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ABSTRACT 

A cognitive radio by virtue of its ability to sense and adapt to the dynamic spectrum scenario, 

can increase the spectral efficiency. In order to be non-invasive, a cognitive radio must 

adhere to strict benchmarks in the quality of spectrum sensing for primary users of a band. 

Thus, spectrum sensing has a major role to play in cognitive radio. Many algorithms have 

been proposed to enable spectrum sensing such as energy detection and cyclostationary 

detection. IEEE 802.22, the first standard for cognitive radio devices, imposes strict 

requirements for the detection and false alarm probability on all spectrum sensing devices at 

SNR up to -20 dB. This requires use of robust spectrum sensing techniques. 

Energy detection is the simplest and near optimum technique that is widely used for spectrum 

sensing. However, its performance is drastically affected by uncertainty in noise variance due 

to SNR wall [1]. Cyclostationary detection can exploit spectral correlation present in most 

modulated signals to reliably detect signals even at low SNR. All general QAM signals 

exhibit distinct cyclic frequencies depending on their carrier frequency, baud rate etc. which 

can help to distinguish between the SOI (Signal of Interest) and interference. 

The filter structures for optimum MMSE estimation of cyclostationary signals are frequency 

shift (FRESH) filters. The theory of cyclic Wiener filtering theory, developed by Gardner [2], 

forms the basis of LCL (Linear Conjugate Linear) filtering used in FRESH filters. By adding 

appropriately frequency shifted versions of a cyclostationary signal, FRESH filters can 

provide significant gains for cyclostationary detection. Hence, it is intuitive to apply FRESH 

filters for spectrum sensing in the cognitive radio context. For upcoming wireless standards 

like Wi-MAX and LTE, OFDM (Orthogonal Frequency Division Multiplexing) is used 

because of the advantage of multicarrier transmission. Spectrum sensing for OFDM signals is 

especially challenging due to the cancellation of cyclostationary features and efficient 

detection algorithms for OFDM need to be developed. 

This thesis presents a comparative analysis between cyclostationary and energy detection and 

proposes FRESH filter based detection for cyclostationary spectrum sensing, with supporting 

simulation results. For spectrum sensing in OFDM, it develops an optimal Neyman-Pearson 

detector for induced cyclostationarity in CP-OFDM and shows that the proposed detector 

outperforms energy and cyclostationary detection techniques in the detection performance. 
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Chapter 1 

Introduction 

The 7 h̀of September 1987 is a day in the history of wireless communication that charted its 

future for decades to come. It was on this day that the European Union approved the 

introduction of a unified system for communication codenamed GSM(Global System for 

Mobile Communications), a technology that spearheaded the development of wireless 

services and devices, and exposed us to. the immense opportunities and concomitant 

challenges that lay in harnessing its potential for future. Starting from the need to 

communicate information over a long range, our needs in the present day have risen 

exponentially to include voice, data and multimedia communication. This spiralling need has 

imposed an immense pressure on a precious resource, the radio spectrum. While this has led 

to many frequency bands being overused, such as the ISM band, studies [5] suggest that 

many frequency bands remain underutilized i.e. they remain free from their primary users for 

a substantial amount of time. This opportunity can be exploited to serve the growing demand 

for spectrum by allowing unlicensed users to transmit their own data on licensed bands with 

the precondition that the quality of service (QoS) of primary transmission is not compromised 

in any way. Such kind of opportunistic spectrum access forms the basis of a cognitive radio. 

1.1. Cognitive Radio 

Joseph Mitola coined the term `Software Defined Radio', while pursuing his doctoral 

dissertation work at KTH Sweden in 2000 [6]. He called these radios up to 80% 

programmable beyond the antenna output terminals and thus capable of doing RF, IF, 

baseband and bitstream operations using high speed Analog to Digital to Analog (A/D/A) 

converters and microprocessors. Subsequently he extended the concept of a Software Radio 

to `Cognitive Radio' [7],[8] as follows, 

" (A cognitive radio is) a radio frequency transceiver designed to intelligently detect whether 

a particular segment of the radio spectrum is in use, and to jump into (and out of) the 
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temporarily unused spectrum very rapidly, without interfering with the transmission of other 
authorized users ". 

Such an intelligent radio would be able to learn about the network condition and structure. It 

could detect unused frequency bands and allow unlicensed to opportunistically access 

licensed bands without causing any interference to the primary user. This would intuitively 

improve the spectrum utilization. In the terminology of cognitive radio, users who do no have 

not obtained prior permission for accessing a band are referred to as secondary users while 

the authorized users of a band are called primary users. Studies have suggested that while 

most frequency bands are licensed to primary users, many of these like military, marine 

communication, amateur radio etc. remain highly underutilized giving rise to a virtual 

scarcity in spectrum [5]. Fuelled by such revelations • along with exponentially increasing 

number of wireless devices in the market like cordless telephones, remote surveillance 

cameras, the interest in cognitive radios has been growing at an amazing pace. Cognitive 

radios require unlicensed users who want to use the licensed bands opportunistically, to be 

highly adaptive in their parameters like frequency of operation, modulation technique, power 

allocation etc. Figure 1.1 shows the opportunistic scenario in which a cognitive user operates. 

Power 
	 Spectrum in use. 

frequency 

11 

rr. ~YU ru 

spectrum 

•i q 

"Spectrum holy 

Figure 1.1: Dynamically changing spectrum scenario for a cognitive radio with black dots 

representing spectrum opportunities [3]. 

Haykin [4] states that a Cognitive Radio has to perform three basic tasks as listed below. 

00 



(1) 	Radio-scene analysis:  This consists of two main tasks, namely, 

• Estimation of interference temperature of the radio environment; 

• Detection of spectrum holes. 

The interference temperature in a band is a measure of the total RF interference 

present at the receiver with no primary signal present. This helps define a limit on the 

maximum interference power a band can accommodate without adversely affecting 

the primary transmission. Following the measurement of interference temperature, the 

RF spectrum is categorized as either white or black depending on whether it is 

occupied by high power signals or contains only ambient noise signals. This 

categorization may be performed through many methods such as the MTM-SVD 

(Multi Taper Method Singular Value Decomposition) [9], energy detection [10], and 

cyclostationary detection [11].  A white spectrum signifies a spectrum opportunity. 

This task of detecting spectrum holes or vacant spaces in the spectrum is called 

Spectrum Sensing. 

(2) 	Channel identification:  This consists of the following two tasks, namely, 

• Estimation of channel-state information(CSI) 

• Prediction of channel capacity for use by the transmitter. 

Channel state information can be estimated at the receiver by using pilot transmission 

or semi-blind approaches. Subsequently the channel coefficients must be tracked at 

the receiver through a mathematical model such as Kalman or particle filter. The 

estimate of CSI must be fed back to the transmitter to enable adaptive modulation. 

(3)  Transmit power control and dynamic spectrum management:  Once the spectrum holes 

have been identified and their CSI estimates are available, a cognitive radio 

transmitter must choose its transmission bands accordingly and dynamically adjust 

them as and when the RF scenario changes. It also needs to optimise the transmit 

power in each band, in sync with the interference temperature limit for that band. 

While the first two tasks are performed by the cognitive receiver, the third is performed at the 

transmitter. Figure 1.2 shows the different stages of cognitive cycle emphasizing the role of a 

feedback channel from the receiver to transmitter for conveying various channel parameters. 
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Fig. 1.2: The cognition cycle [4] 

1.1.1. Issues in Cognitive Radios 

A cognitive radio must be adaptive, reconfigurable, intelligent and flexible enough to detect 

different kinds of primary transmissions like BPSK, QPSK, and QAM and also switch 

between them as the channel conditions demand. Because the location of spectral holes in 

frequency and time is continuously changing a cognitive radio must have the ability to 

selectively transmit on any given set of frequency bands from a wideband range as the 

primary transmission requires. In this context, OFDM (Orthogonal Frequency Division 

Multiplexing) is a multi carrier modulation technique that lends itself naturally to such 

adaptive modulation. OFDM offers the ability to selectively modulate those subcarriers with 

data where a spectral hole is currently available while leaving other subcarriers untouched, it 

is also possible to use bit-loading in OFDM by which the bit-rate for a specific subcarrier can 

be optimised according to its SNR [4]. OFDM has already been adopted as the PHY layer for 

many kinds of standards eg.DVB, DAB, IEEE 802.11a/g/n WLAN standards and the 802.16 

Wi-MAX standard. 

Reliable detection of spectrum holes, or spectrum sensing, is currently a major challenge for 

cognitive radios because of its overarching need in implementing a secondary system with a 

pre-existing legacy system without harming the latter. The following text presents briefly the 

major issues that are pertinent to cognitive radio. 
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Spectrum Sensing 

Spectrum sensing is the task of obtaining awareness about spectrum usage and the presence 

of primary users in a given geographical area. This may be accomplished using geo-location 

database, beacons or local spectrum sensing at the cognitive radios. Although spectrum 

sensing is traditionally understood as measuring the signal energy present over the spectrum, 

in the context of cognitive radios it assumes a much bigger and challenging role that includes 

information about what kind of signals occupy the spectrum including their modulation, 

carrier frequency, bandwidth etc. To optimally utilize spectrum opportunities, spectrum 

sensing may be performed across multiple dimensions like time, frequency, code and angle. 

Since a high QoS (Quality of Service) must be maintained for the primary user, 

simultaneously achieving a high channel capacity for secondary user requires robust 

spectrum sensing techniques. Transmissions in licensed bands are normally subjected to 

interference from adjacent bands, other secondary devices and ultra wideband devices etc. 

[12]. Additionally, the primary signal may be subjected to fading or shadowing [13] causing 

its SNR to drop below OdB. Hence, reliable spectrum sensing at low SNR regimes becomes a 

necessity. In terms of hardware, this means that a substantial dynamic power detection range 

of the sensing device should be present to detect both low and high power primary users. 

There must be a continuous monitoring of the spectrum and fast adaptive capability. This 

requires wideband and high sampling rate (few Gsps) ADC/DAC's [ 14] and computationally 

fast DSP/FPGA's. Some of the commercially available hardware and software platforms for 

the cognitive radio are the GNU Radio [ 15], Universal Software Radio Peripheral (USRP) 

[16] and Shared Spectrum's XG Radio [17]. 

Transmit Power Control 

The transmit power control problem for a multiuser scenario can be stated as [4]: 

Given a limited number of spectrum holes, select the transmit power levels of n un-serviced 

users so as to jointly maximize their data-transmission rates, subject to the constraint that the 

interference-temperature limit is not violated. 

The solution to this problem is not as direct as it looks because increasing transmit powers of 

an un-serviced user increases the interference to all other users and may violate the 

interference temperature limit. The solution lies in a trade-off between data rates and residual 



interference. Haykin in [4] models this situation as a non-cooperative game and applies the 

Nash Equilibrium and iterative water filling algorithm to derive a solution close to optimum. 

Dynamic Spectrum Management 

Dynamic spectrum management concerns the development of an effective strategy for 

efficient utilization of the RF spectrum. Its function is to build on the spectrum holes detected 

by the radio-scene analyzer and the output of transmit-power controller by selecting a 

modulation strategy that adapts to the time-varying conditions of the radio environment 

assuring reliable communication across the channel. Spectrum management is a holistic term 

that is sometimes defined so as to include a gamut of activities that enable the operation of a 

cognitive radio from spectrum sensing to spectrum decision and spectrum mobility. It 

involves characterizing each available spectrum hole using parameters like SNR, interference 

at the physical layer and link errors and RTT (Round Trip Time) etc. at higher layer. Because 

cognitive user is only a visitor to a licensed band, different layers of the cognitive radio must 

be able to adapt to what is called spectrum handoff [3]. Dynamic spectrum management also 

decides how cognitive radio nodes can communicate through ad-hoc channels or a cognitive 

radio network to share spectrum information. 

Spectrum Sharing 

Different spectrum sharing techniques have been proposed in literature based on four main 

principles viz, architecture, spectrum allocation behaviour, spectrum access technique, and 

scope [3]. Multiple-user spectrum access needs a co-ordinated mechanism to avoid collision 

and centralised spectrum sharing architecture has been proposed for this [18]. Distributed 

spectrum sharing has also been proposed wherein each sensing node takes an independent 

decision. For allocating a chunk of spectrum among multiple users, co-operative sharing 

techniques can be used where allocation and interference data is shared among independent 

nodes. On the other hand, in scenarios of non-cooperative and competitive users, game theory 

is being applied to model the intelligent behaviour of selfish users and find the self-forcing 

equilibrium point of operation. Depending on the spectrum access methodology, a cognitive 

radio may operate in the of"erlay or the underlay mode, both of which pose different 

challenges to spectrum sharing. Finally, available spectrum may be shared among cognitive 

users of a single network or across multiple networks [3]. 
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1.2. Spectrum Sensing Techniques 

Many techniques have been proposed in the literature to meet the challenging need of 

spectrum sensing namely energy detection, cyclostationary detection and matched filter 

detection etc. Energy detection [10][19][20] is one of the simplest technique due to its least 

computational complexity. An energy detector measures the RF energy present in a 

frequency band and compares it with the incumbent noise level in the band to give its sensing 

decision. As a result, it requires no prior knowledge of the primary signal's characteristics 

like modulation, carrier frequency etc. and it has been shown that energy detection is the 

optimal detection scheme for signals with no correlation structure when the false alarm rate 

must be limited [21]. But it suffers from many shortcomings, for e.g., the detection threshold 

for a CFAR (Constant False Alarm Rate) test is highly susceptible to changes in noise power. 

Subtle variations in the noise power or slight error in its estimation can make the energy 

detector highly non-robust [22]. Moreover an energy detector cannot differentiate between 

primary signal, noise and interference and at low SNR/SIR they can get easily confused 

leading to significant drop in detection rates. Also they do not work well for spread spectrum 

signals as the power spectrum of a spread spectrum signal is is quite low [14].  

The optimum detector for any signal is a matched filter (MF) but the complexity of 

implementing a matched filter receiver becomes prohibitively large given the fact that a 

cognitive receiver needs to implement a MF for each kind of primary signal, leading to a.. 

large implementation complexity [13][14]. Additionally, a MF must demodulate the received, 

signal which requires perfect knowledge of the primary users signalling features such as,„ 

bandwidth, operating frequency, modulation type and order, pulse shaping, and frame format. 

Co-operative spectrum sensing has also been proposed wherein multiple spatially separated 

sensing nodes can share their sensing decisions and overcome problems of shadowing and 

fading [13]. 

Cyclostationary spectrum sensing [11][13]exploits the periodic correlation in signals 

introduced during modulation onto binary pulses or carrier waves. Each class of modulated 

signals possesses second order wide sense cyclostationarity, meaning thereby, that their 

autocorrelation is periodic in time with certain period T [2] in contrast to wide sense 

stationary signals, whose mean and autocorrelation are independent of time. This periodicity 

can be translated into a distinct peak in the Cyclic Autocorrelation Function and Spectral 

Correlation Density of the signal at a cyclic frequency a directly related to period of 
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repetition T. This unique signature enables us to separate signals from stationary noise. 

Moreover, cyclostationary spectrum sensing can differentiate a desired signal, white noise 

and spectrally overlapping interference as they exhibit different cyclic frequencies and hence 

unlike energy detection, it can function robustly under high interference (low SINR) and 

fading scenarios. In practice, there are a limited number of licensed transmissions over a 

given spectral range having known bandwidth and carrier frequencies, for example, 

transmissions in TV bands. Thus, a prior knowledge of the signal periodicities can be 

assumed to be available. Some of the recent works on cyclostationary spectrum sensing are 

Poor et al. [I 2] where the authors use cyclostationarity based test statistic along with node 

collaboration to detect an OFDM signal. Authors in [23] use neural network based training 

with cyclic feature vectors for signal classification. 

Though the advantage of modelling many signals as cyclostationary as an alternative to 

stationary signals was established in the late 1960's by L.E. Franks, it was not until the early 

1990's that cyclostationary sensing received considerable attention when Gardner, Spooner 

and others discovered the application of cyclostationarity to the problems of detection, 

modulation recognition, DOA estimation and blind adaptive filtering [24]. Gardner in 

particular pioneered the non-stochastic or time series approach to analyse cyclostationary 

signals. Another major discovery by him was that linear time variant adaptive filtering could 

be used to optimally estimate a cyclostationary signal initiating a new field of filtering called 

Cyclic Wiener filtering [2]. He called these filters FRESH (FREquency SHift) filters and 

mathematically derived their governing equations and mean square error performance while 

estimating different cyclostationary signals [2]. 

1.3. FRESH Filters 

FRESH (FREquency SHift) filters is a name given to linear time variant adaptive filters that 

can optimally detect a cyclostationary signal using its periodic correlation feature. As the 

name suggests these filters consist of a number of frequency shift branches followed by a LTI 

filter. For polyperiodic cyclostationary signals, each branch shifts the signal by a unique 

frequency and the outputs of all branches are summed up. Since cyclostationary signals are 

spectrally correlated, adding appropriately frequency shifted and filtered versions of a signal, 

improves the signal strength. Frequency shift filters can separate signals overlapping in time 

and frequency by using an non-overlapping part of the spectrum to cancel out a correlated 

part in the spectrum which is corrupted by interference. Thus by a series of operations of 



frequency shifting and complex weighting a signal, two or more spectrally overlapping 

signals can be separated. It is also intuitive that adaptive implementations of these filters 

using LMS /RLS algorithms are possible. Gardner in [2] shows that trained FRESH filters 

can attain a low MSE in the presence of interference. The performance of a FRESH filter 

depends on the specific type of signal it is used to detect and the strength of cyclostationarity 

in the signal. It can be proved that a linear periodically time-variant filter that optimally 

estimates a cyclostationary signal is equivalent to a frequency shift filter [2]. The general 

form of FRESH filtering in time domain is given by 

where h„(t, u) is the Fourier coefficient of the periodic time varying impulse response h(t, u) 

of the filter and x (t) and y(t) are the frequency shifted input x,, (t) ° x (t) exp(i2 rrjt) and 

output signals respectively. This operation can be represented in the frequency domain as 

Y(f)=ZH(.f)X,,(.f) 	 (1.2) n 

Thus, the input is subjected to a number of frequency-shifting operations, each followed by a 

linear time invariant filtering operations and the results are added together. FRESH filters 

have till now been used for estimating signals such as BPSK and QPSK and separating, 

multiple interfering signals with overlapping spectrum [2]. Authors in [25] use FRESH filters 

to detect a desired user in a multi user DS-CDMA scenario and show the observed SNR 

improvement at the output. Another work is [26], where the authors consider FRESH filters 

to detect BPSK signals with varying level of spectral interference. But till date to the best 

knowledge of the author, no work has been reported on the application of FRESH filtering for 

spectrum sensing of primary signals in cognitive radios. Cyclostationary spectrum sensing is 

much more robust at low SNR than energy detector under practical conditions and FRESH 

filters can potentially be used to reconstruct the primary signal. 

1.4. Motivation and Problem Statement 

Robust spectrum sensing at low SNR is a necessity that the computationally simple technique 

of energy detection cannot achieve, due to noise uncertainty and its inability to differentiate 

between desired and interference signals. As most practical signals being used, possess 



cyclostationary features which can be potentially used to detect their presence, 

cyclostationary spectrum sensing can offer better detection of desired signal that will satisfy 

the strict performance constraints placed on cognitive devices. Since FRESH filters provide 

blind estimation of cyclostationary signals, therefore, it is intuitive to study their performance 

when applied to spectrum sensing. Additibnally, an important aspect of this dissertation is to 

study spectrum sensing techniques for OFDM. This dissertation work aims to consider the 

following, 

■ A comparative analysis of different spectrum sensing techniques proposed in 

literature for cognitive radios and evaluation of their performance through simulation. 

■ Use cyclostationary features in signals for spectrum sensing, apply FRESH filters for 

signal detection and evaluate and compare its performance with the energy and 

cyclostationary techniques. 

■ Explore application of the aforementioned techniques to spectrum sensing in OFDM. 

1.5. Organisation of the report 

Chapter 2 provides a review of the two major spectrum sensing techniques proposed in 

literature viz, energy detection and cyclostationary spectrum sensing. It presents theoretical 

background on the development of both techniques and presents simulation results to show 

the corresponding average detection probabilities achieved at different SNR. The chapter also 

presents descriptive simulation examples verifying the presence of cyclic features in 

modulated signals and concludes by showing the advantage of cyclostationary spectrum 

sensing over energy detection in detecting signals at low SNR. 

Chapter 3 discusses the theory of optimal frequency shift filtering of cyclostationary signals 

developed by Gardner [2] and presents the structure of FRESH filter and its adaptive 

implementations. It presents application of FRESH filters to detect a BPSK signal in the 

presence of noise/interference. Plots for average detection probability achieved at different 

SNR in AWGN and interference scenarios are presented, and conclusions on the selective 

advantages of using FRESH filters and the conditions necessary for them to work are given. 

In chapter 4, we discuss the application of energy detection, cyclostationary detection and 

frequency shift filtering to OFDM. Specifically the effect of subcarrier orthogonality on 

eyelostationarity in OFDM is discussed and the need for cyclic prefix and Excess Bandwidth 

(EBW) for signal detection is presented. To enable robust spectrum sensing, we introduce 
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induced cyclostationarity in the cyclic OFDM signal and develop an optimal Neyman-

Pearson detection algorithm for the induced features. Finally, the chapter presents simulation 

results to show that the proposed detector outperforms the energy detector and optimal time 

domain cyclostationary detector for cyclic prefixed OFDM signal. 

Chapter 5 presents the conclusion of the thesis and areas of future work. 
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Chapter 2 

Spectrum Sensing Techniques 

Any cognitive radio must be able to. reliably sense the presence of unused spectrum resource 

which could be opportunistically used for unlicensed transmission and concurrently also 

protect any incumbent licensed user from harmful interference. This necessitates that a 

cognitive user follow a listen-before-talk protocol. Such a protocol apart from setting up a 

definite framework for unlicensed access, would also lay down strict regulations on the QoS 

(Quality of Service) that must be met. The QoS in a cognitive radio's context depends on 

parameters like probability of detection promised to the primary user, rate of sensing to detect 

an upcoming in-band primary user (how often is sensing performed), the duration of sensing 

and the response time for spectrum handoff in case a primary user is detected, among others. 

The first global standard to legalise operation of cognitive devices IEEE 802.22 [27] in TV 

white spaces has specified strict constraints on all the above-mentioned parameters that all 

cognitive devices need to adhere to. It states that all such devices will provide 

Pd  > 0.9 & Pf  <0.1 . It also states that all DTV signals of RSS (Received Signal Strength) 

greater than -I 16dBm and all wireless microphone signals above -I07dBm must be detected. 

While the maximum detection time for an upcoming in-band primary user is around I minute 

in case of DTV signals, for the low power wireless microphone signals that operate in the 

same frequency band, that threshold is set at 0.5-2 sec. Robust spectrum sensing at such low 

signal levels in a short time requires efficient spectrum sensing techniques. In the following 

sections, we consider energy detection technique, its mathematical model and its detection 

performance under low SNR regime. We also point out the failures of energy detector due to 

the phenomenon of SNR wall. Following this, sensing using cyclostationary detection is 

discussed and its mathematical background is presented along with simulation examples. It is 

shown that cycl.ostationary detection is more robust than energy detection. 
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2.1. Energy Detection 

Energy detection is the simplest technique in terms of implementation complexity. It detects 

the presence of a signal by measuring the total incumbent energy in the band of interest and 

comparing it to a predefined threshold. This threshold must be decided in a manner, so as to 

limit the false alarm rate, and it can be set independent of the transmitted signal energy. Once 

the noise and signal variance are known, the problem of spectrum sensing can be formulated 

as a binary hypothesis testing problem. Using the complex baseband model of band-pass 

signal transmission, the received and transmitted signals are represented by their complex 

low-pass equivalents. The two hypotheses may be formulated as follows: 

Ho : y[n] = w[n], 
H I  : y[n] = s[n] + w[n]. 

(2.1) 

where y[n] is the received sample, w[n] is an AWGN sample with variance o y and s[n] is the 

transmitted signal value. At the receiver the test statistic used is defined as the energy of N 

received samples. 

N 

lE'_ 	IY[i]I2  
N 	 (2.2) 

= 	IYa[i]I 2 +IY1 [ill 2  
;=1 

where N is the number of complex observation samples and y z [i] & y f  [i] denote the real and 

imaginary parts of y[i] each having a variance ofo / 2 .Under both the hypotheses, the test 

statistic IE is a sum of squares of 2N real Gaussian random variables with the equal variance. 

Hence the distribution of the random variable E.is the chi-square distribution with a non- 

centrality parameter=0 under Ho  and 2y under H1 . 

E = 	
2N 	,H0 	 (2.3) 

xxN ( 2 y) ,HI 

N 

where y is the average SNR given by y = 	& P = 	s[i] I Z  . The probability of detection 
6 y 	N ;=1 

and false alarm are defined as, 
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Pf = Pr{E > A 1 HO } 

P, =Pr{IF>AIH1} 
(2.4) 

There are two ways of obtaining closed form expressions for these probabilities. The first, 

which is through direct integration of the chi-square distribution over the tail of the 

distribution function giving us the following results [28], 

r(N, 2 ) 
Pf — r(N, p) ' 	 (2.5) 

d 

where r (. , .) is the incomplete Gamma function given by r(s, x) = f X t' -̀'e-' dt and QM (.,.) is 

the generalized Marcum Q- function given by QM (a,,Q) = M _~ f~ x"'e-("Z 2 )/21,_, (ax)dx 

where I(x) is the modified Bessel function of the first kind [29]. Another way of computing 

the probabilities in (2.4) is through application of the Central Limit theorem assuming that 

the number of samples in question (N) is high, in which case the resultant distribution 

becomes normal and hence expressions for Pd and Pf can be obtained by finding the area 

under the Gaussian tail for which standard expression are available in terms of Q-function. 

We first find the probability values assuming that N real samples y(n) are being used for 

energy detection. For the case of complex samples we will consider it as a special case of 

energy detection in real samples. Under this assumption, the mean of test statistic E under the=- 

hypotheses Ho and H, can be found mathematically by observing the equation (2.2) and 

(2.1). The mean values are given by ,u0 = Na", and u, = N(o + P) . To find the variance of 

E under H0 , we compute the following, 
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N 	 N 
E{E2} =E ~Iw(i)I2 1Iw(J)12 

N 	 N N-1 

_ 	E {I w(k) I z I w(k) Iz } +E I I I w; (n) I2 I w j (n) I Z , (i ~ .1)(k is any integer) 
k=1 	 1=1 j=1 

=NxE{Iw(n)I4}+Nx(N-1)E{Iw(i)12Iw(j)12},(i#j) 

= 3Ncr + N 2a, —No,  
= 2N64 + N2o4. 

60 =E J Ez }—E{l'12 , 

= 2N64 + N 264 — N 2C4 , 
= 2N6. 

Through a similar analysis assuming independence of the signal and noise samples, the 

variance of the test statistic under H1 can be derived as 6,2 = 2N(o-„ +P)2 . Using these 

expressions in the integral of Gaussian function from X to infinity and using 

Q(x) _ 	j e-z2' zdx, we get the following, 
X 

(X—Nn )2
2 

P f = 	°e 20 dx 
2TC A 

.1— o 

—Q 2—N6z 

(2.7) 

P 	1 ~~e z° dx ~r -  
29CQtz ,1 

where ?, is the threshold to be calculated. Now, when the incoming samples are complex, the 

sum of squares of N complex Gaussian random variables with variance 6,v is equivalent to 

(2.6) 
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the sum of squares of 2N real Gaussian random variables with variance o /2,  Hence the 

complex signal case becomes a special case of the real signal and the correct probabilities for 

the complex case are derived by replacing N by 2N and 6N, by o /2. 

N6W 
(2.8) 

(2-2N(,/2+P) 
d_ Q 

4N(Crw / 2 + P)z  

For a Constant False Alarm Rate (CFAR) test also known as the Neyman-Pearson test, we 

can select a desired maximum value for P1 , calculate the corresponding threshold ). and use 

this threshold to compute the resulting Pd  . This gives us a mechanism to observe the 

probability of detection, also referred to here from as the detection performance, of energy 

detection for different values of the parameters Pf  , N (number of complex samples being 

averaged), o-,z (the noise variance) and P(the signal power). The two formulas in (2.8) can be 

solved together to eliminate A and yield an expression for N in terms ofPf  & Pd  . Eliminating 

A we get, 

N  [Q-' (Pf ) — Q-` (1)(l + 2SNR)]2  SNR-2  
_ 

	

	 (2.9) 
4 

The expression in [ 10] which holds for only real samples can be derived from this expression 

by doubling the value for N and replacing cr, , /2 by cr.  . In this expression, for any arbitrary 

SNR, a corresponding N can be derived that satisfies the constraints ofP1  & Pr,.. Hence ideally 

energy detector can robustly detect a signal at any signal to noise ratio given an appropriate 

number of samples. Figure 2.1 shows the Pnd  vs P p  lots for two different values of SNR and 

number of samples N also known as the Receiver Operating Curves (ROC) where P ,, 

denotes probability of miss detection given as P =1—Pd  . These curves have been obtained 

using equation (2.8) by calculating the detection probability corresponding to a range of 

values of the false alarm probability. As expected, with decreasing SNR, Pmd  also increases 

for the same Pf  while increasing the limit ofP1  causes P d  to decrease concurrently. Also 
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increasing the number of observation samples at the same SNR leads to an increase in the 

detection probability. It may be observed from figure 2.1 that for a given number of samples 
N, as the signal power decreases from -10dB to -15dB, the miss detection probability 
increases meaning thereby the detection probability has decreased. Similarly for a given SNR 
increasing the number of samples available for sensing improves the average detection 
probability. This represents the fundamental trade-off in a cognitive radio system. To counter 
the effect of a worse channel, a cognitive radio must either increase its sensing time, or be 
ready to accommodate a higher number of false alarms in order to maintain the same average 
probability of detection of the primary user. Alternatively, the cognitive radio may sacrifice 
some data rate to continue operation below the channel capacity. As a final recourse, the 
cognitive radio may look to opt for a more efficient sensing technique. It is the last choice 
that has been the motivation to design more efficient and robust spectrum sensing techniques. 
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Figure 2.1: ROC curves for energy detector for different SNR and N (number of samples). 
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2.1.1. Effect of Uncertainty in Noise Variance 

Though energy detection is a computationally inexpensive way to sense the spectrum, it 

involves an inherent trade-off that limits its ability to detect signals reliably in most practical 

scenarios. An energy detector assumes perfect knowledge of the ambient noise variance, in 

order to calculate the false alarm threshold 2. In practice, the noise power is measured during 

quiet periods of primary transmission [30] and this measurement can frequently be inaccurate 

due to co-channel interference from unsynchronised primary users or other legacy wireless 

devices. Further, any temperature change after the measurement, 'changes the ambient noise 

power, and non linearity of power devices also introduces noise uncertainty. A nominal value 

of noise power uncertainty is ± 1dB [31]. This uncertainty leads to drastic drop in detection 

performance of the radiometer and renders it incapable of reliably detecting the signal below 

a SNR threshold called the SNR wall. Below the SNR wall, no matter how large the sensing 

time, the detection probability does not improve. This nature of energy detector can be 

characterized theoretically, as under noise uncertainty of x dB where x =101og,o p the 

detection and false alarm probabilities of equation (2.8) can be modified as follows [1] 

Q 2—Na 
P~ = max 

	

0-2 E[P .2 p 2 ] 	N 
(2.10) 

2_NPcY 
Np264 

Pd = min Q 2 — 2N(6Z 12+P)')  
2 E['a2 Pa.]4N(62 / 2 + P)2 

P 

Z  
A-2N( 	 (2.11 ) 2.11

) 
 

=Q 	Z p 
I4N(2p +P)z 

J. 

Approximating 1+SNR I and eliminating a, we get [1] 

N 

[2SNR—(p— 1 )]Z (2.12) 

p 
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102 

From the above equation it is clear that as SNR --~ 2 (p — 1) , N - oo and this is illustrated in 
p 

figure 2.2 for Pd = 0.9 and P f = 0.1. This phenomenon of the existence of a SNR threshold 

below which, the number of samples required to achieve a desired value of Pf & Pd 

approaches infinity is called SNR Wall. Thus for an uncertainty of 10 log,,, p dB, the SNR 

z 
wall is located at101og1o(2 ')dB. 

P 

Apart from the SNR wall, energy detector suffers from other shortcomings such as inability 
to differentiate interference from primary users and noise, and poor performance under low 
signal-to-noise ratio (SNR). An energy detector does not work efficiently for detecting spread 
spectrum signals since the power of the spread spectrum signals is highly spread out across a 
wide spectrum and the signal power in any given band is very low. 
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Figure 2.2: SNR walls in energy detection for noise uncertainty of 1 dB, 0.1 dB and 0.01 dB 
(Pi=0.1, Pd-0.9). 
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Narrowband interference or moderate noise levels can easily drown the signal energy causing 

an energy detector to fail. It must be noted that in spread spectrum signals, the received signal 

is convolved with the pseudo-random p-n sequence which serves to improve the SNR. But 

since a cognitive user does not possess any private information on the p-n sequence of the 

primary, it is impossible to reliably detect a primary user who uses a spread spectrum 

technique. 

2.2. Cyclostationary Signal and its Properties 

Cyclostationary signals can arise due to physical phenomenon like weather or certain man 

made operations like amplitude modulation, fractional sampling and multirate system 

filtering [32]. A discrete time signal x is called cyclostationary or cyclo-wide-sense-

stationary with a period T (T being a positive integer) if it's mean is periodic, 

E{x(t +1T)} = E{x(t)}, 	Vt,Ie Z 	 (2.13) 

where Z denotes 	the 	set 	of 	integers 	and/or 	its 	autocorrelation 

RXx  (t, z) = E {x(t + r / 2)x }  (t — r / 2)) is periodic such that 

R (t+1T,r)=R, (t,r), 	Vt,r,lEZ 	 (2.14) 

Since the autocorrelation function RXx  (t, r) is periodic in the variable t, its discrete Fourier 

series coefficient can be expressed as 

R(i) = (x(t + z / 2)x!  (t —v / 2) e- j 2  
	 (2.15) 

z 
where the (•) operation denotes time averaging as (y) = lim 1 	y(l) . The Fourier series z- 2 ,=-z 

coefficient R, (z) is called the Cyclic Autocorrelation Function (CAF) and a is the cycle 

frequency [2]. In case of a discrete signal, the R. (v) can be written as 

1 N+r-I 
R" (z) =-L  Y x(l )x' (l r) e-r22r 	 (2.16) 

N ,_r  

Where TS  is the sampling time and N is the total number of samples of x(n) This definition is 

a slight modification of equation (2.15) to support integral values oft. Nevertheless, both 
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definitions give the same magnitude spectrum of the CAF. Using the definition in equation 

(2.15) we can write the periodic autocorrelation as the Fourier series, 

R (t, r) - 	Rz (Z) e'2,ra, 	 (2.17) 
a 

In a similar manner the conjugate cyclic autocorrelation function can also be defined as 

Ra. (r) = (x(t + r / 2)x(t — r / 2)e' 2 ), 	 (2.18) 

and, 

1 N+r-I 
R' . (Z) _ — I x(l)x(l — Z) e-r2'ral7, 	 (2.19) 

N /_r 

As we know for stationary signals, the power spectral density (PSD) is defined as the Fourier 

transform of the autocorrelation function, similarly, for a cyclostationary signal its Cyclic 

Spectral Density (CSD) is defined as the Fourier transform of the cyclic autocorrelation 

function, 

Sa (f) = 	R' (z) e-i 2f.rr 	 (2.20) 

where f is the normalised . frequency w.r.t. sampling frequency and lies between [— 2 , z]. The 

conjugate CSD, denoted by S. (f), can be derived in a similar manner by taking the Fourier 

transform of the conjugate cyclic autocorrelation function. It can be proved that the cyclic 

spectral density of a signal x(t) is equivalent to correlation of the Fourier transform 

coefficients of x(t) at two distinct frequencies separated by the cyclic frequency a, and hence 

is also known as the Spectral Correlation Density (SCD) [24]. 

S"(f)'T~mT(X1(t, f+a/2)Xf(t,f -a/2)) 	(2.21) o 

where XT (t, f) is the complex envelope of the spectral component of x(t) with frequency f 

and approximate bandwidth 1/T given by X,. (t, f} ° f ~+T 72 x(u)exp(—i27r fu)du and ( ) 
T r-T~2 

denotes the time averaging. We can as well define a normalised value of the SCD called the 

Spectral Correlation Function (SCF) as [24] 
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= 	 (2.22) 
(S° (f +a/2)S, (f -a/2)]2 

For stationary signals, R X is non-zero only for a — 0 while it is 0 V a ~ 0. On the other 

hand, for cyclostationary signals there exist distinct values of a other than 0 for which the 

CAF exhibits a peak, signifying the time-periodic nature of the signal. For the same cyclic 

frequencies a, the SCD shows a peak in the a — f domain. This means that if the signal 

exhibits cyclic frequency a then the power spectral density components of the signal at 

frequencies f + 2 and f — z are correlated. The importance of SCF is that it serves as an 

objective measure of cyclostationarity as for most signals like BPSK, QPSK, and AM the 

magnitude of SCF at their corresponding cyclic frequencies is equal to unity. Another useful 

parameter that can be defined from the SCD is the a-domain profile. It is defined 

mathematically as, 

profile(a) = max S" (f) 	 (2.23) 

2.2.1. Cyclostationarity in Digital Modulated Signals 

The cyclic frequencies a depend on various parameters of the transmitted signal such as its 

modulation type, pulse rate or baud rate, carrier frequency, bandwidth etc. If these parameters 

are known, we can find the cyclic frequency of the signal. In the following discussion, cycle 

frequencies for the general class of QAM signals are presented [2]. 	 t, 

A real QAM signal can be written as 

d(t) = c(t)cos(wot)+s(t)sin(wot) 	 (2.24) 

If c(t) and s(t) are proportional then d(t) is  called an AM signal. Further, if the amplitude 

c(t) which is proportional to s(t) is a digital PAM signal, 

a 

c(t) = I c,P(t—rTo —to ) 	 (2.25) 

then d(t) is called an amplitude-shift-keyed signal with a keying rate I / To . If the pulse p(t) is 

a full duty cycle rectangular pulse and the digital variables Cr are binary valued with values of 
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±1, then this binary ASK signal is equivalent to a. BPSK signal. If s(t) is not proportional to 

c(t) but is also a binary PAM signal with full duty cycle rectangular pulses, then d(t) is  a 

QPSK signal. In the most general case, when pulses in the QPSK signal are not restricted to 

be rectangular, and the total number of states of the pair of (cr , sr ) is equal to M, the signal 

d(t) is called an M-ary QAM signal. 

For this general QAM signal, the spectral correlation density and the conjugate spectral 

correlation density can be derived as given in [2] by Gardner (refer to Appendix A). He 

obtains the following results for specific cyclic frequencies for each modulated signal. The 

important results are listed below. 

BPSK signal: Sdcd(f)~Ofora=k /To & Sd~.(f)~0fora=+2f +kITo (2.26) 

AM signal: S. (f) ~ 0 for a = T2f0 (2.27) 

QPSK signal: S, (f) ~ Ofor a = k I To (2.28) 

where k takes all integral values. All the above mentioned signals exhibit discrete peaks in the 

conjugate/non-conjugate spectral correlation density at these frequency values. Further for all 

QAM signals whose amplitude/phase constellations exhibit quadrantal symmetry, the spectral 

correlation density functions are identical to that of the QPSK signal case with symmetric 

constellation, considered above. The presence of cyclostationarity can be verified through 

simulation of the above modulated signals. In the following section, present a simulation 

example that gives the plots of the cyclic autocorrelation function and the cyclic spectral 

density function of a BPSK modulated signal clearly showing cyclic peaks. 

2.2.2. Simulation Example 1: Cyclostationarity in BPSK 

Consider a complex BPSK signal d(t) = c(t)e j2'7f ̀  where c(t) _ 	c, p(t — rTo ), p(t) is a 

rectangular pulse of duration To , f, is the carrier frequency and c(l) is a NRZ (Non-Return to 

Zero) encoded random binary wave with amplitudes of ±1. We sample the signal at a 

sufficiently high sampling frequency of f =10240Hz and choose the carrier frequency as 

f = 0.25 f,. = 25600Hz . The pulse duration To is so chosen that there are exactly 32 samples 
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per pulse. Hence the baud rate 1/7,  =1 02400 / 32 = 3200 Hz . For this BPSK signal, we 

compute the cyclic and conjugate autocorrelation function using equation (2.16),for the lag 

values z =1 to 64 and a E [-2 f f  — --,2f.  + . ] , in order to include all major cyclic peaks, and 
Ta 	To  

subsequently find the cyclic spectral density values for different a and f by reducing equation 

(2.20) to a finite number of lags r. In order to keep the variance constant, we normalise the 

equation (2.20) by the square root of 64. The corresponding plots are shown in figure 2.3 and 

2.4. A representative plot of the conjugate and non-conjugate cyclic autocorrelation function 

at lag=1 is given in figures 2.5 and 2.6. Lastly, we compute the alpha profile of the BPSK 

signal using equation (2.23). The resultant plot is shown in figures 2.7. 

It is quite clear from figure 2.3 and figure  2.5 which plot the CSD and the CAF of the BPSK 

signal, that the signal possesses cyclostationarity at baud rate or 1 / To  . This is especially 

evident in the CAF versus aTo  graph wherein discrete peaks are visible at integral values of 

aTo  . The graph of CSD shows small peaks for each integral value of a7. The constant 

amplitude bar at a =0 accompanied by the central peak at a certain frequency f is due to the 

high DC value of autocorrelation among consecutive samples, similar to what a stationary 

signal would exhibit. A point to be - noted here is that the magnitude of CAF peaks at the 

cyclic frequencies is much below unity which signifies that the strength of cyclostationarity 

that the BPSK signal exhibits at baud rate is weak. 

On the other hand, figure 2.4 and figure 2.6 show the conjugate cyclostationarity present in" 

the BPSK signal at a cyclic frequency of 2f. = 51200 Hz . The plot of CAF in figure 2.6 

clearly indicates the strong cyclic correlation among successive BPSK samples (I- is chosen 

to be 1) at twice the carrier frequency. Similarity, the CSD plot in figure 2.4 shows peaks of 

S' (f) at a = ±2f0 . The magnitude of the conjugate CAF peak is very close to unity in 

contrast to the low peak value of CAF, meaning thereby that BPSK exhibits much stronger 

conjugate cyclostationarity at 2fo  than non-conjugate cyclostationarity at To  . RAL40000so l"T
CC No. 	..........•.9'A 

Date................... 

ROORØ 
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Figure 2.3: Plot of cyclic spectral density of BPSK signal versus a and f/fs. 
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Figure 2.5: Cyclic autocorrelation function of BPSK signal. 
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Figure 2.6: Conjugate cyclic autocorrelation function ofBPSK signal. 
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Figure 2.7: Alpha profile of BPSK signal. 

Figure 2.7 shows the alpha profile of the BPSK signal, in which there is a central peak at 

a =0.  The spectral correlation at a =1 / To  is very low as compared to the DC value of alpha 

profile. This is due to the weak cyclostationarity at baud rate. The conjugate alpha profile of 

the signal (not shown here as it is obvious) shows distinct peaks at a = 2 fo , —2J.  

2.3. Cyclostationary Spectrum Sensing 

When attempting to detect a BPSK signal, the strong cyclostationarity at twice the carrier 

frequency is a prominent signature that can be used for identification of the signal from a host 

of other interfering signals. Almost all kinds of digital QAM signals of the form as given in 

equation (2.24) exhibit cyclostationarity at either baud rate 11 To  or twice the carrier frequency 

2J .This property can be used to isolate a desired signal from amongst other spectrally 

overlapping signals, if their symbol rates are distinct. An important application of 

cyclostationarity, thus, can be to detect whether a specific kind of signal is present in the RF 

band of interest. This could be useful to identify the presence of a specific user in a multi-user 

scenario wherein, say, simultaneously multiple transmissions from different users are 

happening in the ISM band, by identifying his unique cyclostationary features. In a cognitive 

radio scenario, cyclostationary feature detection can be used to ascertain whether a frequency 
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band is currently occupied by a primary user or not. This technique inherently is more robust 

than energy detection because it can differentiate between a primary user and multiple 

interfering secondary users with different cyclic frequencies allowing us to make independent 

policies for both scenarios while a radiometer would simply add up the energies of the 

primary and secondary transmissions, making the cognitive radio treat other secondary users 

as primary users and end up with a much worse spectral efficiency. Moreover, at low SNR it 

is comparatively easier to detect the cyclostationary features of signal than detecting its 

energy, which is a small addition to the already ample noise energy present in the band. 

To enable cyclostationary detection in a manner similar to energy detection wherein the false 

alarm probability can be limited to a desired threshold and optimal detection performance be 

calibrated, we must develop a Neyman-Pearson test for cyclostationarity. Such an optimal 

test was first developed by Giannakis in [33] for a single cyclic frequency and multiple lags 

z) and it was extended to multiple cyclic frequencies recently by Poor et al. [12]. The 

observed CAF approximated over N samples is given by, 

N 
R; (a) = 1 I x(t)x* (t + r)e-~2'ra1 

(2.29) 
=R.'(r)+€ (a,z) 

where R" (z) is the true value of the cyclic autocorrelation function and CY'~ (a, z) denotes the 

error in estimation due to finite number of samples. Let A = {a„ I n =1,..., P} be the set of 

cyclic frequencies of interest and 

xx 

[Re{RR (a,,z, 1 ),...,Rxr (a,,z, N ) 

Im{Rxx(al,rj,,),...,R (a,,z, N) 	
(2.30) 

Re{R (a,,,v ),...,R (ar,rP,N,,) 

Im{R, (a,,,r ,),...,R (a,,, rPN )1 

denotes a 1x2N vector containing the real and imaginary parts of the estimated cyclic 

autocorrelation values at cyclic frequencies of interest stacked in a single vector. Here N is 
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P 

given by N = 	Nn . In order to test the presence of cyclostationarity, he defines the 
n=1 

following hypotheses 

Ho :IX =E, , 
(2.31) 

H1 :r, =E +rZ7~ 

The vector e, of the estimation errors, is asymptotically normally distributed, i.e., 

lim J/ç is N(0, ExX ) [33. Appendix]. We construct a likelihood ratio test A = f (r x I H1 ) 
Ho) 

based on the distribution ofr,~ under Ha &H, and through simple mathematical 

manipulation, the final test statistic is chosen as A = 2 In A = MrxX ~rxr x. The computation of 

each of the 2Nx2N elements of the matrix EXx involves cumbersome calculation of cyclic 

periodogram values which can become computationally complex [33]. To make the process 

of detection, computationally tractable, we use only a select few cyclic frequencies and a 

single r for detection. Instead of the above test statistic, we use a suboptimal but simpler time 

domain test statistic that uses the sum of cyclic autocorrelation function values at the desired 

cyclic frequencies to make a decision on the presence of the signal. Thus the new test statistic 

can be written as 

P 
A=R' 	 (2.32) 

n=1 

Using this new test statistic, we set up a Neyman-Pearson test as follows: 

Neyman-Pearson test for cyclostationarity with suboptimal sum test statistic: 

1. Formulate the hypotheses Ho : A _ xx , where 4 is the error in A due to finite 

number of samples. 	HI : A = z + xx 

2. Under hypothesis Ha , set the false alarm probability to P f and obtain from 

simulation, a threshold A such that Pr(A I Ho > A) = Pf . 

3. Under hypothesis H1 , find the detection probability PP by the formula 

P~=Pr{A~H1 >A). 
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In the following section, we illustrate the application of this cyclostationary test for spectrum 

sensing of the BPSK signal defined in simulation example I and evaluate the detection 

performance. 

2.3.1. Simulation Example 2: Comparison of Cyclostationary & Energy Detection 

Consider the BPSK signal of simulation example 1, defined in section 2.2.1, d(t) = a(t)e' 2" 

where a(t) is a NRZ rectangular pulse of duration 7. The carrier frequency f is set to be 

25600 Hz, sampling frequency J. =102400Hz and To  is 3200 Hz. We want to detect this 

BPSK signal with a maximum false alarm rate of 0.1. The SNR of the signal is varied from 

0dB to -20dB. As shown in simulation example 1, BPSK exhibits strong cyclostationarity at 

frequencies a = 2f ± k / To  . Hence we chose three cyclic frequencies for the purpose of 

detection and form the test statistic as below, 

A  = Rzf +R2f +IITD 
 + 	

(2.33) 

where R" is found using equation (2.9). With no signal being transmitted, we conduct 1000 

simulation runs to evaluate the test statistic and determine the threshold A such that the rate of 

false alarm is limited to a maximum of 10 percent. Subsequently we conductl000 Monte 

Carlo runs at each SNR OdB, -1dB, -2dB, ..., -20dB and observe the average probability of 

detection that this test statistic provides. The results of the simulation are plotted in figures 

2.8 and 2.9. 

The figures 2,8 and 2.9 present the probability of false alarm versus threshold 	and 

probability of detection versus SNR curves respectively. A total of 800 samples of the BPSK 

signal representing 25 complete pulse durations were used for detection. 
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Figure 2.8: Variation of false alarm probability with threshold A. for cyclostationary detection. 
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BPSK signal. 

32 



Figure 2.8 shows the variation of average false alarm probability with X by using the test 

statistic A. To satisfy P1  = 0.1, a threshold of A = 0.131 was found to be appropriate. Figure 

2.9 presents the detection probability measured according to aforementioned Neyman-

Pearson test. It clearly shows that cyclostationary detection, represented by the continuous 

line plot with square marker, has a 1 dB SNR loss as compared to an energy detector using 

the same number of samples, for a detection probability of 0.9. Energy detector outperforms 

the cyclostationary detector at SNR's above -16 dB. 

This is along expected lines as energy detector is a near optimal detector for signals at high 

SNR in the absence of any correlation structure in the signal and when the noise variance is 

perfectly known [21]. But at low SNR below -16 dB, cyclostationary detection gives better 

results because of the non-robustness of energy detector. In most practical cases, noise 

variance uncertainty of the order of 1 dB or more (meaning thereby the instantaneous noise 

power can exceed or fall below the calibrated power by not more than I dB) is quite common 

and the rightmost dot-dash line shows the severely degraded performance of energy detection 

under 1dB of noise uncertainty. Hence cyclostationary detection is a much more robust 

technique of detection than energy detection. Though, it should be kept in mind that optimal 

cyclostationary detection is a computationally intensive task and hence most spectrum 

sensing systems developed to date either use energy detection based sensing with adaptive 

noise variance estimation or a two layer sensing architecture recently proposed for devices 

implementing IEEE 802.16 that includes coarse sensing with radiometers followed by fine 

sensing with techniques like cyclostationary detection if necessary. But suboptimal 

techniques like those discussed above can be used to make cyclostationary detection 

computationally feasible with a marginal loss in detection performance. 

Till now we have explored cyclostationary spectrum sensing from the perspective of 

detection theory, applying Neyman-Pearson test for constructing an optimal test for detecting 

a signal such that its false alarm rate is limited below a threshold. Gardner [2], [24] developed 

a new approach to optimally' detect cyclostationary signals in the presence of 

noise/interference by using an adaptive filtering approach. He developed the structure and 

theory of FRESH (Frequency SHift) filters which can optimally estimate a cyclostationary 

signal by minimizing the mean square error between the input and output using Linear 

'Optimal here means MM SE. It should not be confused with earlier definitions of optimum that were used for a 
Neyman-Pearson optimum test. 
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Conjugate Linear (LCL) filtering. These filters exploit spectral correlation in the signal, in a 

manner similar to the spatial correlation based Wiener filters proposed by Wiener for 

estimating stationary signals [34], but due to the cyclostationary nature of the signal, they are 

periodically time varying in nature. 

Using a FRESH filter for the detection of primary signals in a cognitive radio scenario would 

give us an alternate way of exploiting cyclostationarity of signals and may offer a potentially 

better spectrum sensing technique. With this background in mind, we discuss the theoretical 

development of FRESH (FREquency SHift) filters and their application to spectrum sensing. 
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Chapter 3 

FRESH (Frequency Shift) Filters For Spectrum Sensing 

Frequency shift (FRESH) filters were proposed by Gardner in his work [2] and the first 

development of the optimum MMSE (Minimum Mean Square Error) estimating filters for 

cyclostationary signals was given by Gardner in his 1972 PhD thesis [35] which was later 

extended to complex signals by W.A. Brown while showing that FRESH filters are able to 

separate spectrally overlapping signals as a function of the receiver complexity. Gardner 

developed a time-averaged theory wherein the performance of a filter is characterized in 

terms of time averaged mean square error instead of the using stochastic approach of 

ensemble averaging. Using this theory he developed time averaged definitions for cyclic 

autocorrelation function and spectral correlation density of cyclostationary signals. This time 

averaged approach was used to develop the statistical theory behind frequency shift filters, 

called cyclic Wiener filtering [2]. Quoting from the paper by Gardner [2], "This theory 

generalizes Wiener 's theory of optimum time-invariant filtering of stationary time-series to 

optimum polyperiodic (multiply periodic) time variant filtering of cyclostationary time 

series ". Due to their time varying nature, FRESH filters are also known as LAPTV (Linear 

Almost Periodic Time Varying) filters [36]. The structure of a frequency shift filter consists 

of a number of frequency shifting branches each followed by a linear time invariant (LTI) 

filter. The reason is that a FRESH filter works by cancelling out the portion of signal 

spectrum aliased by the interference, using the frequency subband which is un-aliased. Since 

in a cyclostationary signal, spectral correlation exists between bands separated by the cyclic 

frequency, the frequency shift filter consists of a number of branches that successively exploit 

this correlation. 

Frequency shift filters have been applied for removal of co-channel interference and detection 

of signals under fading [37]. Adaptive implementations of FRESH filters using LMS 

algorithm have been proposed by Zhang et al. in [38]. The same authors also propose a novel 

blind adaptive FRESH (BA-FRESH) filter structure in [39] and show that the mean square 

error of the proposed BA-FRESH filter converges to that of the trained LMS FRESH filter in 

a few hundred samples, a critique. of which is given by Adlard in [26]. Whitehead et al. in 
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[25] discuss BA-FRESH filtering based multiuser detection for interference suppression in 

DS-CDMA. The same authors in [40] develop LCCMA (Linearly Constrained Constant 

Modulus Algorithm) blind adaptive FRESH filters with low complexity for the same purpose. 

Other significant works in FRESH filtering have been the PhD thesis of Adlard [26] in which 

he discusses the optimal detection of cyclostationary signals using FRESH filtering and the 

various challenges associate with the design of blind adaptive FRESH filters. More recently, 

Ojeda and Grajal in [41] have tried to detect an interference corrupted signal by constructing 

a FRESH filter to reject the interference using its cyclostationary properties, followed by an 

atomic detector proposed earlier by the same authors. In [36], the same authors prove 

theoretically that FRESH filters can work robustly even under frequency offset, given that 

their rate of convergence is sufficiently high. 

Although the theoretical foundation frequency shift filtering of periodically correlated time 

signals was laid long back, their application to spectrum sensing in cognitive radios offers 

new challenges and possibilities that may be utilized to yield a better spectrum sensing 

technique. This chapter looks at FRESH filters from the traditional perspective of mean 

square error performance of FRESH filters to detect cyclostationary signals. It presents the 

theoretical background and simulation results for various adaptive implementations of 

FRESH filters,  Instead of basing its sensing decision on the received signal, the sensing 

device performs a suboptimal but simple test on the frequency shift filtered received signal. 

Simulation results are presented which show that under a constraint of maximum false alarm 

rate, the FRESH filter based spectrum sensing technique offers better detection performance 

than energy detection and cyclostationary detection. 

3.1. Cyclic Wiener Filtering 

The output y(t) of a linear time variant filter for an input x(t) can be written as follows, 

co 

y(t) = I h(t, u)x(u)du 

where h(t, u) is the time varying impulse response of the filter. When this h(t, u) is periodic 

in time with more than one period, the resultant filter becomes a polyperiodic filter or a 

LAPTV filter. The impulse response h(t, u) can be expanded as a Fourier series over integer 

multiples of its fundamental frequency 1/T0  where To  is the period of the filter response. 



h(t,u) =1hq (t—u)exp(i2irrlu) 	 (3.2) 

In this series, the Fourier coefficients h,, (z) for each value of T are given by 

h,1 (r) =(h(t+r,t)exp(—i2.7rr7t)) 	 (3.3) 

where •) is the average over all time t. Substituting (3.2) into (3.1)we get 

y (t) = Jhq (OD x,7 (t) 	 (3.4) 

where ® denotes the convolution operation and x, (t) x(t)exp(i27ri t) is a frequency 

shifted version of x(t). Thus for finite energy, Fourier transformable signals, we can write 

Y(f) = EH,, (f) X,,(f —7J) 
	

(3.5) 
q 

The above equation means that in a polyperiodic filter, the input is subjected to a number of 

frequency-shifting operations, each followed by a linear time invariant filtering block and the 

results from all branches are added together. This analysis establishes the fact that 

polyperiodic filtering is same as FREquency SHift filtering. The next step is then to prove 

that such a filter structure is indeed the optimum structure for estimating cyclostationary 

signals. 

In equation (3.4), for complex signals x(t) (bandpass or complex lowpass equivalents), apart 

from the signal itself, the conjugate of the signal must also be filtered. Such a method of 

filtering is referred to as Linear Conjugate Linear (LCL) filtering. The general form of LCL-

FRESH filtering is 

M 	 N 

d ~t ) = am `t) ®xa (t) + Eb,, (t) ®x 	(t) 	 (3.6) 
m=1 	 n=I 

where M is the number of linear branches and N is the number of conjugate linear branches of 

FRESH filter with weights denoted by a, and b,,. xam (t) and x*_Rn(t) are the frequency 

shifted inputs defined as xa (t) ° x (t) exp(i2ira,,,t) and x* _, (t) — x4 (t) exp(--i2irfl t) . Using 

vector concatenation we define the following composite weight vector, 
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h(t) _ [a, (t), ..., aM (t), bl (t), ..., bN (t)]' 	 (3.7) 

z(i) =[xa (t),... ,xa,, (t),z'-a (t),...,z 	(t)]' 	 (3.8) 

The equation (3.6) can be thus re-expressed as d (t) = h' (t) ®z(t) . This gives us - M+N 

simultaneous Wiener equations that can be solved to give an optimum set of weights. 

Szz(f)H (J)=Sd<(J ) 
	

(3.9) 

Here d(t)denotes  the desired signal which in a cognitive radio terminology is also called the 

SO! (Signal of Interest). Sd (f) is the cross-correlation vector of d (t) & z(t). Similarily 

S,Z (f) is the auto-correlation matrix ofz(t) . The matrix S Z (f) and the vector Sd, (f) are 

obtained by Fourier transforming the following correlations 

R.. (r) = (z(t + r 12)zt(t — z / 2)) 

Rd,(r) = (d(t +r /2)z`(t—z/2)) 	
(3.10) 

Substituting the definitions of z(t) in terms of x(t) into (3.9) yields the optimum LCL-FRESH 

filtering equations: [21 

	

— ain + ak )A.,,(f)+ 	s-ak f n +LLkBn 
(f2 n-1 	 2 (3.11) 

a 

	

= 	 .f S'dr 	_ 	,k =1,2,...,M , 

N 
'S'S,Ok 	m +Ak f~m\f)+~s

lik 	 _f f + A +A 
Bn(f ) xx 

mI 	2 	 n=1 	 2 (3.12) 

Where A,,, (f) and B„ (f) are the Fourier transforms of the weight vectors a(t)and b(  t) 

respectively. The spectrum of the error e(t) ° d (t) -- d (t) whose mean squared value is 

minimized by the multivariate Wiener filter, is given by 

S, (f) = Sd(.f) —S(.f)H(.f), 	 (3.13) 
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where S~Z (f) is the hermitian operation. The equation (3.13) can be expressed more 

explicitly using (3.11) and (3.12) as 

LW 

See(f)' Sdd(f)—~ s r' J — an: Am(f)—~Sa,~ f _ A
l 

Bn(f). 	(3.14) 
2  dx  2 m=1 	 n=1 	 / 

For purely stationary signals we can apply the following special conditions. 

Sc' (.r)=Sa.(.f)=Six(f)°Sd, (.T)= 0 	 (3.15) 

for all a~0 and for a =0 we also have (for complex envelopes x(t)) 

	

s~•(T)°S (f)=0 	 (3.16) 

Consequently for M=l, N=0 and a1=0 in the optimum FRESH filter in (3.6) reduces to a 

single convolution d (t) = ao(t) ®xo (t) and the equation (3.11) and (3.12) reduce to 

	

S(f)4(f) S(f) 

	

(3.17) 

which yields the transfer function A4(f) for the conventional Wiener filter. Generalizing this 

terminology for cyclostationary signals, the optimum FRESH filter specified by (3.11) and 

(3.12) with M,N, {am} and {(3n} optimally chosen is called a cyclic Wiener filter. When N or 

M or {am} and {(3„ }is constrained in any way, the resultant minimum-time-averaged-squared 

error filter given by equations (3.11) and (3.12), is a constrained optimum FRESH filter. 

It is evident from the derivation of the FRESH filter using an approach similar to the Wiener 

filter that adaptive implementations of FRESH filter using standard weight update algorithms 

like LMS and RLS is possible. This gives us the flexibility to operate FRESH filter either in 

the training mode or decision directed mode in an environment where the characteristics of 

the primary signal like SNR may be unknown and varying. 

The set of a, • - • a,,4 and /3, • • • iN called the cyclic frequencies, has to be chosen judiciously 

according to the SOI (Signal of Interest). For many signals such as QAM, QPSK, BPSK, 

PAM etc, the cyclic frequencies can be calculated a-priori as described in Chapter 2 section 

2.2.1. In the following Fig. 3.1, the LCL filter structure for a QAM signal has been shown. 



Figure 3.1: Structure of a LCL-FRESH filter. 
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In the above figure, the CL (Conjugate Linear part) is absent and hence contains no frequency 

±1 ±i 	±K 
shift while the L (linear) part has frequency shifts ofa = —,—,•••,---, signifying M=K 

Ta Ta 	To 

and N=O in the equation (3.11) and (3.12). Each of the frequency shifts is followed by a Time 

Invariant filter (TI) and the final output is added. 

The weights of the TI filter are unknown in reality and it is not possible to beforehand predict 

the weights owing to the changing primary scenario. Hence, adaptive implementation of 

FRESH filters is necessary wherein the weights can converge to the optimum value. 

3.2. Adaptive Fresh Filters 

3.2.1. LMS Adaptive FRESH Filter 

If a training signal is known then, a LMS (Least Mean Squares) adaptive FRESH filter can be 

constructed in a similar way as a LMS adaptive Wiener filter. The structure of such a filter 

using only linear non-conjugate filtering is shown in Fig. 3.2. The structure has M (or N) FIR 

filters for the L (or CL) signal part that are fed with frequency shifted versions of the signal. 

The output of the filters is summed and compared with a desired signal. The instantaneous 

error signal is used to adjust the filter weights in a Least Mean Squares manner. After a 

sufficient number of iterations, the output converges to the desired signal. 

M 
The output of the LMS adaptive filter is given by 5'(n) = 	h,x; (n) where the weights are 

h,: _ [h; (1), hi (2) ... h, (L –1)]' and F(k) is the k – th filter coefficient of the i – th FIR filter , L 

is the filter length and x1 (n) is the frequency shifted version input signal x(n) in the i-th 

branch. The summation is made over both the linear and conjugate linear branches; a 

representative number 1 to M is taken here. Making a single vector equation for h and for 

h'– [hl, h2 , ..., hM ]~ 	 (3.18) 

x(n) _ [x', (n), x'z (n), • • •, x' M (n)]' 	 (3.19) 

where (') denotes transpose operation. We can now write the output of the filter as 
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Y(n) = h(n) 	 (3.20) 

The LMS filter coefficient. update equation can be written as 

h(n + 1) = h(n) +,ue*  (n)x(n) 	 (3.21) 

where e(n) = d(n)-5'(n) and d(n) is the desired signal assuming that a training signal is 

available. Such a filter can be used in a training mode of a receiver wherein the transmitted 

signal is known to the receiver. It is fast converging as compared to the blind adaptive filter. 

3.2. Blind Adaptive FRESH Filter 

When a training signal is not available we cannot use the above LMS-adaptive filter because 

we do not know the desired signal. We must blindly adapt the weight vectors according to the 

received signal. This is a particularly challenging problem as highlighted in [26], as the 

presence of interference signal can badly condition the desired signal. Most of the earlier 

works such as [2], [37] use training signals with which filter weights can be tuned. However 

in a cognitive radio scenario, such a training signal is not available since, there exists no 

collaboration between the primary and secondary user. Hence, for such a context, blind 

adaptive filters become a basic need. Zhang in [38] has proposed a structure that tries to 

maximise the correlation between filter outputs. But Adlard in [26] points out theoretical 

fallacies in the structure and presents simulation results to expose the inability of such a 

structure to blindly reject interference. The general structure of a BA-FRESH filter is shown 

in figure 3.3. 

The input signal is reused as the desired signal. The idea behind this operation is that the 

spectrum of the SOI embedded in the received signal and the spectrum of the frequency 

shifted versions of the received signals exhibit high correlation as the frequency shifts used 

are the cyclic frequencies of the SOI. Hence the FRESH filter tries to maximise this 

correlation and adapts the weights accordingly. On the other hand, neither the white noise 

samples, nor the interference signal possess spectral correlation at these frequencies. Thus 

when their corresponding spectrum is frequency shifted by the FRESH filter and added to the 

original received signal, the spectral peaks do not overlap resulting in a low correlation and 

hence cancellation of the interference signal and noise can be achieved. 
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Fig. 3.3: Structure of a blind adaptive FRESH filter. 
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3.3. FRESH filter based Spectrum Sensing 

Using the structure and theory of FRESH filtering discussed in the previous sections, this 

section considers the application of FRESH filters to signal detection for spectrum sensing 

[42]. The passband transmitted signal is assumed to be a complex BPSK- signal of the form 

x(t) = s(t) exp( j2ir/t) corrupted by AWGN with variance o, =1. s(t) is NRZ encoded 

rectangular waveform with baud rate To  and random amplitudes of ±1, the carrier frequency 

f f  = 307200 Hz . The received signal r(t) = x(t) + u(t) can have a SNR from 0dB upto -20 

dB. Our first task is to detect the BPSK signal at these SNR using FRESH filtering operation. 

3.3.1 Signal Detection 

As we know that BPSK has two cyclic frequencies namely a strong conjugate 

cyclostationarity at 2/, ± k and a weak non-conjugate cyclic correlation at multiples of 1  
To 	 To 

Following the construction delineated in section 3.1, the simplest blind adaptive FRESH filter 

structure has only 2 branches one each corresponding to each cyclic frequency. The filter 

length L= 64 and the FIR filter weights are chosen to be zero initially. The weights are 

adapted in a blind manner using the LMS algorithm. This two branch FRESH structure is 

shown in figure 3.4. At the receiver, the signal r(t) is first sampled at a sufficiently high rate 

to avoid aliasing at cyclic frequencies upto and beyond 2f,. The sampling rate is chosen to 

be f. = 1  = 102400 Hz . The pulse duration To  is set in a manner so as to obtain 32 samples 

per pulse. Thus the baud rate - = 32  = 3200 Hz. After sampling, the received signal is 
0 

r(n) = x(n)+u(n) 
 

(3.22) 

where r(n)=r(nT) . As the samples r(n) become available, the weights of the FRESH filter 

are adapted through the Least Mean Square (LMS) algorithm in a blind manner. y(n) denotes 

the output of the FRESH filter which is the sum of the outputs of all the branches and r(n) 

serves as the desired signal. Hence the estimation error at the filter output can be given as 

e(n) = r(n)—y(n)  (3.23) 



u(n) = .N(O.1) 
White Noise 

x(n) 
	 y(n) 

BPS'K signal 

exp 2:fff /Tojn) 

(_)* 1'{ } *1 

ex 2.rr 2 ]n) 	
[Adapt 
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(t = n  + 	./z y(n) 

Figure 3.4: Two branch blind adaptive FRESH filter. 	 r  

In order to minimize the mean square error (M SE) given by E{Il e(n) UU Z  } the LMS weight 

update equation is applied, 

w(n + 1) = w(n) +,ur(n)e` (n) 
	

(3.24) 

Here r(n) denotes length L vector formed by concatenating the frequency shifted values of 

the received signal r(n). Also, n denotes the time index and p is the step size. The weights 

are updated until reasonable convergence in the mean square error is seen to occur. It should 

be noted that since the desired signal is a noisy version of the input, hence once the filter 

converges, ideally the value of MSE would be equal to the variance of AWGN and the output 

variance should match with the transmitted signal variance. But due to misadjustment error 

introduced by the weight update algorithm and finite number of iterations being used, the. 

resultant mean square error will be in excess of the noise variance. This excess MSE depends 

on the value of the step size ,u . The value of,u has to be chosen empirically in order to 

minimize this excess MSE and also maintain a suitable rate of convergence for the FRESH 

filter. Hence, the first step is to observe the convergence of the FRESH filter in mean square 

error as shown in figure 3.5. 
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Figure 3.5 shows MSE of the FRESH filter for ,u = 5 * 10-5  and SNR OdB. The mean square 

error has been obtained simulating the two branch FRESH filter shown in figure 3.4 for 

detecting the BPSK signal at OdB, and by averaging the mean square of 100 independent 

Monte Carlo runs. It can be observed that the frequency shift filter converges to a MSE of 

around 1.2 around 6000 samples. The filter gives an excess MSE of 0.2 over the noise 

variance because with only 2 branches, the filter is not able to completely exploit the 

cyclostationary features of the BPSK signal. In order to explore the variation in excess MSE 

with the number of frequency shifts, we improve the design of the 2 branch filter and include 

4 more cyclic shifts. We now use three cyclic frequencies of the BPSK signal x(t) namely, 

à  T  o  3  aZ  = 2f and a3  = 2f + o  . A BA-FRESH (Blind Adaptive FRESH) filter is 

constructed as shown in figure 3.6. The filter has two branches for linear filtering and four 

branches for conjugate linear filtering. These six branches have the frequency shifts of 

a = {±a,,±a2 ,±a3 } respectively. 

Time Averaged Mclean Square Error at 0dB averaged over 100 runs 
2_'1 

2 

1.9 

1.8 
0 

1.7 

•______L ______L_- 	__L______L______1______ L ______L ______L ______L_---_ 
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Number of iterations/samples 
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Figure 3.5: Time averaged MSE of the two branch LMS blind adaptive FRESH filter. 
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Figure 3.6: Six branch blind adaptive FRESH filter. 
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In the above figure 3.6, wi denotes the length L weight vectors of each FIR filter, for i=1 to 6. 
This FRESH filter has the ability to exploit both conjugate and non-conjugate 
cyclostationarity of BPSK over a larger set of cyclic frequencies. Figure 3.7 plots the mean 
square error curves for this filter for different step-size values. As a reference we also include 
the MSE curves for the 2-branch FRESH filter. It is clear that increasing the number of 
frequency shifts decreases the excess MSE. Based on the plots, the optimum value of p is 

found to be 5 x 10-5  . It is true that after a certain limit, increasing the number of frequency 
shifts does not lead to substantial improvement in the excess MSE as it is fundamentally 
limited by the misadjustment due to the weight update algorithm like LMS/RLS. Hence, we 
stick to the 6 branch FRESH filter for the purpose of detecting a BPSK signal. 

In order to compare the performance of the weight adaption algorithm, we also develop an 
RLS-FRESH. Since RLS is faster converging than LMS and has lesser misadjustment errors, 
hence it is expected to yield better results in signal estimation by FRESH filters. The RLS 
algorithm used is briefly stated below. 

Num3er oflerttiane 

Figure 3.7: Comparison of time averaged mean square error for the six branch and two 
branch LMS blind adaptive FRESH filter for three values of step size µ. 



RLS Algorithm [34] 

Parameters: 

A =forgetting factor (assumed unity), 

S =initializing value for P(0) . 

L=length of filter. 

Initialization: 

w, =0, i=1,2,...L 

P(0) =8-'I where I is an identity matrix of rank L 

x(k)=0, k=- L,. ..,-I 

Computation: For n=0,1,2,... 

 

a(n) = d(n) - w H  (n -1)x(n) 
P(n -1)x(n) 

g(n)  _ A+ x" (n)P(n - 1)x(n) 
P(n) = 2-' P(n -1) - 2-'g(n)xH  (n)P(n -1) 
w(n) = w(n -1) + a`(n)g(n). 

(3.25) 
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3.3.2 Spectrum Sensing 

The cognitive radio must make a spectrum sensing decision on the frequency shift filtered 

received signal. Since by filtering the signal, we have suppressed any noise and interference 

present in the received signal, the SNR of the signal has improved. To make a decision on the 

presence of the signal, the cognitive radio formulates a statistical test on the output y(n) of the 

FRESH filters. This statistical test checks for the presence of the desired cyclic frequencies in 



the filtered signal. If a primary signal such as BPSK is present, then the filtered signal would 

possess discrete peaks at the cyclic frequencies of baud rate and twice the carrier frequency. 

Hence, purpose to use the suboptimal sum test developed in section 2.3 that uses the sum of 

the cyclic autocorrelation values of the signal at its cyclic frequencies as the test statistic. The 

test is restated here. 

The test statistic A is given by 

P 

n=1 

(3.26) 

where P denotes the set of desired cyclic frequencies which in our case is 

P= { 2 f , 2 f — 1  ,2f  , + L Lz(n)is the output of the filter and Rte: is the conjugate cyclic 
To 	To 	 Z" 

autocorrelation of z calculated at cyclic frequency an  with the cap denoting the use of N 

samples for calculation as given by equation (2.17) reproduced here for clarity, 

N  

	

R. (r) = 1 	x(l)x(l — z)e-;znarr; 
	 (3.27) 

 N 1=r 

Using this new test statistic, we set up a Neyman-Pearson test as follows: 

Neyman-Pearson test for Signal Detection.• 

1. Formulate the hypotheses Ho  : A = y., where ,' . is the error in A due to excess 

mean square error, finite H 1 : A  — r unn + X.  number of samples and periodic time 

varying transformation of noise samples by FRESH filter and r is the true value of 

the test statistic under no noise scenario. 

2. Under hypothesis Ho , set the false alarm probability to P j  and obtain from 

simulation, a threshold A such that Pr(A I Ho  > A) = Pr  . 

3. Under hypothesis H1 , find the detection probability Pd  by the formula 

P,=Pr{ASH, >A) 

An interesting phenomenon to be observed here is that although AWGN samples possess no 

cyclostationarity and when this suboptimal sum test is used in the context of cyclostationary 

W1] 



spectrum sensing, there should be no contribution to the test statistic from a possible cyclic 

correlation term from noise samples. It is only due to using a finite number of samples that 

the test statistic does not converge to the true value. However, in the present context, when no 

signal is present, the noise samples after passing through a LAPTV (Linear Almost Periodic 

Time Varying) filter become cyclostationary and exhibit discrete peaks at the cyclic shifts 

that are used in the FRESH filter [32]. This acts as an additional constraint along with the fact 

that we must detect the signal using a finite number of samples. 

To evaluate the performance of the proposed test, we simulate the BA-FRESH filter in figure 

3.6 using the LMS and RLS algorithms. We conduct 1000 simulation runs to evaluate the test 

statistic A when no signal is transmitted. Using the distribution of test statistic A we 

determine the threshold A such that the rate of false alarm is limited to a maximum of 10 

percent. Subsequently we conduct 1000 Monte Carlo runs at each SNR OdB, -I dB ,...-20dB 

and observe the average probability of detection that the test statistic provides. 

Figures 3.8-3.11 show the results of the simulation obtained using N=400, 800, 1600 and 

3200 respectively. The plots include a comparison between the corresponding detection 

curves obtained by using the BA-FRESH filter with LMS and RLS adaptive algorithms, 

energy detection (equation 2.8), energy detection with 1dB noise uncertainty (equation 2.10, 

2.11) and the suboptimal sum test used for cyclostationary detection (Simulation Example 2, 

equation 2.31). 

r 
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Comparison of Prob of detection for different Schemes with 400 samples 
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Figure 3.8: Comparison of probability of detection curves for different techniques with 
N=400 samples. 

Comparison of Pd with N-800 samples 
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Figure 3.9: Comparison of probability of detection curves for different techniques with 
N=800 samples. 
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Comparison of Pd with N-1600 
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Figure 3.10: Comparison of probability of detection curves for different techniques with 
N=1600 samples. 

Comparison of Pd with N=3200 samples 
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Figure 3.11: Comparison of probability of detection curves for different techniques with 
N=3200 samples. 
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As we can see from figures 3.8-3.11, FRESH filtering followed by the proposed sum test 

yields better average probability of detection curves than all other techniques. In the low SNR 

regime (below 0dB), where it difficult to reliably detect the signal, FRESH filter based 

detection outperforms energy detection and cyclostationary detection. Also the RLS-FRESH 

filter gives better detection performance than the LMS-FRESH counterpart and it has also 

been observed that it shows a faster rate of convergence. It is important to note from the four 

plots that the probability of detection for a given SNR increases as we employ a higher 

number of samples for sensing. For all the stated schemes viz. FRESH filtering, energy 

detection (assuming no noise distribution uncertainty) and cyclostationary detection, the 

difference in detection performance is only visible at low SNR values (below -5dB) and this 

difference decreases progressively as number of samples N increases. It is worth noting that 

for lower values of N (400 and 800) cyclostationary detection performs better than energy 

detection below -16 dB SNR. This indicates that relying on cyclostationary features for 

spectrum sensing is a better option at such low SNR. 

3.3.3 Signal Detection with Interference Signal Present 

For the same BPSK signal, an interference signal of frequency fc i ntef =0. l fS  and INR 

(Interference to Noise Ratio) of 0dB was introduced. The blind adaptive FRESH filter is 

trained with the interference corrupted received signal and performance of signal detection 

was observed. It is observed that for low number of samples (around thousand), the FRESH 

filter's output differs from the transmitted signal and the MSE value is large enough to 

indicate a lack of convergence. On observing the cyclic autocorrelation function of the output 

signal, it is found that, the CAF shows a similar magnitude peak at the cyclic frequency of the 

interferer as compared to the signal cyclic frequency. As a result, the sum test statistic does 

not perform well enough to give a suitable probability of detection performance and it is 

observed that cyclostationary detection outperforms frequency shift filtering using the sum 

hypothesis test as shown in figure 3.12. 
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Figure 3.12: Comparison of probability of detection curves for different techniques with 0dB 
interference. 

The reason for this failure is assumed to be the fact that with low number of samples 
available for sensing, a blind adaptive FRESH filter is unable to converge to the optimum set 
of weights as the desired signal is corrupted by a high level of AWGN and spurious signals. 
Similar problem was identified by Adlard [26]. But FRESH filters can still work under 
interference, given that increased number of samples are used for sensing. In this experiment, 
we increase the number of samples from 800 to 30800 and observe the detection performance 
of FRESH filter. It is seen that with OdBm interference, the average detection probability 
achieved by using the sum hypothesis test is just below the detection performance of FRESH 
filter based detection using 800 samples when no interference is present. Figure 3.13 presents 
the detection curves for both the cases. This proves that unlike an energy detector, FRESH 
filters can reject interference and work robustly although with more number of samples. 

Another strategy may be to use a locally generated desired signal using an independent BPSK 
source and use it to as a training signal for the FRESH filter. Further study is required to fully 
explore the performance of FRESH filters under interference and to develop robust BA-
FRESH filters in the presence of interference. 
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Figure 3.13: Comparison of probability of detection curves for FRESH filter based detection 
in AWGN with 800 samples and with BPSK interference at 0dB INR with 30800 samples. 

Based on the study and simulations of FRESH filters, it can be suggested that by optimally 
exploiting the cyclostationary features of signals, FRESH filters can be suitable to meet the 
stringent requirements for spectrum sensing in the upcoming cognitive radio standards like 
IEEE 802.22, in terms of probability of detection and minimum sensitivity in SNR. While 
FRESH filters perform better than energy detection and cyclostationary detection, for 
spectrum sensing in the presence of AWGN, presence of interference deteriorates their 
performance, and more number of samples are required to maintain the same level of 
detection performance. Another limiting factor for the practical implementation of FRESH 
filters is the computational complexity involved in designing filters and ensuring a fast 
enough rate of convergence. But, as more and more powerful DAC/ADC's are being 
produced and highly complex circuitry can be realised on FPGA, it is reasonable to assume 
that FRESH filters can be used as part of standalone sensing devices. Moreover for an ADC 
sampling at 2Gsps, sampling 3200 values would take about five-hundredth of a millisecond, a 
fairly short time in which sensing decisions can be taken. 
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Chapter 4 

Spectrum Sensing for OFDM signals 

We have seen in the previous chapters, the use of energy detection, cyclostationary detection 

and FRESH filter based detection for spectrum sensing in a single-carrier environment like 

BPSK. The complete class of digital QAM signals with quadrantal symmetry defined by 

equation (2.22) exhibits cyclic frequencies at either baud rate or twice the carrier frequency 

or both. Most of the literature, till quite recently, discusses the application of spectrum 

sensing techniques for such single carrier systems based on the assumption that the legacy 

transmissions of primary users adopt these transmission techniques. But, over last few years a 

tremendous need for substantial increase in data rates and spectral efficiency has been felt. 

Thus the interest of the community has shifted from single carrier to multi-carrier techniques 

which provide us the capability to increase data rates and simplify the receiver hardware 

while pinning down harmful effects like ISI. 

One of the most popular multicarrier techniques is OFDM (Orthogonal Frequency Division 

Multiplexing). Many of the current and future technologies for wireless communication such 

as WiFi, LTE and DVB-T, use OFDM signalling [21]. Therefore it is reasonable to assume 

that cognitive radios must be able to detect OFDM signals. In order to combat Inter-Symbol 

Interference (ISI) every OFDM symbol carries a cyclic prefix (CP) whose length is equal to 

or greater than the channel length. While this helps mitigate ISI, it also introduces certain 

correlation structure in the OFDM symbol which can be used for its detection. This section 

presents a brief discussion of OFDM and explains why the task of spectrum sensing in this 

orthogonal multicarrier scheme is more challenging than the single carrier counterparts. It 

presents simulation results to present the inability of FRESH filters to detect OFDM and 

explores the reasons behind. It presents theoretical derivations for the detection performance 

of energy detection and cyclostationary detection in cyclic prefixed OFDM using an optimal 

Neyman-Pearson detector. Finally it proposes the application of induced cyclostationary 

signatures in OFDM and develops an optimal detector for the same. 
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4.1 Orthogonal Frequency Division Multiplexing (OFDM) 

OFDM is a multicarrier transmission technique in which the incoming data is modulated onto 

orthogonal subcarriers. As opposed to FDM (Frequency Domain Multiplexing) where the 

complete frequency band is split into non-overlapping chunks of spectrum, each allotted to an 

independent user, subcarrier spectrum in OFDM overlap hence leading to better spectral 

efficiency. In order to maintain the orthogonality between individual subcarriers, the total 

bandwidth W is split into NN subcarriers. The incoming serial stream of data is converted to a 

parallel stream with Nsamples in one symbol. These N N symbols are modulated onto the 

NN subcarriers using a rectangular pulse shaping. The -mathematical representation of 

baseband OFDM is given by the following equation [43]: 

N-1 d 

x(t) = 	~d,,,,g(t—IT,)e'cz7r~N„>nl 	 (4.1) 
n-o/=—oo 

where N. is the number of subcarriers, 1/T5 is the symbol rate of OFDM and also of each 

subcarrier, g(t) is the rectangular pulse of length TS, and d,,,1 are the data symbols obtained 

from a symbol mapper such as 16-QAM or QPSK. In practical systems, this operation can be 

easily implemented by using an IFFT (Inverse Fast Fourier Transform) block which is 

commercially available in ASIC (Application Specific Integrated Circuit) form. The 

advantage of OFDM is that it increases the symbol duration N N times i.e. T, = N AT where T 

is the duration of a data symbol. This helps reduce ISI as the OFDM symbol duration 

becomes Ntimes the initial duration T hence channels with few multi-paths, the delay 

spread of the channel becomes insignificant compared to the symbol length. Also the 

bandwidth of each subcarrier becomes lesser than the coherence bandwidth of the channel 

thus preventing any frequency selective distortion in the symbols. By this phenomenon, 

OFDM can convert a frequency selective fading channel into a flat fading channel, thus 

helping greatly reduce the complexity of equalization at the receiver. In order to mitigate any 

resultant ISI, OFDM uses a cyclic prefix (CP), which is a copy of the portion of the OFDM 

symbol from its end appended to its beginning. At the receiver this CP is chopped off and the 

useful OFDM symbol is retrieved. Usually CP lengths of T, /4 are chosen though sometimes 

T /2&2  length CP may also be used depending on the channel length. A complete block 

diagram of an OFDM system is shown in figure 4.1. 
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Figure 4.1: OFDM transmitter and receiver block diagram. 

4.2 Energy Detection 

Spectrum sensing in OFDM can be performed by any of the earlier discussed methodologies:. 

The simplest technique among them is energy detection. In OFDM frequently guard bands at 

the ends of the OFDM spectrum are left out in order to avoid out-of-band interference to the 

adjacent bands. OFDM offers cognitive radio, the capability to insert null/virtual sub-carriers 

in the spectrum to leave any primary users operating in the band undisturbed. Additionally a 

single subcarrier is left unoccupied on both sides of the primary band to give extra protection 

from interference. These guard subcarriers and guard bands can be efficaciously used by the 

cognitive transmitter and receiver to make independent measurements of the noise power. 

Also noise power can be estimated during quiet periods of cognitive radios that are 

synchronized across a geographic region [30]. Once the noise power estimate is available the 

interference temperature limit for that band can be calculated and the receiver and transmitter 

can jointly decide on the operating characteristics namely detection probability, false alarm 

rate, sensing duration, transmitted signal power, frequency of operation etc. For example, if 

the interference temperature in a band rises suddenly due an upcoming nearby primary signal, 
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the cognitive radio must decide either to increase its sensing duration to maintain the desired 

probability of detection or may settle to increase its false alarm rate resulting in opportunity 

losses. Thus the task of noise power measurement is integral to spectrum sensing in OFDM. 

At the cognitive receiver the passband OFDM signal is first down converted to baseband and 

passed through a band pass filter whose bandwidth is equal to the bandwidth over which the 

spectrum sensing device can operate. This baseband signal is now sampled at a rate greater 

than at least twice this bandwidth to yield samples r(n) . Two hypotheses can be formulated 

on these samples as stated below, 

Ho : r(n) = w(n), 

H, : r(n) = x(n) + w(n). 
	 (4.2) 

where w(n) denotes the AWGN in the channel with power 6,Z, and x(n) is the OFDM signal 

with power a. Using the samples r(n) , energy of the signal is calculated using the test 

statistic 

N 

lE=~Ir(1 )I2 
	

(4.3) 

Since the signal and noise samples are independent, the test statistic IE follows the chi-square 

distribution under H, and Ho as derived in section 2.1. The results are restated here for 

clarity. 

JE x2N
z 	

,HO = 
x2N(2Y) ,HI 

(4.4) 
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The probability of false alarm and the probability of detection can be found by using equation 

(2.8) as 

r(N, )  A 
Pf 	F(N , 0) ' 	 (4.5) 

Pd =QN( 2 y,Vry). 

where r (. , .) is the incomplete Gamma function given by r(s, x) _ it -̀'e-̀  dt and QM C.) is 

the generalized Marcum 	function given by 	 (a f3) = 1 jxMe-( x22)/2J (ax)dx g 	 Q- 	g 	Y QM ~ 	aM _, ~ 	M_. 

where In (x) is the modified Bessel function of the first kind [29]. The plot of detection 

probability for signal with SNR from 0dB to -20 dB with a false alarm probability of 0.05 is 

shown in figure 4.2. 

The blue curve shows the theoretical detection performance of energy detection using 400 

samples generated using equation (4.5) with N=400 samples, while the red curve shows the 

theoretical'probability of detection curve obtained using noise uncertainty assumption of 1 dB, 

generated using equations (2.10) and (2.11). It can be seen that when distributional 

uncertainty of the order of 1dB is present in the noise variance, there is a SNR loss of around 

5dB for maintaining the probability of detection at 0.9. It must be asserted that an energy 

detector is blind to the modulation technique, hence its performance at any given SNR for a 

specific number of samples remains same for all kinds of digital modulated signals. This 

detection performance of energy detector is the maximum achievable probability of detection 

at any given SNR for signals which are i.i.d. (independent and identically distributed) 

corrupted by AWGN. This results from the fact that under the above two assumptions, an 

optimal maximum likelihood ratio test for the presence of a signal, simplifies to a test statistic 

that involves calculating the energy of the received samples. 

But for signals where a correlation structure is present, better detection probability can be 

achieved by using a spectrum sensing scheme that exploits the correlation between samples. 
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Figure 4.2: Theoretical probability of detection curves for energy detection with N=400 
samples. 

4.3 Cyclostationary Detection 

As outlined in section 2.2.1, each QAM modulated subcarrier in OFDM will independently 
exhibit cyclostationarity at symbol rate which can be exploited to detect the specific 

subcarrier signal. By analogy, an OFDM signal with symbol rate 1 / T =1 / N'T. , should 

possess cyclic correlation at its symbol rate T. But, due to orthogonality between the 
subcarriers, the cumulative OFDM signal does not possess any cyclostationarity [44]. To 
avoid the loss of cyclostationarity, a cyclic prefix is inserted before each OFDM symbol 
which destroys the subcarrier orthogonality. For the baseband OFDM using a CP of length 

TCp , the transmitted signal in the time domain is given by x(t)  
n=o t=—oo 

where T is the total OFDM symbol duration after the addition of CP given by T = TS + 

N 
The signal x(t) can be written as x(t) = x(t)where x(t) = e-"rv(t) where the complex 

n-~ 

DI 

62 



envelope of QAM signal denoted by v(t) is given as v(t) = dk g(t – kT) . _ The cyclic 
k 

autocorrelation of the signal x(t) can now be written as[44] 

sin 
NC gr 
T  

S 	e T' 	 (4.6) 
~cz sin - 
T, 

When the signal is sampled at t = nTo = nTs , then for delays r =0, ±7 , the value of the 
N,. 

central sinc function and Ry,(t, r) is non-zero for TATS, but when T=TS , which means the CP 

length is zero, R" (t, r) becomes zero for lags r = ±Ts , thus destroying the cyclostationarity at 

symbol rate in OFDM. 

This means that baud rate cyclostationarity in OFDM cannot be exploited for detection. Even 

the cyclic peaks due to cyclic prefix are small in magnitude. The result is that using 

cyclostationary based techniques for• detection of OFDM would yield poor results than 

expected. 

To substantiate the above fact, we simulate an OFDM signal without any cyclic prefix and 

with input symbol rate i / To = 6400 Hz and NN =64.  The subcarrier symbol rate is 

1 / TT =1 / NT0 = 6400 / 64= 100 Hz . The cyclic autocorrelation function of this OFDM signal 

is shown in figure 4.3. It is evident that no cyclic peaks are present in the signal as predicted 

earlier. Now, a CP of length Ts / 4=8  samples is inserted at the beginning and OFDM symbol 

duration increases to 80 samples. Due to cyclic prefix, the signal shows cyclostationarity at 

multiples of the frequency 1 / T = 4 / 5T, = 80 Hz . The plot in figure 4.4 shows the cyclic 

autocorrelation function the cyclic prefixed OFDM signal at lag 64. The presence of discrete 

peaks at multiples of 80 Hz confirms the presence of cyclostationarity in cyclic prefixed 

OFDM. 

Even though cyclic prefix introduces correlation in OFDM, with such low magnitude of 

cyclostationarity in the OFDM signal, it is not possible to apply cyclostationary detection for 

spectrum sensing of OFDM signal. Hence we introduce the concept of Excess Bandwidth. 
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Parameters are fs=6400 Hz. Nc=64, 
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Figure 4.3: Normalised CAF of an OFDM signal at lag 1. 
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Figure 4.4: Normalised CAF of a CP-OFDM signal at lag 64. 
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4.3.1. Excess Bandwidth 

Since the peaks in cyclic autocorrelation function of OFDM even after insertion of cyclic 

prefix are quite low, we introduce some excess bandwidth in the signal. In the previous 

simulation, the sampling frequency is equal to the subcarrier baud rate hence no extra 

bandwidth is present over which spectral correlation may be exploited. In this section, we try 

to introduce excess bandwidth using pulse shaping in the frequency domain, which means 

before the IFFT operation of OFDM. The primary aim is to provide redundancy in the 

frequency domain spectrum of OFDM, which will introduce spectral correlation in the signal 

without affecting the orthogonality of the subcarriers, such that the resultant cyclostationarity 

can be used to detect the signal [45]. It is expected that such an OFDM signal would possess 

stronger cyclostationarity. There are two methods to introduce correlation in the signal. 

A. Time domain rectangular pulses 

When rectangular pulses are used to modulate data onto subcarriers, then a redundancy is 

introduced in the time domain which provides for cyclostationary features. For example, 

T <T (t o /K) 
using g(t) = 0 (

t  < T I  ise) 
where K denotes the up-sampling factor, the signal is sampled 

at K times the original rate. As the data sample is repeated K times, a spectral peak is 

generated at a frequency of f.,, / K where f „ is the new sampling frequency. But the induced 

peaks at f 4  / K are very low in magnitude and they offer no special leverage over the earlier 

case. Rather, it increases the hardware cost drastically as higher sampling rate ADC/DACs 

are required. The cyclic autocorrelation function of an OFDM signal using time domain 

rectangular pulses is shown in figure 4.5. The value of K is chosen as 32 and 

f, a  =102400 Hz. The resultant peaks at f s„ / K = 3200 Hz are observed to have low 

magnitude peaks in the cyclic autocorrelation function. Similar OFDM signal when simulated 

with a TS/4 cyclic prefix also shows no substantial improvement in the cyclic peaks at the 

OFDM symbol rate. 
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Figure 4.5: Normalised CAF of an OFDM signal using time domain rectangular pulses. 

B. Raised Cosine Pulse Shaping 

Another method of introducing redundancy is by using raised cosine (RC) pulses. Raised 

cosine pulses offer the flexibility of introducing variable excess bandwidths (EBW) in the 

signal through the roll off parameter. Also, it is much less wasteful and requires an increase 

in the overall bandwidth by the excess bandwidth of each subcarrier on either side. 

Additionally, it maintains orthogonality between subcarriers and hence sustains the basic 

properties of OFDM signal. The raised cosine pulse spectrum is given as follows [46], 

T,  
s 

	

T 	)rT 	1j 	1  

	

Grc (f) = 2 1 + cos 	I f — 2T, 	2T,. 	2T,. J 	

(4.7) 

	

0 	 Ifl< 12,6 

0L 
0 

where 13 is the roll off factor that can be adjusted between 0 and I corresponding to excess 

bandwidths of 0% and 100% and 1/2T is the single sided bandwidth of OFDM subcarrier. 
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Figure 4.6: Normalised CAF of an OFDM signal at lag 1 using RC shaping with 100% excess 
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The cyclic autocorrelation function of an OFDM signal using (3=1 raised cosine shaping with 

N=64, lag=1 and K=8 is shown in figure 4.6. The parameters of the OFDM signal are 

fS=6400*8=51200 Hz, 1/T,=800 Hz, 1/T=640 Hz. Figure 4.7 shows the CAF of the CP-

OFDM signal at lag 64 which clearly show the peaks at multiples of 1/T=640 Hz. From 

figure 4.6-4.7, it can be observed that using raised cosine pulse shaping accentuates the cyclic 

peaks of OFDM signal. The reasonably strong cyclostationarity exhibited by the raised cosine 

shaped OFDM can be used to detect the OFDM signal. 

4.4 FRESH Filter based Detection 

As outlined in the section 3.3, to detect a cyclostationary signal, a frequency shift filter can be 

constructed wherein the values of frequency shifts in each branch is equal to a unique cyclic 

frequency of the signal. For a baseband OFDM signal the inclusion of cyclic prefix is 

necessary to preserve its cyclostationarity at the OFDM symbol rate. Moreover, the cyclic 

peaks can be made more prominent by using a raised cosine filter to shape the signal prior to 

modulation onto the orthogonal subcarriers. Hence,•we consider an OFDM signal with input 

pulse rate of 1/T0=6400 Hz. The symbols are obtained from a 4-QAM constellation mapper 

with variable amplitudes. In order to introduce excess bandwidth, the signal is sampled at a 

rate of 8*6400 Hz with 8 as the up-sampling factor and the samples are passed through a 

raised cosine filter with roll off factor (3=1, resulting in a 100% excess bandwidth. The 

number of subcarriers is 64 and CP length is TS/4. OFDM signal has cyclic frequencies of 

640 Hz, 1280 Hz, 1920 Hz etc. and smaller magnitude correlation at 800 Hz, 1600 Hz, 2400 

Hz and so on. 

For this purpose a FRESH filter is constructed as shown in figure 4.8. Four frequency shifts 

are used corresponding to the first four multiples of 1/T. For the purpose of spectrum sensing, 

the sum test of section 2.3 is used. The number of samples available for sensing is fixed to 

N=3200. Initially, 1000 Monte Carlo runs are performed without any signal to ascertain 

empirically the distribution of the test statistic under the null hypothesis. A false alarm limit 

of 0.1 is used to calculate a suitable threshold X for the test statistic. Subsequently, at each 

SNR from 0dB to -20 dB, the probability of detection us calculated by averaging over 1000 

runs. To compare the detection performance, the same test statistic is used on received signal 

directly without frequency shift filtering. Similar methodology is used to derive results for Pd 

versus SNR curves. The experiment is repeated for N=6400 and 9600 samples. The combined 

simulation results are shown in figures 4.9-4.11. 
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Figure 4.8: FRESH filter to detect an RC shaped CP-OFDM signal with 1 /T=640 Hz. 
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It can be seen from figures 4.9-4.11 that frequency shift filtering using the sum hypothesis 

test gives better performance of detection in OFDM over simple cyclostationary detection. 

Although the improvement in detection with 3200 samples is not substantial, with more 

number of samples, the detection performance increases. But in comparison to the detection 

performance of energy detection in figure 4.2 the probability of detection offered by FRESH 

filters is similar to the worst case performance of an energy detector but with a magnitude of 

10 increase in the number of samples (from 400 to 6400). Also as a comparison to the 

probability of detection plots obtained for BPSK in section 2.3.1, the corresponding detection 

rates at any given SNR are much less for OFDM. Nevertheless, FRESH filters are robust in 

the sense that their performance will improve with more number of samples, but a worse case 

energy detector cannot achieve a desired probability of detection if it has already reached the 

SNR wall. Thus FRESH filter based detection may be used in scenarios where the noise 

uncertainty is large or sensing at SNR below the SNR wall is required. 

This section brings up two major issues. One is that it is much more challenging to detect 

OFDM using its inherent cyclostationarity, owing to the limited low magnitude of cyclic 

autocorrelation peaks. Secondly, a sub-optimal test statistic to exploit cyclostationarity is no 

more sufficient in OFDM, and an optimum test must be designed which can fully exploit the 

correlation structure in OFDM. This prompts us to instead use a time-domain test for 

cyclostationarity in OFDM which optimally detects the cyclic prefix. To solve the problem of 

weak correlation, we introduce induced cyclostationarity in the OFDM signal. 

4.5 Induced Cyclostationary Detection 

Induced Cyclostationarity is a feature that can be intentionally embedded in the physical 

properties of a signal which may be easily detected and generated [47]. Such features can be 

introduced in an OFDM signal, giving rise to additional cyclostationary signatures that can 

aid signal acquisition and detection reliably. These are more useful than inherent 

cyclostationary features such as cyclic prefix in OFDM because they can be introduced at any 

desired cyclic frequency and easily manipulated to distinguish the SOI from other interfering 

users, as opposed to inherent features, which would entail significant altering of a standard 

waveform, if they are desired to be modified. Cyclostationary signatures for OFDM were 

introduced by Sutton et al. in their recent paper [47] in which they develop a low complexity 

technique for embedding cyclostationary signatures in OFDM based waveforms and present a 

method to detect them. 
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Though induced cyclostationarity offers immense practical advantage, an optimal method for 

its detection has not been discussed by the authors in [47]. Optimal detection of such 

intentionally introduced features requires an ab-inito analysis of the OFDM waveform and 

development of a maximum likelihood based test statistic that can optimally exploit the 

correlation introduced in the OFDM signal according to a Neyman-Pearson test. Optimal 

detection in OFDM has been studied by Axell and Larsson in [21 ] in which the authors set up 

a vector matrix model for OFDM and derive the optimal Neyman-Pearson detector for CP-

OFDM (Cyclic Prefix OFDM). They compare the optimal detector to the energy detector and 

show that in the absence of any cyclic prefix, energy detector is the optimum sensing 

technique. 

This section presents the vector matrix model introduced by authors in [21 ] for CP-OFDM. It 

further augments the mode] by introducing induced cyclostationarity. Simulation results are 

shown to verify the cyclostationarity features induced. Finally, we develop an optimal 

Neyman-Pearson detector for an OFDM signal with induced cyclic features. The performance 

of this detector is tested through simulation and it is observed that the detector is able to 

achieve better probability of detection than the optimal detector for cyclic prefixed OFDM 

and energy detector developed in [2]]. 

4.5.1. Induced Cyclostationarity 

Orthogonal frequency division multiplexing (OFDM) signals may be represented in the 

baseband as a composite of N statistically independent subchannel quadrature amplitude 

modulated (QAM) signals [43] 

N'-I ., 

x(t)_' 	~dn,1g(t-1T)e2rl7;)nt 	 (4.8) 

n=0 1=-oo 

where x(t) is the complex envelope of the OFDM signal with a cyclic prefix, dn , is an 

independent and identically distributed message symbol sequence, N" is the number of 

subcarriers and g(t) is the square shaping pulse of duration T=Ts+TAP, where T, is the source 

I 	ItI<TT /2 
symbol length and T,.P is the length of cyclic prefix. g(t) has the form of g(t) = d I t I> T, 2 

Each subcarrier carries independent streams of data which are orthogonal to each other. If 

instead of modulating some of the subcarriers with independent data streams, we send the 
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same sequence of symbols on more than one subcarrier, thus creating a redundancy in the 

OFDM. This operation can be mathematically represented by [47] 

d,,,, = d 1 , nEM 	 (4.9) 

where M denotes the subset of subcarriers that is mapped onto another subset of subcarriers 

which is at a distance of p subcarriers from the original subset M. This introduction of 

statistical dependence between certain subcarriers of an OFDM signal results in the spectral 

correlation as given in equation (4.10), where M is the set of mapped subcarriers and G(f ) 

denotes the Fourier transform of rectangular shaping pulse g(t) [44]. Figure 4.12 shows the 

generation of cyclostationary signature by introducing correlation between subcarriers. Figure 

4.13 shows the cyclic autocorrelation function of an OFDM signal with the parameters 

N=256, f=25600 Hz, 1/Ts=100 Hz, M=13 and p=243. The induced cyclostationary peak 

occurs at p/TS which equals 24300 Hz in our case. The signal uses rectangular time domain 

pulses to modulate data onto subcarriers. 

Sa (J) = . 

CTd IG( . f—n+a). 

G'(f- n —), 
T,. 	2 

T no 	TS 2 

G*(.f—
n+p

—a) 
T, 	2' 

n 

a=k 
T 

nEM 
T,. T 

k p k 
a#TT , ±T 

s 

(4.10) 

where o; is the variance of QAM symbols d,,,1, T. is the source symbol duration and T is the 

OFDM symbol duration given by T=T,+T~~,. induced cyclostationary peaks occur at a =p/T± 

k1T. 

73 



p  

Figure 4.12: Generation of induced cyclostationarity in OFDM by mapping of subcarriers. 
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4.5.2. Optimal Detector for Induced Cyclostationarity in OFDM 

At the receiver the cyclic prefixed OFDM signal x(t) is corrupted by AWGN w(t). After 

down-converting the received waveform the signal is sampled at a rate f =k/T0, where To is 
the baud rate of each subcarrier which is Nc times the baud rate of the OFDM symbol. The 

digital CP-OFDM samples are given by [43] 

k=N,-IN,-I 	j2n k 

x(k) = 1] jdn,kg(k)e Nc 	
(4.11) 

k=-Nrp n=0 

A vector of received samples r is formed, consisting of K(N,+N,p) samples where K denotes 

the number of OFDM symbols received and N=(Nc+N,p) denotes the number of samples in 

one OFDM symbol assuming Nc is the number of subcarriers used and N'.p is the number of 

cyclic prefixed symbols. Consider the length N vector of sampled values of the received 

signal r that consists of the OFDM signal and noise, i.e., 

r=s+w 	 (4.12) 

where s is the vector of N samples of the transmitted OFDM signal given as 

s = {x(0), x(T. ), • • •, x(NT.)}' and w is the vector of noise samples of the same length N. To 

detect an OFDM signal optimally, a Neyman-Pearson test must be constructed in which the 

two hypotheses to be discriminated are 

H.:r=w 
H, :r=s+w 

(4.13) 

Assuming that N is quite large, and noise samples are independent, the distribution of 

complex vector r under Ho is [21] 

I~ r ~~ Z 
P(r Ho) ` N a 2 N eXP — 62 , 	 (4.14) 

w 	 w 

where N is the length of the vector r. Under the hypothesis H1,. the distribution of the vector 

r must be ascertained. Since the signal samples s are formed by taking an IFFT operation, 

assuming that the length of the IFFT (Ne) is sufficiently large and the mean of the signal is 

zero, the distribution of s under H1 can be assumed as CN(O, E,) where Y-s is the co-variance 
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matrix of the vector s of OFDM signal samples of length N. Our task is to derive this co-

variance matrix Eg based on the correlation structure in the OFDM signal. 

First, the derivation of co-variance matrix for a CP-OFDM signal is presented which presents 

a framework for further deriving the co-variance matrix for a CP-OFDM signal containing 

induced cyclostationarity. Let q; denote the length Ne-vector of data associated with the i-th 

OFDM symbol. A CP-OFDM symbol s, is then obtained by repeating the last N, elements of 

q; at the beginning of the symbol. This can be written as [21 ] 

Si = Uq j 	 (4.15) 

where, 

U = ON~,xN-N,, IN r 	 )N 

l ~ Nq, 

For example, for an representative OFDM system with N,p=l and N,-=4, the matrix U would 

be 

0 0 0  1 

1 0 0  0 

U= 0 1 0 	0 
0 0 1  0 

0 0 0  1 

When we consider a block of K OFDM symbols for detection, the total signal vector can be 

defined as 

s=Tq 	 (4.16) 

where the (NAP+Nc)x(N~) matrix T is defined as [21] 

U 0 ... 0 

T= 0 

0 0 ... U 
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and the vector q is given by the q = [q,, q2 • • • q]' where the operation (') denotes transpose. 

Now the co-variance matrix of the transmitted signal s can be written as 

	

Eg = E{ss" } = E{Tq(Tq)H } = TE{qq H }Ty 	 (4.17) 

where TH denotes the Hermitian of matrix T. 

Case 1: No Induced Cyclostationarity Present in the OFDM signal 

When no correlation structure has been introduced in the input of the IFFT block in OFDM, 

i.e. when no intentional cyclostationarity has been induced in the OFDM signal, the elements 

of vector qare independent and identically distributed with a variance of o. Hence, the 

covariance matrix becomes o. Here x is the baseband waveform of OFDM signal defined 

by equation (4.6). 

Case 2: Induced Cyclostationary Signature present in OFDM signal 

When induced cyclostationary signatures are inserted into the OFDM signal, the elements of 

vector qare no longer independent but there exists a definite correlation structure between 

them. To find this correlation structure we consider the following model of the OFDM signal 

which is a modification of equation (4.11) assuming that x(k) is the OFDM source symbol 

excluding the cyclic prefix and where the time index k is limited to one OFDM symbol 

period. 

N _1 	f 2;rnk 

x(k) = 1 ld (n)e ~` 	k = 0, 1, N~ —1 	 (4.18) 
N, „o 

where d(k) are the data symbols from the output of a M-ary QAM mapper. The symbols d(k) 

are independent and identically distributed with a power of o- . Suppose that we induce 

cyclostationary signature in x(n) by ensuring that last M subcarriers are modulated by the 

same stream of data as the first M subcarriers. Now, we can write x(n) as 

()  1 
x k = 	1OM + 8N _2M + cM 	 (4.19) 
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M-1 	~21rnk 	 N,-M-1 	~2nnk 	 Ne -I 	~2)rn k 
where, aM = l d(n)e N° , bN _2M = 	d(n)e N and cM = 	d(n)e N° are denote 

n=0 	 n=M 	 n=N,-M 

three subsets of the IFFT output vector of lengths M, N,-2M and M respectively. The vector 

of samples of x(k) over one OFDM symbol duration can be written as 

0 	0 	0 
aM + bN _2M + cM 

_ aM + b," ZM + c X 	and hence, the covariance matrix of x can be written as 

N~-I Nr- aM + bN,. -2M + C
1

M 

ir o 	a 	o aM +b,, -2M +CM 

H 	 RM + bN~ 2M + CM 	r 0 	0 	0 	N-I. 	N 1  ~x = E{xx } = FS 	 LaM +bN~ 2M +c 	aM +bN~ 2M +CM 

~ aM + b ,

M + CM N-2  

The dimensions of this co-variance matrix are (KN~)x(KN~). Each element of this covariance 

matrix can be derived by individually taking the expectation of each term. The complete 

derivation for the matrix EX is given in the Appendix B. The general term of the matrix is 

derived as 

sin 
(27r(12 —11 )M 

	

('z 'i )(' 1)+r,M 	 2N 
t(l,,lz) =

[( 
w_2 	+ W+(2)M) (4.20) 

N~ 	 2)r(12 —11 ) 
sin 

2N, J ] 

Here t(l,,12 ) denotes the term in the 1j-th row and 12-th column of the matrix Ex where 1,,12 

j21r 

denote any time indices from 0 to N,-I and W = e N° . The variance of the OFDM signal is 

equal to the power of the input QAM symbols i.e. o = o . In the case of l/-12=1o, the above 

term reduces to 

t(lo,l0)=~x N,+2Mcos 
2~cl0M 	

(4.21) 
N~  N, 
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The vector x is same as the vector q used in this section earlier, as both are used to define a 

vector of samples of OFDM within one symbol time. Using the entries of the matrix Ex , the 

co-variance matrix ES can be written as E.r = T1XTH 

As a result, under the hypothesis H1, the co-variance matrix of the received vector r becomes 

Q=o I+E =cr I F6x TTH 

Thus, the distribution of r under Hi becomes[21] 

1 
ffN det(Q) exp (

—rHQ-'r), 	 (4.22) 

Hence, the optimal Neyman-Pearson test for detection of CP-OFDM can be defined as, 

P(rI H,) 
nof,rrmai =log la(r I 

moo) 

1 	 H 1r) ZN det(Q) eX r p 	Q 	 (4.23) =log 	
1 	 'r~jZ 

N62N exp 	a2, j j N 	 ll 

2N 

=log 	"' 	— r H Q-` — 	I r 
det(Q) 	6w, 

This test statistic is also the optimal time domain test for eyelostationarity in a CP-OFDM 

signal. Axell and Larsson in [21] state that there is no closed form expression for the 

distribution of this test statistic. Hence the threshold for the test statistic (optimal must be 

computed empirically. When no cyclic prefix is present in the signal, then Q = 2 	Z 
Cr., + 6X 

becomes a KN,x KN, diagonal matrix. In this case the optimal Neyman-Pearson test reduces 

to an energy detector which follows a chi-square distribution and the formulae for its 

probability of false alarm and probability of detection can be found as described earlier in 

section 4.2 and section 2.1. 

rV-I 
Aequiv = 1I r; 12 	 (4.24) 

i=0 

79 



4.5.3. Simulation Results for Optimal Detection in OFDM 

An OFDM signal is simulated with number of subcarriers N=32, and cyclic prefix length 

N,p=8. Cyclostationarity is induced by mapping the first M subcarriers onto the last M 

subcarriers. The corresponding value of p is equal to N,-M. Signal varianceo- is varied 

between I to 0.01 and noise variance o- is chosen as unity. Thus, the SNR range of received 

OFDM signal is from 0dB to -20 dB. 4-QAM modulation is used to produce the source 

symbols. The simulation is carried out for 400 received data symbols meaning thereby 10 

complete OFDM symbol durations are used for sensing. To find and compare the probability 

of detection achieved by using energy detector and optimal detectors for cyclic prefix and the 

induced cyclostationarity, their corresponding Neyman-Pearson test statistics are constructed 

from the received symbols. For the case when no signal is being transmitted, 1000 Monte 

Carlo runs are conducted and a threshold rloptimai is derived, such that the false alarm 

probability is limited to 0.05. Consequently, at each SNR value, average probability of 

detection is computed for all three detectors by calculating the average rate of detection over 

1000 simulation runs. A comparison of the detection probability achieved in the 0 to -20dB 

SNR range, achieved by the three detectors, is shown in figures 4.14 and 4.15 for the cases of 

M=3 and 5. 

From the figures 4.14-4.15, it can be clearly seen that the proposed optimal test statistic for 

detection of induced cyclostationary signature provides progressively better probability of 

detection than both cyclic prefix and energy detector. Also, there is around 1.5 dB SNR loss 

by using the energy detector instead of the optimal induced cyclic feature detector. 

In this chapter, we have discussed various spectrum sensing techniques for OFDM and their 

performance in OFDM. OFDM exhibits weak cyclostationarity even in the presence of cyclic 

prefix and providing excess bandwidth by using raised cosine pulse shaping can enhance the 

peaks in the cyclic autocorrelation function of OFDM. We have shown the efficacy of 

FRESH filter based detection over cyclostationary detection in spectrum sensing for OFDM. 

Finally, induced cyclostationarity in OFDM is introduced and an optimal detector is derived 

for the same. Simulation results show the improved performance of the optimal detector as 

compared to energy detector and optimal time domain detector for cyclostationarity. 
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Chapter 5 

Conclusion and Future Work 

This thesis attempts to study the emerging topic of spectrum sensing in cognitive radio. It 

presents a comparative analysis of three spectrum sensing techniques viz, energy detection, 

cyclostationary detection and FRESH (FREquency SHift) filter based detection. As energy 

detection is widely used and suffers from many limitations, the contribution of this thesis is to 

develop cyclostationary spectrum sensing techniques to robustly detect a signal in the low 

SNR regime. It presents the application of FRESH filters for spectrum sensing and presents 

simulation results to substantiate the claim that FRESH filter based detection can outperform 

other detection techniques in single carrier AWGN environments. For the multicarrier 

environment, this thesis develops an optimal detector for induced cyclostationarity in cyclic 

prefixed OFDM, and verifies its superior performance over energy and cyclostationary 

detection techniques through simulation. A chapter-wise list of conclusions is provided 

below. 

Chapter 1 presents an overview of the properties of cognitive radio such as adaptability and 

reconfigurability etc. and various tasks a cognitive radio must perform. It explains the 

importance of spectrum sensing in a primary user-secondary user context and introduces 

various techniques used for spectrum sensing such as energy detection and cyclostationary 

detection and highlights their advantages and deficiencies. 

A comparative analysis between energy detection and cyclostationary detection in terms of 

their detection performance and robustness is presented in Chapter 2. Theoretical results are 

presented with derivation and it is seen that energy detector is non-robust below the SNR-

wall due to noise distribution uncertainty. Inherent cyclostationarity is present in all 

modulated signals at different cyclic frequencies which can be used for their detection. 

Through a simulation example, it is shown that a BPSK signal exhibits strong cyclic peaks in 

its conjugate cyclic autocorrelation function and spectral correlation density at twice the 

carrier frequency. For the same signal, using a sub-optimal sum test statistic, it is seen that 
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energy detection performs better than cyclostationary detection upto -15 dB but with 1 dB 

noise uncertainty it becomes highly non-robust and fails to detect the signal below -7dB. 

Chapter 3 explores the application of frequency shift filtering for spectrum sensing. First, 

structure of FRESH filter using LCL filtering is shown and the basic theory of cyclic Wiener 

filtering is presented. Then adaptive implementations using LMS and RLS algorithms are 

discussed and the optimal step size parameter is chosen experimentally. Simulation results 

show that the excess MSE decreases with increasing number of frequency shift branches. A 6 

branch blind adaptive FRESH filter is constructed to detect a BPSK signal in AWGN using 

both baud rate and carrier related cyclostationarity and the suboptimal sum test of Chapter 2 

is applied on the CAF of the frequency shift filtered BPSK signal. The average detection 

performance achieved is better than both cyclostationary detection and energy detection 

technique, with the RLS based adaption giving better results than its LMS counterpart. It is 

also shown that BA-FRESH filters need more samples to converge in the presence of high 

power interference. 

In Chapter 4, we extend the application of spectrum sensing techniques to OFDM and find 

that it is more challenging due to absence of cyclostationarity in OFDM. In order to preserve 

cyclostationarity, a cyclic prefix must be inserted at the beginning of the OFDM symbol. The 

low magnitude CAF peaks due to cyclic prefix can be accentuated by using pulse shaping to 

provide excess bandwidth. Using this OFDM signal and the sum test statistic, it is observed 

that FRESH filter based detection performs better than simple cyclostationary detection, but 

is similar to the worst case of energy detector. Following this, we present an optimal time 

domain test for cyclostationarity to detect the cyclic prefix in OFDM. Induced 

cyclostationarity is introduced in OFDM signal and an optimal detector for detecting induced 

cyclic features is developed. Simulation results show that the proposed detector outperforms 

the energy detector and optimal detector for cyclic prefixed OFDM. 

Future Work 

The thesis presents results that LAPTV filters can be used for improved spectrum sensing in 

AWGN environments. These results can be extended to interference scenarios by improving 

upon the blind adaption process. Since trained FRESH filters offer excellent interference 

rejection properties [2], [26], using a suitable desired signal may result in better performance 

for BA-FRESH filters. Using a local generated training signal similar to the transmitted 

signal is a possible option as its SCD peaks will be congruous with the SO!. The performance 
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of spectrum sensing with FRESH filters can be improved by using the optimal test for 

cyclostationarity proposed by Giannakis in [33]. For OFDM, the proposed optimum detector 

can be extended to the case of unknown noise variance by using a GLRT (Generalised 

Likelihood Ratio Test) based approach and it can be compared with the existing techniques. 

Filter bank multicarrier scheme has been proposed by Boroujeny in [48] as an alternative to 

OFDM and he argues that such filter banks can provide higher spectral efficiency and low 

sideband levels than OFDM. Due to excellent filtering properties of FBMC (Filter Bank 

Multi Carrier) systems, they can possibly be used for spectrum sensing in a cognitive radio 

context, and a comparison with the techniques discussed in this thesis will be a topic for 

further work. 
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Appendix A 

Cyclic Frequencies in Digital Modulated. Signals 

A real QAM signal can be written as 

d(t) = c(t) cos(0 01) + s(t) sin(coot) 	 (A. 1) 

and c(t) can be written as, 

c(t) = 	cr p(t — r'T0 —t0 ) 	 (A.2) 
roo 

where p(t) is the pulse shape with keying rate 1 / To . For the most general case of M-ary QAM 

signal the amplitude of d(t) can take M different values 

~ ar J= c; +s; 	 (A.3) 

with the corresponding phase shifts 

Zar = —tan 	 (A.4) 
Cr )  

For this general signal d(t) the spectral correlation function is given by [2] 

sdd(f)-1 	[S6(f+ nf0)+ 'Sa,( +nfo)]+ni[S`."(.f+nf0) — S (f+nf0)] 
4 n= 1 1 

(A.5) 
+_ V [sa+2nf' (f) — Sa+2nj~ 

(f)] + fC[ (.a+2nf  (f) + Sa+2nfp (f)] 4 nJ_11 	 J 

where fo = too / 21r and 

Sa (f) = TZ P(.f + a / 2 )P« (.f — a / 2) x 	S a-r/7o 
(f — s / To + r / 2To )e 2~rar° 

(A.6) 
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in which P(f) is the Fourier transform of p(t) and c(t) is any time-series with c(rT0 ) = cr . 

An analogous expression for S" (f) can be derived by assuming the relation 

s(t)_ 	s,q(t—rT0—t0) 	 (A.7) 

When the data Cr and sr come from a stationary time series, then (A.6) can be rewritten as 

S"(f)= 	P(f+al2 P` 	a/2 x 	S-°- 	s/T +a12)e2Ra'° T Z 	) (f— ) ~ (f— o 	 (A.x) 
T 

for a =k/T0 V integers k, and S" = 0 for all other values of a. also if Cr is a white sequence 

with variance o then, 

2 

S(  f) = T2 P(f + a / 2)Pt (f — a / 2)e-12nar° 	 (A.9) 
0 

In addition ifcr and Sr are statistically independent zero-mean time series then, 

S" (f) = S(  f) 0 and the equation (A.5) reduces to 

Sdd(f)= 1 I [,Sc(f +nf0)+S. ,(f + nf0) 

(A.10) 
+S° (f) 

—S2n ° 
(f)] cc 	 s.r 

For AM signals purely stationary amplitude c(t), the above equation can be reduced further 

by making s(t)=0. 

I!s (f) 	 a=+2.fo 
Sad (.f) = 1 	 (A.11) 

and S,jd(f) = 0 for all other values of a. For a BPSK signal, with T(t irrational, (A.10) can be 

substituted with (A.9) to yield 
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z 

Sdd(f)= 4T [P(f+f0+a/2)P`(f+.f0—a/2) 
(A.12) 

+P(f —f0 +a/2)P* (f — fo —a/2)]e-i2 `° 

for a =k/To and 

z 
Sdd (f) 47 P(.f ± fo + a / 2 )P* (f ± fo — a I 2)e—i2rrcrta e —[z~ca+zlr )4i+24n l 

o 	 (A. 13) 

for a =+ 2fo + k/To. The parameter o is introduced for the sake of generality. i.e. 

d(t) = c(t) cos(wot + 	 (A. 14) 

On the other hand, for a balanced QPSK signal (with S., (f) = S" (f) = 0 and S". = Sa) with 

T(fo irrational, we obtain (A.12) multiplied by 2 for a =k/T0 but Sd = 0 for a = T2 f0 + k / To . 

This shows that an AM signal possess cyclostationarity at a = T2 fo and a QPSK signal 

possess cyclostationarity at a = k / T. A real BPSK signal on the other hand, possesses cyclic 

peaks at both multiples of T and twice the carrier frequency. 

A similar analysis can be performed when complex QAM signals where the envelope of the 

signal a(t) becomes complex. A summary of the combined results can be stated as : 

(1) Complex representation of AM has no spectral correlation, but it only possesses 

conjugate spectral correlation related to twice the carrier frequency (2fo). 

(2) Complex representation of balanced QPSK has no conjugate spectral correlation. It 

only has spectral correlation associate with baud rate and its harmonics (k/To). 

(3) Complex representation of BPSK, has both spectral correlation at baud rate and its 

harmonics as well as conjugate spectral correlation related to twice the carrier 

frequency. 
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Appendix B 

Derivation of the Co-variance Matrix of the Optimum 

Detector for Induced Cyclostationarity in CP-OFDM 

The OFDM signal x(k) is given by 

1d,,-1 	~2nnk 

x(k)_ 	Yd (n)e N° , k = 0,1, • • • N, --1 	 (B.1) 
N, 

 
I n=o 

We assume that the source symbols d(n) have been derived from a signal constellation with 

zero mean and variance 6,; . Another justifiable assumption is that the source symbols are 

independent and identically distributed (i.i.d.). We introduce cyclostationary signature in x(n) 

such that last M subcarriers carry the same data as the first M subcarriers. This can be 

mathematically stated as 

d(n)=d(n+N~.—M),VnE[0,1••.M-1] 	 (B.2) 

Hence partitioning the signal into three distinct subsets, we can write, 

x(k)_ 	~aM + bN~-2M +c 1 	 (B.3) 

The data in first and third subset are correlated. We form a vector x of length N, with 

elements x(0)...x(N- 1). The covariance matrix of this matrix is given by 
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ir 0 	0 	0 RM + bN -2M + CM 

	

1 	1 	1 

	

Z = E{xxH } = E 	aM 	+ bN,-2M + CM 
x 

N -1 	N -I 	N -1 
aM + b --2M + CM 

Lao -F~70 	+C~ 	... aN.-I +b 	I +c 	1 1 , 	(8.21) M N,-2M M 	M 	N,-2M M J 

Let the element at the 11-th row and 12-th column of the N,x N, matrix Ex be denoted by 

j2ir 

t(l,,12 ) .Assume W = e N, . Then t(l,,12 ) can be written as 

t(11,l2) Ej[RM +b,-2M +CIM][4 +bM~-2M 
	 (B.5) 

where E{.} denotes expectation and the operator H denotes Hermitian. This term is made up 

of nine product terms. Owing to the independence of source symbols, any product term 

involving two different source symbols will yield an expectation value of 0 as the source 

symbols are independent and zero mean, hence uncorrelated. This means that, the terms in 

a and cM can correlated among each other because of induced correlation structure, but none 

of them correlated with b' _2M . This leaves us with 5 product terms. We tackle each term 

separately. 

E { (aM)•(aM )' } = ---E  (mYd(n)W-n")(m   d(n)W 
c 	no 	n=0 

_ IWti( 11-ri>nE l d( n)d •(n)1 
N 	1 	J' ~ n=0 

2 M-I 
= 6d  

N,. n=O 

N-M-1

E(biv -2M) (bN2M) — 1 E 	d(n)W-„i, 	d*(n)W+nrZ 
N~ ,. 	n _M 	 n=M 

1N. -1Wn(rz-rE
l d(n)d * (n)S 

Nc n=M 	 l 	) 

2 N~.-M-I 
=_ I Wn(12-l1 )n 

NC n=M 

(B.6)  

(B.7)  
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Ne -1 	 Ne -1 
E { {c̀ ,'r } (clu )* =— E n ~Md (n)W -"l' n-X Md 	iW ' (n) '2 

N —I 
= 

1 
i 	W l, )nE {d (n)d * (n)} 	 (B.8) 
Nc n=N,—M 

2 N.-1 
=— 	1v n(l2—hI )n 

Nc ,i=N,—M 

V M_1 	 N•••1 

E{(astir) (cnr)* } =---E  jd(n)W-nl, 
	I 

d(n)W+11/2 , 	 (B.9) 
Nc 

Substitute, k = N2 —M, in the second summation 

E a 	c`2 	1 E M-I d n W -"l, M ld ` k+ N _M ))W2 ,W +N,l2 •W -m'2 
N2 	(..o 	k=0 

Since, W2 = 1, d' (k + (N , –M))  = d (k) and d(n)d(n)  = 0 for n ~ k hence, 

Ml' M—I 
E I (a.")•(cM )` I = 	> W n( 12 —li )nE {d(n)d* (n)} N  

n~r2 2M-1 	 (B.11) 

= W 6d  
N6 n O 

N —1 	M-1 

E{(c~ie) (ani)x } =1E 	d(n)W-"l, Idt(n)W+nl, 	 (B.12) 
Nc 	(n=N,—M 	 n=o 

Substitute, k = N — M, in the first summation 

= 1 E Ed(k+(N —M))W-k',.W -N~l,.W M1, Edt(n)W +nI, 
 k k=o 	 An=O 	 (B.13) 

Since, W -N," =1, d(k+(N2 –M)) = d(k) and d(n)d* (n)=0 for n ~ k hence, 
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M!, M-I 
E {(crM).(a )}  = W 	W' )nE, 

1 

fd(n)d` 

J 

(n)l 

N` n-O 	 (B. 14) WMI, 62 M-1 
d ZWn(!z`ri)n 

Nc n_0 

Adding equations (B.6), (B.7), (B.8), (B.1 1) and (B.14) we get 

2 	 (M-I 
t(i,j) = 6~ jW(12—h )n + jW (12 —r' In)(WMI' + W M'Z) 	 (B.15) 

N ~ n-0  n=0 

For the case when 11=12, the diagonal term t(i,j) can be found by modifying (B. 15) to 

t(11 ,11 ) = 6d N, + 2M cos 
2;rM1' 	

B.16) { 
N, 	A, 

For the general case when 11 12, the term in (B. 15) can be simplified to 

62 W(12 -1 )N,  	M-1 

t(11,12)= N 	W(rZ r)_ 1 
+ IW(IZ—r,)n)(WAII, +W—Mr2) 

	 (B. 17) 
c 	n=0 

Since W ('Z -r' )N- = 1, hence the first term becomes zero. The second term can be simplified to 

t(l,,12) = 2i._  W (rz-r1)M — 1 /W 
Ml, +W- MJz ( \ 	

/ 
,  

N W('2-,,) —1 

—1 )M ( 12—r1)M 	 ('2—' )M 
z 

2 W 	2 	W 	2 (WMl, + W -Mr2 ) 

` 
J 

W 
2 

W2 —W 	2 

2~c(l2 —1, )M 
2 2 j sin 

= 6̀r 
{hl)(M-') 

W 	2 
*! (1 +W-M(I2+l,)) 2N B.18 

( 	) 

N. 2/c(l —1 ) 
` 2jsin 2 	' 

2ND, 

27r(12 --1► )M 
62 

t(11 ,12 )= d 
(rz -ri)(M-1) 

W 	2 
+Mr, 	

sin 	
2N ii 

(l+W—M(12+1)) 
N, 2Tr(l2 —11 ) 

sin 
2N 

Using the general term t(i,j), the covariance matrix of the signal x(n), E, can be constructed. 
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