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Digital filtering is a major subdivision of 

Digital signal processing. The, practical realizations 

of a Digital filter have been discussed in this disser-

tation. To avoid coefficient sensitivity problems, the 

Z Transfer function of 8. Digital filter is implemented 

as a cascaded or parallel combination of' second order 

modules. Bah module in itself can be one of the four 

Direct structures. 

The significant brea4-through in the area of 

IC technology have opened up new options for the imple-

mentation of Digital filters, The present day research 

is centred around the microprocessor based design of a 

Digital filter. Digital filters are now implemented 

making use of 16-bit word length microprocessors. Intel 

8086 has been considered in this dissertation. The 

Assembly language of 8086 is used to implement all the 

Digital filter modules. The software programs are given 

for k'th order Digital filter using N second order modules 

in cascade. It has also been shown that the same sub-

routines developed for second order modules can bo: used 

for parallel structure implementation. 
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QI~.2TER - 0 

I N T N 0 DU CTI O N 

0.1 HISTORICAL BITRODL CTICN 

As man becomes more certain of his control of 

physical things, an ever more important narb of his work is 

the manipulation of syrb::cls he uSe.s to describe and control 

these physical things. the fii ld of waveform manipulation 

or signal pro ccssine, as in radio, radar, sonar, seismology 

of c. , is one of th koystont s of science and tc chnology. The 

tochnicjues and applications of this fila. are as old as 

1Vewton and G ausc aid as new as digital computer and into-

gratod circuits. 

During the-. dcca: of 1960-70, it bocainc practical 

to roprosEent informaticn-boaring waveforms digitally and to 

do signal proc-- 3sine on th4 digital representation on of this 

wave form. Th} availability of high speed digital computors 

fosterc:.d th. dovclopm m tt of i s creasingl y camplcx and sophis-

ti catcd signal processing algorithms... thms... The significant break 

through in the area of integrated circuit te~ri ology promise: 

economical inpl:.m :-ntations of vary complex digital signal 

processing systems. 

Fig. (0.1) illustrates oni view of how the field 

has cm crged and spread .ou-i;. Digital Tilt offing ic one of the 

major subdivisions of Digital signal processing. Digital 

filtering processing algorithms have boon us:a:d primarily in 
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computer simulation, sampled data analysis and data 

reductio' Oomputacion.13. , With the increasing ,xte~.sive 

application of digital p o c~ sso rs to may? y syst -. mrm s, more, and 

more importance is place on tho development ci mathematical 

tools for its a lalysiti and d:.:sign.. The 'Z-transform' rosalt 

in considerable simplification and understanding. The. work 

of Kaiser, th.==, first major cc 	ibutlon to he field of 

Digital sig. al procossing, snowHd hcw much of the wcll- 

developed theory of the design of filters made of resistors, 

capacitors and inductors could be translated, with the aid 

of the Z-transform into straightforward digital filter tech- 

niqu :s. At. about th s amo t imc tremendous impetus was given 

to this c.mc;rging field by the Oool•y--Tukoy (196 5) pap; r on 

a fast method of computing the- discrete Fourier transform, a 

method that was subsequently popularized and cxto.nded via. 

many papers in thy:: IEEE Transactions of the Grouji on Audio 

and Electroacoustics and other journals. At this, timtio, 

the development of a foi ial and quite comprehensive theory of 

digital filters was well under way. 

Perhaps the most interesting aspect of the develop-

ment of the field of Digital signal processing is the 

changing relationship between the roles of FIR (finite 

impulse response) and IIR (infinite impulse response) 

digital filters. Initially Kaiser analysed FIR filters 
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using window functions, which indicated that IIR filters 

were more efficient than FIR filters. However, Stc, okharn's 

work on the FFT method of performing convolution, car more 

specifically FIR digital filtering, indicated that implo-

m cntation of high-order FIR f .lt rs could be made extremely 

computationally effici(,Lnt; thus comparisons between FIR 

and IIR. filters arc no longer strongly biased towards the 

latter. These results also inspired significant research for 

efficiont design for FIR filters. 

The Digital .filter implementation till now was confine-d. 

priiiarily to co::mputor pro rame for simulation, ;ork or for 

pro ceasing relativoly small amountti of data. However, with 

the rapid devlopmen f of :i.ri egrated circuit technology and 

ospCcially the potential for lc.rg scsl-.-i- t--,  ration ( -",SI) 

of digital circuits made many of the; Digital filters mc:r,C 

attractive from the standpoint of cost., Sino and e x±-v C 1c. 

reliability. 

Tho design of high spaod multipliers was of prime 

concern to many hardware and software impl ,montaticns of signaL 

procssirlg algorithms. Standard TTL components gave suffi -W 

ciy>n.t speed to allow an cffectivc filter to bc. inplenentod. 

Int.grated circuits such as the Advanced Micro  Dcvi cs 

,f 25 LS14 2's complement multiplier was itroducc d spcci-

fically for signal processing applications. Poled and Liu 
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used semiconductor mombrios for the purpes.c of fast 

multiplication, and rosulted in significant saving in the 

cost and t owor co neumption. 

The Digit filter .nay be regarded as a special purpose 

computer built from an 'off--the shelf logic family. The 

'design d ,:pnds upon the sapling rate and flexibility 

roqu.irca. For simple sections a special puri;:so hardwcrk 

filter will be more efficient than a general purpose micro-

processor. Instruction sets allow greater flexibility. Tht- 

uitable; mlcropr°ocessor selected depend: upon the particular 

application. Digital filters for different purp ae :;s have  

been implemented making use of 8 bit, 16 bit microprocessors 

Much credit hero goes to ic4 ;1e &. fjcelson.For most , L) )lzca.tion;= 

16-bit accuracy is sufl' .ciont to avoid qui:. 	'-i 

with filters of moderate    order (n 10) . 	It has bee o o e n 

that with Intel 8086 (axed other 16 bit r i c rrprct c^ ss a rs 

presmtly available) a significant improvement cv .r the 

sanpling rates can be achieved as ccmparo,d with the prcviou J 

generation of rlicroprc ces >ors, without significant increase 

in system cost. 

0.2  OUTLINE OF THE PRESENT  i 0EK 

Chapter I discusses the general. Transfer function 

and the various techniques for realizing a Digital filter. 
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Four Direct structure,:; Lays been d::rive:d dfld it is in 

on:% of the - st: uctur s that a Digital filter is usually 

i,-,I-Pl am Ont e. . 

The aliont features of Intel 8086 microproces 'or 

which is s leected for ous purpose has been carried out in 

cons,idorable det^ it in Ch.aptr 21. 8086 mi.croprc.cc::sor 

is a totally new desig , than any zmii cr°opro ccs or parrs vinous 

offer•c-ed by t1i Intel group and has a pow rfui. st of 

ins tructior . T1emory to memory string op =:rations, 

r.ardwi~~ d nul =;ipli cat,.c i and division,  and flexible addres s-.- 

ing mos are some of th(.-. s .gii±iCaf t operations. 

Referring to hai er' e work a se.cond order strlc ,urt 

is best suited for impl ranting higher oorde_c liters. 

Chapter Ili ;orn-vb thy: iu le.nenta`, on of a second or d. r 

1 D module. A flow chart and a main program _ii 8086 assembly 

language and t1 e various, subroutines :s wits. e.xplaiatio-c is 

given. A K; -th order cascaded filter has been discuss- d. 

Also a 4th order parallel i'ilt r has been given as an 

example. Use, of 1D s': cond order module subroutine is made 

in tho programs. 

Chapter IV discuses the other types of structures 

used for realization of Digital filters. The sequence of 

study here is the derivadon of the necessary equa' ions, 

algorithm and the flow chart programs in 8086 Assembly 
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language. A second order module is considered ,i eadi 

of the five cases viz. 2D, 3D, 4D, 1X, 2X. 

The dissertation concludcs with the summary of 

the work done alongt,rith suggestions for .future: study and 

.developraint. 
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CHAPTER - I 

TRANSFER FUNCTION AND REALIZATIONS OF A D .GITAI F.: , TERR 

1.1 INTRODUCTION 

A major subdivision of Digital Signal Processing is 

Digital filtering -- a computational algorithm performed on 

a sampled input signal resulting in a transformed output 

signal. Digital filtering processing algorithms have been 

used in computer simulations  sampled data analysis and data 

reduction computations. Kas44r 6  shows that the Z,-Transform. 

results in considerable simplification and understanding of 

problems associated with sampled data system. In this 

chapter the Transfo;r function of a Digital filter and its 

pictorial representations are discussed. Also, the. various 

-types of realizations of a Digital filter arc studied. 

1.2  Z-TRANSFER FUNCTION, 

In Linear continuous (Analog) filter theory, linear 

differential equation is one of the mathematical tools 

available to describe the Transfer function. Similarly, in 

line=ar Digital, (Sampled) filt or theory the link,.ar differcne 

equation is available as a mathematical tool for analysis and 

synthesis. 

The linear difference equation 7  defines the sampled 

output pulse amplitude- as a function of the present input 

pulse and any number of past input and output pulses. A 



general form of the difference equation is 

N 

Y(nT) = 	A .X(nT - iT) 	IL. B ..Y(nT - iT) 	... (1.1) 
1=0 i 	 i=9 i 

where X(nT) represents the present input samples and X(iT) 

are, the past input samples. similarly, Y(nT) and Y(iT) are 

present output samples and past output sample, respectively. 

and B coefficients are constants thich determine the 

response of the filter. 

The Z-Transform 1,3,5,7 

difference equation (1.1) is :  

of the above mentioned general 

N 	 M 
Y( z) = X( z) . j A.. Z 	- Y(z) . i B .. Z-1 	... 	(1.2) 

i=0 1 

This equation is in.tarprcted as :the present output is 

dependent on the present and past inputs, each multiplied by 

the respective coefficients Ai and the past output each multi-
plied by the respective. coefficient Bi. Equation (1.2) is 

represented in the Transfer function form as : 
N 

Y( z) 	. - 	iI0 A. Z`i 

D( z) = X z 	~'. 	M 	... (i.) 
1 +  

i=1 

Equation (1.3) is the Transfer function representation of a 

Recursive type of Digital filters. Appendix-I gives the 

classification of Digital filters. 



Y( z) = A0  .X(z) + A1 .Z 1 .X(z) - 

hence, 
Y(z D( z) = X( Z)  

A0  +  L1  Z- 

1 +B1 .Z 1  

9 

In order to roprosont Digital filtor in th form of 

a block diagrun, the purpos' of which is to graphically 

dopiot the way in which a particular øysbom is. riicd, 

the terminology 4,8  shown in Fig. (1 0  1)  is ecominonded, 

A first order jff 	 ion i 

Y(nT) 	4,X(n) + A1,X(rT * ) 	,Y( 1? 	) ... 	(1.4) 

Zrxiforn of equation (1 4)  is to 

A second order difference equation is rpresontod as : 

Y(nT) = AX(nT) +I 	 + A2.X(nT - 2T) 

Y(nT -T) - B2.Y(nT - T) 	.. 

Z-transforta of equation (1.7) is : 

Y( z) = 	.X( z) + A. z 1  .X( z) + A2. z 2.X( z) 

- B1 .Z.Y(z) 	B 9 .Z.Y(z) 	•.. 	(1.8) 

hence, 	 -1 	-2 
D(z)XT-y-- ,

= 	1 	B 	
24 
	

(1.9). z 

Fig. (1.2) represents the block diagram representation of 

the above dorived gnr• f4st  and soqqn.d. order Digital 

transfer functions of equations (1e6) and(1.9) rspoctively. 
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1 .3  FILTER REALI ZATI0 TECHNIQUES 

This section gives the signal flow diagrams for 

Digital filter Transfer function in textus of the Digital 

filter elements namely, the adder, multiplier and the delay. 

These diagrams are known as realization structures 4, 5,6  

because it is in one of these forms that the practical 

realization is usually carried out. Thos:: different struc-

tures are classified into canonic and non-canonic roali za- 

tions. By the term canonic rea .i zat? on 2,9  it is meant that 

the number of delay elements employed is precisely equal to 

the order of Transfor function (i.e. the highest dogree 

between the numerator and denominator polynomials). The 

roali zation t v chniques include the following forms : 

(1) Direct form 	(a) Direct form ( canonical) 

(b) Direct form (non-canonical) 

(2) Cascade or Series Canonic form 

(3) Parallel Canonic form 

1 .3-1  DIRECT FORM REALIZATION 

This form includes all those Digital filters in which 

the real coefficients Ai  and Bi  of equation (1.3) appear as 

multipliers in the block diagram implementation. The: follow-

ing sections describe four types of direct structures. 
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1 .3 - 1 .1 FIRST DIRECT STRUCTURE (1D) 

From oquation (1.3) 
N. 

A.Z 1 
D( z) =  

Bi . Z 1 
1=0 

where, B 	= 1 	and N _ N , 

Introducing intermediate variable M(z) 
N 

_ 	z_ Y z 	M.,~., I_ 	1=0 
D(Z 	X(z) 	M z 	X(z) 	N i ... 

c B .Z  
i=0 

(1 .10) 

Equating numc rator and denominator separately 

A..L~' 	and NZ 
N 

Y(z) 	_ 1. Ai.Z 1.(1~4(z) 
i=C 

N 
X(z) _ j B.. Zw'.f1(z) 

i=0 

rX zBi.Z ~T 

1=0 

. . . 

N 
or M(z) = X(z) - i. 

i =1 
... 	(1.15) 

In the time domain equations (1 .1 5) and (1.13) bi- come. 
N 

m(k) = x(k) - 	'$_ 	Di.m(k--i) 	 ... 	(1.15) 
1=1 

N 
y(k) _ 	...• A..m(k-i) 	... 	.... 	(1.17) 

1=0 
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Equations (1 .16 ). and (1.17) define the first Direct 

structure 1D and is shown in Fig. (1 .3) . This structure is 

canonical because it possesses only N time delay elements, the 

minimum number for the N'th order Transfer function of squa-

tion (1..10). 

1.3 - 1 .2 SECOND D. T-tE C`T STKJ CT JRD 2 ; } 

2D realization of Digital filter makes usc of the 

principle of transposition 	4' 1 1. Appendix-Il, explains the 

transpose principle;. The transpose of a Digital filter 

structure is accomplished by reversing the signal flow in all 

branches of th block diagram but leaving their transmittances 

the same. The transpose of a filter structure has the same 

Transfer function as the original structure. 

The 2D structure repres ant cd in Fig. (1.4) is the 

transpose of 1D structure. It implements equation (1 .10) but 

requires (n + 1) difference equations (Summing Junctions) . 

The 2D structure difference equations are of the form 

pi(k)  = p11(k-1) + Ai.x(k) - Bi.y(k); i=1, N-1 ... 	(1.1a) 

p(k) = AN.x(k) - BN..y(k) 	 ... 	(1.19) 

y(k) = A0 1x(k) + p1 (k-1) 	 ... 	(1.20) 

This structure is also canonical because it possesses 

only N time-delay elements, the minimum number required for 

an N'th ordor Transfer function of equation (1.10). 
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1.3 - 1.3 THIRD DIRECT'  STRUCTUIU; D) 

Rewriting equation (1.10) 

N 
A 	u i  

D(z) 	=   ___=0 1 .,.. ... -i (1.21) 
Bi. 

N N 
or B.. Z 	.Y(z) _ Ai. Z 1.X( z) 	.... (1.22) 

i=0 i0 

N N 
or 	Y(z) = 	Ai.Z 1.X(z) - Iii.Z'.Y(z) 	... (1.23) 

.1=0 1=1 

In the time domain, equation (1 .23) becomes 

11 	 N 
y(k) _ 	Ai.x(k-i) - 	Bi.y(k-i) 	... 	... (1.24) 

i=0 	i=1 

Equation (1.24) is the difr ere nce equation for the 3D 

Direct structure, which is block diagramed in Fi.g. (1 . 5) . 

This structure has only one summing jun ct . on, but has 2N 

time delay elements, hence, a noncanonical form. 

1.3 - 1.4  FOURTH DIRECT STRUCTURE (4 ) 

The 4D Direct structure. is the transpose of 3D struc-

ture and is shown in Fig. (1 .6) . This structure has only one 

signal distribution point, but has 2N difference equations, 

expressed as follows e 

r(k) 	= x(k) + r1  (k - 1) 	... 	(1.25) 

q(k) = AN.ro(k) 	 .. 	(1.26) 

r ($) 	= -B .r (k) 	 ... 	(1.27) 
N 	N o 
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q(k) = A1.ro(k) -1  

r(k) = B..ro(k)  + ri+1 (k-1  ) 

p i = 1, N--1 	... (1.28) 

... (1.29) 

A comparison of the various characteristics of the four 

Direct structurr.s discussed in Section 1.3-1 is summarized in 

TABLE - 1.1. 

TABLE - 1.1 

PROPERTIES OF DIRECT STRUCTURES 

CHARACTERISTICS 	 1D 2D 3D 4D 

Time' Delay Elements N 	N 2N 2N 

Multipliers 2W+1 	2i`3+1 2N+1 2N+1 

Summing Junctions 2 	N+1 1 2N 

Signal Distribution Points N+1 	2 - 2N 1 

As will be explained in A- later chapter second order 

Digital filter is the basic building block for realizing any 

N' th order Digital filter. Th Transfer function of equation.  

(1 .10) can be implemented making us of those four structures. 

Fig. (1.7) illustrates the 1D, 2D', 3D and 4D structures for 

second order modules. 

1.3-2 CASCADE FORM REALIZATION 

Th . Cascade or Serifs canonic -form structurti for 

Digital filter is impl :m,  ntod from the Transfer function of 

equation (1.10), written as a product of factors. 
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N 
D(z) = 7 E11(z) 	•0• 	 ... (1.30) 

1=1 

1 
A. 	 Al  

H(z) 	 for first ordor..(1.31) 
1 	1 + 

-1 	-2 
or H.(z) 	= 	 for second 

1 + B.Z 	+ BaZ2 	order 	... (1.32) 

The configuration is shown in Fig. (1.8). It consists 

of a series of lower- order filters connected in cascade. The 

individual second order or first order equations are generally 

realized in one of the Direct forms. Fig. (1.9) illustrates 

tho use of the Direct structures in cascade. Equations 

derived for the cascaded structures is same as that derived 

for the Direct form structures. These structuros arE compared 

in TABLE - 1.2. 

TABLE - 1.2 
PROPERTIES OF CASCADED STRUCTURES 

QHARACT.RISTIC 	 1D 	2D 	3D 	4D 

Time Delay Elements 2N 2N 2N+2 2N+2 

Multipliers SN 5N 5N 5N 

Summing juzictions N+1 3N N 3N+1 

Signal Distributing Points 3N' N+i 3Ni-1 N 
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1.3- 3  P 	FOIE  

The Parallel Canonic 'c' nn sticture for Digital 

filter is implemented by expanding the equation (1.10) in 

partial fraction form as 

D(z) = 	+ 	H() 	... 	(1.33) 
i=1. 

where, ~, + . 	9Z 1 
Hl( 

Z) 
= 	of 	1 i 	for first 

1 + B21 . Z 	order 	... 	(1.34) 

4 	+ A . Z--1 + 	. G- 2 
or Hi(z) = of 	1 i r 	v 2i _2 for second 

1 +B .Z 1 +B .Z 	order ... 	(1.35) 

This configuration is shown in Fig. (1 .10) and 

consists of a group of lower order filters each operating 
on the input signal with the output parallel bank summed _. 
up together. The individual second order or first order 

.sections can be realized in on, of the direct forms. IF 

the Direct structures arc use some elom :nt sharing may be 
the 

accomplished as was done inLca.scade case. Fig. (1.11) shows 

the direct parallel •s tri ctur.o and T, BLE - 1.3 compares their 

characteristics. Equations for the parallel structure is 

same as that derived for Direct four! structure. 
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TABLE - 1.3 

PROPERTIES OF . PARALLEL STRUCTURE 

CHARACTERISTIC 1D 2D 3D 4D 

Time Delay Elements 2N 2N 2N+1 2N+1 

Multipliers 

Summing Junctions 

Signal Distributing Points 

4ti+1 4N+1 4N+1 4N+1 

N+1 25N+1 N+1 2N+3 

2N+1 N+1 2N+3 N+1 

1.4 STJIVIIVIARY  

The Z-Traansform calculus is the mathematical basis 

for the analysis and design of Digital filters. Such Digital: 

filters are best understood by emphasizing thFo relations 

between the difference equations, the black diagram and 

filter response function. Various realization types have 

been discussed and the general equations involvod, derived. 

Also, a comparison of the different characteristic present 

in each structure is made. The second order Digital filter, 

a basic modulo for realization of a N'th order structure, 

will be discussed in later chapters.. 



CHAPTER - II 

SALIENT FEATURES OF INTEL 8086 MICROPROCESSOR 

2.1 INTRODUCTION 

Intel introduced its first microprocessor in November 

1971. This was followed with tho delivery of 8008 in 1972, 

the 8080 in 1974, the 8085 in 1976 and 8086 in 1978. Each 

successive, product implementation depended on fabrication 

innovations, sophisticated software, and throughout this 

development upward compatibility not envisioned by the first 

designer was maintained. 

The selection of a suitable microprocessor 1 3 depends 

primarily on the particular application. since the character-

istics of the various processors are quite different, a 

number of factors must be considered in making a good choice. 

The selection process involves investigating the software, 

hardware and system design of the microprocessor. 

In this chapter the salient features of Intel 8086 

microprocessor are discussed. The various microprocessor 

of the Intel group have been compared in Appendix -IZI for 

the selection of this suitable microprocessor. 

2.2  SALIENT FEATURES OF MICROPROCESSOR 8086 

Intel 8086 201 21 22 introduced in June 1978 is the 

first of the high performance, generation of 16 bit micro-

processors. It is impl::m .nt ed in N channel depletion load, 
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silicon gate technology (HfOS) and packaged in a 40 pin Car. 

DIP package. The 8086 is able to directly address one mega-- 

bytes (1024 K bytes) of external memory. The detailed pin out 

of the 8086 is shown in Fig. (2. 1) . 

2.2-1  FUNCTIONAL PIN DESCRIPTION  

1.. AD1 5  - AD0  : 2 - 16, 39, (I/0) Address Data Bus 

Time multiplcx ?d ?ii.=mory / 10 address (T1 ) and data 

(T2, T;, Tw, T4) bus, 

2. A19/S6 - A16/S3 : 3 5  - 38, (OUT) Address / Status 

During T1, used as addr :.ss lines for memory operations. 

Lines LOW during I/O operation. In T2, T3, T and T4  status 

information is available on these lines. 35  and 34  indicate 

which of the se em (relo cation) rUgister is used .(to cans- 

tract the ph rsi cal address us^d in the bus cy`cle) . 35 	* 

reflects the stats of the interrupt enable flag. S6  is 

always LOW. 

S 4 	33  

0 	0 Extra Sti gm nt (Alternate Data) 

0 	1 	Stack Segment 

1 	0 	Code Segment or none; 

f 	1 	1 	Data Segment 

3. BHE/S7  : 34, (OUT) Bus High Enable / Status 

During T1  the B,as high enable signal (BHE) is used to 

enable data on the most significant half of data bus 
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(pin D15  - D5). 37  is a spare status line whose contents 

are undefined. 

4. MN/MX : 33, (IN) 	Minimum / Maximum mo di 

Indicates the system. configuration. When this pin is 

grounded tho 8086 treats pins 24 through 31 in maximum mode, 

when it is strapped to 5V it acts in ,tho minimum mode. 

5. RD : 32, (OUT) Rad 

Indicates that processor is performing a memory or I/O 

read cycle. 

6.. TEST : 23 	, 	(IN) Test 

TEST input exam _nod by the WAIT (wait for TEST) instruc- 

tion. If the signal gos go. LOW execution continues, otherwise 

the processor waits in the ' Idl-c' Cstate. 

7. RESET : 21 , (IN) Rest 

Causes the pro cisor to immediately  terminat% its 

present activity and starts oxs cution from FFFFO (H) . 

8. G JK : 19 , (INN) 	Clock 

Provides basic timing for the processor and bus 

cont roll er. 

9. INTR : 18 , (IN) Interrupt Request 

It is a singly, interrupt request line which can be 

ma:&ed internally by software ith the resetting of the 

Interrupt enable: flab; status biJ. During th,. interrupt 
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response sequcnc further intorxupts aro disabled. A 

single byte is then expected from interrupting device which 

is multiplied by 4 and gives the address of service routine 

pointer stored from 00000 (H) to 003FF (H) . 

10. N171I : 17 , (IN) Narmiaskabl o interrupt 

Is a single nonmaskable interrupt which has a 

highor priority than the rf askable interrupt request pin and 

causos .a typo 2 intcr.~•upt. 

1 1 . GND ; 1, 20 	Ground pin 

12. VCC : 	40 	+ 5V + 10. 

Pin functions which arc. unique in the minimum mode 

are defined below. 

(1) INTA 	24 , (OUT) Interrupt Acknowledge 

Is used as a read strob_o, for interrupt acknowledge 

cycle. It is active LOTS, in T', 13 and TW states. 

(2) ALL s 25 , (OUT) Address Latch Enable 

Is provided to latch the address into the 8282/8283 

address latch. 

(3) DEN : 26 ? (OUT) Data Enabl e 

Is .provided as an output enable for the data bus 

transceiver. 

(4) DT/R : 27 , (OUT) Data Transmit/Receive 

This is needed in minimum mode system that desires 
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to use a data bus transceiver. It is used to control the 

direction of data flow through the transciever. 

5. M I0 : 28, (OUT) Status line 

Is used to distinguish a memory access from an I/O 

access. HIGH, on this line indicates a memory operation and 

a LOW indicates an I/O operation. 

6. WR : 29 , (OUT) 14rite 

Indicates that the processor is performing a write 

memory or write I/O cycle, depending on the state of the 

M/IO signal. 

7. HOLD and HIDA 31, 30 (I/o) 

Indicates that another master is requesting to take 

control of the address and data bus. To be acknowledged, 

HOLD must be active HIGH. The processor receiving the `hold' 

request will issue HLDA (HIGH) as an acknowledgement. When 

HOLD go z:s LOW, the pro ce - nor will LOWer HLDA and the processor 

start on its next cycle. 

When the 8086 is in the maximum mode the functions 

unique to it are described below. 

1  • 	QSJ , Q30  : 24, 25, (OUT) 	Queue Status 

Queue status valid during the CLK cycle after which 

the queue operation is performed. These provide status to 

allow external tracking of internal 8086 inst . queue. 
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Q3 	Q50  

0 	0 	No operation 

0 	1 	First Byte of Op code from queue 

1 	0 	Empty the queue 

1 	1 	Subsequent byte from queue 

2t  a2' • 	t 26 - 28, (otrT) Status 

Status is used by the 8288 Bus controller to generatd 

all memory and I/O access control signals. These status 

lines are encoded as 

S2 	S1 So 

0 	0 0 Interrupt Acknowledge 

0 	0 1 Lead I/O Port 

0 	1 0 Write I/O Port 

0 	1 1 Halt 

1 	0 0 Code Access 

1 	0 1 Rc ad M mory 

1 	1 0 Write Memory 

1 	1 1 Passive 

3. 	LOCK : 29, 	(OUT) 	Lock 

It indicates that other system bus masters are not 

to gain control. of the system bus while L0( is active LOW. 

It is activated by the ' L0 	' prefix ins: . and remains 

active until the corn.plti:-Uion o f next instructio a. 
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4. RQ / GT, R( / GT1 30, 31, (OUT) Requ. st/Grant. 

These are used by local bus masters to force the 

processor to rolE'asc the local bus at the end of the pro-

cessor' s current bus cycle. Each pin is bidirectional with 

RQ / GTo having higher priority than RG? / GT1 . 

2.2-2 REGISTER ORGANIZATION 

The 8086 processor contains a total of thirteen 16-bit 

registers and nine 1-bit flags: Tha set of registers Fig. (2.2) 

can be divided into the following four groups. 

General Registers - Thcrs: are four 16-bit general 

registers which can bo used as either 8- or 16- bit registers. 

The, dual nature of these r : ..Esters permits them to handle both 

byte and word quantities with equal ease. They are Accumu-

lator (AX) , Base (BX) , Count (CX) and Data (DX). The X can 

be replaced by H or L for referring to high or low order 

byte respoctiv--ly. 

The AX register is used in arithmetic operations to 

hold one of the two operands. The BX register can as used. 

to hold an offset addre-ss for computing the effective 

address (EA) of an inst r~ ct ion operand. The Cl and LX 

registers are used for specific purposes (dedicated general 

registers) . Those may be used as scratch pad during the 

evaluation of expressions or for holding the shift count in 

some shift and rotate instructions. 
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Pointer and IndF. RLP i st ; ^s - This group consists 

of the 16-bit rcgist :x•s S ta ckpointo-:- (SP), Basz pointer (BP) 

Source Index (SI) and D Linat±on Inde=x (DI) . Th :s e 

rw gisters usually contain offs. t addresses for addressing 

within a segment. Thay rduce. the Size of programs by not 

requiring each instruction to specify frequcnUly used 

addresses. Another important function is that they provide  

for dynamic eff o cti v .-address computations. In order to 

accomplish this the pointer and index registers participates 

in arithmetic and logical operations alongwith 16-bit 

general registers. 

S_gm::.nt Rf_ ____ -rs - This group consists of four 

16-bit registers Cods ScgmF:-nt (CEO, Data -:gm nt (DS) , 

Stack Segment (SS) and Extra S~:.gmcnt (ES). 	Each s gm nt 

can be at most 64K bytes in s1zi=. 	A s 	g ifxr..t 	can begin 

from any to cation in th ' ms-inory that is diva_sibla by 16 

The segment reg± s er , ax used for calculation of 

physical. address (PA) . All instruction ft  es s are tck an 

from the current code segm•.nt, (CS) using the, offset specified 

in the instruction pointer (II') register. The (SS) register 

points to the current stack segment; stack operations are 

porfolm d on locations in this segment. The (DS) points to 

current data sgment and generally  contains program variables. 

The ES contents define the current t extras n. nt, it has no 
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$pacific use although it is usually treated as an additional 

data segment. 

Instruction Pointer and  Flag Registers  - The 16-bit 

instruction pointer (IP) (analogous to the program counter 

in the 8080/8085), is not dirs=ctl r accessible to the programmer; 

it is manipulated with control transfer instructions. There 

are nine 1-bit flags, six of uhesF C;arry (CF), Parity (PF), 

Auxiliary carry (AF) , Zero (ZF) , Sign (Sr) and Overflow (OF) 

flags record processor status information of the latest 

arithmetic and logical operation and the additional three 

flags Direction (DF) , Int: r:r.•upt (IF) and Trap (TF) control 

processor operations. 

2.2-3  MEMORY ORGAI.yI ZATION  

The 8086 can address u.p to 1 Megabyte or 51 2 K words 

of memory directly. Logically-  the memory is organized as a 

sequence of 220  bytes but physically it is organized in two 

banks each of 51 2 K bytes Fig. (2. 3) . One bank is connected 

to the lower half of th,. sixteen-bit data bus (D7 - Do) and 

contains even addressed. bytes. The other bank is connected 

to the upper half of the data bus (1 3  - D8) and contains odd 

addressed bytes. A spacifi c byte within each bank is selected 

by address lines Al   - A1 . The most signifi cant address bit 

Ao  (AD0 ) and the output signal BEE are used to select 

appropriate bytes to be road from or written into the memory. 
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TABLE - 2.1 describes the use of BHE and k_ combination. 
V 

TABLE - 2.1 

BHE 	110 	 _ 

0 	0 	One 16 bit word 

0 	1 	One byte_ from / to odd address 
0 

1 	0 	One type- _frog. / to even address 

1 	1 	None: 

Organization of N bytes of memory is shown in Fig. (2.4) . 

The low bank consists of only oven-addr .ss bytes and the high 

bank consists of only odd-address bytes. 

(1) x word is to be fetched from an oven byte location. 

For this BHE Ao  = 0 0 ; low byte of word falling on even-

address byte and high byte on odd-address byte. 

(2) A word is to be fetched from odd-address. This 

shall require two machine cycles. 	In the first, odd byte 

shall be road and in the next machine cycle the even byte 

shall be read. 

(3) A byte is to be fetched  from v-n--addres s location. 

For this BHE A = 1 0 and data shall be transferred on 
O 

Do  - D7  lines. 



(4) A byte is to be fetched from odd-address. 

For this BHE A = 0 1 and data shall be transferred on 

D8  - D1 5  lines. 

The memory can be further logically divided into code, 

data, alternate data and stack segments of upto 64 K bytes 

each, with each segment falling on '16 byte boundary 

(Fig. 2.5). 

Certain memory locations are reserved for specific 

processor operations. Locations 00000 (H) through 003FF (H) 

are, reserved for interrupt operations. Each of the 256 

possible interrupts, have their serice routine pointed by 

a 4-byte 'pointer element. Following RESET, the pro cessor 

will jump to FFFFO (H) . FFFFQ (H) through FFFF F(H) are 

reserved for operation including a jump to the initial 

program loading routine (Fs =;. 2.6) . 

It is useful to think of every memory location as 

having two kinds of addresses, physical and logical. A 

physical address is the 20-bit value that uniquely identifies 

each byte location in the megabyte memory space. Physical 

address may range from 0(H) through FFFFF (H) . All exchanges 

between the CPU and memory components use this physical 

address. 

Programs deal with logical, ra t h r than physical 

addresses and allow coda to be developed without prior 



RESET 	BOOT STRAP 

PRO RAM TUMP 

INTERRUPT 	PAINTER 

FOR TYPE 	255 

INTERRUPT 	POINTER 

FOR TYPE 

INTERRUPT POINTER 
FOR TYPE 	0 

FFFc F (H) 

FFFFG (H ) 

3FF (H) 

3FC(H) 

7 (H) 

4(H) 
3 (H) 

OH) 

f FFFF-  (H ) 

COCE SEGMEN* 

J 
XXXXO (H) 

64I8 

1 t~ 	- 

+ OFFSET 

SEGMENT RFGISTER 	 { 

F[LE  

D5 

STACK SF G MFNT 

LATA SEGMENT 

EXTRA LATA
SEGMENT 

00000 (H 

FIG 2.5 MEMORY ORGANIZATION 

FIG.2 6 RESERVED MEMORY LOCATIONS 



29 

knowledge of wh'ro the code is to be located in memory. A 

logical address consists , f a segment base value and an offset 

value. For any given memory location, the segment base value 

locates the first byte of the containing segment and the 

offset value is the distance, in bytes, of the target location 

from the beginning of the segment. Segment base and of f_s«t 

values are . unsigned 16-bit quantities. Many different 

logical addresses can map to the ss physical location. 

A physical address is generated from a logical 

address by shifting the segment base value four bit 

positions and adding the offset. Calculation of the offset 

of a memory variable is based on the addressing mode specified 

in the instruction; the 'result is called the operand's 

effective address (E), 

2.2-4 ADDRESSING MODES 

Following are the diff :rent ways of calculating 

effective address (EA) and are shown in Fig. (2.7) . 

Direct Address ing - It is the simplest memory address-

ing mode. No registers are involved; the EA is taken 

directly from the da.sp:.l.oement field of the instruction. 

Direct addressing is used to access simple variables. The 

EA is added to the DS segment, to get the physical address. 

(EA) = DISP 

(PA) = (DS) * 16 + DI SP 
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Example : The instruction NOV AX , VALUE 

specifies that the contents of VALUE are to be moved to 

16-bit accumulator. Let address associated with VALUE be 

021(H), then the physical address from which the low data 

byte will be fetched is 

- 1000(H) * 16 + 021(H) 

= 10000(H) + 021(H) = 10021(H) 

The high byte will be fetched from the physical address 

10022(H). 

Based Addressing- Here the effective address is the 

sum of a displacement value and th content of register BX 

or BP. If BP is specified as a base rekister, the BIU is 

directed to obtain the op :rand from the current stack segment. 

This makes based addressing a very convenient way to access 

stack data. 

Based addressing provides a straightforward way to 

address structures which may bc located  at diff'rent places 

in memory. A base register can b,̂  pointed at the base of 

the structure and .elements of the structure .ddressed by 

their displacements from the base. Different copies of the 

same structure can be accessed by simply changing the base 

register. 
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(EA) 	= 	(Bk/BP) + DISP 

for BX , (PA) = 	(DS) * 16 + (BX) + DISP 

for BP , (PA) = 	(SS) * 16 + (BP) + DISP 

Example : The in, tru ction IMTUL BETA (BX) implies 

that the contents of AX are to b.° multiplied by the contents 

of (Eli). The (EA) is computed as DISP + (BX) where DISP is the 

16 bit address of BETA. The, 32 bit product will be placed in 

registers DX (high word) and A (low word) . 

Indexed xddrossiM. -' The effective address is calcula-

ted from the sum of a displacement plus content of an index 

register (SI or DI, SP or B?). Indexed addressing often is 

used to access elements in an array. Also it is assumed that 

the operand resides in the current data segment and hence DS 

register is used for computing physical address. 

(EA) = (IX) + DISP 

(PA) = (DS) * 16 + (IX) + DI.SP 

Based Index (Indi,rect~ 	 dressi. - This addressing 

generates an effective address that is the sum of a base 

register, an index register arid a displacem =nt . Based index 

addressing is a very .flexible mode because two address compo-

nents can be varied at , x =cution time. It provides a 

convenient way for a procedure to address an array allocated 

on a star,k. Arrays contained in structures and matrices 

(two dimensional arrays) also could be accessed with based 
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index addressing. 

(EA) = (BX,/BP) + (IX) + DISP 

(PA) = (BX) + (Ix) + DISP + (DS) * 16 

(PA) = (BP) + (IX) + DISP +- (SS) * 16 

String Addressin , - String instructions do not use 

the normal memory addressing modes to access their operands. 

Instead, the index registers are used implicitly, when a 

string instruction is executed, SI is assumed to point to the  

first byte or word of the source string, and DI is assumed 

to point to the first byte or word of the destination string. 

In a repeated string operation the CPU automatically adjust 

SI and DI to obtain subsequent bytes or words. 

I/O Port Addressing - If an I/O port is memory mapped, 

any of the memory operand addressing modes may be used to 

access the port. String instructions also can be used to 

transfer data to memory-mapped ports with appropriate hardware 

interfac . 

Two different addressing modes can be used to access 

ports located in the I/O space. In direct port addressing, 

the port number is an 8 bit immediate operand. This allows 

fixed access to ports numbered 0-255. Indirect port address-

ing is similar to register indirect addressing of memory 

operands.. The port number is taken from register DX and 

can range from 0 to 65,535. 
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2.2-5  INSTRUCTION SET 

The 8086 instruction set is divided in six groups 

(1) Data Transfer 	(q-) String Manipulation 

(2) Arithmetic 	(5) Control Transfer 

(3) Bit Manipulation 	(6) Process ;or Control 

These instructions treat different type of operands 

uniformly. Nearly every inst -action can operate on either 

byte or word data. Register, memory and immediate operands 

may be specifiea interchangeably in most instructions. The 

instruction 'set can be viewad as existing at two levels; the 

assembly level and the machine level. These two levels 

address two different requirements; efficiency and sitplicit.y 

The numerous forms of machine level instructions allow these 

instructions to make very efficient use of storage. The 

assembly-level instructions simplify the programmer's view 

of the instruction set. 

To pack instructions into memory as densely as possible 

the 8086 CPU utilizes an ;fficient coding techniques. 

Machine instructions vary from one to six bytes in length. 

One byte instructions, Wr iich gens rally operate on single 

registers or flags, ar: simple to -J d€ntify. The key 

to decoding longer -instructions arP in the first two bytes. 

The format of these by-i;ss can vary, but most instructions 

follow the format shown in Fig. (2,8). 
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The first six bits of a multibyte instruction generally 

contain an opcode that identifies the basic instruction type. 

ADD, XOR, etc. The following bit, called the D, fir=ld, 

generally spr-cifies the ' d.ire ction of the operation 

1 = the REG field in the 2nd byte ideutifi-,s the 
destination op.- rand. 

0 _.the REG fic-ld identifies th z source operand 

The w field distinguishes between byte and word operations 

0 = byte, 	1 - word 

One ,  of the three additional single bit ficlds., a, 

V or Z appr;ars in sonic, instruction fomuats. a is used in 

conjunction with W to indicat :. sign ext-,..nsion of imu.ediate 

fields in arithmetic instructions. V distinguishes between 

single and variable bit shifts and rotates. Z is used as a 

compare: bit with the zero flag in conditional repeat and 

loop . instructions. All single bit fiiold settings are 

suinmari z d in TABLE 2.2. 

TABLE 2.2 
SINGLE BIT FIELD ENCODING 

FIELD VALUE FUNCTION 
S 0 No sign extension 

1 Sign extension 8-bit immediate data to 16-bit 
W 0 Inst. operates on byte data if w =1 

1 Inst. operates on word data 
D 0 Inst. source specified in REG field 

1 Inst. Destination specified in REG field 
V 0 Shift/rotate count is one 

1 Shift/rotate count specified in OX register 
Z 0 Repeat/Loop while zero flag is clear 

1 Repeat/Loop while zero flag is set. 
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The second byte usually id. ntifl s the instra ct .on' s 

op' rands. The mode (MOD) fig: ld indicates whether one of the 

operands is in memory or whether both operands are registers 

TABLE - 2.3. The register (REG) field identifies a register 

that is one of the instruction operands. 	TABLE -- 2.4. 

In a number of instructions, chiefly the imm=;z .at, -to-mmory 

variety, REG is used as an extension of the opcode to 

identify the typo of operation. The encoding of the. R/M 

(rogistor/memory) fi -ld in T BLE - 2. 5, do p =nds upon how the 

mode fi.=ld is sot. If MOD = 11 (register too-register mode), 

then R/M id.c ntifie s the second register operand. If 1``10D 

selects memory mode, then. R/M indicates how the effective 

address of the memory operand is to be calculated. 

Bytes 3 through 6 of an instruction are optional 

folds that usually contain the displacement value of a 

memory operand and/or the actual value of an iiruncdiate 

constant op :rand. Ther may be one or two d ..splacement . 

bytes. The MOD fi !ld indicates how many displac rent byte 

art present. Following Inti ,:-1 contention, if the displacement-  

is two bytes the most significant byte is stored second in 

the instruction. if the displacom.c:nt is only a single byte 

the 8086 automatically sign-extends this quantity to 16 

bits before using the information in further address 

calculations. Taniediat : values always follow any displace 
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TABLE - 2.3 

MODE FIELD EF CODILG 

CODE 	 EXPLANATION 

00 	emory mod.,, no displace ent follows 
(except whc n R/M is 110) 

01 	Memory mods:, €3--bit displac :m.nt 
follows 

10 	Memory mode, 16-bit displac' ne'nt 
follows 

11 	Registzr mode., no di-placan.ont 

TABLE- 2.4 
REGISTER/FIELD ENCODING- 

REGISTER 	i = 0 	W = 1 

000 , AL AX 

001 C1 CX 

010 DL DX 
011 B1 BX 

100 AH SP 

101 Oh BP 
110 DH SI 
111 BH DI 



O LO LO LO 

37 

s- 
A 

e- 
A 

r 
A 

-- 
A 

+ + + + 

O 
~- 

H u H A H cc H A LO .- 
A 

\O .- 
A 

L 
A 

LO t-- 
A 

A + + + + + + + + 

pW p ca A ~ pq 
O H 

•~ + + + + 

lxi 
cc  

+ + . . . + + + 

H ` 

W 
FTS 

O 
O S1 A •• o) Q `/ __ /1 r 

E 

W t~ S-h, ID 

O 

O 
- 
O 

0
t- 

- 
- 

0 

0 
r 

0 r- 
O 

N A N pq W zrz P-i pa F--i 
zf) 

H 
A 

tY 
O O 
O O 

O 
0 0 

O O 0 T 

H 



mont values that may be prosnt. Thi: second byte of a two 

bytt immc diat . value is th,: most significant. 

Sonic of th; instructions from tho instruction sot 

given in Appondix-IV arc oxplain- d here with examples. 

The Data Transfer Groin includod MOV, PUSH, POP, 

G, IN, OUT, LOAD and STORE instructions. 

Example : 	II0V 	CX, 	TOP (BX) 

This instruction shall move thy; contents of TOP + (BX) to 

the CX register and, will occu.py 4 bytes. 

w = 1, it is a word operation 

d = 1, the destination is a register 

mod = 10, 

DISP = disp. high, disp. low 

destination register CX = 001 

r/m field = 111 

EA .= (BX) + (TOP) address 

PA = DS * 16 + (BX) + (TOP) address 

o 	00 	10 ;i ii io 	00)
i 	

+ Dtsp 	J _Disr. 

d~ j rood 	Jest. 	,-m 

Ck 

The Arithmetic Group includes ADD, ADC, DEC, INC, 

MUL, IDIV etc. instructions which can operate on signed and 

unsigned numbers. 
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Example : 	ADI AX , OO5i(H) 

This is an add immdia 	ho v1u 005P to AX 

registr and cccupilas 4 bytos. 

S : 1.4 	01 	16 bits of immediate data froia 

operation 

mod = 11, 

r/m is rgis1r fi€ld 

r/m = 000, 	 register (AX) = 000 

_Il 	
1• 

00 000:oil I 	000  ! 000 

L 	d 	de. 

	

R7 	
je*4 

Th 	 includes AND, OR, NOT, ROTATE, 

SHIFT, TET iristmctiom3 

Examp1-c 3.1m ALP11ALPHA 

The contents of mmioiy location ALPHA (1 

	

shift' b 	wher.r2is the shift count stored in th 

registcr. 

It occup±e. 4  conscutiv bytt:S 

	

V 	1 	as the ahfting is to be doneCiY times 

W = 1 	word operation 

mod = 00 
EA = disp. high; disp. low. 

r/m = 110 



— --~., t/ w 	 --__ 

I of oo 	OU 	oo i i o 	D 'sP 

-v 

The Str n ,.Man ..?j l.ation -roux is a 3et of very useful 

inbtruction used for moving blocks of data. NOVS Fig. (2.9 ) 

is a single byte instruction with th_a least significant bit 

(the w-fiuld) specifying whether a word or a byte is to be 

moved.. The sourc = is picked-up from the address specified 

in SI register and the destination from the address spocifie,c1 

in the DI registers. After transferring :he source byte (s) 

to dost i.n.atiouu, the I and DI index registers  are incrernented/  

decr.c snted by 1 or 2 depending ending upon whether W - 0 or 1. 

The direction flag DF is used to determine whether the index 

register arc to be d crimc:ntod (DF = 1 by STD) or incremented 

(DF = 0 by CLD) after data has been moved. If a REF (single 

byte) instruction pri cedes the 2'i0V6 instruction the lattor 

is executed repetitively while the CX register remains 

non zero. Each time the 1'MOVS instruction is executed, CX 

is decrem:;nted by 1, and if not zero, the ;instruction is 

executed again. Four more useful instructions for strip; 

manipulation are GT'IPS, SCAS, LOTS, STOS. 



T 	
C x #N 
	 RPP 

ti 

Li: 
	

MOYS~ 

NO 

WORD 

+5 
YES 	 NO 

G' 0 	, 

DI ---2 
S-'-- 51-2 

 
S: -r- sI -2 	5 

1 
C X -~-- C X -1 

" YES  

NEXT 	INST 

IG 2 9 STRING MANIPULATION INSTRUCTIONS Rr p 
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Example 	at]) 

MOVS 	NsEir1, 	OLD 

W - 1 ; transfer word. 

The, words starting from location OLD shall be transfcrrE.;d 

Lo locations starting from NEW. Tho ' a` , a instruction 

pry: coding the. MOVS shall r::xpeat till CX 	0. 

For 	OLD(LA) 	_ (SI) * 16 + DISP 

and 	N 1( Eli) 	= (DI) * 16 + LISP 

The Control Transf or f~,rp''o camp ri s os of CALL, .RET, 

ii~1P, LOOP, INT instructions. 

Exampl . : 	LOOP 	iTUIIMER 

Docr:msnt Cis by 1 and transfer to ]ftJ BER if CX ,A 0. 

In this cas e, tho 16 bit displac~.xn.:.xnt is calculated by 

oxto:nding 8 bit displ.ac,.m ,: nt. This is a two byte instruc-

tion  so can only loop + 128 bytos from -uhc. pr. spilt location, 

otherwise use JMP. 

Th-_: P ro cossor Cot: -rol Croup has instructions for 

carry, direction, and interrupt -'lags s HALT, WAIT, LOCK 

and 13S C. 

Example 

LOCA , 

AL'1 	NU",' ' 	FB8C: (H) 
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Th;; bus shall be locked till the end of the instruc-

tion. No external device shall be able to take over the 

bus till ADI is cx.ecut9.d. 

2. S SUTiliARY 

In this chaptera study of the, sale cent features of 

Intel 8086 mi croprfo ccssor has boon carried out in considera-

bl'' detail. This study indicates that th: 0PiT of 8086 is 

more powerful than any microprocessor previously off'oorc::d. by 

Intal Group •8086 is totally s. now design and has a power s: t 

of instructions discussed in Appendix - IV. Memory to 

memory string operation is available for e fi.cient character 

data .manipulation, hence useful for reducing the complexi-- 

bility of -uhf;: program. The various types of addressing modes 

are useful in solving many problems. The hardwiro multipli-

cation cation and division of signed. and unsigned binary numbers are 

quit: powerful instruction S. 

In the next chapter use is made of the 8086 Assembly 

language to impl ;went the Digital filter structure described 

earlier in Chapter I. 



aiAPTER - III 

REALIZATION OF DIGITAL FILTERS USING SECOND ORDER 
1D STRUCTURE AS BASIC MODULES 

3.1 INTRO DU CTI ON 

Filters have been implemented in hardwired logic, 

special purpose computers and general purpose computers. Tho 

high speed 16-bit microcomputers with built in multipticatioxn 

hardware has created a new option for implementing Digitalfilte1  

23, 24 with high sampling rate. In this chapter the Intel 

8086 microcomputer is used to implemont th individual seconcl 

order ID module. Also the Intel 8086 is used to implement 

Digital filtors by cascaded. and paralleled second order module. 

3.2  WHY A SECOND ORDER MODULE 

The three basic forms for realizing linear Digital 

filters of the Recursive typo are the Direct, Cascade and 

Parallel forms. As far as the stability quosti n gc the two 

variations of the Direct form Fig. (1.3) and Pig. (1.5) are 

entirely equivalent, with the configuration of Fig. (1.3) 

requiring _ fewer delay elements. The stability result derived 

indicates clearly that the, coefficient accuracy problem will tae 

by far the most acute for the Direct form realization. For 

any reasonably complex filter with step transitions , between 

pass and stop bands the use of Direct foie should be avoided. 

The choices between the utilization of either the 

cascade or parallel forms is not clear out but depends 
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somewhat on uho initial form of the continuous filter and on 

the digitilization chin f: 6 used. In any case the denom:i.nnatoY 

of D( z) must b known in facto~'e:c. form. In order to avoid 

coefficient sensitivity problems, the transfer function D( z) 

of equation (1 .3) is implr~mentcd. as a cascade or parallel 

combination of second order modules. 

3.3 SECOND ORDER DIGITAL FI.DTE . - 1 D STRUCTURE 

Second or di r Digital filtor has tho form 

z 

 

A + Al .Z 1 + A 
D

2 .Z-2 
( ) r 	 ... 	 (3.1) 

1 +B1 .Z +B2.Z 

and can be represented by any sorm explained in 3oction 1.3-1 

with N = 2 .g. (1 .7) . In this chapter 1D structure is speci- 

ficaily chosen for explanation and implementation using Int l 

8086 mic;oproccssor instructions :t. 

3.3-1 MATFIMM 	DERIVATION 

The Transfer function on of second or d c.•r Digital filter 

is given in equation (3.1) . Introducing Sri intermediate 

variable T'7(z) 

D( z) = 	t z•X z 	... 	... 	(3.2) 

T her .for : 

Y 	M1 z 	A + A . Z-1 + AG . ZT 
 1 + B . 	_2 Z +B2.Z 
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Equating the numcrator and denominator s~.paratly 

M z 	= Ao + x~Z~ + A2.Z"2 	... 	(3.4) 

and 	M Z 	= 1 + B1 .Z 1 + B(.Z 2 	.•.. 	(3.5) 
} 

From equation (3.4) 

1(z) = A0.M(z) + Al ..Z 1 .i1(z) + A2. Z 2.M(z) ... 	(3.6) 

and from t quation (3.5) 

M(z) = X(z) - B1 . Z 1 .N7(z) - B2. Z 2̀.N(z) 	... 	(3.7) 
Equations (3.6) and (3.7) in time domain are 

y(k) = Ao .m(k) + Al .m(k-1) + A2.m(k-2) 	... (3.8) 

m(k) = x(k) 	- B1 .m(k-1) - B2.r(k--2*) 	... 	(3.9) 

Equations (3.8) and (3.9) clearly show that m(k) is to be 

found out before y(k) is calculated. 

Lot T1 = -B1.m(k-1) - B2.m(k-2) 	... (3.10) 

and T2 = 	Al .m(k-1) + A2.m(k--2) 	 .. (3.11) 

Equations (3.8) and (3.9) becomes 

y(k) = Ao.m(k) + T9 	 ... 	(3-.1) 

m(k) = 	x(k) + T' 	 ... 	(3.1) 

Equations (3..6) through (3.13) define first direct structZare 

1D, for second order Digital filter. Fig. (3.1) is the sigro.L 

flow diagram in Z domain for the second order Digital filter 

in 1 D form, and uses these equations. This signal flow 



diagram can be used to implement, through hardwired logic a 

second order Digital filter using summers, multipliers and two 

delay elonments 4'8. 

It is to be. noted that the int<erm3diate variable i1  and 

I2 

 

depend on the previous samples and therefore can be evalua-

ted in the interval (K-1) T •'. t KT and shall be available bofoYe 

KT sampling point. The output •y(k) may rapidly be calculated 

upon the receipt of input x(k). 

3.3-2  ALGORITHM FOR IMPLENTATIOi'1  

Equations (3.6) through (3.13) can also be used for 

obtaining the algorithm for the implementation in a micro- 

processor. The information can be grouped as follows 

OUTPUT m(k) = x(k) + T1  ... (3. 1 3) 

y(k) = A0.m(k) + T 2 	... 	(3.12) 

DELAY 	 m. (k- 2) ' °-•~- 	m (k-1 ) 

m(k-1) * 	m(k) 

PRECALCULATIONS 	T1  - -B1  .m(k-1) - B2.m(k-2) ... (3..10) 
in the interval 
(K-1 )T 4 t <KT 	T2  = Al  .m(k-1) + A2.m(k-2) ... (3.11) 

It is to be noted that the above algorithm when 

implemented gives the maximum sampling rate possible in a 

microprocessor. 
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3.3-3  SOFTWARE PROGR, J1' USING INTEL 8086 INSTRUCTI01J ST 

The flow chart rcpr sonting the process of 1 D Stricture 

derived above is shown in Fig. (3.2). Steps involved are 

(1) Initialization 

(2) Input X(k) 

( 3) Compute Mo and Y(k_) 

(4) Output Y(k) 

AID, D/A c env rters 
a`a.d all varlablr=s. 

y From A/D converter. 

9 To D/A converter. 

(5) Perform Time: Delay 

(6) Compute T1  and T2 	; Precal. culation of T1  & T2. 

The Assembly language software program is give in 

PROGhk ''.--3.1 . The following salient features of the software 

program written are to be noted. 

1. Input/Output are connected through A/D and D/A 

converters for M:mor'y Mapped I/O operations. 

2. The value of X(k) is inputed from A/D converter 

through CPU initiated Polled I/O transfer. 

3. The value of the constants A0, A1 , A2, B1  and B2  

are stored as half values. This is explained in d stail in 

Appendix - V. Thus the VALUE STORED = L' Value' * 214 + 

where ' x _: means largest integer smaller than or equal to X. 

'Value' in the, paranthesis is the value- of the constant which 

is assumed to lie between -1 and 2. 



START 

INITIALIZE A/D 	D/A CONVERTER 

AND ALL VARIABLES 

, Al, A2, TI ,T2 

IN PUT 	(X) 

FROM A/D CONVERTER 

COMPUTE 	Y 	-~ 

MO=X+T1 

Y_ AQEMQ!-rT2 

_Iii_______IIi_- 
OUTPUT (Y) 

TO D/ CONVERTER 

liIIL___ 
 PERFORM TIME DELAY 

M2 a 	Mt 

Mt s 	Mfg 

PREPROCESSING CALCULATIONS  

I 11 = —( B1 * M1 -1- B2 * M2) 

T2 	All* Ml +AZ *M2 

L 's 

NO 	PROCESSING 	YES 
TIME 	--~--  

0 V E R 

FIG. 3. 2 FLOW CHART OF SECOND ORDER M( 



4. This program is written exclusively for second orde"/ 

Digital filter. Once started it continues to sample input X(k) 

at maximum sampling rate and outputs Y(k) immediately there- 

after, this continues till the processor is instructed to stop. 

This is done through an input PORT4. 

PROGRIJVI - 3.1 

FILTER SECOND ORDER 1 D STRUCTURE 

9 INITIALIZATION CLEAR MO, Mi, M2, Ti AND T2 

CLD 
NOV 	AX , 9 0 ; CLEAR ACCUMULATOR 
NOV 	CX , I 6 9 S`2OPE 6* N IN CX REGISTER 

DI Mo 	9 DI POINTS TOWARDS ADDR LOC M10 
REP 	y STORES CONTENTS OF AX 

• STOS W 	 9 IN LOCATIONS 

p INPUT X FROM A/D CONVERTER THROUGH POLLED I/O TRANSFER 
9 A/D CONNECTED FOR MEMORY NAPPED I/O OPERATION 

CONT : 	NOV PORT3 , AX 9 ISSUE START CONVERSION PULSE 
TO A/D CONVERTER 

IN-LP 	NOV AX , PQRT2 READ 'BUSY' SIGNAL FROM A/D 
AND AX 	8ØØØ(H~ , 
JZ IN-LP 	9 WAIT UNTIL READY 
NOV AX , PORT1 	9 X IS NOW IN A/D CONVERTER 

COMPUTE OUTPUT SAMPLE Y 
;. NOTE THAT ADJUSTMENTS ARE NECESSARY SINCE CONSTANTS 
g ARE STORED AS HALF VALUES 

OUTP-1 D.: ADD AX , 	Ti 	; MO IS NOW IN AX : 	X + Ti 
NOV MO , AX 	; STORE Mo IN ITS LOCATION 
IMUL AO 	9 MO * 4/2 IN DX, ice: 
SAL DX, 	1 	; MO*AO IN DX 
ADD DX,, 	T2 	9 A0 * MO+T2 IN DX = Y 
MOV AX ,DX 	y YIN AX 

9 OUTPUT Y IN .X TO OUT PORTO , PORTO BEING THE ADDRESS 
ASSIGNED TO D/1-i CONVERTER IN MEMORY NAPPED I/O MODE 

NOV 	PORTO , AX 
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; PERFORIN DELAY OPERATION SO THAT M2 	Ml AND 1 4- MO. 

DE.LjiY-1 D : LEA DI , T1-2 	y DI POINTS TO M2 
LEA SI , I~i2-2 	; SI POINTS ,`0 Ni 
NOV CX , / 2 	y COUNT DATA MOVE 
STD 	 SET D FLAG FOR AUTOD.ECREijiENT 
REP 
T0V b1 a 
OLD 	 9 CLEARS D PJ AG FOR AUT- If Gd12t',ENnJi 

PREPROCESSING CALCULATIONS BEGINS HERE TO CAL CC LATE Ti AND T2 
Ti = -(B1 * Ml + B2 * M2), T2 = Al * Ni + A2 * M2 

PRE-1D : 	LEA SI , Al 
LODvi 

ipm Mi 
MOV BX , DX 
LODW 

IMUL M2  
ADD BX , DX 
SAL BX , 1 
NOV T2 , BX 
LODW 
IMUL Mi 
MOV BX , DX 

LODW 
IMUL N2 
ADD BX , DX 
SAL Bpi , 1 
NOT BX 
INC BX 
MOV Ti ,BL 

SI POINTS 'i'0 COEFF Al  
Ai/2 IS LOADED TO AX AND 
SI - SI + 2 
Al * M1 /2 IN DX, AX 
SAVE Al * M1 /2 IN BX 

9 2/2 IS NOW LOADED TO AX 
AND SI -c" SI + 2 
A2 * M 2, 2 IN DX, AX 
T2/2  I S NOT IN BX 
T2 IS NOW IN 3X 
STORE NEW VALUE OF T2 
B1/2 IS NO xT IN AX AND SI.— SI+2 
B1 * M1/2 IS IN DX, AX 
SAVE B1 * if1/2 IN B3I 
B2/2 IS IN A., NOW 

9 P12 * B2/2 IN DX, AX  
-Tl/2 IS IN BX 
BX THEN CONTAIl\TS -T, 
NOT AND INC I1\TSTRUC'TI0" S 
TOGETHER 1, EG.1.~TES BX, SO Ti IN BX 

9 STORE NEW VALUE IN Ti 

IT IS ASSURED INPUT DEVICE PORT 4 SHALL CONTAIN NO FFFF IF 
PROCESS CONTINUES', OTHERWISE STOP. 

NOV AX , PORT4 
NOT AX 
JZ CONT 

1.H ALT 
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3.4 CASCADE STRUCTURE OF K' TR ORDER DI GI TAD FILTER 
--- N SECOND ORDER 1D MODULES IN CASCADE 

In order to avoid coefficient sensitivity problems, the 

Digital filter ''Transfer function is implemented using a cascade 

of second order modules. 

N 
• ( A 0 + Al i. Z-1 + k21. Z-2) 

1=~ 	 •.. 	(3.i) 
N 

( I + B1 i . Z 1 + B2i. Z `) 
i-1 

where N is the smallest integer greater than or equal to 

K/2. If the numerator and denominator factors are paired and 

the modules ordered in cascade, then 

N 

	

D( Z) _Hi(z) 	 ... 	(3.1 5) 
i=1 

A +A .Z-1 +A .Z-2 
where 	I,i(z) = 	of 	1 i 	 1 	2i 

	
.. . 	(3,16) 

1 	+ B1 . Z 	+ B2i. Z 

Equations (3.14) and (3.15) are the same as discussed in 

Section (1.3-2). The problems encountered in pairing and 

ordering in cascaded second order modules has been extensively 

studied in the literature 26, 27, 	ich provides guidelines for 

designing filters. 

The cascaded block diagram in Z-domain for equation (3.1) 

is shown in Fig. (3.3). The signal flow diagram for i'th 

cascaded block is shown in Fig. (3.4), this is similar to 

Iwr 	! ,' •1119  ~~. 	
... {"_'j"'S•' ~i.0'Rf A~' yAA~q~.. T ~• ....,.....~akriLW 



' 	+ 	'..1 x' 	 - a 	r7 z; 	 x'z) 	t 	Yitz' 	 xN{z 	s t n ~N~z', Y(z) 

•
r 	r 	 0 	 81 ~C~t 	 HOCK 

FIG 3 3 BLOCK E HAGRAM OF N-STAGES IN CASCADE 

	

* (z' 	t 	Mi(z) 	I 	 M1(z) 	V(z) 	i 	Y,(z) 

0 

Ti{ 

Z -'M 1 (z) 

FIG.3 4 SIGNAL FLOW DIAGRAM IN Z- DOMAIN FOR i th 
CASCAr)E T BLOCK 



51 

Fig. (3.1) except for introducing 'i' for i ' th block i. dent i-- 

fi cation, which impl ernent s equation (3.16). 

3.4-1 ALGORITHM FOR i -I X70 DULE 

Using the equations derived from Section (3.3) , the 

following equations can be written for i' th stage. 

OUTPUT 	mi(k) - xi(k) + T11 	... 	(3,17) 

y1(k) = ~oi •ini(k.) + T2i 	... 	(3.18) 

DELAY 	: mi (k-2) -Cz mi (k-1) 	... 	(3.19) 

91i(k-1) -E-- m. (!i) 	... 	(3.20) 

PRECI~I,CULATION: T1 . = -B1 . .mi (k.-1) - B21.mi(k-2) .. (3.21 ) 

= A1i ,mi(k-1) + B2i .mi(k-2) , (3.22) 

These equations are valid for all ± = 1 to N. 

3. 4-2 MEMORY ORGANIZATION 

From equations (3.17) through (3.22) for a.i-, i = 1 to N 

it is obvious that coefficients (Aoi, Ali etc.) , delayed value. 

of the intermediate variables (mi(k), m. (k-1) etc.) and tempo• 

rary storage variables (T11, 	T2i etc.) are to be stored in the 

R.k~1 memory interfaced with Intel 8086 microprocessor. 	They ave 

to be arranged in a particular way so that the String Manipul&-- 

tion instructions can be effectively used. The arrangement 

is shown in rib. (3.5). 
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The displacem. nt variable MO initially points towards 

NØ1 with index zero. After performing the desired calculatioTT 

the index is incremented by two and by the index addressing 

modes available, the pointer is changed to NØ2. Thus MO 

pointer points to m1(k) of all the cascaded stages, i = 1 to 

Similarly' N11 is the displacement pointer initially pointed 

towards mi(k-1) of all the stages, i = 1 to i . This follows 

immediately after N values of N. Soon after N values of 

mi(k--1 ), the storage of second delay values mi(k-2) should 

start. M2 is the displacem;ant pointer address mi(k-2) , 

i = 1 t6 N. Thus (M2 - 2) gives the address of the last 

location of first delay storage which stores m1,1(k-1). Ti 

is the pointer for temporary storage T1 , i = I to N and 

this follows soon after the second delay storage values. 

Thus Ti - 2 gives the address of the last location of second 

delay storage which stores mN(k-2) . After all T11 are 

stored., T2i variables area stored consecutively starting 

from T2 displacement address. 

Fig. 3.6 giv yes the memory organisation for constant 

coefficients. These arc stored as half values as explained 

in Appendix - V. 

Note that by properly loading SI and DI registers with 

proper starting indices, the pointer d~ splacemcn_t address 

can be used alone with inch.xed addressing modes to identify 
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any address in the corresponding pointer blocks. For 

Example, AO pointer address can point to any address AØ1  

to AON. Similarly Al pointer address can address all th- 

constants of N stages (Fig. 3.6b) . Smdlarly, :12 pointer 

address can bti used along with index addressing modes to 

identify all the addresses from M21 (HN2) to Id2N. 

3.4-3  IDENTIFICATION OF DIFFER' NT SUBROUTINES 

The operations involv•Yd in the cascaded modules can be 

broken up into different parts giving rise to the following 

subroutines. 

(1) SUBROUTINE INITI LIThTION called !!,IT-1 D. 

This initializes moi, m1 i , m2i, T11, T2i  locations 

by clearing all the memory locations given in Fig. (3. 5) . 

(2) SUBROUTINE INPUT called IT1P-1 D. 

•As explained earlier CPU initiated Polled i/O transfer 

is used for inputting X(k) and storing it in AX register 

through Memory Mapped I/O connc.;ction. 

(3) SUBROUTINE OUTPUT called OUT-1 D. 

This calculates equations (3.17) and (3.18) for all 

i = 1 to N. This subroutine, is entered only after passing 

X(k) value in {;X register and the number of stages N in CX 

register. The calculated valine Y(k) of the last stage is 

returned in AX register when the subroutine is executed. 
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(4) SUBROUTINE DELAY called DEL-1 D. 

This subroutine implem<:nts the transfers given in 

equations (3.19) and (3.20) for all i = 1 to N. The String 

ivianipulation block move instructions (REP NOVS) is vary 

useful here. 

( 5) SUBROUTINE PREPROCESSING called PRE-1 D.. 

This subroutine calculates all the tempprary storage 

values T1 . arid T21, 	i = 1 	to N for f ach sampling period and 

updates the information during (K--1) : t ! KT. 	again String 

lanipulatlon instructions and LOOP instruc tio::l simplifie s 

the software program to a very gr;.-at extent. 

3.4-4  SUBROUTINE FOR IMT aLI Zr TI01 

The R.T.L. (Register Transfer Logic) flow chart for 

initialization subroutine is shown in Fig. 3.7, and the 

corresponding subroutine: program; is given in PROGRA N1 - 3.2.. 

In PROGR a.N - 3.2 the String; anipulauion instruction STOSW 

along with REPeat instruction is used to implement the last 

three blocks of the flow chart. Thus, REP STOS clears 

all the memory locations Mo to N1011T, Ni to N1N, M2 to N2N, 

Ti to T1 N and T2 to T2N. Ong: more block of N word. locations 

will also be cleared as 6*N hao boon stored in CX register 

N should bs known, and 6*N should be loaded into the CX 

register before clearing she m..mory l.o cations. 
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PROGRAM - 3.2 

I I T--1 D 	NOV AX , , 0 	g CLEAR AR A 00` UZ AT OR 
MOV 	OX , , 6*N ; STORE 6*N IN CX 
CLD 
LEA 	Di , MO 

	9 DI POINTS TOvJjf.DS I 1 O 
REP 
STOSW 
	 STORES OOT TENTS OF AX 

T \T LOCATIONS 
WM 

3.4-5 SUBROUTINE INPUT - 1 D) 

Here, it is assumed. that the I/O operation is Nemory 

Mapped, i.e., I/O devices may be placed in the memory space. 

An advantage of .1emory-Napped I/O is that it provides addi-

tional programming flexibility. 

A/D converters are devices that convert analog input 

data into digital form. The block d3iagram of a tristate A/D 

converter is shown in Fig. (3.8a). The analog 	voltage 

is converted into its 1'6-bid equivalent digital output. The 

output appears at the OUTPUT terminals only when Output-.EnabJ : 

goes LOIN from HIGH. When Output-Enable is LOW the 16 output 

terminals are in tristate condition. Start-pulse is a 

control input terminal, when it is LOW the A/D converter is 

dead — not working and when. this Start-pulse goes from HIGH 

to LOVE the A/D converter starts the conversion process. The 

A/D conversion is not instantaneous and takes om,3 
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During the conversion process the A/D converter is said to 

be BUSY and is indicated by Busy--control output signal. This 

BUSY is normally HIGH goes LOW at the start of A/D conversion, 

remains LOW for T tc' sec., till the conversion is complete 

and the required data is ready for. transfer. 

To perform the operations as in Fig. (3.9) different 

signals of Fig. (3.8b) are to be issued by proper interfacing 

of Fig. (3.Sa) of A/D converter with the given microprocessor 

This is shown in Fig. (3.10) and the corresponding subroutine 

program is givdn in PROGR1j,1 - 3.3. Twenty-bit address bus is 

got by making use of 8282 latches (3 Nos.) . The ALE issued 

out o microprocessor latches s the address in first (T1 ) stat 

The 8282 propagates the address through to the outputs while 

ALE is high and latches the address on the falling edge, of 

ALE. 

PROGRAM - 3.3 

INP-1 D •: 	NOV PORTS, AX 
IN-LP o 	NOV AX , PORT2 

AND XX , §00O(H) 
J7 IN-LT 
NOV AX , PORT1 
RET 

ISSUE START O3 VERSION PULSE 
READ BUSY SIG.iNNAL FROM A/D 

WAIT UNTIL READY 
9 X i NOW IN A/D 
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3.4-6 SUBROUTINE OUTPUT - 1 D 

The R.T.L. flowchart is shown in Fig. (3.11) and the 

corresponding program is given in PROGRAM - 3.4. The foll.owig-~ 

points are to be noted while reading the flowchart. 

(1) X(K) is passed in AX register before onteri:lg 

this subroutine. 

(2) N, the number of cascades second order modules, 

is passed in CX register before entering the subroutine. 

(3) The coeffi cient s are assumed to be arranged as 

shown in Fig. (3.6a) and stored as half values as explains d 

& 	 in Appendix - V. 

(4) M/1, Ml, M2, T1 and T2 pointers points to the 

first address of the corresponding block, Sixteen bit opera-

tions are assumed. 

PROGRAT'L - 3.4 

OUT-1D a 	NOV SI , 14 0 ; STAGE INDEX 
LEA DI , NO ; M(K) POINTER POINTS TO FIBS 

^~- 'r 9 ADDRESS 

OLP-1 D : 	ADD AX , 	Ti 	SI j ; M¢ is NOW IN AX 
STOSW 9 STORE IN MØ LOCATION 

DIS- DI + 2 
INUI ÄØ SI J ; M(* AØ/2 IN DX, AX 
SAL DX 	, 	1 5 TRUNCATE AND MULTIPLY BY 2 

TO GET Ho * AØ IT 	DX 
ADD DX , T2 151J 9 Y(K) IN DX 
MOV AX  DX , y Y(h) NOW IN AX READY FOR 

1 EXT ST.?SGE 
ADD SI, 14 2 y MOVE INDEX TO POIi T NEXT 

STAGE LOCATIONS 
LOOP OLP-1 D '; LOOP BACK' TO C.ICULALE 

NEXT STAGE 
RET 
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3.4-7 SUBROUTINE DELAY - 1 D 

The R.T.L. flowchart for this subroutine is shoVm in 

Fig. (3.12) and the corresponding program in PROGRAM - 3.5. 

The following points rust be noted. 

(1) MO, Ml, M2, Ti & T2 displacement addresses points 

to the first address of each block as given in Fig. (3. 5) . 

From Fig. (3.5) it is clear that M2-2 points to M1N namely 

m(k-1) of the N'th stage and T1-2 points to m(k-2) of the 

last stage (= M2N) . 

(2) N, the number of cascade stages of second order 

modules is passed in C`- r.;gister before entering the delay 

subroutine. 

(3) The String Manipulation block move instructions 

alongwith REP at instruction performs the complete transfer 

operations so that all mi (k-1) are transf orred to mi (k-2) 

locations and therbaftor all mi(k) are transferred Vo mi (k. 1 

locations. Thus, 2N locations are to be transferred from  on e 

block to the other. Hence, the count in CX register must be 

multiplied by 2 before executing the block move instructions. 

PROGRAM - 3.5 

CX CONTAINS N NOS OF CASCADED STAGES BEFORE ENTERING 
DEL-1D o 	LEA DI , (T1--2) 9 POINTS TO M2 

LEA SI , (M2-2) 9 POINTS TO M1 
STD 	 9 SETS DIR.FLAG FOR ALTODECREMENT 
S t~L CX , 1 	9 DOUBLE LOOP CO TJNT FOR TWO MOVS 
REP 	y PERFORMS 
MOVS 	 9 BLOCK MOVE OPERATION 
RET 
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3.4-8 SUBROUTINE PROCESSING - 1 D 

The R.T.L. flowchha t is shown in Fig. (3.13) and the 

corresponding program in PROGR 7 - 3.6. As b,,forc, N, nunber 

of cascaded stages should be passed in CX before entering th 

subroutine. iJso Ml, M2, T1 , TR displacement addresses 

points to the first address of each block as given in Fig. (3Y ` 

Al displacement ac dress points to the first address of 

the coefficients, Al 1 , A21, , B1 1 , B21 etc. , as shown in Fig. 

( 3.6b). The coefficients are stored in these locations as hai.~' 

values explained in Appendix - V. Again the usee of String 

Mani 'lation instructions and LOOP instruction simplifies 

writing the Assembly language Program shown in PRCGRtXI'i -- 3.6. 

PROGR.~ivM - 3.6 

PRE-1 D : LEA SI , Al 	y POINTS TO FIG. 3.6(L COEFS 
NOV DI , 	0 	9 INDEX TO POINT CURRENT $TACE 

C, LCUL1~TICNS 
CLD 

PEP-1D 	LODSW 9 A1/2 IS NOW IIv AX AN 	SI 	SI --~ 
IMUL Mi fDI 9 Al 	* M1/2 IN DX , AX 
NOV BX ,DX 9 Al * M1/2 IN BX 	SAVE 
LODSW y x12/2 IS NOW IN AX AND SI ~— SI -.~ 
IMUL M2 	DI y h2 * M2/2 IS NOW IN DX, AX 
ADD BX DX , ; T2/2 IS NOW IN BX 
SAL B: , 	1 9 T2 IS NOW IN BX 
NOV T2 	DI!, BX y STOLE T2 113 ITS LOCATION 
LODSW ; B1/2 IS NOW IN AXANJ]3 	SI +2 
IMUT, MI !„ DI. 9 B 1 	* Iii 1 / 2 IN DX, 	AX 
NOV BX DX , y B1 * M1/2 IS NOW IN BX 
LODSW 9 B2/2 IS NO 	IN AX AND SI 	-° SI +2 

SI TIHEt 	POINTS TO NEXT STAGE 
CONS AXT Al 

IMUL M2 .!_ DIJ y B2 *  M2/2 IN DX, AX 
ADD BX , DX 9 -11/2 IS NOW IN BX 
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SAL BX , 	1 9 —Ti IN BX 
NEG BX 9 TI IS NOW IN BX 
NOV Ti.DI,', BX; STORE Ti IN ITS LOCXXTION 
ADD DI 	, 2 	9 DI T} EN POINTS TO NEXT aTAGE 

LO Ci TI ONS 
LOOP PLP-1D ; C.C IS DECRFF`rENTED 1;ND LOOPS 

B ACom: IF NOT ZERO 
RET 

3.4-9 Ty7XIN FROGR., lM 

The flowchart for the main program is shown in Fig. 

( 3.1 4) and the corresponding program in PROGR.121 - 3.7. The  

main program is written in the same way as in PROGRAM - . 1 

but by utilizing the subroutine programs (3.2 to 3.6) exp1a...- c:a 

in earlier sections in seg pence. Fig. (3.3) is implemented 

this main program. 

PROGRAM - 3.7 

NFILTR 	: CL INIT-1 D ; IN THE PROGR.nM PROPER CONST"NTS 
BE LOI DED IN 	CX REGISTER 

Sl PiiPLE 	: 	CALL INP-1D 9 INPUT 	X(K) INTO AX 
IMUL So 9 X(K) * S0/2 IN DX, AX 
SAL DX, 	1 :; X (k) * SO I 	DX 
NOV AX , DX AX NOW CONT.;INS SCALED X(K) 
NOV CX 	# , N  JNERIC: 	'N' ' B 	LOADED TO  C 
CALL OUT-1D 9 COMPUTE Y(K) AND MAKE 1 T 

AVAILABLE IN AX 
NOV PORTO , AX 9 PORTO IS THE OUTPUT PORT _,DDR. 
NOV Cr 	, 	./ N g LOAD OX AGAIN WITH NUMERICAL 

VALUE OF 'N1 
CALL DE:L-1 D BLOCK MOVE M2 tom°- Ni ; M 1 	M- N'$ 
MOV CX , # N j LOAN CX WITH 'N' FOR PRE- 

CAL CULA,TION~TS 
CALL PRE-1 D y CALCULATES Ti AND T2 OF ALL 

STAGES 



ci  
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SUBROUTINE 
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IS 
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DELAY- 1D 
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CALCULATE Ti AND T2 FOR ALL STAGES 	PRE 10 

FIG. 3.14 FLOW CHART FOR MAIN PROGRAM 
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MOV 1X , PORT4 

NOT Ai. 

JZ SAMPLE 
HALT 

REAL PORT4 FOR PROCLSSING 
OVER OR NOT 
PORT4 CO T1li1S FFPP (H) 
TO CONTINUE 

3.5 P LLEL IMPLL IaTTATIOT1 OF K' Thi ORDER DIGITAL FILTER 

Another method of avoiding coeffi cient sensitivity 

is to implement the filter as a sum of partial fraction of 

the given Transfer f unction. Equation for Parallel Canonic 

fort? is 

N 
D(z) = Bo + 	H.(z) 	... 	... 	(3.23) 

i 

	

A. +A ..Z 	+A ..Z'"2 
where 	H. (z) = B 	 i i ~~ 	P2 	... (3.24) 

	

1 + PI i . Z 	+ B2i . Z 

where, !,oi = 0 and is introduced to mare th =: se coy order 

Z--Transfer function identical to equation (3.1) . This en.:-...rc~ 

that the subroutine dev:lopOd for cascaded structure, can he 

made use of judiciously in paraILeestructugi+rc implez;entation 

The coofficients of Pip. (3.15) are adjusted such that 

= 2K, this ensures that he yT-:sults o bta:znk,d from outpu 

subroutine program can De easily modified by shifting the 

result left by K-bits, which is equivalent to multiplying 

K by 2 
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Fig. (3.15) giv ..=s the block diagram representation 

of the parallel N'th ordor Digital filter. Asa specific 

example 29 for parallel s±xucture implementation consider o. 

4th order Digital filter. Transfer function is as 

D( z) = 3o - 8. 

• AQ 1 
+A 

l 1 0 Z-1 +A 21 .Z 

1 	+ B11.Z 1 + B21.Z--2 

A02 + t~1 2.Z 1 + 
-4 • 

1 + B1 2` Z-1 + B22. Z2 

... 	(3.25) 

where, A01 , = Ao2 = 0, and all the constant 1 1 1' 

2l' etc. lie between -2 and +2 so that they can be stored 

as half values and 	= -8, P2 = °4. It can be rc lized 

shown in Fig. (3.16) . The complete program for impleeme ntxn9 

equation (3.25) is shotim in PROGIL11 - 3.8. The comm .r,t s 

in the comment field of each instruction in the program o,me 

self-explanatory.:. 	 f 

PROGRL-,N - 3.8 

MAIN PROGRI:M FOR 4TH ORDER DIGITAL FILTER PARALLEL STRUCTURE 

THE EQUN BE MADE VAIL.riBLE AS GIVEN IN EQUN i.25  
THE COEFFICIENTS ARE STORED z.S HiLF VALUES AS 
EXPLAINED IN FIG. 3.611, FIG. 3.6B WITH AØ1 - A02 = ~6 
CALLS ALL SUBROUTINES DEVELOPED FOR CASCADED S?RU TURE 
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1ILTR4 c CALL INIT-1 D 9 Cff EAR Ml, N2, Ti AND T2 
CONT 	s CALL INP—ID ; GET X(K) PRO? a./D 

X(K) IS NOW IN .aX 
NOV BX , AX 9 X(K) IS NOW IN BX 
IMUL B0 'y Bo * X(K)/2 IN JJ 	, AX 

SAL D 	1 y BO * X(K) IN D 

NOV TSI' , DX TEMP LOCATION NOW CONTAINS THE 
FT;ZST TERM OF OUTPUT Y(K) MOV ; BK 

3 

AND BA HAS X(K) 
ST 	E OUTPUT NOV CX t 	1 s G.LCJ14TE FIRST 	,G 

FROM THERE ON WARDS 
CALL QUTP-1D p CA .,CULT TE Y 4 (K). 

Y 	(K) 	IS 	, 	SI . 	_,. SI-Q2 
' W1 	RETUPNED 

S.f~L 1~1 	, 	3 ; —Y1 (K) IS NOW IN AX(=$.Y11(K)) 
NEG AX ; Y 'i) IN AX NOW 
ADD AX , TEMP Ak NOW CONTAINS SUM 0k+` TWO 'CERAS 

OF OUTPUT = B x(K) + Y (K) 
NOV T 'IP , X y (T IP) = B0X( 	) + Y1 (Ki 
NOV AX , BX y AX 	ND BX BOTH CONTAIN X(K) 
NOV CX , # 1 9 CALCULATE SECOND STAGE OUTFU` 

HERE ONWARDS 
l NOT dA.ZL QUT .-11) ROUTINE OMITFIRST TWO INNSTRUCTIONt.) 

BECAUSE INDEX 31 MUST POINT TO SECOND ST1 GE LQC.:~TION'$ WI TI-r 
DI POINTING TO MO + 2. SO CALL PROM OPL-1 D 

CALL OPL-1D 

SAL AX , 2 
KG AX 
AD 3 kX , TEMP 

NOV PORTO , AX 
NOV CX,2 
CALL DEL-1D 

NOV 	, # 2 
CILLI+ PRE-1D 

NOV AX , PORT4 

NOT 
JZ OONT 
HALT 

Y21 (K) IS RETURNED IN AX 

—Y (K) IS NOW IN AX 
Y22(K) IS IN AX NOW 
AX E-- BX (K) + Y1 (K) + Y2(K) 
MOVE OUT TO D/rA IN PORTO 
DEL4Y .1 D INITIALIZATION  
M2 4* Ml AND Ml K- M:o FOR 
TO O STAGES 
Pm'-1 D INITIALIZATION 
CALWLLTES TI AND T2 FOR 
T JdO STAGES 
IYPUT PROCESSING OVER. 
OR OT SIGNAL ISSUED 
SIGNAL IS FFFF(HI) CONTINUE 

9 JUMP TO ST 4RT IF AX I3 ZERO 



3.6 SU1Y11.~RY 

In order to avoid coefficient sensitivity problems 

a Digital filter is impl ui nted as a cascade or parallel 

combination of second order modules. In this chapter the 

second 'order 1D modulo has' baa, n 'extensively dealt with. The 

mathematical derivation, algorithm and the software program 

using Intel 8086 instruction set has been derived. The K'th 

order Digital filter using N second order 1 D modules in 

cascade and in parallels have also been discussed : the various 
} 

subroutines for these' s tlucturs~s are written. Finally, a 

main program for the cascade and parallel (4th order) struc-

ture using thus M subroutines wr1 t - n. 
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CHAPTER - IV 

IMPLEMENTATION OF SECOND ORDER DIGIT. FILTER 
THROUGH OTHER STRUCTURES 

4.1 INTRODUCTION 

The Transfer function for the It th stage second order 

modulo is r yrrittcu as 

AOi  + .t  ..L-1 + A2i.Z-2 

D(z) = 	 ... (4.1) 
1 	+B 	Z 1  +B 11 	2i  Z-2'  

Equation (4.1) can b.: implernented by any of the 

realization structures discussed earlier in section 1.3. 

Fig. (4.1) is a flow chart that models all the second order 

modules implemented by those Direct structures 25. 

In this chapter the necessary mathematical equations, 

algorithm and finally the ibroutino programs for 2D, 3D 

and 4D second, order structures will be discussed. Also two 

other structures viz. 11 and 2X crosscouplod structures 3G 

will be used to implcmtnt the above equation (4.1) . 

4.2 2D STRUCTURE 

Cross Multiplying both sides of equation (4.1) 

Y(z) + B1  . Z 1  .Y(z) + B2. Z2.Y( ) = A0.X(z) + Al  . Z 1  .X(z) 

+ A2.Z 2.X(z) 	... 	(4.2) 
0 



START 

INITIAL kZATION 

SUBROUTINE INST — C n 

OUT P L T 	Y (x ) 

PRE PROCESSING 

SUBROUTINE PRE - DOO 

Fid X4.1 GENERAL FLOW CHART OF SECOND ORDE 
MODULES 



Y(z) = A0.X( z) + 1  . z-1  .X( z) + x2. Z-2.X( z) 

- B1.Z-1.Y(z) - B2.Z-2.Y(z) 	a.. 	(4.3) 

Arranging in the po wors of'  Z 1  and Z7 2  

Y(z) _ AA0.X(z) + (A1 0k(z) - B1.Y(z))•z 1  

+ (A2.X(z) - B2.Y(z)).Z 2 	... 	(4.4) 

Lot P2(z) 	_ 2.X( z) 	- B2•Y(z) 	... (4.5) 

So P2(z).Z 	= (A2.X(z) - B2.Y(z)).Z 	1 	... (4.6) 

Also let P1  (z) _ (A1  .X(z) 	- B1  .Y(z)) 	+ p2(z) . Z-1 	• • (4.7) 

So P1  (z) . Z-1 	= (A1  .X(z) - B1  .Y(z)) . Z-1 	+ P2( z) . 7-2 	.. (4.8) 
Substituting the value of P1  (z) . 2 1 	and P2(z) 

in equation (4.4) 

Y(z) = Xo.X(z) + P1(z).Z-1 	... 	(4.9) 

P1(z) = A1.X(z) - B1.Y(z) + P2(z).Z 1 	... 	(4.10) 

and 	P2(z) = A2.X( z) - B2.Y(z) 	... 	(4.1 1 ) 

In the time domain 

y(k) _ Ao.x(k) + p1  (k-1) 	... (4.12) 

p1  (k) _ "1  .x(,k) - B1  .y(k) 	+ p2(k-1) 	... (4.15) 

p 2(k) = 1a2.x(k) - B2.y(k) 	... (4.14) 

From equations (4.12) 	through (4.14) y(k) is to be 

found out first. The values of p1  (k) and p2(k) ar calc xlatc d. 

e 
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during KT <t' KT + T. A stepwise procedure is 

OUTPUT y(k) = A0.x(k) + p1  (k-1) 

POST PROCESSING p1  (k) 	= Al  .x(k) 	- B1  •y(k) 	+ p2(k-1 ) 
in the interval 
KT' t 	KT + T p 2(k) = A2.x(k) - B2.y(k) 

DELAY p2(k-1) p2(k) 

p1 (k-1) -p1 (k) 

The flow chart of Fig. 	(4.1) represents the process. 

Precalculation is not needed. The steps involved are, 

(1) Initialization; A/D, D/A converters and all 
9 variables 

(2) Input X(k) 	; From A/D convertor 

( 3) 	Ccmput';: Y(k) 

(4) Output Y(k) 	; To D/A converter 

(5) Perform Tine D:alay 

(6) Computo P1 and P2; ;Host calculation of PI and PZ 

The subroutines for 2D structure making use of the 

instruction sot of 8086 microprocessor arc given in 

PROGRAM - 4.1. 

PROGRAM - 4.1 

FILTER SECOND OILDER 2D STRUCTURE 

9 SUBROUTINE INITIALIZATION ND SUBROUTINE INPUT ARE SAME 

9 AS IN PROGRAM - 3.2 FIG. (3.7) !iND PROGR. N - 3.3 FIG. (3 5) 

s RESPECTIVELY. 



SUBROUTINE OUTPUT COMPUTES OUTPUT SAMPLE Y = AO . X + P12 

; X PASSED IN AX Y RETURNED IN AX.LOOP COUNT IN CX. 

OUT - 2D 	9 NOV SI ' 	0 ;STAGE INDEX 
LEA DI , X(K) ;POINTS TO X 

OLP - 2D 	: STOSW ;SAVE X 
IMUL AO "SIJ ;X * AO / 2 IN DX 
SAL DX, 1 ;x * .Ø IN DX 
ADD DX , 	P 1 1, SIg. ;y 
NOV AX , Dr ;Y IN AX READY FOR NEXT STAGE 
ADD SI # 2 ;MOVE INDEX TO POINT NEXT STA&E 

;LOCATION 
LOOP OLP-2D ;USB COUNT IN OX 
RET 

; OUTPUT Y IN AX TO OUTPUT PORTO. PORTO BEING THE ADDRESS 
ASSIGNED TO D/A CONVERTER IN MF TORY Mi PPED 1O MODE 

NOV 	PORTO , AX  
COMPUTE DELAY  P 1 2 	21 	, P22 f--- P2 

DLL-2.D LEA 	DI, P1 9P(k) 
LEA 	SI ;P(k-1 ) 
REP MOVS y PERFORM BLOCK MOVE 
RET 

;PREPROCESSING 2D NOT USED IN 2D MODULE SECOND ORDER 
;STRUCTURE 

PRE-2D 	RET 
;POST PROCESSING - 2D CALCULATIONS BEGIN 	HERE TO CALCULATE 
9 '1 	= Al *X - B1 *Y + P22 AND 22 = A,.2*X - B2*'Y 
;LOOP COUNT IN CX 

:COST - 2D : LEA 	SI , Al 9 COEFFICIENT i-OINTER 
LIA 	BX , X ;POINTS TO INPUTS 
NOV 	DI # 0 y STAGE INDEX 

POLP-2D : LODSW ;A1/2  IN AX AND SI -*' ? 	SI + 2 
INDUL BX [ DI $ ;'(Al1 	*X/2 IN DX,; 	.Lad: AND 

9 BX 4-- DX + 2 
PUSH 	DX ;SAVE 
LODSW ;B1/2 
tMUL 	2 BX [DI) ;B1 * 1/2 IN DX, AX and 

9 AND BX 4-- BX + 2 
POP AX 
SUB 	2X , DX 	9ii1 * X - Bi * Y)/2 
SAL 	tiX, 1_;A1 *X-B1 *Y 
ADD 	AX , :t' 21 DI,= y COMPUTE P1 
NOV ill ,DI? , Ai ;STORE 21 
LODSW . 	_ 	;A2/2  IN AX AND SI <- SI + 2 
IMUL j BXJ DI j 	;X + A2/2 IN DX, AX 

; ND BX E-- BX + 2 



PUSH DA 
LODSW 

IMUL 2 D EJ LDI J 
.O±, tX 
SUB AX,DA 
SAL 
NOV 

13.i., 	1 
P2 [DI7 

ADD DI 1A2 

LOCI POLr-2D 
RET 

yB2/2 IN AX AND SI- SI + 2 
9y * B2/22 

(X * A2 - Y t B2)/2 
912 
; STORB P2 
;MOVE INDEX TO POINT NEXT 
;STAGE LOCATION 
IVUSE COUNT IN CX 

2D CONSTANT STORAGE FOIA N ST..GES 
DW A01, x02,,,,, iiON 	9 1 	FOR N STAGES 

Al 	DW Al 1, B 1 I, 	A21, B 21 	9 	STS -.GL 1 	CGE'FFI CI EN T S 
DW Al2, B12, 	A22, B22 	y STAAGL. 	2 CO AFI+'ICIENTS 

DW Al N, BIN., A2N, B2N y STAGE N CO ,FFI CI LNT'; 

2D TEMPORARY STORAGE FOR N STORAGE 

X 	DW 	- (N+1) DUi'y6 	p IN2UTS/OUT1UTS 
P1 	DW 	N DUI 
P2 	DW 	N DIJPØ.  

4.3 3D STRUCTURE 

Equation (4.1) can be written as 

Y(Z) _ (A0 + Al . Z-1 + 1a2. Z-2) :X(Z) — (B1 . Z 1 + B2. Z 2 ) .Y(z) 

... 	(4.15) 
or Y( z) = J1-.X(z) + x1 . Z .X(~) +  

- B1 .Z 1 .Y(z) - B2.Z 2.Y(z) •• 	(4.16) 

In the time domain 

y(k) = A .x(k) + Al .x(k-1) + A2.x(k-2) 

- B1 .y(k-1) - B2.y(•k-2) 	... 	(4.17) 
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Let T3 =  1 .x(k-1) + ,2.x(k-2) - B1 .y(k-1) - B2.y(k-2) 

... 	4.18) 

Equation C4.17) is represented as 

y(k) = lY0 .x(k) + T7 	... 	( 4.19) 

It is to be noted that the intermediate variable T3 

depends on the previous samples and is evaluated in the 

interval KT - T t < KT and shall be available before KT 

sampling point. The output y(k) can be calculated upon the 

receipt of input x(k) . 	stepwise procedure is 

C T TI~UT 	: r(k) = .a . x(k) + T3 
~ 	J 

Ci CB:JJI LT 	9 .L 	= .l • x"'"1 ) + L],.~. .(k-2) - B 1 . „4 (k-1 

in the interval 	3 	G 
KT-T <t ( KT 	 - B2.y(k-2) 

DEL..Y 	; 	x (k-1) — x(k) , 	x (k- 2) *--- x (k- `! ) 

y(k-1) -- y(k) , y(k-2) 4--ti y(k-7 ) 

The flow chart of Pig. 	4.1 represents the process, 

1- ost calculation is not no=:,ded. Following are the strips 

involved. 

(1) Initialization; 1./D B/ 1 convortc.rs and all 

9 variables 

(2) Compute (k) 

(3) Compute, Y(k) 

(4) Output Y(k) 

9 Prom 1./L convoriter 

To B/a converter 

0 
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(5) Perform Time Delay 

(6) Compute T3  Precalculation of T3 

Various subroutines in the 3D implementation are 

given in. PROS-RAM - 4.2. 

PRO GRAN - 4.2 

FILTER SECOND ORDER 3D STRUCTURE f 

9 SUBROUTINE ,INITIALIZATION AND SUBROUTINE INPUT ABLE SAME 

;AS IN riiOGR.P NN. - 3.2 FIG. (3.7) AND PROGRAM - 3.3 FIG. (3.8) 

RESPECTIVELY. 

y SUBROUTINE OUTPUT C IPUTE6 Y - 	* X ± T3 

;LOOP COUNT IN CX 

GUT - 3D : 	LEA DI, X I 9 PCINT~a TO 
NOV SI 	, 9 STAGE INDEX 

CLP - 3D :  STOSW 9 SAVE X , Y 
IMUL AØ 13 y 1i 	* X/2 IN DX 

SAL DX , 	1  
ADD DX , 	T3 SIj COMPUTE Y 
MCV rii 	, 	DX 	- 9 RETURN Y IN AL 
ADD SI , 41 	2 ; POINTS TO NEXT ST,.GE 
LC,CP uLP-3D 
STCSW 9 SAVE LEST Y 
ET 

;OUTPUT Y IN 1 . TO UUT: PUT 	GRTØ . PORT 	BEING THE ADDRESS 
9 £ SSIGNTED TO D/A CGNVE T LCL Ii: 	M? I' ORY Mi PPED I/O MODE 

I'1CV 	PC RT , AL 

COMLUTE DELAY X2 -- Xi.. ,LGLP COUNT IN QX 

DEL - 3D 	: 	LEA 	SI , h1 	9 POINTS TC. X(k)  
LEA DI , X2 	; LINTS TO X(k-1) 
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DEL - 3D SUBACUTINE OCNTINUBS 

INC CX 	; MVE X VALUES AND 
LAFCJIb 

MLvs 	 BLOCK MOVE O}ATICN 
AET 

PAEI'ACCESSING 3D CALWLTIGNS BEG-IN HERE TC CALCULATE 
T3 = Al.X1 + A2.X2 - B1.Y1 - B2.Y2 
LCC1 COUNT IN CX. 

£ U/ 

RE 	3D 	LEA SI 	 l 	; , C  CEFIOIENT 	OINTE1t 
NCV DI 	, 	4; INDEX 

- 3D : 	L(.DSW ; 1/2 
IMUL X1 	DI 	; XI * Al / 2 IN DX 
NOV 	BX , DX 	; LjiTIL SUM IN DX 

A2/2 
IMUL X2 1,,Dlj 	; X2 * A2/2 IN flL 

i)D BA , DX ; £iiT1AL 	UM 
LODSW ; B1/2 
IMUL Xl ±2A)I; Yl * Bl/2 IN DX 
SUB BX; DX 	; TOTAL 
LC, :DSW ; B2/2 
IMUL X2+2! 	; Y2 * B2/2 
SUB DX 	DX ; 
SAL DX, 	1 	; T3 
MOV T 	 DI , BK 	STORE 
ADD DI ', 	2 ; MOVE INJEX TC, i'CINT 

NEXT STAGE LLC•:2ICN 
LOO i'L-3D ; U} 	CLLINT IN CX 

CST AOCE)SiNG 31) NOT Ufl.iJ I1' 3D SEC\)A1.) O1dit NODULE 

)OST- 31' 

3D CONSTANT STLiAG-E FLA N STAG-ES 

: 	Dd l, A2 	............ 	4N ; 4 FOAN STAG-ES 
Al : 	DV All, 311, 	A21, 	321 ; 	STAGE 1 GCEFPICIENTS 

Dil Al 2 7  .h22, 	B22 ; 	STAG-B 2 COEFFICIENTS 

1)W .lN, DVN, 2N, B2N 	 ; STGE N COEFFICIENTS 
3D TE GiY JT AiGE FO N STAGES 

X -1 DW (N+1) ML 	 ; X(k), Y(k) 
X2 DJ (A+i) DU 	 ; X(k-l), Y(k-1) 
T3 JiJ N 	iJLJ4 
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40 4 	S TiC7CTUst 

Introducing intermediate variable 0(z) in equation (4.1y 

i(z) 	no + 1 1 .Z 	+ li2•Z-2 	,.. 	(4.20) o T77 	 - 2 o z 	z 	1 + B . Z 	+B. Z 

~ Y(z) = li • (z) 	+ A
1 

s Z-1 ♦lt 
0

(`z) iC
0 

+ 1~2• Z 2.i 0 ( `l+) • • • 	(4.21) 
o 

and X( z) 	= R (z) 	+ B1 .Z1 .(z) 	+ B2•z 2.i0(z) •.. 	(4.2.2) 

	

f-~ 	e 	it 	Z Hence 

	

He 	( 	) 	= 
- 

I 	r 	B, • Z 1 .R (z
) 	

- (Z) 	- B 2. 	 .R0 ( z)    
... 	(4, 2 )) 

s 

Let t1 (z) 	= °B 1 . rio (z) 	- D2 @. Z 	1 . ate (z) ... 	(4.24: 

Sc J., 	Z) 	= X( z) 	+ i l (z) • Z ... 	(4.25) 

ret  01 ( z) .f'~ 	•LLf ( z) 	+  	2 s. Z-1 •R0( z) • • • 	(4.26)   

~~ c~ S S1( Z) A 	s i`{ 	( z.A) 	+ 	Q 	( G) • u 	' 1 o 0 
• • • 	(4.27) 

1: owr i ting oquations (4.23) through (4.27) 

=X(z) + 	(z).z 
1 

• . 	(4.25) 

Y(z) = 	A ).. 0 (Z) 	+ Q1 (z)•Z 1 ..• 	(4.27) 

2 4_ , 

Q1 (z) = 	~~ 	. lco (z) 	+ 	2.Ito (z) . Z 	1 • .. 	(4, 20 ) 

In the time domain this sot of equations is 

r(k) = x(k) + r1 (k--1 ) 

Y(k) 	= 0 .r0 (k) + q1 (k--1 ) 

r1 (k) = B1 .rc~(k) - B2 •r_o(k-1 ) 

q1 (k) _ =-i1 .r0(k) + 2.r0(k-1) 
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From above it is clear that y(k) is to be calculated 

first and r1 (k) and q1 (k) Oan lie calculated.in the interval 

KT 	t c KT + T. A stepwise proceduzeis 

CUTPUT 	: r0  (k) = x(k.). + r1  (k-i) 

y(I) =.,r0(k) + q1  (k-1) 

PTCLATIN 	(k) 	-B 	(k) - B20 r(k-1 
0 

) 
in tic interval' 	 0, 

KT (t <KT + T 	q 1  (k) = Al  r(k) + 	r  
0 

DELAY 	 x ( k-i) 	r (k) 

(k-1) E-'-----r1  (k) 

q1  (k-1) - q1 (k) 

Flow chart of Fig. (4.1) repront the 4D structure and the 

program is given in PROGRAN 4.3. No prcaicuia'tionis 

needeth 

- 473___ 

FILTER SECOND ORDER 4D 3TRUCTUL 

INITIALIZATION SUBROUTINE IJ'D IPJJT KTBRCDTINB ARE SAME 

AS IN. PROG-Rt.N - 3.2 FIG. (3.7) ARD PROGL 	- 3.3 FIG. (38) 

RESPECTIVELY. 

STJBRC'UTINE OUTPUT CO1VIPUTES 4 = X + Ri 1 AND OUTPUT $NPLE 

= 	* 4, + Q.11.' PASS X IN X, RETU1N Y IN AX 

LOC COUNT IN cZ. 
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CUT — 4D : 	L.EA DI , 	RSG 9 POINT TO iØ 
MCV SI NG , ST 	INDEX 

CLP— 4D y 	ADD AX. , 	R.1[SI7; -X+il1 
STCSW 9 STCJJL IN LOCATION 
IN UI 

4L51 
y i / 	4 / G IN DX 

S' Dpi 
LL.., 1 

ADD DA , 	i 	sf 9 Y 	aL # yLo 	+ Q11 
Ivi t~ V AX, DX 9 AL T.U1U IN ZX 
~iDD SI 2 , g MLVE INDEX TOO POINT ELAT 

9 aTGE LO C..if'IC.NS 
LOOP OLP-4D 9 USE COUNT IN CX 
RET 

9 OUTPUT Y TIN AX TO OUTPUT PORTS. PORT O BEING THE ADDRESS 
ASSIGNED TO D/A CONVTERTER. IN MEMORY MAPPED I/O MODE 

MOV .PO ATO ; AX 

;PREPROCESSING 4D NOT USES IN 4D SECOND ORDER STRUCTURE 

PRE- 4D RET 

;DELAY 4-D CALCULATIONS BEGIN 	RO t o-- RO AND SO ON 
DEL-4D 	: 	LEA SI , RO 	; SI POINTS TO RO 

LEA DI , RØ1 	; DI POINTS TO RØ1 
INC GFX 

LD 
REP  '9 PERFORMS 
DVS 	 y BLOCK MOVE 
RET 

PO 5! PRO  
R1 = -B1 .RO - B2.RO1 , Q1 = A1 .RØ + A2.RR1 . 
LOOP COUNT IN CX 

LEA SI , 	B 1 
NOV DI, 
LODSW 
IMUL Ro [ DI 
MOV BX DX , 
LODSW 
IMUL RØ1 [DI] 
SIDD BX , 	I 
SAL BX , 	1 
NEC- BX 
1V'I O V R 1 (IDI], 

9 COEFFICIENT POINTER 
v STAGE INDEX 
9 B1/2 
9 RO * B1/2 IN DX, AX 

y B2/2 
RØ1 * B2/2  1N DX, AX 
-R1/2 

;R1 
BX; STORE R1 IN LOCATION 

POST-4D : 

POLP-4D : 
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LODSW 
IN'UL ROS [DI) 
NOV BX , DX 
LODSW 
IMUI RO1 [DIJ 
ALD DX , DX 
SAL BX/, 	1 
MOV Q1 [D11 , 	DX 
.DD DI , # 	2 

LOOP POLP- 4D 
RET 

9 h1/2 
9 RO*A1/2 

A2/2 
Rol * A2/2 

y Q1/2 
;Q1 

STORE Q1 IN LO Ci-~T10a'TS 
MOVE INDEX TO POINT NEXT STRGE 
LOCATION 
USE COUNT IN CX 

4D CONSTANT STO_R ,GE FOR N STAGES 

Ali DW 10 1 , Ø2 	..... A ~1 A 	FOR N STAGES :' DW i,1 1, B1 1, 	A21, B21 q STAGE 1 	COEFFICIENTS DW x;12, B12, 	A2 B22 ? STAGE 2 CCEPFICIENTS 

DW MN, B1T'J, 	A2N, B2N : ST,".GE N COEFFICIENTS 

4D TV1PORARY STORAGE FOR NNT STr GES 
RO : DW 	N DUP(0) 9 	RSL(k) 
R01 : D',1 	N DUP (j) 9 	Ro (k-1 ) R1 	s DW 	N DUP( 	) 9 	R1(k) Q1 	: DW 	I`: DUP(Ø) Q1 (k) 9 

4.5 1X AND 2X STRUCTURES 

Another method of realizing a Digital fi, -der i s 

the cross coupled .structure of Fig. 4.2. These derivata,.onF 

of these structures is extensively dealt with in 30: 

The difference equations (in time domain) Inployod for 

1X Structure : 

y(k) = A0.x(k) + s2(k-1) 	... (4.28) 
S1 (k) = g1 .s1 (k-1) - g2.s2(k-1) + g3.x(k) .. 
s2(k) = g1 •s1 (k-1) .+ g2 	2(11) 	+ g3.x(k) .. 	(o) 
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whr the g. comes ±'rom 

D(z) 	+ 	+ 

This is a canonical 	ructui 	sinc two ciiay .1mens 

ar used io irnp.1nifl a 3CcOfld order ruod.u1. A StEp- 

wise proced1a s 

OUTPUT 
	

y(k) 	x(k) + s2(k-i) 

POSTCLJLATIO1J 06  

in tirie in;ervaJ 
KT < 	icT + I + 

=(-.i) + 22 1 ) 

- 

DELAY 

2(k-i) 

The flow chart of Fi 	( I. 1 ) iLso repreEens the 1X s;ruc- 

tu:e and 	program i given in PROGR1 - 4.4. 

PROGRAM - 4.4 

PILTLR 3ECOD ORDER 1X 3TRUCTRE 

INITI.ALIZATICN D INPUT SUBkOUTINES ARL SAME 

AS IN PROGRi'I - 3.2 PIG (.7) 	PROGRAMT - 3.3 1"1 G- -  (3 s) 

RESPECTIVELY. 



A 	 ~ 

I1 

_9t 

1X STRUCTURE 
Ao 

2X STRUCTURE 

FIG 4,2 1X AND 2X STRUCTURES 
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SUBROUTINE OUTPUT COMPUTES Y 	AO *4 32 

9 PASS X IN Aid, RETURN Y IN AX. LOOP COUNT IN CX 

OUTP — 1 X : LEA DI , X. ; POINT TO X 
NOV SI , ~6 y STAGE INDEX 

OLP  — 1X ; STOSW 9 SAVE X 
IMUL AO SI 9 X * AO/ 2 
SAL DX, 1 y X*AO 
ADD DX , 32(SIJ ; Y = AO*X + 32 
NOV AX , DX 9 RETURN IN AX 
ADD SI , 2 : MOVE INDEX T-G—POINT 

9 NEXT STAGE LOCATIONS 
LOOP OLP-1X 	9 USE COUNT IN CX 
RET 

9 OUTPUT Y IN AX TO OUTPUT PORT. PORTO BEING THE ADDRESS 
ASSIGNED TO D/A 'CONVERTER IN MEMORY MAPPED I/O MODE 

NOV PORTO , AX  

PREPROCESSING-1X NOT USED IN 1X SECOND ORDER STRUCTURE 

PRE-1X RET  

DELAY 1X CA-LCULATIONS BEGIN i (k-1 ) H 31(k); 2(k-1) — 
32(k) . LOOP COUNT IN OX. 

DEL — 1X : LEA 	SI, 1311 	; SOURCE 
LEA 	DI, 311 	y DESTINATION 
ADD CX, CX 	9 DOUBLE COUNT FOR X1 AND X2 
REP 	 ; PERFORM 
MOVS 	 9 BLOCK MOVE 
RET 

POST CALCULATIONS 1X BEGIN. Si. = G1*S1 1 -- G2*S21 + G3*X ,  
32 = G1*S21 — G2 'S1 i + G-4 'X" 

POST....1X : LEA 	SI, G1 
NOV DI, 	,LSO 

POLP-1 X 	BODS1 
IMUL S 1 I [:i3Tj 
NOV BX, DX 
10 DS 
I UIQ 	S 21 IDIJ 
SUB BX, D 
LODSW 
IMUL X DIJ 
ADD BX, 	X 
SAL BX, 	1 
MDV 31 - DI 	, 	BX 

COEFFICIENT POINTER 
9 STAGE INDEX 

G1/2 
31 1 *0-1 /2 

G2/2 
9 $21*G2/2 

G3/2 
*G3/ 2 

S1/2 

S1 
9 STORE 31 
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9 
° POSTCAL GJLATIONS SUBROUTINE IvOR 1X MODULE CONTINUES 

LODSW 
IMUL S 21 L DIJ 
MOV BX, Dl 
L0DSI 
IMUL S 1 1 LDIJ 
ADD EL, DX 
LO D3/ 
IMUL A I DIJ 
ADD BA, 	Dl 
SAL LA, 	1 
i10V S2[DIJ, BA 
ADD DI 	/= 	2 

LOOP POLI'-1 L 
RET 

G1/2  
321 *G1/2 

G2/2 
S11*G2/2 

G4/2  
A. 	-1- 
X2/2  
32 
STORE 32 
NOV IN NEXT TO i OIL T 
NEXT STAGE LOCATIONS 

S - 	;STT 	T 	;~ ` TTa.~ ~"0~~.; i 	1`~ V~~ 

1X CONSTANT STOhLAGL -`OR  
AC D AØ1, AØ 2 	.... A N 	; AØ FOR N STAGES 
G1 s 	DW G1 1, G21., G31 , 	5-1  1 , 	G21., 541 	9 STAGE 1 	COEFFICIENTS 

DUI G1N, G2N, G3N, 	G1N, 	Gx2N, G4NN; STAGE N COEFFICIENTS 

9 ° 	1X DATA STORAGES FOR N STAG-.3 
X 	o LW N DUP()0) 9 INPUTS 
Si : DW iJ DU.r'(0) 31(k) 	; Si (k) 
S2 DW N DUP(0) 32(k) 
311 : 	Lw N DUBS 	) S 31 (k--1 ) 
312: 	D",d N DUP(0) ; 32(k-1) 

B. 2X STRUCTURE 

This structure is th trarsposs (Appendix - II) 

of 1X struc lure. Equat:Lcns involved are 

y(k) = A0 .x(k) + g3.1 1 (k-1) + g4.12(k-1 ) 	... (4.31) 

11 (k) = 91-11(k-') + L="2.12(k--1) 	... 	... (4.32) 

12(k) = x(k) + g 1 .l2(k--1) - g2.11 (k-1) 	... (4.33) 
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A Stepwise :procedure is 

OUTPUT 	 v(k) - Ac.x (k) + L. 

POST CALCULATIONS ; 11 (k) - g1 .11 (1.--1) + g2•12(k-1 ) 
in the interval 
KT t KT + T 	l (̀ ) = x(k) + 1 .12(11) - 	2. 1 (1-1) 

PRE CALCULATIONS : L 	- g 3.1.1 (k--1) + g 4.12 (k-T 1 ) 

DELAY : 	Not n ~A c «s o a.rTy 

Fig. 4.1) also repre nts this 2K structure amd 

the program is giver, in . ROGRANN -- 4.5. 

	

PRO 	 i 	4. 5 

~'t l SECOND 
	1.~. 	r 	..a (l;r'r i~ 1 i—l' L `  Fl.LTERR SECOND ORD1aR 2X >T~tUCTUR~. 

I.NITI1- 1 ZATICT 1 SND INPUT SL 	U INE$  

AS IN PROGIti G 4̀i — 3.2 FIG-. (3.7) IUD PROGi" 	— 3.3 FIG. (3.8) 

SUBROUTIA OUTPUT CUA\;J LT ES Y 	Ø.X +L3 . PASS X IN 

Y LOOP COUNT IN C.X. 

0UTP — 2K: LEIS DI, K 9 POINT TO K 
NOV SI, 9 STAGE INDEX 

OLP — 2K : STOSW _ ; SAVE INPUTS TO STAGES 
IMUL AØ iSI j 9 X*AAO/2 
SI. L DX,~ 1 

.DD Dl, L3LSI J 9 COMPUTE Y 
NOV•  X, Dl y r;.ETURN IN x 

Z, 	2 9 NOVE INDEX TO POINT  
NEXT :. T STAGE LOCATIONS 

LOOP OLP-2X 	y USE COUNT IN CX 
RETURN  



81 

POST CALCULATIONS 2X BEG-IN Li 	= G1 .L1 (k-1) 	+ G2.L2(k:-1) ,  
12 	= X 	+ 0-1.12 	(k:-1) 	-- 	G2.L1 (l;:—'1 ). 	.LGG.' 	COUNT 	I'LL 	CL. 

POST-2X 	: LEA 	SI, 0-i 	(;C)ET`PI CIL T -POINT R 
NOV 	DI, 	y 	; STAGE INDEX 

POLP-2X 	: LODSW 	y 0-1/2 
INUL. L1 1 [DIJ 	°, 	Ll 1 #G1 /2 
NOV 	BX, DL 

LGDSW 	G-2/2 
INUL 	121 	LDI7 	p L 21*g2/ 2 
,ADD 	EL, 	DX 	; L1/2  
Sit' 	8L, 	1 	; 	L1 

nIJ . 	~} 	, , 	- -r NOV 	L1 	b,i. 	~~~ 	9 	SrOI D L1 (k) 
SUB 	SI , 	q. 	; BECK POINTER UPTO G1/2 

LODSVJ 	y 	0-1/2 
IiiUL 	121 LDIJ 	; 	G1 *L21 ./2 
NOV 	EL, 	Dl's. 

L0DS,., 	y 	G2/2 	. 
Ziviul 	Li 1[ DIJ 	,° 	0-2 	Li 1/2 

SUB 	BL, DX 	111JLTI1JJ SUN 
SAL 	BX, 1 	L2 — X 
.-'D 	BX 	L [DIJ 	L2 

NOV 	L2tDI., EL 	STORE L2(k) 
ADD 	DI. 	2 	; MOVL INDDL TO POINT 

T~L1rT 	STil-GD 	JG r ,1TGT\S 
LOOP i'0L '-2L 	USE COUNT IN C 
1 T ~.0  

DELAY 1 X. C,J C,JL_:'TIG NOT ULCES 	FOR. 2X 
DEL — L I l:t `_ 

;: PRLPRO CLOSING CAL QWUTIOR a 2X BEGIN. . 
L3 = G 5*L i (k.-- i) + G4*L2('k_. i) . LOG? COUNT IN CX. 

PRE-2X 	: 	LLQ: 	81, G3 
NOWT 	DI, 	L0 

PLP-2X 	: 	LODSW 
INUL L 1 11 DII 
NOV 	BX, DL 
LODOW 
INUL L3 	DIS 
.:DD 	EL, D 
SAL 	BL, 	1 
NOV 	L3 i '?I , BL 
ADD 	D1 	, 	 L- 2 

iu 

COEFI`I'T POINTER 
ST £G- ±1.DiL 

9 G3/2 
G3*L11/2 

G4/2 
G4 L21 /2 
L3/2 
L3 
STORE L3(k) .  
NOVE IND EL '10 POINT 
1`J -LLL1 2'T1.GE LG C.,.T1O S  
LOOSE COUNT TN CX 
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2X CONSTJd\IT STOReLGE FOR N STE 

G-1 	DW 011, 012 
DW G21 G22 

SiGE 1 
rr- 

DW- 0N1, 0N2 

G3 DW @13, 0-14 
LW G23, G-24 

ST0E 1 COEFFICIENT 
ST•!.G 	2 COEFii OiEJ'TT 

DW GN 3, G-N4 	 ; TGE N 00EFFICI\TT 

LW AØ 1 , Ø 2 	. . 

2X TEMPORARY STORAGE FOR 3TLJL3 

X :D 	N LUP) ; 1NPJT 	TO 	JTAG 

Li 1 	LW 	N DUP(Ø) ; 	Li (k) 	OR Li (ii 

T1 2 LW 	N LUP(Ø) L2(k) 	GR L2(k.-1) 

L3 	LW 	N IYJP() L3(k) 

4.6 SUNI'1ARY 

In this chapter, all the other realization  techniquas 

discussed in section 1,35 	used to imrl'mnt a second 

order module. The iiecssary equations for the Algorithm 

are deiived and the various; subroutines 1mplildntirig  the 

main 	flow chart of Fig, (4,1) written. Finally, two 

cross coupled Stru.CtUrsE: are us ,-, d to implement the suie 

flow chart of Fig. (4.1). 	 - 
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V 

CONCLUSIONS AND SUGG`ESTIONS FOR FURTHER WORK 

5.1 	CONCLUSIONS' 

Digital filters have been implemented in harwired 

logic, special purpose= computers and General purpose 

computers. The recent advent of 16-bit microcomputers 

with built in multiplication hardware has created a new 

option for implementing Digital.. filters. A typical 16-

bit microcomputer. Intel 8086 has been selected here. 

There is a significant imp:rovcmant in the semplin 

rate, because of the avail bil!t:T of multiplication 

instruction in the Instruction set of 8086 m.icr

. 

	;pro- 

censor. 

In this dissertation, the various realization 

t ochpique s for Digital i f.:ilt ,rs are die cues ;d and their 

characteristics compared. A7..l the Direct form stru.ctur .s 

Huffer extreme coof 1 	^t ~y 	 r~~ 	~[T t 	I 	the suffer 	L i. 4~llt U'.s11 ~-1 .,t. 1J~ Y ~ U~ as + , ~/h 4. order 

of the filter grows large. In order to avoid Co,,fficiont 

ssitivi.ty, the Digital filter Transfer function is 

implemented as a cascaded or parallel combination of 

second order modules. The second order module in itself 

can be any one of the Direct form structures. 
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Th:: salient f eaturea of the Int 808C micro-

processor has boon studied in considerable detail. Using 

the Instruction scat of 8086 ir_ccroprocossor the Assembly 

language. programs for the various realizations of a 

second order module written. Th . mathematical equations 

for tho corresponding, ai orith;7ms are derived, prior to the 

R.T.L. flowchart -i2odel. Tv_iain programs for the cascade 

and parallel Digital fillers are also written making 

use of the various subroi_tines and each stage in itself 

is a second or• ior-• 1D structure. 

5.2 S GGEST'IONS FOR FUTURE WORK 

Because of the non-availability of the Intel 8086 

microcomputer lit the various programs could not be tested. 

These programs. can be t,.:,wtod as and when a 'Lit is made 

available in the Department. 

All - of 16-bit microprocessors viz. Intel 8086 

Motorola MC 68000, Texas In trumorits TMS 9900, Zilog 

Z8000, Fairchild 9445 ar,.: similar in basic word size and 

The programs written down using ari ~hmc:ta. c capabilities. 	 g 

the Intel 8086 micropro c:s•sor can be modified for the 

rust of the microprocessors. 

0 
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In this dissortatlon Ir:L1 8086 rnicroprocssor 

is us,.c. toimp1:m.?I'± 	Liva1 flIt crs -, on section 

of Digital signal pro cssing 	It can be exterith;ci 

to other sctiors ,)f Digital signal procossin. 

This le.,-ids to the m1crocc:mpLlt()r study of anrpI:d. 

Data Systoms. 
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LASSIPICATIO OF DIGITAL FILTERS 

The term Di$tl filtring rafers to a compuatima1 

algorithm performed on a sampled input signal re lung in a 

transformed output sig1ia1.. th computational pro csss can 

correspoid to high pCS: filtering, low pass fii: ing, bad 

pass, filtering., intagration,; dif: rent iaton etc0 	:h 

is assumed to be lin:•, that man the principle of supc: 

position applies to th input output rolationship The ifljut 

Signa-1- is a s udnc of numjcrs. from oithor an Analog-to- 

Digital (A/D.) convet 	or a direct digital ij&t -ou-c'..The 
OULkt 4LoL is tLftcv 	yeck 	LLt&cL  

ganoratod anaicg signal :froiri a Digit al-to-Anal og (DA) 

cn-crc•t or. 

The unique advsmi;r cff:;red by Digital filter are 

1.. The performenc fromunit to unit is stable arid 
repeatablc 

2. Arbitrarily high prcision is a .c•vd tbat is 
limit-,0, only by the number of bits carried in mey 
and by •th inut and output rosoltt ion capabilities 

3. No impeancs iatiin; problems exist in he &Jgit1 
domain. 

4. Critical f11.tcr frequsncy can b: placd T jthOUt 

restriction but it infiuncos tho 	quircd peci s.r 

5. Component value v nation. pro hlms a.'e non e:±e± 

6. Greater £lsxi bd:Lty is acjiievod since- .FiJte.r response 
can b e thaged. by var;jing the proper arithmeti c 
coofficicuts, 
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7. The intrinsic possibility of time sharing major 
implementation section exist. 

8. Small size results from integrated circuit 
implementation. 

9. Periodic calibration as is required with analog 
circuits is ::1,i xiated. 

10. Ferformatic , limitations of physical analog 
components are avoided. 

Two gonoral typos1 ' f ' of configurations of Digital 

filters are Q 

(a) Rocursivzo Digital filter 

(b) Nan--Recursive; Digital fillI r 

The Recursive Digital filter is a discrote time fiiev 

which is realized via a recursion r- lation. It means the. 

output samp_. as of the filter  ara expli ci t y determined as A. 

weight cd sure of past output samples as well as past and./or 

present input sampl= . For <cxample 

y(n) = a0.x(n) + a1 .x(n-1) + a2.x(n-2) 

- b1 .y(n-1) - 	... 	(.A.1 .1) 

The i' on-Recursiv Digital filter is a discrot' time 

filter for which the output sampi ~s of th}c filter arc 

explicitly doter-minod as 2. weighted sum of past and pr{..sonf7 

input samples only. For example, 

y(n) = ao .x(n) + a1 .x(ri-1) + a9.x(n-2) 	... 	(A.1 .2), 
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Thus Recursive Digital filters are those filters 

which possess a transw_re f' action as given by equation (1.3) 

D(Z 	_ 	_. 	~ 	 ....~.~.,.~ 	.... 	.... 	(~1 .3) 
N 

1 r• 	< 	B. . Z-1 

i=1 

It has all common factors cancelled. he denominator co-ffi-

cients are identically non._z, ro. The zeros and Doles are 

located on the ,~1 pi ane The Non Recursive Digital filters 

however possess a transfer function hi ch is a polynomial of 

Z 1 and all common factor in equation (1 . 3) are cancr;llod. 

this case, the transfer function is of the form. 

D( Z) 	— 	i 	± D . Z 1 + D . L7-+ ` • • • D 
	(J~~.d ♦ • 	(A 1 - `Y.

) 

This equation is a finit.. degree polynomial, no poles can 
1 

appear in any finite d part of the: Z ' 1 plane. Non Recursive 

filter, as a result" is always stable. (This of course is 

consistent int with the absence of fs:G;d back) . 

Consider the ;: n:.ral. transfer function of equation 

(Al .3) which is reproduced here for convenience in the 

factor . form. 

(1 - Z. Z-1 ) 
i=1 	... 	(A1.5) 
N 

k z1) 
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whrc p1 , 	p2 	... are the pol-s and Z1 , Z2 	... 
ZIIVI

are  

th 	zeros. 

Any filter whose txanscr function is given by (A1 .5) with N 

is called an infinit iinpalso r;sponse (1IR) Digital filter, 

bocausc thoro doos not oxist a finitc intogor L  such that 

d(n) = 0 for n) L 

whcrc d(n) is th-: irnlo rcspons of th f 	For liFt 

digital filters assumc. 	N. This assumption holds txio for W. 
almost all cases ofpractical interest. A partial fraction 

expansion of (A1.5) is 

1pZ 	1 2Z 1 	1 - p 

= 

= 0 if 11 

and 	= 	(1 	p z) Di)/Z = p1  for I = 1, 2 .. N 

Hnc, the corrapondi:g :Lmpulsc rspcnso i 

h(n) =[:A. p 	± ; 2T2 + 	l\TPN]1A1) ±• () 

Olearly, thc.5 	cssax:/ and sufficient conditions for the 

impulse respons- abcv to satisfy the stability criteria of 



WE 

is that 

p1j< for i = 1, 2 .... N 

That is, all the pole locations of the digital filter a:r 

within the unit circl in the Z-plane. 

When the transfer function of a Digital filter is 

given by equalion 

(l.6) D(z) = B 0  + D1 .Z 1  + ...... D? 

which is equivalent to the case when N = 0, the Digital 

filter is said to be of finite impulse response (FIR) type. 

This name is used because the impulse response of equation 

(Al .6) has the property that h(n) = 0 for nM and for n< 0. 

That is the corresponding impulsL. respons is o. finite 

duration. In this case, thcir are no poi,.. and this type 

of filter is always stable. 

From the above it is clear that Transfer function in 

equation (Al .3) represents an IIR Digital filter while the 

Transfer function of equation (Al .4) represents an FIR 

Digital filter. The FIR filters are all stable and casual 

while the IIR filter is stable if the poles of D(Z) are 

within the unit circle in the Z plane, and casual if B0  

the first nonzero coefficient in the denominator. As we 

are concerned with casual filters it is convenient to asewec 

B 0  = 1. 
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10 The major dffirmces ar listed in 	. IIR 

Digital filters cannot have perfect linear phase character-

istics whil FIR filters are always designed to bav linear 

phase characteristic. Implem'ntation of an FIR Digital 

filter re 	...-quires mor computations and more-digital compo-- 

ilonts; hence FIR filters are more. expensive than IIR filters 

The amount of computation and hardware needed to perfonn a 

filtering process is usually an important practical consid.e 

tion. In general !IH Digital filters roquir loeser compu 

tations and/or hardware to achieve a. particular filtering 

function than those roquirod by the corresponding FIR 

Digital filters, FIR Digital filters are called for to 

perform tasks not possil"Le and/or riot practical by IIR 

Digital filters such as linear phase fiU;ers, and multirate 

filters whore the input, signals and the corrospnding 

output signals are sampled at different rates. 

Although IIR Digital filters are generally realized 

recursively and FIR filters nonrecursively, HR filters 

can be realized nonrecursivoly and FIR filters can be 

realized re cursii ely. 

7 
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APPUTDIK - II 

PRINCIPLE OF TRANSPOSE AND TRANSPOSITION THEOR '! 

Tellegen's theorem is an important basic theorem of 

conventional network theory. As Digital filter  ri of work s are 

not subject to Kirchoff's laws, Tellegen's theorem in its 

most general form does not apply. A restricted form of 

Tellegen's theorem referred to as the. difference form, can be 

derived 5, 1 1, 1 2 	rom this a number of useful properties of 

digital networks can be developed. In classical. networks  

Tellsgen's theorem is in the form of a relationship between 

the voltage disttibution. in one network and the current dis- 

tribution in a second network, when: the only relationship 

between the networks is that they have the same, topology but 

otherwise unrelated. In a similar manner, if we consider 

every flowgraph to have a branch in each direction b it ween 

every pair of nodes, with the transmission of some of the 

branches being zero, then any two flow graphs with the same 

number of nodes can be considered to be topolpgically equi-- 

val,-nt. 

Consider two signal flow-graphs with the sarn topology 

Let N denote the number of network nodes. The network node 

variables, branch outputs and source node values in the first 

network are denoted by wk, v.
~k 

and x. respectively and in the 
~ 

second network by w'
k  jk  

and XL. Then, the, Tellegen's 



theorem is 

N N 	 N 
1 	(wk .vt k - w'k .v .k) + 	(w' k .xk -~ w' kxk) = 0 
k=1 j=1 	 k=1 

... 	(A2.1 ) 

Proof: 	The proof of equation (A2.1) follows almost directly 

from the definition of a signal flow graph. The branch outputs 

are related to the node variables and source inputs by 

N 	M 
wk =V jk + 	S, jk 	 ... (A2.2) 

j=1 	j=1 

Adopting the convention that each network is drawn in such 

a way that each network node has associated with it a 

source node connected to i t by a branch with unity transmi-

ttance. Also, this source node is not connected to any other 

network nodes. 

With the convention regarding source nodes equation 

(A2.2). changes to 

N 
wk = ` 	v k +xk 	.... 	(A2.3) 

Writing the identify 

N 
(wk ,w' k -- w' k Wk) = 0 	... 	(A2.4) 

k=1 

Equation (A2.1) follows in a straightforward manner by 

substituting equation (A2.3) into equation (A2.4). 

ra t 
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Equation (A2.1) is referred to as T -ll egen' s theorem for 

signal flow graphs or for digital filters. If variables Wk uk, 

V.k , V' jk, Ik and X' k are d,rivecd throug1 a linear operation 

from wk , W' k , v k , v' k, xk and. Xk respectively, then 
J  J 

N N  N 
(1 - V' J k - '.i' ~. V. k) + 	( ~[k' 	;. - 	- 0 

k=1 k=1 	 k=-.1 
. . . 	(A2.5) 

Thus Teilegen' s theorem applies either to the sequence 

values or to the 2-transforms, 

For passive analog networks consisting of interconnec-

tions of resistors, inductors and capacitors, the notion of 

reciprocity plays an impor.+ sn.t role. For digital networks 

there exists corresponding notions of reciprocity and inter-

reciprocity consider a given network excited by two different 

	

sets of sources. The 	transf'orTns of the sour cry node values 

for the two different sets will be denoted by Xk and X'11 . The 

value of the node variables of the k' tri nods when the network 

is excited by uhs unprimed sources will ba - denoted by ►Wk. 

When the network is excited by the primed sources, this 

variable will be denoted by W' k . The network is said to 

satisfy recipro city if for any two signal distributions. 

N 

	

(1h. • ~'i' k 	- 	0 	... 	(A2.6) 
k_1 
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As a cons :quence of reciprocity, if we excite  the graph at 

network node i a! and observe th output at node ' b' ; then 

for a reciprocal graph, thy: same axci_tation at node !b' ta.i U 

result in the same output at node 1 al 

Most • digital networks are not rMciprocal; A related concept 

that is more useful with r:=gard to digital network is that 

of interreciprocity; In thi case we consider two distinct 

signal flow graphs; Let X~y denote the source node values 

and i denote the nods vainables for one network and X' k and 

b~' k the source node values and network node variables for 

the second network: Th .n the- two networks are said to be 

mnt erreCiprocal if 

ir 

k=1 
	L!k -- 	k z. 	= D 	::: 	(.2;7) 

tgyuatiotis (A2;7)  is similb,:r to equation (A2 . ) ; here for 

reciprocity the primed and unpriL ed ievwork differ only in 

i h s sources, whereas for int err : Cipro city both the sources an 

and branch transmittares : c :s. differ in the primed and unpri-

mod networks„ A network that is reciprocal  is also inter-

reciprocal with its -1f.  

DRAT' S?OaTTiON THECR I 

A property of digital networks is that they are 

int :rreciprccal with their transpose4 he transpose of a 

flow graph is generated by reversing the dir^ctions of all 
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the branches but leaving their transmittances the same. 

Consider a digital network where Wk denotes the node 

variable for the k' th node. The transmission from node 'j 

to node 'k' is denoted by 'F jk 

o 'V jk = 

In the transposed network, the node variable of the k'th node 

is denoted by 'k and the branch transmittance. between nodes 'j' 

	

and 'It' is denoted. by F' 	so that 

f 	 f 	t V jk = F jk. j 

By definition of the transposed r ctwork F' jk 

To prove that a network and its transpose are inter-

reciprocal -- i -- to show that equation (A2.7) holds for 

the above conditions, we utilize the fact that a network and its 

its transpose have the same topology so that To-.logen' s theorem 

equation (A2.5) holds. 

Thus, 

N  N  N 
~_krTkrV' 1~ 	t k'V~l.~l + 	(W.k'X ~k - 	k 'Xk) = 

-1 	k=1 	 1 j 	k�1 

.,. (A2.8) 

Substituting valu< of V~k and V' 1 in (A2.8) we obtain 

N 
• y,,f 	_ F 1 	k;' 	• j 

=1 	k 	
( Ti .. E- 	`i, 	

jk 	
ks '6 j.Fjk). 

1  
N 

+ 	4' ~'1 X' - w' 	X 	= 0 

	

1 _1 k 	k 	k' k~ 



102 

N N 	 N N 
or 	. W' . F' 	- 	'fi,~,.,,, . 	k . W j . F 1 k 

k=1 

N 
+ 	~~'. ( K. ' k - Wk - W' k .Xk) = 0 ... (A2.9) 

k=1 

Interchanging the indices of summation in the first double 

sum of equation (A2.9). 

N 	N 
5 	(Vd' k.Wi .F' jk - W' k .W j.F jk) 
j=1 	k=1 

N + 	`'~,,, (ç•!.' k - w k.hk) = 0 	... 	(A2.10) 
k=1 

Since, the primed and unprimed networks are transposes, 

=Fjk , and therefore the double sum is zero and jk  

N 

k=1 (w .X. - ~"T' k.X ) - 0 , which proves that a network and its 

transpose are interreciprocal. 

For single input - sing1f. output networks, a network 

and its transpose have the same transfer function. For a 

2nd. order section the diagramatic changes are shown in 
Fig. (A2.1) . 
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APPENDIX s- III 

RISE OF INTEL MICROPROCESSOR 8008 TO MICROPROCESSOR 8086 
AND THEIR COMPARISON 

The Intel 8008 14r17919 was the first 8 bit, mono-

lithic, p channel MOS device to be developed. The 8008 

processor architecture is quite simple compared to that of 

today's microprocessors. The instruction set is small but 

symmetrical with only a few operand addressing modes 

available. The addressable memory space is 16k bytes which 

seemed to be lot back in 197Q when memories were expensive 

and LSI devices were slow. The memory size limitation was 

imposed by the lack of available pins. 

The microprocessor does not have instructions with 

direct addresses since two CPU registers must be used to 

reference main storage. Also, some operations such as 

moving data from one place= in storage to another, are somewhat 

awkward. Another problem ara-oa. is that associated with an 

interrupt. Interrupt; pro cessin was not a requirement for 

the 8008, only the most primitive mechanism conceivable - 

not incrementing the program counter was provided. Such a 

mechanism permit; an interrupting device to jam an 

instruction into the processor's instruction stream. Since 

memory is addressed during the interrupt, two of the 

s cratchpad registers are to be reserved as interrupt 
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registers. This reduces the effective number of the 

registers in the scratch pad file from seven to five. There 

is no instruction for disabling the interrupt mechanism; thus 

this function must be realized with external hardware. 

Finally, the single 8 bit bus into processor requires a 

large amount of support hardware. If a single IC is 

produced which will replace these components, this processor 

will be valuable in many mora applications. • 

The Intel 8080 16, 17, 19  an 8 bit, monolithic, 

channel MOS device; is a second generation microprocessor 

with many improvements over its predecessor, the 8008 15  

The 8080 was the first processor designed specifically for 

the microprocessor mark; =t. Thr main objective of the 8080 

was to obtain a ten-to-one improvement in throughput 

eliminate many of the 8008 short comings that had= by 1973 

become apparent and provide new processing capabilities not 

found in the 8008. Ths latter included handling of the 

16 bit data types, BCD arithmo:tic, enhanced operand 

addressing modes, and improved interrupt processing. Memory 

costs had come down and pro c.sssing speed was approaching 

TTL, so larger memory spaces seemed more practical and 

direct addressing of more than 16K bytes was achieved. 

Symmetry was not a goal because the benefits to be gained 

from making the extensions symmetric would not have 
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justified the resulting increase in chip size and opcode 

space. Most of the external logic required to support the 

8008 is on the 8080 CPU, and all the .important interfacing 

signals are generated on designated processor pins. 

The 8080 architecture is significantly different 

from that of 8008. The byte handling facilities are 

augmented with a limited number of 16-bit facilities. The 

memory space is 64K bytes, the address bus 16 bits wide, 

so an entire address can be sent down the bus in one memory cycle. 

The 8080 extends the 32 port capacity of the 8008 to 256 

input ports and 256 output ports. The 8080 processor 

contains a file of seven 8-bit general registers, a  16-bit 

program counter and stack pointer and five 1 -bit flags. 

 the 

chip, a strategy which removes the restriction of only seven 

levels of nested subroutin; s. The programmer can directly 

access the stack pointer in 8080, unlike in the 8008. A 

fifth flag, Auxiliary Carry, augments the 8008 flag set. 

It indicates whether a carry was generated out of the four 

low order bits. This flag, in conjunction with a decimal 

adjust. instruction, makes possible packed BCD addition. 

The 8080 includes the entire 8008 instruction set as a 

subset. T 	eü instructions provide some new operand 

addressing modes and somo 16 bit data manipulation 
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facilities. The 8080 has an interrupt mechanism identical 

to that of 8008, but includes instructions for enabling 

and disabling the mechanism. 

The 8080 is packaged in a 40 pin DIP and has separate 

address and data buses havilg Instate outputs. As a result 

of the separate data and address buses, a microcomputer 

is formed with as few as six TTL packages. A disadvantage, 

however, is that 8080 requires three separate power 

supplies. 

In 1976 advances in technglogy allowed Intel 

to consider enhancing the 8080. The objective was a 

processor set utilizing a single power supply and requiring 

fewer chips (the 8080 required both an oscillator chip and a 

system controller chip) . The new processor, called the 

Intel 8085 was constrained to b compatible w -ch the 8080 at 

the machine--code level. This meant that extensions to the 

instruction set could use oi.y the 12 unused opcodes of 

the 8080. Architecturally, the 8085 turned out to be not 

much more than a repackaging of the 8080. The major diffe-

rences were added features such as on chip oscillator, 

power on reset, vectored interrupts, decoded control lines, 

a serial I/O port and a single power supply. Two new 

instructions RIN! and SIH were added to handle the serial 

port and the interrupt mask. 
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Th : Intel 8086 was designed to provide an order 

of magnitude 17 '  18' i ncrase in processiag throughput over 

the 8080. The processor was to be compatible with the 8080 

at the assembly language,  level, so that existing 8080 soft- 

ware could 	be reassembled and correctly executed on 

the 8086. To allow this, the 8080 register and insttuction 

set were to appear as logical subsets of the 8086 registers 

and instructions. 

The goals of the 8086 architecture were symmetric 

extension of existing 8080 features and the addition of 

processing capabilities not found in the 8080. Jew features 

and capabilities included 16 bit arithmetic, signed 8-16-bit 

arithmetic (including multiply and divide), efficient* 

interruptible byte string operations, improved bit manipu-

lation facilities and m^chanisms to provide for re-entrant 

code, position-independent cods., and dynamically relocatable 

programs. By 1977 memory had become inexpensive and micro-

processors were being used in applications requiring large 

amounts of code and data. Another achievement was the direct 

addressing of more than 64K bytes and support of multipro-

cessor configurations. 

The 8086 processor architt-cture comprises a memory 

structure, a register structure, an instruction set, and an 

external interface. The 8086 external interface consists of 
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interrupts, multiprocessor synchronization and resource 

sharing, this all goes way beyond the facilities provided 

in the 8080. The 8086 can access upto one million bytes of 

memory and upto 64K input/output ports. The I/O space 

consists of 6.4 K ports a 256-fold increase over the 8080. 

The processor contains a total of thirteen. 16-bit registers 

and nine 1-bit flags. The 8080 register set is a subset of 

the 8086 register set as shown in Fig. (A3.1). The 8086 

instruction set is not a superset of the 8080/8085 instruc-

tion set. Most of the 8080/8085 instructions are included 

in the 8086 while some of the infrequently used ones (e.g. g. 

conditional calls and-returns) are not. The operand address-

ing modes of the 8080 have been greatly enhanced.. Signifi-

cant new operations includes : (a) multiplication and 

division of signed and unsigned binary numbers as well as 

unpacked decimal numbers, (b) move, scan and cimpare 

operations :.or strings upto 64 K bytes in lcorigth, (c) non-

destructive bit testing, (d) byte translaticn from one 

code to another, (e) software generated interrupts and 

(f) a group of instructions that can help coordinate the 

activities of multiprocessor systems.  

The more six years of microprocessor evolution has 

yielded a three orders of magnitude performance improvement, 

TABLE - 2.1 and TABLE 2.2 trace the comparison of those 

processors in respect of featurds, and technology. 
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APPENDIX -- IV 

INSTRUCTION 3ET OI 806 hI CRORO CEOR 

The JJ!strdctLon sc of 8086 microp rocessol,  car be 

studied. wider th foliowin lads o. 

• (A) Data Transfer Intractions 

(P 	Arithmotic Ins bructioris 

(a) Bit Ma.ipuJaion Instructions 

(D) String Instruc bions 

(E) Frgrsin T.'aisf or IDs' ructions 

(P) Processor Cont-OL Instructions 

The :fourt.con data tra 	iastructions can bc studied 

under thc foiloing four Iiad 	The flags in this case 

remain uflaLtored5 
(A) )1 	41UCTI0N 
(a) Gncral Purpose 

I . MOV 	Mayo b.yt o word 

( i) Rg •/ msicrr, r:r 

 

100010dw mod rugr,/rn 

('a) hsg1E/momory16, 	100011dO modrcg rim 
Sag r, C> 

(c) Acc, emer 	101000dw 	A'.dr low Addr high 

(a) 	ag irnod 	1011w reg da;a 	data if w=1 

( 1100011 w mod 000 r/m data data 
if W::- 
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2. PU SR 	PUSH word onto stack 

(a) Register 	01010 reg 

(b) Seg-reg 	000reg110 
( CS legal) 

( c) Memory 16/regi 6 1 1 1 1 1 1 1 1 m.odl 10r/m 

3. POP 	POP word off stack 

(a) Register 

(b) Seg--reg 
(CS-illegal)  

(C) Memory/reg 

4. XCHG Exchang.D byte or word 

(a) Reg/mem with 	1000011w modregr/m 
register 

(b) Reg, ace 	10010 reg 

5. )MAT Translate; byte 

(a) Translate byte 	11010111 
to AL 

(b) Input/Output 

6. IN 	Input byte or word 

(a) Acc, immed 	1110010W 	Port 

(b) Acc, Dir- 	 111011Ow 

7. OUT 	Output byte: or word 

(a) Acc, immed 	'1110011W 	Port 

(b) Acc, DX 	 1110111w 

010.:11reg 

000 reg 1 11 

10001111 mod000r/m 
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(c) Address Ob j s ct 

8. LEA 	Load Effective Address 

(a) Load EA to reg 	10001 101 modregr/m 

9. LDS 	Load poin-Jer using DS 

(a) Load pointer to DC 11000101 modregr/m 

10. LES 	Load pointer using ES 

(a) Load poiivcer to : S 1 1000100 modregr/m 

(d) Flag Transfer 

11. PUSHF Push flags on:Go stack 

(a) Load AH with flags 	10011100 

12. POPF 	Pop flags off stack 

(a) Pop flags 	10011101 

13. SAS-i.F 	Stern Aga register in flags 

(a) Store AR into flags 	10011110 

1 4. LAHF 	Load CJI register r from flags 

( a) Load AU with flags 	1001 1 1 1 1 

B. ARITHMETIC INSTRUCTIONS 

8080' arithmetic operations may be performed on. A 

types of numbers unsigned, binary, signed binary, unsigned 

packed decimal and unsigned unpacked decimal. Following is 

the effect of the flags. 

. CF Carry flag : ADO and SBB incorporate the Carry 

flag in their operations. Th:;.i Carry flag is set (a) if an 
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addition results in a carry out of the high order bit of 

the result and (b) if a. subtraction results in a borc; ;;7 into 

the 1 igh order bit of the result.  Otherwise the CF is 

cleared. 

AF Auxiliary Cary flag s The AF is set (a) if an 

addition results in a carry out of the lower order half 

byte of the result and (b) if a subtraction results in a 

borrow into the lower order half byte: of the result... The AF 

is provided for the decimal adjust instructions. 

SF Sign flag : Ar.itb:;metic and Logical instruction 

set the Sign flag equal to the high order bit (( or 15) 

of the result. Programs performing unsigned operations 

ignore SF. 

ZF Zeroflag s If the result of an arithmetic or 

Logical Operation is zero, the ZF is set, otherwise:- ZF is 

cleared. 

PF Parity flag o If the low order eight bits of an 

Arithmetic or Logical result contains an even number of 

1-bits, then the PF is set, otherwise it is cleared. It 

also checks ASCII characters for correct parity. 

OF Overflow flag : If the result of an operation 

is too large a positive number, or too small a negative 

number to fit in the destination operand (excluding the 



116 

sign bit) then the OF is sot, otaerwis o it is cleared. 

OF indicates signed arithhm :tic overflow. 

( a) Addition 

1. ADD Add. byte or word 

(a)  Reg 	/memory with register to either 
000000dw modrogr/m 

(b)  Immed. , reg/mem 	100000sw mo d000r/r Data 

( c) Immed , acc 	0000010w Data Data w = 1 

2. ADC Add i,yte or word with carry 

(a)  Reg / mom with register to either 
000100dw modrgr/m 

(b)  Immod reg / m em 100000sw , modOlOr/m Da.ati 

( c) Immed , 	acc 	0001010w Data Da: :a w =1 

3. INC Incr ni-,nt byte or word by one 

(a) Register 	C1000rcg 

(b) Reg/mein 	1 1 1 1 1 1 1 w 	r o d.0OC /m 

4. AIA ASCII 	adjust for ad.di tion 

(a) ASCII adjust for add 001 1 U ; 1 1 

5. DAA Decima1 adjust for addit: on 

(a) Decimaa adjusc, for add 	0010C1 1 

(b) Subtraction 

6. SUB 	Suhtract byte or word 

(a) Reg/mem and register to either 

00101 Odea rno dregr/m. 
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(b) Immed , reg/mom 100000sw mod011r/m Da.ta 

( c) Immed , acc 001011 Ow Data Data if w=1 

7• 	J3B 	Subtract byt:° or word with borrow 

(a) R 'g/memory and register to either 

000110dw modregr/m 

(b) Immed , reg/mem 	100000sw mod011r/m Data 

(c) Immed , acc 	 0001110w Data 	Data if w=1 

8. DEC D scr rn nt ' byte= or word by one 

( a) Rag/morn 1 1 1 1 1 1 	od001 r1m, 

(b) register 01001reg 

9. NEG Negat 	byte or word 

( a) Change sign 1111011w 	mod011r/m 

10. QUIP Compare byte or word 

(a) Reg/m&m 	, rg 00111 Odw 	me R.regr/m 

(b) Immed , rag/men 100000sw ; mod1 1 1 r/.m 	Data 

( c) Imined , 	acc 0011110w 	Data 	Data if w=1 

11.  AAS ASCII Adjust fox subtraction 00111111 

12.  DAS Decimal adjust for subtraction 00101111 

(c) Multiplication 

13. MUZ 	Multiply byGa or word unsigned 

1111011w mod10Or/m 

14. IMUL Integer multiply byte or word 
1 1 1 101 1 wmo dl 01 r/m 
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15. A.PIN ASCII Adjust for multiply 
11010100 00001010 

(d) Division 

16. DIV 	Divide byte or word unsigned 

1111011w modl 10r/m 

17. IDIV Integer divide byte or word 
1111011w mod111r•/m 

18. AAD 	ASCII adjust for division 
11010101 00001010 

19.  CBW Convert byte, to word 10011000 

20.  CWD Convert word to double word 	10011001 

(C) BIT MANIPULATION INSTRUCTIONS 

8086 provides threR groups of bit manipulating 

instructions. 

(a) Logicals - Here RIOT has no effect on the flags. 

AND OR, XOR, TEST affect the flags as 	The OF and CF 

are always cleared, the contents of the AF is always 

undefined following execution of a,  logical instruction. 

The SF, ZF, PF are always posted to reflect the result of 

operation and can be tested by conditional jiinp instruction. 

1. NOT Invert 1111011w mod010r/m 

2. AND 'And byte or word 

(a) Reg/mem , register 

001 000 dw mo dreg/mi 



(b) Imm.ed , reg/.gem 
1000000w modl0Or/m 

(c) Immed , Acc 
0010010w Data 
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Data 

Data if i\ = 1 

3. OR 	'Inclusive or' byte or word 

(a) Reg/mem ,register 
000010dw modregr/m 

(b) Inun:gid ,  
100000w mod001 r/m Data 

(c) Immed , acc 

	

0000110w Data 	Data ii w = 1 

4. XOR 'Exclusive or byte or word 

(a) Reg/m m , register 
001100dw modr•egr/m 

(b) Immed , reg/mein 

	

1000000w mod110r/m 	Data 

(c) Immed , ace 0011010w 	Data 	Data if w = 1 

5. TEST fTestt byte or word 

(a) Reg/mem , register 
1000010w modregr/:1 

(b) Immed , red;/mein 
11 1 101 T w mod000r/m Data 

( c) Immed , acc 
00110101,7 	Data 	Data if w = 1 
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(b) Shift - Bits are shifted arithmetically or logically. 

Upto 255 shifts may be porfo 'ncnd according to the value of 

the count 	perand coded in the -instruction. The 	c.. 	1_ i, 	"..a 

be specified as a constant 1, or as reg. CL allowi 	t11e 

shift count to be a variable supplied at execution time. 

Arithmetic shifts may be used to multiply or divide binary 

numbers by powers of two . Logical shifts can be used to 

isolate bits,. Shift instr ctions affect the flags as follows° 

AF is always undefined follotiri.ng a shift operation. PT', SF, 

ZF are updated. CF conta-i-ri the value of the last bit shift( . 

out of the destination operand. OF is u.ndef -.zed folloni.ng 

a multibit shift. In a single bit shift, OF is set if the 

value of the high order (sign) bit retains the original vaLu . 

otherwise OF is cleared. 

6. SHL/SHA 	Shift logical ant hmc. Gi c left b; ,e 
or word 	110100vw mcd100r/n 

7. SHR 	shift logical right b, *e or c 

1 10100TTw mo dl 01 r/m 

8. SAR 	Seii : arithmetic nigh; byte r r word 
1 "' 	OOvw,,w mo d1 1 1 r/._i 

(c) Rotate - Here the CF may e 	as an exten;'ion c,-° the 

operand in two of the :rotatJ^ Instructions, chewing a bit 

to be isolated in CF and the: tested by a jump t_f carr or 

jump if not carry ins t —S"  
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9. ROL 	Rotate l Mft byte or word 

110100vw mod000r/m 

10. ROR 	Rotate right byte or word 

1 10100vw mo d001 r/m 

11. RCL 	Rotate through carry left byte or word 
110100\rw mod010r/m 

12. ROR 	Rotate through carry right byte or word 
1 10100vw mod01 1 r/m 

D. STRING INSTRUCTIONS 

String instructions do not use the normal memory 

addressing modes to access their operands. Instead Index 

registers are used implicitly. Following are the string 

instructions which allow,  strings of bytes or words to be 

operated on, o ne element at a time. 

1. MOVS 	Move byte or word, string 	1010010w 

2. CAPS 	Compare byte or word string 1010011w 

3. SCAS 	Scan byte or word string 	1010111W 

4. LODS 	Load byte or word string 	1010110w 

5. STOS 	Store byte or word string 	1010101w 

6. REP 	Repeat 	1 1 1 1001 z 

E. PROGRAM TRANSFER INSTRUCTIONS 

The sequence of execution of instructions in a program 

is determined by the CS & IP. CS contains the base address 

of the current code segment (64 K portion of memory) from 

which instructions ar,  presently being fetched. IP is used 
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as an offset from the beginning of the code sediment. 

The combination of CS & IP points to the memory location 

from which the next instruction is to be fetched. 

The program tra ±er instructions operate on. ';he 

IP and CS thereby changing the: con its; This changing 

causes 	e1 s€jcU!§n bj ,l execution to be altered . ihen 

a program transferred occurs the queue no longer contains 

the correct instructions and. the  BIU obtains the next 

instructions from memory using the new IP and CS ralu Is. 

and passes the instruction directly to th:. EU and then 

begins refilling the:. queue from the n"w locations. The 

flags are not effected except in interrupt related 

instructionso 

(a) Unconditional Transfer 

(1) CALL, 	Call procedure 

(a) Direct within segment 
11101000 DDsp low 	Disp High 

(b)_ Indirect within segment 
1 1 1 1 1 1 1 1 mo d010 r/m 

(c) Direct inter segmel-it 
10011010 offset low offset high 

seg low 	seg high 

(d) Tudire ct intersegment 
1 1 1 1 1 1 1 1 m o d01 1 r/m 



1 23 

. RET 	Return from procedure 

(a) within segment. 	11000011  

(b) 	ithin seg;. adding Immed. to SP 
11000010 Data low 

Data High 

(c) Inters=:gmcnt 	11001011  

(d) Interseg. adding immed. to SP 
11001010 Data low 

Data high 

	

3. JMP 	Unconditional jump 

(a) Direct within. segment 
11101001 displacement low 

displacemcat high 

(b) Direct within seg. -- short 
11101011 disp. 

(c) Indirect within segment 
11111111 mod100r/m 

	

( d) 	Direct intersegment 
1110/010 	offset low offset high 

seg. low 	seg. high 

	

(e) 	Indirect intersegment 
1 1 1 1 1 1 1 1 modl01 r/m 

(b) Conditional Transfer 

4. JO Jump if overflow 	01110000 Disp 

5. JNO Jump if not overflow 01110001 displacement 

6. JB/JNAE/JC Jump on below/not above or equal/ carry 
01110010 displacement 
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7. JNE/JAB/JNC Jump if not equal/not carry/abovs or equal 

01110101 	disp 

8.  JE/JZ Jump if r.qual/ zero 

01110100 	disp 

9.  JL/JNGE Jump if less/not greater or equal 

01111100 	diep 

10.  JI,E/JIG Jump if less or equal/not greater 

01111110 	disp 

11.  JBE/JNA Jump if above or equal/not above 

01110110 	disp 

12.  JP/JPE Jump if parity/parity even 

01111010 	disp 

13.  JS Jump if sign 

01111000 	disp 

14.  JNL/JGE Jump if not less/greater or equal 

01111101 	disp 

15, JNLE/JG Jump if not less or equal/greater. 

01111111 	disp 

16. JJE/JA Jump if not below 	or equal/abovE.' 

01110111 	disp 

17, JNP/JPO Jump if not parity/parity odd 

01111011 	disp 

18. JN S Jump if not sign 
01111001 	disp 
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19. LOOP 
20. LOOPZ/LOOPE 

21. LOOPN Z/LOOPNE 

22. JCXZ 

(d) Interrupt 
23. Type specified 
24. Type 3 
25. INTO 
26. IRET  

Loop CX times 11100010 	disp 
Loop while zero/equal 

11100001 	disp 
Loop while not zero/not equal 

11100000 lisp 
Jump on CX zero 11100011 	disp 

11001101 type 
11001100 

Interrupt on overflow 11001110 
Interrupt return 	11001111 

PROCESSOR CONTROL INSTRUCTION 

These instructions allow programs to control various CPU, 
functions. There are three groups (a) Flag operation - this 
updates flags, (b) External Synchronization - used for 
synchronizing the 8086 with external events, (c) No -operation 
causes CPU to do nothing. Except for the flag operation 
none of the processor control instructions affect the flags. 

1. CLC 	Clear carry 	 11111000 
2. 

 
CMC 	Complement carry 	1 1 1 10101 

3. STC 	Sot carry 	 1 1 1 1 1001 
4. CLD 	Clear direction 	11111100 
5, STD 	Set direction 	 11111101 
6 , CLI 	Clear int Irrupt 	11111010 
7. 

 
STI 	Set interrupt 	 11111011 

8. HALT 	Halt 	 11110100 
9. WAIT 	Wait 	 10011011 

10. ESC 	Escape to external device 11011xxx modxxxr/m 
11. LOCK 	Bus lock prefix 	11110000 
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Consider multiplication in the two's complement 

number system. An n-bit multiplicand (perhaps a signal 

variable) is multiplied by an n-bit multiplier (perhaps 

a filter coefficient). The product has 2n bits and may be 

used as another multiplicand in a later multiplication so 

it is quantized (truncated here) back to n bits. 

Suppose the multiplier is 'X' and the coefficient is - 

'a', then. 

a 
a X 

and. the product is quant i zed Q„ 

a 	= l a X /2'J 

The computer hardware actually handles the inters of 

equation (. a.1) so that in hardware 
X  . 2n-1 

a  *. 2n-1 

a X * 22n-2 

is quantized as Q a X _ J a X* 22n-2 / 2n t 	*. 	2 

Consequently, the product must be multiplied by 2 (shifted 

one place left) so that til final trancat.ed "tern is. 

aX _ aX * 2n-1J 	-- 

Code- sequence in Intel 8086 programing language is as 
LEA 	Si , A 	9 	COEFF. POINTER 
LODW 	 q A / 2 LOADED 
IMUL X 	y 	1sX / 4 IN DX. REGISTER 
SAIL 	DX , 2 	9 	AX IN DX REGISTER 
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APPENDIX - V 

COEFFI CIENT REPRESENTATION 

Intel 8086 represents all the numbers in the two` s 

complement number system, so 

N = (S M14 M13 .... 	M1 Mo) 2 cans .. (A5.1) 

where, 

-215~N <215 -1 

If we consider all numbers to be scaled, such that 

N = (S. M1 4 N13 , .... M1 Mo) 2 cris 

thus, 

As a result, coefficients in the range 1 N <2 cannot be 

represented. Therefore, all coefficients will be stored as 

half their actual value, and 

VALUE STORED = LValu e * 214 + 0. 5 

and a left shift (multiply by 2) operation will be _performed. 

in each routine to compensate for this changa. The symbol Li 

means the largest integer loss than X. 

As an example suppose coefficient S¢ = .4383164 is to 

be stored in the Intel 8086. microprocessor. 

VALUE STORED = SO * 214 + .5 

_ J .4383164 * 16384 + • 5 
_ L7181 '3759 + .5j 

_ 181 8759y= 7181 
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The following operations are actually performed 

(1) Load the. coefficient ' a' into AX - register 

..X = a * 2 2 

(2) Multiply by the variable 'X' 

DX, AX= (a * 2n1_2) * (X * 2n-1 ) 

=aX* 221i-3 

_ (a X / 4) * 22n-1 

the product is now in the DX, AX register. 

(3) Shift DX. Register left 2 places (quantize: to 16 
bits and multiply by 4) . 

DX 	tL(a.X/ 4) * 22n-1 / 2nI '•4 
La X / 4 *221J  * 4 

a X * 21-1 

The operation l~-ft justifies the register DX and fille in 

two zeros in the least significant bits. 	The DX. register 

now contains the truncated, properly scalod result. 

On computers with double register shifting, on would 

perform the double left shift first. 

Double register = (a X / 4 * 22n-1 ) * 4 

- a X # 22n-1 

and then truncate to the n most, significant bits. 

For Single register = (a L * 22n-1 ) / 2n 

- 	( a X 	211_i) 

which 'is more accurate than above. 
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