
tN EFFICIENT DECENTRALIZED LOAD BALANCING 
ALGORITHM FOR COMPUTATIONAL GRID 

A 
Submitted in partial fulllment of the 

requirements for the award of the degree 

of 
MASTER OF TECHNOLOGY 

in 
INFORMATION TECHNOLOGY 

m 
ANAND KUMAR 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE 247667 (INDIA) 
JUNE, 2011 



CANDIDATE'S DECLARATION 

I hereby declare that the work, which is being presented in the dissertation entitled "AN 
EFFICIENT DECNTRALIZED LOAD BALANCING ALGORITHM FOR 
COMPUTATIONAL GRID" towards the partial fulfillment of the requirement for the 
award of the degree of Master of Technology in Computer Science and Efl leeering 
submitted in the Department of Electronics and Computer Engineering, Indian Institute 
of Technology Roorkee, Roorkee, Uttarakhand (India) is an authentic record of my own 
work carried out during the period from July 2010 to June 2011, under the guidance of 
Dr. Padam Kumar, Professor, Department of Electronics and Computer Engineering, 
AT Roorkee. 

The matter presented in this dissertation has not been submitted by me for the award of 
any other degree of this or any other Institute. 

Date:  
Place: Roorkee 	 (ANAND KUMAR) 

CERTIFICATE 

This is to certify that the above statement made by the candidate is correct to the best of 
my knowledge and belief. 

Date: 29 _b ( 1  
Place: Roorkee 	 (Dr. Padam Kumar) 

Professor 
Department of Electronics and Computer Engineering 

UT Roorkee. 



ACKNOWLEDGEMENTS 

First and foremost, I would like to extend my heartfelt gratitude to my guide and mentor 

Dr. Padam Kumar, Professor, Department of Electronics and Computer Engineering, 

Indian Institute of Technology Roorkee, for his invaluable advices, guidance, and 

encouragement for sharing his broad knowledge. His wisdom, knowledge and 

commitment to the highest standards inspired and motivated me. He has been very 

generous in providing the necessary resources to carry out my research. He is an inspiring 

teacher, a great advisor, and most importantly a nice person. 

I am thankful for the useful comments and suggestions from faculty members of our 

institute. I am greatly indebted to all my friends, who have graciously applied themselves 

to the task of helping me with ample moral supports and valuable suggestions. 

On a personal note, I owe everything to the Almighty and my parents. The support which 

I enjoyed from my father, mother and other family members provided me the mental 

support I needed. 

ANANAD KUMAR 



ABSTRACT 

Computational grids have the potential computing power for solving large-scale scientific 

computing applications. To improve the global throughput of these applications, 

workload has to be evenly distributed among the available computational resources in the 

grid environment. So load balancing becomes one of the critical issues that must be 

considered in managing a grid computing environment. Hence we need to develop a 

robust and effective load balancing application which can adopt changes dynamically, 

because due to the distributed and heterogeneous nature of the resources in grid 

availability of grid resources is dynamic. 

In this dissertation a decentralized load balancing algorithm for computational grid is 

proposed. It efficiently handles the load in grid environments with considering several 

other issues that are imperative to Grid environments such as handling resource 

heterogeneity, communication latency, and job migration from one site to other. The 

algorithm uses the system parameters such as the estimated completion time of task, CPU 

processing power, load on the resource, and predicted failure time of the resource and 

balance the load by migrating jobs from over loaded resources to underloaded or idle 

resources by taking into account the job transfer cost, resource heterogeneity, and 

network heterogeneity . The performance of the proposed algorithm is evaluated by using 

several influencing parameters such as the number of jobs, job size, data transfer rate, and 

migration limit. The experimental results shows that the proposed algorithm is efficient 

in minimizing the response time ,total execution time with maximum resource utilization 

and minimum communication over head. 



Table of Contents 

Candidate's Declaration & Certificate........................................... i 

Acknowledgements .................................................................... 

Abstract.............................................................................. 	iii 
Table of Contents .................................................................. iv 

Listof Figures ......................................................................... Vi 

Listof Tables ......................................................................... vii 

1. Introduction and Problem Statement 1 
1.1 	Introduction ............................................................................ 1 

1.2 	Motivation .............................................................................. 3 

1.3 	Problem Statement ...................................................................... 4 

1.4 	Organization of the Report .............................................................. 5 

2. Background and Literature Review 7 
2.1 	Grid computing: an overview ...........................................................7 

2.1.1 	Evolution of Grid Computing ..................................................7 

2.1.2 	Characteristics of Grid Computing ..........................................8 

2.1.3 	Types of Grids ................................................................1 1 

2.2 	Load Balancing in Computational Grid ...........................................11 

2.3 	Load Balancing Algorithms: a Simple Classification ...........................12 

2.3.1 	Static verses Dynamic ........................................................13 

2.3.2 	Nonprcemptive verses preemptive ........................:................14 

2.3.3 	Cluster-level verses Grid-level .............................................1 5 

2.3.4 	Centralized verses Distributed ..............................................15 

2.3.5 	Partial verses Global information ..........................................16 

2.3.6 	Sender-initiated verses Receiver-initiated .................................17 
2.4 	Policies for Dynamic Load Balancing Algorithms ...............................17 

2.4.1 	Information Policy ..........................................................18 
2.4.1.1 	Load Measurement Rule ..........................................18 

iv 



2.4.1.2 Load Information Exchange Policies. 

	

2.4.2 	Transfer Policy.................................... 

	

2.4.3 	Selection Policy.................................... 

	

2.4.4 	Location Policy.................................... 

	

2.5 	Literature Review .......................................... 

	

2.6 	Research Gaps.............................................. 

3. Proposed Load balancing Algorithm 

	

3.1 	Proposed System Model.................................... 

	

3.1.1 	Communication Model ............................ 

	

3.1.2 	Task Model .......................................... 

	

3.1.3 	Load Balancing Model............................ 

	

3.2 	Performance metrics........................................ 

	

3.3 	Design of Load Balancing Algorithm .................... 
3.3.1 Load Balancing Strategy ........................... 
3.3.2 Modules of the Algorithm ......................... 

4. Simulation Tool 

	

4.1 	GridSim: Grid Modeling and Simulation Toolkit........ 

	

4.2 	GridSim Entities ............................................. 

	

4.3 	Application Model........................................... 

	

4.4 	Resource Model..............................................  

...19 

...20 
................22 
................23 
...............24 
................29 

31 
...............31 
...............33 
................36 
................37 
................38 
.................39 
...............40 
...............42 

49 
...............49 
............... 50 
...............52 
...............53 

5. Simulation Results and Discussions 55 
5.1 	Results and discussion ............................................ .............................55 
5.2 	Performance evaluation ................................... .............................58 

6. Conclusion and Future Work 61 
6.1 	Conclusion ..................................................... .............................61 
6.2 	Future Work ........................................................ .............................61 

REFERENCES .....................................................................63 

v 



LIST OF FIGURES 

Figure No. 	 Page No. 

Figure 3.1 Grid Topology ................................................................................31 

Figure 3.2 Grid Architecture 	................................................................32 

Figure 3.3 Communication Model ..........................................................................34 

Figure 3.4 Load Balancing Model ..........................................................................37 

Figure 5.1 Comparison of Uneven Load on Different recourses ........................56 

Figure 5.2 Comparison of Total Execution Time ..........................................56 

Figure 5.3 Average Response Time ..........................................................57 

Figure 5.4 Resource Utilization Comparison for Uneven Load Distribution..........58 

vi 



LIST OF TABLES 

Table No. 	 Page No. 

Table 5.1 	Comparison With other Load Balancing Algorithms ..............................60 

vii 



Chapter 1 

Introduction and Problem Statement 

1.1 Introduction 

The demand for extra and large computing power is never ending .Many research 

projects requires lot of CPU power, some requires a lot of memory and some projects 

need the ability to communicate in real time. Today super computers are not enough to 

solve those needs. They don't have the capacity, even if they did, it would not be 

economical justifiable to use these resources. Computational grids are the solution to all 

these problems and many more. Computational Grids provide broad access not only to 

massive information resources, but to massive computational resources as well. 

Computational grids use high performance network technology to connect hardware, 

software, databases, and people into a seamless web that supports a new generation of 

computation rich problem solving environments for users and also provides the 

opportunity to share a number of resources among different organizations. 

Hence, grid computing is becoming a promising technology due to the collaboration 

opportunities it creates for organizations to work together to achieve common goals 

through resource sharing. With rapid progress in computing, communication, and storage 

technologies, grid computing has gained extensive interests in academic, industry and 

military. The goal of Grid computing is to create the illusion of a simple but large and 

powerful self-managing virtual computer out of a large collection of connected 

heterogeneous systems sharing various combinations of resources. Grid is a type of a 

distributed system which supports the sharing and coordinated use of multi owner 

resources, independently from their physical types and geographical locations to solve 

large-scale applications like meteorological simulations, data intensive applications, etc. 



As more and more critical applications shift to the grid environment, it becomes 
increasingly important to ensure the higher availability of efficiently managed resources. 
Grid Resource Management is defined as the process of identifying application 
requirements, matching resources to the applications, allocating resources to matching 
applications, scheduling and monitoring grid resources over time in order to run grid 
applications as efficiently as possible. Resource discovery is the first phase of resource 
management. Scheduling and monitoring is'ihe next step. Scheduling process directs the 
job to appropriate resource and monitoring process monitors the resources. Due to 
uneven task arrival patterns and unequal computing capacities, some resources may be 
overloaded while others may be under-utilized. It is therefore desirable to dispatch tasks 
from highly loaded resources to idle or lightly loaded resources in a grid to achieve better 
resource utilization and reduce the average task response time. 

So in order to fulfill the user expectations in terms of performance and efficiency, the 
grid system needs efficient load balancing algorithms for the distribution of tasks to the 
resource. A load balancing algorithm attempts to improve the response time of user's 
submitted applications by ensuring maximal utilization of available resources. The main 
goal of load balancing is to provide a distributed, low cost, scheme which prevents, if 
possible, the condition where some processors are overloaded with a set of tasks while 
others are lightly loaded or idle. 

Load balancing is a mapping strategy that efficiently equilibrates the tasks load into 
multiple computational resources in the network based on the system status to improve 
performance. The essential objective of a load balancing algorithm can be, depending on 
the user or the system administrator, defined by: The aim for the user is to minimize the 
makespan of its own application, regardless the performance of other applications in the 
system and the main goal for administrator is to maximize the meet of tasks deadline by 
ensuring maximal utilization of available resources. Typically, a load balancing scheme 
consists of four policies: information policy, location policy, selection policy, 
transference policy. 

2 



The information policy is responsible to define when and how the information on the 

Grid resources availability is updated. Based on the information that can be used, load-

balancing algorithms are classified as static, dynamic, or adaptive [2], [3], [4], 

[5]. In a static algorithm, the scheduling is carried out according to a predetermined 

policy. The state of the system at the time of the scheduling is not taken into 

consideration. On the other hand, a dynamic algorithm adapts its decision to the state of 

the system. Adaptive algorithms are a special type of dynamic algorithms where the 

parameters of the algorithm and/or the scheduling policy itself is changed based on the 

global state of the system. 

The location policy determines a suitable transfer partner (server or receiver) once the 

transference policy decided that this resource is server or receiver. Location-based 

policies can be broadly classified as sender initiated, receiver initiated, or symmetrically 

initiated [6], [7], [3]. The selection policy defines the task that should be transferred from 

the busiest resource to the idlest one. The transference policy classifies a resource as 

server or receiver of tasks according to its availability status. According to another 

classification, based on the degree of centralization, load scheduling algorithms could be 

classified as centralized or decentralized [3], [5]. In a centralized system, only a single 

processor does the load scheduling. Such algorithms are bound to be less reliable than. 

decentralized algorithms, where many, if not all, processors do load scheduling in the 

system. 

1.2 Motivation 

Although many load balancing problems in conventional distributed systems has been 

intensively studied but new challenges in Grid computing still make it an interesting 

topic. This is due to the characteristics of Grid computing and to the complex nature of 

the problems itself. Load balancing algorithms in classical distributed systems, which 

usually run on homogeneous and dedicated resources, cannot work well in Grid 

environment. Grids have a lot of specific characteristics [8], like Scalability, Autonomy, 

Adaptability, Heterogeneity, Information freshness, Considerable transfer cost, uneven job 

arrival pattern, and dynamicity, which remain obstacles for applications to use 

3 



conventional load balancing algorithms directly. So dynamic load balancing is a key 

factor in achieving high performance for large scale distributed applications on grid 

infrastructures because Dynamic (or adaptive) policies works on recent state information 

and determine the tasks assignment to resources at run time [9]. However, it should be 

noted that load balancing process in itself is another kind of system overhead. These 

overheads include: the time required for computing nodes for updating . their load 

information in a real time manner; the communication costs for sharing those load 

information to make a transfer decision; and the costs of job immigrations. Therefore iri 

which conditions the load balancing process is worthy initiating and how it works should 

be considered. 

In this report, a decentralized load balancing algorithm is propose, which uses the 

hierarchical strategy to balance tasks load among resources of computational Grid. Based 

on a tree representation of a Grid, this strategy privileges local load balancing than global 

one. The main objectives addressed by this neighborhood strategy are, the reduction of 

the average response time of tasks and the reduction of the communication cost induced 

by task transferring. 

1.3 Problem statement 

The main aim of this dissertation is to 

1. Study the grid technologies in the areas concerned with load balancing in 

computational grid. 

2. To design and simulate an efficient decentralized load balancing algorithm for 

Computational grid to guarantee the maximum utilization of available resources with 

reduction in the average response time of tasks and the reduction in the communication 

cost induced by task transferring. 

3. Evaluate the performance of proposed approach, taking different number of resource 

with different capability and budget, different number of users with different number of 

tasks with associate budget. 

4 



1.4 Organization of the Report 

This dissertation report comprises of five chapters including this chapter that introduces 

the topic and states the problem. The rest of the report is organized as follows. 

Chapter 2 discuss about the load balancing in computational grid, different approaches 

for load balancing and literature review of the dynamic adaptive load balancing 

algorithms. It also includes the research gaps found. 

Chapter 3 gives the detailed design of the proposed load balancing algorithm. This 

chapter includes the proposed system model, load balancing strategy, and detail about the 

different modules of the algorithm. 

Chapter 4 gives the detail about the simulation toolkit used for the simulation of the 

proposed algorithm. 

Chapter 5 discusses the experimental results, validation of the proposed load balancing 

algorithm and comparison with the previous load balancing algorithms. 

Chapter 6 concludes the dissertation work and gives scope for future work. 

5 



Chapter 2 

Background and Literature Review 

2.1 Grid computing: An Overview 
2.1.1 Evolution of Grid Computing 

Distributed computing is the combination of widely spread computational machines, to 

solve the large computative problems like, weather forecasting, satellite launching and 

earthquake predetermination etc. Distributed computing is another form of parallel 

computing where program parts, run on different machine simultaneously, in parallel 

computing program parts run simultaneously on multiple processors in the same 

computer. Both types of processing require dividing a program into parts that can run 

simultaneously. Distributed programs often deal with heterogeneous environments, 

network links of varying latencies and unpredictable failures in the network or the 

computers [10]. 

Distributed computing connects the two remotely situated machines via a program in 

which it makes call to other machine taking its address space. There can be many nodes 

in distributed computing but a node in distributed environment does not know the 

hardware architecture on which the recipient is running, or the platform in which the 

recipient is implemented. There are many differences between Local and distributed 

computing like throughput, memory access, concurrency and partial failure. In all these 

differences latency and memory access are well known and others are more difficult to 

explain [10]. The main problem in distributed computing is to manage all distributed 

resources by central resource manager along with managing issues related to 

performance, concurrency, communication, failure handling, deadlocks and security [10]. 

Moreover multiple point failure and more opportunities for unauthorized attack in 

distributed computing have paved way for grid computing which has thus evolved from 
distributed computing. 

7 



The term "Grid' was coined in the mid 1990s to denote a proposed distributed computing 

infrastructure for advanced science and engineering [11]. The concept of Computational 
Grid has been inspired by the `electric power Grid', in which a user could obtain electric 

power from any power station present on the electric Grid irrespective of its location, in 

an easy and reliable manner-- something that the client connects to and pays for 

according to the amount of use. When we require additional electricity we have to just 

plug into a power Grid to access additional electricity on demand, similarly for 

computational resources to plug into a Computational Grid to access additional 

computing power on demand using most economical resource. This led to coining of the 

term "Grid'. 

The basic idea behind the grid is sharing computing power. Now-a-days most people 

have more than enough computing power on their own PC. But there are number of 

applications which need more computing power that can be offered by a single resource 

or organization in order to solve them within a feasible/reasonable span of time and cost. 

This promoted the exploration of logically coupling geographically distributed high-end 

computational resources and using them for solving large-scale problems. Such emerging 

infrastructure is called computational grid, and led to the popularization of a field called 

grid computing [11]. 

2.1.2 Characteristics of Grid Computing 
In today's complex world computers have become extremely powerful and they are 

capable enough to run more complex problem, still there are many complex scientific 

experiments, advanced modeling scenarios, genome matching, astronomical research, a 

wide variety of simulations, complex scientific & business modeling scenarios and real-

time problems, which require huge amount of computational resources. To satisfy some 

of these aforementioned requirements, grid computing is being utilized. Grid computing 

offers seamless access to distributed data and collaborative distributed environments, for 

running computationally intensive applications. The following are the characteristics of 

grid computing: 

Exploiting Underutilized Resources: In most organizations, there are large amounts of 

underutilized computing resources. Most desktop machines are busy less than 5 percent 

8 



of the time. In some organizations, even the server machines can often be relatively idle. 

Grid computing provides technique for exploiting these underutilized resources and thus 

has the possibility of substantially increasing the efficiency of resource usage. 

Parallel CPU Capacity: The potential for massive parallel CPU capacity is one of the 

most attractive features of a grid. In addition to pure scientific needs, such computing 

power is driving a new evolution in industries such as the bio-medical field, financial 

modeling, oil exploration, motion picture animation, and many others. The common 

attribute among such uses is that the applications have been written to use algorithms that 

can be partitioned into independently running parts. 

Collaboration of Virtual Resources: In the past, grid computing promised this 

collaboration and achieved it to some extent. Grid computing takes these capabilities to 

an even wider audience, while offering important standards that enable very 

heterogeneous systems to work together to form the image of a large virtual computing 

system offering a variety of virtual resources. The users of the grid can be organized 

dynamically into a number of virtual organizations each with different policy 

requirements. These virtual organizations can then share their resources collectively as a 

larger grid. 

Access to Additional Resources: In addition to CPU and storage resources, a grid can 

provide access to increased quantities of other resources and to special equipment, 

software, licenses, and other services. The additional resources can be provided in 

additional numbers and/or capacity. For example, if a user needs to increase his total 

bandwidth to the internet to implement a data mining search engine, the work can be split 

among grid machines that have independent connections to the internet. 

Reliability: Grid provides reliability in terms of failure at one location; the other parts of 

the grid are not likely to be affected. Grid management software can automatically or 

manually resubmit jobs most of the times to other machines on the grid when a failure is 

detected. In critical, real-time situations, multiple copies of the important jobs can be run 

on different machines throughout the grid. Their results can be checked for any kind of 

9 



inconsistency, such as computer failures, data corruption, or tampering; thus offering 

much more reliability. 

Resource Balancing: A grid federates a large number of resources contributed by 

individual machines into a greater total virtual resource. For applications that are grid-

enabled, the grid can offer a resource balancing effect by scheduling grid jobs on 

machines with low utilization. This feature can prove invaluable for handling occasional 

peak loads of activity in parts of a larger organization 

Heterogeneity: A grid hosts both software and hardware resources that can be extremely 

diverse ranging from data, files, software components or programs to sensors, scientific 

instruments, display devices, personal digital organizers, computers, super-computers and 

networks. A grid involves a variety of resources that are heterogeneous in nature and 

might span several administrative domains across wide geographical distances. Resources 

are owned and managed by different, potentially mutually suspicious organizations and 

individuals that likely have different security policies and practices. 

Scalability: It is a desirable property of a system, a network or a process, which indicates 

its ability to either handle growing amounts of work in a graceful manner, or to be readily 

enlarged. A :grid might grow from few resources to millions. This raises the problem of 

potential performance degradation as grid's size increases. Consequently, applications 

that require a large number of geographically located resources must be designed to be 

extremely latency tolerant [12]. 

Dynamicity or Adaptability: As in a grid there are numerous resources, the probability of 

some resource failing is naturally very high. The resource managers or applications must 

modify their behavior to dynamically adapt the current grid status so as to extract the 

maximum performance from the available resources and services. 

Resource Coordination: Resources in a grid must be coordinated in order to provide 

aggregated computing capabilities [13]. 

Reliable Access: A grid must assure the delivery of services under established Quality of 

Service (QoS) requirements. The need for reliable service is elementary since 

10 



administrators requirement assurances that they will receive expected, continuous and 

often high levels of performance [12]. 

2.1.3 Types of Grid 

Grid computing can be used in variety of ways to address various kinds of application 

requirements. According to the distinct application realms, grid system can be classified 

into two categories. But there are actually no hard boundaries between these grid 

categories. Real grids may be a combination of one or more of these types. The two 

categories of grid systems are describe as below: 

Computational Grid: A computational grid system that aims at achieving higher 

aggregate computation power than any single constitute machine. According to how the 

computing power is utilized, computational grids can be further subdivided into 

distributed supercomputing and high throughput categories. A distributed 

supercomputing grid exploits the parallel execution of applications over multiple 

machines simultaneously to reduce the execution time. A high throughput grid aims to 

increase the completion rate of a stream of jobs through utilizing available idle 

computing cycles as many as possible. 

Data Grid: A date grid is responsible for housing and providing access to data across 

multiple organizations. Users are concerned with where this data is located as long as 

they have access to the data. For example, there can be two universities doing life science 

research, each with unique data. A data grid would allow them to share their data, 

manage the data, and manage security issues. 

2.2 Load Balancing in Computational Grid 

Recent years have been witness to the increasing use of distributed computing 

systems. This may be attributed to two main factors: the growth of the Internet, and the 

emergence of low-cost solutions for end-user computing devices. Computational Grid 

functionally combines globally distributed computers and information systems for 

creating a universal source of computing power and information. So in computational 

grid through the communication network, the resources of the system can be shared by 

11 



users at different locations but the fundamental problem arises in making effective use of 

the total computing power of this distributed computing system. It is often the case that a 

certain node has very few tasks to handle at a given time, while another node has many. It 

is desirable to spread the total workload of the distributed system over all of its nodes so 

that maximum resource utilization, minimum task execution time and minimum task 

response time could be achieved. This form of computing power sharing for improving 

the performance of a distributed system by redistributing the workload among the 

available nodes is commonly called "load balancing". 

A proper scheduling and efficient load balancing across the grid can lead to 

improve overall system performance and a lower turn-around time for individual jobs. To 

minimize the decision time is one of the objectives for load balancing which has yet not 

been achieved. The Job migration is the only efficient way to guarantee that submitted 

jobs are completed reliably and efficiently in case of process failure, resource failure, 

node crash, network failure, system performance degradation, communication delay 

Generally, load balancing mechanisms can be broadly categorized as centralized or 

decentralized, dynamic or static, and periodic or non-periodic [14]. All load balancing 

methods are designed such as, to spread the load on resources equally and maximize their 

utilization while minimizing the total task execution time. Selecting the optimal set of 

jobs for transferring from one resource to other has a significant role on the efficiency of 

the load balancing method as well as grid resource utilization. This problem has been 

neglected by researchers in most of previous contributions on load balancing, either in 

distributed systems or in the grid environment [15]. 

2.3 Load Balancing Algorithms: a Simple Classification 

Many different load balancing algorithms are described in the literature. however, most 

of these descriptions are presented in a mixture of text, drawings and pseudo-code, using 

inconsistent terminology details. Reader's ability to evaluate and compare the various 

algorithms is severely impaired by the absence of a common reference framework. The 

concepts used to classify the algorithms are also useful for the methodical design and of 

load balancing algorithms most relevant to this research. 

12 



2.3.1 Static versus Dynamic 

Load balancing could be done statically at compile-time or dynamically at run-time. 

Static load-balancing algorithms assume that a priori information about all of the 

characteristics of the jobs, the computing nodes and the communication network are 

known. Load-balancing decisions are made deterministically or probabilistically at 

compile time, and remain constant during run-time. The static approach is attractive 

because of its simplicity and the minimized run-time overhead. However, the static 

approach cannot respond to a dynamic run-time environment, and may lead to load 

imbalance on some nodes and significantly increase the job response time. The majority 

of loosely coupled distributed systems exhibit significant dynamic behavior, having load 

varied with time. For these systems, dynamic scheduling, in which policy decisions are 

made at run time based on the load-state of nodes, is required. As a result, there are fewer 

studies on static approaches compared with those on dynamic approaches. 

Dynamic load-balancing policies attempt to dynamically balance the workload reflecting 

the current system state, and are therefore thought to be able to further improve system 

performance. Thus, compared with static ones, dynamic load-balancing policies are 

thought to be better able to respond to system changes and to avoid states that result in 

poor performance. The clear disadvantages of dynamic load-balancing policies are that 

these policies are more complex than their static counterparts, in the sense that they 

require run time information gathering overhead about the current states of the node. Due 

to the communication costs of load information collection and distribution, the 

communication cost of job transfer and processing cost of making scheduling decisions, 

dynamic load balancing algorithms definitely incur much run-time overhead. But a good 

dynamic load balancing algorithm always makes these costs minimized. Thus, it is now 

commonly agreed that, despite the higher run-time complexity, dynamic algorithms 

potentially provide better performance than do static algorithms. 

Hybrid algorithms combine the advantages of both static and dynamic strategies. In 

hybrid algorithms, the static algorithm is considered a "coarse" adjustment, and the 

dynamic algorithm a "fine" adjustment [16]. When the static algorithm is used, load 

13 



imbalance may result. Once this happens, the dynamic algorithm starts to work and 

guarantees that the jobs in the queues are balanced in the entire system. 

2.3.2 Non-preemptive versus Preemptive 

Dynamic load-balancing policies may be either non-preemptive or preemptive. A non-

preemptive load-balancing policy assigns a newly arriving job to what appears at that 

moment to be the best node. Once the job execution begins, it is not moved, even if its 

run-time characteristics, or the run-time characteristics of any other jobs, are changed. 

After assigning the job in such a way causes the nodes to become much unbalanced. So 

an improvement in the spreading of task load is desirable, but it is accepted that this does 

not have to be optimal and that the load at each node need not be fully equalized. This 

relaxation allows these schemes to be devised that deal with a large-grain division of the 

workload, such as at the task level, and that use load transfers sparingly and thus do not 

require such high-speed communication between nodes. Non-preemptive load-balancing 

policies can be applied to any distributed system; however, they are particularly suited to 

systems, which have relatively low-speed internodes communication and tend to consist 

of performance heterogeneous nodes. 

By contrast, a preemptive load-balancing policy allows load-balancing whenever the 

imbalance appears in the workloads among nodes. If a job that should be transferred to a 

new node is in the course of execution, it will continue at the new node. Since, in most 

systems, an initial distribution of jobs across nodes makes those systems appear balanced, 

they will become unbalanced as shorter jobs complete and leave behind an uneven 

distribution of longer jobs. Migration allows these imbalances to be corrected. However, 

to migrate a job in execution is much more complex and requires considerable overheads 

(caused by gathering and transferring the state of the job, resulting in performance 

degradation). If the preemptive policies were attempted in a loosely coupled large-scale 

system, the system performance would probably suffer significantly more, since there 

would be a large number of messages generated, which would congest the 

communication system. The preemptive policies are suitable for the distributed systems, 

in which the processing nodes are connected by a high-speed low-latency network. 

14 



2.3.3 Cluster-level versus Grid-level 

When a job arrives at a cluster, the load-balancing system of the site will analyze the load 

situation of every node in the cluster and will select a node to run the job. Even though 

the cluster is heavily loaded, each job must queue in the cluster and wait to be processed. 

We classify this kind of load-balancing as cluster-level load-balancing, for which the 

objective is to optimize the system performance in a single cluster. Many traditional load-

balancing algorithms fall in the category of site-level [17]. 

On the contrary, if a site lacks sufficient resources to complete the newly arriving tasks, 

or the site is heavily loaded, the load-balancing system of the site will transfer some tasks 

to other sites, and will increase the system throughput and resource utilization in multiple 

sites. We call this load-balancing as grid-level load-balancing. The focus of this 

dissertation is on grid-Level load-balancing. 

2.3.4 Centralized versus Distributed 

Load-balancing policies can be classified as centralized or distributed. Centralized 

policies may be considered as a system with only one load-balancing decision maker. 

Arriving jobs to the system are sent to this load-balancing decision maker, which 

distributes jobs to different processing nodes. The centralized policies have the 

advantages of easy information collection about job arrivals and departures, and natural 

implementation that employs the server-client model of distributed processing. It appears 

that this policy is closely related to the overall optimal policy, in that there is only one 

load-balancing decision maker, which makes all of the load-balancing decisions. The 

major disadvantages of centralized policies are the possible performance and reliability 

bottleneck due to the possible heavy load on the centralized job load-balancing decision 

maker. For this reason, centralized approaches are inappropriate for large-scale systems; 

furthermore, failure of the load-balancing decision maker will make the load-balancing 

inoperable. 

On the other hand, distributed policies delegate job distribution decisions to individual 

nodes. Usually, each node accepts the local job arrivals and makes decisions to send them 

to other nodes on the basis of its own partial or global information on the system load 

15 



distribution. It appears that this policy is closely related to the individually optimal 

policy, in that each job (or its user) optimizes its own cost (e.g., its own expected average 

response time) independently of the others. The distributed load-balancing is widely used 

to handle imperfect system load information. 

There are two kinds of hybrid models. One is a combination of fully centralized and 

distributed algorithms [18]. The other is a hierarchical model, which combines partially 

centralized and distributed algorithms to overcome some of the limits of fully centralized 

algorithms [19]. The first model is applicable only for small-scale distributed systems; 

the latter still has fault-tolerance problems, due to single point of failure in a set of 

manager nodes of clusters. The system is logically divided into clusters, and each cluster 

of nodes will have a single node that maintains the state information on the nodes within 

the cluster. The state information on the whole system is maintained in the form of a tree, 

where each tree-node maintains the state information on the set of processing nodes in the 

sub-tree, rooted by the tree-node. The hierarchical model can be simplified as two-level if 

the set of manager nodes are organized in a fully distributed style [19]. 

2.3.5 Partial versus Global information 

How much load information on the system should be collected for load-balancing in the 

distributed policies is a major issue. Any dynamic load-balancing algorithms include a 

decision part, which may use load information from a subset of the whole system [ 20] or 

information from the whole system [21 ]. The former is called "partial decision base" and 

the latter "global decision base". For an initiating node, a subset of the whole system may 

be its nearest neighbors or nodes that are polled at random or formed by specific criteria. 

In all cases, the degree of the knowledge of the system load status and the accuracy of the 

redistribution decisions conflict. On one hand, more load information implies that there is 

a better chance of reaching a higher quality of load redistribution decisions. On the other 

hand, more load information also means more overhead to collect, and thus more chance 

for the load information to be out of date, unpredictably leading to an even worse load 

imbalance. Therefore, using detailed load information does not always significantly aid 

16 



system performance, it is important to decide that when and how much load information 

should be collected. 

2.3.6 Sender-initiated versus Receiver-initiated 

Distributed load-balancing policies can be broadly characterized as sender-initiated and 

receiver-initiated. Sender-initiated algorithms let the heavily loaded sites take the 

initiative to request the lightly loaded sites to receive the jobs; receiver-initiated 

algorithms let the lightly loaded sites invite heavily loaded sites to send their jobs. 

Sender-initiated load-balancing algorithms perform better than receiver-initiated load-

balancing algorithms at low or moderate system loads. At these loads, it is reasoned, the 

probability of finding a lightly loaded node is higher than that of finding a heavily loaded 

node; similarly, at high system loads, the receiver-initiated policy performs better since it 

is much easier to find a heavily loaded node. 

As a result, adaptive policies have been proposed, which combine the desired features of 

both sender and receiver-initiated techniques, and are called symmetrically initiated [22]. 

They seek to find suitable receivers when senders wish to send jobs, and to find suitable 

senders when receivers wish to acquire jobs. Efficient symmetrical policies behave as 

sender-initiated under low and medium load conditions, and as receiver-initiated under 

heavy load conditions. 

2.4 Policies for Dynamic Load Balancing Algorithms 

Many issues involved in dynamic load-balancing have already been addressed in load 

balancing algorithms, such as how to measure the load of a processing node, how much 

load information we should collect and where they should reside. However, the real 

activities happening for different algorithms on differently designed systems may differ 

significantly. These issues are usually grouped into several policies (or components) at a 

higher level. Although the grouping of the issues and the naming of the policies may 

differ significantly among studies, they tend to discuss in common a set of key issues. In 

this section, we regroup the issues, name the policies, and discuss their possible choices. 

The policy names may or may not mean the same as in other studies. 

17 



Information policy: this decides what, when and where information about states of other 

nodes is collected. 

Transfer policy: this determines whether a node is in a suitable state to participate in a 

task transfer. 

Selection policy: this decides which task should be transferred, if the node is a sender. 

Location policy: this locates a suitable transfer partner. 

2.4.1 Information Policy 

Information policy covers most issues related to the load information necessary for 

making load-balancing decisions. Information policy decides what information is 

collected, and when information about the states of other nodes is to be collected, and 

from which nodes. It is also responsible for the dissemination of each node load 

information. 

2.4.1.1 Load Measurement Rule 

Measuring the load of the various nodes in the system accurately is very important for the 

success of a load-balancing algorithm. Measuring the load of the nodes in a distributed 

system is an extremely difficult task. Usually, load is measured by a metric, the "load 

index". A number of possible metrics have been studied in the past. These can be broadly 

divided into two main categories: simple and complex. 

Simple indices: They consider the load on only a single resource. This approach usually 

focuses on the load on the CPU. A simple load index includes processor queue length, 

average processor queue length over a given duration, the amount of memory available, 

the context switch rate, the system call rate, and CPU utilization. 

Complex load indices: They consist of a number of metrics, each relating to a single 

resource, such as CPU, disk, memory and network. The metrics that make up the load 

index may be combined to give a single load value or may be represented as a tuple 

consisting of a number of elements, one per metric. 

A candidate load index should be easy to compute and correlate well with the parameter 

(e.g., the job response time) that is to be optimized. It has been found that simple load 

18 



indices are particularly effective and impose less overhead. One of the most effective 

load indices is simply the processor queue length, and this choice seems to be unanimous. 

In a heterogeneous environment, the load indices from different nodes must be adjusted 

to make them comparable. For example, if two different nodes have different processing 

power, their CPU utilization may have to be divided by their processing power to 

compare their CPU utilization load index values. A better measurement may be the total 

job execution time but in most cases the execution time of a job cannot be predicted 

accurately, it can be estimated by parameters such as the size of the program, the type of 

the job, or based on past statistics and experience. 

2.4.1.2 Load Information Exchange Policies 

The information exchange policies can be broadly classified into three types, although 

hybrid versions of these types may exist. 

Demand driven policies: Each node collects information when it needs it to make a load 

sharing decision. A poll limit is usually used. The main advantage of demand driven 

policy is that load information is exchanged only when it is required. This policy has the 

following disadvantages in practice. 

• When most of the nodes are heavily loaded, they continue to poll each other for 

the sparse lightly loaded nodes create repeated polling, which results in wasting 

the processing time of the polling nodes and polled nodes. In the worst case, 

polling may cause system instability when all the nodes are heavily loaded. 

• Repeated polling generates a large amount of network traffic. This problem 

becomes more significant if the network bandwidth is limited. 

• As the job needs to wait for the polling result, polling will increase the response 

time of the waiting job. This is a problem if the communication delay is 

significant. 

It is difficult to obtain a good value for the probe limit. The probability of a 

successful poll (the hit ratio) depends on the load level in the system; no predetermined 

number of polls can guarantee a hit. In a medium-to-heavily loaded system, if the probe 

19 



limit is small, lightly loaded nodes may not be discovered. If the probe limit is large, then 

(i) most of the heavily loaded nodes may find the same lightly loaded nodes and dump 

their loads to them; and (ii) the problems caused by repeated polling will multiply. 

Periodic policies: Information is disseminated or collected at regular intervals. This is 

simple to implement. However, it is important to determine the most appropriate 

dissemination period as overheads due to periodic communication increase system load 

and reduce scalability. Here, a fixed amount of state collection overhead will be induced 

in the system because each node collects and maintains state-information of other nodes 

at regular interval, regardless whether this information will be used. However, there is no 

polling delay when a task must be transferred. 

State-change driven policies: Nodes issue information about their load state only when it 

changes by a certain amount. Determining the threshold value is problematic, because the 

policy must be sensitive to significant changes but not to minor fluctuations. State-change 

policies generally have lower communication rates than periodic policies. However, if the 

state at a particular node does not change for a long period of time, the information held 

about that node will become stale. Aged load-state information is unreliable, since there 

is no way of telling if the node has crashed or has just not sent a message due to a steady 

state. A newly joining node will not receive information concerning steady-state nodes, 

even if those nodes are suitable transfer partners. One way to improve the basic state-

change policy is to introduce additional dissemination messages, which are sent if the 

load-state does not change for a long period of time. These rules differ from demand-

driven rules in that each node takes the initiative for disseminating its own state instead 

of collecting other nodes information. 

2.4.2 Transfer Policy 

A transfer policy determines whether a node is in a suitable state to participate in 

a task transfer, either as a sender or a receiver. Many proposed transfer policies are 

threshold policies, which may be either based on fixed or adaptive thresholds. One way is 

to set one threshold value for the load imbalance (the difference between the largest and 

smallest loads on the nodes). If the detected load imbalance is bigger that a preset 

20 



threshold value, the transfer is initiated. An equivalent method to this is to set two 

threshold values, Th and T1, by which the nodes are classified into three types, i.e., 

heavily loaded or sender (if loads higher than Th), lightly loaded or receiver (if loads 

lower than T1), and normally loaded otherwise. Depending on the algorithms, Th and T1 

may or may not have the same value. The choice of these thresholds is fundamental for 

the performance of the algorithm. Clearly, the best threshold values depend on the system 

load and the task transfer cost. At low loads and/or low transfer costs thresholds should 

favor task transfers, while at high loads and/or high transfer costs remote execution 

should be avoided. [22] Present a technique that efficiently and in run-time adapt the 

threshold to the system load. 

Fixed threshold policies mean that the threshold values are not changed when system 

loads are changed. There are disadvantages with the fixed threshold policy. If the fixed 

threshold value is too small, this still causes "useless" job transfers. If the fixed threshold 

value is too large, the effect of using a load-balancing mechanism may be reduced. Other 

than using fixed threshold values, thresholds can be set in an adaptive (relative) fashion, 

by adjusting them when the global system load is changed. In [19], if the load of an 

individual node is above or below the average load over a certain domain (either the 

global or some local range) by a preset percentage, then load-balancing actions are 

initiated and load is balanced either locally or globally. In [22] adaptive approach has 

been used to determining proper thresholds, the average load Lag  is determined first. 

Two constant multipliers, H and L, are used in computing the heavy threshold, Th, and 

light threshold, TI. H is greater than one and L is less than one. These two values 

determine the flexibility and the effectiveness of a load-balancing mechanism. The heavy 

threshold, Th , is computed as the product of H and Lavg. Similarly, the light threshold T1 

is computed as the product of L and Lavg. 

The transfer policy may be either periodic or event-triggered. The algorithm may 

periodically check whether the node's state qualifies itself as a candidate for a task 

transfer. However, the great majority of the policies proposed in the literature are event 

21 



triggered. If the state of a node changes, a task transfer may be possible. The state of the 

node may change because either a task has ended or a new task has arrived. 

Symmetrically-initiated transfer policies support load transfers initiated by both busy and 

low-loaded nodes. Symmetrically-initiated algorithms are more complex, but allow the 

advantages of both sender-initiated,  and receiver-initiated algorithms to be exploited. 

Symmetrically-initiated schemes are potentially unstable: there must be a zone between 

the activation thresholds for the sender and receiver parts of the algorithm so that a node 

cannot rapidly move between sender and receiver states. 

2.4.3 Selection Policy 

The role of selection policy is to select tasks for transfer. In sender-initiated schemes, 

busy nodes choose tasks to transfer to another node, whereas in receiver-initiated 

schemes, lightly loaded nodes inform potential senders of the types of task they are 

willing to accept. The policy determines how much load, or how many tasks, to transfer. 

A task transfer may be preemptive or non-preemptive. Preemptive transfers involve 

transferring a partially executed task. This is generally expensive, as it involves collecting 

all of the task's state. Non-preemptive-task transfers involve only tasks that have not 

begun execution and hence do not require a transfer of the task state. A node may be 

overloaded and have no tasks available for non preemptive transfer if it is polled by a 

receiver. A selection policy should consider at least these factors. 

• The overhead incurred in transferring the task should be minimized. Non-

preemptive transfers and small tasks (means small amounts of information) carry 

less overhead. 

• The execution time of the transferred task should be sufficient to justify the cost 

of the transfer. Even if task execution is unknown, it should be possible to classify 

the tasks as short or long tasks, and to consider only the long tasks for migration. 

22 



2.4.4 Location Policy 

The responsibility of location policy is to find a suitable transfer partner. Location 
policies can be distributed, each node selecting a transfer partner on the basis of locally 
held information. Location policy, corresponding to information policy, specifies the 
balancing domain for load-balancing actions; this could be global, nearest-neighbors, a 
group of random polled nodes, or a set or cluster of nodes based on specified criteria. 
Alternatively, policies can be devised using a central information source. Busy nodes 
attempt to locate transfer partners that have low load levels in sender-initiated schemes. 
In receiver-initiated schemes, low-loaded nodes attempt to locate a busy node from which 
to transfer work. Five typical policies are listed below. 

Random policies: A transfer partner is selected at random, and its load-state is ignored. 
This can result in useless task transfers when an already-busy node receives extra work, 
but has been shown to provide performance improvements over no-load-distribution. The 
performance improvements stem from the fact that only busy nodes transmit load, while 
all nodes are potential receivers. Random location policies work best when there are few 
heavily loaded nodes and many relatively idle nodes. 

Threshold policies: The node randomly selects a potential destination node for the job 
and probes it to determine its load index. If the load index at the proposed destination is 
less than or equal to a preset threshold value, that node becomes the job's receiver. 
Otherwise, another node is randomly selected and probed. Probing continues until a 
receiver is found or until the number of nodes probed is equal to a limit Lp. Threshold 
location, policies are based on the result of the probing activity; if a receiver has been 
found, the job is sent there otherwise the job is executed locally. 

Lowest policies: Like threshold policies, lowest policies employ a threshold Lp. 
However, lowest policies differ from threshold policies in that it probes a group of nodes 
until a node with a zero load index is found, or until exactly Lp nodes have been probed. 
The lowest location policy is to select the probed node with the lowest load index as the 
execution node for the incoming job, provided that the load index at that node is less than 
a preset threshold value. 

23 



Preferred list: Based on the topology of the system, each node orders all other nodes into 

a preferred list. A node is the k-th preferred node of one and only one other node, where k 

is an integer. If node i is the k-th preferred node of node j, then node j is also the k-th 

preferred node of node i. When a node is overloaded, it will contact the first node found 

in its preferred list, and attempts to transfer a task to that node. Although the preferred list 

of each node is generated statically, the actual preference of the node in transferring a 

task may change dynamically with the states of nodes in its preferred list. If a node's 

most preferred node becomes overloaded, its second preferred node will become the most 

preferred. 

Least policies: To differentiate from the location policy lowest, we call this class of 

location policies "least". Least policies differ from lowest policies in that they do not 

need to probe nodes, and no threshold is used. The least location policy is to select the 

node with the smallest load index as the destination node for dispatching the jobs on the 

basis of the information on a specified balancing domain. In a heterogeneous 

environment, a node with minimal load, i.e., queue length, does not mean the best 

transfer partner for a certain task. Node processing power and task transfer delay incurred 

among the node and remote nodes should also be considered in location policy. 

2.5 Literature Review 

Numerous dynamic load balancing algorithms have been proposed for computational. 

grid. The factors on the basis of which load balancing algorithms can be compared are 

Communication overhead: Communication overhead is the status information which each 

node has to provide to other nodes in the grid. 

Response time: Amount of time that elapses between the job arrival time and the time at 

which the job is finally accepted by a node. 

Scalability: It is the ability of the algorithm to perform load balancing for a grid with any 

finite number of nodes. 

Fault tolerance: It is the ability of the algorithm to perform uniform load balancing in 

spite of arbitrary node or link failure. 

24 



oat s 

Reliability: It is the ability of the algorithm to schedule job in predetermined amount of 
time. 

Stability: It is defined as the maximum job arrival rate which the .load balancing 
algorithm. In [I7] an efficient desirability-aware load balancing algorithms has been 
presented At is novel approach taking two factors for the desirability of sites, which are 
processing power and communication delay, respectively. For each site si in the grid, this 
algorithm uses desirability of other sites to si to form k number of partners and p number 
of neighbors for the site si. A new job arriving at a site si is immediately distributed to the 
site si or its partner sites. Continuous. load adjustment is employed among neighbor sites. 
In order to reduce/minimize the state-collection overhead in this LB algorithm, state 
information exchange is done via mutual information feedback. So in this case when a 
node failure occurs the information belonging to that node will not change because there 
will be no feedback from the failed site, resulting in sending the task from other sites to 
this site which no longer existed. So creating unnecessary network congestion and 
communication overhead and increasing the completion time of the jobs. 

Betabbas et el., [19] proposed a task load balancing model in Grid environment. It is a 
bee-based model to represent Grid architecture in order to manage workload. This model 
is characterized by three main features: (i) it is hierarchical; (ii) it supports heterogeneity 
and scalability; and, (iii) it is totally independent from any Grid physical architecture. It 
uses a hierarchical load balancing strategy to balance tasks among Grid resources. The 
main characteristics of the proposed strategy are: (i) it now a task-level load balancing; 
(ii) it privileges local tasks transfer to reduce communication cost; and, (iii) it is a 
distributed strategy with local decision Ong. The proposed strategy works very well 
for small jobs but in case of big jobs this approach will result in communication overhead 
, increased response time and finish time of the task. 

Abed et al., [23] proposed a bidding approach. In it controller fast tries to distribute the 
jobs uniformly among its own nodes.. It sends the jobs to s me other controller if it is 
unable to perform load balancing uniformly. The controller broadcasts the load balancing 
request to other controllers in the network. Each controller node sitmits a bid. The 
controller assigns the set of jobs to that controller node which submits the highest bid. 

25 



This algorithm is a mix of sender initiated and receiver initiated load sharing algorithms. 

It is a receiver initiated in the sense that a node can bid high price to discourage the load 

from other controllers. It is a sender initiated, as the controllers have node load 

information, so it can form its bidding set accordingly. The performance improves as the 

number of nodes in the system increases, but when the number of nodes exceeds the 

number of jobs, no further improvement results. 

Shah et al., [24] overcome the drawbacks posed by the bidding approach by proposing 

that each node in the grid calculates its status parameters during the status exchange 

interval. At each periodic interval of time called the status exchange interval, each node 

in the system calculates its status parameters, which are the estimated arrival rate, service 

rate, and load on the node. Each node in the system exchanges its status information with 

the nodes in its buddy set. Each status exchange period is further divided into equal 

subintervals called estimation interval. As each processor balances the load within its 

buddy set, every processor. estimates the load in the processors belonging to its buddy set 

at each estimation instant. The status exchange instants and the estimation instants 

together constitute the set of transfer instants. At the transfer instants, the rescheduling of 

jobs is carried out. Thus, the decision to transfer jobs and the actual transfer of jobs is 

done at the transfer instants. Although this is a decentralized load balancing algorithm 

which considers job migration cost, communication delay is large in it. This becomes a 

disadvantage when this algorithm is applied to small-scale grids. With these approaches, 

jobs need to wait till the next transfer instant for migration, and due to the random arrival 

rate and service rate at each node, it is possible that the load does not get distributed 

evenly across all nodes. In this case, there can be large waiting times at highly loaded 

nodes, whereas lightly loaded nodes continue to remain idle. 

Acker et al., [25] proposed a new decentralized dynamic job dispersion algorithm that is 

capable of dynamically adapting to changing operating parameters. This distributed load-

balancing algorithm is dynamic, " decentralized, and it handles systems that are 

heterogeneous in terms of node speed, architecture and networking speed. The algorithm 

allows individual nodes to leave and join the network at any time and have jobs assigned 

to them as they become available. Each node saves information about its neighbors 

26 



including the network bandwidth available between the local resource and its neighbor; 

the current CPU utilization; and the current I/O utilization. This status information is 

exchanged periodically. Knowing the status information each node can choose when to 

send jobs to its neighbors. This algorithm is fault tolerant and takes job size into account. 

But it will decrease the performance when nodes failure increases because the job on that 

node has to be moved on some other node whenever a failure occurs. So it will increase 

the job completion time as well as communication overhead. 

Bin Lu et al., [26] proposed a new task scheduling and resource allocation algorithm, 

which can not only increase the utilization of resources and system throughput, but also 

realize the load balancing within Grid systems. This algorithm consists of three main 

modules, they are load tracking module, job distributing module and load monitoring 

module. It considers the task number and the performance of every DRM (domain 

resource manager), as well as the situation of current load. This algorithm will increase 

the task response time and also balance the load but create the bottleneck on GRM (grid 

resource manager) because this algorithm uses the hierarchical model of grid and the user 

requests are coming from top to bottom way. 

Saravanakumar et al., [27] proposed an algorithm, Load Balancing on Arrival (LBA) for 

small-scale grid systems. It is efficient in minimizing the response time for small-scale 

grid environment. When a job arrives LBA computes system parameters and expected 

finish time on buddy processors and the job is migrated immediately. This algorithm 

estimates system parameters such as job arrival rate, CPU processing rate and load on 

each processor to make migration decision. This algorithm also considers job transfer 

cost, resource heterogeneity and network heterogeneity while making migration decision 

but it has not taken the task failure into account and also didn't work well for large scale 

grid environment. 

An enhanced ant algorithm for load balancing in grid is proposed in [28]. This algorithm 

determines the best resource to be allocated to the jobs based on job characteristics and 

resource capacity, and at the same time to balance the entire resources. It focuses on local 

pheromone trail update and trail limit. This is a technique to control the value of 

27 



pheromone updated on each resource. The local pheromone trail update will reduce the 

amount of pheromone in visited resource, so the resource they have visited is less 

desirable for other ants while the trail limit, which is the allowed range of the pheromone 

strength, is limited to maximum and minimum trail strength. This algorithm does not 

provide a way about the preemption of jobs from the resources and results in many 

resources being idle and many other being overloaded most of the time. 

P. K. et al., [18] proposed a decentralized grid model, as a collection of clusters. It 

introduces a Dynamic Load Balancing Algorithm (DLBA) which performs intra cluster 

and inter cluster (grid) load balancing. DLBA considers load index as well as other 

conventional influential parameters at each node for scheduling of tasks. But this 

approach didn't consider the communication cost, task time parameters and failure nature 

of nodes. On grid level this algorithm will be decentralized but on cluster level it will 

become centralized because the load balancing decisions will depend on cluster server. 

So congestion on the cluster server or failure of this server will result in performance 

digression. The Decentralized Recent Neighbor Load Balancing Algorithm for 

Computational Grid presented in [29] has the same drawbacks 

Mohsen et el., [30] proposed a probabilistic scheduling algorithm for load balancing 

purpose, in this algorithm cost, deadline and resources behavior have been considered. 

Probabilistic algorithm chooses the resources that have better past and least completion 

time. But in this approach the resources that have greater completion time always get 

ideal and a bottle neck may be created on the resources that have least completion time. 

Jingyi [31] proposed a a novel heuristic genetic load balancing algorithm which takes 

advantages of genetic algorithm and applied to solve grid computing load balancing 

problems. it uses the Elistim selection procedure for the experiment . Elitism is to copy 

best solutions in present population to next generation. After selecting chromosomes with 

respect to the evaluation function, genetic operators such as, crossover and mutation, are 

applied to these individuals. Crossover refers to information exchange between 

individuals in a population in order to produce new individuals. The idea behind a 

crossover operation is as follows. It takes as input two individuals, selects a random 

28 



point, and exchanges the sub-individuals behind the selected point. On the other hand, 

mutation is an operation that defines a local or global variation in an individual. Mutation 

is traditionally performed in order to increase the diversity of the genetic information. 

This algorithm works well for large scale heterogeneous grid system as long as flow of 

the coming tasks over grid is in a continuous manner. But when the tasks start arriving 

on an node in a unpredictable manner like at a moment large no of tasks arrived on the 

system and the next moment very less , results in performance digression and system 

overload. 

Above load balancing algorithms take the dynamic runtime environment of the system 

into consideration before assigning jobs to the node. Some of them are adaptive to fault 

tolerance in the sense that the nodes will only have the status information about the other 

nodes which are currently available. Therefore jobs will not be sent to such node which is 

not available due to failure. Above algorithms are also scalable but at a certain cost in 

terms of load balancing time or communication overhead. 

Most load-balancing policies execute two activities that require communications: 

distribute its own load information and collect other nodes information and transfer tasks. 

If each node is required to interact with other nodes, it will have to use mechanisms such 

as broadcast, global gathering, long-distance communication; which are not scalable and 

create intolerable overhead or congestion in systems with a large number of nodes. 

To reduce this overhead, in many policies, a node only exchange information and transfer 

tasks to its physical and/or logical neighbors. These are usually called "neighbor-based" 

load-balancing algorithms. Clustering is another technique to tackle the problem. The 

nodes can be partitioned into clusters based on network transfer delay, where load 

balancing operates on two-level: intra-cluster and inter-cluster via cluster managers or 

brokers. These are usually called "cluster-based" load-balancing algorithms. 

2.6 Research Gaps 
• All Existing load balancing models for computational grid are either the 

combination of fully centralized and distributed algorithms or a hierarchical 

model, which combines partially centralized and distributed algorithms. So there 

29 



is a need to develop a fully decentralized load balancing model to overco e the 

limits of existing load balancing models. 

• The time taken in the migration of a job from one node to other over Grid n twork 

should not be greater than the execution time of the job. Because it is not 

desirable if a job spend more time in migration rather that execution.S there 

should be a limit on the number of count, a job will migrate from one ode to 

other and should be proportional to the job size. 

• The priority of the different type of jobs and their deadline time has n t been 

taken into account. Such that if there is a higher priority job in the queue then it 

must be allowed to execute first by the processor and we also have to t cc into 

consideration that a low priority job does not just spend its time waiting in queue,. 

so preventing starvation. 

• Each node collects information when it needs to make load sharing decisi n. The 

main advantage is that load information is exchanged only when it is re uired. 

But when the system load gets heavy, they continue to poll each other or the 

sparse lightly loaded site results in repeated polling. It increases the ch cc of 

system instability, communication overhead, response time of the job and 

congestion over the network. So it should be avoided. 

• In most of the existing load balancing algorithms faulty nature of the reso rces in 

grid has not been taken into account. So there is need to use a predictive a proach 
which submitted the task on the resources by analyzing it's past so tat the 

probability of re-execution of partially executed jobs after the failure of resoucc will 
be less. The best way to avoid it to submit only small tasks on the resource E which 

have bad past. 

To. fill the research gaps discussed above a decentralized load balancing algorit m has 

been proposed in this report. It uses the hierarchical load balancing model with a aptive 

load balancing approach according the current state of the nodes. And uses the 4emand 

based load sharing information between nodes. 

30 



Chapter 3 

Proposed Load Balancing Algorithm 

The various research gaps mentioned in the previous chapter are addressed by the 
proposed load balancing algorithm. In this section we first discuss the proposed system 
model which is used by proposed decentralized load balancing algorithm. After then we 
will discuss about the design of the algorithm with it's various modules. 

3.1 Proposed System Model 

The Grid system consists of large number of heterogeneous computational resources, 
connected via communication channels through an arbitrary topology (Fig. 3.1). The 
differences among resources may be in the hardware architecture, operating systems, 
processing power and resource capacity. In this study, heterogeneity only refers to the 

------------------- i 
i 	resource 	resource 

resource resource i' 

resource 
resource 

resource ; resource 
WAN - 	witch -` 

------------- ----- 	---- LAN 

resource resource 	' 

-------------------------- 
resource resource 

Figure 3.1 Grid Topology 

31 



processing power of the computational resources. Since in a Grid environm nt, the 

network topology is varying, the proposed model captures this constraint by con idering 

an arbitrary topology in which the data transfer rate is not fixed and varies from link to 

link. The resources that are directly connected to other resources under the same Lomain 

forms a set, we can consider is as site. It may be noted that two neighboring si es may 

have few resources common to each site. So logically, grid architecture can be ivided 

into three levels: Grid-Level, Site-Level and the Resource-Level as shown in figure 3.2. 

------------------------------------------------------- -~ 

Communication network 

Site 1 	 Site2 	Site3 	... 	Site N 

resources  resources  resources  resources  

Computational Grid 

Figure 3.2 Grid Architecture 

The processing power of the grid is measured by the combination of processing p wer of 

the sites and the processing power of a site is measured by the combination of pro cssing 

power of resources under that site. It is assumed that the sites in the grid a  are fully 

interconnected, meaning that there exists at least one communication path betty en any 

two sites in the grid. Inter-site communication is achieved through message I assing. 

There is a non-trivial communication delay on the communication network betty en the 

sites and that delay is different between different pair of sites. The underlying network 

protocol guarantees that messages sent across the network are received in the order sent. 

32 



For any computing resource in the grid, there are tasks arriving at the resource for 

execution. It is assumed that each processor has an infinite capacity buffer to store jobs 

waiting for execution. This assumption eliminates the possibility of dropping a job due to 

unavailability of buffer space. The tasks submitted by the user are assumed to be 

computationally intensive, mutually independent and can be executed at any resource 

which satisfies the QoS (quality of service) requirement of user, such as cast of 

execution. No deterministic or priori information about the task arrival is available. The 

tasks are assumed to arrive randomly at the resources, the inter-arrival time being 

randomly. As soon as the task arrives, it must be assigned to exactly one resource for 

processing, satisfying the QoS requirement. When a task is completed, the executing 

computing resource will return the results to the originating user of the task. Each task is 

assigned a timer when it's generated if the timer reaches a threshold and the task is not 

processed, the task is given the highest priority for execution. 

In a computing environment, task migration is the only efficient way to guarantee that 

the submitted tasks are completed reliably and efficiently even though a computing 

resource failure occurs. But in case of resource failure the partially executed job have to 

be re-executed on some other resource, it results in increased communication cost and 

finishing time of the task. So it is desirable to send only small tasks on the recourses on 

which fault is more likely to occur. Lightly balanced nodes are determined using the 

symmetrically initiated load balancing strategy. It is desirable to transfer the load from 

highly loaded recourses to lightly loaded resources in such a manner, so that it will result 

in increased utilization of resources, reduced response time and finish time of the tasks 

with less communication overhead. 

3.1.1 Communication Model 

Components of the proposed communication model are: 

Resource manager (RM): Every resource in the system runs a resource manager and it 

is local to that resource. Resource manager is responsible for calculating the current load 

on the resource, arranging the tasks in the queue on the basis of priority. And sending the 

33 



information about the current load and number of processes currently available (waiting 

in the queue and running on the processor) to the Site 

GM 

CM K  

FMK  

RM 1 

nth resource 

Kth SITE ~ 	 s 

GM GM 

' CM N CM N i 

s 

RM i RM_i 
, 

ith resource Nth SITE 	jth resource 

Figure 3.3 Communication Model 

34 



manager (SM) associated with it. Considering the heterogeneity of resources the 

workload index has been taken as 'a ratio of the total numbers of processes currently 

residing in a resource running or waiting in queue with it's processing power, so 

RL 
_ M 	 (1) PC 

Where RL shows the current load on the resource, M number of total tasks on the 

resource and PC processing power of the resource. It also manages the current load 

balancing status (LS). 

Fault manager (FM): It works at site level. Each site has their separate fault manager. 

Fault manager runs on each resource under a site and is global to all resources under that 

site. It detects the occurrence and type of resource failure by analyzing the information 

about state of a resource and transfers the information about the failure to Site manager 

(SM). When FM receives the information about failure, it tries to resolve failures. 

Resource failures can be the node crash or network failure. Fault manager guarantees that 

the tasks submitted are completely executed using available resources. The fault manager 

is responsible for check pointing. 

Site manager (SM): site manager also works at site level. Each site has their separate 

site manager. SM runs on each resource under a site locally and is global to all resources 

under that site.SM can fully control the resources of the site to which it belongs, but 

cannot operate the resources of other sites directly. It is responsible for sending the 

information to the Grid Manager (GM) about its average site load and average processing 

power at different time intervals. SM of a site maintains the information about current 

load(RL), processor capacity(PC), communication bandwidth(CB) ,.availability status(S), 

fault index (FI), fault time (FT) along with registration information of resources within 

that site. The availability status shows that the particular resource is currently available or 

not, fault index shows the number of time failure has been occurred and the fault time 

shows the amount of time after which the probability of failure of a resource is high. 

Fault time (FT) is calculated by using the exponential moving average. 

FTnew = FTprev+"(1+Ft)(RFT-FTprev) 	 (2) 

35 



Where FTprev  shows the previous value of FT and RFT shows the amount of tie for 

which the resource was available and FTRew  shows the new estimated value of 	If a 

resource is not available for a time period which is twice of FT, then site manager eletes 

the registration entry for that resource. 

Grid manager (GM): Grid manager work at grid level. GM runs globally o each 

resource which are part of the grid. It has the information about the average load n sites 

(SL), current site status(under loaded or overloaded), communication bandwidth a d each 

site will have the information about it's neighbor sites (the sites which are irectly 

connected to each other). 

3.1.2 Task Model 

For task ti that belongs to a global task set T the following functions have been efined: 

BomNode(ti): denotes the originating computing node for the task ti. 

ExeNode(ti): denotes the executing computing node for the task ti. 

ArrivalTime(ti): denotes the arrival time of task ti, which is the time when the task is 

generated at BornNode(ti) and submitted to the grid for execution. 

SubTime(ti):denotes the time of submission of task on a resource on which it is c rrently 

submitted for execution. 

FinishTime(ti): denotes the time when task ti has completed and the results has be n send 

from ExeNode(ti) to BornNode(ti). 

RespTime(ti): denotes the completion time of ti. It is the difference betty en the 

finishTime(ti) and RespTime(ti). 

DeadlineTime(ti): It is the expected time for a task ti under which it is suppose to be 

completed. DeadlineTime(ti) of a task can be decide by the knowledge of type o task it 

is and from the predictions of it's previous results that how much time these type f tasks 

take in completion. 

WaitTime(ti): Denotes the total amount of time which task has spend waiting in the 

queue. 

36 



probCount(ti): Denotes the number of time a job has been migrated from one resource to 

other for load balancing. 

3.1.3 Load Balancing Model 

New Task 	 Processor 

Task Queue 	Task to 	 Resource 
other 
recourses 

Load balancing 
Task from other 
resources 	 Algorithm 

Destination resource for 
the migrated task 

FM 	 GM 

RM 	 SM 

Figure 3.4 Load Balancing Model 

The proposed load balancing model supports heterogeneity and scalability of grid, 

resources can connect and disconnect the grid at any time. It is totally independ from any 

physical architecture of a grid. The model works in a hierarchical way at three levels 

resource level, site level, grid level. 

Level 0: In this first level, we have the GM, which realizes the following functions: 

(i) Maintains the workload information about the site and the information about the 

neighbors of the site to which the sites are directly connected. 

37 



(ii) Decides to start a grid level load balancing between the sites of the Grid, w ich is 

intra-Grid load balancing. 

(iii) Sends the load balancing decisions to the SM on level I for execution. 

Level 1: The SM and FM of a site work at this level. In this load balancing mode', they 

are responsible to: 

(i) SM Maintain the current RL,S, FI, FT of it's each resource. 

(ii) Estimates the load of associated site and send this information to the GM. 

(iii) Decides when to start a local load balancing, which we will .call intra-sit load 

balancing. 

(iv) Send the load balancing decisions to the resources which it manages, for execu ion. 

(v) FM sends information about the failure of a resource to SM and also responsi le for 

the check pointing of the tasks currently running on a resources. 

Level 2: At this last level, we find resources of the Grid linked to their respectiv sites. 

RIvI works at this level, it is responsible to: 

(i) Maintain workload information of the resource and load balancing status (LS). 

(ii) Send this information to SM of the resource. 

(iii) Arrange the task queue in a priority manner taking WaitTime(ti) as key value. 

(iv) Perform the load balancing decided by its SM or GM manager. 

3.2 Performance Metrics 

In this work three performances metrics have been considered which relevance at three 

different levels. At the job level, we consider the ART (average response time) of the 

jobs processed in the system as the performance metric. If n jobs are processed by the 

system, then 

ART=!Jk=o (finishk—ar-rivalk) 	(3) 

Where Arrivalk is the time at which the kth job arrives, and Finishk is the time at vthich  it 

leaves the system. The delay due to the job transfer, waiting time in the queue, and 

processing time together constitute the response time. At the system level, we cons der 

38 



the total execution time (TET) as the performance metric to measure the algorithm's 

efficiency. It indicates the time at which all n jobs get executed. At the resource level, we 

consider CPU utilization as the performance metric. It is the ratio between the processor's 

busy times to the total (ideal+busy) time of the processor. 

_ BUSYk 
Uk  Busyk+ldealk 	

(4) 

Where Bzisyk indicates the amount of time processor Pk remains busy, and Idlek indicates 

the amount of time Pk remains idle during the total execution time of N jobs. 

3.3 Design of Load Balancing Algorithm 

In accordance with the hierarchical structure of the proposed model, we distinguish two 

load balancing levels: Intra-sites (or Inter-resources) and Intra-Grid (or Inter-sites): 

Intra-site load balancing: In this first level, depending on current workload on its own 

resources, each site manager decides whether to start or not a local load balancing 

operation. If it decides to start a load balancing operation, then it tries, in priority, to 

balance its workload among its resources. Hence, grid can perform N parallel local load 

balancing, where N is the number of sites. 

Intra-Grid load balancing: The load balancing at this level is performed only if some 

sites get over loaded while other are lightly loaded. In this case, tasks of overloaded sites 

are transferred to underloaded ones regarding the communication cost and according to 

the selection criteria. The chosen underloaded sites are those which needs minimal 

communication cost for transferring tasks from overloaded sites. The main advantage of 

this strategy is to privilege local load balancing in first (within a cluster and then on the 

entire Grid). The goal of this neighborhood approach is to decrease the amount of 

messages exchanged between sites. As a consequence, the communication overhead 

induced by tasks transfer and flow information is reduced. 

39 



3.3.1 Load Balancing Strategy 

The proposed load balancing algorithm uses four steps to balance the load. As the 

description will be done in a generic way, here i will use the concept of gro ep and 

element. Depending on cases, a group designs either a site or the Grid. The steps of our 

strategy can be summarized as follows: 

Step 1: Start load balancing and Information update 

Whenever a new task arrives for grid or finish on a resource, performs these actin s: 

(i) If the task arrives or finish on a resource and load balancing status LS) of 

resource is 0 then performs steps which are below else set LS to 1. 

(ii) Calculate the current workload on the resource and send this to SM. 

(iii) Calculate the current average workload on site and send this to GM. 

Step 2: Estimation of the current load deviation value LDS (for Site) and L G (for 

grid) 

(i) Estimates current average workload of the site based on workload info ation 

received from its resources. 

(ii) Send this site workload information to GM. 

(iii) Estimates current average workload of the grid based on w rkload 

information received from its sites. 

(iv) On grid level compute LDG and on site level computes LDS by using the 

standard deviation over the workload index under it's elements in rder to 

measure the deviations between them. 

Step 3: Decision making 
In this step the load balancing algorithm decides whether it is necessary to perforn a site 

level load balancing or a grid level load balancing operation or not. For this pujpose it 

executes the following two actions: 

(i) 	Defining the balance/imbalance state of the group (site or grid) If we 

consider that the standard deviation measures the average deviation letween 

the workload of elements of their group, then we can say that this grog  p is in 

balance state when this deviation is small. In practice, we define a balance 

40 



threshold, denoted as c, from which we can say that the standard deviation 

tends to zero and hence the group is balanced., thus can write the following 

expression: 

If((LDSi <e) Then the site Si is balanced Else It is unbalanced. 

If ((LDG <_ e) Then the grid is balanced Else It is unbalanced. 

Where LD shows load deviation. 

(ii) 	Group partitioning: For an imbalance case, we determine the overloaded 

elements (sources) and the underloaded ones (receivers), depending on the 

load index of every element relatively. The elements which have their load 

index less than the average load index of the group are under loaded and 

others are overloaded. 

Step 4: Tasks transferring 

In order to transfer tasks from overloaded elements to under loaded ones, the proposed 

load balancing algorithm uses the following rules: 

In case of intra site load balancing: 

(i) Transfer the task with ProbCount(ti) less than the migration threshold, to 

underloaded resources taking communication cost and task priority into 

consideration. 

(ii) Arrange the tasks in the task queue in priority order using Wait Time (ti) as 

priority key. 

(iii) Set LS status of the resources to 1. 

In case of intra grid load balancing 

(i) 	Transfer task with ProbCount(ti) less than threshold value from overloaded 

sites to under loaded sites. In this case it is best to transfer the task from 

resources which have higher LI in overloaded sites to resources which have 

lower LI in underloaded sites with taking communication cost and task 

priority in consideration. 

41 



(ii) Arrange the tasks in the task queue in priority order using WaitTime (ti) as 

priority key. 

(iii) Set load balancing status of the resources to 1. 

Above in both cases before transferring the task to a resource, it is important to take into 

consideration the communication cast and failure time of that resource, if fault index 

value of the resource is greater than one. Taking failure time of a resource into 

consideration before transferring a task on it will increase the probability of completion 

of that task before resource failure occurs. And for task selection always select the last 

task from the queue which has been already shorted on priority basis. 

3.3.2 Modules of the Algorithm 

Procedure: Main 

For a recourse R When a new task arrive or finish on it do 

1. if( it's LS is 0) 	 // load balance status of resource R 

{ 

1. Sends its workload LIR to its SM. 

2. SM calculates the current ALISi and APCSi of the site Si where SM C Si. 

(ALISi = 0; APCSi = 0; 	 // ALISi is average load of a site 

For all Rj E Si do 	// APCS is average processing power of a site 

ALISi = ALISi + Llgi; APCSi = APCSi + PCRi; If PCR processing power 

// of resource R 

End For 

ALISi = A ISi/N; APCSi = APCSi/N; //where Nis number of resources 

//under Si 

1 
3. Send information about current ALISi and APCSi to GM. 

4. GM calculates the ALIG // ALIG average load of grid 

42 



II Procedure main continue 

For all sites Si c G do 

ALIG = ALIG + ALISi; 

End For 
ALIG = ALIG/M; //where M is number of sites grid. 

} 

5. GM calculates the LDG. // LDG load deviation of grid 

{Initially set LDG = 0; 

For all Sic Gdo 

LDG = LDG + (AUG - ALISi)2; 

End For 

LDG = (LDG /M) 1/2; 

} 

6. If (LDG > e) 

Perform grid level load balancing. 

7. SM Calculates The LDS. // LDS is load deviation of a site s. 

{ 

Set LDS = 0; 

For all Rj E Si do 

LDS = LDS + (ALISi-LIRj)2  

End For 

LDS=(LDS/N)1 /2; 

} 

8. If (LDS> e) 

Perform site level load balancing. 

} 

Else set load balancing status to 0. 

End for 

43 



Procedure: Site load balancing for a site S 

1. Partition the recourses of S in underloaded and overloaded resources. 

{ 

For all Rj c S do 

If ((((LIRj * PCRj) -1) / PCRj ) > ALIS) 

Then Rj e OR 	// where OR is overloaded resource set 

Else If ((((LIRj *PCRj) + 1) / PCRj ) < ALTS) 

Then Rj c UR 	it where UR is underloaded resource set 

2. Short the elements of UR in Descending order of bandwidth and elements of 

OR in descending order of load. 

3. While (LDS > E) 

1. Set j-0; 

2. While (J< sizeof OR && j < sizeof UR) 

{ 

1. Take Rj from OR. 

I. 'Cake task t from the end of task queue which has lowest priority 

and and ProbCount(t) is less than migration threshold ; 

2. Increment ProbCount (t); 

2. Set i-- 0 

3. While (1<  sizeof UR ) 

I 
1. Take Ri from UR. 

2. If( (ETRi + ( DeadlineTime(t) — currentclocktime)) <— I' FRi) 

{ 

Assign t to this resource Ri; End while; 

}i±±; 	// ETR estimated execution time of the tasks on R 

44 



//Procedure site load balancing continue 

4. If the task t has not assign to a resource then assign it to the Ri E UR for 
which (ETRi + ( DeadlineTime(t) — currentclocktime)) was minimum 

5. Increment j. 

} 

3. Update the workload on resources and short the tasks using WaitTime(ti) 
as key under site S. 

4. Update the set OR, US and value of LDS. 

5. Short the elements of OR in ascending order of bandwidth and elements 
of UR in descending order of bandwidth. 

} 

4. Site is in balance state call return. 

Procedure: Grid load balancing 

1. Partition the grid into underloaded and overloaded sites 

{ 

For all Sj c G do 

If ((((LISj *PCSj) -1) / PCSj) > ALIG)&( total tasks on S> number of 

resources in S) 	 I 

Then Rj c OS 	// where OS is overloaded site set 

Else If ((((LISj *PCSj) +1) / PCSj ) < ALIC,) 

Then Rj e US 	// where US is underloaded site set 

2. Short the elements of UR in descending order of bandwidth and elements of 

OS in descending order of load. 

45 



// procedure for grid load balancing continue 

3. While (LDG> s) 

{ 

1. Set j=0; 

2. While (J< sizeof OS &&j < sizeof US) 

{ 

1. Take Sj from OS 

2. Short the resources of Sj in decreasing order of their load 

1.Take task t from the end of task queue of resource R c Sj 

having highest load and probe (t) of task is less than migration 

thresold 

2. Increment Prob (t); 

3..Seti=O 

4. While (i < sizeof US') 

{ 

I. Take Si from US. 

2. Short the resources of Si in increasing order of their load set k=0; 

3. While (k < number of resources in Si) 

{ 

1. Take the gk resource from shorted list of site Si. 

2. If ( (ETRk + ( DeadlineTime(t) — currentclocktime)) <= FTpk) 

{ 

Assign t to this resource Ri; 

End while; 

} K++;  

46 



II procedure for grid load balancing continue 

4. If the task t has not assign to a resource then assign it to the Rk e 
Si for 	which (ETRk + ( DeadlineTime(t) — currentclocktime)) 
was minimum 

5. i++; 

5. Increment j ; 

3. Update the workload on resources and short the tasks using 
WaitTime(ti) as key under site S. 

4. Update the set OS, US and value of LDG. 

5. Short the elements of OS in descending order of bandwidth and 
elements of UR in descending order of bandwidth. 

4. Grid is in balance state call return 

47 



Chapter 4 

Simulation Tool 

4.1 GridSim: Grid Modeling and Simulation Toolkit 

The GridSim[32] toolkit provides a comprehensive facility for simulation of different 

classes of heterogeneous resources, users, applications, resource brokers, and schedulers. 

It can be used to simulate application schedulers for single or multiple administrative 

domains distributed computing systems such as clusters and Grids. Application 

schedulers in the Grid environment, called resource brokers, perform resource discovery, 

selection, and aggregation of a diverse set of distributed resources for an individual user. 

This means that each user has his or her own private resource broker and hence it can be 

targeted to optimize for the requirements and objectives of its owner. In contrast, 

schedulers, have complete control over the policy used for allocation of resources. This 

means that all users need to submit their jobs to the central scheduler, which can be 

targeted to perform global optimization such as higher system utilization and overall user 

satisfaction depending on resource allocation policy or optimize for high priority users. 

GridSim is better for simulating the grid based algorithms because: 

• It allows modeling of heterogeneous types of resources. 

• Resources can be modeled in two modes: space shared and time shared. 

• Resource capability can be defined in the form of MIPS (Million Instructions per 

Second) as per SPEC (Standard Performance Evaluation Corporation) benchmark. 

• Advance reservation of resources can be done. 

• Application tasks can be heterogeneous and they can be CPU or I/O intensive. 

• There is no limit on the number of application jobs that can be submitted to a 

resource. 

49 



• Multiple user entities can submit tasks for execution simultaneously in t e same 

resource, which may be time-shared or space-shared. 

• Network speed between resources can be specified. 

• It supports simulation of both static and dynamic schedulers 

• Statistics of all or selected operations can be recorded and they can be apalyzed 
using GridSim statistics analysis methods. 

4.2 GridSim Entities 
GridSim supports entities for simulation of single . processor and multipr censor, 
heterogeneous resources that can be configured as time or space shared systems. I allows 
setting their clock to different time zones to simulate geographic distribu ion of 

resources. It supports entities that simulate networks used for communication among 
resources. During simulation, GridSim creates a number of multi-threaded entiti s, each 

of which runs in parallel in its own thread. An entity's behavior needs to be siiiulated 
within its body () method, as dictated by SimJava_ GridSim based simulations ontain 
entities for the users, brokers, resources, information service, statistics, and network 

based I/O. 

(1) User: Each instance of the User entity represents a Grid user. Each user ma differ 

from the rest of the users with respect to the following characteristics: 

• Types of job created e.g., job execution time, number of parametric repli •ations, 

etc. 

• Scheduling optimization strategy e.g., minimization of cost, tim,  

• Activity rate e.g., how often it creates new job, 

• Time zone, and 

• Absolute deadline and budget, or 

50 



• D-and B-factors, deadline and budget relaxation parameters, measured in the 

range [0, 1] express deadline and budget affordability of the user relative to the 

application processing requirements and available resources 

(2) Broker: Each user is connected to an instance of the Broker entity. Every job of a 

user is first submitted to its broker and the broker then schedules the parametric tasks 

according to the user's scheduling policy. Before scheduling the tasks, the broker 

dynamically gets a list of available resources from the global directory entity. Every 

broker tries to optimize the policy of its user and therefore, brokers are expected to face 

extreme competition while gaining access to resources. The scheduling algorithms used 

by the brokers must be highly adaptable to the market's supply and demand situation 

(3) Resource: Each instance of the Resource entity represents a Grid resource. Each 

resource may differ from the rest of resources with respect to the following 

characteristics: 

• Number of processors; 

• Cost of processing; 

• Speed of processing; 

• Internal process scheduling policy e.g., time shared or space shared; 

• Local load factor; and 

• Time zone 

The resource speed and the job execution time can be defined in terms of the ratings of 

standard benchmarks such as MIPS and SPEC. They can also be defined with respect to 

the standard machine. Upon obtaining the resource contact details from the Grid 

information service, brokers can query resources directly for their static and dynamic 

properties. 

51 



iv) Grid Information Service: It provides resource registration services and mai tains a 
list of resources available in the Grid. This service can be used by brokers to 1iscover 
resource contact, configuration, and status information. 

v) Input and Output: - The flow of information among the GridSim entities hap ens via 
their Input and Output entities. Every networked GridSim entity has 1/0 channel , which 
are used for establishing a link between the entity and its own Input and Output ntities. 
Note that the GridSim entity and its Input and Output entities are threaded enti ies i.e., 
they have their own execution thread with body () method that handle the events. e use 
of separate entities for input and output enables a networked entity to model full duplex 
and multi-user parallel communications. The support for buffered input and output 
channels associated with every GridSim entity provides a simple mechanism for a entity 
to communicate with other entities and at the same time enables the modeli g of a 
communication delay transparently. 

4.3 Application Model 

GridSim does not explicitly define any specific application model. It is up to the 
developers (of schedulers and resource brokers) to define them. In GridSim, each 
independent task may require varying processing time and input files size. Such to ks can 
be created and their requirements are defined through Gridlet objects. A Grid et is a 
package that contains all the information related to the job and its execution mana ement 
details such as the job length expressed in MI (million instructions), disk 1/0 ope ations, 
the size of input and output files, and the job originator. These basic parameters clp in 
determining execution time, the time required to transport input and output files b tween 
users and remote resources, and returning the processed Gridlets back to the On inator 
along with the results. The GridSim toolkit supports a wide range of Gridlet mana ement 
protocols and services that allow schedulers to map a Gridlet to a resource and m age it 
throughout the life cycle. 

52 



4.4 Resource Model 

In the GridSim toolkit, we can create Processing Elements (PEs) with different speeds 

(measured in either MIPS or SPEC-like ratings). Then, one or more PEs can be put 

together to create a machine. Similarly, one or more machines can be put together to 

create a Grid resource. Thus, the resulting Grid resource can be a single processor, shared 

memory multiprocessors (SMP), or a distributed memory cluster of computers. These 

Grid resources can simulate time- or space-shared scheduling depending on the allocation 

policy. The tasks execution queue on more than one PEs or SMPs under a Grid resource 

is typically managed by using time-shared policy that use round-robin scheduling policy 

for multitasking. And the tasks in wait queue on a grid Grid resource is managed by using 

space-shared policy such as first-come-first-served (FCFS), back filling, shortest-job-first 

served (SJFS), and so on. 

53 



Chapter 5 

Simulation results and discussion 

5.1 Results and Discussion 
In order to evaluate the efficiency of proposed decentralized load balancing algorithm, I 

have implemented it on the GridSim simulator [32], which I extended to support the 

simulation of varying Grid load balancing problems. The experiments were performed, 

based on the variation of several performance parameters in a Grid, mainly the large 

number recourses with varying processing capacity and large number of tasks of varying 

length. The experiments focus on the work load of different resources, utilization of 

resources, average response time of the tasks, and total finish time of the tasks submitted 

during a given period. To evaluate the benefit of this algorithm, different graph has been 

computed from the output of this load balancing algorithm. All experiments have been 

performed on 2.4 GHz Intel Dual Core with 4 GB main memory, running on windows7. 

The grid topology I am taking for experiments is heterogeneous which has five sites 

connect with WAN (wide area network) and each site having twenty five resources 

connected with LAN (ethernet or wireless). The communication bandwidth of different 

sites and resources is different and the resources are heterogeneous in terms of their 

processing power. In order to obtain reliable results, same experimentations have been 

performed several times. After many evaluation tests the threshold value a has been set to 

a=0.045 and migration limit of a task has been set to 4. 

Experiment 1: The first set of experiments has focused on the relative load of different 

resources under the same site. For this experiment I have taken 20 users having variable 

number of tasks, which is between 60 to 100. The task length varies between 10000 to 

150000 MIPS. And the resources are of different power having number of machines 

varying between 1 to 4, each machine with number of PE varying between 1 to 4 and 

each PE having power varying between 900 to 1500 MIPS. Figure 5.1 shows the load 

graph of different resources under the same site. From this graph we can see that the load 

on all the three resources is increasing and decreasing almost in the same manner. It 

55 



Time 

shows the distribution of load on resources by using load balancing algorithm i almost 
equal. 

6  ~- 

orkloai 

y 	e 

	

i .'3 "c m rT - . 	a. ;.,.■ .scnaRrmmcrF-**vzvrxc' z 	,.. .m. 	»-c.....».. 

F 	y
Time ,"  

Figure.5.1 Comparison of Uneven Load on Different Resources 

Experiment 2. The second set of experiments has focused on the total execution ime of 
the system. For this experiment the number of jobs from 10000 to 100000 is sub itted to 
the grid. The task length varies between 10000 to 150000 MIPS. The processing power of 
resources is same as in experiment. 1. 

7-50 

 

700  ©.with out had 

t 	550 	
balancing 

	

.4 0 	 " 	O with proposed, 

	

;4Q0 	g 	Toad balancmg~ 

	

I `200 	
r 

1000 3000x;- 5000 ' 7000 9000, 

0 	0 	0 	0 	0 
r 

Number of Jobs Figure.5.2 Comparison of Total Execution time 
56 



Figure 5.2 shows the total execution time (TET) of the system for different number of 

jobs. TET of the system without load balancing is very high and with load balancing it is 

low. Because in case of no load balancing many resources get overloaded while other 

may be idle This increases the waiting time of resources, hence increases the execution 

time of a task. So this delay in task execution increases the total execution time of the 

system. While in case of using load balancing algorithm, it tries to utilize the resources 

fully transferring the task from under loaded resources to overloaded resources. 

Experiment.3: This experiment focused on the average response time of the tasks 

submitted on the grid. The data for tasks and resources are same as in example 2. Figure 

5.3 shows the gain in average response time using load balancing algorithm. 

Time 

Number of jobs 

Figure.5.3 Average Response Time 

Experiment.4: This experiment focused on the average resource utilization in case of 

uneven load distribution on the resources. The data for tasks and resources are same as in 

example 2. Figure 5.4 shows the comparison between resources utilization, using 

proposed decentralized load balancing algorithm and without load balancing. 

57 



lization 

Number of jobs 

Figure.5.4 Resource Utilization Comparison For Uneven Load Distribution 

5.2 Performance Evaluation 

Effect of the Status Exchange Period: In the proposed load balancing algorithm 

information exchange takes place, only when it predicts that there is a need to balance the 

load. This makes the information exchange period to be adaptive, so less number of status 

messages exchanges results in less communication overheads. 

Effect of an Uneven Load Distribution: One of the major advantages of the proposed 

algorithm is that it attempts to balance the load on each processor "as soon as possible." 

Whenever a task arrives at a resource, that resource will determine whether there is a 

need to balance the load If it finds out that there is a need then load balancing take place 

and task is migrated from overloaded resources to underloaded resources, and hence the 

is balanced as soon as possible. 

Effect of Migration Limit: One of the important parameters for proposed load balancing 

algorithm is the migration limit, that is, how many hops we should allow a task to migrate 

before execution. Obviously, this decision depends on the network topology considered. 

By setting the migration limit value to the maximum path length of the graph, we can 

58 



obtain almost the same result as when the migration limit is very large. Therefore by 

restricting the value of migration limit to a finite value, we can reduce the task migration 

cost by reducing the total number of task migrations. I conducted a set of experiments by 

varying the migration limit and I observed that, by setting the value of migration limit 

around the maximum path length (but less than maximum path length) of the topology 

gives a better performance. 

Effect of task Size: For the load balancing algorithm, the task migration cost is also one of 

the most important factors. An increase in task size would lead to an increase in the task 

migration cost factors for load balancing. For this purpose the proposed algorithm uses 

the migration limit to decide how many times a task can be transfer from one resource to 

other for load balancing. 

Comparison with other load balancing algorithms 

Metrics MELISA Dynamic Job Decentralized 	Recent Proposed 
Dispersion Neighbor 	Load decentralizbd 	load 
Algorithm Balancing algorithm balancing algorithm 

Communication More; Due to periodic More; As each node More; As each node Less; ass each node 
overhead status exchange process obtains status obtains status obtains status infor- 

information of its information of its mation only when it 
neighbors periodically neighbors periodically feel that it will used 

in reeeittty in future. 
Load balancing More; Sensitive to the Less; As each node has Less; As each node Less; As each node 
time status exchange interval status information of all has status information has status 

other nodes. This status of all other nodes. information of all 
information is collected This other nodes. 
periodically status information is 

collected periodically  
Scalability Scalable; The status Scalable; System allows Partially scalable; Fully scalable; 

information is a node to join or leave at Work best for small Node can join and 
exchanged every time a any time, size grid systems leave at any time 
node is 
added or deleted 

Fault tolerance Partially Incorporated; Partially Incorporated; Partially incorporated; Incorporated; 
Faulty node will not If a multicast message is Both in case of job 
provide status not received from the migration 	and 	in 
information during the node in stipulated time collecting 	status 
status exchange interval the node is assumed to information 

be faulty  
Reliability Incorporated; Job will Incorporated; Since Incorporated; 	Since Incorporated; 	since 

be scheduled during each node has status each node has status each node has status 
every status exchange information of all the information of all the information of other 
interval, other nodes, the job will other nodes, 	the job nodes job will be 

definitely be scheduled will definitely definitely schedule. 
on one of the nodes be scheduled on one 

59 



Stability Incorporated; Incorporated; The Not Incorporated; Incorporated; 
Overall system is stable algorithm is tested for Algorithm . 	works 

varying job arrival rates for 	varying 	task 
arrival 

task 	migration Partially Incorporated; Partially 	Incorporated; Partially Incorporated; Incorporated; 
cost jobs need to wait 	till decrease 	 the Create bottleneck on Use 	predictive 

the next transfer instant performance when nodes hierarchical 	level approach and allow 
for migration failure increases because servers those 	task 	to 

tasks has to move execute on a node 
which fit best with 
that prediction 

Table.5.1 Comparison With Other Load Balancing Algorithms 

60 



Chapter 6 

Conclusions and Scope for Future Work 

6.1 Conclusions 

In this dissertation, an efficient decentralized load balancing algorithm has been proposed 

to balance load across resources for data-intensive computations on Grid environments. 

The objective of the algorithm is to minimize average response time and the total 

execution time for jobs that arrive at a Grid system for processing with minimum 

communication overhead and task migration cost. The algorithm minimizes the 

communication overhead and task migration cost by privileging local load balancing to 

avoid the WAN communication. Several constraints such as communication delays due 

to the underlying network, processing delays at the processors, and an arbitrary topology 

for a Grid system are explicitly considered in the problem formulation. The proposed 

algorithm is adaptive in the sense that it uses the information about current status of 

resources to balance the load among them. The experimental results shows that the 

proposed algorithm minimizes the average response time and total execution time of the 

tasks submitted to the grid for execution and the gain in time increase with number of 

jobs submitted to the grid. The proposed algorithm has been compared with other 

algorithms and it seems to be more adaptive to grid environment than others. 

6.2 Scope for Future Work 

In the future, this work can be extended in following ways 

(i) This work can be implemented in actual middle ware like Globus. 

(ii) And the impact of communication delay on the model under varying load 

conditions need to be studied. 

61 



REFERENCES 

[I] C. Xu and F. Lau, "Load Balancing in Parallel Computers," Theory and Practice, 

Kluwer academic publicers, Boston, PP(225-260), May, 1997. 

[2] G. Manimaran and C. Siva, "An EfficientDynamic Scheduling Algorithm for 

Multiprocessor RealTime Systems," IEEE Trans. Parallel and Distributed Systems, 

vol. 9, no. 3, pp. 312-319, Mar. 1998. 

[3] N. Shivaratri, P. Krueger, and M. Singhal, "Load Distributing for Locally 

Distributed Systems," IEEE Computer, vol. 25, no. 12, pp. 33-44, Dec. 1992. 

[4] J. Watts and S. Taylor, "A Practical Approach to Dynamic Load Balancing," IEEE 

Trans. Parallel and Distributed Systems, vol. 9, no. 3, pp. 235-248, Mar. 1998. 

[5] M.J. Zaki and W.L.S. Parthasarathy, "Customized Dynamic Load Balancing for a 

Network of Workstations," J. Parallel and Distributed Computing, vol. 43, no. 2, 

pp. 156-162, June 1997. 

[6] Y. Feng, D. Li, H. Wu, and Y. Zhang, "A Dynamic Load Balancing Algorithm 

Based on Distributed Database System," Proc. Fourth Internatiol Conf. High-

Performance Computing in the Asia-Pacific Region, pp. 949-952, May 2000. 

[7] H. Lin and C. Raghavendra, "A Dynamic LoadBalancing Policy with a Central Job 

Dispatcher (LBC)," IEEE Trans. Software Eng., vol. 18, no. 2, pp. 148-158, Feb. 

1992. 

[8] M. Baker, R.Buyya, and D. Laforenza, "Grids and grid technologies for wide-area 

distributed computing," International Journal of Software: Practice and Experience 

(SPE), vol. 32, no. 15, 2002. 

63 



[9] K.G. Shin and C.J. Hou, "Analytic models of adaptive load sharing schemes in 

distributed real-time systems, "IEEE Transactions on Parallel and Distributed 

Systems, Vol. 4, No. 9, pp. 740-761. July 1993. 

[10] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, "A Note on Distributed 
Computing", Sun Microsystems Laboratories 2550 Garcia Avenue Mountain View, 
CA 94043. 

[11] Ian Foster, Carl Kesselinan, and Steve Tuecke, "The Anatomy of the Grid: Enabling 
Scalable Virtual Organizations", International Journal ofHigh performance 
Computing Applications, vol.15, no.3, pp. 200-222, june 2001. 

[12] Thilo Kiclmann, Vrije Universiteit and Amsterdam, "Scalability in Grid". PPT Core 
GRID, Bridging Global Computing with Grid (BIGG), Sophia Antipolis, France, 

Nov. 29,2006. 

[13] L. Bete and Yannis S'anchez, "Grid Characteristics and Uses: a Grid Definition" 
Postproc. the First European Across Grids Conference (ACG'03), Springer Verlag 
LNCS2970, pp. 291-298, Santiago de Compostela, Spain, Feb. 2004. 

[14] Y.Lan, T.Yu 0 "A Dynamic Central Scheduler Load-Balancing Mechanism", Proc. 
14th IEEE Con! on Computers and Communication, pp.734- 40, Tokyo, Japan, July 
1995. 

[15] S.Rips "Load Balancing Support for Grid-enabled Applications" NIC Series, Vol. 
33, ISBN 3-00- 017352-8, pp. 97-104, 2006. 

[16] R. Tong and X. Zhu A," Load Balancing Strategy Based on the Combination of 
Static and Dynamic," IEEE 2 international workshop on database technology and 

applications,pp 1-4 ,Nov-2010. 

[17] K. Subrata, R. Zomaya, "An Efficient Load Balancing Algorithm for 
Heterogeneous Grid Systems Considering Desirability of Grid Sites," 25 th IEEE 
international conference on performance, computing and communications ,pp.320, 
2006. 

64 



[18] Suri, P.K., and manpreet,"An Efficient Decentralized Load balancing Algorithm for 
Grid ,"IEEE 2 I  International Conference on Advance Computing, 2010.   

[19] B. yagoubi and M. medebber,"A Load Balancing Algorithm For Computational 
Grid",IEEE 22"d  International Conference On Computer and Information 
Technology, 2007. 

[20] M. Arora, S.K. Das, R. Biswas, "A de-centralized scheduling and load balancing 

algorithm for heterogeneous Grid environments", In: Proceedings of the 
International Conference on Parallel Processing Workshops, pp. 499-505, August 

2002. 
[21] D. Z. Gu, L. Yang and L. R. Welch, A Predictive," Decentralized Load Balancing 

Approach," In Proceedings of the 19th IEEE International Parallel and Distributed 
Processing Symposium, Denver, Colorado, 04-08 April 2005. 

[22]. H.Shan, L.Oliker, and R.Biswas, "Job superscheduler architecture and performance 

in computational grid environments", Proceedings of the ACM/IEEE conference 
on Supercomputing, 15-21 November 2003. 

[23] A. Abed, G: Oz, A. Kostin," Competition-Based Load Balancing for Distributed 

Systems", Proceedings of the Seventh IEEE International Symposium on Computer 
Networks (ISCN' 06),pp 230 — 235,2006. 

[24] R. Shah, B. Veeravalli, M. Misra," On the Design of Adaptive and Decentralized 

Load-Balancing Algorithms with Load Estimation forComputational Grid 
Environments," IEEE Transactions on Paralleland Distributed systems, Vol. 18, 
pp 1675 — 1687, Dec.2007. 

[25] D. Acker, S. Kulkarni, "A Dynamic Load Dispersion Algorithm for Load-Balancing 

in a Heterogeneous Grid System", Sarnoff Symposium IEEE, pp 1- 5, May 2007. 

[26] Bin lu and H. Zhang, "Grid Load Balancing Scheduling Algorithm Based on 
Statistics Thinking,"IEEE 91h  international conference, pp.288-292, 2008. 

[27] Prof. E. Saravanakumar and Gomathy Prathima. E," A Novel Load Balancing 

Algorithm for Computational Grid",IEEE, 2009. 

65 



[2ni%shir ,ILL" " L 1 lsucingll E nse~ Ant Alm in Grid 
Cempunng."f3€hE Se nd 	l cowfrndree" pp.160-165, 2010. 

[29] L 	 Nl, qjn, "AsecenAslizad RecentNclghbow lad BaJ 
Algoathmtt 	uono# ;' IEEE fns-coqjlnnce, pp.42$- 
433, 2010.:; 

[30] NI. MmedIad bUAbbsW ,"A New Time Optimizing Pn*abilisdc Load Bata 
Alg nthm in" 	computing!', IEEE, 2010. 

[31] Tujyi," A Novel Heuristic Gelatin Load'Balswng Algorithm io.Q#id 
Computing,,7MW "mven,atlomd conference, vol.2, pp.166-169,2010. 

[32] Gcid51n tI available at : hW./Avwa grldbus.drglgridsim/ 

66 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusions
	References

