow graph. The X-transform of the output surge is deduced 

using the transfer function. The surge voltage is found out by 

carrying the inverse X-transform. The main drawback of this 

method is the cumbersome and difficult evaluation of inverse 

X-transform for complex functions. 
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2. 5  Z✓  IRAN SFORM METHO D 

In this method, useu by Humpage [23] the transmission-line 

forward-impulse response and surge impedance function, initially 

formed in frequency domain, are mapped into Z-plane by bilinear 

transformation. They are then transformed into time domain, 

thereafter the formulation is wholly in the time domain and the 

sequences in solution, to which steps of transformation through 

the Z--plane lead, are of recursive form. It was found that this 

transformation is one which introduces a form of distortion error 

[24]. High accuracy in response function definition is achieved 

over an initial range of frequency beyond which the error progres-

sively increases. This can be avoided by choosing a step length 

which minimises the error over the frequency range relevant to the 

electromagnetic transient made of system operation. But this 

leads to very high computer time. The other solution as suggested 

by Humpage [24] is to synthesize the transmission line forward 

impulse response and surge impedance function directly into the 

Z-plane. This method also leads to Z-plane function of lower 

crder than those of previous work [23] and to longer step settings 

Both measures have considerably reduced the total computing time. 

This method is still in a developing stage and has been 

applied to simple case only. 

2.6 SYSTEMA PPROACH  METHOD 

As the power system consists of a large number of elements, 

the differential equations describing the system are quite large. 

This renders their solution quite difficult. This difficulty is 

overcome by a nodal terminal approach put forward by Semlyen[25]. 
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The simplification is due to the fact that while the total number 

of state variables in the power system are very larges  the system 

is organized 	hierarchically, in an orderly way, by components 

with a small number of terminals interconnected algebraically by 

sparse matrix. 

The mathematical description for any component of a power 

system is given by convolution using impulse matrix. A modelling 

by impulse response matrices is advantageous for complex components 

since it provides a simple input-output relationship involving 

few variables. They have developed norton type models for system 

components. The drawback of this method is the lengthy digital 

computions of impulse matrices requiring large computer running 

time. 

2.7 LA PLACE TRANSFORM METH O D 

This method for solution of travelling waves by laplace 

transform has been described by Uram et al . [ 26, 271Application of 

Laplace transforms to equations for phase voltages produces six 

independent second order ordinary differential equations for 

voltages in terms of distance. They are separated by transforming 

the voltages into independent modes, which travel on line without 

interaction. On the assumption that the propagation coefficients 

are linear in the laplace operator; a simplified form of wave 

transmission results. For each mode, a wave launched onto one end 

of the line appears attenuated and delayed but undistorted. The 

phase voltage waves, however, are distorted since the modes have 

different velocities and attenuation factors. The mode with an 

earth return path travels at about three-quarters speed of the 



order modes, which is nearly that of light. Once the modal waves 
M 

are known, the phase voltages are found by adding the forward and 

backward modal waves and using the inverse modal transformation. 

Of the methods discussed so far the methods most commonly 

used are Schnyder-Bergeron, Fourier Transform, Lattice diagram, 
41 

and Laplace transform as they are in a more developed stage as 

compared to other method. In assessing the differences between 

the above method of digital calculation, the most obvious basic 

difference is on the question of frequency dependence. The 

Schnyder-Bergeron and Laplace,  transform use fixed frequency para-

meters while the Fourier method accepts the continuous variation 

of parameters with frequency. The lattice diagram technique lies 

in between the two extremes as the earth responses are modified 

using Carsons formula. The Laplace transform method requires the 

minimum computer running time as compared to other methods. The 

results obtained are comparable with the results obtained from 

TNA and other methods [9]. 
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LAPLACE TRANSFORM TECHNIQUE FGR CALCULATION OF 

SWITCHING SURGE OVERVOLTAGES 

3.1  3-PHASE LINE AND EQUIVALENT CIRCUIT 

Consider a 3-phase transmission line consisting of three 
individual conductors parallel to earth as shown in Fig. [3.1 ].The 

left end of the line is considered as the sending end, where the 

generators are connected, while the recieving end, at the right 

hand, is at a distance of xo  miles. Normally the load will be 

considered here. The voltage with respect to ground at any point 

along the line, and the currents in conductors are to be deter-

mined. Each of these are functions of two variables*. position x 

along the line, measured from some reference point, and the time t, 

measured from some reference time. The terminations at the reciev-

ing end will provide the boundary conditions necessary for solving 

the system equations. 

The equivalent circuit, of a differential element of line, 

used is shown in Fig. [3. 2].In the circuit the overhead conductors 
are described by their positive sequence parameters, while the 

effects of the ground ret'irn are accounted for with their zero 

sequence parameters. The distributed parameter elements are used. 

3. 2 TRANSMISSION-LINE VOLTAGE AND CURRENT EQUATIONS 

For the equivalent circuit shown in Fig. [3.2] two sets of 

describing equations can be derived. The first is found by apply-

ing Kirchoff's voltage law to the loop formed by each conductor 

I 
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and ground, while a second set is written using Kirchoff's current 

law at the junction of each conductor with the capacitive branch 

to ground. 

After - rearranging the equations they may be arranged as 

follows: 

aT (x, t) 	 ^~
1 - -- G- 	--- = [ [ (R0 +L o a )+2(R1 +L t o, — )JI1 (x' t)+[ (Ro +Lo G-) 3 	ut 	at 	ct 

- (R1 +L1 r.t ) ]I2 (x' t)+C (Ro +L 0 G )-(R1 +L1 h ) ]I3 (x t)} of  

a E (x, t) 
c 	1 	]I (x1' 

t)+[ (R o 
+L

o --) 
3 	0 o7:t 	1 1 ~t 	 ct 	` 

+ 2(R1+L1 t)1I2(x,t)+[(R0+L0 t)-(R
1 +L1  )]I3(x,t)l 

(Ro+Lo ) 

- (R1 +L1 c )1I2(x,t)+[ (Ro+Lo G )+2( 1 +T 1 c7t) ]I3(x,t)} . 

cT3(x,t) - 1  - —off---- - 3 [ (Ro+Lo 

cE1 (x,t) 1 	1 2 	dl 	(x t) 1 	1 	dl 	(x t) 
t 

} 	(1 
c;-k 

  dl.~ (x, t) 
 ?x 

dI  (x,t) vI  (x,t) 
—a- - c1 	7x co 	c1 

(1 - .2_) b13(x,t), 
co c1 OX 

E3(x t 	 CI x t 	 6I (x,t) 
3 C0 c1 dX 	c0 c1 

1 2 G13(x,t) + (-- + 	)  co c1 4•X 
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The partial differentials appearing in the equations (3.1) 

and (3.2) are converted into ordinary differentials by taking the 

Laplace transform with reference to time. The Laplace transform 

relationship resulting are 

f, cE(x,t)_ dE1 (x,$) r ̀r 

aI (x,t) 	 + 
( 1---opt---) = sI1 (x, s) - I (x,o ) 

Thus by taking the Laplace transform of the equations 

(3.1) and (3.2) and using the relationships of equation (3.3) 

with the assumption of zero initial condition, the following set 

of equations, which have been expressed in compact matrix form, 

results. 

dE1 (x, s) 

	

—dx 	(Z0+2Z1 	) 

- 	--- - 3 (za- Z 1 ) 

__ H L 39s)
s) 

J 

	

 dx 	L( Zo w Z 1 

E' (x, s) 	(- + v ) (~1— - Y ) 
0 	1 	0 	1 

E2"x, s) = 3 (_1 - ' (1
0 

+ 2 ) 

E"3(x,$) 	(Y - 	) (— 	- ,; 	) 
a 	1 	-a 	`1 

(1` - dI1 (x,$) 

	

Yo V i 	dx 

(1 	1 	dI 2(x, s) 

tea 	y 1 	dx 

	

1 
+ 

2 	d13 (x, s) 

	

(v o  v 1 	 dx 

(3. 5) 

The positive and zero-sequence impedances and admittances 

have been defined in equations(3.4) and (3.5) as follows= 



Z R + o = o  SL0  

Z1  = R1  + sL1  

Y o  = sc o  

Y1 	s01  

(3.6) 

The 3-phase transmission line relations can be expressed 

more explicitly by writing the equations (3. )+) and (3.5) in an 

even more compact form as 

- 	= 3[ZA7[I ] 	- 	(3.7,1) 

- [E] 	= 3[ZB] [i] (3.7.2) 

The voltages and current matrices of equations (3.7), 

which are 3-element column vectors, are expressed in the Laplace 
domain, and thus are function of the variable s as well as dis-
tance x from a reference point on the line. 

3.3 GENERAL SOLUTION OF 3-PHASE TRANSMISSION LINE EQUATIONS 

To obtain voltages and currents on the transmission line 

the pair of simultaneous matrix differential equations (3.7.1) and 

(3.7.2) need to be solved. This can be accomplished by eliminating 

either the voltage or current matrix, finding a solution for the 

remaining quantity, and the substituting this solution back in 

either of the two equations to obtain the complete set of voltages 

and currents. 

To eliminate current matrix equation (3.7. 1) is differen-

tiated with respect to x and equation (3.7.21 is substituted in 

it. The resultant equation is given by 
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;[E]— [ZA][zB]
-1  [E] = [0

] 
dx 

Let 	[a] = [ZA][ZB]-1  hence 

[0] 
dx 

where 	(Z0Y0+2Z1 Y1) (Zo o Z1Y1) (Z0Y0-Z1Y1)

Y  [a]= 3 [ (z0Yo_ Z1Y1 ) (Z0Y0+2Z1 Y1 ) ( 0Yo-Z1Y1)

Y (. QYo- Z1  Y1 ) (z 	-z1  o-z1 Y1) (Z Y +2Z1Y1 ) 

(3.8) 

(3.9) 

The equation (3.9) repreLents three component equations 

involving the line voltages. It is difficult to solve this 

equation as it involves various combinations of the voltages of 

each line. To illustrate this, the equation (3.9) may be expanded 

into its components 

d2E1  (x, s) 
-- 	a1  1 1 (x, s) - a1 2  E2(x, s) - a13  E3(x, s) = 0 

d2E2(x, s) 
2 	- a21 E1 (x, s) - a22 	- a23  EE3  (x, s) = 0 > (3.10) 

d2E3 (x, s) 
- a31  E1  (x, s) - a 32  E2(x, s) - a33  F3(x, s) = 0 

The difficulty in solving this equation exists in the 

mathematical coupling bet,,-een the voltages. To simply the solu-

tion the off-diagonal coefficient of this equation will have to 

be made identically zero. The eqi tion, then resulting, will be 

soluable as it would contain one voltage and its ordinary second-

order derivative only. 

The actual transmission line voltages [E] are transformed 

linearly into a. new set of variables [F] by a transformation 
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[]  = [T][F] 	1 	(3.11) 

[F] = [T][  E] 	J 

Here the elements of the square (3 x 3) transformation matrix [T] 

are numerical constants. 

Let the transformation of co-ordinates in equation (3.11) 

be substituted into the matrix differential equation 3.9), des-

cribing the transmission line voltages. After appropriate mani-

pulation this yields 

2 	
- [TF1 [a ] [T ] [F ] = 0 
	

(3..i 2) 
dx 

To obtain the desired results the coefficient matrix 

product in equation (3.12) is diagonal. Indicating the co-effi-

cients as as 

[t] = [T]-1 [a][T] 
	

(3.13) 

Replacing the coefficient matrix product in equation 

(3.12) by [~] we get 

2 2[F] - [~][F] = 0 
dx 

(3.14) 

Since [.] is diagonal equation (3(.14) can be expanded in 

to its component form as 

d2F1 (x, s) 
2 	- 1 1 F1 (x, s) 	0 

d 2F2(x 9 s) 
-- 	2 	- g22 F2(x, s) = 0 

d2F3(x, s) 
-- 	—X33 F3(x, s) 0 

(3.15) 
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The coefficients iii remain to be determined. Briefly, 

the procedure consist of first finding the eigen-values, or 
characteristic roots, of the matrix [a]; then, from these, the 

eigenvectors corresponding to each eigenvalues. The proper trans-

formation matrix [TI is then composed of three column vectors, 

which are proportional to the eigenvectors of [a]. The result of 

these matrix operations is the following transformation matrix [T] 

and its inverse 

1 	1 	0 

[T] - 	1 	0 	1 

(3.16) 
1 	1 	1 

[T1-1= 

- 

3 2 -1 -1 

1 	2 	-1 

The transformation in equation (3.16) is not unique because 

two of the eigenvalues are identical. Therefore, other transfor- 

mations exist which will satisfy the system requirements. 
The expansion of equation (3.13), using equations (3.9) 

and (3,16) results in 

Z Y  0  0 
00 

[ ] = 

 

(TI-1 [a ] [T ] = 	0 	Z1Y1 	0 	 (3.17) 

0  0  Z1Y1 

Thus the [~] matrix is diagonal and insertion of this 

matrix into the system relations given by equation (3.15) leads 

to a set of three differential equations to be solved 



-22- 

d2F1 (x, s) 
(zo o)F1 (x, s) = 0 

dx2  

d 	(x, s) 
2 	- (Z1Y1)F2(x, s) = 0 	~. 

d2F3 (x, s) 
- 

2 	- (Z1Y1 )F3(x,$) = 0 

(3.18) 

Since the coefficients ( 0Y0) are not functions. of dis-

placement x, equation (3.18) may be solved for the transformed 

co-ordinates. 

	

_, Zy— x 	+ ?Y x 	`r  
00 	+ K1 2 	00 

- 	1 1 

	

Z Y x 	+ Z Y x 
F2(x, s) = K21 ~ 	+ K22 G 	1 1 	(3.19) 

-ZY x  
F3 (x, s) = K31 E 	1 1 	+ K32 	1 1 

The constants of integration Kid rust be determined before 

attempting an inverse transformation into time domain. These cons-

tants are dependent on the boundary conditions existing at each 

end of line. Rewriting equation (3.19) in matrix form as 

[F] _ [Ki] + [K2'x 	 (3.20) 

where 

v 
r 	

C o x 

I'11 
l 

- Z Y x [K1 t ,x ] _ 	K21 t 	1 1 	 (3.21) 

- 
K31 
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K G + eJT70 o X 
12 

+ 	+Z1Y1 x 
[K2 c ] = 	h22 

+ 71y~ X 
L32 2 

(3.21) 

Finally, the solution for the actual line voltage may be expressed 

as 

[E] = [T][F] = [T][Kl ma x ] + [T][K2 eX] 
	

(3.22) 

To obtain the line current the equation(3.7.1) is solved for the 

line current 

[I] = -3[ZA]-1 
dX [E] 	 (3.23) 

Differentiating equation (3.22) and then substituting it 

in equation (3.23) provides the general solution for line current 
as . 

[I] = [T][--]-1 [K1 %;i-[T][] 1 [K2 ma x ] 
	

(3.24) 

The matrix [fl] is diagonal and is composed of transmission line 

parameters. 

zo 
0 0 0 1 	o 	0 

[-~-] = 	0 	~2. 0 = 	0 /Z1 	0 	(3.25) 
Y1 

0 	0 	iJ [  0 	0 	Z1 • 
Y1 

3.3. 1 Characteristic Impedance and Attenuation Constant" The 

matrix [-CL] is the characteristic impecbA of the 3-phase line. 

This is a quantity which is independent of the line voltages or 
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currents and is a function of line parameters only. Although the 

exact form of the characteristic impedance is complex, the.reduc-

tion or the exact expression can be made using the assumptions 

normally made in power transmission line work. 

From the equation (3.25) 

o Go+sCo 
	 (3.25.1) 

For zero conductance it becomes 

2 
Lo 	Ro 1/2 	Lo 	1 Ro 	1 R2 

	

sL0 	Co(1+ 2 sLo - $ s2L2 
0 

3 
+ 1 

R3 3 
- ...) (3.25.2) 

s Lo 

substituting s = jw the first three terms of the infinite series 

become 

	

B. 	2 
o ~Co 	1+ 7~Loc~) 	2 (Roc1.)) 	 (3.26) 

0 	0 	0 

Choosing 50 Hz as the lowest frequency of interest, it is 

observed that for the system data used the terms other than unity 

have negligible effect on the magnitude and phase of -i2.0.Therefore 

all terms other than unity in the series are neglected. 

~o 

0 

similarly 

`a1 	

L1 

 C
l 

	

Yo = \/+sL) (G0+ g0) 
	

(3.28) 

Hence 

(3.27) 
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2 

Y = s T, C (1 + Ro ) 
1/2 

	Ro 	1 R3 	... ) 
00 	SILO 	. 0 o 	2L

0 
	8 sti2 	16 s2L3 

0 	0 

... (3.28.1) 

substituting s = jm the first three terms of the infinite series 

become 

	

1 Ro 	 1 
Yo = 	€2L + J~~ 1 + 	

Ro 2
8 (Lw) 11 

	

0 	 0 

(3.28.2) 

using 50 Hz as a lower limit on frequency, evaluation demonstrates 

that the first two terms of the series should be retained, which 

yields 

Y= s JTJC0+ 2 R0 ( 0/L0 

Rewriting the exponents of equation (3.19) gives 

-Yox 	- 2° L° x - N~oC osx 

-11 x 	C x - , 	sx 

(3.28.3) 

(3.29) 

These exponentials have two parts; one involves constants and line 

displacement, while the other involves the Laplace variable s.The 

first of these terms decreases with distance along the line and 

thus represents attenuation of voltage and current. The second 

represents a delay factor since it is a term of the form 

xs 	This, from classical Laplace transform theory, 

produces a finite time delay of LC x seconds. 

!776'o4 



3.4 PARTICULAR SOLUTION FOR 3-PHASE TRANS1 SSION LINE EQUATIONS 

To find particular solutions for the transmission-line 

voltages and currents, the matrix constants of integration occur-

ring in equation 3.22 and 3.24 have to determined. Since this 

needs the evaluation of the boundary conditions at each end of 

the line it will be necessary to substitute the condition x = o 

at the sending end and x = x at the recieving end. The resulting 

forms are: 

[Es] = [T][K1 ] + [T][K2] 

CI~~ = CTJC~J-1CK1 1 -  

[Exoj = [T][K1 °xo] + [T][K? 0xoI 

[Ixo] = [T][ ] 1 [K1 Cxol - [T][-~1 1 [K2 t:,] 

Let 
-V x 

O 
A11 	 K11 v 

-Y 
[A] = A l2 = [K1 Vxo1= T", 	

Y1

12 

xo 

v 

-

1xo 

A13 	 xl3 ~ 

+10X0 

B 21 	 K21 
t +Y1 Xo and [B1 = B22 = [i~2 v XO~- 	21 

B 	 1~3 +Y "~ 1 32  

	

t 
	(3.30) 

	

J 
	(3.31) 

(3.32) 

(3.33) 

Since equation (3.33) has a positive exponential, it is 

desirable to rewrite the expression in such a way that a negative 

exponential occurs. This may be accomplished as follows= 
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••-~pXp 
K21 	 B 21 

[K2] ` 	K22 	1B el- 1 = B22 t-Y1X° 	 (3.34) 

K~3 
	 L B32 

-Y1 xo 

Suppose that the first element of the matrices in the 

equations (3.32) and (3.3)+) are expanded and written as follows= 

RoJLLOO - 2 	Xo -JLC C x s 
Al 1 (s) = K11 (s) 	-, 	00 0 

(3.35) 
R C 
010 x 

K21 (s) = B21 (s)  %- 	J 2 	° ° t. - 	0C 0 Xp s 

The leading exponential in these equations is a real 

number and represents the attenuation along the line. However the 

second exponential is dependent on the variable s. The basic 

theory of Laplace transforms defines such a situation as a delay 

function which must be zero for a finite time. 

The inverse laplace transform of the general function of 
-T s 

the type G(s) = C 0 G1 (s) will be 

g(t) = g1(t) U (t-To) 
	

(3.36) 

where U(t-To) is delayed unit step. 

On the similar lines the constant inequation (3.35) can 

be written in time domain a.ss 

R IC 
p ° X - 2 L o  

A11 (t) = 	0 	K1 1 (t- aCo xo)U(t- 	Co xo) 
(3.37) 

U CO 
_ 

K21 (t) = t 	0 	B 21 (t- 	xo)U(t- ./Lo o xo) 
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The constants A11(t) and K21(t) must be zero for 1L000 xo seconds 

after which they will have the form of K11 (t) and B21 (t) respec-

tively. 

In an identical manner the other elements of equations 

(3.32) and (3.31+) can be written in time domain. 
The transmission-line voltages and current at each end of 

the line now may be written, using the definitions in equation 

(3.32) and (3.3'+), as 

[Eo ] _ [T][K1 ] + [T][1c2] 
[Io] = [T][-r1 [K1 ] - [T][-n-]-1 [K2] 	

(3.38) 

[Exo1 	[T][A] + [T][B] 

[Ixo] 
 (3.39) 
= [T][-rL]-1 [A] - [T][1'-]-1 [B] 

 

3.5 INCREMENTAL SOLUTION OF TRANSMISSION LINE EQUATIONS 

3.5.1 Unloaded Line= To illustrate the method of solving trans-

mission line equations (3.38) and (3.39) a simple system will be 

considered. Suppose that the voltages at the sending end and the 

currents at the recieving end of line are known. This would be 

the case, for instance, if a. 3-phase generator were connected at 

the sending end and the line were open at the recieving end 

Fig[3.3].Then the quantities to be determined are the currents at 

the sending end and the voltages at the recieving end of the line. 

Suppose that the first part of the equation (3.38) is 

solved for the matrix [K1 ] and the second part of equation (3.39) 

is solved for the matrix [B] a s follows 

[K1] = [T] 1 [E0] - [K2] (3.) 
[B] _ [r1 ] - [][T] 	[IX01 	,~ 
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Performing  the inverse Laplace transformation to the time domain 

yields 

[K1  (t) ] _ [T ]-1  [i (O, t) ] - [K2(t) ] 

[B(t) ] _ [(t)] - [-a][T]-1  {I (X,,,t) ] 	 J > 	(3.41) 

The equation (3.1+1) is solved on an incremental basis with 
time starting at t = o and increasing in increments M. For 

first few increments [K2(t) ] and [li(t) ] must be zero since they 

are delay functions hence the above equation can be evaluated for 

[K1(t)] and [B(t) ] since the term on the right hand are either 

known or are zero. These values of [K1(t)] and [B(t)] are stored 

for evaluation of delay function when the time delay is over. Once 

the delay functions are. no longer zero, the proper value of [A(t) ] 

and [K2(t)] are determined from the past value of [K1(t)] and 

[B(t)]. These are substituted in equation (3.1+1) to provide the 

present value of [K1(t)] and [B(t)] which are stored for further 

determination of delay functions. 

Solution for the unknown sending end currents and reciev-

ing end voltages may now be obtained from the inverse Laplace 

transform of second part of equation (3.28) and the first part of 

the equation (3.29). 

[I (v, t) ] = [T][ 	1 [K1 (t) ] - ETI[-al-1  [K (t) ] 
	

1, 	(3.42) 
[F(XO,t) ] = [T][1i(t) ] + [T][B(t) ] 	f 

_l 
3.5.2 Resistive Load Termination Consider a transmission line 
terminated at the receiving end with a resistive load which may 

be balanced or unbalanced and assume that the sending end is 

connected to an infinite bus Fig. (3.4) . The boundary conditions 
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for such a system thus consists of known voltages at the sending 

end while the unknown receiving-end voltages and currents are 

related by the load resistances. Using simplified notations the 

relation at the receiving-end can be written as: 

where 

CExo J = CR L J Clxo 1 

rlL1 	0 	0 

[LL ] = I 0 B'L2 	0 

0 	"L 3 i 

(3.43) 

substituting the expressions for receiving-end voltage and currents 

from equation (3.39) after transformation into time domain and 

using simplified notations we got 

[T][A] + {TJ[B] = [RL ]CTJ[-n] CAJ - CiL J[T]C- J"1 [B] 	(3.44) 

solving this equation for [B] matrix we obtain 
_ 

[B] _ 	RT 1J  [HL][T][ -~2 J-1 
-1 

+ ES] 	x [[TJ-1 [RL][TJ[~ =]~1 -[ 	]j[~i 

(3.45) 

Here the matrix [.~ ] is the diagonal unit matrix. 
Matrix {K1 ] can be determined from the first part of 

equation (3.40) while the delay matrices can be calculated from 

the stored value of [K1 ] and [B]. The receiving-end voltage and 

current can be found out by substituting the values of the calcu-

lated matrices into the following equations% 

[E1 	[T ] A ]+ [B 1~ 	t > 	(3.46) 

[Ixo1 = [T][-a]-1 F~.& ]-[B 1~ 
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3.5.3 Inclusion of Generator Impedances In the cases discussed so 

far, it was assumed that the line is energized from an infinite 

bus source. A more realistic form of representation is necessary, 

taking into account the source representation. In dealing with 

switching surge overvoltages, the source side plays a very impor-

tant role in the shape of the wave-form and the magnitude of the 

overvoltage. Hence the generator impedance is considered at the 

sending end as shown in Fig.3.5. The load resistances may be 

balanced or unbalanced, while the generator impedances may be 

symmetrical or not. 

The unknown quantities are the transmission-line voltages 

and currents at both ends. The known quantities are the generator 

voltages and the constraints which have been imposed on the system 

by the series impedances at the sending end and the load resis-

tances at the receiving-end. 

The general transmission line equations are the equations 

(3.38) and (3.39) transformed into time domain. At the receiving 

of the system, the boundary equations are identical to equation 

(3.43), hence the matrix [B] can be calculated from equation (3.45). 

The matrix [K1 ] may be evaluated by writing the boundary equations 

at the sending end of the line. Referring to Fig.3.5, these may 

be expressed in matrix form as follows: 

[E g] = [Lg ] dt [io ] + [R g ][I0 ] '} [Es] 	~~ 
where 

L 	0 	0 
g~  ~ 

[Lg ] = 	0 	L g2 	0 

0 	o 	Lg3 

(3.46) 
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Rg 1 	0 	0 

[Rg ] = 	C 	Rg2 	0 	 (3.4b) 

0 o Rg3 

To determine [K1 ], the time domain transformed equations 

of sending end matrices [Es] and [Is], obtained from equations 

(3.38) are substituted into the differential equation (3.46). 

[Eg ] = [Lg] dt [T][- r1 11 ]-[K 21]+[Rg]CT]C-f~']-1 [E K, ]-[K2]] 

+ [T] FK1 ]+[K2]j 	 (3.47) 

Rearranging and solving equation (3.47) for [K1 ] we get 

dt[K1 ] = dt[K2]+[V] [[Ti-' [ 'g]-[W][K1 ]+[x][K2]] 
where 

[V] _ 1T]-1 [Lg][T][.tz ]1 i
i 

	

(3.48) 

[W] = 

[X] = 

The matrix [K1 ] can be solved by using a numerical method 

for the solution of such differential equation. Details of solu-

tion procedure is given in Appendix-I. The delay matrices are 

evaluated as before and once all the matrices are known the 
unknown quantities can be determined from the generalized trans-

mission line equation (3.1±6). 
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3.5.4 Inductive Load Terminations, To include the lagging power 

factor loads at receiving end consider the Fig.3.6, where the 

load and the source impedance are assumed unbalanced for genera-

lity. The line voltages and currents at both ends are unknown 

while the generator voltages are known as function of time. At 

sending end of the line the situation is identical to the resis-

tive termination case thus, solving the differential equation 

(3.1+8) results in matrix [K1 ]. 

At the receiving end the relationship between the voltages 

and currents is governed by the load resistance and the inductance. 

This may be written in matrix form as 

 

[Exo]  [LL] at [Ixo] + E L]rTx o] 

where 

	

LLQ 	0 	0 

	

LL ] = 	0 	LL 2 	0 

0 	0 	L
L3 

	

RL1 	0 	0 

	

[RL ] = 	0 	RL2 

0  0  
RL3 

(3•x+9) 

Substitution of the transformed equation (3.38) and (3.39) 

in to equation (3. L 9) for the values of receiving end quantities 
leads to: 

[Ti A]+[B]] FLL] atCT1C-~]-1 Al-CT3 ]~+CRL ][T]C-n-1-1 A] C ]] 

... (3.50) 



- 34- 

where 

Rearranging the equation and solving for [B] gives 

dt[B] = dt[A] + [a]1[~][A] - 

[a] - [T]-1[LL][T][]-1 1_ i 

[p1 = [[Ti h [RL1[T][r1 [ 

[Y] _  

(3.51) 

This differential equation must be solved in order to evaluate the 

[B] matrix* this is in addition to the differential equation at 

the sending end for [K } equation 3.x+8. The method of solving 

these equations has been discussed in Appendix-I. 



CHAPTER-IV 

SYSTEM CONSIDERED AND CASES  STUDIED 

4.1 SYSTEM CONSIDERED 

A Hydro-electric power station with 4 units of 165 MW each 

in stage 1 has been provided at Dehar under the Beas Project. This 

power station is connected by a x+00 KV single circuit transmission 

line to Panipat at a distance of 260 km. A study of switching 

surge overvoltage of this system is done hereunder for 2 units of 

165 MW in operation. 

4.2  SYSTEM DATA 

x+.2.1  Line Parameters:  The line comprises of twin conductor bun-

dies per phase and two galvanised steel overhead wires. The line 

has a delta configuration. The zero - and positive - sequence 

parameters of the line are as given below: 

Positive sequence Parameters 

L1  mR /Km 	1.011+3 

C1  nF/Km 	11.3040 

R1  m -(I/Km 	29.2560 

Time Delay ms 	0.8800 

Zero sequence Parameters 

Lo  mH/Km. 	3.1200 

Co  nF/Km 	7.7618 

Ro  m-c<-/Km 	230.9300 

Time Delay ms 	1.2700 
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1+. 2.2  Generator Parameters'. In these studies the generator has 

been represented by its subtransient reactances. Its value is 

0.1147 p.u. on 100 MVA base. For two generators the source. is 

represented by the parallel combination of generator and transfor-

mer impedances. 

4.2.3 Generator Transformer Parameters  t The transformer impedance 

for 3 x 60 MVA, 11   	,IOT has an average value of 1 5 '/. on 180 14SIA 
J .  

base. 

4.3 CASES STUDIED 

4.3.1 Unloaded Line Energization. In this case the line is assumed 

to be open at the receiving end. This is simulated by inserting 

a resistance of 106  pu at receiving end in all the three phases. 

The three poles of the sending end circuit breaker are assumed to 

close simultaneously at t = 0. 

4.3.2 Unloaded Line Energization With Nan Simultaneous Closure of 

Circuit Breaker Poles: The three poles of a circuit breaker 

do not close simultaneously, due to mechanical tolerances and 

pre strikes, but close within a. 'pole-span' in a random manner. 

The pole span which is the characteristic of the circuit breaker 

is the time between the first pole and last pole to close. There 

can exist a very large number of pole closing sequences for 

different pole closing spans and study of all the possibilities is 

very time consuming. In this case, just to demonstrate the affect 

of non-simultaneous closure of circuit breaker pole, a pole closing 

span of 90°  has been selected, with pole A closing at 4 5 pole 

B at 90°, pole C at 135°  from the t = 0 reference point. 
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4.3.3 Unloaded Line Energization With Pre-insertion Circuit 
Breaker Resistances % To reduce the overvoltages, line is 

energized via closing resistors. These resistances are shorted 

out of the circuit after a pre-determined time. In this study 

the value chosen for pre-insertion resistance is +00 -CL and the 

insertion time is 10 milliseconds. 

4.3.4 Line Energization With Balanced Resistive Load at 

Receiving Ends A balanced load of 1 p.u. in each phase is 

assumed at the receiving end. In this case the receiving and send-

ing end breakers are assumed to close simultaneously. 

x+.3.5  Load Rejection at the Receiving End: In the study of the 

overvoltage due to load rejection at the receiving end the follow-

ing procedure is adopted. The system is first allowed to reach 

the steady state. After this condition is reached the phase 

currents are monitored and when the current of any of the three 

phases, passes through zero that phase is opened, and this process 

continues till all the phases are open. 

4.3.6  Unbalanced Conditions; An extreme unbalanced condition, 
wherein the line is completely open at the receiving end while 

one phase of the sending end is also open has been studied. In 

practice this might correspond is a situation in which one pole 

of the breaker at the sending end did not close. 

The last experimental case of the resistive load is •an 

extreme unbalance at the receiving end of the line. In this case 

one phase is assumed open while the others have 1.0 per-unit loads. 



4.3.7 Line Energization With Balanced Inductive Load at the 
Receiving Ends In this case a balanced inductive load of 

1 p.u. consisting of 0.6 p.u. resistance and 0.8 p.u. reactance 

has been considered at the receiving end. 

4.3,8  Line Energization With Unloaded Transformer at the 
Receiving End". In the study of overvoltage due to energi- 

zation of the line with unloaded transformer at the receiving 

end, only the transformer magnetizing inductance has been consi-

dered neglecting all the losses. The value of transformer magne-

tizing reactance is 125 p.u. on 100 MVA base. 



CHAPTER- V 

RESULTS ;SND DISCUSSION 

5.1 RESULTS 

The maximum switching surge overvoltage occurring for different 

cases mentioned in Chapter-IV are given below: 

a.ximum 	Time of 	RFf.  . Fig. Case 	I Overvoltage Occurrence 	No. PU 	(Milli seconds) 

Unloaded line energization 
with simultaneous alo sure 2.76 
of circuit breaker poles 

Unloaded line energization 
with non-simultaneous clo- 2.88 
sure of circuit breaker 
poles 

Resistance energization of 2.25 
unloaded line 	- 

Line energization with 
balanced resistive load at 1.1+5 
receiving end 

Load rejection 2.35 
Unbalanced case with one 
breaker pole open at sending 2.82 
end for unloaded line 

Unbalanced case with one 
load phase open at receiving 2.57 
end 

Line energization with 1.64 
balanced inductive load 

Line energization with un- 
loaded transformer at 2.80 
receiving end 

12.35 	5.1 

18.80 	5.2 

21.25 	5.3 

	

13.30 	5.4 

	

36.55 	5.5 

	

12.15 	5.6 

17.10 	5.7 

9.55 	5.8 

12.35 	5.9 
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5.2 DISCUSSION 

For unloaded line energization, assuming simultaneous 

closure of circuit breaker poles, severe transients can be observed. 

These are quite erratic and take a long time to settle down to 

recognizable sinusoidal pattern. The extreme transient response 

is because of the open circuit at the receiving end, which leads. 

to severe reflections of the travelling wave. 

When energizing an unloaded line and considering non-

simultaneous closure of breaker poles, a higher voltage peak is 

obtained as compared to the case of simultaneous closure of breaker 

poles. This may be due to the fact, that as phase A circuit brea-

ker is closed first, followed other phases, the lines of open 

phases are charged from phase-A line before their circuit breakers 

close. Now, if phase-B (or phase-C) circuit breaker is closed 

impressing a power source voltage of polarity opposite to that of 

charging voltage, a higher abnormal voltage results. 

When the line is energized via pre-insertion resistances 

the overvoltage peaks are reduced. The responses are not as 

irregular as in the previous cases. The resistance reduces the 

initial voltage step injected into the line which in turn, results 

in lower overvoltage peaks. 

When a loaded line is energized, the overvoltage peaks ark. 

further reduced.. This is due to the fact, that the reflections 

from the line end are reduced because of finite termination 

impedance. The response of first phase is quite smooth and damps 

out quickly, while the second and third phases have rough edges 

before the transients disappears. The reason for this is that 



the first phase is excited at zero voltage, which then continued 

sinusoidally. On the other hand, the second and third phases are 

excited with sudden step of voltages, because their phase angles 

are -1200  and -2"40°.  The voltages settle down to about 1.3 pu, 

which is higher than at the sending end, because of the charging 

current drawn by line capacitance. 

For the unbalanced case of one breaker pole open at the 

sending end of the unloaded line, the response of other two phases 

is quite irregular. A small voltage is obtained at the receiving 

end of the open phase, even though the source on this phase is not 

connected. This effect results from the capacitive coupling 

between the lines producing some voltage at the receiving end of 

the open phase. 

For the extreme unbalance at the receiving end, the 

severest transients are observed for the open phase, indicating 

severe reflections from tho open end. For the other phases the 

transients settle sooner than the open phase. 

when the line with inductive load termination is energized, 

irregular waveshapes are observed initially. The voltages finally 

settle down to 1 pu indicating that lagging load currents tend to 

cancel the leading line charging current, resulting in reduced 

terminal voltages. 



CHAPTER-VI 

CONCLUSIONS 

As seen from the comparative study given in the last 

chapter we infer that the most severe overvoltages are obtained 

for the unloaded line energization with non-simultaneous closure 

of circuit breaker poles. The overvoltages resulting from the 

simultaneous closing of circuit-breaker poles for energizing line 

are relatively lower. Hence reduction in the maximum overvoltage 

is possible by decreasing the pole closing span. The advantage of 

pre-insertion resistance for energizing the line is clearly ref-

lected in the results obtained. The studies show that steady 

state voltage exceeds 1.pu for unloaded lines. To control this 

excess voltage rise adequate shunt compensation should be provided. 

Preventive measures must be taken to ensure that transformers 

connected to long lines are not energized when they are not loaded, 

as excessive overvoltages are obtained in such cases. 

It is observed for loaded lines that overvoltage peak is 

minimum when the power factor is unity, and the steady state 

voltage is excess of rated voltage of 1 pu. For inductive loads, 

vice-versa situation is observed; i.e. the overvoltage peak is 

higher and steady state voltage is nearly 1 pu. This indicates 

that while switching on any load appropriate compensation should 

be provided to make the power factor as close to unity as possible, 

thus reducing the peak overvoltage. 
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FUTURE SCOPE OF WORK 

As the circuit-breaker pole closing span has a significant 

influence on the magnitude of switching surge overvoltage, the 

worst possible pole-span and pole-closing-sequence should be 

determined by studying the results for, different combination of 
random pole-closing spans and pole-closing-sequences. An optimum 

value of pre-insertion resistance and insertion time needs to be 

determined to help in reducing the peak overvoltage. 
The method may be extended to integrated power systems. 
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APPENDIX - I 

For resistive load termination the following equations were 

derived in Chapter III. 

dt[K1 (t) ] - dt [K2(t) 1+[v]€[T1-1 [Eg ]-[>1][K1 (t) ]+[X][K2(t) ]} (A.1) 

[B(t)] = [Z][A(t) ] 
	

(A. 2) 
[A(t)] = at[K1 (t-T) ]U(t-T) 

	
(A.3) 

[K2(t)] = at[B(t-T)]U(t-T) 
	

(A. 4) 

where 

[Z] _ L CT -1 [RL][T]C fl]1+[ {y ] ]x[[Tr1 [RL][T][]-1 

-[ ]][A] 

at = attenuation factor 

U(t, T) = delayed unit step function 

The differential equation (A.1) contains two unknown 

variable [K1 ] and [K2]. To solve this equation [K2(t)] is elimi-

nated from equation (A.1). Substituting (t) by (t-T) in equations 

(A.2) and (A.3) gives 

[B (t-T) ] = [?][< (t-T) ] 	 (A. 5) 
[A(t-T) ] = a t[K1 (t-2T) 1TJ(t-2T) 	 (A.6) 

Eliminating [B (t-T) ] from. equations (A.~) and (A.5) we get 

[K2(t) ] = at[Z][A(t-T) ]U(t-T) 	 (A.7) 

Elimination of [A(t-T)] from equations (A.6) and (A.7) gives 

[K2(t) ] = a2[Z][Ic1 (t-2T) ]U(t-2T) 	 (A.8) 



Differentiating equation (A.8) w.r.t. t and substituting 

the value of [K2(t) ] and t[K2(t) ] in equation (A.1) we get 

dt[K1 (t) ] = a[Z]  

+ at[X][Z][K1  (t-2T) ]U(t-2T)} 
	

(A.9) 

This differential equation is solved by Runge-Kutta-Gill 

method [27] with an time interval of 50 1u seconds. 

For inductive load terminations following equation was 

derived in Chapter III for determining matrix [B(t)] 

dt[B (t) ] = dt[A(t) ] + [a ] [ ][A(t) ] - [a ][Y)[B(t) ] (A.10) 

This differential equation is to be solved along with the 

differential equation (A. 1) . Differentiating equation (A.3) and 

(A.1+) and substituting the values of [A(t) ], [K2(t) ] and their 

differentials into equations (A.1) and (A.10) we get 

a dt[B (t-T) ]U(t-T)+CVJ€ [T] 1  CEg ]-Cw7CIc1 (t) 

+ at[X][B(t-T) ]U(t-T)I 	 (A. 11 ) 

at B (t) 	= at  

- [a ][Y][B(t) ] 	 (A.12) 

Replacing (t) by (t-T) in equation (A.12) and eliminating 

[B(t-T)] from equation (A.11) we get, on rearranging 

dt[K1 (t) ] = at dt[K1 (t-2T) ]U(t-2T)+at[a][r ][K1  (t-2T) ]U(t-2T) 

+ 

- [1w][K1  (t) ] 	 (A.13) 

Equation (A.12) and (f..13) are solved on Digital Computer 

by Runge-Kutta-Gill Method [271 with a time interval of 50)1 seconds. 



APPENDIX - II 

The computer program for the calculation of Switching 

Surge Overvoltage was written in FORTRAN - IV. The various sub-

routines used are 

RKGILL 	This solves the differential equations by Runge-Kutta- 

Gill method. 

DERIVR 	This subroutine calculates the derivative functions 

for resistance load cases. 
DERIVT 	This subroutine calculates the derivative function 

for inductive load case. 

EX 	This subroutine calculates the voltages and currents 

at the receiving end of the line. 

PROSY 	This subroutine incorporates the changes in the 

system parameters and recalculates the constant 

matrices after the specified time. 

CALMAT 	This subroutine calculates the constant matrices. 

EG 	This function subroutine generates the sinusoidal 

generator voltages. 

Apart from these, standard subroutines for matrix inver-

sion (INV) and matrix multiplication (MUL) are used. The computer 

time required for the 'execution of this program varies from 1~+.G 

to 17.0 seconds depending on the case studied. 



( rARI 

READ STEM DATA KASF. LPRO8TREQ 
---. -c 

NO 	 YES 

CALL CAL4M CA LL, P OB 
................................... 

Y 	 E Q 

.................... 
- 	.................. 	-. - 	- ............ 

CALCL. E flir DELAYS AND ATT-
UAOr CUtA4. - 

T  

- 	................... 
1TA SE ALL 	 RS  

CMLLHctiLL 

	

L_.. 	................ 
CAL. EX 

G,T. TREC, 

Nu 
CALL FW B ...... 

3 TT+i3T 

NO 	 G.T.TTorAL 	- Y  

I 
FIG. 1.1 FLOW CHART FOR CALCULATION OF SWITCHING SURGE OVER VOLTAGE 

BY LAPLACE TRANISFORNAM METHOD. 
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C PROGRAM TO CALCULATE SWITCHING SURGE OVERVOLTAGE BY LAPLACE 

C TRANSFORM METHOD 

C KASE=1 FOR RESISTIVE LOAD CASES 

C KASE=2 FOR INDUCTIVE LOAD CASES 

C LPROR IS THE SELECTOR FOR VARIOUS CASES TO BE STUDIED 

C tJEQ= NEMSER OF EQUATIONS TO BE SOLVED 

C TRE(= TIME SPc:CIFIED FOR CHANGE IN CIRCUIT PARAMETERS 

C ATP,ATO ARE ATTENUATION CONSTANTS 

C TT,TD ARE THE TIME DELAYS ASSOCIATED WITH SEQUENCE PARAMETERS 

C H=TIME INCREMENT FOR SOLVING DIFF.EQUATIONS 

DIMENSION Y(7),XDOT(7),E(7),XDD(3) 

COMMON/STCJRE/II,MDrl`1D,XS(2001,6),XDS(2001,6) 

COMMON/CONST/CNA(4),CNR(4).CNC(4) 

COMMON/STAB/ A( 3),B(3),TD(3),7'T(3).AH(3).EXO(3),MC,NO,EPIJ 

COMMON/INPUT/TMAS'(3,3),DINVT(3,3),RL(3,3),ALL(3,3),ALG(3,3) 

3,RO,R1,PLO oPL1,CO,C1,XO,ER IFRF.Q,KASE,LPRO8,TREQ,CI(3) 
4,RG(3,3),RCB(3,3)rDU(3,3),TPS L TPS2,TPS3,RCBO(3,3) 
COMMON/STT/VW(3,3),VTI(3r3),VXZ(3,3),Z(3,3),VXM(3,3)r 

6ALBT(3,3),At..,GNfC3,3lCJHM(3r3),DDINVO(3 r 3),TEt1R1(3e3) 

COMMON/ATTEN/ATO, ATP, ATOS, ATPS 

OPEN (UNIT=1 ,DEV ICE='DSK' ,FILE=' 7 . DAT' ) 

READ(1,*) Rf,R1,PLU,PL1,CO,C1 e XCI,E:bI,?'REQ 

REAL?(1,*) TREQ,KASE,LPROB,RUPEN,FSI,PS2,PS3 

READ(1r*)((TMAT(I,J),1J 1r3),I=1,3) 

READ(1,*) ((UINVT(I,J),J=1,3),I=1,3) 

READ(1r*)((RL(I,+J),J=1r3),I=1,3) 

READ(1,*)((ALL(I,J),►J=1,3),1=1r3) 

READ(1,fl ((AI.,G(I,J),J=1,3),I=.1,3) 

READ(1,*)((RG(I,j),Jlr3),I1r3) 

R} D(1,*) ((RCB(I,J) r J=1,3),1=1,3) 

RE,AD(1,*) ((RCBO(I,J),J=1,3),1=1,3) 

READ(1,,*) ((DU(I,J),J=1,3),1 =1,3) 

710=1 

IF(LPROB,GE„4) GO TO 9 

CALi CALMAT 

GO TO 4 

CALL PROR(Y,IO) 

C1IA (1) =.5; CNA (2) =.29289322; CMA (3)1.70710678 

C? (4) =.16666666;  CNB( 1)2, CNB(2)=1.;CN1B(3)=1. 
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Ct4F3(4)=2.;CNC(1)=,5'CNC(2)=.29289322;CNC(3)=1.70710678 

CiJC(4)==,5 

4 	NFQ_7 
IF(KASE.EQ.1) NEQ=4 

H=FRED 
TD(1)=BSQR'r(Pial*C1)*XQ 
Tt.) (2) =SART (PI.O*CQ) *XQ 

TT(2)=2.*TI)(2) 
II=1 

MCi=T'T (1) /H+0.5 
ND=TT (2) /H+0.5 
MQ=TD(1)/H+0,,5 

NO=TD(2)/H+0.5 

EPII=EM*SQRT (2. /3. ) 
ATC=EXP(-0,5*RO* QRT(CO/PGO)*XO) 
ATP=EXP('-0.5*R1*SQRT(C1/PLI)*XO) 
ATOS=ATE)*ATO 
ATPS= STP*ATP 
PRINT 222,ATO,ATP,ATQS,ATPS 

222  PORMAT(3X,4F20,10) 

PRINT 10, M1.?, NI), MO, NQ, KASE, L PROB, TREO, EPU 
TYPE 10. MD, UD, 1O, NO, KASE, LPRO6, TRE(, CPU 

10  FORMAT(2X,615,2X,2F20.10) 

DM = 360.*50, 

TPS1--P51/Dh; TPS2=PS2/Ate; TPS3=PS3/QM 
PRINT 1000,"PSI,TPS2,TPS3,ESI,PS2,PS3 

1000 	Fu iAT(3X,6F15..10) 
DO 1 I=1 , NEQ 
XDOT(I) =0. 
Y(I)=0. 

E(I)=0. 

i 	CONT'I1 UE 
Yn0T(1)=1.0 
T=0. 
Do 7 I=1,3 
5=0. 

DO 6 J=1,3 
J,j=.J 
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YD(I)=5 

XpS(II,I)=YD(I) 

7  CONTINUE 

Do 2 I=1,2001 

CA[J(, RKGII,I, (Y, YDQT, E, H, NE0 ) 

CALL EX(Y) 

IP(Y(1).GT.(TREO+2.5E-06),AND,Y(1),GT,(TPS3+50.E-06)) GO TO 2 

CALL PR013(Y',I0) 

2  CONTINUE 

STOP 

END 

C SOLUTION OF QIFF, EON, BY RUNGE •KUTTA GILl,, METHOD 

SUBROUTINE RKGILL4  (Y, YDOT, E, fi, NKQ) 
DIMENSION YDOT(7),Y(7),E(7) 

COMMON/STORE/IZ,MQ,NU,XS(2001,6),XDS(2001,6) 

COF1MCIN/CONST/CNA(4),CNB(4),CNc(4) 

COMMON/STAB/A(3),8(3),TD(3) ,,TT(3),AB(3) pEXO(3),MO,N(,EPU 

COMMON/INPUT/TMAT(3,3),OINVT(3,3),RL(3,3),ALL(3,3),A.LG(3.3) 

3,RO,R1,Pt:LQ,PI,e1,CO,C1,X1 ,E;MoFREc,KASE,IipRO3,'TREQ,CI(3) 
4,RG(3,3),RCR(3,3)•DU(3,3),TPS1,TP52,TPS3,RCCEC)(3,3) 

COMMON/STT/VW(3,3),VTI(3,3),VXZ(3,3),Z(3,3),VXM(3,3), 

6ALBT(3,3),ALGM(3,3),OHM(3,,3),OINVQ(3,3) •TEMPI(3:3) 
11=11+1 

DO 1►J=1,4 

IF`(KASE.NE.1) GO TO 8 

CALIF DERIVR(Y,YDOT,H,NEO,K,KK) 

GO TO 9 

8  CALL QERIVT(Y,YAQT,H,NEQ,K,KK) 

9  D[l 1 I=1 ,NEO 

X=CNA(J)*(YQOT(I)SCNB(j)*E(I)) 

Y(I)=Y(I)+H*X 

1  CONTINUE 

IF (KASE,NE.1) Go To 10 

CALL DERTVR(1!,YDOT,H,NEQ,K,KK) 

GO TO 11 

LO  CALL DERIVT(Y,YDClT,H,NE),K,KK) 

It  DO 2 I=2,NEQ 
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LI=I-i 

XDS(II,J)=YDOT(I) 

2  XS(II,J)=X(I) 

RETURN 

END 

C CALCULATION OF THE DERIVATIVE OF FUNCTION FOR INDUCTIVE LOADS 

SUBROUTINE DERIVT (X, YDOT, Ii, NEC)) 

L)IMENSION Y(7),YDOT(7),AK(3),AKD(3),AKDS(3),BS(3),BDS(3),AKS(3) 

COMMON/STORE/II,MU,ND,XS(2001,6),XDS(2001,6) 

COMM04/CONST/CNA(4),CNH(4),CNC(4) 

CIJMMON/STAB/A(3),B(3),TU(3),TT(3),AB(3),EXO(3),MO,NO,EPU 

COMMON/INPUT/TMAT(3,3),UINVT(3,3),RI (3,3),AI.Cr(3,`3-),AI,G(3,3) 

3,RO,RI,PLO,PIn1,CO,C1,XA,EM,FR:Q,KASE,LPROB,TREQ,CI(3) 

4,RG(3,3),RCB(3,3),DL1(3,3),TPSI,TPS2,TPS3,RCAO(3,3) 

CC.)M?4t)N/STT/VW(3,3),VTI(3,3),VXZ(3,3),Z(3,3),VXM(3,3) r  

6ALHT(3,3),ALGM(3,3), OHM (3,3), DIN VQ(3,3),TEMP1(3r3) 

COMMON/ATTEN/ATO, ATP ,ATOS, ATPS 

T=X(t) 

DO 2 1=2,4 

M=I-1 

S=O,O 

DO I d=1,3 

JJ=►) 

1  S=S-•VW(M,J)*Y(J+1)+VTI(M,J)*EG(JJ,T) 

2  XDOT(I)=S 

IF(T.Ll'.TD(1)) GO TO 15 

K11-MU 

DO 3 1=2,3 

=I+3 

3 	f4S(I)=ATP*XS(K,L) 

IF(T-TD(2)) 4,5,5 

4 

GO TO 6 

5  K=rI-NQ 

oS(1)=ATO*XS(K,4) 

5  DO 8 1=2,4 

'4=I-1 

S=YDOT (I ) 

DO 7 a=1,3 
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S=S+VXM(M,J)*BS(j) 
01580 8 YDOT(I)=S 
01590 IF(T.LT.TT(1)) 	GO TO 	15 
01600 K=II-MD 
01610 DO 9 1_2, 3 
01620 AK(I)=ATPS*XS(K,I) 
01630 9 AKD(I)=ATPS*XD5(K,I) 
01640 IF(T-TT(2)) 	10,11.11 
01650 	10 AK(1)=0. 
01660 AKD(1)=0, 
01670 GO TO 12 
01680 	11 K=II-htp 

( 	01690 AK(1)=ATOS*XS(K,1) 
01700 AKf)(1)=ATIJS'~XDS(K,1) 
01710 	12 00 	14 	7=2,4 
01720 M_Ia1 

01730 S=YDOT(I) 
01740 DO 	13 	1,3 
01750 	13 S=S+AGST(M,J)*AK(j) 
01760 	14 Y0(1T(I)=S+AK.D01) 
01770 	15 DO 	17 	1=5,7 
01790 M: I..4 
01790 S=0* 

01800 DO 	16 	►)=1, 3 
01810 	16  
01820 	17 YDOT(X) =S 
01830 IF(T.LT.TD(1)) 	RETURN 
01840 K=II-Mf) 
01850 DO 	18 	1:2,3 
01860 AKS(I)ZATP*XS(K,I) 
01870 	18 AKD5(I)=ATP*XDS(K,I) 
01880 IF(T-TD(2)) 	19,20,20 
01890 	19  
01900 AKhS(1)=0. 
01910 GO TO 21 

01920 20 K=IIS-NU 
01930 AK,S (1) =ATO*XS (K,1) 
01940 AKt)S(1)=A1'~7*XDS(K•1) 
01950 	21 DO 23 1=5,7 
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01960 M=I-4 

01970 S=YDOT(I) 

01980 DO  22 J=1,3 

01990 22 S=S+AI.BT(M,J)*AKS(J) 

02000 23 XLOT(I)=S+AKDS(M) 

02010 RETURN 

02020 END 

02030 C CALCULATION OF DERIVATIVE FUNCTION F'OR RESISTIVE LOADS 

02040 SUBROUTINE DERIVR(Y,YDOT,H,NEQ,K,KK) 

02050 DIMENSION  Y(4),XDOT(4),AD(3) 

02060 COMMON/STORE/II,MD,tW,XS(2001,6),XI)S(2001,6) 

02070 COMMON/CONST/CNA(4),CNB(4),CNC(4) 

02080 COMMON/ STAk3/A(3),B(3),TD(3),TT(3),A$(3),EXO(3),MO,NO,EPU 

02090 COMMON/INPUT'/TMAT(3,3),DINVT(3,3),RL(3,3),ALL(3,3),ALG(3,3) 

02100 3,RO,RI,PLO,PL1,CO,C1,XO,FM,FREi.t,KASE,LPHOB,TREQ,CI(3) 

02110 4,RG(3,3),RCB(3,3),DU(3,3),TPSI,TP52,TP53,RCBU(3,3) 

02120 COMMON/STT/VW(3,3),VTI(3r3),VXZ(3,3),Z(3,3),VXM(3,3), 

02130 6Af,RT(3,3),A[.,GM(3,3),0HM(3,3),DINVO(3,3),TE?IP1(3,3) 
02140 COMMON/ATTEN/ATO, ATP, ATOS ,ATPS 

02150 T=X(1) 

02160 DO 2 I=2,NRO 
02170 S=0.0 

02180 MM:I-1 

02190 DO 	1 	J=1,3 
02200  

02210 1 S=S-VAI(M,J)*Y(J+1)+VTI(M,J)*EG(JJ,T) 
02220 2 YDOT(I)=S 
02230 IF(T.LT,TT(1))  RETURN 

02240 CC PRINT 9 
02250 9 FORMAT(2X,'ENTERX') 

02260 K=II-MD 

02270 D)0 	3 	I2,3 
02280 A(j)=ATPS*XS(K,I) 

02290 3 AD(X)=ATPS*XDS(K,I) 
02300 1F(T-TT(2))  4,5,5 

02310  

,L02320 4 AD(1)=0.0 
02330 GO TO 6 

02340 5 KK=XI-~,D 
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ti 02350 A(1)=ATOS*XS(KK,1) 

02360 AI)(1)=AT0S*XDS(KK,1) 

02370 C PRINT 10 

02380 10 FDRMAT(2X,'ENTRY 2') 

02390 f, DU 8 I=2,NEQ 

02400 M=I-1 

02410 S=YDOT(I) 

02420 DO 7 J=1,3 

02430 7 S=,S+VXZ(M,J)*A(J)+Z(M,J)*AD(J) 

02440 8 YDOT(I)=S 

02450 RETURN 

02460 EN!) 

02470 C GENERATION OF FORCING FUNCTION 

02480 FUPICTION EG(J,T) 

02490 PI=  3.1415926 
02500 OMGA=314,15926 
02510 EM=  326.59562. 

02520 IF(J-2) 	1,2,3 
02530 1 EG=EM*SIN(UMGA*T) 

02540 RETURN 

02550 2 E.G=EM*SIN(OMGA*T-2.*PI/3.) 

02560 RETURN 

02570 3 EG=EM*SIN(QMGA*T+2.*PI/3.) 

02580 RETURN 

02590 END 

02600 C CALCULATION OF RECI€VING END VOLTAGE AND CURRENT 

02610 SUBROUTINE EX(Y) 

02620 DIMENSION Y(7),AMB(3) 

02630 COMMON/ST©RE/II,MD,ND,XS(2001,6),XDS(2001,6) 

02640 COMMON/CONST/CNA(4),CWR(4),CNC(4) 

02650 CfMMON/STAB/A(3),B(3),T0(3),TT(3),Ai(3),EXO(3),MU,NO,EPU 

02660 COMMON/INPUT/TMAT(3,3),DINVT(3,3),RL(3,3),ALL(3,3),AI4G(3,3) 

02670 3,RO,R1,PLC,PI11,CO 3C1,XO,EM,FRE0,KASE,LPROS,TREQ,CI(3) 

02680 4,RG(3r3),RCB(3,3),DU'3,3),TPS1,TPS2,TPS3,RC130(3,3) 

02690 CIIMM0N/STT/VW(3,3)SVTI(3,3),VXZ(3,3),Z(3,3),VXM(3,3), 

02700 6AI.,bT(3r 3),ALGNs(3,3),OHM(3,3),PINVO(3,3),TEMP1(3,3) 

.02710 CUMMON/ATTEN/ATO,ATP,ATOS, ATPS 

02720 TY(1) 

02730 IF'(T.LT.TD(1))  GO  TO  12 
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027 40 t=II-i 14 

02750 DO 	1 	I=2,3 

02760 A(I)=ATP*XS(L,I) 

02770 1 CONTINUE 
02780 IF'(KASE.NE.2) 	GO 	TO 23 

02790 8(2)=Y(6) 

02800 —Y(7) B(3)— 
02810 23 IF(T-TD(2)) 	2,3,3 

02820 2 A(l)=0,0 
02830 IF(KASE.NE,2)GO TO 24 
02840 8(1)=O.0 
02850 GO TO 6 
02860 3 Lu_II-NO 
02670 A(1)=ATO*XS(Lst,,1) 
02880 Ik'(KASE.NE.2) 	GO TO 24 
02890 R(1)=Y(5) 

02900 GO TO 6 

02910 24 DC 26 	11,3 

02920 S^0.0 

02930 DO 25 J:1,3 

02940 25 S=S+Z(I,J)*A(J) 

02950  
02960 26 CONTINUE 
02970 6 DO 9 	I-1,3 
02980 AMR(I)=ACI)-8(I) 
02990 9 
03-000 00 7 	I=1,3 
03010 S=0,0rR=0.0 
03020 DO 	8 J=1,3 
03030 R=R+TEMP1(I,dJ)*AMB(J) 
03040 A S= S+TMA'rC1,J)*AB(J) 
03050 EXO (I) =S/EPU 
03060 CI(I)=R 

03070 7 CONTINUE 

03080 C IF(T-101 E-03) 	1),,11,12 
03090 12 LPRI=LPRI+1 

,L03100 IF(LPRI-10)13,14,13 
03110 14 LPR1=0 

03120 11 PRINT 	10,T,EXO(1),EXQ(2),EXO(3),CI(1),CI(2),CI(3) 
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03130 10 FORMAT(2X,F7.4,5X,5F15,10) 

03140 876 FGRMAT(1X,F7,4,3F14,10) 

03150 13 IF(ABS(ZMAXi).GE.AN$(EX0(1)))  GOT021 

03160 ZMAX1=EXO(1) 

03170 TOC1=T 

03180 21 IF(A3S(ZMAX2).GE,Af3S(EXO(2)))  GOTO1S 

03190 ZMAX2=EX©(2) 

03200 TCC2=T 

03210 15 IF(AHS(ZMAX3),GC.A5S(EX0(3)))  GOT016 

03220 ZMAX3=EXO(3) 

03230 TOC3 =T 

03240 16 TF(II-2001)20,22,22 

03250 22 PRINT17,ZMAX1,TOC1 

03260 17 FORMAT(/,4X,'MAX Uv  PH1=',F12,6,2X,'AT  TIME  =',E12.6,/) 

03270 PRINT 18,ZMAX2,TOC2 

03280 18 FORMAT(/4X,'MAX  OV  PN2=',Fi,2.6,2X,IAT  TIME=  ',E12.6,/) 

03290 PRINT 19,ZMAX3,T©C3 

03300 TYPE 876,  TQC3,ZMAXI,ZMAX2,ZMAX3 

03310 WRITE(21,876)  TOC3,ZMAX1,ZMAX2,ZMAX3 

03320 19 FORMAT(/,4X,'MAX  OV  PH3=',F12.6,2X,lAT  TIME=',E12,6,/) 

03330 20 RETURN 

03340 END 

03350 C SELECTION OF OIFFERENT CASES 

03360 SUBROUTINE" PROR(Y,I0) 

03310 COMMO /STORE/UU,MD,ND,XS(2001,6),XDS(2001,6) 

03380 COMMON/CONST./CNA(4),CNNR(4),CNC(4) 

03390 COMMON/STAB/A(3)r H(3),TD(3),TT(3),AB(3),EXO(3),M0,N0,EPU 

03400 COMMON/INPUT/TMAT(3,3),DINVT(3,3),RL(3,3),ALG(3,3),ALG(3,3) 

03410 3, RO, R 1, PEO, PU , CD, Cl , XQ, EM, FREQ, KASE,1,PRQB, TREQ, CI (3 ) 
03420 4,RG(3o3),RCR(3,3)r1)U(3,3),TPSI,TP52,TPS3,RCBO(3r 3) 

03430 CO4MON/STT/VW(3,3),VTI(3,3),VXZ(3,3),Z(3,3),VXM(3r 3), 

03440 6AG8T(3,3),ALGM(3,3),OHM(3r3),DINVO(3,3),TEMP1(3,3) 

03450 COMMOtU/ATTEN/ATO, ATP,ATOS, ATP a 
03460 DIMENSION Y(7) 

03470 00 TO  (1,2,3,4,5,6,7)  LPROB 

03480 1 IF((Y(1)+2,5E-07).1+T,TREQ)  RETURN 

i 	03490 IF (ICS,NE.U)  RETURN 

03500 DO  11  1=1,3 

03510 RCR(i,x)=0.0 



APPENDIX  -2 

03520 
rirr rrrwwwwwA 

RG(I,I)-0,0 

03530 11 CONTINUE 

03540 CALL CALMAT 

03550 ICES=IC8+1 

03560 RETURN 

03570 2 IF((Y(1)+2.5E•07),LT.TREO) RETURN 

03580 IF'(IR.NE,O)  RETURN 

03590 DO 12  I=1,3 

03600 RL(I,I)=1190.25E+06 

03610 12 CONTINUE 

03620 CALL CALMAT 

03630 IR:XR+1 

03640 RETURN 

03650 3 IP((Y(1)t2.5R*06),I.#T,TREGI) RETURN 

03660 IF(IC1.NE.0)  GO TO 41 

03670 IV(ABS(CI(1)).GT.0.01)  GO TO 41 

03680 RL(1,1)=1190,25E+06 

03690 CALL CALMAT 

03700 IC1-IC1+1 

03710 41 IF(IC2.NE.0)  GO TO 42 

03720 IF(Ak3S(CI(2)).GT.0.01)  GO TO 42 

03730 RL(2,2)-1190,25E+06 

03740 CALL CALMAT 

03750 IC2=IC2+1 

03760 42 IF(IC3,NE.0)  GO TO 43 

03770 IP(Ah5(CI(3)).GT,0.0c)  GO TO 43 

03780 RL(3,3)=ROPEN 

03790 CALL CALMAT 

03800 IC3=IC3f1 

03810 43 RETURN 

03820 4 IF(:14.'NE,O)  GO  TO  30 

03830 DO  14 1=1,3 

03840 RT,(I,,I)=RL(I,I)+RQPEN 

03850 14 CONTINUE 

03860 CALL CAi4MAT 

03870 I4=14+1 
E 

,L038 80 30 IF((Y(1)+25,E-07),LT.TREC) RETURN 

03890 IF(:15,NE.0)  GO TO  31 

03900 DO  15  I-1, 3 

PAGE 
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03910 RI,(I,I)=RL(I,I)-ROPEN 

03920 15 CONTINUE 

03930 CALL CALMAT 

03940 I5=:15+1 

03950 31 RETURN 

03960 5 IF(IO.NF,0 1)  CO TO  19 

03970 Do 20  I=1,3 

03980 RG(I,I)=RCBO(I,I) 

03990 20 CONTINUE 

04000 CALL CALMAT 

04010 10=10+1 

04020 19 IF(Y(1).GT.TPS1)  GO TO  17 

04030 GO TO 18 

04040 17 IF(I1.F0,0)  CD To 29 

04050 GO TO 18 

04060 29 RG(1,1)=0,0 

04070 CALL CAIjMAT 

04080 I1=11+1 

04090 18 IF(Y(1).GT.TPS2)  GO TO 21 

04100 GO TO 22 

04110 21 IF(I2.EO.0)  GO TO  23 

04120 Go TO 22 

04130 23 RG(2,2)-0.0 

04140 CALL CALMAT 

04150 I2=12+1 

04160 22 IF(Y(1).GT,TPS3)  GO TO 24 

04170 GO TO 25 

04180 24 IF(13.FQ.0)  GO TO  26 

04190 GO TO 1 

04200 26 RG(3,3)=0.0 

04210 CALL CAIjMAT 

04220 13=I3+1 

04230 25 RETURN 

04240 6 IF(16. NE.0)  GO To  32 

04250 RCB(1,1)=RCF3O(1,1) 

04260 RIS(1,l)=ROPEN 

04270 CALL CALMAT 

04280 16=16+1 

04290 32 RETURN 

PAGE 
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04300 
r wwwrwrflrrw 

7 	IF(17.NE.0) 	GO TO 33 
04310 PL(3,3)=ROP EN 

04320 17=z7+1 

04330 CALL CAIJMAT 

04340 33  RETURN 

04350 END 

04360 C CALCULATION OF CONSTANT 	IATRICES 

04370 SUBROUTINE: CAIJMAT 

04380 DIMENSION TEMP2(3,3),TEMP3(3►3),TEMP4(3,3) 

04390 1,TEMP5(3,3),TEMP6(3,3),TFMP7(3,3),TEMPB(31.3),TEMP9(3,3) 

04400 2,TEMP10(3,3),V(3,3),W(3,3),X(3,3),f3T(3,3),GM(3,3),TIL(3,3) 

~., 04410 3,AI1P(3,3),ALPI(3,3),VX(3,3) 

04420 CtOMMI)N/INPUT/TMAT(3,3),DINVT(3,3),RL(3,3),ALL(3,3),ALG(3,3) 
04430 3,R17,R1,PLO,PL 1,CO,C1,XO,EM,1'RE0,KASE,LPROB,TREQ,CI(3) 
04440 4,RC(3,3),RCSB,.(3,3),DU(3,3),TPSI,TP$2,TPS3,RCBO(3,3) 

04450 CtlMP ON/STT/VW(3,3),VTI(3,3),VXZ(3,3),7(3.3),VXM(3,3), 
04460 6AUT(3,3),ALGM(3,3),OHM(3,3),DIwVN(3,3),TEMP1(3,3) 

04470 CUMMON/ATTEN/ATO,ATP, ATOS, ATE'S 
04480 DO  1  11,3 

04490 • 00 	1 	J=1,3 
04500 OHM(:I,J)-0, 
04510 1  CONTINUE 

04520 OHM(1,1)=SORT(PLO/C()) 
04530 T'1-SURT(PL1/C1) 
04540 DO 2 J=2,3 

04550 OHM(J,J)=T1 

04560 2 	CONTINUE 
04570 CALL  INV(OHM,DINV(J) 

04580 CALL MUJs(TMAT,DINVO,3,TEMPI) 
04590 CALL MUb(DIUVT,RL,3,TEMP2) 

04600 CALL MlJL (TEMP2, TE14P1, 3, TEMPS ) 
04610 DO  3  z=1,3 

04620 00 3 J=1,3 

04630 TEMP4(I,J)=TEMP3(I,J)+1OU(T r 1) 
04640 TEMP5(I,J)=TEMP3(I,J)•DU(I,J) 

04650 3 	CONTINUE 

04660 CALL XNV(TFMP4,TEMP6) 

04670 CA14L MUL(TEMP6,TEMP5,3,Z) 

04680 CALL MUG  (DINVT,ALG,3,TFMP7) 
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04690 CALL MUL 	(TEMP7, TEMPI, 3, TEMPS ) 

04700 CALL INV  (TEMPW,V) 

04710 00 7 	11,3 
04720 RG(I,I)-RG(I,I)+RCle3(I,I) 

04730 7  CONTINUE 

04740 CALL 	MI1(, 	(f.).1NVT, KC, 3, TEMP9 ) 

04750 CALL Milb 	(TEMP9,rEMPI,3,TEMPIO) 
04760 00 4 IK-1, 3 
04770 DO 4 JK=1,3 

04780 1 (IK,JK)=TEMP1O(IK,~1K) 	DU(IK,JK) 
04790 X(IK,JK)=TEMP10(IK,JK)-0U(1K,►1K) 

04800 k3T(IK,JK)=TEMP5(IK,JK) 
04910. GM(ZK,J1c)=TEMP4(IK,JK) 
04820 4 	CONTINUE 
04830 CALL 	MUL 	(V,t ,3,VW) 
04840 CALL  MUS,  (V,X,3,VX) 

04850 CALL 	MUl, (V, DINNVT, 3, VTI ) 
04860 CALL MU(,(VX,Z,3,VXZ) 

04870 CALL 	MULCO.INVT,ALL.3,TILL) 
04880 CALL MUL(TIL,TEMP1,3,A1,PI) 
04990 CALL INV(ALPI,A1,P) 
04900 CALL MUL(ALP,BT,3,ALDP) 
04910 CALL 	M(IG(ALP►GM, 3,ALGMM) 
04920 DC 6 1=1,3 
04930 00 6 J=1,3 

04940 VXM(I,J)=VX(I,J)-ALGMM(I,J) 
04950 6 	CONTINUE 
04960 RETURN 
04970 END 
04980 SUBROUTINE 	MUI., (D, E, M, X ) 

04990 C TO CALCULATE MATRIX MULTIPLICATION 

05000 DIMENSION  D(3,3),E(3,M),X(3,3) 

05010 1)0 	10S-t.3 
05020 00 	10J=1,M 
05030 X(I,J)=0. 

05040 DO  10 K=1,3 

05050 X(I,.J)-X(I,J)+n(x,K)*E(K,J) 
05060 10 	CONTINUE 
05070 RETURN 
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05080 END 

05090 SUBROUTINE INV(X,A) 

05100 C THIS CALCULATES MATRIX INVERSE 

05110 DIMENSION  X(3,3),A(3,3),B(3,6) 

05120 DO  1000 J=1,3 

05130 DA  1000  K-1,3 

05140 R(J,K)=X(J,K) 

05150 1000 CONTINUE 

05160 N1=6 

05170 N2=4 

05180 DO  IOM=1,3 

05190 DO 20 N4,6 

05200  

05210 20 MN=M+3 

05220 10 B(M,MN)=1, 

05230 00  100 J=1,3 

05240 IF(B(J,J).E0.O.)  C0  TO  102 

05250 DO  100  M =1, 3 

05260 IF(M.EO.J)  GO TO 100 

05270 C=H(M,J) 

05280 C=C/B(J,J) 

05290 DO  105  N=1,Nj 

05300 105 8(M,N)=S(,4,t4)-B(J,N)*C 

05310 100 CONTINUE 

05320 DO 106 J=1,3 

05330 R1./B(J,1) 

05340 DO 106 N=N2,N1 

05350 106 R(J,N)=B(J,ty)*R 

05360 DO 1001  J=1,3 

05370 0C  1001  K=1,3 

D5380 1001 A(,I,K)=3(J,K+3) 

D5390 102 RETURN 

D5400 END 

PAGE 
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