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ABSTRACT 

Motion estimation is important component of video coding systems because it enables us to 

exploit the temporal redundancy in the video sequence. Generally, block based motion 

estimation algorithms are used which search the macro-blocks in the reference frames for the 

best match in the vicinity of the location of current macro-block. Estimation can .further be 
improved by searching for matching macro-blocks at sub-pixel positions in the reference 

frame. Motion estimation is a computationally expensive process and the complexity 

increases as the sub-pixel resolution of motion vectors is increased. 

For encoding spatially scalable video, motion estimation process is required to be performed 

for each of spatial resolution. Therefore, such techniques are required for motion estimation 

for scalable video coding which are less computationally expensive and also provide good 

PSNR performance. Activity based motion estimation technique which has been proposed 

recently, dynamically adapts the search range of motion estimation in enhancement layer 

based upon the activity of corresponding macro-block in base layers. 

In this thesis we have proposed a new motion estimation scheme which decreases the overall 

complexity of activity based motion estimation scheme while maintaining similar PSNR 

performance. 
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Chapter 1 Introduction 

1.1 Video Coding 
Digital video coding has gradually increased in importance since the 90s when MPEG-1 first 

emerged. It achieves higher data compression without significant loss of subjective video 

quality. The volume of digital video data is very large making it impossible to transmit raw 

video data through communication channels of limited transmission bandwidth or to save 

them on storage devices. This calls for data compression that provides efficient transmission 

or storage. Compression addresses the problem of reducing the amount of data required to 

represent a digital image. Generally speaking, video compression is a technology for 

transforming video signals that aims to retain original quality under a number of constraints, 

e.g. storage constraint or computation power constraint. It takes advantage of data 

redundancy between successive frames to reduce the storage requirement by applying 

computational resources. The design of data compression systems normally involves a trade-

off between quality, speed, resource utilization and power consumption. 

In a video scene, data redundancy arises from spatial, temporal and statistical correlation 

between frames. These correlations are processed separately because of differences in their 

characteristics. Hybrid video coding architectures have been employed since the first 

generation of video coding standards, i.e. MPEG. It consists of three main parts to reduce 

data redundancy from the three sources described above. Motion estimation and 

compensation are used to reduce temporal redundancy between successive frames in the time 

domain. Transform coding, also commonly used in image compression, is employed to 

reduce spatial dependency within a frame in the spatial domain. Entropy coding is used to 

reduce statistical redundancy over the residue and compression data. 

1.2 Scalable Video Coding 

Merely a compression scheme may not be solution to some application such as image 

database browsing, video-on-demand and video communication over heterogeneous 

networks. In these situations, other properties such as scaling for a desired spatial resolution, 

frame rate, bit rate etc are fast becoming indispensible features for a good and comprehensive 

compression system. Different users may have different requirements and limitations on bit 

rate, display resolution, frame rate and decoding complexity which cannot be anticipated in 

advance during compression. 
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1.2.1 Types of Scalability 
Digital video, as a multidimensional signal allows many possible specifications such as 

picture quality, picture size and picture playback rate. The ability to scale and choose 

different combinations of theses video specifications is crucial for simultaneous distribution 

to separate clients. These scalable video features are denoted as video scaling parameters. 
These desirable video scaling parameters include spatial resolution, temporal resolution, 

SNR, bit rate and complexity. 

1. Spatial Resolution Scalability: It refers to the flexibility to support different display 

resolutions by selecting subsets of a common compressed video bit stream. It allows 

playback of same video on various display devices with separate display resolutions. 

2. Temporal Resolution Scalability: It enables the flexibility to choose different video frame 

rates, for playback from a common compressed video source. A higher frame rate will 

allow smooth motion rendition, while a lower frame rate causes perception of jerkiness. 

Scaling of video playback frame rate is in fact one of the best choices for bit rate 

scalability while preserving average video quality level. 

3. SNR Scalability: It enables the selection, of different video qualities for common 

compressed video bit stream. Generally, video quality improves as more video data are 

used to reconstruct the video. As a result there is an intrinsic one to one relationship 

between video bit ratescalability and SNR scalability, if other scaling parameters remain 

unchanged. 

4. Bit Rate Scalability: It allows either source or consumer to gracefully scale for wide range 

of different data rates from same scalable video source. Due to constraints in effective 

network bandwidth, it is very desirable to have constant bit rate videos. However, it 

usually results in intermittent fluctuation of video quality around frames with high motion 

content. 

5. Complexity Scalability: It refers to trade-off between the computational complexity and 

rate-distortion performance of the video encoder/decoder by means of scaling for 

different subsets of same compressed video bit stream. Since real-time encoding and 

decoding is critical in many video applications, a scalable video coding algorithm should 

provide the flexibility to the lower end processors to scale down the video frame rate, for 

instance, in order to maintain real time encoding and decoding. 
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1.3 Scalability in Existing Video Coding Standards 
Early video compression standards such as ITU-T H.261 [1] and ISO/IEC MPEG-1 [2] did 

not provide any scalability mechanisms. One reason for this was the dedicated design for 

specific applications such as conversational services or storage, which did not require 

scalability. In fact, scalability can nevertheless be achieved by providing different bit streams 

targeting at different decoded resolutions. This method is called simulcast which ties together 
two or several streams for the purpose of parallel transmission or parallel storage. ISO/IEC 

MPEG-2 [3], which is identical to ITU-T H.262, was the first general-purpose video 

compression standard which also includes a number of tools providing scalability. MPEG-2 

was the first standard to include implementations of layered coding, where the standalone 
availability of enhancement information (without the base layer) is useless, because 

differential encoding is performed with reference to the base layer. It supports spatial, 

temporal and SNR scalability however, the number of scalable bit stream layers is generally 

restricted to a maximum of three in any of the existing MPEG-2 profiles. 

The video codec of the ISO/IEC WEG-4 standard [4] provides even more flexible 

scalability tools, including spatial and temporal scalability within a more generic framework, 

but also SNR scalability with fine granularity and scalability at the level of (eventually 

semantic) video objects. Advanced Video Coding, as defined as part 10 of the MPEG-4 

standard [5], aka ITU-T H.264, can in principle be run in different temporal scalability 

modes, due to its flexibility in the definition of prediction frame references. 

Nevertheless, it must be noted that any of the video coding standards existing so far restricts 

scalability at the bit stream level to a predefined number of layers which must be known at 

the time of encoding. 

A very general principle of (layered) scalable coding and decoding is shown in Figure 1-1, 

where by supplementing further building blocks of the intermediate-level type (highlighted 

by a dotted rectangle), an arbitrary number of scalable layers can in principle be realized. The 

spatiotemporal signal resolution to be 'represented by the base layer is first generated by 

decimation (pre-processing). The mid processing unit performs up-sampling of the next 
lower layer signal to the subsequent layer's resolution. 
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Figure 1-1 General principle of Scalable Video Coding having T layers 

The information is propagated from the lower into the higher resolution layers both during 

encoding and decoding. The base layer and any composition from layers should in the ideal 

case be self-contained, which means that the prediction should not use any decoded 

information from higher layers. Otherwise, different estimates would be used at the encoder 

and decoder sides, and a drift effect would occur [6]. As the base-layer information is used for 

prediction of the enhancement layer, the rate-distortion performance toward higher rates will 

be worse than it could be in a single-layer coder which may dramatically affect the overall 

compression performance when the base-layer quality is low. 

Alternatively, the full enhancement information could blindly be used for prediction; in this 

case, the reconstruction quality of the highest enhancement layer approaches the performance 

of a single-layer coder, while the reconstruction quality of the base layer and all intermediate 

layers would eventually suffer dramatically due to the drift. This basic dilemma to penalize 

either enhancement or base-layer performance is inherently caused by the recursive frame 

prediction nature of the hybrid coding concept. 

To achieve higher compression performance, inter-frame prediction with a separate loop can 

be applied to the enhancement layer coding as shown in figure 1-2. This will nevertheless still 

provide a worse rate-distortion performance than a single-layer codec where the full 

reconstructed information can be used in a single prediction loop. However, it is possible in a 

similar double-loop method to track the drift within the local loop of the encoder that would 

occur in a decoder only receiving the base-layer information. 
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Figure 1-2 Spatial Scalability in a hybrid coder: Double loop, supporting switchable Motion Compensated (MC) 
prediction in the enhancement layer 

For spatial scalability however, there may be cases where using only the previous frame 

enhancement layer reconstruction allows better prediction of the actual enhancement frame, 

without referencing the current base-layer frame. Such a more flexible structure is depicted in 

Figure 1-2. Here, the enhancement layer frame can either be predicted entirely from the up-

sampled base layer, from the previous enhancement layer reconstruction, or from the mean 

value of both. 

1.4 Motivation 

In the implementations of the modern video encoders supporting spatial scalability as shown 

in figure 1-2 it is required to perform motion estimation separately for each of the spatial 

resolution. Motion estimation process for various layers becomes increasingly 

computationally expensive as the resolution increases. Motion vectors for these spatially 

separate layers are highly correlated with each other. Hence, various motion estimation 

schemes have been developed to take advantage of the correlation between the motion 

vectors of these distinct motion estimation processes. These motion estimation schemes aims 

to reduce the computational complexity of these motion estimation processes while 

maintaining the estimation quality. 

In our work we have tried to decrease the computational complexity of these motion 

estimation processes further while maintaining almost similar estimation quality. 
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1.5 Thesis Organization 
In Chapter 2 we present the concept of block based motion estimation. In this we include 

different classification of motion estimation technique depending on the choice of reference 

frames. Various types of Block Distortion Measures which are generally used to compute the 

quality of match are presented. Fast block matching motion estimation algorithms are 

presented and their performances are compared. 

In Chapter 3 we discuss sub-pixel accurate motion estimation and compare the computational 

complexity and PSNR performance with integer pixel accurate motion estimation. A fast 

interpolation-free sub-pixel accurate motion estimation scheme is presented and its 

performance is compared with conventional sub-pixel accurate motion estimation scheme. 

In Chapter 4 an Activity Based Motion Estimation Scheme for Scalable Video Coding is 

discussed and its performance in terms for. computational complexity and PSNR performance 

is evaluated. 

In Chapter 5 we propose a motion estimation scheme and compare its performance in terms 

of computational complexity and PSNR performance with Activity based motion estimation 

scheme 

Finally in Chapter 6 we present conclusion and scope for future fork followed by references. 

0 



Chapter 2 Fundamental Concepts of Motion Estimation 
Motion estimation is the computation of the displacement vector between an object in the 

current frame and that in a stored past frame which is used as the reference. Usually the 

immediate past frame is used as the reference. Recent video coding standards, such as the 

H.264 [7] uses as a combination of previously transmitted frame can be used as reference 

frames thereby offering flexibility in selecting the reference frame. 

motion 
vector 

hest mach 

Search Window 

Re/etence fray 	 Cmcw frame 

Figure 2-1 Genera/principle of Morton Estimation 

Figure 2-1 illustrates the basic philosophy of motion estimation. Consider a pixel belonging 

to the current frame and then determine its best matching position in the reference frame. The 

difference in position between the candidate's and its match in the reference frame is defined 

as the displacement vector or the motion vector. It is called a vector since it has both 

horizontal and vertical components of displacement. This algorithm is based on a 

translational model of the motion of objects between frames. It also assumes that all pixels 

within the candidate object undergo the same translational movement. 

Other approaches to motion estimation use the frequency or wavelet domains etc. New 
methods of motion -estimation are continuously evolved since the process of motion 

estimation is not specified in coding standards. The standards existing video coding only 

specify how the motion vectors should be interpreted by the decoder. 

2.1 Block Matching Algorithm 
It is the most widely used method of motion compensation in which motion is compensated 

- 

	

	by movement of rectangular sections or `blocks' of the current frame. An area is searched in 

the reference frame to find a `matching' M x N sample region. The M x N block in the 

current frame is compared with some or all of the possible M x N regions in the search area 

and finding the region that give the `best' match. Matching criterion used is the energy in the 
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residual block formed by subtracting the candidate region from the current M x N block so 

that the candidate region that minimizes the residual energy is chosen as the best match. 

Figure 2-2 :notion Estimation using Block Matching Algorithm 

The chosen candidate region becomes the estimate for the current M x N block and is 

subtracted from the current block to form a residual M x N block. The residual block is 

encoded and transmitted and the offset between the current block (motion vector) and the 

position of the candidate region is also transmitted. 

2.1.1 Backward Motion Estimation 

When during motion estimation process' the reference frame is the temporally previous frame 

in the video sequence and the motion of macro-blocks in the previous frame is used to 

reconstruct the current frame then it.is called backward motion estimation. Backward motion 

estimation leads to forward motion prediction. 

Frame (K 1) 	 Frame (K) 

Figure 2-3:Backward Motion estimation with current frntne as k and f-ranre (k-1) to the reference frame. 



2.1.2 Forward Motion Estimation 

It is just the opposite of backward motion estimation. In this case the search for motion 

vectors is carried out on a frame that appears later than the current frame in temporal 

ordering. The current frame is estimated from the frame which would be displayed in future. 

The future frame needs to be transmitted and decoded earlier than the current frame so that a 

backward motion prediction could be performed. Forward motion estimation leads to 

backward motion prediction. 

Also forward motion estimation leads to a delay in decoding the current frame as a future 

frame needs to be transmitted and decoded before current frame could be decoded. But 

forward motion estimation is advantageous in such cases in which some region is covered or 

uncovered by video object motion which cannot be predicted from previous frames. 

Ftarne k 	 Frame (K+1) 

Figure 2-4 Forward,•llotian estimation with current frame as h mtrif •ame (k+l) as the reference frame. 

2.1.3 Bi-Directional Motion Estimation 

In H.261 [8], only the previous video frame is used as the reference frame for the motion 

compensated prediction. MPEG-1 allows the future frame to be used as the reference frame 

for the motion compensated prediction along with the previous frame, which provides better 

prediction. For example, in figure 2-5 there are moving objects, and if only the forward 

prediction is used then there will be uncovered areas for which we may not be able to find a 

good matching block from the previous reference picture (frame N-1). Whereas the backward 

prediction can properly predict these uncovered areas since they are available in the future 

reference picture i.e. in frame N + 1. 
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Frame N— I Frame N 	 Frame N+t 

Figure 2-5 A video sequence showing the benefits of bi-directional prediction 

In MPEG [91, each video sequence is divided into one or more groups of pictures (GOPs). 

There are four types of pictures defined in MPEG-1: I, P, B, and D-pictures of which the first 

three are shown in Fig. 1-6. Each GOP is composed of one or more pictures; one of these 

pictures must be an I-picture. Usually, the spacing between two anchor frames (I or P-

pictures) is referred to as M, and the spacing between two successive I-pictures is referred to 

as N. In Fig. 1-6, M = 3 and 

N=9. 

I  

l.~r 	'tom 
Group of pictures 

00000000000 
Group of pictures 

Figure 2-6 MPEG group of pictures. 

I-pictures (ultra-coded pictures) are coded independently with no reference to other pictures. 

I-pictures provide random access points in the compressed video data, since the I-pictures can 

be decoded independently without referencing to other pictures. An MPEG stream with more 

I-pictures is more editable. Also the error propagation due to transmission errors in previous 

pictures will be terminated by an I-picture since the I-picture does not reference to the 

previous pictures. Since I-pictures use only transform coding without motion compensated 

predictive coding, it provides only moderate compression. 



P-pictures (predictive-coded pictures) are coded using the forward motion-compensated 

prediction from the preceding I or P-picture. P-pictures provide more compression than the I-

pictures by virtue of motion compensated prediction. They also serve as references for B-

pictures and future P-pictures. Transmission errors in the I-pictures and P-pictures can 

propagate to the succeeding pictures since the I-pictures and P-pictures are used to predict the 

succeeding pictures. 

B-pictures (bi-directional predicted pictures) allow macro-blocks to be coded using bi-

directional motion-compensated prediction from both past and future reference I or P-

pictures. In the. B-pictures, each bi-directional motion compensated macro-block can have 

two motion vectors: a forward motion vector which references to a best matching block in the 

previous I or P-pictures, and a backward motion vector which references to a best matching 

block in the next I or P-pictures. The effect of noise can be decreased by averaging between 

the past and the future reference blocks. B-pictures provide the best compression compared to 

I and P-pictures. I and P-pictures are used as reference pictures for predicting B-pictures. B-

pictures are not used as reference pictures hence B-pictures do not propagate errors. 

D-pictures (dc-pictures) are low-resolution pictures obtained by decoding only the dc 

coefficient of the discrete cosine transform (DCT) coefficients of each macro-block. They are 

not used in combination with I, P, or B-pictures. D-pictures are rarely used, but are defined to 

allow fast searches on sequential digital storage media. 

The trade-off of having frequent B-pictures is that it decreases the correlation between the 

previous I or P-picture and the next reference P or I-picture. It also causes coding delay and 

increases the encoder complexity as buffering of frames is required at the decoder. 

2.1.4 Block Matching Criteria for Block Matching Algorithm 

Inter frame predictive coding is used to eliminate the large amount of temporal and spatial 

redundancy that exists in video sequences and helps in compressing them. In conventional 

predictive coding the difference between the current frame and the predicted frame is coded 

and transmitted. The better the prediction, the smaller the error and hence the transmission bit 

rate when there is motion in a sequence, then a pixel on the same part of the moving object is 

a better prediction for the current pixel. .There are a number of criteria to evaluate the 

"goodness" of a match. 

Three popular matching criteria used for block-based motion estimation are 
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1. Mean of squared error (MSE) 

2. Sum of absolute difference (SAD) 

3. Matching Pel count (MPC)' 

To implement the block motion estimation, the candidate video frame is partitioned into a set 

of non overlapping blocks and the motion vector is to be determined for each such candidate 

block with respect to the reference. For each of these criteria, square block of size N x N 
pixels is considered. The intensity value of the pixel at coordinate (nl, n2) in the frame k is 

given by ,S(ni, n2, k) where (0 < ni, n2  <_ N-1). The frame k is referred to as the candidate 

frame and the block of pixels defined above is the candidates block. 

MSE Criterion 

Considering (k-l) as the past references frame 1 > 0 for backward motion estimation, the 

mean square error of a block of pixels computed at a displacement (i, j) in the reference frame 

is given by 

N-1 N-1 
MSE(i,j) = NZ 	[s(n1, n2, k) — s(n1  + i, n2  + j, k —1)] z   (2.1) ) ml 712 

Consider a block of pixels of size N x N in the reference frame, at a displacement of, 

where i andj are integers with respect to the candidate block position. The MSE is computed 

for each displacement position (i, j),within a specified search range in the reference image 

and the displacement that gives the minimum value of MSE is the displacement vector which 

is more commonly known as motion vector and is given by 

[dl , d2 ] = argmin[MSE(i, j)] 
	

(2.2) 
Li 

The MSE criterion defined in equation 2.1 requires computation of N2  subtractions, N2  

multiplications (squaring) and (N2  -- 1) additions for each candidate block at each search 

position. This is computationally costly and a simpler matching criterion, as defined below is 

often preferred over the MSE criterion. 

SAD Criterion 

Like the MSE criterion, the sum of absolute difference (SAD) too makes the error values as 

positive, but instead of summing up the squared differences, the absolute differences are 

summed up. The SAD measure at displacement (i, j) is defined as 
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N-1 N-1 

	

SAD (i,j) = N 2 	[s(nl, nz ,  k) —s(% + 	i, n2  + j, k —1)] 	(23) nl n2  

The motion vector is determined in a manner similar to that for MSE as 

	

[dl , d2 ] = argmin[SAD (i, j)] 	 (2.4) 

The SAD criterion shown in equation 2.3 requires N2  computations of subtractions 
with absolute values and additions Nz  for each candidate block at each search position. The 

absence of multiplications makes this criterion computationally more attractive and facilitates 
easier hardware implementation. 

MPC Criterion 
In this criterion, the pixels of the candidates block B are compared with the corresponding 

pixels in the block with displacement (i, j), in the reference frame and those which are less 

than a specified threshold, i.e., closely matched are counted. The count for matching and the 
displacement (i, j), for which the count is maximum correspond to the motion vector. We 

define a binary valued function as 

count(n1,nz ) = {1 if Es(n1,n2 , k) — s(n1  + i,n2  +j,k — I)1 — 0 	(2.5) 
0 otherwise 

where, 0 is a pre-determined threshold. The matching pel count (MPC) at 

displacement (i, j) is defined as the accumulated value of matched pixels as given by 
N-1 N-1 

MPC(i,j) _ 	[count(n1,n2)] 	 (2.6) 
nl  nz  

	

[dl , d2 ] = argmin[MPC(i, j)] 	 (2.7) 
i,j 

2.1.5 ' Block Size 

The energy in the residual is reduced by motion compensating each 16 X 16 macro-block. 

Motion compensating each 8 X 8 block (instead of each 16 X 16 macro-block) reduces the 

residual energy further and motion compensating each 4 X 4 block gives the smallest residual 
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energy of all. Smaller motion compensation block,  sizes can produce better motion 

compensation results. 

However, a smaller block size leads to increased complexity (more search operations must be 

carried out) and an increase in the number of motion vectors that need to be transmitted. 

Sending each motion vector requires bits to be sent and the extra overhead for vectors may 

outweigh the benefit of reduced residual energy. An effective . compromise is to adapt the 

block size to the picture characteristics, for example choosing a large block size in flat, 

homogeneous regions of a frame and choosing a small block size around areas of high detail 

and complex motion. H.264 uses an adaptive motion compensation block size [7]. 

2.1.6 Search Range 
The maximum allowed.motion displacement dm, also known as the search range, has a direct 

impact on both the computational complexity and the prediction quality of the BMA. A small 

dm  results in poor compensation for fast-moving areas and consequently poor prediction 

quality. A large dm, on the other hand, results in better prediction quality but leads to an 

increase in the computational complexity (since there are (2d,,,+1)2  possible blocks to be 

matched in the .search window). A larger dm  can also result in longer motion vectors and 

consequently a slight increase in motion overhead [10]. In general, a maximum allowed 

displacement of dm  = ±15 pixels is sufficient for low-bit-rate applications. MPEG standard 

uses a maximum displacement of about ±15 pixels, although this range can optionally be 

doubled with the unrestricted motion vector mode. 

2.1.7 Search Accuracy 
In some cases a better motion compensated prediction may be formed by predicting from 

interpolated sample positions in the reference frame. the reference region luma samples are 

interpolated to half-samples positions and it may be possible to find a better match for the 

current macro-block by searching the interpolated samples. `Sub-pixel' motion estimation 

and compensation involves searching sub-sample interpolated positions as well as integer-

sample positions, choosing the position that gives the best match (i.e. minimises the residual 

energy) and using the integer or sub-sample values at this position for motion compensated 

prediction. This approach may be extended further by interpolation onto a quarter-sample 

grid to give a still smaller residual. In general, `finer' interpolation provides better motion 

compensation performance (a smaller residual) at the expense of increased complexity. The 

performance gain tends to diminish as the interpolation steps increase. Half-sample 
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interpolation gives a significant gain over integer-sample motion compensation, quarter-

sample interpolation gives a moderate further improvement, eighth-sample interpolation 

gives a small further improvement again and so on. Searching for matching 4 X 4 blocks with 

quarter-sample interpolation is considerably more complex than searching for 16 X 16 blocks 

with no interpolation. In addition to the extra complexity, there is a coding penalty since the 

vector for every block must be encoded and transmitted to the receiver in order to reconstruct 
the image correctly. As the block size is reduced, the number of vectors that have to . be 

transmitted increases. More bits are required to represent half- or quarter-sample vectors 

because the fractional part of the vector (e.g. 0.25, 0.5) must be encoded as well as the integer 

part. There is therefore a trade-off in compression efficiency associated with more complex 

motion compensation schemes, since more accurate motion compensation requires more bits 

to encode the vector field but fewer bits to encode the residual whereas less accurate motion 

compensation requires fewer bits for the vector field but more bits for the residual. 

2.2 Fast Block Matching Motion Estimation Algorithms 
Motion compensation aims to minimize the energy of the residual transform coefficients after 

quantization which usually involves evaluating the residual energy at a large number of 

different offsets which is computationally extensive. The metric used as a measure of residual 

energy is called Block Distortion Measure (BDM). Sum of Absolute Difference (SAD) is 

mostly used as BDM during block matching. 

Full Search motion estimation involves evaluating SAD at each point in the search window. 

Full search searches all search locations in search window ' so it is more computation 

extensive but always gives best possible match. In computation- or power-limited 

applications fast search algorithms are preferable. These algorithms operate by calculating the 

energy measure (e.g. SAD) at a subset of locations within the search window. Some of them 

are listed below: 

2.2.1 Three Step Search (TSS) 
As shown in Figure 2-7, the three step search starts the search by evaluating SAD at the 

corners, middle of edges and centre of search window. There are a total of nine points. Then 

the search window (usually starting size is 9) of half the size is centered at the position of 

minima from previous search window [11]. This process is repeated till the size of search 

window couldn't be reduced further. This is also called N-step search as it involves N steps 

of search window size for a given search window with 2N-1 samples. 
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Figure 2-7 Three step search 

The TSS is considerably simpler than Full Search (8N + 1) searches compared with (2N+1 — 

1)2 searches for Full Search) but the TSS does not usually perform as well as full search in 

terms of SAD. 

2.2.2 Four Step Search (4SS) 

For the maximum motion displacements of +7, the 4SS algorithm utilizes a center-biased 

search pattern with nine checking points on a 5 x 5 window in the first step instead of a 9 x 9 

window in the 3SS. The center of the search window is then shifted to the point with 

minimum SAD. If the minimum BDM point is found at the center of the search window, the 

search will go to the final step i.e. the search window is reduced to 3 x 3 and the search stops 

at this small search window. Otherwise, the search window size is maintained at 5 x 5 size 

and two cases are possible. First, if the previous minimum BDM point is located at the corner 

of the previous search window, five additional checking points as shown in Figure 2-8 (b) are 

used. Second, if the previous minimum BDM point is located at the middle of horizontal or 

vertical axis of the previous search window, three additional checking points as shown in 

Figure 2-8(c) are used. If the minimum BDM point is found at the center of the search 

window then go to final step otherwise repeat the above with same 5 x5 search size once and 

then go to final step. 

- LJH 	 -+1-H--- 	-HHH - L 	1 	_~~ 	1 	C 	s 

IiTpTst 

(a)  (b)  (c)  (d) 

Figure 2-8 Search patterns of the 4SS. (a) First step. (b) intermediate step. (c) alternate step, and (d) last step. 
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Experimental results have shown that the proposed 4SS algorithm performs better [12] than 

the well-known 3SS. Also 4SS is more robust as compared with 3SS because the 

performance of 4SS is maintained for image sequence that contains complex movement such 

as camera zooming and fast motion. 

2.2.3 Diamond Search (DS) 
The proposed DS algorithm employs two search patterns as shown in Figure 2-9. The larger 

pattern comprising of nine checking points from which eight points surround the center one 

to compose a diamond shape is called large diamond search pattern (LDSP). The smaller 

pattern consisting of five checking points forms a smaller diamond shape called small 

diamond search pattern (SDSP). 

(a) 
	 (b) 

	 (c) 

Figure 2-9 Diamond Search algorithm, (a) The corner point {LDSP->LDSP) (h The edge point (LDSP->LDSP)(c) The 
centre point(LDSP->SDSP) 

In diamond search the search begins with LDSP search pattern centred at the position of 

current macro block. If the position corresponding to minimum block distortion (MBD) is at 

the corner of LDSP then the search is repeated with the new LDSP centred at that macro-

block. If the MBD position corresponds to the edge then the whole LDSP is shifted in that 

direction so that the centre of new LDSP occupies that position. If the position of MBD 

corresponds to the centre position, the LDSP is replaced by a SDSP for the evaluation of 

block distortion measure. The MBD point found in this step is the final solution of the motion 

vector which points to the best matching block. 

DS algorithm significantly outperforms the well-known TSS algorithm [13] in terms of 

computations. Compared with 4SS DS algorithm also works better on average in terms of 

MSE values, reconstructed image quality, and average number of search points. The 

combinations of DS and Hexagon Based Search Pattern have been proposed which provides 

better performance. [14] 
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2.2.4 Comparison of Fast Block Matching Motion Estimation Algorithms 

Various fast block matching motion estimation algorithms discussed in the previous section 

are compared in figure 2-10 and figure 2-11 based on the PSNR performance and number of 

computations of BDM per macro-block respectively. Here current frame is estimated from 

the previous frame as the reference frame. Search parameter is ±8. 

45 
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— — DS 
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Frame number 

Figure 2-10 Comparatise PSNR performance for ICE video sequence, at QCIF resolution. 1S fps for ES, TSS. 4SS 
and DS 

From figure 2-10 we can see that all the fast search algorithms show almost similar PSNR 

performance which is significantly worse than that of full search. 

18 



23 

22 

21 
ID 
M 
6 20 a 
2E 

°m fig 
4- 
0 

is 
CO 117  

is 
-- - TSS 

-- )( 4SS 
-0-•DS 

141  
0 
	

5 	'10 	16 	20 	25 	30 	35 	40 	46 
Frame number 

Figure 2-11 Comparison of Number of BDiM computations per MR for ICE, video sequence, at QCW resolution, 15 
fps for TSS, 4SS and oS 

From figure 2-11 we observe that DS is least computationally expensive among other fast 

search algorithms and provide similar PSNR performance as other fast search algorithms. 

All those applications where better compression efficiency is required because of limited 

bandwidth exhaustive search is preferred as it results in less residual error which is to be 

encoded separately. For those applications where computational power is limited fast search 

algorithms are used at the cost of reduced compression efficiency. 
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Chapter 3 Motion Estimation with Sub-Sample Accuracy (SSA) 

Video compression algorithms uses block based motion estimation and compensation in 

order to reduce temporal redundancy for achieving compression. Although whole pixel 

motion estimation provides a high degree of redundancy reduction, it is found that sub-pixel 

accurate motion estimation further reduces temporal redundancy. Half pixel and Quarter pixel 

accurate motion estimation are generally used in which macro-blocks at half pixel and quarter 

pixel positions respectively are also searched along with macro-blocks at integer pixel 

positions. Such macro-block search at fractional pixel position accounts for half-pixel and 

quarter pixel motion of objects in natural video sequences. 

Sub-pixel motion estimation and compensation involves interpolation of pixel positions at 

sub-pixel positions and choosing the position that gives the best match i.e. minimizing the 

residual energy and using the integer- or sub-sample values at this position for motion 

compensated prediction. Interpolation of whole image at sub-pixel positions is not only time 

consuming but also increases the number of macro-blocks to be searched by a factor of 4 and 

16 for half-pixel and-quarter pixel accuracy respectively, hence making sub-sample accurate 

motion estimation a more computationally intensive exercise. This is evident from the 

comparison of CPU time and number of computations of Block Distortion Measure per 

Macro-Block (LCBDM/MB) for Motion Estimation at integer pixel and half pixel accuracy 

in Table 3-1. 

3.1 Conventional Sub-Sample Accurate Motion Estimation (SSA ME) 

Sub-pixel accuracy for motion estimation is traditionally made possible using interpolated 

reference frames [7]. The creation and use of such interpolated reference frames has a 

significant implication on computational load of the encoder whereas the PSNR performance 

of motion estimation improves significantly with the use of sub-pixel accurate motion 

vectors. Figure 3-1 shows the comparison of PSNR of motion compensated frames using 

integer-pixel accurate motion vectors with that using half-pixel accurate motion vectors. 
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Figure 3-1: Plot of PSNR for Integer pixel Accuracy Motion estimation and Compensation Vs PSNR for 
Conventional Half pixel Accurate Motion estimation and compensation. Video sequence: Soccer, 15 fps, Format: 
QCIF, Macro-block Size: 16. 



Next we present a detailed analysis and comparison of conventional Half-Pixel Accurate 

Motion Estimation (HPA ME) with Integer-Pixel Accurate Motion Estimation (IPA ME) for 

a set of five standard video sequences at QCIF resolution and 15fps frame rate. The CPU 
times, number of SAD computations per macro-block and PSNR are stated as a mean of their 

values for first 45 frames of respective video sequences. 

To analyze only the effect of search algorithm, unlike motion estimation in video coding 

applications, backward motion estimation is performed between successive original frames 

and PSNR is calculated between original and its corresponding motion compensated frame. 

This approach avoids the influence of rate-distortion optimization and error propagation. 

Motion Estimation is performed by using only luminance component, and sum of absolute 

difference as the block distortion measure. 

Video 

Sequence 

Conventional 

HPA 

PSNR(dB) 

IPA 

PSNR(dB) 

A PSNR(dB) ACBDM/MB 

(%) 

AT (%) 

Soccer 37.6967 36.5563 1.1404 274.42 282.18 

City 36.7847 35.0700 1.7146 274.42 280.05 

Crew 37.3934 36.6851 1.3958 274.42 278.38 

Harbour 33.3677 31.9719 1.3654 274.42 274.77 

Ice 40.7696 39.7604 1.0092 274.42 277.60 

Average - - 1.3251 274.42 278.60 

Table 3-1: Comparison of Conventional half-Pixel Accurate (IIPA) motion estimation with Integer-Pixel Accurate 
(IPA) motion estimation based on PSN12, average increase in CPI; time (AAT) and increase in number of computations 
of Block Distortion Measure per Macro-Block (A CBI) 1/MIB). 

In Table 3-1 we observe that the there is a gain in PSNR performance of Motion estimation 

by 1.33 dB at the cost of 278% increase in CPU time. Hence, some fast algorithms are 

required to speed up the sub-pixel accurate motion estimation process. 

Fast sub-pixel accurate motion estimation techniques have been proposed in [15] and [16] 

which decrease the computational load on the encoder significantly by fitting a parabolic 

surface to estimate Block Distortion Measure(BDM) at sub-pixel positions by using BDM 

values at the proximity of macro-block given by integer pixel accurate motion vector. The 

detailed description of these algorithms is provided in Section 3.2. 
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3.2 Interpolation Free Sub-pixel Accurate Motion Estimation 
Here we introduce an interpolation-free method for sub-pixel block based motion estimation 

which reduces memory bandwidth requirements and improves computational efficiency as 

proposed by P. R Hill, T. K. Chiew, D. R. Bull and C.N. Canagarajah (Interpolation Free 

Subpixel Accuracy Motion Estimation, 2006) [15] 

.. 	In this method a parabolic model of sub-pixel resolution motion estimation is described that 

uses the sum of absolute difference (SAD) cost at the best whole pixel resolution position and 

its neighbours for estimating the SAD cost at sub-pixel positions. In Section 3.2.1 this 

parabolic model is defined and Section 3.2.2 describes the generation of the parameters for 

the model described in Section 3.2.1. 

3.2.1 Model Description 
The motion vector is estimated in a coarse to fine fashion. The course estimate of motion 

vector is obtained using integer pixel motion estimation using standard block matching 

algorithms. For fine estimation a parametrically controlled parabolic surface is used to 

estimate the sub-pixel SAD values approximating the actual behaviour of SAD in case of 

pure translations. This parabolic surface is given by Equation 3.1 

SAD1(x,y) =Axe + By 2  + Cxy +Dx+Ey+F 	 3.1 

Here, SADi(x,y) is the estimated SAD value of the ith macro-block. The x and y are the 

coordinates of estimation centred at the best motion vector at integer pixel resolution. The 

values of x and y may vary from -1.0 to +1.0. The coordinate (0, 0) is the location of best 

motion vector at integer pixel accuracy. Therefore, for half-pixel accuracy x and y can take 

values [-1, —%z, 0,.Y2, +1] as used in simulation of implementation of this technique. After 

integer pixel accurate motion vector is obtained, the SAD values at its nearest neighbours are 

obtained giving eight nearest SAD neighbours from which A, B, C, D, E and F can be 

estimated These ei ht neighbours are shown in Figure 3.2. 

Nov-El Neighbour coordinates with respect to centre pixel: 

Pixel 8: (0, 0) Pixel 2: (0, 0) Pixel 5: (0, 0) 

Pixel 0: (1, 0) Pixel 3: (-1, ])Pixel6: (0,-1) 

Pixel 1: (1, 1) Pixel 4: (-1, 0)Pixel7:: (1,-1) 

3 r( 2 ) 	(, 1 ) 	Figure 3-2: Position. of neighbouring macro-blocks 
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There are nine potential points for the estimation of the six parameters in equation 3.1 

therefore the system is over-described there are therefore many possible estimation methods. 

These methods include an under-determined model based on just near neighbours (with even 

indices) defined as near neighbour model (NNM), an over-complete system model (OSM) 

that used all 9 neighbours and a complete system model (CSM). According to Chiew and Hill 

et al [2] (Interpolation Free Subpixel Accuracy Motion Estimation, 2006) CSM is proved to 

give better results and hence used for the implementation of this technique. 

3.2.2 Parameter estimation 

In CSI model, the parameters A, B, D, E and F are calculated from equation 3.2 and 3.3. 

Equation 3.2 in derived by substitution of neighbours coordinates and computed SAD value 

corresponding to that macro-block in equation 3.1. However, the value of C is chosen from 

C1, C3, C5, and C7  where Ck is the value of C found with the complete system of equations 

using points 0, 2, 4, 6, 8 and k as defined in figure 3-2. The value of C is chosen from 

equation 3.4 where Sk; is the estimate of Si using equation 3.1 with parameter set A, B, Ck, D, 

E, F. This model determines which of the far-neighbours best fits the model and ignores the 

other 3. 

So  = S(1,0) = A + D + F 
S1 =S(1,1)=A+B+C+D+E+F 
S2  =S(-1,1) = B +E+F 
S3  =S(-1,0) =A+B—C—D+E+F 
S4 =S(-1,-1) =A—D+F 	 3.2 

S5  =S(0,-1) =A+B+C—D+E+F 
S6 =S(1,-1)=B—E+F 
S7 =S(0,0)=A+B—C+D—E+F 
S8  = S(1,0) = F 

A= —S8  + (So  + S4) 

1 B= —S8 +2(S2 +S6) 

1 
	 3.3 

D=  
1 

E=  

F= S8  
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To obtain the parabolic surface minimum S(x, y) is evaluated for all sub-pixel locations 

within the (-1,1) x (-1,1) area. The thus obtained coordinate vector is added to the coarse 

motion vector obtained by integer pixel accurate motion estimation to get the sub-pixel 

accurate motion vector. 

3.2.3 Results of Interpolation-Free Sub-pixel Accurate Motion Estimation 

To analyze only the effect of search algorithm, unlike motion estimation in video coding 

applications, backward motion estimation is performed between successive original frames 

and PSNR is calculated between original and its corresponding motion compensated frame. 

This approach avoids the influence of rate-distortion optimization and error propagation. 

Motion Estimation is performed by using only luminance component, and Sum of Absolute 

Difference (SAD) as the block distortion measure. 

Exhaustive search is used first for obtaining coarse estimate of motion vector for a frame and 

then motion vector refinement is performed using the mentioned interpolation-free technique. 

This sub-pixel accurate motion technique is performed for five standard video sequences and 

the results are tabulated in Table 3-2. 

The CPU times, number of SAD computations per macro-block and PSNR are stated as a 

mean of their values for first 45 frames of respective video sequences. 

This interpolation free method is inferior to the conventional interpolation method in terms of 

the PSNR gain. This is because the parabolic surface which is used to estimate SAD at sub-

pixel macro-block locations gives good estimate of SAD in case of pure translations only Li 5] 

which may not be the case in real world video sequences as motions like pan, zoom, rotation 

etc also take place. Hence, the sub-pixel accurate motion vector thus obtained by 

interpolation free technique is a suboptimal estimate of sub-pixel accurate motion vector 

obtained by conventional sub-pixel accurate motion estimation using interpolation. 

However, the sub-pixel accurate motion estimation and compensation using this method 

provides a better PSNR over that of integer pixel accurate motion estimation and 

compensation. Figure 3-3 compares PSNR obtained through this interpolation-free SSA ME 

method to that obtained by Integer-pixel accurate motion estimation (IPA ME). 
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Also there is only a marginal increase in number of SAD computations (CBDM/MB) per 

macro-block and CPU time (T) as compared to integer pixel accurate motion estimation. The 

CPU times, number of ' SAD computations per macro-block and PSNR are recorded for ' 

various video sequences using this interpolation-free method in Table 3-2. 

Video 
Sequence 

Interpolation 
free HPA ME 

PSNR(dB) 

IPA ME 

PSNR(dB) 

A PSNR(dB) ACBDM/MB 

(%) 

AT (%) 

Soccer 37.0036 36.5563 0.4473 2.8412. 3.3787 

City 35.3184 35.0700 0.2484 3.0196 3.6086 

Crew 36.8262 36.6851 0.1411 2.6405 3.6448 

Harbour 32.1200 31.9719 0.1481 2.6004 3.2628 

Ice 40.1074 39.7604 0.3470 2.6918 3.8063 

Average 0.2664 2.7587 3.5402 

Table 3-2: Comparison of Interpolation-free Half-Pixel Accurate (II PA) motion estimation with Integer-Pixel 
Accurate (IPA) motion estimation based on PSNR, average increase in CPU time (AT) and increase in number of 
computations of Block Distortion Measure per Macro-Block (A CBDM/N4B). 

This technique acts as an efficient trade off between improvement in PSNR due to better 

prediction and computation time consumed by motion estimation. Here, PSNR gain of 

0.27dB is achieved with 3.54% increase in CPU time required for motion estimation. 
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Chapter 4 Motion Estimation for Scalable Video Coding (SVC) 

4.1 Introduction to Scalable Video Coding (SVC) 
The resolution diversity of current display devices motivates the need of spatial scalability as 

transmitting a single representation of video sequence to a range of display resolutions 

available in the market is impractical. A device with low display resolution with the capacity 

for decoding and down-sampling high resolution material is not justified as such a 

requirement could increase cost and power of the device. Spatial scalability allows the 

compression of multiple video sequences with same content but different resolution. To 

remove redundancy between neighbouring layers, spatial scalability exploits the inter-layer 

motion prediction. In SVC with multiple layers having different resolutions, reducing 

redundancy among ME processes in different layers is critical to reduce the overall time 

complexity. 

Various fast ME approaches based on the dynamic search range adjustment have been 

proposed to reduce the computational complexity. In [17], the search range is determined 

according to the magnitude of prediction errors. Yamada et al. [18] also proposed an adaptive 

search range selection algorithm based on the sum of the absolutes of motion vectors and 

prediction errors in the previous frame. Song et al. [19] utilized the average motion vectors in 

five previous reference frames and the prediction error of the current block simultaneously. In 

[20], the motion vector difference is utilized to predict the search range. 

Many algorithms have been proposed to reduce computational time in ME by employing 

hierarchical search with search pattern. There step search (TSS) [11], 4-step search (4SS) 

[12] and diamond search (DS) [13] are centre biased search algorithms using specific search 

pattern such as rectangle or diamond. These algorithms are faster than others but also result in 

significant decrement in PSNR. Moreover in case of SVC these algorithms do not take 

advantage of motion information from base layer for encoding of enhancement layers. 

Sangwon Na et al. utilized a new activity based motion estimation scheme [21] to reduce the 

computational complexity of multilayer motion estimation for scalable video coding. This 

approach is based on the activity which is defined as the absolute difference between the 

motion vector predictor and the final motion vector. In Section 4.2 the implementation and 

results obtained with this activity based approach are discussed for motion estimation of 
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video sequence at three different spatial resolutions. The simulations are performed to 

determine the PSNR performance and computational efficiency of the method. 

4.2 Activity-Based Motion Estimation Scheme for Scalable Video Coding 

This method is based on the correlation of the activities between neighbouring layers. An 

inter-layer activity model using a curve-fitted linear equation is applied to exploit the activity 

in the base layer for deciding the search centre and the search range of the enhancement 

layer. Each activity pair in the neighbouring layers is used to associate the relevant macro-

block in enhancement layer to one of two groups: boundary region MB and interior region 

MB. Based on the type of MB i.e. inner or outer, a minimal sufficient search range is decided 

from the inter-layer activity prediction factor that is adjusted to the given sequence. 

In SVC the motion vector (MV) and the motion vector difference (MVD) of the lower 

resolution layer, referred to as base layer, is available for the encoding of the enhancement 

layer. With the assumption that MVs in neighbouring layers are correlated, the bit-rate of 

SVC can be significantly reduced by utilizing the BL motion vector predictor (MVP). BL 

motion vector predictor is MV obtained by up-scaling the MV of the base layer (BL) 

corresponding macro-block. BL MVP also helps significantly reducing search range since BL 

MVP is quite close to the best motion vector in terms of the SAD cost. Inter-layer activity 

model is to decide the search range for achieving high PSNR performance. Parameters used 

in this model are adjusted to the given sequence automatically. 

4.2.1 Spatial Scalability 

Spatial scalability for multilayer coding provides multiple resolutions with a single coded bit 

stream. The ratio of vertical (or horizontal) dimensions between the layers measured as Scale 

factor. In the dyadic case the vertical and horizontal dimensions grow by a scale factor of 2 

between neighbouring layers. This scale factor is used to calculate the corresponding pixel 

positions between two neighbouring layers. 

To improve the coding efficiency, inter layer prediction schemes are adopted. Inter-layer 

prediction scheme use signals of the base layer to predict those in the enhancement layer 

thereby improving the rate-distortion performance. There are three inter-layer prediction 

schemes: inter-layer intra texture prediction, inter-layer motion prediction and inter-layer 
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residual prediction. In this activity based motion estimation technique only Inter-Layer 

Motion Prediction (ILMP) is used.. In ILMP the motion vectors are derived from the base 

layer. For example, 8 x 8 MB in base layer corresponds to 16x 16 MB in enhancement layer 

and motion vectors of base layer are scaled by a factor of 2, which are used as motion vector 

predictors for a new macro block in enhancement layer i.e. BL MVP. 

4.2.2 Base Layer Motion Vector Predictor (BL MVP) 

Based on the correlation of motion vectors in the neighbouring Layers, the approach adopted 

has BL MVP for enhancement layer and MV of BL as depicted in figure 4-1 

Layer 1-1 

Layer l 

Figure 4-1 M '1 , which denotes the tonal MV at the base layer (layer I— 1), is used to obtain F VS, i.e., the base-layer 
motion vector predictor of the corresponding MBs at the enhancement layer (layer 1). 

To validate the model being used, the distribution of difference of BL MVP and the final MV 

within the minimum bounding box (MBB) which covers both as shown in figure 4-2 is 

evaluated. LMBB  denotes the length of longer edge of the MBB. 

M 

Figure 4-2 Length of the longer edge of the MBB, 	where (xs, yy) denotes the BL MVP, and (x, y) denotes the 
final motion vector. 
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To analyze only the effect of search algorithm, backward motion estimation is performed 

"between successive original frames and PSNR is calculated between original and its 

corresponding motion compensated frame. Full Search is used at both the QCIF and CIF 

resolutions. Motion Estimation is performed by using only luminance component, and sum of 

absolute difference as the block distortion measure. This approach avoids the influence of 

rate-distortion optimization and error propagation. 
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Figure 4-3 Cumulative distribution of L10 , the maximum length of 111113, for video sequences: Harbour, Soccer, Ice 
and Crew. QCLF and OF as base layer and enhancement layer respectively 

From figure 4-3 it is observed that majority of MV's of the enhancement layer can be found 

within [-8,+8] of search centre at MV. Hence basis search range, SRbasis is set at 8. 

The cumulative distribution as presented here is somewhat different from that reported in 

[21] because here only a single frame is used as a reference frame whereas in [21] 

hierarchical prediction structures are used for motion compensated prediction with 

GOP=8(IBBBBBBBP). 

Besides the BL MVP, there are some other efficient predictors [24]. Conventional median 

predictor is usually employed in recent video compression. To minimize the memory 

bandwidth and retain the processing regularity in hardware implementation, many very large 
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scale integration video coders adopt zero motion vector (0, 0) as the predictor. As it is 

observed that motion vectors are highly correlated with the motion vectors of temporally and 

spatially adjacent blocks, the motion vectors of the collocated block in the previous frame or 

the adjacent blocks in the current frame are also considered as the predictor. In addition, the 

differentially increased/decreased motion vector named as accelerator motion vector is also 

used in [24]. 

In [21] BL MVP-based method is compared with four other predictors in terms of the entropy 

of bits representing the difference between predictors and the motion vectors generated 

using the full search and resultant PSNR. The BL MVP is shown to outperform other 

predictors in terms of the video quality and the entropy. 

4.2.3 Concept of Activity 

It was reported that FS BMA generally obtains less correlated motion vectors for the macro-

blocks which are at the boundary of moving objects in a video sequence[22][23]. As depicted 

in figure 4-4 blocks CO, Cl, C2 and C3 are blocks in enhancement layer corresponding to 

block BO in the base layer. MV's of blocks CO-3 are less correlated to MV of BO because 

motion of CO and C2 differ from the motion of C1 and C3. Therefore it is necessary to extend 

the search range for blocks at boundary of moving objects. 

(a) 	 (b) 

Figure 4-4 Grid on a sample object in (a) base laver and (h) enhancement layer; the rectangles with a bold line, BO 
and CO-3, denote 4 x 4 blocks in the corresponding positions in the base layer and the enhancement layer, 
respectively. 

Hence it is desired to identify those macro-blocks which are located in the object boundaries. 

Many gradient based operators have been employed to detect object boundary in object 

segmentation like Roberts, Prewitt and Rosenfeld methods. Because boundary operators are 
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based on the gradient magnitude, they often mistake a complicated texture in the scene for a 

moving object boundary or completely miss a moving object boundary when the gradient 

magnitude between the background and the boundary of the moving object is small. The 

moving object boundary prediction scheme based on activity excels others in terms of 

prediction accuracy [21] and computational complexity. The main purpose of moving object 

boundary detection in this activity based method is to judge whether a wider search range is 

necessary to achieve improved video quality than SRbasis  or not before motion search, rather 

than to exactly extract the moving objects. 

Activity A' in layer l is defined as: 

A1  = maxi (max(Imvdx[i]I,Imvd,[i]I)) 	O<i<N-1 	(4.1) 

where 1 denotes the layer index, mvdx [i] and mvd , [ i] denotes x and y-component of the ith 

MVD of the corresponding MB in layer 1, and N denotes the number of the MVDs. Because 

MVD shows how much the motion of current MB deviates from the MVP, which is either the 

BL MVP or the median MVP, MVD is used to predict the boundary of moving objects. 

Regardless of the source of MVP, low activity usually means that the final MV is close to the 

MVP; this case is defined as "regular motion." In other words, small search range is enough 

to search for the best-matched block if the block has a regular motion. 

High activity occurs due to less correlated MVs at the boundary of moving objects. As a 

result, each block can be partitioned into two groups, a low-activity group and a high activity 

group. Activity regions are defined as follows: 

1) Interior Region (IR) where MVs of the corresponding blocks in neighbouring layers are 

strongly correlated (L B  <_ SR basis) 

2) Boundary Region (BR) where the corresponding blocks in neighbouring layers are located 

near the boundary of moving objects, and MVs are weakly correlated (LMBB > SR basis) 

4.2.4 Inter Layer Activity Model 

Inter-layer activity model (ILAM) developed in [21] exploits the correlation of the mean 

activities between two neighbouring layers. It predicts the activity of the enhancement layer 

from that of the base layer with a linear equation 
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A' = a * A'-i + R  (4.2) 

where Al is the predicted activity of the given MB in the enhancement layer (layer 1), an 

inter-layer activity prediction factor, a, is the slope of ILAM denoted by a dashed line in 

Figure 4-5, an inter-layer activity prediction offset, /3, is an intercept of ILAM, and A" 

denotes the activity of the corresponding MB in the base layer (layer / — 1). 
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Figure 4-5 Acti%itN plane representing pairs of the mean of activities bets~een two neighbouring lasers (base layer 
(BL) = CIF, enhancement layer (EL) = 4CIFI for video sequence ICE. The dashed line denotes inter-layer activity 
model with the given slope, a (=:1A'/ DA' -1 ) and the given intercept, /I where A1-1 and Al denote the mean of 
activities over all MBs in a frame at the base and enhancement layer, respectively. 

Al in Figure 4-5 denotes the mean of activities over all MBs in a frame at layer I. Values of a 

and /3 in equation 4.2 are obtained through the measurement with generic video sequences, 

such as CREW, HARBOUR, ICE, and SOCCER (45 frames with a SVC stntcture comprising 

three layers). Table 4-1 shows a, /3, and root mean square error (rmse) measured with 

generic sequences. The second column shows the inter-layer activity prediction factor, a, for 
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the given sequence; the third column shows the inter-layer activity prediction offset, /3; the 

forth column shows rmse, for given a and /3. 

Sequence • a 18 rmse 
SOCCER 1.401 0.6523 0.8812 

CREW 1.624 0.4845 0.6341 

ICE 1.276 0.4706 0.4286 

HARBOUR 1.086 0.5042 0.7192 

Table 4-1 Inter-Layer Activity Prediction Factor, a, and inter-Laver Activity Prediction Offset, /3, for the given 
sequence, and the root mean square error, for given a and /3, measured with generic sequences (45 frames on a SV C 
structure comprising three layers) 

The value of a represents the coefficient of the assumed linear relationship between the 

activities in the neighbouring layers. Equation (4.2) is used before the motion search in the 

current layer to estimate the minimal search range to find the best motion vector without too 

much quality loss compared to the full search. Because the estimated search range is given as 

the product of a and the activity of the base layer, a affects both the computation time in ME 

and the video quality, a varies according to the given sequence while /3 is relatively steady. 

Therefore, a needs to be adjusted to satisfy the variation of the motion nature and the activity 

relationship between the neighbouring layers. 

4.2.5 Procedure for simulation of Activity Based Motion Estimation (ABME) scheme 

A. Overall Procedure of the Proposed Scheme 

The activity-based ME (ABME) scheme takes one of the two paths, i.e., "ME for IR" and 

"ME for BR," according to the activity of the base layer, A'-1. At the beginning, the search 

range is given by inter-layer activity model (ILAM) using (4.2). If Ar-' is smaller than Oacg, the 

activity threshold, ABME takes ME for IR. Otherwise, AMBE takes ME for BR. 

The final MV is chosen among the search results in terms of the PSNR cost. During the 

motion search, parameter a, the inter-layer activity prediction factor in (4.2) is adjusted where 

as °act  is kept fixed at 8. 

B. Search Centre 

The search centre set is formed according to the given activity region. For IR base layer 

motion vector predictor (BL MVP) is used as search centre whereas for BR two motion 

vector predictors are used as search centre namely, BL MVP and median MVP. 
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The median MVP, is defined as 

< 	< 	 4.3 MV 	— V[eft ,  MV upper, MVupper–right 

where MV11eft , MJ u pper, and MVupper_rightdenote the MV of the left, upper, and upper- 

right block in the enhancement layer (layer Z), respectively. BL MVP is obtained by up-

scaling the MV of the base layer as mentioned in the previous section. 

C. Adjustment of Inter-Layer Activity Prediction Factor, a 

It is observed that a depends on the nature of motion in the scene and therefore, needs to be 

adjusted to the given sequence. The search range is not fixed but adjusted by (4.2) with a 

given a. After the motion search, it is checked whether the search range thus obtained is 

sufficient or not as follows. If the best point corresponding to the minimum SAD cost is close 

enough to the boundary of the search range, it is suspected that there exists some point with 

lower SAD cost than that point beyond the search range. On the other hand, if the best point 

is close enough to the predictor, the prediction is assumed to be quite accurate obviating the 

need for further checking of points far from the predictor. 

(a) 	 (b) 

Figure 4-6 Optional check of diamond-shaped points (OCDSP), where SR is derived from (4.2). Point "I" denotes the 
point with the minimum SAD cost within the given search range, d denotes the distance between "Predictor" and 
point 1, and point "J" denotes the centre point of the diamond-shaped search pattern whose distance from 
"Predictor" is twice as long as d. Five gray coloured circles denote optional check points in the diamond-shaped 
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search pattern, and point "K" denotes the point with the minimum SAD cost among six candidates, i.e., five optional 
check points and point I. SR"' denotes the required search range to cover point K (a) when point K is different from 
point I, and (b) when point K is identical to point I. 

In Figure 4-6, a procedure called "optional check of diamond-shaped points (OCDSP)" as 

introduced in [21] is shown. The best point obtained by the motion search defined as point I 

and the centre point of the diamond pattern as point J, which is located twice as far as point I 

from the point denoted as "Predictor" along the direction of "Predictor-point I" vector. The 

radius of the diamond pattern is given as LMBB,  the length of the longer edge of the minimum 

bounding box (MBB) which covers both "Predictor" and point I. A new inter-layer activity 

prediction factor a' is obtained after the following steps defined as OCDSP. 

1. Set the SAD cost of point Ito SADcostl. 

2. Define the best point among five optional check points in the diamond pattern as 

point K. 

3. Set the SAD cost of point K to SADcostK. 

4. If SADcostj < SADcostK then point I is renamed as point K as shown in Figure 4-6 (b). 

5. Get SR"e" which minimally covers point K from "Predictor." 

6. Calculate a' deductively using (4.2) by using Al  as the updated search range (SR") 

in (4.4) 

SRnew  _ R 	 (4.4) a' _ Ai-i 

Here a is defined in two levels: in MB level (ayB) and in frame level (aframe). avo is computed 

by OCDSP after the completion of the motion search using the search range given by (4.2) 

with the previous value of afra,,,e, to be defined as aMB . The mean of a'over all MBs in a 

frame is used to update af.ame.  Initially  afrane  is set to the maximum among values in Table 4-1 

to support generic sequences. Activity Threshold, 9act  is kept fixed and its value is kept equal 

to SRbasis  which is found to be 8 in previous section. If activity in layer 1, A1-1  is lesser than 

°act  then the corresponding MB belongs to IR otherwise to BR. For a MB in IR, search range 

is equal to SRbasis  whereas for a MB in BR search range is obtained by (4.2). 

4.2.6 Simulation Results for Activity Based Motion Estimation scheme 

Here during the simulation to analyze only the effect of search algorithm, unlike motion 

estimation in video coding applications, backward motion estimation is performed between 

successive original frames for each of the three layers. This approach avoids the influence of 
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rate-distortion optimization and error propagation. Motion Estimation is performed by using 

only luminance component, and Sum of Absolute. Difference (SAD) as the block distortion 

measure. 

BL is taken as QCIF, first enhancement layer (EL1) as CIF and second enhancement layer 

(EL2) as 4CIF. Search centre for BL is zero MV i.e. search starts at the position of current 

MB in the reference frame. For EL1 search centre is determined by MVP that is, up-scaled 

version of BL motion vector. Before start of motion search for EL2 the activity at ELI is 

available as computed from (4.1). Search centre for E2 is obtained based on the activity of 

corresponding MB in EL 1. The search range for BL and ELI is fixed to 8 and 16 respectively 

whereas search range for each MB in EL2 is determined based on its estimated activity Al  as 

obtained from (4.2). Exhaustive search is performed within this search range. Fixed block 

size of 16x16 is used for each layer. PSNR is calculated between original and its 

corresponding motion compensated frame. 

The simulation of this method is performed on generic video sequences to obtain the mean 

PSNR achieved at each layer, total number of SAD computations per MB for EL2 and total 

CPU time consumed in motion estimation process for all the three layers. PSNR, number of 

SAD computations per MB and CPU time are reported as the mean of their values for first 45 

frames of given video sequences. 

Video 
Sequence 

PSNR BL 

(dB) 

PSNR ELI 

(dB) 

PSNR EL2 

(dB) 

CBDM/MB 

EL2 

T(BL+EL1+ 

EL2) (sec) 

SOCCER 36.5563 37.3857 37.7756 410.1988 272.4748 

CREW 36.6851 39.7551 42.1084 632.5141 392.9842 

ICE 39.7604 45.4240 48.3526 514.7710 313.9343 

HARBOUR 31.9719 33.3836 35.3511 450.1835 291.0923 

Table 4-2 Results as obtained through simulation of Activity Based Motion Estimation (ABME) method. PSNR for 
BL, ELI and EL2 along with number of Computations of Block Distortion Measure per macro-block CBDMJMB for 
EL2 and total CPU Time (T) consumed during simulation for evaluation of motion vectors for all three layers. 
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Chapter 5 Proposed Motion Estimation Scheme for Scalable Video 

Coding 
Activity Based Motion Estimation scheme (ABME) as proposed by Sangkwon Na et al [21] 

as discussed in Chapter 4 uses motion vector predictor (MVP) and original motion vector 

(MV) for determining the activity of a particular MB in first enhancement layer (ELI). This 

activity is further used to estimate activity of corresponding MBs in second enhancement 

layer (EL2) to determine appropriate search range. The estimate of activity in EL2 is obtained 

using the Inter-Layer Prediction Model (ILPM) as specified by equation (4.2) where inter-

layer prediction factor, a is adjusted dynamically for each frame based on the new search 

range obtained by Optional Check of Diamond Shaped Points (OCDSP) procedure as 

introduced in [21]. The search range thus obtained takes into account the activity of that MB 

in base layer and also the correlation of activity between base layer and enhancement layer. 

This search range is sufficient enough to encompass best matching MB in reference frame 

given the search centre. 

Motion estimation in itself is a computationally expensive process and more so in case ME 

for scalable video coding as MV search is to be performed for each spatial resolution. The 

method proposed in [21] decreases the computational load on the encoder by specifying an 

appropriate search range for MBs in enhancement layer based on the information obtained 

during ME of lower resolution layers. 

Any other ME scheme which is to be proposed must provide the same or better PSNR 

performance than [21] and should also be less computationally expensive. Keeping these 

constraints in mind we propose a modification to ABME scheme reported in [21]. 

5.1 Proposed Motion Estimation Scheme 
In our proposed scheme we intend to obtain activity for ELI more accurately by using half-

pixel accurate ME for BL and ELI. Therefore, MVP and original MV of ELI which are used 

for obtaining activity at ELI are more accurately specified. The interpolation-free ME 

technique as proposed in [15] and discussed in chapter 3 is used to minimize the 

computational overhead introduced by half-pixel accurate ME. 

The same inter-layer prediction model (ILPM) as proposed in [21] given by equation (4.2) is 

utilized to obtain an estimate of activity for a MB in EL2. The search range is obtained 

depending upon a given MB falls in interior region or boundary region and its estimated 
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activity. The search range thus obtained is more precise and is sufficient to contain the best 

matching MB within the search range. 

The algorithm of the proposed scheme is as follows: 

1. BL is taken as QCIF, first enhancement layer (ELI) as CIF and second enhancement 

layer (EL2) as 4CIF. 

2. Search centre for BL is zero MV i.e. search starts at the position of current MB in 

the reference frame. The search range for BL is fixed to 8. Half-pixel MV 

refinement is performed on MVs of BL using interpolation-free motion estimation 

technique. 

3. For ELI search centre is determined by MVP that is, up-scaled version of half-pixel 

accurate BL motion vector. The search range for ELI is fixed to 16. Also, half-pixel 

MV refinement is performed using interpolation free sub-pixel accurate ME 

technique for MV of ELI. 

4. The activity at ELI, A'-' is computed from equation (4.1) using its half-pixel 

accurate MV and its MVP obtained by up-scaling half-pixel accurate MV of BL. 

5. Search centre for EL2 is obtained by up-scaling half-pixel accurate MV of ELI. The 

search range for each MB in EL2 is determined based on its estimated activity Al 

obtained from (4.2). The dynamic adjustment of inter-layer prediction factor, a is 

performed as already discussed in section 4.2.5. 

Exhaustive search is performed within this search range. Fixed block size of 16x16 is 

used for each layer. PSNR is calculated between original and its corresponding motion 

compensated frame. 

5.2 Simulation Results and Observations 

Here the simulation is performed for the proposed scheme to analyze only the effect of search 

algorithm, unlike motion estimation in video coding applications, backward motion 

estimation is performed between successive original frames for each of the three layers. This 

approach avoids the influence of rate-distortion optimization and error propagation. Motion 

Estimation is performed by using only luminance component, and Sum of Absolute 

Difference (SAD) as the block distortion measure. 



The simulation of proposed technique is performed to determine PSNR performance at each 

of the three layers, number of computations of block distortion measure per MB and total 

CPU time consumed in ME of all three layers. This CPU time includes the incremental CPU 

time consumed due to computational overhead caused by half-pixel MV refinement of BL 

and ELI. The three spatial resolutions used are QCIF: 176X144, CIF: 352x288 and 4CIF: 

704X576 for BL, ELI and EL2 respectively. 

Figure 5-1, 5-2 and 5-3 shows comparison of PSNR obtained by simulation of proposed ME 

scheme with that obtained by the simulation of ABME scheme 1211 discussed in chapter 4 for 

BL, ELI and EL2 respectively. 
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Figure 5-1 Comparison of PSNR obtained for RI. b% simulation of proposed ME scheme i%ith that obtained bN the 
simulation of ABME scheme, Video Sequence: Soccer. 15 fps. 
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Figure 5-2 Comparison of PSNR obtained for ELI by simulation of proposed ME scheme with that obtained by the 
simulation of ABME scheme, Video Sequence: Soccer, 15 fps. 
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Figure 5-3 PSNR Gain obtained for EL2 by simulation of proposed ME scheme over the ABME scheme. Video 
Sequence: Soccer, 15 fps. 
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From Figure 5-1 and 5-2 we observe that the PSNR is significantly improved for BL and ELI 

because of availability of half-pixel accurate MVs at these layers in proposed scheme. From 

Figure 5-3 it is observed that PSNR performance of the proposed remains approximately the 

same in the proposed scheme. 

Figure 5-4 shows the comparison of number of computations of Block Distortion Measure 

(BDM) per MB for EL2 obtained using the proposed scheme with that of ABME scheme. 
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Figure 5--I Comparison of number of computations of Block Distortion Measure (BDM) per MB for EL2 obtained 
using the proposed scheme with that of ABME scheme, Video Sequence: Soccer, 15 fps. 

From Figure 5-4 we observe that there is decrease in number of computations of BDM per 

MB in EL2 by using the proposed technique whereas as seen from Figure 5-3 the PSNR 

performance in EL2 remains approximately the same. 
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Figure 5-5 shows the comparison of total CPU time consumed in ME for all three layers 

(including that spent in MV refinement of BL and ELI) obtained using the proposed scheme 

with that obtained using ABME scheme reported in [211. 
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Figure 5-5 Comparison of total CPU time for Proposed scheme «ith that of ABME scheme. Video Sequence: Soccer. 
15 fps. 

From Figure 5-5 we observe that the total CPU time consumed in ME for proposed scheme is 

lesser than that of ABME scheme. This is because the computational overhead caused by the 

half-pixel accuracy motion vector refinement at BL and ELI is offset by the reduction in 

computation at EL2 owing to more precise estimation of search range. 

In Table 5-1 the mean of PSNR for all three layers, number of computations of BDM per MB 

(CBDM/MB) for EL2 and CPU time (T) consumed in ME of all three layers for first 45 

frames of four generic video sequences is reported. 
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Video 

Sequence 

Quantity Proposed ME 

scheme 

ABME scheme Difference 

PSNR BL (dB) 37.0036 36.5563 0.4473 

PSNR EL1(dB) 37.8197 37.3857 0.4340 

PSNR EL2(dB) 37.7729 37.7756 -0.0027 

tn CBDM/MB for EL2 394.9173 410.1988 -15.2815 

CPU time, (sec) 265.9106 272.4748 -6.5642 

PSNR BL (dB) 36.8262 36.6851 0.1411 

PSNR EL1(dB) 40.0203 39.7551 0.2652 

PSNR EL2(dB) 42.1302 42.1084 0.0218 

CBDM/MB for EL2 618.3170 632.5141 -14.1971 

CPUtime,(sec) 384.7109 392.9842 -8.2733 

PSNR BL (dB) 40.1074 39.7604 0.3470 

PSNR ELI (dB) 46.0530 45.4240 0.6290 v PSNR EL2(dB) 48.3969 48.3526 0.0443 

CBDM/MB for EL2 502.8685 514.7710 -11.9025 

CPUtime,(sec) 305.8060 313.9343 -8.1283 

PSNR BL (dB) 32.1200 31.9719 0.1481 

Z)  

PSNR EL1(dB) 33.5239 33.3836 0.1403 

PSNR EL2(dB) 35.3594 35.3511 0.0083 

CBDM/MB for EL2 445.3571 450.1835 -4.8264 

CPUtime,(sec) 284.5788 291.0923 -6.5135 

Table 5-1 Comparison of Proposed ME scheme with ABtitE scheme based on PSNR at all layers, number of 
computations of BDMI per MB (CBDIU IB) and CPU time (T) 

From Table 5-1 we can see that there is a PSNR improvement achieved at BL and ELI for all 

four sequences using the proposed scheme. Also PSNR at EL2 remains almost unchanged. 

Whereas there is a reduction in overall CPU time consumed for ME of all three layers. This is 

because the computational overhead caused by half-pixel accuracy MV refinement at BL and 

ELI is offset by the computational reduction at EL2 caused by the availability of a more 

appropriate search range. 
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Chapter 6 Conclusion 
Motion estimation used to remove temporal redundancy in video encoders, is a 

computationally expensive process. Many techniques have been proposed till date to reduce 

computational complexity of motion estimation while providing good estimation 

performance. 

In this thesis, we have compared fast block matching motion estimation algorithms in terms 

of PSNR and computational complexity. Also, a fast interpolation-free ME technique is 

implemented and its performance is compared with conventional approach. Activity based 

ME scheme is also implemented and its simulation results for PSNR performance and 

computational complexity are evaluated. 

Also, we have proposed a new motion estimation scheme for scalable video coding. This 

technique is based on estimating search range accuratel for motion estimation at enhancement 

layer using the information obtained during motion estimation at lower layers. 

The proposed scheme decreases the overall CPU time required for motion estimation whereas 

PSNR at BL and ELI is improved significantly and PSNR at EL2 remains approximately the 

same as compared to ABME scheme proposed in [21]. 

Future work includes the implementation of proposed scheme for standard encoder like 

JSVM and measure the rate-distortion performance of the proposed scheme. 
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