MICROPROCESSOR BASED IC TESTERS

A DISSERTATION

Submitted in partial fulfilment of the requirements for the award of the degree

of

MASTER OF ENGINEERING (System Engineering & Operations Research)

CKPT

by

Capt H.C. LOHUMI

DEPARTMENT OF ELECTRICAL ENGINEERING UNIVERSITY OF ROORKEE ROORKEE-247 672 (U-P.) Oct. 1982

CERTIFICATE

Certified that the dissertation entitled "MICROPROCESSOR BASED IC TESTERS" which is being submitted by Capt H C LOHUMI in partial fulfilment for the award of the Degree of MASTER OF ENGINEERING in ELECTRICAL ENGINEERING (System Engineering & Operations Research) of the University of Roorkee, Roorkee, is a record of student's own work carried out by him under my supervision and guidance. The matter embodied in this dissertation has not been submitted for the award of any other Degree or Diploma.

This is further to certify that he has worked for a period of about nine months from Jan.82 \sim to Oct.82 \sim for preparing this dissertation at this University.

anan 11 m

(M.K. VASANTHA) Reader Electrical Engg. Department University of Roorkee ROORKEE-247 672 U.P.

Dated : Oct.13,1982

ACKNOWLEDGEMENT

I would like to express my gratitude to Mr.M.K.Vasantha, Reader, Department of Electrical Engineering, University of Roorkee, Roorkee for initiating me in the field of microprocessor applications implementation. I am, indeed, indebted to him for his unflagging support and invaluable guidance in solving numerous problems encountered in the practical work.

I am also grateful to Dr. G.K.Tandon, Head, Computer Centre for permitting me the use of ADM-3A terminal for this work.

I am extremely grateful to Mr.M.Pant, Lecturer, Department of Electrical Engineering and Mr. A.K.Raja, Reader, Department of Electrical Engineering for permitting unrestricted access to various facilities at their disposal, freely and for material assistance.

Special thanks are due to Mr. L.K.Gupta for helping me in solving the problems encountered in PCB design and fabrication. Lastly, I would like to thank all the teachers and the staff of the Department for assisting me in various stages of this dissertation.

Capt H C Lohumi

ABSTRACT

Microprocessor based systems are being used increasingly in nearly all the walks of life. Their usage is wide spread, from house-hold gadgets to sophisticated missiles. In order to be able to design even simple microprocessor based systems, it is necessary to understand completely the working of the microprocessor chip and allied peripherals. For this, a 'hand on' experience is a must. The aim of this dissertation was to get this experience. Microprocessor based digital IC testers were a natural choice of the practical system selected for design because of the necessity of testing IC chips before actually using them.

The basic unit used was HIL-2961 microprocessor trainer, an INTEL 8085A based system. A brief description of this unit is given in Chapter 1. Chapter 2 deals with the underlying principles of IC testing alongwith an initial test programme for IC 7400.

A CRT terminal is a very useful peripheral device for increasing the user efficiency in communicating with the microcomputer. The IC tester developed in this dissertation operates through ADM-3A, a CRT terminal.

Abstract contd..

Chapter 3 deals with design of the hardware interface between the terminal and the microcomputer. Monitor developed for the IC tester is discussed in Chapter 4.

. .

Test programmes for various ICs are discussed in Chapter 5 and finally the design of a Universal IC Tester is discussed in Chapter 6. Chapter

•.

1	GETTING ACQUAINTED WITH HIL-2961 MICROPROCESSOR TRAINER	1	1-1
	1:1 Introduction		1-1
	1:2 Clock Frequency	* d ● ●	1-3
	1.3 Memory Allocation and Decoding Circuitry	1	1-3
	1.4 Input and Output Ports	• •	1 - 5
	1.5 Keyboard Management	1	1-9
	1.6 Bus Protection	4 4	1-9
	1.7 Utility Programmes	a . ● ●	1-11
2	GENESIS OF IC TESTING AND 7400 TEST PROGRAMME	••	2-1
	2.1 Introduction	••	2–1
	2.2 Detection of Logic Malfunction	• •	2-3
	2.3 Implementation of Test Sets	•	2-5
	2.4 Development of IC Tester	• •	2-7
	2.5 Quadruple Two Input Nand Gate IC 7400	••	2-8
	2.6 Minimal Test Set Development for IC 7400		2-8
	2.7 Key Debouncing) •	2-10
	2.8 Programme for IC 7400 Test	• • * 4.	2-13
3	INTERFACING HIL-2961 WITH CRT TERMINAL		3-1
	3.1 Introduction : Need for a CRT Terminal	• •	3-1
	3.2 Interactive Display Terminal ADM-3A	• •	3-2
	3.3 Development of Interface .	. •	3-4
	3.4 Hardware Interface	•	3-5
	3.5 Power Supply	* •	3-6
	3.6 Baud Rate Generator	••	3 - 6

		-:2:-		
		3.6.1 Design Calculations	•	3-8
		3.6.2 Operating the Baud Rate Generator		3-9
	3•7	RS-232C and 8251A USART Interface	• •	3-11
		3.7.1 INTEL 8251A USART	` & ₿ ●	3-14
4	MONI	FOR FOR THE CRT TERMINAL	* •	4-1
	4•1	Introduction	••	4-1
	4.2	Sign on Message Programme	- 4] ∳ ●	4⇔2
	4.3	Get Command Programme	••	4-2
	4.4	Functional Commands	••	4-3
	4.5	Try Command	••	4-4
	4.6	List Command	••	4-5
	4•7	Execute (GO) Command	• •	4-5
	4.8	Subroutines for Programmes	• •	4-6
· .	4.9	Monitor Listing	• •	4-6
5		PROGRAMMES DEVELOPMENT FOR A FEW CTED IC CHIPS	• •	5-1
	5.1	Introduction		5-1
	5.2	Test Programmes		5-1
	5.3		••	5-2
	5.4	•	o 🌢	5-4
	5.5	IC 7476 Test Programme	• •	5-4
	5.6	IC 7490 Test Programme	• •	5-6
	5.7	IC 7493 Test Programme		5-9

.

-: 3: -

6	UNIVE	ERSAL IC TESTER	• •	6-1
	6.1	Introduction	••	6-1
	6. 2	Requirements	••	6-1
	6.3	Design of Universal IC Tester	••	6-2
	6.4	Programming the Universal IC Tester	••	6-4
	6.5	Comments	••	6 - 4
7	CONCI	LUSION	••	7-1
	7.1	Summary of the Work	••	7 - 2
	7.2	Recommended Developments	••	7-2
	REFER	RENCES	••	R-1

APPENDICES

Appendix No.

.

A	INTEL 8085A : Brief Description	• •	A 1
В	8085A Instruction Set	••	B-1
C	HIL-2961 Utility Programmes : Explanation	• •	C-1
D	Interactive Display Terminal ADM-3A	••	D-1
E	Details of Components	••	E-1
F	Serial Data Transmission Formats	••	F-1
G	INTEL 8251A Universal Synchronous Asynchronous Transmitter Receiver	• •	G-1
Н	Initialization Programme for Universal IC Tester Testing IC 7400	¢ 🌢	H 1

•

• •

CHAPTER-1

	ACQUAINTED	
HIL-2961	MICROPROCI	SSOR
TRAINER		- manaped

1.1 INTRODUCTION

HIL-2961 microprocessor trainer (1), marketed by Hindustan Instruments Limited, is a microcomputer based on INTEL's 80854 uP. This system formed the basis of all the work carried out in this dissertation. It is, therefore, necessary to gain an insight into the various functional aspects of this system before proceeding further with the discussion of the dissertation work.

The pin configuration and brief description of the 8085A uP is given at Appendix 'A'. The summary of the instruction set is given at appendix 'B'. Fig.1.1 shows a block diagram representation of HIL-2961's architecture. The user can communicate with the system through a 24 key keyboard. Sixteen of these keys are used for the Hexa decimal code and the remaining eight keys viz., FETCH REG, FETCH ADDR, STORE/INC, DECR, SINGLE STEP, FETCH PC, MC STEP and EXECUTE provide the user the facility of entering and executing his programme as well as faciliate software debugging.

Results of various operations are displayed on a six digit seven segment display provided on the top right hand side of the trainer. The first four digits show the addressed location

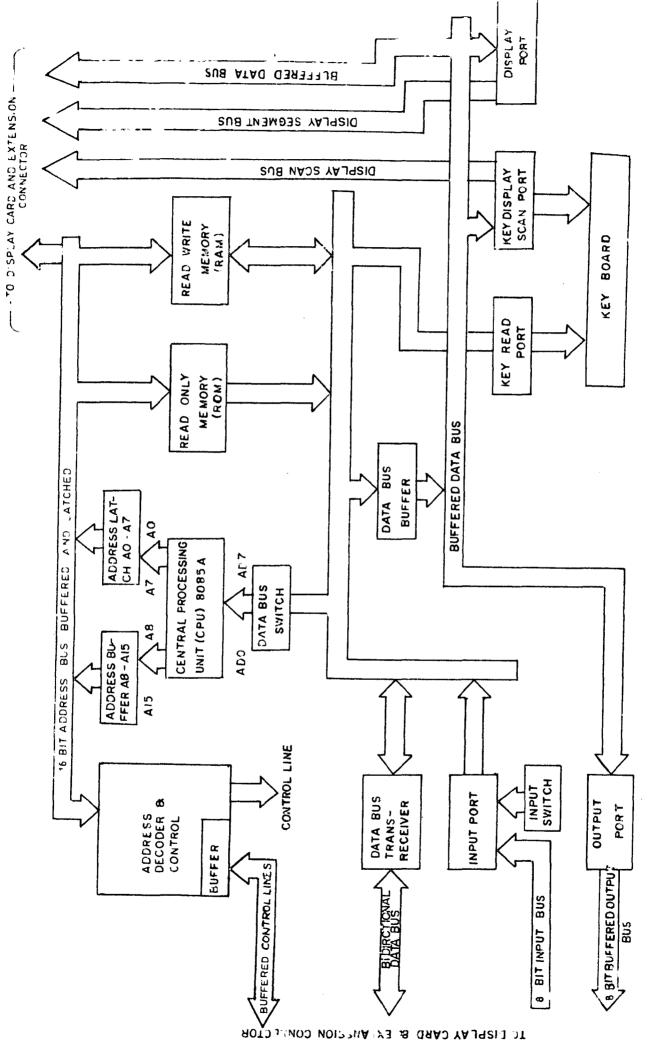


FIG 1 HL 2961 ARCHITECTURE.

in hexa-decimal code and the last two display the content of that location. This di**b**play is software managed. Another six digit, seven segment display provided on the top left hand side of the trainer displays the address and its content in a similar manner in machine step operation. This display is hardware managed.

1.2 CLOCK FREQUENCY

The 3085 A CPU can operate at a maximum internal clock frequency of 3.125 MHz. The actual operating frequency is dependent upon the parallel resonant frequency of the quartz crystal placed at its X_1 and X_2 inputs, which must be twice the internal frequency desired. Thus the 8085 A CPU can accomodate a quartz crystal having a parallel resonant frequency of 6.25 MHz or less. In HIL-2961, the external quartz crystal has the parallel resonant frequency of 4.00 MHz, thereby generating an internal clock frequency of 2.00 MHz for the CPU operation. Practically, this frequency was measured using a digital frequency counter and found to be 2.0007 MHz.

1.3 MEMORY ALLOCATION AND DECODING CIRCUITRY

The 8085AµP can address 64K bytes of memory. Of these, only 16 K bytes have been decoded in the HIL 2961. This gives approximately 1.8 K bytes of memory space to theuser. Fig.1.2 shows the system address map for various devices used in the trainer. The memory allocation for the RAM, ROM, one E/P port

		UPPE	R HALF IN	≂ OF BIN		RESS					DDR N HI	ESS EX			
BIT	15	14	13	12	11	10	9	8						DEVICE	
4	0	0	0	0	0	0	0	0	(0	0	0	0	1	
2											•	•		ROM	
	0	0	0	0	0	1	1	1		0	7	F	۴		.
	0	0	0	٥	,	0	0	0	†	0	8	0	0	E	
			1						į			•		RAM	
	0	0	0	0	1	1	1	۱		0	۴	, F	F	, ,)
	0	0	0	1	0	0	0	0	1	1	0	0	0		$\hat{\mathbf{b}}$
												•		1	
	0	0	0	١	0	1	1	1		1	7	F	F		
	0	0	0	1	1	0	0	0	+	1	8	0	0		
ì									{			•		KEY DATA	
16 K	0	0	0	1	1	1	1	1		1	F	F	F		
ADDRESS LOCATIONS	0	0	1	0	0	0	0	0	+	2	0	0	0	1	-
			Ì								•	•		INPUT PORT	
	0	0	1	0	0	,	1	1		2	7	F	F	1	
	0	0	-†·,	0		0	0	0	·+	2	8	0	0		$\cdot \geq 1/0$
i									į			•		SCAN	
	0	0	1	0	1	1	1	1		2	F	F	F	1	
4	0	0	1	1	0	0	0	0	+	3		. 0	0		
		-			-		•	•	i T		~	•	•	OUTPUT PORT	1
	0	0	1	1	0	1 1	1	1	1	3	7	• F	F		
	0	0		1	1	0	0	0	+	3	 8	0	0	-+	
									1			•		DISPLAY	
*	0	0	1	1	1	1	1	1	-	4	F	•	F	SEGMENT	
Å.			0		0	t o	'- 0	··' 0	+	*	0	_` _0	° 0)
48 K	-			Ŭ	-		U	v	1	-	J	• ~	5	NOT USED	
A DDRESS LOCATIONS									i			•		1	
Ļ	١	ı	,	۱	1	1	1	1		F	۴	F	F		
Ŧ						.L								- 	

FIG 1.2 SYSTEM ADDRESS MAP FOR 2961 MICROPROCESSOR TRAINER

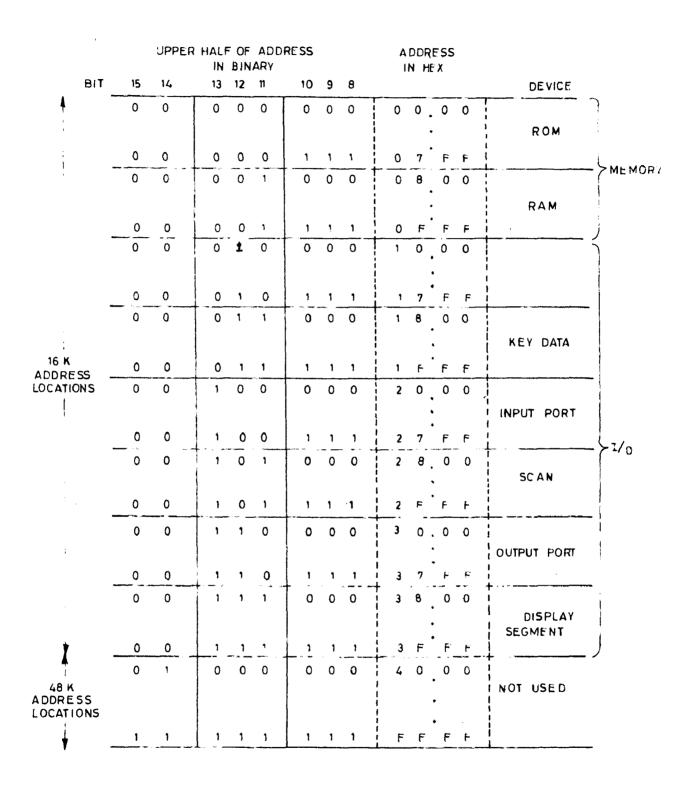


FIG 1.2 SYSTEM ADDRESS MAP FOR 2961 MICROPROCESSOR TRAINER

and one O/P port is shown in Fig.1.3. Hemory locations from 2000H to 27FFH serve a dual purpose. This space may either be utilized for addressing the Input port provided on the trainer, or else it may be used for 2K ROM storing the software for audio cassette interface, EPROM programming and some utility programmes. Either of these functions may be selected by the user by suitable positioning of a jumper provided on the trainer PCB. The address decoding circuitry for the 16K memory space is shown in Fig.1.4.

1.4 INPUT AND OUTPUT PORTS

The microprocessor trainer provides an eight bit parallel input port and an eight bit parallel output port. These ports may be addressed either through in-structions based on I/O mapped I/O (i.e. IN Fort or OUT port instructions) or those based on memory mapped I/O (i.e. STA addr or LDA addr and/other memory reference instructions). Since each of these ports is allocated 2K of memory space in the decoding, these ports may be addressed by any of the addresses shown in Table 1.1.

Both the ports are available on the 60-pin extension connector provided on the trainer. Through this connector all the signals of the 8085A CPU as well as some control signals used in the 2961 architecture are made available to the user for any hardware development.

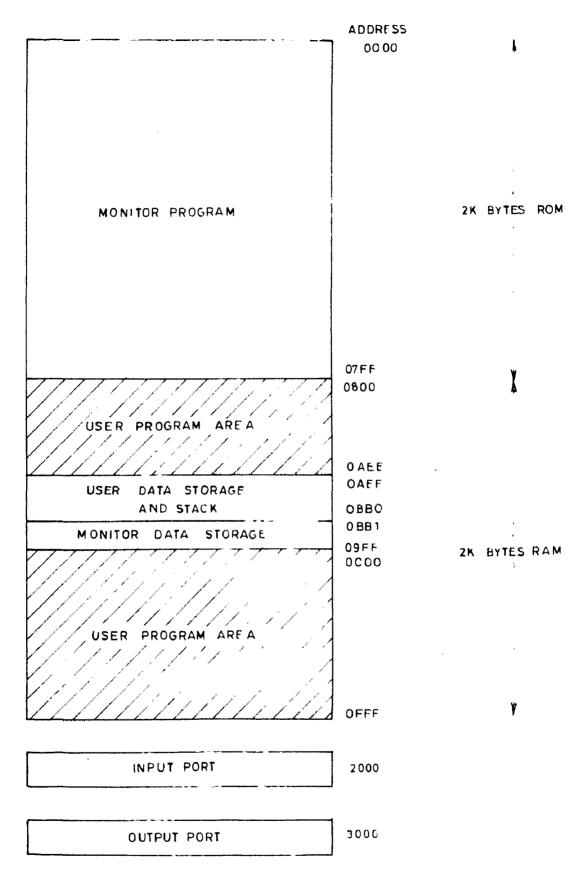
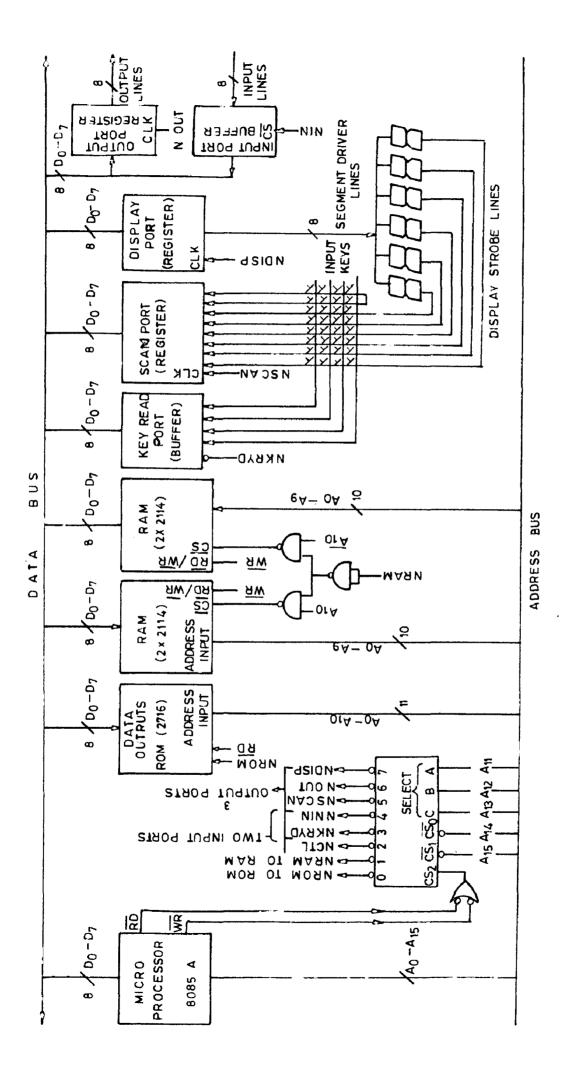



FIG.1.3 MEMORY ALLOCATION IN HIL 2961

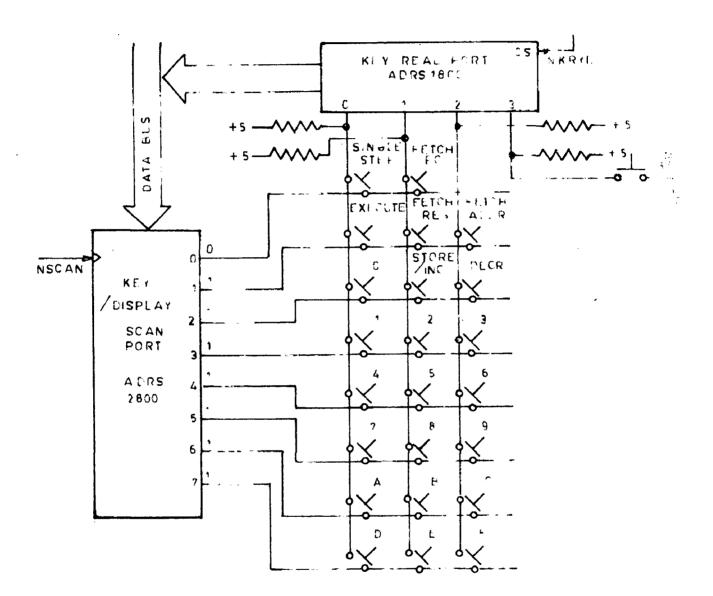

BLOCK DIAGRAM OF THE 2961 MICROPROCESSOR TRAINER SHOWING ADDRESS DECODING FIG.1.4

TABLE 1.1 : ADDRESSES FOR PORT SELECTION

S.N	o. Port	Type of addressing	Memory addresses/Port Nos for selection.
1	I/P port	I/O mapped	Port 20H to 27H
2		Memory mapped	2000H to 27FFH
3	0/P port	I/O mapped	Port 30 to 37H
4	d.0	Memory mapped	3000H to 37FFH

The data on the output port can be read on a set of 8 LEDs labelled OUTPUT on the display pannel. This data is latched through 741S273. This was very suitable for developing the IC tester, since a particular input for the IC under test could be held valid while the output of the IC was being read into the uP through the Input port.

In contrast, the Input port data bus is tristate buffered. Data can be entered into the input port by means of 'INPUT' switches provided on the trainer PCB. In order to load the data on the input port externally, all the switches must be held in 'HI' position, which pulls all the eight bits to logical 1. In addition, the jumper mentioned in Sec. 1.3 must be appropriately placed for enabling communication with the CPU through the input port.

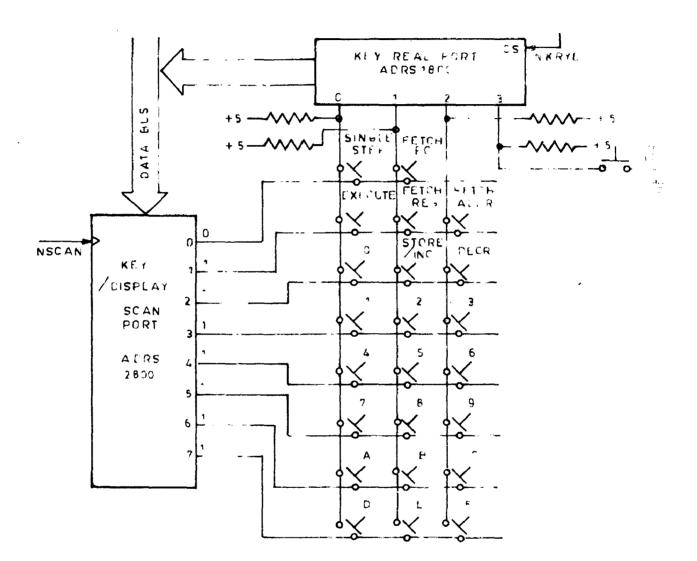
FIG 1.5 KEYBOARD INTERFACE IN HIL 2961

TABLE 1.1 : ADDRESSES FOR PORT SELECTION

S.No. Port		Type of addressing	Memory addresses/Port Nos for selection.			
1	I/P port	I/O mapped	Port 20H to 27H			
5	-0 D-	Memory mapped	2000H to 27FFH			
3	0/P port	I/O mapped	Port 30 to 37H			
4	-d.o-	Memory mapped	3000H to 37FFH			

The data on the output port can be read on a set of 8 LEDs labelled OUTPUT on the display pannel. This data is latched through 74LS273. This was very suitable for developing the IC tester, since a particular input for the IC under test could be held valid while the output of the IC was being read into the µP through the Input port.

In contrast, the Input port data bus is tristate buffered. Data can be entered into the input port by means of 'INPUT' switches provided on the trainer PCB. In order to load the data on the input port externally, all the switches must be held in 'HI' position, which pulls all the eight bits to logical 1. In addition, the jumper mentioned in Sec. 1.3 must be appropriately placed for enabling communication with the CPU through the input port.


1.5 KEYBOARD MANAGEMENT

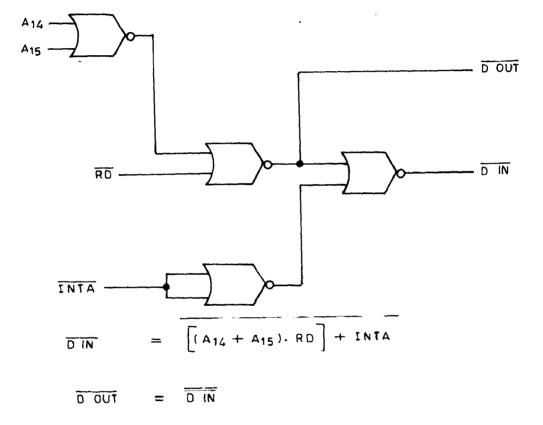
The keyboard consists of 24 keys. In order to differentiate between various keys, the keyboard is arranged into an 8 x 3 matrix. This is shown in Fig.1.5. The key scan port behaves as an output port and the key read port behaves as an input port. Through a monitor subroutine called KIND, different keys are identified uniquely as follows:

- 1. Data 11111110 is sent to the Scan port. Thus a LCM is placed on row zerc. other rows remain HIGH.
- 2. The key read port reads the column information .Since all bits are pulled HIGH, the column information will be XXXX1111 if no key is pressed.
- 3. In case a particular key in row zero is pressed, that particular column will be set LOW. This will be detected while reading the key read port.
- 4. If no key is found pressed, the monitor will arrange to place a zero on row 2,3 & so on and follow the same procedure. When aparticular key is found pressed, the uP branches to appropriate location connected fwith that key.

1,6 BUS PROTECTION

In order to protect the system from any conflict arising due to placement of data continuously by the user erroneously on the data bus, while the CPU is directed to perform other operations requiring the data bus, the trainer data bus,

FIG 1.5 KEYBOARD INTERFACE IN HIL 2961


.

available externally at the expansion connector, has been designed to remain in output mode, normally. The output buffers are permanently enabled by connecting the D CUT terminal to Ground. The input buffers are permanently disabled by connecting D IN terminals to +5V line directly. In case the user wants to expand the system, the data bus must be programmed to be in the desired input or output mode. This is achieved by first disconnecting the permanent connections of D OUT to Ground and of D IN to +5V and then connecting a logic circuit shown in Fig.1.6.

As mentioned in Section 1.3, only 16K bytes of memory space has been decoded inside the trainer. It can be seen in Fig.1.4 that A15 and A14 lines are always logical ZERO while addressing any location inside the trainer. For this address space, the circuit of Fig.4.6 ensures that the data bus is always in output mode irrespective of RD signal. (D OUT is LOW and D IN is HIGH). When any location from 4000H to FWFFH is being addressed, either A15 or A14 or both will always be logical ONE and now the data bus will be in input mode whenever either RD goes LCW or INTA goes LOW. Otherwise, the data bus will remain in output mode.

1.7 UTILITY PROGRAMS

Two of the utility programmes viz., DELB and HORM subroutines have been incorporated in the test programmes developed for IC testing. Assembly language programmes for these subroutines

•

FIG. 1.6 PROGRAMMING THE HIL 2961 EXTERNAL DATA BUS

.

were written down from the flow charts provided in the users' manual of HIL-2961. These programmes are given at Appendix 'C'.

.

-

.

CHAPTER-2

GENESIS OF IC TESTING AND 7400 TEST PROGRAMME

2.1 INTRODUCTION

Integrated circuit technology and its applications have brought about revolutionary changes in the design of circuits and systems. IC chips enable tremendous reduction in overall system size, increase system reliability and reduce maintenance and repair problems. Put in a well designed circuit, a good IC gives a long and trouble free service. Due to the dependence of correct system behaviour on the correct behaviour of the IC chip, there is an obvious need for testing an IC chip before using it in a circuit. An IC chip has numerous behaviourial aspects. These can be grouped, very generally, into two categories, viz., parametric behaviour and functional behaviour.

Parametric behaviour includes DC characteristics like threshold voltage, maximum voltage, fan-in, fanout; dynamic characteristics like propagation delays,

transient response; and frequency sensitivity, specifying the frequency range over which the IC can perform the desired function. Functional behaviour, on the other hand, describes the output response (logic function) of the IC chip to the specified combinations of input signals.

In order to absolutely minimize the risk of circuit malfunction, all the behavioural characteristics of IC chips, used in the circuit, must be tested. An IC must tester incorporating all the testing provisions, by necessity, be extremely fast and economically viable, if it is to be of any practical use. Besides, the design of such a tester is very complex and is beyond the perview of this dissertation.

A designer of a digital circuit must have detailed knowledge of digital electronics and of the capacities and capabilities of different ICs used in the circuit. A good designer takes care to ensure that, in so far as possible, the IC does not operate in a critical zone and that sufficient safety margin exists. Also, the production process of IC chips incorporates sufficient safeguards to guarantee very high overall reliability (95-98%).

Most irksome and at times, the most frequently encountered hazard is the spurious IC chip. Spurious chips are, therefore, responsible for major share of overall chip malfunctions. Such an IC chip can be easily spotted by functional testing. It can thus be seen that, provided sufficient care has been taken to ensure sufficient margin in parametric capabilities, an IC chip tested for correct functional behaviour, will function correctly in the circuit, in overwhelming majority of cases.

2.2 DETECTION OF LOGIC MALFUNCTION

Digital circuits are basically classified into combinational and sequential circuits. In combinational circuits, the circuit outputs depend entirely upon the present set of input vectors. In sequential circuits, the circuit outputs depend not only upon the present set of input vectors but also upon the past history of inputs. In either category,

a logic malfunction may be permanent or time varying. Permanent faults relate to faults caused by a particular line permanently stuck at zero (s-a-0) or stuck at one (s-a-1). Time varying or intermittent faults are caused by very close tolerances in the chip or due to general deterioration of components.

This basic differente leads to different approaches for developing fault detection test sets for combinational and sequential circuits. Without going into further details, it will suffice to say that in combinational circuits a minimal test set may be found by using only those input combinations for which the output function is different for correct and faulty circuit behaviour(2,3,4).

In development of test sets for sequential circuits, the emphasis is more on finding a suitable procedure for ensuring fault detection. Usually, the first step is to identify the current state of the circuit or to bring it to a known state and then apply test inputs in the sequence for which the output sequence is known.

Needless to say, the IC chips implementing combinational and sequential circuits will need accordingly specified testing procedures.

2.3 IMPLEMENTATION OF TEST SETS

Having developed the test set for an IC, the problem is confined to developing means of applying the test inputs and observing the responses. Manual procedures are discarded since the time factor involved would render such a procedure useless for practical application. Microprocessor, with its extremely fast speed of operation, extremely low hardware requirement, flexibility of operation due to software facilities etc. is an automatic choice for most efficient implementation of test sets.

Microprocessor based IC testers may again be of two types, viz., dedicated testers and universal testers. Dedicated testers will require different hardware for different ICs and are, as such, suited for application in places where only few specific types of ICs are being used. In a laboratory already having a microprocessor based system, it will be very easy and inexpensive to design such a tester.

Universal IC tester, as the name suggests, can test different types of IC chips using the same hardware. The problems encountered in such a design are discussed in chapter 6. The hardware cost of such a tester will, definitely, be more than a dedicated IC tester, but with a common hardware, such a tester is very useful for testing a wide variety of ICs, e.g., in a store of ICs from where ICs may be distributed to different sections.

2--5

In both the IC testers, a similar testing procedure may be used. Test programmes for testing different ICs are stored in the non-erasible memory. The IC to be tested is inserted in the test socket. The programme may be executed directly by the user, after finding out the starting location of the test programme; or by pressing different keys provided on the tester in a particular sequence.

Once the test programme begins, the microprocessor continuously sends different test inputs to the chip and reads the chip outputs. These outputs are compared with the desired response through microprocessor software. In case the two do not tally, the IC is faulty. This may be indicated by switching on a RED LED or sounding a horn or displaying a fault message.

In case the two outputs tally, the microprocessor proceeds to impress subsequent test inputs sequentially till all are exhausted or a wrong output is obtained, whichever is earlier. In case all outputs tally, the IC is declared as good. This may be accomplished by switching ON a GREEN LED or by displaying a suitable message.

2.4 DEVELOPMENT OF IC TESTER

In this dissertation, a dedicated IC tester has been developed. This IC tester makes use of the HIL-2961 microprocessor trainer. Initially, various test programmes were executed through HIL-2961 keyboard. The good status of an IC is indicated by a GREEN LED and the faulty status of an IC is indicated by a RED LED accompanied by a horn. Subsequent developments, including interfacing the HIL-2961 with a CRT terminal, are discussed in later chapters.

Implementing the test programme once and obtaining satisfactory results, does not, necessarily, mean absence of intermittent faults which are time varying. For this purpose, a facility has been provided to implement the test programme repeatedly. Generally, the test programme may be repeated 1000 times or so. However, at present, this facility has been restricted to repeatition of the test programme ten times. This number can be modified easily by changing the number loaded in the counter indicating number of repeat loops desired. Working on the same basis, reliability testing, using accelerated, destructive test procedure, can be incorporated. Key 5 on the HIL-2961 keyboard is programmed as the key for executing REPEAT instruction. To exit from the test programme, the user presses STOP key. Key 6 on the HIL-2961 keyboard is programmed to execute STOP instruction.

1.24

The programme for REPEAT and STOP keys was developed on the basis of keyboard management technique used by the HIL-2961 monitor. In addition, the IC tester programme uses DELB and HORN2 subroutines provided in the HIL-2961 monitor.

2.5 QUADRUPLE TWO INPUT NAND GATE IC 7400

7400 chip consists of four 2-input NAND gates. Its pin configuration is given in Appendix 'E'. The truth table for a two input NAND gate (Fig.2.1) is given in Table 2.1 for fault free operation.

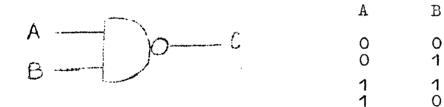


FIG.2.1 : TWO INPUT TABLE 2.1 : TRUTH TABLE NAND GATE

2.6 MINIMAL TEST SET DEVELOPMENT FOR IC 7400

The two input NAND gate shown in Fig.2.1 has three lines (two input lines and one output line). Assuming single faults leads to a total of six possible faults of the nature of s-a-1 or s-a-0.

С

1

1

0

In order to arrive at a minimal test set, we shall consider each fault separately and determine the test vector which detects this fault. The minimal combination of all such test vectors will yield the minimal test set.

For a particular fault \mathcal{L} , vector $(A,B)_{i}$ is a test vector iff the circuit yields different O/Ps for the circuit for healthy and faulty behaviour.

Therefore, for $(A,B)_i$ to be a test vector for fault \mathcal{L} ,

$$C_i \oplus C_i^{\mathscr{L}} = 1$$

where \bigoplus denotes exclusive - OR, C_i and C_i^{\bigstar} are O/P values of healthy and faulty gate respectively, corresponding to input vector (A,B)_i.

TABLE 2.2 Gives the test sets for individual faults.

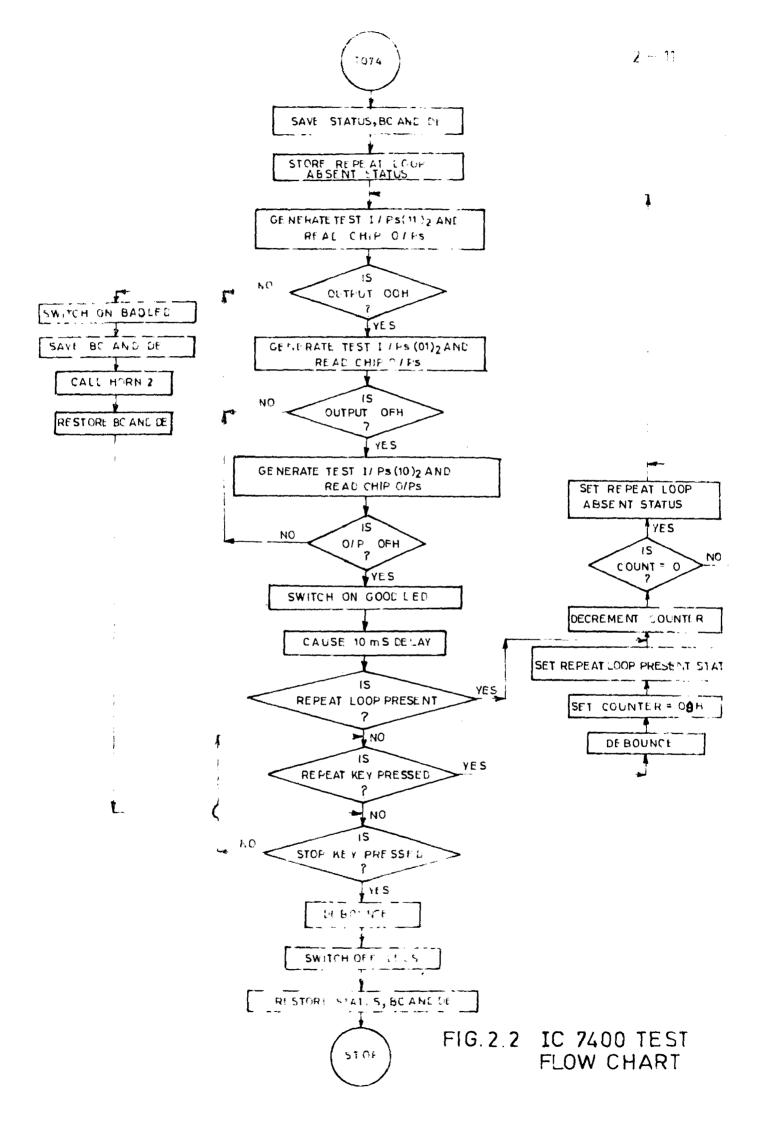
FAULT	$T \frac{EST}{A}$	VECTOR	С	c	c⊕ c [≵]
A.s-a-1	0	1	1	0	1
A s-a-O	1	1	0	1	1
B s-a-1	1	0	1	0	1
B s-a-0	1	1	0	1	1
C s-a-1	1	1	0	1	1
C s-a-0	0	0	1	0	1
C s-a-0	0	1	1	0	1
C s-a-0	1	0	1	0	1

TABLE 2.2 : TEST SETS FOR TWO INPUT NAND GATE

Complete test set is 01, 11, 10,11,11,00,01,10. The minimal test set, therefore, is 01,10,11.

01 tests faults A s-a-1, C s-a-0

10 tests faults B s-a-1, C s-a-0


11 tests faults A s-a-O, B s-a-O, C s-a-1

The flow chart implementing this test set in 7400 test programme is given in Fig.2.2.

2.7 KEY DEBOUNCING

Every mechanical key is associated with a clatter whenever it is pressed or released. This results in intermittent ON and OFF signal generation for about 5 ms whenever a key is pressed or released. Typically, thesignal generated whenever a particular key is pressed or released, may be as shown in Fig.2.3. In order to correctly interpret the signal from a particular key, special attention must be paid to this characteristic. In this dissertation, a software debounce programme has been developed and usedfor key 6 and key 5.

Having executed the test programme once, the microprocessor waits for a REPEAT or STOP instruction. It constantly scans the keyboard. Whenever it receives a signal indicating that key 6 or key 5 has been pressed, it waits for 10 ms to ignore the clatter. It then again scans the keyboard

*

•

to see if the key is still pressed and waits till the operator lifts his finger from the key. On receiving the indication that the key is released, the programme again waits for 10 ms to ignore the clatter associated with key release.

2.8 PROGRAMME FOR IC 7400 TEST

The programme for IC 7400 test through HIL-2961 is labelled as 'T074' and starts from location OCBOH in the ememory. Existing ports provided in HIL-2961 i.e., port 30 (O/P port) and port 20 (/P port) are used for applying test I/Ps and reading chip O/Ps. Circuit connections for 7400 test card are shown in Fig.2.4 and the PCB layout is given in Fig.2.5. The test programme is given below:

NAME OF	SUBROUTINE	T074	
INPUTS	NONE		
OUTPUTS	SIGNALS FOR		HORN
CALLS	DELB, HORN2		
DESTROYS			

DESCRIPTION TO74 CHECKS UP IC 7400 USING HIL 2961 KEYBOARD

OCBO OCBO	F5	Т074	PUSH	PSW	Save status	
OCB1	05		PUSH	В	Save BC	
OCB2	D5		PUSH	D	Save DE	
0СВ3 0СВ5	3E00 32FEOF		MVI STA	A, OOH RPTLP]	Store repeat loop absent status	

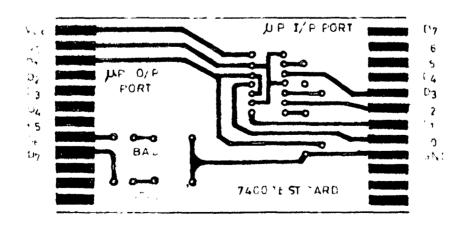
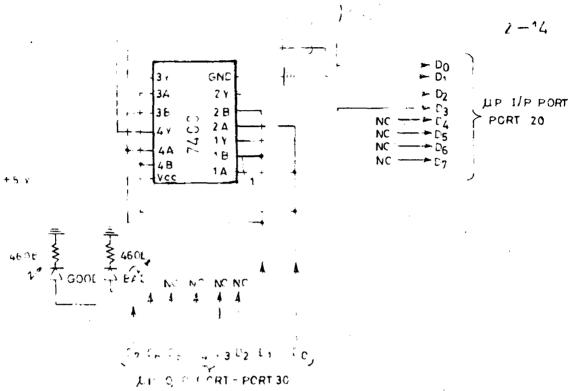



FIG. 2.4 7400 TEST CARD CIRCUIT DIAGRAM

.

•

OCB8	• • -	START	1 ef 7 Tr		
OCB8 OCBA	3 EO 7 D3 30		MV I OUT	A,07H 30H	Apply test I/Ps(11) to NAND gates
OCBC	DB20		IN	2011	Read chip O/Ps
OCBE	EGOF		ANI	OFH	Mask unwanted bits
0C C 0	C2270D		JNZ	FLIIND	If chip O/Ps are not correct, branch
0CC3 0CC5	2E06 D330		MV I OUT	A,06H 30H	Apply test I/Ps (10) ₂ to NAND gate
0007	DB20		IN	20H	Read chip O/Ps
0009	E60F		ANI	OFH	Mask unwanted bits
OCCB OCCD	FEOF C2270D		CPI JNZ	OFH FLIND	If chip O/Ps are not correct, branch
0CD0 0CD2	3 EO 5 D3 30		MV I OUT	A,05H 30H	Apply test I/Ps (01) ₂) to NAND gate
OCD4	DB 20		IN	20 H	Read chip O/Ps
OCD6	E60F		ANI	OFH	Mask unwanted bits
OCD8 OCDA	FFOF C2270D		CPI JNZ	OFH FLIND	If chip O/Ps are not correct, branch
OCDD CCDF	3 E80 2:20		MVI OUT	A, 80 H] %0 H	Chip is good. Switch on GOOD LED
OCE1 OCE4	010500 CD3004		L _X I CALL	B,0005H DELB	Cause 5 ms delay
OCE7 OCEA OCEC	3AFEOF FE15 CA570D		LDA CPI JZ	RPTLP 15H RPTND	If repeat loop is present, brandh
OCEF OCEF OCF1	A 3EEF D328	LPHA	MVI OUT	A, EFH] 28H	Set scan port to EFH
OCF3	DB18		IN	18H	Read key board I/P
OCF5 OCF7 OCF9	E607 FE05 CA390D		ANI CPI JZ	07H 05H ALPHA3	If REPEAT key (key5) is pressed, branch

•

CFC CEC CFE	ALPHA1 3EEF D328	MVI TUO	EFH 28H	Elase, set scan port to EFH
DO 0	DB18	IN	18H	Read keyboard I/P
D02 D04 D06	E607 FE03 C2EFOC	ANI CPI JN2	07H 03H ALPHA	If STOP key (key6) is not prexsed, try for another input
DO9 DOC	010A00 CD3004	L _X I CALL	B, OOOAH DELB	Cause 10 ms delay
DOF OF D11	ALPHA2 3 EEF D3 28	MVI OUT	A, E FH 28H	Set scan port to EFH
D13	DB18	IN	18H	Read key boand input
D15 D17 D19	E607 FE03 CAOFOD	ANI CPI JZ	O7H O3H ALPHA2	If OFF key is pressed, wait.
D1C	CD3004	CALL	DELB	Else, wait for 10 ms
D1F D21	3E00 D330	MVI OUT	A, OOH 30H	Switch OFF LEDS
723	D1	POP	D	Restore DE
D24	C1	POP	В	Restore BC
D25	F1	POP	PSW	Restore status
D26	76	HLT		
D27 D27 D29	FLTND 3E40 D330	MVI OUT	A, 40H 30H	Chip is bad. Switch on 'BAD' LED
023 D2C	C5 D5	PUSH PUSH	B D	Save BC Save DE

OD2D OD2F OD31	0620 1630 CD4704		MVI MVI CALL	D, 20H D, 30H HORN 2	Sound Horn
OD34	D1		POP	D	Restore DE
OD35	C1		POP	В	Restore BC
OD36	C3FCOC		JMP	ALPHA1	Go back to programme to get next instruction.
OD39 OD39 OD3C	010A00 CD3004	ALPHA3	LXI CALL	B, OOOAH	Debounce beg ins. Cause 10 ms delay
OD3F OD3F OD41 OD43	3EEF D328 DB18	ALPHA4	MVI OUT IN	A, EFH 28H 18H	Get an input from keyboard
0D45 0D47 0D49	E607 FE05 CA3FOD		ANI CPI JZ	07H 05H ALPHA4	If REPEAT key is still pressed, check again
OD4C	CD3004		CALL	DELB	Key released. Cause 10 ms delay.Dobounce ends
OD4F	110A00		L _X I	D,OAH	Set up repeat loop counte
0D52 0D54	3 E1 5 32EFOF		MVI STA	A, 15H RPTLP	Sct up repeat loop present status
OD57 OD57 OD58	7B FEOO	RPTND	MOV CPI	A, E OOH	Is the lower byte of counter exhausted?
OD5A	CA610D		JZ	RPT ND1	Yes-Branch
OD5D	1B		DCX	D	No-Decrement counter
OD61 OD61 OD62	7A F e 00	RPTND1	MOV CP I	A, D OOH	Lower byte of counter is zero. Is upper byte also zero?

OD64	CA6 BOD	JŻ	RPTND2	Yes-Branch
OD67 OD68	1 ^B C3B80C	DC X JMP	D START	No-Decrement counter Repeat programme
OD6B OD6B OD6D	RPT ND2 3 EOO 3 2 FEOF	MV I ST A	a, coh Rptlp	Counter exhausted. Load repeat Loop absent statu s
0 D70	C3 BSOC	JMP	START	Repeat programme

PROGRAMME TABLE

.

*

OFFE	RPTLP	EQU	OFFEH	Location for repeat
				loop status.

CHAPTER-3

INTERFACING HIL 2961 WITH CRT TERMINAL

INTRODUCTION: NEED FOR A CRT TERMINAL

that has been mentioned in Chapter 1/the visual display in the -2961 is limited to six digit, seven segment LEDs. This)ses a severe handicap on the user efficiency in communiing with the trainer. For example, having entered a gramme, checking for its correctness to ensure that the gramme has been entered correctly, the user has to examine address one by one. Besides being extremely slow and lous, this method is liable to cause repeated mistakes cially when checking up a long programme. Again, while igging a programme, the user may insert break points in programme or execute it instruction by instruction. The so obtained has to be noted down by the user and since Its of various instructions are not available directly, akes very long to spot bugs in the programme.

T terminal is an ideal solution to these problems. Due he semi-permanent display provided on the CRT screen, a e amount of data is available to the user. With a suitable tor, the user can get the entire programme or large blocks t on the screen, contents of various registers can be layed after execution of each instruction and many such rammes can be developed to enhance user efficiency. Interfacing a CRT terminal is, therefore, the first logical step in system development after the first stage of communicating directly with the microprocessor through a key board.

Besides, the process of developing the hardware inteface and software programmes for the monitor permits the user an intimate interaction with the numerous aspects of microprocessor functioning, thereby resulting in better understanding of the microprocessor's software potential and hardware requisites.

In the context of development of IC tester, the CRT terminal can be used effectively to simplify the testing procedure. With various messages printed on the screen in response to programmed keys, any person can use the IC tester without getting involved with unnecessary details.

Obviously, it is not economically viable to produce an IC tester with a CRT terminal. However, on the basis of this work a similar approach can be used to display different messages on a smaller display using 7 segment LEDs.

Nevertheless, the IC tester developed is very useful for use in a laboratory where a CRT terminal may be already available, thereby not requiring additional investment.

3.2 INTERACTIVE DISPLAY TERMINAL ADM-3A (5)

In very general sense, CRT terminal is a device which generates unique ASCII codes in response to different keys being pressed

on its keyboard. This code is then transmitted serially to the interfaced computer. It can also accept data through the connected computer serially, decode it and display the character on the screen. For the purpose of this dissertation, an 'Interactive Display Terminal ADM-3A', marketed by Lear Siegler, Inc., was provided by the Computer Centre.

ADM-3A has a 30 cm rectangular screen which can display 24 lines each having a maximum of 80 characters. It's keyboard layout is identical to that of a standard type-writer and has 59 keys. It can communicate over a large range of battd rates from 75 to 19200, switch selectable. It permits both RS-232C(6.7) and 20 mA current loop interface and has many other features described in Appendix 'D'.

For interfacing ADM-3A with HIL-2961 following features were selected.

- 1. RS-232C interface
- 2. Full Duplex mode
- 3. 300 baud rate
- 4. 7 bit data word length
- 5. Bit 8 forced to zero
- 6. Parity inhibited
- 7. 2 stop bits
- 8. AUTO NL mode
- 9. Upper case alphabetic characters' option.

3.3 DEVELOPMENT OF INTERFACE

Development of an interface between the CRT terminal and the microcomputer has the following two main aspects.

- 1. Hardware interface: It must satisfy the following requirements:
 - (a) Change TTL level signals from the microcomputer to RS-232Clevel signals for the CRT and vice versa,
 - (b) Convert parallel data from the microcomputer into serial form for transmission to the CRT terminal, and similarly convert serial data from the CRT into parallel 8-bit characters for the microcomputer; and
 - (c) To attach relevant framing information to each character received from the microcomputer for transmission to the CRT terminal and to remove this information before transmitting a character from CRT terminal to the microcomputer.

It may be noted that the hardware interface may be considerably simplified by using the SID and SOD lines of the 8085A. The microcomputer can then communicate serially with the CRT terminal without necessiating a serial to parallel conversion and vice-versa. In case of HIL 2961, the SOD line is connected permanently to a speaker and, therefore, not available unless this connection is cut. Another factor against the use of the SID and SCD lines is the time wasted by the microcomputer in sending and receiving data serially on these lines. This implies underutilization of the microprocessor efficiency.

2. Software interface: The functions outlined in 1(b) and (c) are fulfilled by the 82514 USART. The 82514 requires a software programme to enable its function in the desired manner. The software interface is also required for programming different keys on the CRT terminal keyboard for executing different commands on the microcomputer through the CRT terminal.

The hardware interface is akin toachandshake between two strangers and the soft-ware interface is like a common language the two must speak for an intelligent information exchange.

3.4 HARDWARE INTERFACE

The hardware interface development consisted of developing following units:

1. +5V, +12V and -10V power supply.

2. Baud Rate Generator

3. RS-232C and 8251A USART interface

Each of these will be discussed in subsequent sections.

3.5 POWER SUPPLY

The power supply is used for providing +5V supply to different ICs and +12V and -12V supplies are used for different transisinterface. tors used in the RS-232C/ Since the hardware circuitry is designed to operate correctly at the specified voltages, there is an obvious need for a regulated power supply. Regulated +12V and -10V supplies were obtained using ICs 723 and 741. The +5V regulated supply was obtained using IC 7805. The circuit diagram for the power supply is shown in Fig.3.1 and the PCB layout is shown in Fig.3.2.

3.6 BAUD RATE GENERATOR

Using the 2MHz clock available at CLK OUT terminal (Pin 37) of the 8085A CPU (available at Pin 28 of the extension connector of HIL 2961), a variable baud rate generator has been developed. This can provide switch selectable baud rates of 19200, 9600, 4800, 2400, 1760 and 1200. When used in conjunction with the 'baud rate factor' facility provided in the it INTEL 8251A USART/can ehable the user to operate the CRT terminal at different baud rates. In addition, using the 1760 baud rate and a band rate factor of 16 in the 8251A, an interface for interfacing the HIL 2961 with a tele-typewriter can also be developed.

IC 74161 is the basic chip used for generating different baud rates. It is a synchronous, presettable, 4 bit binary counter. The synchronous feature is useful for high frequency

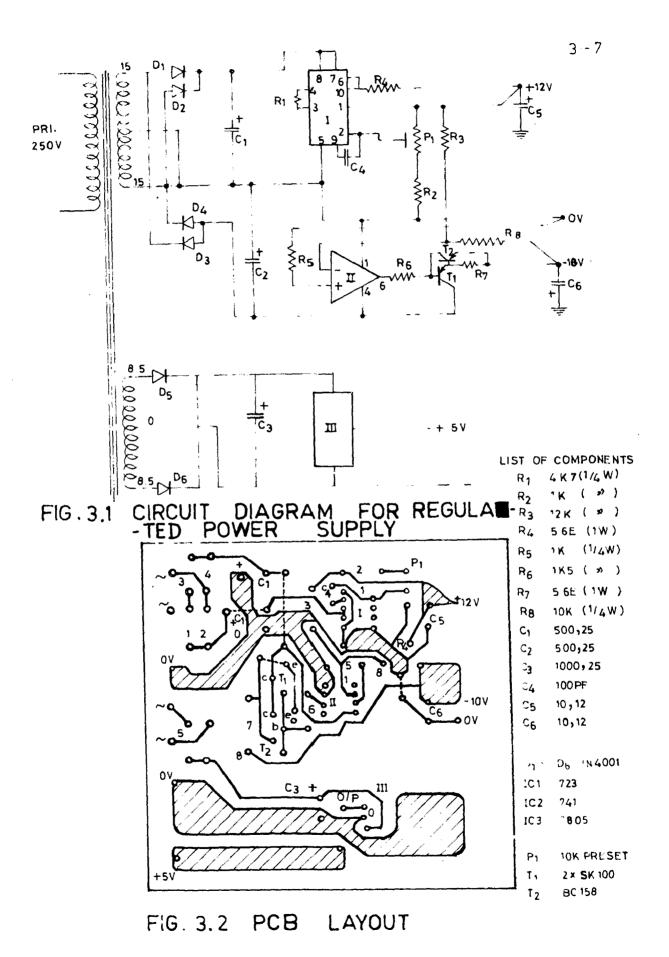
operation and the pre-settable feature reduces the external hardware to a bare minimum. Thepin configuration and other details of 74161 are given in Appendix 'E'.

3.6.1 Design Calculations

Original frequency : 2MHz Frequencies desired : 19200, 9600, 4800, 2400, 1760, 1200 Dividing factors : As per table 3.1 <u>TABLE 3.1 : Dividing Factor Calculations</u> Frequencies Dividing required. factors 19200 13,8

19200	13,8
9600	13,16
48 00	13,16,2
2400	13,16,4
1760	14,16,5
1200	13,16,8

Three 74161s are used. The first one is used as \div 13 or \div 14 counter (first state), the second one is used as \div 2, \div 4, \div 5 or \div 8 counter (third stage), the third one is used as \div 9 or \div 16 counter (second stage). \div 13, \div 14 and \div 5 counts are obtained by programming the counter. Appropriate inputs are placed at terminals 3,4,5 and 6, and the counter begins counting sequence from states determined by the particular combination of inputs.


3.5 POWER SUPPLY

The power supply is used for providing +5V supply to different ICs and +12V and -12V supplies are used for different transisinterface. tors used in the RS-232C/ Since the hardware circuitry is designed to operate correctly at the specified voltages, there is an obvious need for a regulated power supply. Regulated +12V and -10V supplies were obtained using ICs 723 and 741. The +5V regulated supply was obtained using IC 7805. The circuit diagram for the power supply is shown in Fig.3.1 and the PCB layout is shown in Fig.3.2.

3.6 BAUD RATE GENERATOR

Using the 2MHz clock available at CLK OUT terminal (Pin 37) of the 8085A CPU (available at Pin 28 of the extension connector of HIL 2961), a variable baud rate generator has been developed. This can provide switch selectable baud rates of 19200, 9600, 4800, 2400, 1760 and 1200. When used in conjunction with the 'baud rate factor' facility provided in the it INTEL 8251A USART/can ehable the user to operate the CRT terminal at different baud rates. In addition, using the 1760 baud rate and a band rate factor of 16 in the 8251A, an interface for interfacing the HIL 2961 with a tele-typewriter can also be developed.

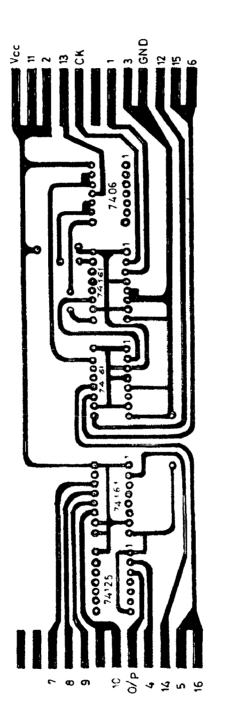
IC 74161 is the basic chip used for generating different baud rates. It is a synchronous, presettable, 4 bit binary counter. The synchronous feature is useful for high frequency

operation and the pre-settable feature reduces the external hardware to a bare minimum. Thepin configuration and other details of 74161 are given in Appendix 'E'.

3.6.1 Design Calculations

Original frequency : 2MHz Frequencies desired : 19200, 9600, 4800, 2400, 1760, 1200 Dividing factors : As per table 3.1 TABLE 3.1 : Dividing Factor Calculations Frequencies Dividing required. factors 19200 13,8 9600 13,16 4800 13.16.2 2400 .13,16,4 1760 14,16,5 1200 13,16,8

Three 74161s are used. The first one is used as \div 13 or \div 14 counter (first state), the second one is used as \div 2, \div 4, \div 5 or \div 8 counter (third stage), the third one is used as \div 9 or \div 16 counter (second stage). \div 13, \div 14 and \div 5 counts are obtained by programming the counter. Appropriate inputs are placed at terminals 3,4,5 and 6, and the counter begins counting sequence from states determined by the particular combination of inputs. The circuit diagram for the baud rate generator PCB is shown in Fig.3.3. In order to provide a buffered output, a 74125 buffer has been used. The PCB layout is shown in Fig.3.4. In order to make the baud rate generator an independent unit, separate power supply has been provided for it. The regulated +5V supply uses a 7805IC.

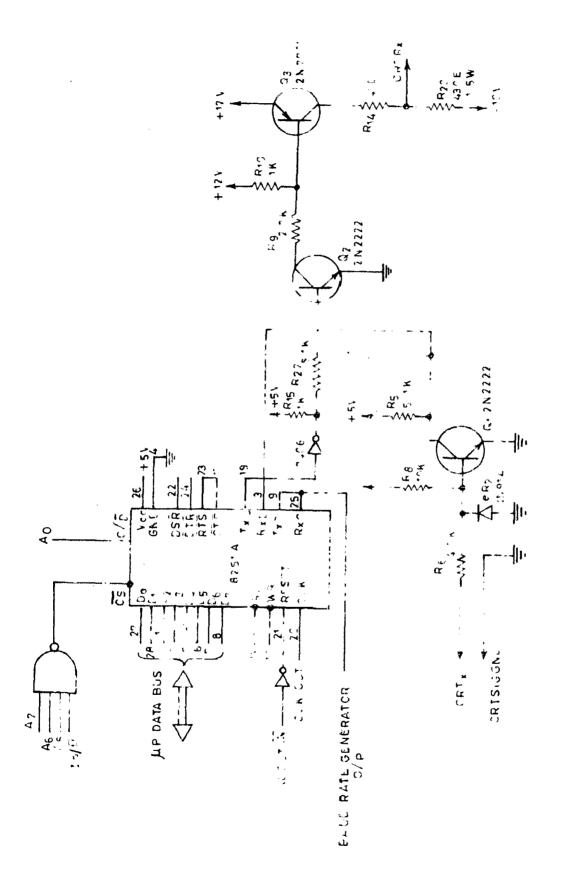

3.6.2 Operating the Baud Rate Generator

The front panel of the baud rate generator has two select switches. Right hand side selector switch labelled 'MASTER SELECT' selects either 1760 or the group of other baud rates. For individual baud rates, the left select switch labelled 'RATE SELECT' is then used. The recommended operating procedure is as under:

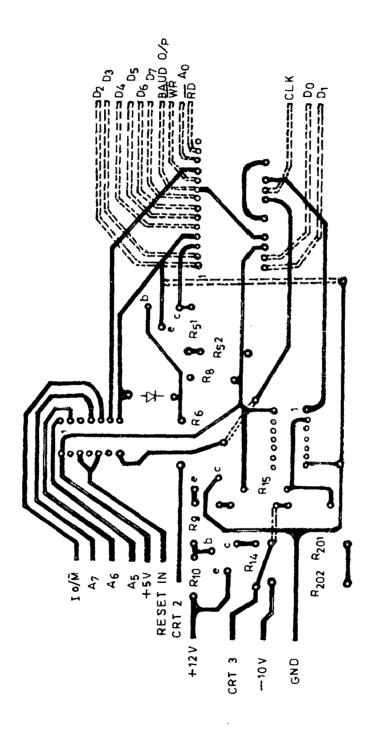
- Before connecting the unit to power supply, ensure that both the select switches are in OFF position and the power on switch is OFF.
- 2. Select appropriate switch positions for the desired baud rate.
- 3. Connect the CLK OUT terminal of 8085A to the terminal marked I/P on the front pannel. Connect the Ground terminal to terminal marked GND.

BAUD RATE GENERATOR CIRCUIT DIAGRAM d/0 - GND - Vc c U U A Þ · 4 . [, [; ,]]] · · 74 '6' *;]; _____ 4 · · · + · J CUMITENTS Γ FIG. 3.3 <u>_</u> Ξ ہم (م) 60 •] 2 2 1 - 3 , 12 - 13 , 14 - C 16 , 4 - 17 - 1 وَي 1 4 73 5 8017 ' 510171 " # 0121 201. 1752 1270 " J 470 15 , J 470 9 9 J.J. F а. 12. т WITE CONNETTS ł 1 5 OR 116 TC 2, 12 TO " , 14 TO 15 1, "2 TOM 9 14 TOM 12: 3 ļ H N 1 * * * 1 • • • • ++ 1 E1 + HO 71 + -هې مړ ~ I **b** - -4 . EAUD RATES 1 2 | | 24.0C 12.0C 00261 1800 . ••• - d/:

3 1'


- 4. Connect 230V supply and switch ON the power ON switch.
- 5. Switch on the trainer to activate the 2MHz clock.
- 6. The desired band rate is available at terminal marked O/P.

3.7 RS-232C AND 8251A USART INTERFACE (8)


ADM-3A offers two possible interfaces viz., RS-232C and 20 mA current loop. In this dissertation RS-232C option was chosen. RS-232C uses negative true logic for its operation. -15V to -5V is recognised as logic 1 and +5V to +15V is recognised as logic 0 level. TTL levels used by HIL 2961, on the other hand, use positive true logic, recognising 2.4 V to 5.25V as logic 1 and 0 V to .8V as logic 0 (9).

'RS 232C and 8251A USART interface' is the unit which performs the functions of a hardware interface outlined in section 3.3. Power supply and the baud rate generator are used as supporting units to make this unit functional. The circuit diagram of this interface is shown in Fig.3.5 and the PCB layout is given in Fig.3.6.

The ADM-3A terminal operates in asynchronous format, the 8251A can operate both in the synchronous and the asynchronous format. In order to understand the microcomputer to CRT terminal interface, it is necessary to understand the techniques of serial data transmission. Appendix 'F' provides a brief description of communication formats with special emphasis on asynchronous format.

8251 A USART INTERFACE RS 232 C AND FIG. 3.5

3.7.1 INTEL 8251A USART

INTEL'S 8251A 'Universal Synchronous Asynchronous Receiver Transmitter' is an IC chip that facilitates data transfer between a parallel and serial device. The functions of a USART are as follows:

- Receive parallel data from the microprocessor, convert it into serial form and encode it as per the required format.
- 2. Transmit this data to the I/O device.
- 3. Receive serial data from the I/O device, decode it, convert it into parallel data and send it to the microprocessor.
- 4. Generate appropriate control signals to inform the microprocessor that it is ready to receive a word from it or that it already has a word yet to be transmitted to theI/O device, to inform the microprocessor that it has a data word for it from the I/O device. It also checks the data word for correct format and raises appro-

priate signals for correctness/fault. The detailed description of 8251A is given in Appendix 'G'. The operation of the 8251A in the interface developed is as under. Pins D_0 - D_7 (Pin Nos 27,28,1,2,5,6,7,8) are connected to the microprocessor data bus. TXD (pin 19) is used for either loading the mode and control instruction, or for reading the Status Register. The RTS (Pin 23) and the CTS (Pin 17) terminals are shorted together to enable data transmission. Other pins of the 8251A are not used.

Once all external connections are made with the interface unit, and the power is switched ON on all supporting units, the interface becames functional. However, before the interface can commence operation, the 8251A must be programmed. This willbe discussed in the software development described in Chapter 4. 3.7.1 INTEL 8251A USART

INTEL'S 8251A 'Universal Synchronous Asynchronous Receiver Transmitter' is an IC chip that facilitates data transfer between a parallel and serial device. The functions of a USART are as follows:

- Receive parallel data from the microprocessor, convert it into serial form and encode it as per the required format.
- 2. Transmit this data to the I/O device.
- 3. Receive serial data from the I/O device, decode it, convert it into parallel data and send it to the microprocessor.
- 4. Generate appropriate control signals to inform the microprocessor that it is ready to receive a word from it or that it already has a word yet to be transmitted to theI/O device, to inform the microprocessor that it has a data word for it from the I/O device. It also checks the data word for correct format and raises appro-

priate signals for correctness/fault. The detailed description of 8251A is given in Appendix 'G'. The operation of the 8251A in the interface developed is as under. Pins D_0 - D_7 (Pin Nos 27,28,1,2,5,6,7,8) are connected to the microprocessor data bus. TXD (pin 19) is

connected to 'Receive Data' pin (pin 3) of ADM-3A. RXD (pin 3) is connected to 'Transmit Data' pin (pin 2) of the ADM-3A. Connections from 8251A to ADM-3A carry the necessary circuitry for changing the voltage levels appropriately to TTL level or RS-232C. TXC (Pin 9) and RXC(Pin 25) are shorted and connected to the output of the band rate generator. CLK (Pin 20) is connected to CLK OUT terminal of 8085A which is of 2MHz frequency. RD, WR, Vcc and GND are appropriately connected. RESET (Pin 21) is connected to the RESET IN terminal of 8085A through an inverter. In the present design, the 8251A can be addressed by any port number between EO to FF. Accordingly, the CS (Pin 11) terminal is connected to the output of a four input NAND gate having 8085 signals A7, A6, A5 and IO/M as its inputs. The other select terminal C/\overline{D} (Pin 12) is connected directly to address line A_{\bigcirc} of the microprocessor. In this dissertation, the 8251A is addressed either as EO or E1. Addressing it as port EO enables data transfer between USART and the microprocessor, while the E1 address is

used for either loading the mode and control instruction, or for reading the Status Register. The RTS (Pin 23) and the CTS (Pin 17) terminals are shorted together to enable data transmission. Other pins of the 8251A are not used.

Once all external connections are made with the interface unit, and the power is switched ON on all supporting units, the interface becames functional. However, before the interface can commence operation, the 8251A must be programmed. This willbe discussed in the software development described in Chapter 4.

CHAPTER-4

MONITOR FOR THE CRT TERMINAL (10)

4.1 INTRODUCTION

As discussed in Section 3.3, a software interface is necessary for integelligent interchange of information between the microprocessor and the CRT terminal. This software performs two distinct functions:

- Programming the 8251A : For proper working, the USART must be programmed correctly before commencing data transfer. This involves loading the appropriate Thode word. and control word into the 8251A control register.
- 2. Programming ADM-3A keys for specific tasks: This involves developing programmes for identifying different keys and executing commands represented by them.

Accordingly, different programmes have been developed. All these programmes together constitute the monitor for the IC tester. Different programmes in the monitor developed in this dissertation shall be discussed in subsequent sections. The complete monitor listing is available at the end of this Chapter.

4.2 SIGN ON MESSAGE PROGRAMME

Once the hardware interface has been activated, the execution of this programme results in the initial sign on message, 'IC. TESTER I READY' to be displayed on the ADM-3A screen. The Control word used is' CEH, i.e., (11001110)2. This implies that the data communication is in asynchronous format, Character length is 8 bits, 2STOP bits will be added to each character, parity is not being used and the baud rate factor is 1/16. Since the ADM-3A band rate has been selected as 300, therefore the band rate generator output, connected to TxC & RxC terminals of 8251A, must be selected as 4800 band. The mode word used is (27)_H. This implies that RTS will be held LOW, Receive and Transmit functions are enabled and the DTR (Data Terminal Ready) signal is enabled. Since RTS is connected directly to CTS, CTS will also be forced LOW and this will enable data transmission. This programme labelled 'SIGNON' resides in memory location O800H to O813H in the monitor.

4.3 GET COMMAND PROGRAMME

After displaying the initial sign - on message, the monitor requests the user for a command by displaying a prompt character "." This involves polled data transfer. The status register of the 8251A is repeatedly checked to see if any character has been received by the receiver, i.e., to check if a key has been pressed on the key board. Once a key is pressed on the key board, the programme compares the code generated against the list of valid commands for the monitor. In case the code signifies one of the valid commands, the control is passed to the concerned programme for further execution. Otherwise, an asterik (*) signifying erroneous command is displayed on the terminal screen and the monitor once again waits for a valid commandfrom the user. This programme is labelled 'GETCMD' and resides in memory locations O816H to O83DH in the monitor.

4.4 FUNCTIONAL COMMANDS

The programmes discussed in Section 4.2 and 4.3 are automatically executed when the control is transferred to the ADM-3A keyboard from the HIL 2961 keyboard by executing the programme from O800H. After the control is transferred to the ADM-3A keyboard, the HIL 2961 can regain the control at any time by pressing the RESET key on HIL-2961 keyboard.

Three functional commands have been provided in the IC tester monitor :

- 1. TRY command
- 2. LIST command
- 3. EXECUTE command

Function of these commands shall be explained individually later in this chapter. The monitor has been so programmed that each command must be terminated by a CARRIAGE RETURN. 177/60

A.C.S. 13. 14.14 14

Any other character used for terminating the command shall make the command invalid. This gives the user the option of abondoning a command at any stage before the RETURN key is pressed.

4.5 TRY COMMAND

This command is represented by key T on the ADM-3A key board. On pressing T, the monitor responds by displaying ICNO: . The user should now type the number of the IC. The numbers will be displayed on screen. The monitor recognises four hexadecimal digits as valid number of digits. If less than four digits have been typed, the monitor will wait for the remaining If more than four digits digits and initiate no other action. are typed, the monitor will cause the error character to be displayed and revert to GET CMD programme. The monitor recognises T command as a valid command only for the 74 series of TTL. Typing any other number in the first two digits results in error character display. Every time an error character is displayed the monitor jumps to the GET CMD programme, abondoning whichever command it was receiving. With small changes, T command can be used for other IC series also. Once all the four digits have been typed, the command must In case the IC tester be terminated by the RETURN key. has a software programme for testing the IC mentioned, it sends the following message:

AVAILABLE

LOCATION :

The memory location, at which the programme for testing the IC in question begins, shall be displayed in front of LOCATION:

In case the IC tester does not have a software programme for testing the IC, following message will be displayed:

NOT AVAILABLE

In both the cases, after displaying the message, the monitor shall revert to the GET CMD programme. The TRY command programme is labelled as TRY and resides in memory locations O88AH to O89AH in the monitor.

4.6 LIST COMMAND

This command is represented by key L on the ADM-3A key. Like other commands, this command also must be terminated by RETURN. The complete command is as follows :

L RET

This causes the monitor to list all the ICs for which a diagnostic programme is available. List command is labelled LIST and resides in memory location 0947H to 095DH in the monitor.

4.7 EXECUTE (GO) COMMAND

This command is represented by key G on the ADM-3A key board. A valid GO command consists of typing G followed by four valid hexa-decimal digits and terminated by the RETURN key. In case more than four hexa decimal digits are typed, the monitor recognises only the last four digits as the starting address of the programme to be executed. Once a valid command is received, the address typed in bythe user is loaded in the programme counter of the µP and control is transferred to the programme. After execution of the programme, the control is transferred back to the monitor which goes back to the 'GETCMD' programme. The programme for EXECUTE command is labelled as GCMD and it resides in memory location 095EH to 097CH in the monitor.

4.8 SUB-ROUTINES FOR PROGRAMMES

Many sub-routines like CI, CO, ERROR, GETHX etc. are frequently called by various programmes listed in previous sections. These programmes can be understood by studying the comment field provided alongwith the programme in the monitor listing.

4.9 MONITOR LISTING

Complete monitor listing is given in Table 4.1. First column gives the first memory location in hexa-decimal code for the corresponding instruction, the second one gives the content(s) of memory location (s) for the instruction in hexa-decimal, the third column carries the label accorded to the instruction, if any, fourth column specifies the mnemonic for the instructions. Operands taking part in the instruction are specified in the fifth column and the sixth column represents the comment field. A brief description of the programme is given at the beginning of each programme.

TABLE 4.1 : MONITOR LISTING

1000

SIGNON PROGRAMME

NAME	SIGNON				
INPUTS OUTPUTS	NONE SIGN ON	MESSAGE 'I.C.	TESTER	READY	ł
		ON SCREEN			

CALLS CO DESTROYS A, B, C, H, L, F/Fs

DESCRIPTION SIGN ON message is displayed on screen. The USART is assumed to come up in RESET position (This will be taken care of by the hardware). Once the USART has been initialisted, subsequent entry for printing the SIGN ON message and for transfer control to ADM-3A from HIL 2%1 keyboard must be made at location 0808H.

)800	SIGNON			
)800)802	3ECE D3E1	MVI OUT	A, MODE CNTL	Output mode word to USART control port.
1804 1806	3E27 D3E1	MVI OUT	A, CMD CNTL	Output command word to USART Control port.
808	SIGN1			Restart point
808	21000F	ΓXΙ	H,MSG	Load memory pointer with address of SIGN ON message
80 B	0614	MVI	B,LMSG	Load number of character in SIGN ON message in B
CO8	SIGN05			
80D	4E	MOV	С,М	Get the character in C.
80E	CD6408	CALL	CO	Output character to screen
811	23	INX	Н	Move memory pointer to next character
812	05	DCR	·B	Reduce number of characters to be output by 1.
813	C20D08	JNZ	SIGN05	Repeat if all characters not displayed.

GET COMMAND PROGRAMME

NAME INPUTS	GETCMD NONE			
OUTPUTS		CHARACTER'.' DISPLAYED	ON	SCREEN

CALLS ECHO, CI, ERROR DESTROYS A, B, C, H, L, F/Fs

DESCRIPTION GETCMD PLACES A PROMPT CHARACTER ON THE SCREEN AND WAITS TO RECEIVE AN INPUT CHARACTER FROM THE USER. IT THEN ATTEMPTS TO LOCATE THIS CHARACTER IN ITS COMMAND CHARACTER TABLE. IF SUCCESSFUL. THE. ROUTINE CORRESPONDING TO THIS CHARACTER IS SELECTED FROM A TABLE OF FUNCTIONAL COMMAND ADDRESSES, AND CONTROL IS TRANSFERRED TO THIS ROUTINE. OTHERWISE, CONTROL IS TRANSFERED TO ERROR ROUTINE

0816	GETCMD	MVI		·
08 16	OE2E ·	MVI	0, 1.1	Send prompt character to C
08 18	CD3E08	CALL	ECHO	Send prompt character to display
081B	CD5708	CALL	CI	Get character from user
08 1E	CD3E08	CALL	ECHO	Display it on the screen
0821	79	MOV	A,C	Get character to A
082 2	010300	IxI	B,NCMDS	Load BC pair with number of valid functional commands
0825	21140F	IxI	н, став	Load memory pointer with address of valid commands' table
0828	GET05			
08 28	BE	CMP	M	Compare table entry and character
082 9	CA3408	JZ	GET10	Branch if equal-command recognized
382C	23 1	NX	Ħ	Else, increment table pointer.

)82D	OD	DCR	C	Decrement number of commands to be compared.
)82E	C22808	$\mathbf{J}\mathbf{N}\mathbf{Z}$	GET05	Branch if not at table end
)831	C36F08	JMP	ERROR	Elese, command character is Illegal.
)8 34	GET10			
)834	21170F	TXI	H,CADDR	Valid command, load address of table of functional command addresses.
)837	09	DAD	В	Add what is left of number of valid commands
)838	09	DAD	В	Add again each entry in CADDR is 2 bytes long
1839	7E	MOV	A,M	Get lower byte of address of table entry to A.
)83A .	23	INX	Н	Point to next byte in table
1 83 B (66	MOV	H,M	Get upper byte address in H
)83C (6F	MOV	I, A	Move lower byte address to L
)83D [E9	PCHL		Transfer control to functional command programme

NEME OF SUBROUTINE ECHO INPUTS C- CHARACTER TO ECHO TO TERMINAL OUTPUT C- CHARACTER ECHOED TO TERMINAL CALLS CO DESTROYS A, B, F/Fs

DESCRIPTION CHARACTER CONTAINED IN C IS DISPLAYED ON TERMINAL. A CARRIAGE RETURN IS ECHOED AS A CARRIAGE RETURN LINE FEED, AND AN ESCAPE CHARACTER IS ECHOED AS **\$**.

083E 083E	ECHO 41	MOV	°D C	Come and the
100	-4. 1	PIO V	в,С	Save argument
083F 0841	3E1B B8	MVI CMP	ESC B	See if Echoing an Escape character
0842	C24708	JNZ	ECHO05	No-Branch
0845	0E24	MVI	с,\$	Yes, Echo as \$
0847	ECHOO5			
0847	CD6408	CALL	CO	Output through Monitor
084A 084C	3EOD B8	MVI CMP	CR B	See if character echoed was a CARRIAGE RETURM
084D	025508	JNZ	ECHO10	No-No need for special action
0850 0852	OEOA CD6408	MVI CALL	C,LF CO	Yes - Echo line feed also
0855	ECHO10			
0855	48	MOV	C,B	Restore argument
0856	09	RET		

distance in the second second	
NAME OF SUBROUTINE	CI
INPUTS NONE	$(x, y) \in \mathbb{R}^{n}$,
OUTPUTS A AND C .	CHARACTER FROM CONSOLE
CALLS NOTHING	
DESTROYS A, C, F/Fs	
đ •	

DESCRIPTION CI WAITS UNTIL A CHARACTER HAS BEEN ENTERED AT THE CONSOLE. IT THEN RETURNS THE CHARACTER IN A AND CREGISTERS.

0857	. CI			
0857	DBE1	IN	CNTL	Get USART status
0859	E602	ANI	02H	Check for receiver buffer ready
085B	CA5708	JZ	CI	Not yet - Wait

085E	DBEO	IN	DATA	Yes - Get character to A
0860	E67F	ANI	PRTYO	Turn off part y bit, if set by console
0862	4 F	MOV	C,A	Put value in C
0863	C9	RET		

NAME OF	SUBROUTINE CO	
INPUTS	C- CHARACTER TO CONSOLE	•
OUTPUTS	C- CHARACTER OUTPUT TO CONSOLE	
CALLS	NOTHING	
DESTROYS	A,F/Fs	
	-	

DESCRIPTION CO WAITS UNTIL THE CONSOLEIS READY TO ACCEPT A CHARACTER AND THEN SENDS INPUT ARGUMENT TO CONSOLE

0864	CO			
0864	DBE1	IN	CNTL	Get USART status
0866	E601	ANI	01 H	See if transmitter ready
0868	CA6408	JZ	CO	No - Wait
08 6B	79	MOV	A,C	Yes - Move character to A
086C	D3EO	OUT	DATA	Send to console
086E	C9	RET		

,

NAME OF SUBRO INPUTS NONE OUTPUTS CALLS ECHO, DESTROYS A, B,	ERROR CHARACTER TO CONSOLE CROUT, GETCMD
DESCRIPTION	PRINTS ERROR CHARACTER (ASTERIK) ON THE SCREEN, FOLLOWED BY A CARRIAGE RETURN, LIME FEED AND THEN RETURNS CONTROL TO GETCMD.

.

086F	ERROR			
086 F 0871	OE2A CD3EO8	MVI CALL	с,* Есно]	Send * to console
0874	CD7A08	CALL	CROUT	Send line feed, carriage return to console
0877	C31608	JMP	GETCIMD	Try again for another command

NAME OF SUBROUTINE CROUT INPUTS NONE CUTPUTS NONE CALLS ECHO DESTROYS A, B, C, F/Fs

DESCRIPTION CROUT SENDS A CARRIAGE RETURN (AND HENCE A LINE FEED) TO THE CONSOLE.

087A	CROUT			
08 7 A	OEOD	MVI	C,CR	Load CARRIAGE RETURN code in C
0870	CD3E08	CALL	ECHO	Output to console
087F	C9	RET		

NAME OF SUBROUTINE MSGOUT INPUTS B, H,L OUTPUTS CHARACTERS TO CONSOLE CALLS CO BESTROYS A,C,F/Fs

DESCRIPTION MSGOUT PRINTS INPUT MESSAGE ON SCREEN. THE ADDRESS OF THE FIRST CHARACTER OF MESSAGE IS CONTAINED IN HL PAIR, AND THE NUMBER OF CHARACTERS IN THE MESSAGE IS CONTAINED IN B.

0880		MSGOUT			
0880	4E		MOV	С,М	Get character to C
0881	CD6408		CALL	CO	Output to console
0884	23		INX	H	Point to next character
0885	05		DCR	В	Decrement number of characters still to be printed
0886	C28008		JNZ	MSGOUT	If all characters not prin- ted - repeat
0889	C9		RET		Complete message printed. Therefore return to main programme.

NAME OF SUBROUTINE TRY INPUTS FOUR DIGITS FROM CONSOLE OUTPUTS MESSAGE ON SCREEN CALLS MSGOUT, SRCH, GETCMD DESTROYS A, B, C, E, H, L, F/Fs

DESCRIPTION TRY CHECKS UP IF THE DIAGONSTIC PROGRAMME, FOR THE IC USER WANTS TO TEST, IS AVAILABLE OR NOT. IN CASE THE PROGRAMME IS AVAILABLE, THE AVAILABLI ITY IS CONFIRMED AND THE STARTING ADDRESS FOR THAT PROGRAMME IS PRINTED ON THE SCREEN OTHERWISE 'NOT AVAILABLE' MESSAGE IS PRINTED.

088A	TRY			
A880	211FOF	LxI	H, TRYMSG	Load memory pointer with first address of TRYMSG
088D	0609	MVI	B,LTRMSG	Load the number of charac- ters.in TRYMSG IN B
088F	CD8008	CALL	MSGOUT	Send message to screen
0892	CD9B08	CALL	SRCH	Get inputs from console and check availablity of prog- ramme.
0895	CD8008	CALL	MSGOUT	Send result of SRCH to console
0898	031608	JMP	GETCMD	Try for next command

NAME OF SUBROUTINE SRCH INPUTS FOUR DIGITS FROM CONSOLE OUTPUTS B,H,L CALLS CI, ECHO, ERROR, INPUT, VALDL DESTROYS A, B, C, H, L, F/Fs

DESCRIPTION SRCH RECEIVES FOUR DIGITS FROM CONSOLE, CHECKS IF THE PROGRAMME IS AVAILABLE FOR THE IC THESE NUMBERS REPRESENT. THE FIRST ADDRESS OF THE APPROPRIATE MESSAGE IS LOADED IN HL PAIR. THE NUMBER OF CHARACTERS IN THEMESSAGE IS LOADED IN B AND THE PROGRAMME RETURNS BACK TO MAIN PROGRAMME. ANY NUMBER OTHER THAN 74/CAUSES PROGRAMME TO JUMP TO ERROR ROUTINE.

089B SRCH ZIN FIRST TWO DIGITS

089B	CD5708	CALL	CI	Get character from console
089E	CD3E08	CALL	ECHO	Echo it on the screen
08A1	79	MOV	A,C	Move character to A
0882	FE37	CPI	*7*	Is it 7;
08A4	C26F08	JNZ	ERROR	No - Illegal command
08A7	CD5708	CALL	CI	Yes - Get next character
08AA	CD3EO8	CALL	ECHO	Echo it on the screen
DABO ABBO	79 FE34	MOV CPI	, ^A , ^C]	Isit 4?
08B0	C26F08	JNZ	ERROR	No - Illegal command
08B3	CDFF08	CALL	IŅPUT	Get next character,a v alid digit
08B6 08B7 08B8 08B9	07 07 07 07	RLC RLC RLC RLC	A A A A	Move digit to most significant four bits in A
08BA	5A	MOV	E,A	Store digit in E
08BB	CDFF08	CALL	INPUT	Get next digit
08BE	83	ADD	Ε	Place digit in last four bits of A.

08BF	5 F	MOV	E,A	Restore result in E
	-			
0380	CD5708	CALL	CI	Get delimiter
8 080	CD3EO8	CALL	ECHO	Echo it on the screen
0806	CD3E09	CALL	VALDL	Check for correct delimiter
0809	D26F08	JNC	ERROR	Wrong delimiter - Illegal command
0800	7B	MOV	A,E	Get digits inputted to A
08CD	FEOO	CPI	7400	Was the IC specified 7400?
08CF	C2D808	JNZ	SRCH05	No-Branch
08D2	212 8 0F	\mathbf{LxI}	H,7400MG	Yes-Load memory pointer with the first address of 7400 MG.
08D5	0617	MVI	B,L7400M	Load B with number of charac- ter in 7400MG
08D7	09	RET		
08D8	SRCHO	5		
08D8	FE76	CPI	7476	Was the IC specified 7476?
08DA	C2E308	$\mathbf{J}\mathbf{N}\mathbf{Z}$	SRCH10	No-Branch
08DD	213F0F	LxI	H ,7 476MG	Yes - Load memory pointer with the first address of 7476MG.
08E0	0617	MVI	B,17476M	Load B with number of characters in 7476MG
08E2	09	RET		
08E3	SRCH1	0		
08E3	FE90	CPI	7490	Was the IC specified 7490?
08E5	C2EEO8	JNZ	SRCH15	No-Branch
08E8	21560F	TXI	H,7490MG	Yes-Load memory pointer with the first address of 7490MG
08EB	0617	MVI	B,17490M	Load B with number of charac- ters in 7490MG
08ED	C9	RET		
08EE	SRCH15			

4-15

4-16

O8EE	FE93	CPI	7493 Was the IC specified 7493?
08F0	C2F908	JNZ	SRCH2O No-Branch
08F3	216D0F	LxI	H,7493MG Yes-Load memory pointer with the first address of 7493MG
08F6	0617	MVI	B,L7493M Load B with the number of characters in 7493MG
28F8	C9	RET	· · · ·
)8F9	SRCH	120	
)8F9	2184 0 F	Lx1	N, NTAVMG Search failed. Load memory pointer with the first address of NTAVMG
)8FC	0611	MVI	B,LNTAVM Load B with number of characters in NTAVMG
)8FE	09	RET	

NAME OF	SUBROUTINE INPUT	
INPUTS	CHARACTER FROM CONSOLE	
OUTPUTS	C- CHARACTER FROM CONSOLE	
CALLS	CI, ECHO, VALDG, ERROR, CNVBN	
DESTROYS	SA, B, C, F/Fs	

.

DESCRIPTION INPUT GETS A CHARACTER FROM CONSOLE. IF IT IS A VALID DIGIT, THE PROGRAMME CONVERTS IT TO BINARY AND RETURNS. OTHERWISE CONTROL IS TRANSFERED TO ERROR.

8FF	INPUT		•	
8FF	CD5708	CALL	CI	Input character from console
902	CD3E08	CALL	ECHO	Echo it on screen
905	CD1009	CALL	VALDG	See if valid digit
908	D25F08	JNC	ERROR	No - Illegal command
90B	CD3509	CALL	CHYBN	Yes - convert to binary
30E	C9	RET		

NAME OF	SUBROUTINE	VALDG
INPUTS	C	
OUTPUTS	NONE	
CALLS	NOTHING	
DESTROYS	A,F/Ís	

DESCRIPTION VALDG CHECKS IF THE CHARACTER IN C IS & VALID HEXA-DIGIT. FOR & VALID HEXA-DIGIT THE CONTROL IS TRANSFERED TO SRET AND FOR INVALID HEXA-DIGIT TO FRET.

0910		VALDG			
0910 0911	79 FE30	MOV CPI	A,C		Test character against 'O'
0913	FA3209	JM	FRET		If ASCII code is less, it cannot be a valid digit. Branch
0916	FE39	CPI	191	-	Else see if in range 0-9
0918	FA3009	JM	SRET		Code between O a nd 9
0918	CA3009	JZ	SRET	(Code equals 9
091E	FE41	CPI	'A']	Not a digit - Try for a b etter
0920	FA3209	JM	FRET	ļ	No - code between 9 and Λ
0923 0925	FE47 F23209	CPIJP	'G' FRET]	No - code greater than F
0928	033009	JMP	SRET	(O.K code is A to F, inclusive

NAME OF SU INPUTS OUTPUT	JBROUTINE NONE CARRY FI		T			r
CALL S DESTROYS	NOTHING CARRY					
DESCRIPTIC	ON SRET	SETS	CARRY	AND	RETURNS	
SRET						

- 0930 37 STC Set carry TRUE
- 0931 C9 RET

0930

NAME OF SUBROUTINE FRET INPUTS NONE OUTPUTS CARRY FLAG CALLS NOTHING DESTROYS CARRY DESCRIPTION FRET RESETS CARRY AND RETURNS

.

0932	FREI	1		
0932	37	STC		Set carry TRUE
0933	3f	CMC		Set if FALSE
0934	C9	RET		
		INPUTS OUTFUTS CALLS		C C C C C C C C C C C C C C C C C C C
0935	CNV	BN		
0935 0936	79 D630	MOV SUI	A,C ZERO	Subtract code for 'O' from argument
0938	FEOA	CPI	101	Want to test for result of 0 to 9 .
093A	F8	RM		If so, Return
093B	D607	SUI	171	Else, return after subtrac- ting a bias of 7.
09 3 D	C9	RET		· ·

4-17

.

NAME OF SUBROUTINE VALDL INPUTS C- CHARACTER FROM CONSOLE OUTPUTS NONE CALLS ECTHING DESTROYS A, F/Fs

DESCRIPTION VALDL CHECKS DELIMITER. IF IT IS CARRIAGE RETURN, VALDL TRANSFERS CONTROL TO SRET, OTHERWISE CONTROL IS TRANSFERED TO FRET

093E	VALDL			
093E 0 93 F	79 FEOD	MOV CPI	A,C]	Check for CARRIAGE RETURN
0941	CA3009	JZ	SRET	Found
0944	C3 3209	JMP	FRET	Not found

NAME OF SUBROUTINE LIST INPUTS NONE OUTPUTS MESSAGE ON SCREEN CALLS CI, ECHO, VALDL, MSGOUT, DESTROYS A, B, C, F/Fs

DESCRIPTION IN RESPONSE TO A VALID LIST COMMAND LIST DISPLAYS THE LIST OF ALL ICS FOR WHICH PROGRAMMES ARE AVAILABLE AND TRANSFERS CONTROL TO GET CMD

0947	LIST			
0947	CD5708	CALL	CI	Get input from console
094A	CD3E08	CALL	ЕСНО	Echo to terminal
094D	CD3E09	CALL	VALDL	Check for correct De-limiter
0950	D26F08	JNC	ERROR	Not found - Illegal command
0953	21 950f	LxI	H, LSTMG	Found -Load memory pointer with the first address of LSTMG
0956	0637	MVI	B,LISTM	Load number of characters in LSTMG in B
0958	CD8008	CALL	MSGOUT	Display message on screen
095B	C31608	JMP	GETCMD	Try for another command

NAME OF	SUBROUTINE GCMD
INPUTS	FOUR HEXA-DIGITS FROM CONSOLE
OUTPUTS	NONE
CALLS	GETHX, ERROR
DESTROYS	A,B,C,D,E,H,L,F/Fs

.

.

DESCRIPTION GCMD RECEIVES THE STARTING ADDRESS OF PROGRAMME TO BE EXECUTED FROM CONSOLE. IT LOADS THE ADDRESS ON PROGRAMME COUNTER AND THE CONTROL IS TRANSFERED TO THE PROGRAMME TO BE EXECUTED. IF THE COMMAND IS TERMI-NATED BY CARRIAGE RETURN/, GCMD WILL LOAD WHATEVER IS THE CONTENT OF MEMORY LOCATION OFDEH AND OFDFH IN PROGRAMME COUNTER

095E	GCMD		/WITHOUT	SPECIFYING ANY DIGITS
095E	CD7D09	CALL	GETHX	Get starting address from console
0961	D27B09	JNC	GCM05	No address specified-Branch
0964	7A	MOV	A,D	Get De-limiter
0965 0967	FEOD C26F08	CPI JNZ	CR ERROR]	If de-limiter not correct- Illegal command
096A	21DEOF	IxI	H, PADDR	Load programme's starting address in HL
096D	71	MOV	M,C	Lower address byte in memory
096E	23	INX	H	Point to next location
096F	70	MOV	М,В	Store higher address byte in memory
0970	C37909	JMP	GCM10	Branch
0973	GCM05			
0973 0974	7A FEOD	MOV CPI	A,D CR]	No address specified. Check for correct delimiter.
0976	C26F08	JNZ	ERROR	Wrong delimiter - Illegal command
0979 0979 0970	GCM1Q 2ADEOF E9	LHLD PCHL	OFDEH	Get the starting address in HL Load it in programme counter

	SUBROUTINE GETHX CHARACTERS FROM CONSOLE
OUTPUTS	BC - 16BIT INTEGER, D-DELIMITER
	CARRY - 1 IF FIRST CHARACTER WAS NOT DELIMITER - 0 IF FIRST CHARACTER WAS DELIMITER
CALLS	CI, ECHO, VALDL, VALDG, CNVBN

DESTROYS A, B, C, D, E, F/Fs

DESCRIPTION GETHX ACCEPTS A STRING OF CHARACTERS FROM INPUT STREAM AND RETURNS THEIR VALUE AS A 16BIT BINARY INTEGER. IF MORE THAN 4 HEX DIGITS ARE ENTERED, ONLY THE LAST FOUR ARE USED. THE NUMBER TERMINATES WHEN A VALID DELIMITER IS ENCOUNTERED. THE DELIMITER IS ALSO RETURNED AS AN OUTPUT. ILLEGAL CHARACTERS (NOT HEX DIGITS OR DELIMITERS) CAUSE AN ERROR INDICATION. IF THE FIRST (VALID) CHARACTER ENCOUNTERED IN THE INPUT STREAM IS NOTA DELIMITER, CARRY BIT WILL BE SET TO 1. OTHWRWISE, CARRY BIT IS SET TO ZERO AND THE CONTENTS OF BC ARE UNDEFINED.

0 97 D	GETHX			· · · · · · · · · · · · · · · · · · ·
097D	E5	PUSH	Η	Save HL
097E	210000	L xI	Н,О	Initialize result
0981	1E00	MVI	Ε,Ο	Initialize digit flag to fal se
0983	GTHXO5			
09 8 3	CD5708	CALL	CI	Get a character
0986	CD3E08	CALL	ECHO	Echo it on screen
0989	CD3E09	CALL	VALDL	See if delimiter
09 8 C	D29B09	JNC	GTHX10	No-branch
09 8 F	51	MOV	D,C	Yes - All done, but want to return delimiter
0990 0991	E5 C1	PUSH POP	H B	Move result to BC

.

0992	E1	POP	H	Restore HL
0993	7B	MOV	A,E	Get flag
0994	B7	ORA	A	Set F/Fs
0995	C23009	JNZ	SRET	If flag non zero, a number has been found
0998	CA3209	JZ	FRET	Else, Delimiter was first Character
099B	GTHX	10		
099B	CD1009	CALL	VALDG	If not delimiter, see if digit
099E	D26F08	JNC	ERROR	Error if not a valid digit, either
09A1	CD3509	CALL	CNVBN	Convert digit to its binary value
09A4	1EFF	MVI	E,FFH	SET digit flag non-zero
0 9 A6	29	DAD	H	X2
09A7	29	DAD	H	X4
0948	2 9	DAD	H	X8
0949	29	DAD	H	X16
0944	0600	MVI	в,О	Clear uppe r 8 bits of BC pair
09AC	4F	MOV	C,A	Binary value of character in C
09AD	09	DAD	В	Add this value to partial result
09AE	C38309	JMP	GTHX05	Get next character

MONITOR TABLES

ŧ

,

4-. 22

•

OFOO		MSG			Sign on Message
OFOO	ODOA492E		DB		7
OF04	432E5445				LF,CR,I,.,
OF08	53544552				- C,.,T,E,
OFOC	20524541				- S,T,E,R
0F10	44590DOA				SP,R,E,A
					D,Y,LF,CR
0014		LMSG	EQU	14 H	Length of MSG
OF14		CTAB			Table of address of command routines
OF14	54		DB	יתי	
OF15	47		DB	'G'	
OF16	4C		DB	• `L'	
Ģ003		NCMDS	EQU	03н	Number of valid commands
OF17		CADDR			Table of addresses of function-
·			• . ● .		al commands
OF17	0000		DW	0	Dummy
OF19	4709		DW	LIST	
OF1B	5E09		DW	GCMD	
OF1D	80A8		DW	TRY	
of1f	Ĵ	IRYMSG			Message in response to T command
OF1F	ODOA492E		DB		LF, CR, I,.,
OF23	43234E4F				C, ., N, O,
OF27	3A				• •,
0009]	LTRMSG	EQU	09н	Length of TRYMSG

.

		•			
OF28		7400MG			Message for 7400 IC testing programme location
0F28	ODOA4156		DB		LF, CR, A, V,
OF2C	414 94041				A,I,L,A,
OF 30	424C450D				B,L,E,LF,
OF34	0A4C4F43				CR, L, O, C,
0F38	3A303942				:,0,9,B
OF3C	310D0A				1, LF, CR
0017		L7400M	EQU	17H	Length of 7400 MG
OF3F		`7476MG			Message for 7476IC testing programme location
OF3F	ODOA4156		DB		LF,CR,A,V
OF43	41494C41				A, I, L, A,
OF47	424C450D				B,L,E,IF,
OF4B	OA4C4F43				CR, L, O, C,
OF4F	3A3 0 4137				:,0,1,7,
OF53	350DOA				5, LF, CR
0017		17476M	EQU	17H	Length of 7476MG
OF5 6		7490MG			Message for 7490IC testing programme location
0F56	ODOA4156		DB		LF, CR, A, V,
OF5A	41494C41				Α,Ι,Ι,Α,
OF5E	424C450D				B,L,E,LF,

. *

.

0F62

0F66

OF6A

CA4C4F43

31304330

30**0**0 DOA

CR, L, O, C,

:,0,0,0

O,LF,CR

.

4--23

4-24

0017		L7 490M	EQU	17H	Length of 7490MG
of6d		7 493MG			Message for 7493IC testing programme location
of6d	ODOA4156		DB		LF,CR,A,V,
OF71	41494041				A, I, L, A,
OF75	424C450D				B,L,E,LF
OF79	0A4C4F43				CR, L, O, C,
OF7D	3A304335				:,0,C,5,
OF81	450D0A				E, LF, CR
0017		L7493M	EQU	17H	Length of 7493MG
OF84		NTAVMG			Message for test programme not available.
OF84	ODOA4E4F		DB		LF, CR, N, O,
OF88	54204156				T, SP, A, V,
OF8C	41494C41				A,I,L,A,
OF90	424C450D				B,L,E,LF,
OF94	OA.				CR
0011		LNTAVM	EQU	11H	Length of NTAVMG
OF95		LSTMG			Message for L command
OF95	ODOA464F		DB		LF, CR, F, O
OF99	4C4C4F57				L,L,O,W,
OF9D	494E4720				T',N,G,SP,
OFA1	43414E20				C,A,N,SP,

.

.

OFA5	42452054	÷			B,E,SP,T,
OFA9	45535-45	5			E,S,T,E,
OFAD	440D0A20)			D,LF,CR,SP,
OFB1	37343030	•			7,4,0,0,
OFB5	ODOA2037	,			LF,CR,SP,7,
OFB9	3437360I)			4,7,6,LF,
OFBD	OA203734	-			CR, SP, 7, 4,
OFC1	39300DOA				9,0,LF,CR,
OFC5	20373439)			SP,7,4,9,
OFC9	330DOA				3, LF, CR
0037		LLSTM	EQU	37H	Length of LSTMG

•

MONITOR EQUATES

0027	CMD	EQU	27H	Command instruction for USART initialization.
00E1	CNTL	EQU	E1H	USART control port.
000D	CR	EQU	ODH	ASCII code for CARRIAGE RETURN
OOEO	DATA	EQU	EOH	USART data port.
001B	ESC	EQU	1BH	ASCII code for ESCAPE character
OFFF	ICNO	EQU	OFFFH	Location for 'IC test programme' indicator
000A	\mathbf{LF}	EQU	OAH	ASCII code for LINE FEED
OOCE	MODE	EQU	CEH	Mode set for USART initialization
OFDE	PADDR	EQU	OFDEH	Location for test programme starting address in GCMD sub- routine.
007F	PRTYO	EQU	7F H	Mask to clear parity bit from console character.
OFFE	RPTLP	EQU	OFFEH	Location for 'Repeat Loop Indicator' address.
0030	ZERO	EQU	30H	ASCII code for 'O'.

4.10 OPERATING PROCEDURE FOR USING ADM-3A KEYBOARD

The procedure recommended for communicating with the HIL-2961 through ADM-3A keyboard is as under:

- Before connecting the hardware interface between ADM-3A and HIL-2961, switch all power supplies OFF, including HIL-2961 and ADM-3A supplies.
- 2. Connect the hardware.
- 3. Switch ON all power supplies for hardware interface.
- 4. Switch ON ADM-3A and HIL-2961 supplies.
- 5. Load monitor programme in microprocessor RAM through HIL-2961 keyboard, begining from location O800H.
- 6. Execute programme from location 0800H through HIL-2961 keyboard 'IC. TESTER IS READY' will be displayed on ADM-3A screen.
- 7. Control has been transferred to I.C. tester monitor ADM-3A keyboard is now operative. Enter all valid commands through ADM-3A keyboard, developed for IC Tester.
- 8. If, at any stage the user wants to revert to HIL-2961 keyboard, RESET key on HIL-2961 keyboard should be pressed.
- 9. Having reverted to HIL-2961, the user may once again transfer control to ADM-3A keyboard by executing programme from location 0808H (NOT FROM 0800H) through HIL-2961 keyboard. Memory location 0800H to 0807H contain the initialization programme for 8251A USART and must not be repeated(once the USART is initialized.

CHAPTER-5

TEST PROGRAMMES DEVELOPMENT FOR A FEW SELECTED IC CHIPS

5.1 INTRODUCTION

Test programme for IC 7400 was discussed in Chapter 2. Thisprogramme was executed through HIL-2961 keyboard. The limitations of operating through HIL-2961 keyboard have been covered under Section 3.1. Having developed a successful interface between the ADM-3A and HIL-2961, test programmes for different ICs can now be executed through ADM-3A keyboard.

The versatality of an IC tester depends upon its capability to test a wide range of ICs. However, if the IC tester is developed for use in a particular laboratory using certain specific ICs, it is sufficient that the IC tester be able to test those ICs. In this dissertation, four IC have been selected for developing test programmes. These are 7400, 7476, 7490 and 7493. Of these, the first two are SSI chips and the remaining two are MSI chips.

5.2 TEST PROGRAMMES

Test programme for IC 7400 has been modified to enable its execution through the ADM-3A keyboard. Development of the test programmes for different ICs, listed in 5.1 is discussed individually later in this chapter. All the test programmes are given together at the end of the chapter.

These test programmes make use of the existing ports on the HIL 2961, viz., Port 30 ($\mathbf{d}/\mathbf{\rho}$ port) and Port 20 (I/P port). Data lines of these ports are connected to two PCB edge connectors. To facilitate identification, I/P data bus uses RED flexible wires and O/P data bus uses BLUE flexible wires. These wires are appropriately labelled 0,1,2,... etc. to indicate that they represent D_0, D_1, D_2 ... etc. data lines. The PCB edge connectors also carry a terminal each, for V_{cc} and Ground.

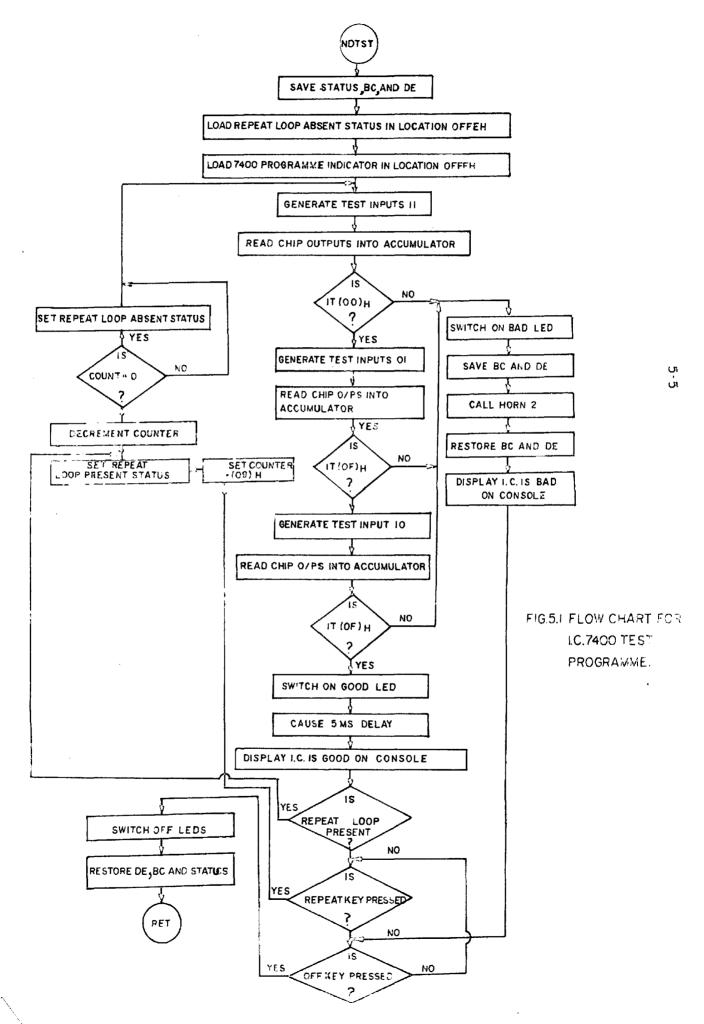
5.3 TESTING PROCEDURE

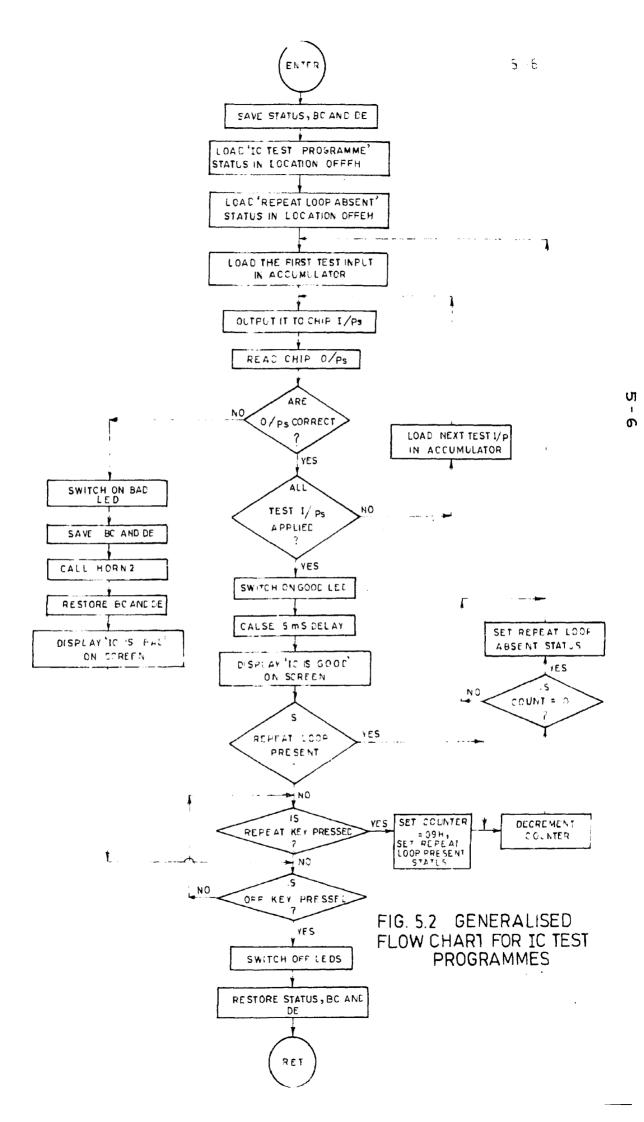
The memory location of the starting address for a particular IC testing programme can be found by using T command (TRY Subroutine). The execution of the test programme, after connecting the appropriate IC test card, is accomplished by using G command (GCMD Subroutine). If the IC is good, 'I.C. IS GOOD' will be displayed on the screen and the green LED will glow on the test card. If the IC under test has any logic mal-functions, 'I.C. IS BAD' will be displayed on the ADM-3A screen, a horn will be sounded and the red LED on IC test card will glow. The control is not yet transferred to the IC tester munitor. In case the user wants to test the IC repeatedly for reliability testing, icknews, R key should be pressed. At present, this will cause the programme to be repeated ten times. However, the programme may be repeated desired number of times with a minor change in the test programme. Once the user is satisfied with the testing and wants to end the testing procedure, S key should be pressed. This causes the control to be transferred to the IC tester monitor, in preparation for the next test.

The recommended/procedure for testing is as follows:

- 1. Activate the ADM-3A to HIL-2961 interface.
- 2. Load all the IC test programmes given at the end of this chapter into their respective memory locations through HIL-2961 keyboard. Now, transfer the control to ADM-3A keyboard.
- 3. Use TRY command to find the starting address of the IC test programme required.
- 4. Connect the IC tester card between the two PCB edge connectors specified in Section 5.2.
- 5. Connect the V_{cc} and GND terminals of PCB edge connectors appropriately to +5V and GND on power supply unit.
- 6. Using G command execute the test programme.
- 7. If the IC is declared good, the test may be repeated
 10 times for reliability testing by pressing
 'R' key on ADM-3A key board.

5-3


- 8. To exit from the programme, press 'S' key. 'I.C.TESTER
 READY' will be displayed on the screen and the control is transferred to the IC tester monitor.
 - 9. The IC tester is once again ready to test another IC.
 - Note: The user must connect the IC test ourd between the two PCB edge connectors before executing the test programme.


5.4 IC 7400 TEST PROGRAMME

Two basic changes, have been made in the IC 7400/programme discussed in Chapter 2. The first one is the alteration to use the ADM-3A capability of printing messages on the screen and the second one is creation of a number of sub-routines which can be used by other programmes as well. The flow chart is given in Fig.5.1. The programme for IC 7400 test is labelled NDTST and starts at memory location 09B1H. A generalised flow chart describing the test procedure, in general, for all ICs is given in Fig.5.2.

5.5 IC 7476 TEST PROGRAMME

7476 is a dual J-K F/F with independent Preset, clear and clock. Preset and clear are active LOW asynchronous inputs and have precedence over the synchronous inputs i.e., J,K and Clock. Once both the asynchronous inputs are disabled, the J&K terminals become active. In response to a particular set of J-K inputs, the correct output shall appear on the output terminals at the falling edge of the clock. This is a

very important point to be taken care of, in testing the IC chip. In the test programme developed, in order to cater for this feature, each test input vector is first applied with clock (Bit D_2 of O/P port) input HIGH. The chip outputs at this stage will retain their prev-ious state, for a good IC. Keeping the test inputs unchanged, the clock input terminal is made LOW and the chip outputs are compared to the correct output desired in response to the test input vector currently in use.

7476 is a SSI device. Its pin configuration and functional table is given in Appendix 'E'. The circuit diagram for 7476 card is shown in Fig.5.3 and the PCB layout is shown in Fig.5.4. The programme/IC 7476 test is labelled 'JKFF' and starts from memory location OA75H.

5.6 IC 7490 TEST PROGRAMME

7490 is a divide by two and divide by five, 4 bit binary up counter IC. It can be used as a divide by ten counter by connecting output of the first F/F (Q_A) to clock terminal of the second F/F (I/P B). It has four asynchronous inputs which have precedence over all other inputs. These are $R_O(1)$, $R_O(2)$, $R_g(1)$ and $R_g(2)$. $R_O(1)$ and $R_O(2)$ are connected inside the chip to the inputs of a two input NAND gate. When both of them are made HIGH, they RESET all the F/Fs. With any other combination, these inputs are disabled. $R_g(1)$ and $R_g(2)$ are also connected internally to the inputs of a two

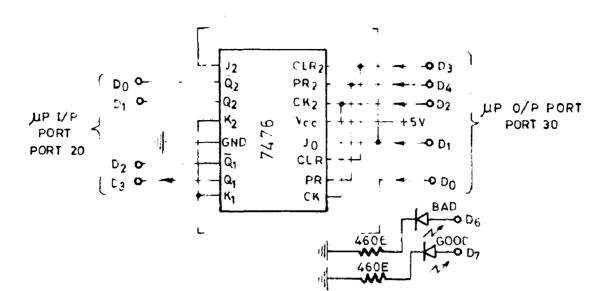


FIG . 5.3 7476 TEST CARD CIRCUIT DIAGRAM

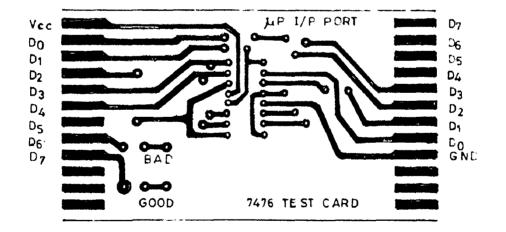


FIG. 5.4 PCB LAYOUT

5 - 8

input NAND gate. When both of them are made HIGH, A and D F/Fs are SET and B andC F/Fs are RESET. Any other combination applied at $R_g(1)$ and $R_g(2)$ terminals disables them. With QA output connected to I/PB input, the IC behaves as a decade up counter. This mode of operation has been used to verify its correct behaviour. Initially, the effect of asynchronous inputs is checked. Then the count is started from zero count and is made to complete one complete count sequence returning back to the zero count. Like 7476, ICs 7490 and 7493 also place the desired output in response to a particular input at the falling edge of the clock pulse. Therefore, the testing procedure is accordingly designed as described in Section 5.5.

7490 is a MSI device. Its details are given in Appendix 'E'. The circuit diagram for 7490 test card is given in Fig.5.5 and the PCB layout is given in Fig.5.6. The programme for IC 7490 test is labelled T90 and starts from memory location OCOOH.

5.7 IC 7493 TEST PROGRAMME

7493 is basically a divide by two and divide by eight 4 bit binary up ripple counter. It can be used as a divide by 16 counter by connecting the output of the first F/F (Q_A) to the clock terminal of the second F/F (I/P B). It has two asynchronous inputs, $R_0(1)$ and $R_0(2)$ which have precedence over other inputs. $R_0(1)$ and $R_0(2)$ are connected internally

5+9

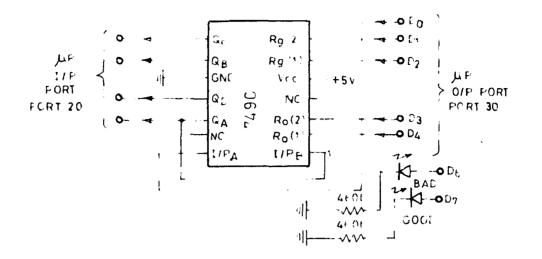
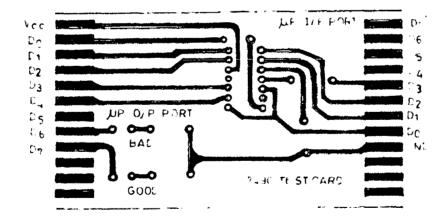
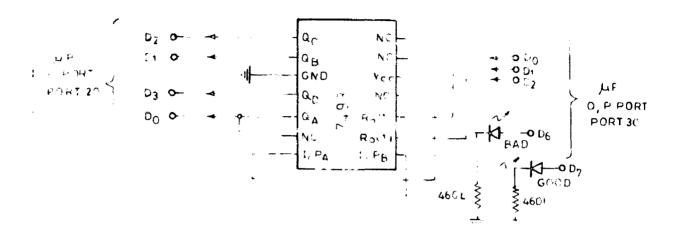


FIG. 5.5 7490 TEST CARD CIRCUIT DIAGRAM




FIG. 5.6 PCB LAYOUT

.

to the inputs of a two input NAND gate, the output of which goes to the clear terminals (not available externally) of all the four F/Fs. Thus, when both $R_0(1)$ and $R_0(2)$ are held HIGH, all the F/Fs are RESET. Any other combination disables these inputs.

With Q_A output connected to I/P B input, the IC behaves as a divide by sixteen up counter.This mode of operation has been used to verify its correct behaviour. It can be seen that IC 7493 is quite similar to IC 7490, therefore the testing procedure for the two is similar. Only difference in this case is that the count goesupto fifteen after starting from count zero.

7493 is a MSI device. Its details are given in Appendix 'E'. for The circuit diagramy 7493 test card is given in Fig.5.7 and the PCB layout is given in Fig.5.8.

5 1

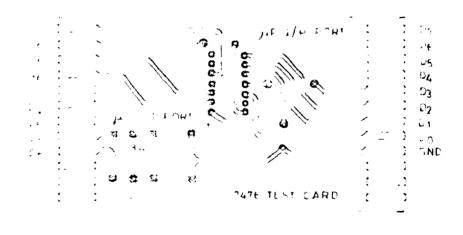


FIG. 5.8 PCB LAYOUT

5.8 PROGRAMME LISTING

.

NAME OF SUBROUTINE NDTST INPUTS NONE CUTPUTS NONE CALLS LOAD DESTROYS H,L,F/FS DESCRIPTION 'NDTST' CHCKS UPIC 7400							
09B1		NDTSI	C				
09B1	F5		PUSH	PSW	Save status		
09B2	C5		PUSH	В	Save BC pair		
09B 3	D5		PUSH	D	Save DE pair		
09B4 09B6	3E00 32FE 0 F		MVI STA	$\left[\begin{array}{c} \text{A,(00)}_{\text{H}} \\ \text{RPTLP} \end{array} \right]$	Load REPEAT LOOP ABSENT status		
09B9	32FFOF		STA	ICNO	Load 7400 Test Programme		
09BC		ND5			indicator		
09BC 09BE	3E07 CDODOA		MVI CALL	A,(07) _H LOAD	Send (11) ₂ at NAND gate inputs and read chip O/Ps		
0901	C2140A		JNZ	FAULT	If chip O/Ps are not correct Branch		
0904 0906	3E06 CDODOA		MVI CALL	A,(06) _H LOAD	Send (10) ₂ at NAND gate inputs and read chip O/Ps		
0909 090B	FEOF C2140A		CPI JNZ	(of) _H fault	Branch if chip O/Ps are not correct		
09CE 09D0	3E05 CDODOA		MVI CALL	A,(05) _H] LOAD	Send (O1) ₂ at NAND gate inputs and read chip O/Ps		
09D3 09D5	FEOF C2140A		CPI JNZ	(OF) _H]	Branch if chip O/Ps are not correct.		
09D8	C3DBO9		JMP	GOOD	The IC is good. Go to Good subroutine.		

.

NAME OF SUBROUTINE GOOD INPUTS NONE OUTPUTS MESSAGE ON CONSOLE, SIGNAL FOR SWITCHING ON GOOD LED CALLS CI, ECHO, MSGOUT, DELB DESTROYS A, H, L, F/Fs

DESCRIPTION 'GOOD' DISPLAYS 'I.C.IS GOOD' ON CONSOLE AND THEN LOOKS FOR REPEAT OR STOP COMMANDS

.

0 9 DB		GOOD				
09DB 09DD	3E80 D330		MVI OUT	а,80н 30н]	Switch ON 'GOOD' LED
09DF	05		PUSH	В		Save BC
09E 0 09E3	010500 CD3004	•	LxI CALL	B,0005H DELB	1	Cause 5 ms delay
09E6 09E9 09EB	21E00F 060F CD 8 008		LXI MVI CALL	II,GOODMO B,LGOOD MEGOUT		Display message on console
09EE	C1		POP	В		Restore BC
09EF 09F2	3AFEOF FE15		L D A CPI	RPTLP 15H	ł	If repeat loop is present - Branch
09F4	CA3BOA		JZ	RPT05		
09F7	C5		PUSH	В		Else, Save BC
09F8	CD5708		CALL	CI		Get a character from console
09FB	CD3E08		CALL	ECHO		Echo it
09FE	79		MOV	A,C		Move character to A
09FF	C1		POP	В		Restore BC
OAOO	FE52		CPI	R		Is character R (REPEAT)?
0A02	CA330A		J B	RPT		Yes - Branch
0A05	FE53		CPI	ន		NO - Is it S (STOP)?
0A07	CA6BOA		JZ	STOP		Yes - Branch
OA OA	C3F709		JMP (G00D05		NO - Get another character

OUTPUTS CHI CALLS NO	OUTINE LO. ST INPUTS I IP OUTPUTS I PHING F/Fs	ACCUMULA			
DESCRIPTION	LOAD SENDS	OUT TEST	TNPIMS	ጥር	ጥጠ

.

DESCRIPTION LOAD SENDS OUT TEST INPUTS TO THE IC UNDER TEST AND READS THE IC OUTPUTS

OAOD OAOD	D330	LOAD	OUT	30	Output test input
OAOF	D B20		IN	20	Read chip output
0A11	EGOF		ANI	OFH	Mask unwanted bits
0A 13	C9		RET		

.

NAME OF	SUBROUTINE	FAULT	
INPUTS	NONE		
OUTPUTS	MESSAGE ON		
	SIGMAL FOR	SWITCHING	GON BAD
	LED.		
CALLS	HORN2, MSGO	TU	
DESTROYS	A,H,L,F/Fs		
	SIGMAL FOR	SWITCHING	

DESCRIPTION FAULT SWITCHES ON BAD LED, SOUNDS A HORM AND DISFLAYS 'I.C. IS BAD' ON SCREEN

OA14 OA14	3E40	FAULT	MVI	A,4-OH	Switch 'ON' 'BAD' LED
0A 1 6	D330		OUT	30	
0A18	C5		PUSH	В	Save BC
0A19	D5		PUSH	D	Save DE
0A1A 0A1C 0A1E	0620 1630 CD4704		MVI MVI CALL	B,20H D,30H HORN2	Sound Horn
0A21 0A24 0A26	21F00F 060E CD8008		LxI M¥I CALL	H, BADMG B, LBADM MSGOUT	Display message on console

0A29 0A2B	3E00 32FEOF	MVI STA	A, OOH RPTLP] Store rep d at loop absent status in location OFFEH
0A2E	D1	POP	D	Restore DE
OA2F	C1	POP	В	Restore BC
0A30	C3F709	JMP	G OOD05	Get next character

NAME OF	SUBROUTINE	RPT
INPUTS	NONE	
OUTPUTS	NONE	
CALLS	NOPHING	
DESTROYS	S A,D,E,F/F	s

DESCRIPTION RPT SETS UP REPEAT LOOP PRESENT STATUS AND REPEAT LOOP COUNTER. IT THEN DECREMENTS THE COUNTER. IF THE COUNTER IS EXHAUSTED, IT SETS UP REPEAT LOOP ABSENT STATUS AND RETURNS TO PROGRAMME, OTHERWISE IT RETURNS DIRECTLY TO THE PROGRAMME.

0A33 0A33	110900	RPT	LXI	D,0009H	I	Set up repeat loop counter
0A36 0A38	3E15 32FEOF		MVI STA	A,15H RPTUP		Set up repeat loop present status
ÓA3B OA3B OA3C	7b FEOO	RPT05	MOV CPI	A,E OOH	1	Is lower byte of counter zero?
OA3E	CA450A		JZ	RPT15		Yes - Branch
0A41 0A41	1B	RPT10	DCX	D		No - Decrement counter
0A42	C3560A		JMP	AGAIN		Repeat test programme
0A45 0A45 0A46	7A FEOO	RPT15	MOV CPI	A,D OOH		Lower byte of counter is zero - Is upper byte also zero?
0A48	CA4EOA		JZ	RPT20		Yes - Branch

5-17

OA4B OA4E	C3410A	RPT20	JMP	RPT10	No - go back to the programme
OA4E	3EOO 32FEOF	111120	MVI STA	A, OOH RPTLP	Counter is exhausted, store 'repeat loop absent
-,	C3560A		JMP	AGAIN	status'. Repeat test programme

NAME OF S	SUBROUT INE	AGAIN
IMPUTS	NONE	
OUTPUTS	NONE	
CALLS	NOTHING	
DESTROYS	A,F/Fs	

DESCRIPTION 'AGAIN' CHECKS UP WHICH IS THE IC TEST PROGRAMME CURRENTLY BEING EXECUTED BY CHECKING THE IC TEST PROGRAMME INDICATOR STORED IN LOCATION OFFFH. CONTROL IS ACCORDINGLY TRANSFERRED TO THAT PROGRAMME.

0A56 0A56	AGAIN ZAFFOF	LDA	ICNO	Load test programme indicator status
OA59	FEOO	CPI	OOH	Is it 7400 programme?
OA5B	CABCO9	JZ	ND5	Yes - Go to 7400 programme
OA5E	FE76	CPI	76	No.Is it 7476 programme?
0A60	CA82OA	JZ	JK05	Yes - Go to 7476 programme
0463	FE90	CPI	90	No.1s it 7490 programme?
0465	CAODOC	JZ	T9005	Yes - Go to 7490 programme
0A68	C36BOC	JMP	Т9305	It is 7493 programme

NAME OF SUBROUTINE STOP INPUTS NONE CUTPUTS NONE CALLS NOTHING DESTROYS A, B, C, D, E ES DESCRIPTION 'STOP' SWITCH/OFF BOTH LEDS AND THEN RETURNS TO MONITOR FOR GETTING NEXT COMMAND FROM CONSOLE

	STOP		
3E00	MVI	A,OOH	Switch OFF LEDs
D330	OUT	30н	· · ·
D1	POP	D	Restore DE
C1	POP	В	Restore BC
F1	POP	PSW	Restore status
030808	JMP	SIGN01	Return to Monitor

NAME OF	SUBRO	UTINE	$\mathbf{J}\mathbf{K}\mathbf{F}\mathbf{F}$		
INPUTS	NOI	NE			
OUTPUTS	NOI			_	
CALLS	LOI	AD, CHEC	K1,CHEC	CK2	
DESTROYS	5 H,I	L, F/Fs			
DESCRIPT	PION	'JKFF'	TESTS	IC	7476

+	JKFF			
F5		PUSH ·	PSW	Save status
C5 .		PUSH	В	Save BC
D5		PUSH	D.	Save DE
3E76		MVI	А,76Н)	Load '7476 Test Programme' status
32FFOF		STA	ICNO	
3E00		MVI	A,00H	Load 'Repeat Loop Absent'
32FEOF		STA	RPTLP	Status

•

0A82 0A82 0A84	3E09 CDODOA	ЈКО5	MVI CALL	A,09H	Make PRESET LOW and read chip O/Ps
0A87	CDDFOA		CALL	CHCK1	Check if O/Ps are correct
OA8A OA8C	3E1D CDODOA		MVI CALL	A,1DH]	Make J=0, K=1 and read chip O/Ps
OA8F	CDDFOA		CALL	CHCK1	Check if O/Ps are correct
0A92 0A94	3E1 89 CDODOA		MVI Call	A,19H LOAD]	Make clock ZERO and read chip O/Ps
0A97	CDE50A		CALL	CHCK2	Check if O/Ps are correct
0A9A 0A9C	3E1E CDODOA		MVI CALL	A, 1EH] LOAD]	Make J=1, K=0 and read chip 0/Ps
OA9F	CDE501		CALL	CHCK2	Check if O/Ps are correct
ОЛА 2 ОЛА 4	3E1A CDODOA		MVI CALL	A, JAH LOAD]	Make clock ZERO and read chip O/Ps
ΟΑΑ7	CDDFOA		CALL	CHCK1	Check if O/Ps are correct
OAAA OAAC	3E1F CDODOA		MVI CALL	A, 1FH LOAD	Make J=1,K=1 and read chip O/Ps
OAAF	CDDFOA		CALL	CHCK1	Check if O/Ps are correct
OAB2 OAB4	3E1B CDODOA		MVI CALL	A,1BH] LOAD]	Make clock ZERO and read chip O/Ps
OAB7	CDE50A		CALL	CHCK2	Check if O/Ps are correct
OABA OABC	3E1C CDODOA		MVI CALL	A,1CH] LOAD]	Make J=0, K=0 and read chip O/Ps
OABF	CDE50A		CALL	CHCK2	Check if O/Ps are correct
OAC2 OAC4	3E18 CDODOA		MVI CALL	A,18H LOAD	Make clock zero and read chip O/Ps
OAC7	CDE50A		CALL	CHCK5	Check if O/Ps are correct
OACA OACC	3EOO CDODQA		MVI CALL	À, OOH LOAD	Make PRESET and CLEAR Low and read chip O/Ps

	FEOF	CPI	OFH	If O/Ps are not correct
	C2140A	JNZ	FAULT	Chip is bad
OAD4	3E12	MVI.	A,12H	Else, Make CLEAR LOW
OAD6	CDODOA	CALL	LOAD	and read chip O/Ps
OAD9	CDE50A	CALL	CHCK5	Check if O/Ps are correct
OADC	C3DBO9	JMP	GOOD	Chip is Good

NAME OF SUBROUTINE CHCK1 INPUTS CHIP O/PS IN ACCUMULATOR OUTPUTS NONE CALLS NOTHING DESTROYS F/Fs

DESCRIPTION CHCK1 CHECKS UP IF CHIP O/Ps ARE CORRECT. IF CORRECT, IT RETURNS TO PROGRAMME OTHERWISE CONTROL IS TRANSFERED TO 'FAULT'

OADF		CHCK1								
	FEOA C214OA		CPI JNZ	OAH FAULT]	If correc	chip ct, cl	O/Ps nip is	are 3 bac	not 1

OAE4 C9 RET Else, Return

NAME OF SUBROUTINE CHCK2 INPUTS OUTPUTS SAME AS CHCK1 CALLS DESTROYS DESCRIPTION

OAE5	CHCK2			
-	FE05	CPI		If chip O/Ps are not correct,
OAE7	C2140A	JNZ	FAULT	chip is bad
OAEA	C9	RET		Else, Return

NAME OF S INPUTS OUTPUTS CALLS	UDROUTINE NONE NONE LOAD, CHCI	Т90 К З	
DESTROYS	H,L,F/Fs		
DESCRIPTI	ON 'T90' 7	rests ic	7490

.

0000	F5	T90 PUSH	PSW	Save status
0001	05	PUSH	В	Save BC
0002	D5	PUSH	D	Save DE
0003 0005	3E90 32FFOF	MVI STA	A,90H] ICNO]	Load '7490 Test Programme' status
0008 0004	3EOO 32FEOF	MVI STA	A,OOH RPTLP]	Load repeat loop absent status
OCOD OCOD OCOF	T 3E07 CDODOA	29005 MVI CALL	A,07H LOAD	Make R _g (1) and R _g (2) HIGH and read chip O/Ps
0C12 0C14	FE09 C2140A	CPI JNZ	09H FAULT	If the O/Ps are not correct The chip is bad
0C17 0C19	3E19 CDODOA	MVI CALL	A,19H LOAD	Else make R _O (1) and R _O (2) HIGH and read chip O/Ps
0010	CD580C	CALL	CHCK3	Check if O/Ps are correct
0C1F 0C21	3E1B CDODOA	MVI CALL	1BH	Again make R _O (1) andR _O (2) HIGH and read chip O/Ps
0C24	CD580C	CALL	CHCK3	Check if O/Ps are correct
0C27 0C29	3E09 CDODOA	MVI CALL	09h Load	Disable asynchronous inputs and make I/PA=1
0020	CD5800	CALL	CHCK3	Check if O/Ps are correct
0C2F	0601	MVI	В,01Н	Make B register for 'Correct O/Ps'

0031	OEOO	MVI	С,ООН	Make C counter for number of test inputs given
0C33 0C33 0C35	T9010 3EOA CDODOA	MVI CALL	A,OAH LOAD	Make I/PA=0 and check chip O/Ps
0038 0039	B8 C2140A	CPM JNZ	B FAULT	It O/Ps are not correct, chip is bad
0C3C 0C3E	3E15 CDODOA	MVI CALL	A,15H LOAD	Else, make I/PA=1 and check thip O/Ps
0C41 0C42	B8 C2140A	CPM JNZ	b FAULT	If O/Ps are not correct chip is bad
0C45	Οζτ,	INR	B	Increment correct output register
0C46	OC	INR	C	Increment 'number of test inputs' given counter
0C47 0C48	79 FE09	MOV CPI	A,C 09H	Have all test inputs been given?
OC4A	C2330C	JNZ	Т9010	No -go back to programme
OC4D OC4F	3E08 CDODOA	MVI CALL	A,08H] LOAD]	Yes - make I/PA=0 and read chip O/Ps
0052	CD580C	CALL	СНСКЗ	Check if O/Ps are correct
0055	C3DB09	JMP	GOOD	Chip is Good

NAME OF SUBROUTINE CHCK3 INPUTS OUTPUTS CALLS DESTROYS

,

DESCRIPTION

0058 0058 005A	CHCK3 FEOO C214OA	CPI JNZ	OOH FAULT	If O/Ps are not correct chip is faulty
OC5D	09	RET		Else, return to programme

NAME OF SUBROUTINE T93

INPUTS	NOME	
OUTPUTS	NONE	
CALLS	LOAD,	CHCKS

DESTROYS H,L,F/Fs

DESCRIPTION 'T93' TESTS IC 7493

005E 005E	T93 'F5	PUSH	PSW	Save status
OC5F	C5	PUSH	В	Save BC
0060	D5	PUSH	D	Save DE
0061 0063	3E93 32FF0F	MVI STA	A,93H] ICNO]	Load '7493'Test programme status'
0066 0068	3EOO 32FEOF	MVI STA	A,OOH RPTLP]	Load repeat loop absent status
006B	Т930			
006B	3E06	MVI	А,06Н	Make $R_0(1)$ and $R_0(2)$ HIGH
0C6D	CDODOA	CALL	LOAD] and read chip O/Ps
0070	CD580C	CALL	CHCK3	Check if O/Ps are correct
0C73 0C75	3E05 CDODOA	MVI CALL	A,05H LOAD	Make I/PA=1 and read chip O/Ps
0078	CD580C	CALL	CHCK3	Check if O/Ps are correct
0С 7 В	0601	MVI	в,01н	Make B, the 'correct outputs' register
OC7D	OEOO	MVI	С,ООН	Make C the counter for number of test inputs given
OC7F	Ť9310			
0C7F 0C81	3E02 CDODOA	MVI CALL	A,O2H LOAD]	Make I/PA=O and read chip O/Ps
0C84 0C85	B8 C2140A	CPMJNZ	b Fault]	If chip O/Ps are not correct, chip is bad
0C88 0C8A	3E05 CDODOA		A,05H LOAD	Else make I/PA=1 and read chip O/Ps

OC8D OC8E	B8 C2140A	CPM JNZ	B FAULT	If chip O/Ps are not correct, chip is bade
0091	04	INR	В	Increment 'Correct O/P' register
0092	OC	INR	С	Increment 'number of test
0093 00194	79 FEOF	MOV CPI	A,C OFH]	inputs given' counter Have all test inputs been given?
0096	C27FOC	JNZ	Т9310	No - Go back to programme
0099 009B	3E02 CDODOA	MVI CALL	LOAD	Yes - make I/PA=0
OC9E	CD580C	CALL	CHCK3	Check if chip O/Ps are correct
OCA1	C3DB09	JMP	GOOD	The chip is good

PROGRAMME TABLES

· · ·

OFEO	G O O	DMG		Good Message		
OFEO	ODOA492E	DB	·	LF,CR,I,.,		
OFOE4	432E4953			C,.,I,S,		
OFE8	20474F4F			SP,G,O,O,		
OFEC	44 OD OA			D,LF,CR		
OOOF	, IGO	ODM EQU	OFH	Length of GOODMG		
OFFO	BAD	MG		'BAD' Message		
OFFO	ODOA492E		OF, CR, I, .,			
OFF4	432E4953			C,.,I,S,		
OFF8	20424144			SP,B,A,D,		
OFFC	ODOA			LF,CR		
000E	LBA	DM EQU	OEH	Length of BADMG		
OFFE	RPT	LP EQU	OFFEH	RPT LOOP INDICATOR LOCATION		
OFFF	ICN	O EQU	OFFFH	IC NO INDICATOR LOCATION		

CHAPTER-16

UNIVERSAL IC TESTER

6.1 INTRODUCTION

The procedure for testing ICs in previous chapters requires different personality cards for each IC to be tested. This implies additional hardware for each additional IC testing programme to be included in the IC tester repertoire. Also, each time a different type of IC is to be tested, a new card has to be connected to the microprocessor ports. Obviously, for easy and efficient testing, a universal IC tester is required, which can test any IC using the same hardware, provided, of course, that the software for testing the IC exists in the IC tester memory.

6.2 REQUIREMENTS

It is very seldom that two ICs having identical pin configuration (in respect of V_{cc} , Ground, Input and Output pins) will be encountered. Even ICs having identical logic functions but different parameters may, at times, have different pin configuration. The basic requirement of a universal IC tester is, therefore, that each pin of the IC under test should be programmable as an I/P, O/P, V_{cc} or Ground. Before the test inputs are impressed upon the IC, the test programme must be able to programme each pin to operate in the desired mode.

6.3 DESIGN OF UNIVERSAL IC TESTERS

Fig.6.1 describes the basic idea behind the design of a universal IC tester. Tri state buffers 74LS125 and 74LS126 have been used to programme different pins in the desired mode. Both these ICs have four tri-state buffers, each buffer having independent enable. The enable signals for 74LS125 are active Low and enable signals for 74LS126 are active HIGH. The pin configuration of these ICs is given in Appendix 'E'.

If the enable signal of a 74LS125 buffer is shorted with the enable signal of a 74LS126 buffer, the common line will then control selection of any one of the two buffers. A HIGH on this line will select the 74LS126 buffer, disabling the 74LS125 buffer. A Low on the line will select the 74LS125 buffer and disable the 74LS126 buffer.

As shown in Fig.6.1, each line joining a particular IC pin, can be controlled by different enable signals. The enable signals form different control ports. Since the IC pins should stay in a particular mode throughout the time of testing, there is a necessity of latching the control word at the beginning of the test programme. This is accomplished by using 74LS273 latch, which is a tri state 8 bit latch.

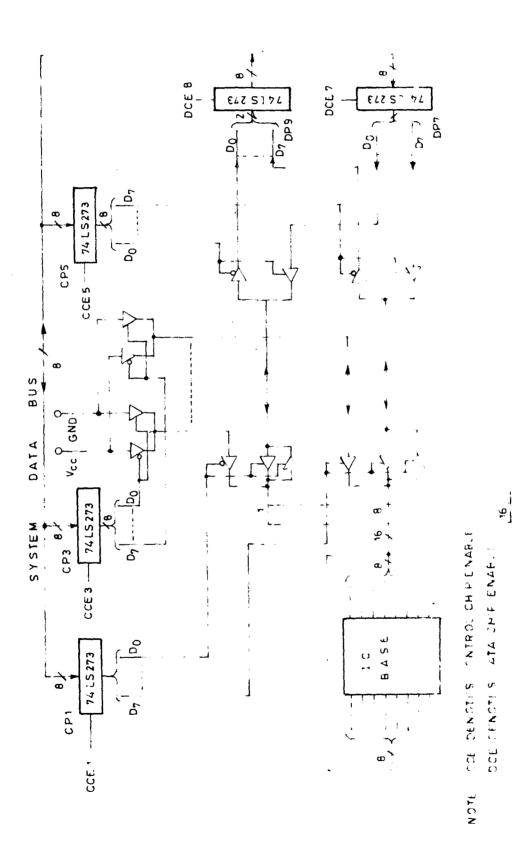


FIG. 6.1 UNIVERSAL I C TESTER

i e

6.4 PROGRAMMING THE UNIVERSAL IC TESTER

Diagnostic programmes written for various ICs in chapter 5 can be used with some modifications in universal IC tester. Depending upon the pin configuration of the IC under test, appropriate control words should be sent to control ports CP1 to CP6. This is the only modification required. A sample initialization programming for programming the pins of the universal IC tester is given in Appendix 'H', for IC 7400 chip. The latching arrangement provided will ensure that the pins remain programmed for the duration of test. Required test inputs can now be given to the IC chip and the O/Ps read into the microprocessor.

6.5 COMMENTS

The universal IC tester could not be fabricated due to nonavailability of components. The list of components required is as under:

1.	74LS273	10	Nos
2.	74LS125	16	Nos
3.	74LS126	12	Nos

CHAPTER-7

CONCLUSION

7.1 SUMMARY OF THE WORK

In this thesis, a digital IC tester, operating through a CRT terminal, has been developed. This IC tester requires individual test cards for different ICs to be tested and test cards for IC 7400, 7476, 7490 and 7493 have been fabricated. Software for testing these ICs has also been developed.

The HIL-2961 to ADM-3A interface has been developed in complete details viz., power supply unit, band rate generator, and 'RS232-C interface and 8251A USART interface' unit. Besides the band rate of 4800 used presently, the band rate generator can also generate many other band rates upto 19200 to facilitate microprocessor interfacing with commonly used peripherals like CRT and TTY. The monitor developed for the IC tester is sufficient for executing various commands required for testing IC chips.

The Universal IC tester discussed in Chapter 6 obviates the need for different hardware for different IC chips and illustrates the flexibility and efficiency of microprocessor in programming different IC pins of the IC under test. The successful working of various designed units has helped in consolidating the knowledge gained on microprocessor applications in the class-room. This has been the most significant gain of this work.

7.2 RECOMMENDED DEVELOPMENTS

Although the IC tester monitor is powerful enough to execute various commands for testing an IC chip, it does not have the capability of executing all the commands necessary for total control of the microprocessor. Other functional commands provided on the HIL-2961 keyboard and additional facilities like block move including appropriate change in branch instructions can be developed with a little more work. Complete monitor can then be stored in an EPROM to avoid loading it each time the supply is switched ON.

The universal IC tester can also be developed based upon the details provided in Chapter 6. Thereafter the IC tester will be able to test all the ICs having 14 or 16 pin configuration, depending upon the software development for testing various ICs.

7-2

- 1. Hindustan Instruments Limited 'Microprocessor Trainer', HIL-2961 User's Manual'.
- 2. Lee, Samuel C. 'Digital Circuits and Logic Design', New Delhi : Prentice Hall of India Private Ltd. 1980.
- 3. Friedman, A.D. and Menon, P.R., 'Fault Detection in Digital Circuits', Englewood Cliffs : Prentice Hall International, INC.; 1971.
- 4. Fridrich, M. and Davis, W.A., 'Minimal Fault Tests for Combinational Networks', IEE Trans. Comput., Vol. C-23, Aug. 1974, pp 850-859.
- 5. Lear Siegler Inc. EID 'ADM-3A, Interactive Display Terminal, Operator's Handbook', 1975.
- 6. Garland, Harry 'Introduction to Microprocessor System Design', Tokyo : McGraw Hill Kogakusha, Ltd., 1979.
- 7. Rafiquzzaman, Mohamed 'Microcomputer Theory and Applications With the INTEL SDK-85', New York : John Wiley & Sons, Inc., 1982.
- 8. Smith, Lionel : application note AP-16, 'Using the 8251 Universal Synchronous/ Asynchronous Receiver/Transmitter, Santa Clara : INTEL Corporation, 1976.
- 9. Tocci, Ronald J. 'Digital System : Principles and Applications', Englewood Cliffs : Prentice Hall INC., 1977.
- 10. INTEL, 'INTEL MCS-80 System Design Kit User's Manual', Santa Clara : INTEL Corporation.

- 11. INTEL, 'MCS-80/85TM Family User's Manual', Santa Clara : INTEL Corporation, October 1979.
- 12. Texas Instruments Incorporated, 'The TTL Data Book for Design Engineers', Second Edition, 1976.
- 13. TOCCI, Ronald J. and Laskowski, Lester. 'Microprocessors and Microcomputers : Hardware and Software', Englewood Cliffs : Prentice Hall Inc., 1979.

R-2

A-1

APPENDIX - A

INTEL 8085 A : BRIEF DESCRIPTION (11)

A.1 SPECIAL FEATURES

8085 A is a single chip, 8 bit, N-channel central processing unit having following special features:

- 1. Single +5 V supply
- 2. 100% software compatibility with 8080 A
- 3. 1.3 µs instruction cycle
- 4. On chip clock generator (with external crystal, LC or RC network)
- 5. On chip system controller; advanced cycle status information available for large system control
- 6. Four vectored interrupt inputs (one is nonmaskable) plus an 8080 A compatible interrupt
- 7. Serial In/Serial out port
- 8. Decimal, binary and double precision arithmetic
- 9. Direct addressing capability to 64 K bytes of memory
- A.2 FUNCTIONAL BLOCK DIAGRAM

Functional block diagram of internal architecture of 8085 A is shown in Fig.A.1

A.3 FUNCTIONAL PIN DEFINITION

The pin configuration of 8085 A is shown in Fig.A.2. Function of each pin is given below: