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ABSTRACT

Single Machine connected to infinite bus with two
tie-lines is considered to study the effect of reactance

on tﬁe system at different conditions. Different conditions

here is meant by steady state, transient state (during fault)

and Post fault. In steady state, it has been proved that
the introduction of reactance (certain Value) enhances the

stability region.

For during fault and post fault study on Operating
Point has been chosen and the fault has been made to occur
.at machine terminal itself i.e. very near to the bus in
one of the lines. The most sewere fault i.e. 3 Phase fault

‘has been considered.

It has been observed that dufing fault the sysfem
remains in step and after clearance of the fault if the
system is left like that i.e. no introduction of feactanpe
is made the system goes out for both the cases i.e, after
fault if both the tie-lines are assumed to be commissioned
or only one line is assumed to be commissioned. This
céndition can be avoided by switching suitable value of
reactance at the time of clearance of the fault and it
will reamin in the system till the oscillation is damped
out. After that the gysiém will be brought back to the
original condition. That is to say the suitable value of
reacténces are to be switched in and switched out at

proper interval of time.
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iv
NOMENCLATURE

All quantities in per unit on machine base.

g’ *q armature current, direct and dquadrature axis

components.

¢qr °q armaturg voltage, direct and quadrature axis
compongnts.

et terminal voltage. |

E; voltage proportional to.direct axis flux iinkages

Efd - generator field vbltage (one per unit is the value
for 1 per unit terminal voltage on the air gap
line, open circuit).

X, external reactance .

To external resistance.

T, armature resistance.

S Laplace operator.

& angle between quadrature axis and infinite bus.

?6 per ﬁnit speed deviation from synchronous.

Te electrical torque.

T Mechanical torque.
Inertia constant, seconds.
Inertia coefficient = 2H, Seconds.

m damping coefficient.

m o = I

infinite bus voltage.

Subscript O means steady-state value.
Prefix & indicates small change.

Dots over the symbol denote the number of differentiation
w.r.t. time. “

Other symbols used have the usual meaning.



CHAPTER - 1

REVIEW OF LITERATURE

INTRODUCTICN

Recently there has been considerable attéhtion
given to improvement of system stability by excitation
control [1-2] or bj Controlled switching of system
impedances [3-4].

In ref [1] the phenomena of stability of synchronous
machines under small perturbations has beenvexamined'by
taking the case of a single machine connected to a large
system through external impedance. The object of this paper
is to develop insights into the effects of excitation
systems and to establish an understanding of the stabilizing
requirements for such systems. A liniarized small perturbha-
tion relations of a single generator supplying an infinite
bus through exterhal impedance in the form of a block
diagram has been discussed. The same block diagram'has
been used in this work also. The only différencé is that
there are two new vectors Z and W which will come into

- picture in case of system disturbance only.

In ref [2], the analysis of ref [1} has been
extended . The change of the parameters Kl to K6 of the

block diagram deéscribing the system has been investigated
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for different loading and power factors. A general
concluéion about the yariation of such parameters by
changing the operating conditions has been drawn, which

is an important factor in dynamic stability study. Here

in this work the change in K; to K  has been seen for
different loading conditions at different system reactances.
Thig will be clear in Chapter III of this di;sertation.

Where a table of results has been—shQWn.

Swit&hing of series capacitors upon occurrence
of a disturbance improves the system stability [3]. The

same idea can be utilised in this work also,

Improvement in the system stability can be
achieved by making changes in the ne twork in different
way in differént conditions [4]. An optimal sequence

can be determined for making changes in the ne twork.

PRESENT WORK

Here in this work the system considered is
single machine connected to infinile bus with two tie-
lines. The effect of reactance on this system at different

conditions has been'studied.

In Chapter 11 the formulation is reported.

In Chapter II1 , it has been proved that the
introduction of reactance (certain value) enhances the

stability region in steady state.



In Chapter IV the transient stability study
has been done., System differential equations has been
derived.Runge “Kutta fourth order techniqge has been
appiied to solve these g equations. A»prOgramme has
been developed (which ‘is given in the appendices) on EC=
75Pv72 Steps programmable Calculator. During fault and
post fault, study has been done. For this aﬁ-dﬁeréﬁing
point has been selected. For this partiéular operating
point it has been seen that the system goes unstable
after clearance of the fault. This situation can be
avoided by switching suitable value of reactance at the
time of clearance of the fault and this reactance will
remain in the system till the oscillation is damped out.
After oscillation is damped out the reactances will be

switched out from the system.

In Chapter V the Lyapunov technique has been
utilised to check the stability of the gystem.



CHAPTER 11

FORMULATION OF THE PROBLEM

Figure 1 shows the block diagram of a single
machine supplying an inﬁinite bus through external
impedance. The analysis of the phenomena of stability

of synchronous machines under small perturbations as

examined by Demello and Concordia [1], has been utilised.
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Here Z and W will come into picture in case of

disturbance only.

Let us assume x; = X6

1° X9 * %3

’

X5

LW

Ther=fore it can be written thats

2
l.8. -
- K - K
Us 7 1%
or,
*x . =
XQM + Dmx2
. Y
Xoo =~ m Kk
Again
K3
Ti
l + g K3 do

t
and x., = AE
q

3

X are the three states of the system.

K
TR,y %3
W
0
M s + D
m
w
O
+ Z M s + D
3 m
°u2 - lelwo - K2x3w + WOZ
D w Zo
- -l X - L X, + u
) Y M 2°3 M
- K
Uy a4 X1
= v K '
Xy + xg Ky To

(1)

(2)
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- [ 0
L
: W
i e - 1 - Q
g Xo | = M Kl
|
| T
- 3. - do

1 R
- ' K4 1
C TS
L do .

4

- Eqs. 1, 2 and 3 can be written in the matrix form -

From the output

_6-
Toor TR
K ' x3 +' ' u (3)
3 “do |  “do -
T i
1 O Hx o Q 0 | u
L |
'D w ! . W
m ¢
M - Ko %, %+ © i ; u
0 I . | 1 |
K T'_JL, cHIE vy 0)1;
g O
r'p f .
.0
i
| -~
+ Y A 7
_ o
K_ | E' + W
545 - K6A q
+ K + W
Kg %1 6%3
1r'" -
SR
i
K6 ] X, ¥+ [w]
| i
iL7%3
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Finally it can be written as

[ K 0

In

x = Ax +¥*Bu+F 12
y = Cx +E u+GW
0
; W
. 0w A - %M
LK
- 1
Tl
f do
. —
O
LW
F = S
M
Lo
= O K
C [K5 6

Here, B, F , E , G are constants. A is the system

5 e ]

the generalized form X and y

— —-

I
X
|
X
i

+ [0] [u] + [2] [w]

N =

i
{
i
1
i
?
I

w

L X
|

.

can be written as¢

v ™ .
D W o
: ;
1 | ---T}
O - i
- i do
KgTéo J o
? E = [O] ® G ==

[1]

©) g]oi

matrix and C is the output matrix. Only A and C will vary at

different conditions and will affect the operatidn.
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For finding A and C the Phillips-Heffron K constants

donived |
are to beknown. These constants are déwvided in [1l] and they are

as follows 3

E E
qo
_ 3 '
K = =5 [ r, sin 6, + ( X+ X1) cos &, ]
i BT
p 02 (X)) (X)) s (X ~X")coss |
A a4 ( et sin 50 r, g d coséoJ
K _ re E o ) (Xe+xq) ( xq d)
%
- ]
) (X-xt ) |7
. (xe+Xq a g
K = +
3 A
E (X -X")
o d ' d =
= X +X i —
K4 £( o q)51n50 r_cos 8, ]
i + X! i
eys . [- T, EO sin 60 + (Xe d) EOcos 60 |
K. = '
b € t0 9 l_ A | J
E - E ir |
eqo " r, Eg coséO (Xe + xq) o sin 8
+ “"“""‘e d
to
i X' (X o+ X )|
K er L - dd(.e ol edo X re
6 ~ 3 | A T Ty
1 | | to

]
it

/]
where, A =[ 15 + (X +X1) (X +XJ]
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FIG. 2-STANDARD MACHINE VECTOR DIAGRAM
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The steady state operating values of 5O;E y © and

qo do
e o are derived from the standard machine vector diagram
q
expressed as a function of steady=state terminal voltage €0’
and steady=-state real and reactive load currents Ido-and I o?
X E ?
e /
G -——————f'5"2s"zzfra-~—¢
o] /
! ?UM\————af
X e
2
Here, the known parameters are ¢
xq ’ xe', and ra,r loading at infinite bus in terms of
e
E'o’ Po’ Qo
Then,
Q
— -1 o .
¢o = tan 7, | (1)
'lﬁ o s e S
' "o ey e ook -
I, = ——— (2)
E_ cos (’(:an._l X
. o © s> )
o)
Taking EO as reference.
i : '
= E + + 1 i 2
S ‘J( o Tl COS'¢0 x, I, ?;n,¢o) + (Xelocos ¢o
s 2
- relo sin ¢O)
(3)
1 xelo cos ¢o - relo sin do
Qo = tan (4)

E +r 1 . + I i
ot I, cos ¢o x I sin ¢0



. B, = B +8 (5)
I,, =1, cos ¢t0 ' (6)
= 1 i
Ir8 s:m,dt (7)
Liﬂtewisei _
o, . . >
qu = ;l(eto + ralocosQfto + x Igsin ¢to) + (quocos gto
_ , 3 (8)
| ralo sin ¢to)
_ . xq Iocos ¢t0 - I‘a IO -Sin ¢t0
and Y, = tan : ' | (9)

ero t r I, cos ¢to+xq1051n¢to

-3 s eqo. = ey, COS Y, ()
Cdo = eto sin Yo | . (12)

So, knowing E_,x4, xq,_xé » X, T, and r, for any set of

a
P, and q , it is possible to find @_,1_, e , ¢to, e

to
Iao’lro’ qu, Yb’éo’ edo”eqo and so Phillips-Heffron Kl.to
K, constants. Then system matrix A and output matrix C
can be determined. The programme for the Equations is given
in the Appendix.



DATA USED ARE

1. Machine Constants for Tie-Line (in p.u. on machine base)

Machine Constants

X4 = 1.6 ’ X = 1.55
q
v = - ! =
xd 0.32 ’ Tdo 6.0

Tie = Line

r, =0.0, Xe = 0.4,
This means for individuyal tie line r, = o, X, = 0.8,
% |
Loading
Real power {(P) o - 1.0
Reactive Power (Q) 1.0 to _0.4

Terminal voltage ey = 1.0 — Eo = 1.0 at infinite bus.



CHAPTER 1III -

ENHANCEMENT OF DYNAMIC STABILITY REGION

3.1 INTRODUCTION

The familiar steady-state stability criterion with
constant field voltage defines the stability limit as the
condition for which the steady=state synchronizing power

coefficient Kl- K2 K3K4 is zero.

Here, in this work the synchronizing power coefficient
Ky = K2K3K4 is computed for-different values of P and Q
at different system reactance Xé « The aim of computing
Ky K2K3K4 is to &= see the effect of X, on this coefficient.
A graph has been plottesd showing the%loéhs of this coeffi-

cient on P-Q plane.

Then system matrix A is computed at selected points
i.ef, inrthe neighbourhood of é& = Kl—K2K3K4 = 0 points
for different Xes . Then eigen values has bezsn found out
for the same. Tha object for finding out the eigen values
of such cases is to see whether the unstable points can
be sh;fted towards stable region with the h%1p of
different Xesi A graph has been plotted bet&een PVS

eigen values at different X s .
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3.2 COMPUTATIONAL PROCEDURE

At different xe =ol, 02,.3,04, 05, 06, 07,08’ the

1. Phillips - Hzffron kl«—”-ké Constants are computed
2e k7 =,kl - ka2 ki k4 is Calculatad:

3. System matrix A is formed

4, Polynomial is found out.

5. Then eigen velues are determined one by one.
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3.4 CONCLUSION

(i) Locus of K; = O on P-Q Plane has been drawn.
The locus of K, = O shifts towards left hand as the
value of Xe goes on increasing. That is to say the
stabiiity region increases with the increase of X  in the
low rang of Q.

(ii) Zigen value also shifts tawards stable region
in some cases e.g., for P = 1, Q = -,2 at Xe = .4, the
System eigen value falls in unstable region but as the
reactanee if increased the system eigen value shifts to

stable region.

So, enhancement of dynamic stability region can

be achieved with certain value of system reactance.



CHAPTER 1V

TRANSIENT STABILITY STUDY

4,1 INTRODUCTION
For studying transient stability first the
system differential equation is derived. Then for during
fault thé system condition is found out. After that the

post fault study is made. In post fault it is observed
that the system goes unstable for x

= ,4, x_ = .8,

e e

x = 1.6 and 3.2, 2.4 and for x. = 1.8, 2.0 the oscilla-

e e

tion is.damped out that is system isfstable for a band

" of reactance.

4.2 Derivation of the system differential Equetion:

X. =W =W = {aw

From fig. (1) it can be written ——

D
- — - I 7.
(Pm Pe) = [W s + W ][.-. w

O . 0]
LW = & §
]
Aw = ;Q,L 6
X2 = S‘l



Pm - P
Pm - P

. w
o

7 x
» f
and x3 |
\,

From

l‘ae- Xl =

X2 ©

x3 =

P =

Initially at

X =

X
W
i

T
il

@) ZlOEO

>
it

It means first of all change in x

W
0 o}
D
M m
= o= R, + %
w0 2 WO 2
Dm
(Pm -P) - 2 Xo

t

\ cos (x, + &)
'4+x T ',/ Tl ©

standard m/c vector diagram.

2
f (Pm Py x2) 3 P is assumed constant
f (Efa’ xl) ’ Efd is assumed constant
t
E(x +E__ ' ) E2(X -xd) sin2(x,+6 )
TR Sin (xp+ 80) = Eeyy e
d - o Xg'+%g ) (X F%,
f (x3, xl)

t =0, i.e. when the fault occurs

O

o O O

5 takes place

thereafter change in xl occurs,then-changa‘invxgnaccurs.



i.e. the system diff. equations take the following
shape

1. For during fault condition :

X; = x(2)
Xy = 31.4 ¥ .8 - 1.6 ¥ x (2)
§3 = 67 % cos (x(1) + .62) = .61

2. For Post Fault Condition

E t
- Ax(D+"qo ) _. 1 155 = .32 *
Pe = T324x, sin(xy+05) % T357x ) 1.55+%.)

* sin2(xl+60)

X, = 3l.4 % (.8 = P,) - 1.6 ¥ x(2)

Xy = x( 2)

- - 5
Xy = 8?%%f:—%:§2 * lg £ cos (x( 1)+ 60) - Constant



4.3 TABLE OF RESULTS
(i) For during fault

X, = 25412 = 1.6 % x(3)
. ; . <

S.No. t oxy  Ax T oax, gfxi Xy Xy teeax(2)
1 0 o .25 .25 .25 .25 .05
2 .01 .25 .25 .25 .25 .24 .5
3 .02 .5 24 24 .24 .24 74
4 .03 14 .24 .24 .04 .24 .98
5 .04 .98 .24 .23 .23 .23 1.21
6 .05 1.21 .23 .23 .23 .23 1.44
7 .06 1.44 .23 .23 .23 .22 1.67
8 07 1.67 .22 .22 .22 .22 1,89
9 .08 1.89 : .22 .22 .22 .22 2.11
10 .09 2.11 .22 .22 .22 21 2.33
11 .10 2.33 .21 .21 .21l 21 2.54
12 .11 2.54 .21 .21 .ol .21 2,75
13 .12 2,75 .21 .21 .21 .20 2.98
14 .13 2,96 .20 .20 .20 .20 3.16
15 .14 3.16 .20 .20 .20 .20 3.36
16 .15 3.36. .20 .20 .0 .19 3.56
17 .16 3.56 .19 .19 .19 .19 3.75
18 .17 3.75 .19 .19 .19 .19 3.94
19 .18 3.94 .19 .19 .19 .19 4.13
20 .19 4.13 .19 .18 .18 .18 4.31

21 020 4031 .18 018 ’ 018 018 ’ 4.49




x, = x(2)

NS boxg o axg A% AXg A% xg deeax(D)
1 0 O 0 0 0 0 0.0
2 .01  .25.1.,0025 .0025 ,0025 .0025 .0025
3 02 .5 .01 .0l .01 .01 .01
4 .03 .74 .01 .01 .01 .01 .02
5 .04 .98 .0l .0l .01 .01 .03
6 .05 1l.21 .01 .01 .0l .ol ,04
7 .06 1.44 .01 .01 .01l .0l .05
8 .07 1.67 .02 .02 .02 .02 07
9 .08 1.89 .02 .02 .02 .02 .09
10 .09 2.11 .02 .02 .02 .02 .11
11 .10 2.33 .02 .02 .02 .02 .13
12 .11 2.54 .03 .03 .03 .03 .16
13 .12 2.75 .03 .03 .03 .03 .19
4. .13 2.96 ! e ' e .22
15 .14 3.16 ' e S ' «25
16 .15 3.36 ' ' 'y ' .28
17 .16 3.56 .04 .04 04 .04 .32
18 .17 3,75 v vy X ' .36
19 .18 3.94 ' e X ,40
20 .19 4,13 ' FEEY X .44

2']‘ -20 4.31 te L ts""&"" . 11t .48




21—

67 % gos (x(1)+.62)-.61

Sc;. tox, f.‘«\‘xi ggxi "‘;'xi ééfxi X541 i.e.).<( 1)
(=) (=) (=) (= (=)

1 0.0 0 00062 .0006 .0006 .0006 .0006
> .0l O «0007 0007 -0CO7 0007 .0013
3 .02 0025 0006 .0006 ,0006 .0006 .0019
~ .02 .01 .00056 .0006 .CO06 .0006 .C026
5 .04 .02 .0007 .0007 .0007 .0007 .0033
6 .05 ,03 ,0007 .0007 ,0007 .0007 0041
7 .06 .04 ,0008 .0008 .0008 .0008 .0049
s .07 .05 .0008 .0008 .0008 .0008 .0057
9. .08 .07 .0009 .0009 0009 .0009 0067
10 .09 .09 .0010 .0010 .0010 Q010 yiapy yprQT o o
11 .1 .11 .,0011 .0Oll .0011 .0O11l AOURRESS
12 .1l .13 .00l12 .0OL1 .0011 .0O11 0100
13 .12 .16 ,0013 .0O13 ,0013 .0013 0113
14 .13 .19 .0014 .0014 .0014 ,001l4 .0128
15 .14 .22 .0016 .001l6 0016 .0016 0144
16 .15 .25 .00.17 .0017 .0017 .OO17 0162
7. .16 .28 ,0019 .0019 .0019 .0C19 .0181
18 .17 .32 .0021 .0021 .0021 .0021 .0203.
19 .18 .36 ,0023 .0023 .C023 .0023 0226
20 .19 .40 .0025 .0025 ,0025 .0025 ;0252
21 .20 .44 .0028 .0028 .0028 .0028 .0280




(ii) For Post Fault

DD

Operating Point is «8+ j.6

System reactance (xe) = 0.4

Xo = 3144 (48 =P.) - 1.6 % X(2)
%;ft | X(2) | Py [31.4 x jsx, }d&i g 1Ax ] xi+l§
v | e T ()]
1. .2 4.31 2.82 -63.53 =3.53 -3.38 =3.39 =3.25 .93
2. .25 .93 3.26 =77.39 =3.94 -3.79 -3.79 -3.64-2,86
3. .30 =2.88  3.34 =79.87 =3.76 =3.61 =~3.62 =3.47 ~6.48
4y .35 -6.48 3,05 =70.79 =3.02 =2.90 -2.91 -2.79 -9.38
5. «4 =9.38" 2,29 -46,80 ~1.59 -1.53 -1,53 ~1.47 -10.91
6. .45 -10.91 1,01 -6.74 e .51 .52 .49 ~10.40
7. .5 -10.40 = .52 41.48  2.91 2.79 2.79 2.68 ~7.61
8. .55 ~7.61 =1.96 86.53  4.94 4.74 4.75 4.53 -2.86
9. .6 ~2.86 =2.90 116.1  6.03 5.79.. 5,80 5,57 2.94
10, .65 2.94 =3.19 125.27 6.03 5.79 5.80 5.56 8.73
1L, W7 8.73  -2.88 115.61 5.08 4.88 4.89 4.68 13.62
12. .75 13.62 -1.78 81.06 2.96 2.85 2,85 2,74 16.47
13. .8 16.47 .11 21,70 = .23 =.22 -.22 =.21 16.25
14, .85 16.25 2.35 =-48,56 =-3.73 -3.58 -3.58 -3.44 12.67
15. i9 12,67 3.69 -90.68 -5.55 =5,33 =5.33 =5.12 7.34




X, = x(2)
S.No. t_ x(2) Axl z.\i'xi .:’.':Z’Sc.i /,C;vxi Xie1 =x( 1)
1 2 431,22 .22 .22 .23 .66
2 .25 .93 .05 .05 .05 .05 .71
3 .3 -2.86 - .14 -.15 =.15 =-.15 .56
4 .35 =6.48 - .32 -.33 -.33 -.34 .23
5 4 =9.38 = .47 -.48 =,48 -,49  =,25
6 .45 =10.91 =,55  ~,5% =,56 =.,57  =-.81
7 .5 ~-10.40 -.52 =-.53 -,53 -,55 ~1,34
8 .55 =7.61 =.38  =,39 =.39 ~.40 -1.73
9 6 =2.86 =.14  -.15 =-,15 =-.15 ~-1.88
10 65  2.94 .15 .15 .15 .15 =1,73
11 .7 8,73 44 45 .45 .46  ~1.28
12 .75 13.62 .68 ~70 70 .72 =0.58
13 .8 16047 .82 .84 .84 .87 .26
14 .85 16.25 .82 .83 .83 .85  1.09
15 .9 12.67 .63 65 .65 .67 1.74




-4 -

Xq = .3 % cos (x(1) + .62) - .24
S.No. t x{ 1) L{:fxi L;’xl ézfxi A‘i’xi xi+l=x( 3)
1 .2 44 -,0046 -,0046 =-.0046 =-.0046 =.0346
2 .25 66 ~.0077 —.0076 =-.0076 =-.0076 =.0422
3 .3 .71 -.,0084 =-.0084 =-,0084 =-,0083 =-.0%06
4 .35 .56 =.0063 ~,0062 -.0062 =-,0062 -.0568
5 .4 .23 =~-.0021 =,0021 =-.0021 =-,0021 ~-.0589
6 45  =.25 ~.0020 -.,0020 =-.0020 =.0020 =-.0609
7 ) -.81 .0027 0027  .0027 L0027 -.0582
8 .55  -1.34 =.0007 =.0007 =-.0007 =.0007 -.0589
9 .6 -1.73 -.0053 =-.00%4 =~-.0054 =-.0054 =-.0643
10 .65 -1.88 =-.,0074 =-.007% =-.0075 =-,0075 =-,0718
11 .7 ~1.73 =-.0053 =-,00%3 =-.0053 =.0053 =.0772
12 .75 -1l.28 =-.0002 =-.0002 =-.,0002 =,0002 -.0774
13 .8 -.%8  ,003 .003 003  .003 -.0744
14 .85 .26  -,0024 ~-,0024 =-.0024 ~-.0024 ~-,0768
15 .9 1.09 -.0141 ~.0140 -.0140 =~,0140 =-,0908




OPERATING POINT 0.8+j.6

1.6

-1.08..




4.4 CONCLUSION

It is seen that the system reméinSstable during
fault and after fault if the gsystem is left like that it
goes unstable. This situation is avoided by switching
suitable value of reactance at the time of clearance of the
fault. This exfra reactance is kept in the system till the
oscillation of the system is damped out. After that the
sysiem is brought back to the original condition i.e. the
system is again with the original value of the reactance.

It is also seén that the syStem is stable for a
band of reactance only. This value is to be chosen optimally.
Here in this work it is selected by trial and error.

A graph of Xivs Time has been plotted at the-

operating point for different values of x_, = 3.2, 2.4,2.0

e
1.8, 1.6, 0.8 and 0.4 which shows that the system is stable

for a band of resactance only.
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CHAPTER V
STABILITY CHECK BY LYAPUNOV METHOD

5.1 INTRODUCTION : |

Ref[5] has be2n used for stability check by lyapunov
me thod where generation of lyapunov function is done with
the help of Cartwright's method. Cartwright's method is -
used because of its simplicity and robustness, though
there are other methods also for generating lyapunov
functione

Here, the systém is of 3rd order where the states
are defined as X =ad, Xy =AW, Xg =AEq' « In this work
it has been experienced that change in Eq'ié not apprecia-
ble so, assumption of Eq a constant will not make any
difference. Assuming Eq' a constant means assuming}bf=

constant i.e. field flux linkage is constant,

1 t he
So, x5 = Eq = Eq, =0 and x5 = 0

So, The system order reduces to two and the system

differential equation become 3

o

Xo

W _ .
X5 —'ﬁ%_ (Pm Pe)

=0

X eeo.(1)



*

9.2 Generation of Lyapunov function :-

Let in general quadratic form lyapunov function

for equation (1) be

2

2V lx + k2x2 + k3xlx2

I

k

Rewriting the system equation

X1 7 *2
Vo D
X2 T M (pm - Pe) M %2
X, = - a.x.=a_.sin (xl+6o)-a3sin2(xl+60)

2= % 1%2792

= —apx~fx))
. 1
EE ' 2 X =X
Because, P_= [—3— ] Sin(x,+6 ) - [&= & d
© xdXe 1o 2 (x,+x ){x _+x_)
d e q e

$in2(x,+6 )

£(x;) = a, sin(x;+6_) + ag Sin2(x;+6 )-a_

[il

w' "W E

_ 9 - -2 __a_
as =g Pp, ay= 5, ay= [ xTHx, ]
2 X x!

w E o nliif
- [0 3
ag=-[5— 2 Oegxg ) (x #xg) ]

f(x,) = [fx(xl)] X = 34%

where a4 £ (xl ) = ”QI [£(x))]

S50, X, = —a Xy, Xy

] =



-0 R
On differentiating the lyapunev function

%2

V = 2k X +2k 3%5

1X Xt 2koxo(~a X =, x, ) +k

+k3xl(—alx2~a4xl)
. 2 2

— - - 2 -~
2V T Tagkgx ey T2agkgxp #2kg X XpmRagk Xy kgX Xg
a,k a.k
oy o= (- k 2 _4°3 2 £ 3
S Vo= (-a kat g )x2 5o xT +(ky= k= =3 )xlx2

Now to satisfy L=theorem, any of the following
statement needs to be observed for V =

(a) a negative semidefinite function of state

Yaxiable x2

(b) a negative semidefinite function of state
variable X e

(c) a negative semidefinite function of state
variable X3 and Xoe

Let V be constrained to be negative semidefinite

funCtion of x2, This results in

k3 = 0, kl = a4k2, setting k2=l arbitrarily gives

kl = Ay, k.=1, k.=0

2 77 73 >
. Y 2 _ 2
o Va = Ta)Xy and 2V, = Xp + Ay%7
Writting f(xl) = ayx,
f ( = a
Jy) a¥ a,y>
Jf(y)ay Jagy dy = =

..l 5 i



2 2 2
P ST . S L L
° a "l 2 2 2
2 X
X 1
= §2~'+ N [a, Sin(y+8 )
oc

< L2
Va = T31%5
2 X 1
X 1 W EE
_Xa f o Yo ZEgq
Va= 2+ Jd (= P+ W R ax, Sinly + &)
2
w : X _-X :
_ .o E a..d .
Mo 2 (x) +xe)(xq+xe)_51n2(y+éo)]dy
2
. . D___ X
1
b w EE W 2 (x_=-x.')
_ e q - o E__ d
Va E M‘ xé +X, Sln(xl+6 ) M 2 (xd+xe)(xq+xe)
W
sin2(x +6,) ~ —o— Pmt
1 Wal =0
‘(xl= S x2=0)
WVl =0
(xl = éNew’ x2—0) , From this xl_éNew to
find out .
. 2 X =6 . '
‘_Va’ X . L~ New w,  EEq
T 2 o LM TR Tex o0 Oy -
- “New 0 - d e :
- !
_ WO E2 X Xd
M

: W
. S$in2 &, «= "o P_Jldx
2 (xd+xe)(xq+xe7 b New - —m "m ""1



S5.No. X 6 8 C

e o New max
1 .4 35.72 132 -5.68
> .8 37.97 110 ~2.07
3 1.6 42.37 85 . -0.59
4 1.8 43.42 80 + .46
5 2.0 a4.57 75 +3.7
6 2.4 46.77 70 - .25
7 3.2 48.97 65 - .43

5.3 CONCLUSION ¢
It is verified by the lyapunov Theorem also that the

system is stable for the'reactance value of 1.8 and 2.0 .

That is to say the system is stable for a band of reactance

only. At Xo = 1.8 and 2.0 the value of Cm calculated is

ax
positive which indicates that the system is stable for

these two values of reactance. For other x.s$ the values

e

of Gm calculated is negative which does not satisfy

ax
the lyapunov Theorem hence the system will not be stable
for these values of reactances. 50, the results obtained

in Chapter IV is fully verified by the lyapunov theorem.
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APPENDIX

Pfogramme forccalculation of Phillips-Heffron

K~-constants on ZC-75P 72 steps programmable calculator.

00
o1
02
03
04
05
06
07
08

09
10
11
12
13
14
15

16

17
18
19

RCL
1

RCL

INV
TN

X
21
22
23
24
25
26
27

(Results 28

3o

29
30
31
32
33
34
35
36
37
38
39
40
41
47

SIN

‘RCL

*

RCL



43
a4

45

46

47
48

49

51
22

53

o0
01

O3
04
05
06
Q7

08

-—32.—

RCL

SIN

TAN
R/S (@)

3TO

RCL

li

R/S (Byg)
STO



- 2337

2
0%
IYeL)
36 < . *
a1
?\C‘*. . |
\ i
29
’ Q9 i
: ’ 9
A1 w/s s0] |
1l ) )
- REL
‘ 12 -
: .
43
. 13 3
Ad 2 |
* \
. 510
rCL B
A6 ' 6 |
| 1
Al 2 :
— ;
A8 ] - .
49 R[S (13:0) h 4
19
¢
O =
o 78] 510
o)1
1
1 . 6
0
) g RCL
2 . l
S
’ i cO
*
) s n6 _CL
71
ol ’ 2
IR i
02 %
29
03 "
1
RCL . i

Ok



31
32
33
34
35
36
37
38
39

41
42

01
02
03
04
05
06
o7
08
09
10
11
12
13
14

N <o »

Il

Ve o 8]

o]

RCL

...34_

15
16
17
18

37
38
39
40

41

SIN

RCL



42
43
44
45

46

47
48
49

51
52

53
54

O1
02
03

04

05

Q7
o8
09
10
11
12

RCL

il

R/S
RCL

SIN

ro

- 35 -
13
14
15
16
17
18
19

21
22
23
24
25
26

28
29
30
31

32

33

34

35
36
37
38

20

-

(K, )




40
41

42

05
06
o7

08

- 09

10
11

12

o
-—

R/S (K,)
Xyt X5
value to be
given.
*
RCL |
9 {eqo
RCL}
e
1 to
0 .
R/S (K6)
\
BRCL 1§
i ©
_]_ i
SIN
*
] 1
xg/ Xg*¥x§

%
RCL ?

le
2 | "o
RCL l

e
3 [ to
CHs

...36-..

13
14
15
16
17
18

19

21

23
24
25

26

27
28
29

(value to be given) 30

31
32
33
34
356
36
37
38

RCL

w

— cl‘

RCL

0 O

+



37—

Programme for the formation

39 - RCL !
40 6 }kg of the Matrix
41 ] 00 RCL | ks
42 _ or - 9 |
43 + 02 *
44 RCL 03 5
45 5 04 =
26 _ 05 F
47 R/S(Kk,) 06 1/X
25 ‘ 08 R/S (My)
o . 09 RCL %kl
i3 11
52 7 ] *
53 * 12 | 3
54 RCL 13 | 1
k |
- 5 4 14 .
- _ 15 4
57 CHS 16 CHS
58 STO 17 =
59 9 18 R/S(My1)
19 RCL |

60 + } k4
61 RCL | 20 o

1 e
62 Y i 21 v
63 _ 02 6

64 R/S (k) 23 -



24 CHS
25 R/S (i)
26 RCL ‘kz
27 5 |
28 ¥
29 3
30 1
31 .
32 4
34 CHS
34 _
35 ) it/S (M23)
Co-efficient of the
Polynomial

36 RCL »

M
37 > | 22
38 C o+
39 RCL tM
40 3 |3
41 =
42 R/S (797)
43 RCL
44 2
45 *
46 RCL
47 3

o
O

CHS

RCL ¢

R/S

RCL

RCL

(7)

e e e e

(Constant Term)



Programme for Runge-Kutta
Fourth order for Solving
Simultaneous Differential

cquation during fault.

X2
QO
01
02
03
@4
05
06
Q7
08

09

10
11
12
13
14
15
16
17
18
19
20

25.12 - l.ox X(2)

RC
L 25.12

REL

...39..

21
22
23

25
26

27

28
29
30
31
32
33
34

35
36
37

38

39
40

41

42
43
44
45

IO

16

H

RCL

2

e

T R/S AX,, X
[ 3 ’/;—\ -
I i



46
47

48

X, = X(_z)

o To o7

~40~

18

QO
0l
02
O3
04

05

o7
08
09
10

11

13

= .67 % GOS

hd
R/S Xy

(X(1)+.50)
"0830

RCL |



14
15
16
17

18
19

21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

36
37
38
39

i

RCL

51
52
53
54
35
56
57
58
59
60
61
62
63

TO

fi

XL &X.
R/SEX, , A%,

RCL

RCL

il

¥

NN
O
-

I

-
R/S aX,



Programme for Runge=Kutta
Fourth order for solving
Simultancous differential
gquation for post fault
condition

x2 = 31.4 (.8~9é)~1.6xx(2)

OO0 ~ RCL k.62
o} 5

02 +

03 | RCL} (1)
04 1

05 =

06 SIN

07 %

08 [

09 RCL

10 3 3 x(3)
11 +

12 2

13 .

14 6

15 7

16 ]

17 =

18 .

19 7

24
25

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45



46
47
48
49

51
52
53
54
59
56
57
58
59

61
62
63
64
65
66
67
63
69

00
0l

1

RCL

TO



28
29

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51

52

TO 42

RCL 53
8 54
¥* 55
RCL 56
4 57
= 58
R/S Kxi 59
RCL ig
: 00
* , ol
RCL X, o
) 03
) 04
W/ 05
: ‘ 06
2 o7
i 08
RCL o
2 10
* 1l
RCL L
* 13
N i i 14
R/sﬁhxi,isxi .

16

RCL

RCL

4

-
—

R/sz‘xxi

1.62



18
19

21
22
23
24

26
27
08
29
30
31
32
33
34
35
36
37
38
39

GO
40

41

42

TO

19

RCL

RCL
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