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ABSTR A4CT

Digital filtering is a major subdivision of
Digital signal processing. The practical realizations
of a Digital filter have been discussed in this disser-
tation. To avoid ccefficient sensitivity problems, the
Z-Transfer function of a Digital filter is implemented
as a cadbcaded or parallel combination of second order
modules. Each module in itself can be one of the four

Direct structures.

The significant bresk-through in the area of
IC technolcgy have opened up new options for the imple-
mentation of Digital filters. The present day research
is centred around the micrcprocassor based design.of a
Digital filter., Digital filters are now implemented
making>use of 16-bit word length microprocessors. Intel
8086 has been considered in this diszertation. 'The
Assembly language of 3086 is used to implement all the
Digital filter modules. The software preograms are given
for K'th crder Digital filter using N second order modules
in cascade. It has also been shown that the same sub-
routines developed for sccond order modules can be used

for parallel structure implementation.
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CHAPTER =~ O
INTROZDUCTION
C.1 HISTORICAL INTROTUCTION
As man becomes more certain of his control of
physical things, an ever more important part of his work is
the manipulation of symbols he vses to describe and control
these physical thlng The fi~1d of waveform manipulation
or signal processing as in radio, radar, sonar, seismology
etec., is one of th= koystons 5f scisnce and f :chnology. The
technigues and applications of this fi«ld are as cld as
Newton znd Gausc and as new as digital computer and into-

grated circuits.

During the docads of 1960-70, it becamz practical
to represant 1nformatlvn—b¢ar¢h waveforms digitally and td
do signal pfocrssing on the digival represcntation of the
waveform., - Tha av?ilability nf high spesd digital computors
fosterad tho developmant of increasingly complax and sophis-
ticated signal processing algorithms. Tho significant breaak
through in the area of imtégrat@d circult tecinclogy promise
cconomical dimpl.mentations of vory complex digital signal
processing systoms.

Fig. (0.1) illustratos one vicw of how the field
has cmorged and spread cut. Digital filteoring ic one of the
’major subdiviéions of Digital signal prccassing. Digital

filtering pruccsslng algorithns Lave boen used priwarily in
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computer simulation, sampled data analysis and data
reduction computations. . With the increasing sxteosive
application of digitael preoczssors to many systoms, more and
more importance is place ¢n tho development of matnematical
toéls for ite analysic and doasign. The !'Z-trunsform' resuli

~

in considerable simplification and understanding. The work
of Kaiscr, the first major contxibution to the field of
Digital sig:al procossing, showzd hcew nuch of the well-
developed theory of the design of filters made of resistors,

capacitors and irnductors could be transiated, with the aid

of the Z-transform intc straightforward digital filter tech-

-
.&

nigques. At about tho sama time tremsndous impetus was given

to this wmorging field by tho Cooleoy-Tuksy (1965) paper on

o

a fast method of computing the discrete Fouriar trans form,
method that was subscquently popularized and axtonded via.
many papirs in tha IEEE Transacticns of the Group on Audio
and Electroacoustics and other journals. A% this timo,

the development of a formal and quite comprchensive theory of

digital filters was well under way.

Perhaps the mﬁst interszsting aspect ¢f the develop-
ment of the fiald of Dlﬁltal signal procaessing is the
changing relationship betwscn the roles of FIR (finite
impulsc response) and IIR (infinitc impulsc response)

digital filtors., Initially Kaiser analysed FIR filters
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using window functions, which indicated that IIR filters
were more efficiont than FIR filters. Howsver, Stéckham's
work on thd FFT method of performing conveluticn, or mcre
specifically FIR digitsl filtering, indicated that imple-
aentation.of hiéh—order FIR filters could be made sxtromely
computationally efficicnt; thus comvarisons batween FIR
and IIR filters arc ﬁc lenger strongly viased towards the
latter. These results alse inspired significant rasearch for

officiont design for FIR filters,

Th: Digital fiitex implencntation till now was confined
primarily to computor programs for simulation work c¢r for
processing relatively small amcucts of data. However, ﬁiﬁh
the -rapid dev.lopment of intagraﬁed circulit tvachnology and
ospocially the potentis fof largc-seal —intograiion (LSI)
of digital circuits made many of the Digital filters more
attractive from the standpoint of cost, sigze and exivemwe

reliability.

The design of high spaed multipliors was of prime
concern to many hardwarc and softwarc impl.mentaticne of signal
procussing algorithms, Standard ITL componcnts gave suffi-
ciznt spced to allow an cffective fiiter to be implementod.
Intograted circuits such as tho Advanced Micro Devices

AM25 LS14 2's complenment multiplicr was ictroduccd speci-

fically for signal processing spplications. FPeled and Liu



used somiconductor membrics for the purposse of fast
multiplicaticn, and rosultcd in significant saving in the

ccst and power consumpticn.

The Digiv filter may be rbgarded as a special purposs
computor buils from an 'off-the skelf' logic family, The
design depends upon the sampling rate and floxibility
riquireds For simple sections a spocial purposc hardwork
filter will be more efficient than a general purpose micro-
proccssor, Instruction sots allow grestor floxdibility. The
suitable microprocessor selected depends upon the particular

application., Digital filters for different purposes have

673

boen implementad making uso of 8 bit, 16 bit micruprocesscr

Much credit here goes ¢ hogle & Nelson.For most applications
16-bit accuracy is sufficicnt o aveid qud. tizaticn probliomg
with filtors of mcodorats ordor (n§f10). It has baoca soen
that with Intel 8086 (and othcor 16 bit microproenssors
preosently available) a significant improvement cver tho
sampling rates cen be ackhicved as ccnparad with the proviocus

generation of micropreocessors, without significant increasc

in systom cost.

O.2 QUILINE OF THE PRESENT WCRK

Chapter I discusses the general Transfer function

and the various techniques for realizing a Digital filter.
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Four Diract ssructures hgve baon dzrived and it is in

.
-

on> of these structurss that a Digital filtexr is usually
implamentad,

The salient features of Intel 8086 microprocsssor
which is s:leccted for our purpose has been carried out in
considerable detail in Chaptex II., 8086 mioropr@cagsor
is a totally new dssign, than any microprocsssor pravious
offered by the Intel group and has a powsrful set of
instructicas. Memory o memory string op=rations,

hardvized mulbiplicaticn and division, and flexible address-

ing modes are some of the significant operatiouns.

Referring to Lalser's work a sscond order structure
is best suited for implzmenting higher osrdexr filtvers.
Chapter IIL oresents the iwplementation of a sscond ordar
1D module. A flow cnart and a maln program in 8086 assembly
language and tre various subrautineé with explanations 1s
given., 4 K'ta order cascaded filter has been diécussgd.
i1s0 a 4th order parailel filter has been given as an
example. Uss of 1D éecond order module subroutine is made

in tho programs.

Chapter IV discusses the other types of structures
used for realization of Digital filters. The sequence of
study here is the derivation of the necsssary equavions,

algorithm and the flow chart programs in 8086 Assembly



language. A second order module is considered jn each

of the five cases viz. 2D, 3D, 4D, 1X, 2%,

The dissertation concludcs with the summary of
the work done alongwith suggestions for future study and

development.

L



CHAPTER -~ I
TRANSFER FUNCTION AND REALIZATIONSOF A DIGITAL FIITER

1.1 INTRODUCTION

A major subdivisicn of Digital Signai Processing is
Digital filtering ~ a computationsal algorithm performed dn
a samplad input.signal resulting in a transformasd output
signal. Digital filtering processing algorithms nava been
used in computver simulation, sampled data analysis amd data
reduction computaiticns. Kaisaor 6 shdws that the Z-Transform
results in considerable simplification and undsrstanding of
problems associated with sampled data system. In this
chapter the Transfor function of a Digital filter and its
pictcrial representations ars discussed. Also, the various

types of realizations of a Digital filter are studied.

1.2 2-TRANSFER FUKCTION

In Lincar continucus (4nalog) filter theocry, linear
differential équation ié one 0f the mathematical toois
available to dascribe the Transfer function. Similarly, in
lincar Digitél (Sampled) filtor thecory the linvar differehce
oquation is available as a mathemabtical tool for analygis and.
synthecsis. ‘

The linear difference équétion 7 defines the sémpled

output pulse amplitude as a function of the present input

pulse and any number c¢f past input and output pulses. A



general form of the difference equation is

N N
Y(n) = £ 4,.%(nT - 1T) - £ B..7(nT - 4T) ... (1.1)
i=0 -~ ' i=1
where X(nT) represents the present input samples and X(iT)
are the past input samples. Similarly, Y(nT) and Y(iT) are

present output samples and pasf output samples respectively.

i
response of the filter,

“Ai and B, coefficiasntg are constants uwhich determine the

The Z-Transform 193457 of the above mentioned general

difference equation (1.1) is 3

N : | M . o
(z) = X(2). $ 4.2 - ¥(z). £B,.2 7 ... (1.2)
: i=0 i=0

This equation is iﬁtérprated as : the present cutput is
dependent on tho present and past ihpufé, cach multiplied by
the respectiﬁe coéfficients Ai and th¢ past output cach multi-
plied by the respective coefficient B;. BEquation (1.2) is |
represented in the Transfer funcﬁion form as ¢

N

-i
Y(2) § Byl |
D(z) = ‘ = =0 (1.3)
ECES A ul T - O
- ; 1+ $B,.70
i=1

Equation (1.3) is the Transfer function representation of a
Recursive type of Digital filters. Appendix-I1 gives the

classification of Digital filters.
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In order to represent Digital filters in th= form of
a block diagram, the purpeose of which ls to graphically
depict the way in which a parsicular gystem is rcaliged,

the terminology 498 ghown in Pig. (1,1) 4i& recommendad,
A first order differencs eQuatién is ¢
Y(ul) = 4 oX(nT) + 4y K(nT - T) w B, ¥(nT = 1) v (1.4)

g-fransform of equation (1.4) is

T(z) = & X(2) + 4227 X(2) - B,.77 . ¥(2) ... (1.5)
henee, (. b+ A1.Z_1
D(Z) = X Z = _1 .09 (1.6)
1+ B1.

4 seccnd order difference oguation is ropresented as ¢

Y(nT) = A, X(nT) + A X(nT m) + A,.X(nT - 2T)

Y(nl 1) - B .Y(nT Sny L D)

7=-transform of equation'(1.7) is s

¥(z) = 4 .X(2) + Aigz‘1.X(z) + AZ.Z”Z.X(z)
—B1 Y(7) - -9 2,‘.YP(Z) L B (1.8)
hence, ’
A 4 Aol 4 AneZ
Dz) = ~gpK- = 2 e .. (1.9)
1 +By.Z +ByZ™

Fig. (1.2) represents the block diagram representation of

the above derived genwral first and second order Digital

transfer functions of zsquations (1.6) and (1.9) racspectively.



N ,
x{r? o LI PR x.n)t yin)

- - e -
.. d L +
UN'T CE! AY + ADDER/
“ SUBTRACTOR
iy(f*)
x(a) 2 4 a, ai{n; ’
o — - —a
MU.TIPLIER
FiG 11 BASIC Bufll O NG Bl 3CKS

' <
e - — 4 O -

oo A —_—
e

iz, ' ) y.Z:
— g B
I
|
l~— - Bl J
4
(9} FIRST CRDRFR MPLIMENTATON
—. g -A - A
r /
' — Ay
| ;
i |
P 4 l ) ‘ 1 | 7.
- - Z, r._#ﬁ 2 l,___’. Hy,- - R

<. |

3 e

_\\J
(b) SECCNC CORDER IMPLIMENTATION

FIG 12 IMPL MENTATION OF DIGITA. FILTERS




10

1.3 FILTER REALIZATION TECGINIQUES

This section gives the signal flow diagrams for
Digital filter Transfer funciion in temms of the Digital
filter elements namely, the adder, muitiplier and the delay.
These diagrams are kncwn as realization structures 4,5,8
because it is in one of these forms that the practical
realization is usually éarried out. These different struc-
tures are classified inﬁo.canonic and non-canonic realiza-
tions. By the term canonic realigzaticn 2y9 it is meant that
the number of delay elemsnts employed is precisely aqual tq
the order of Transfer function (i.2. the highest dogree

between the numerator and denominator polvnomials). The

realization tochniques include the following forms

(1) Direct form (a) Direct form (canonical)
(b) Direct form (non-canonical)
(2) Cascade or Series Canonic form |
(3) Parallel Cancnic form
1+3-1 DIRECT FORM REALIZATION'
This form includes all those Digital filters in which
the real coefficients A, and B, of equation (1.3) appear as
multipliers in the block diagram implementation. The follow-

ing sections describe four types of direcect structures.
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1.3 -~ 1.1 PIRST DIREQT STRUCTURE (1D)

From equation (1. 3)

N,
igé AT |
D(Z) = -—-N -i o0 0 "o
- Bi.Z
1%
where, B, = 1 and X = Na

Introducing intermediate variable M(z)

Dz) = X(z I‘T%—} ;C%fj%‘ =

Equating nurmeérator and dencminator separately

N - N
el _ € 4 .71 and %%3% - % w7t
M Z i:O i M 74 i=0 1

" .

. <& -3
T(2) = 2. 4.7 (M 2) e ..
1=0

N
Xz) = 2. Bi.z‘l.m(z) ... -

i=0
N -i
or M(z) = X(z) - X Bi.Z .M(z)" .o
- i=1
In the time domain equaticns (1.15) and (1.13) become
N
m(k) = x(k) - < B,.n(k-i) cos
i=g 1
. g
y(k) = 2, Aiom(k-i) LR [ IR 1

i=0

(1.10)

(1.11)

(1.12)

(1.13)
(1.14)

(1f15)

(1.16)

(1.17)
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Equations (1.16) and (1.17) define the first Direct
structure 1D and is shown in Fig. (1.3). This structure is
canonical becausz it possessces only N time delay elements, the
minimum number for the N'th order Transfer function of gqua-

tion (1.10).

1.3 - 1.2 SECOND DIRECT STRUCTURE (2L)
2D rcalization of Digital filter makes use of the
principle of transposition 4“11. Appendix-II, explains the
transpose principls. Tha tfanspose of a Digital filtsr
structure is accomplished by reversing tho signel flow in all
branches of the block diagram but lcaving their transmittances

the same. The transpose of a filter strucbure has the same
Transfer function as the original structure.

The 2D structure represonted in Fig, (1.4) is the
transpose of 1D structure. It implements equation (1.10) but
requires (n + 1) difference equations (Summing Junctions).

Tha 2D structure differcnce equations are of the form :

(k=1) + &, .x(k) - B..y(k); i=1, N-1 ...  (1.18)

pi(k) = P31
pp(l) = Apx(k) - By.y() L (1.19)
y{k) = A .x(k) + p,(k=-1) oo (1.20)

This structurc is also canonical bacause it possasses
only N time~delay elements, the minimum numbsr required for

an N'th order Transfar function of aquation (1.10).
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1.3 - 1.3 THIRD DIRECT STRUCIURE (3D)

Rewriting equation (1.10)

) .
‘ 5 ca.0t
S i )
Dz = -zl .10 : cee (1.21)
x(z) 3 g .71
P i
i=0
o -1 ! -3
or 5 B,.7.¥(z) = F A7 .K(z) ... (1.22)
iz $20 :
) N 5 L -4
or Y(z) :‘46 A7 " K(z) —21 B..z -.1(z) ... (1.23)
P =

In the time domain, equation (1.23) bvecomes
N N

y(k) = i Ai.X(k-i) bt é Bi-y\k"i) o e ® s« (1024‘)
i=0 | i=1

Equation (1.24) is the difrerence equa*tion for ths 3D
m
Direct structure, which is block diagramgd in Fig. (1.5).
This structure has only one summing junction, but has 2N

time delay elements, hence, a noncanonical form.

1.3 - 1.4 FQURTH DIRECT STRUCTURE (4D)

The 4D Direct structure¢ is the transpose of 3D struc-~
ture and is shown in Fig. (1.6). This structure has only one
signal distribution point, but has 2N differencs equations,

expressaed as focllows :

ro(k) = x(k) + r (k- 1) (1.25)
aylk) = Ag.r (k) . | (1.26)
r (k) = -B .r (k) (1.27)
N ¥y o
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qi(k) = A .x (k) + qq 44 (B=1) :i=1, N1 ... (1.28)

ri(k) = -Bi.ro(k) +r, ,(k=-1) | eeo (1.29)

i+
A comparison of the various characteristics of ths four

Direct structurss discussed in Section 1.3-1 is summarigzed in

TABIJE - 1010

TABLE - 1.1

g PROPERTIES OF DIRECT STRUCTURES

CHARACTERISTICS 1D 2D 3D 4D
Tim= Delay Elements N N 2N 2N
Multipliers T 2K+ 2u+) 2N+1  2N+1
Summing Junctions ' 2 N+ 1 2N
Signal Distribution Points  N+1 2 - 2N 1

As will be sxplained in & 1atef‘chapter second order
Digital filter is the basic building block for realizing any
N'th order Digital filter. Tha Transfer function of cguation
(1.10) can be implemented making usc of these four structures.
Fig. (1.7) illustrates the 1D, 2D, 3D and 4D structurcs for

sccond order moduloes.

1.3-2 CASCADE FORM REALI ZATION

The Cascade or Series canonic form structure for
Digital filter is implementod from the Transfor function of

cquation (1.10), writtsn as a product of factors.
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N
D(Z) = * Fii(Z) o s ) 2 00 (1.30)
i=1
whire, -1
A . + A1i.Z
B (z) = 9 = for firet order..(1.31)
1+ By -2
-1 , -2
A . + 4, ..7 + AneZ '
or Hi(z) = 5 1Ln1 2*“2 for second
I+ By L + By order ... (1.32)

The configuration is shown in Fig. (1.8). It ccnsists
of a series of lower ordsr filtsrs connected in cascade, The
individual second order or first order equations are generally_
realized in one of the Direct forms. Fig. (1.9) illustratszs
the use of the Direct struétures in cascade. Equations
derived for the cascadced shtructures is sameé as that derived
for the Direct fomm structures, These structures arg compared
in TABLE - 1.2.

TLBLE - 1.2
PROPERTIES OF CaSCADED STRUCTURES

CHARACTERISTIC 1D 2D 3D 4D
Time Delay Elements oN oN D42 2N42
Multipliers , | 5N 5N SN 5N
Summing junctions | N+1 3N N 3N +1

Signal Distributing Points 3N N41 3N+1 N
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1.3-3 PARALLEL FORM REALI ZaTTOMN

The Parallel Canonic form stiructure for Digital
filter is implement2d by expanding the sequation (1.10) in

partial fraction form as

N,
Nz) = B, + . E(2) (1.33)
i=1 :
here :
w ! A .A‘I .,-9Z_1
H.(z) = SRS = —~ for first
1 1 +B,.7 order vee  (1.34)
R4 A1 L &2.,~‘2
or H,(z) = =2 = = J‘w_z for second
-1 1 + B ..Z +B ..7 order ... (1.35)

This configuration is shown in Pig. (1.10) and

consists of a group of lower oxder filters each operating

on the input signal with the dutput parallsl bank summeqd .
up together. The individual sscond order or first order
\8actions can be realized in onc of the diract forms., If

the Diract structures arc used some clement sharing may be
accomplished as was done iﬁ?@iscada case. Fig. (1.11) shows
the direct parallel structﬁr@ and TABLE - 1.3 compares their

characteristics. Equations for the parallal structure is

same as that derived for Dircet form struechture e
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TABLE - 1.3
PROPERTIES OF PARALLEL STRUCTURE

CHARACTERISTIC - - 1D 2D 3D 4D

Time Delay Elements 2N 2N 2N+1 2N+1
Multiplicrs AN+1  4N+1  4N4+1 4N+
Summing Junctions N+1 2N+1 N+1 2N+3

Signal Distributing Points 2N+1 H+1  2N+3 N+1

1.4 SUMMARY

The Z~-Transform calculus is the mathematical basis
for the analysis and design of Digital filtsrs. Such Digital”
filters are best understood by cmphasizing the relations
between the difference equations, the block diagram and
fii;er response function. Various realization types have
been discussed and the genceral cquations involved, derived.
Also, a comparison of the different characteristié present
in each structure is made. The second order Digital filter,

a basic moduwle for realization of a W'th order structure,

will be discussed in later chapters..
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CHAPTER -~ II

SALIENT FEATURES OF INTEL 8086 MICROPROCESSOR

2.1 LNTRODUCTION

Intel'introduced its first microprocessor in November
1971. This was fcllowed with the delivery of 8008 in 1972,
the 8080 in 1974, the 8085 in 1976 and 8086 in 1978. Each
successive product implementation depended on fabrication
innovationé, sophisticated software, and throughout this
development upward com%tibility not envisioned by the first

designer was maintained.

The sélection of a suitable microprocessor 13 depends
primarily on the particular application. Since the character-
istics of the various processors are quite differsnt, a
number of factors must be considered in making a good choice.
The selection process involves investigating the softwars,
hardware and system degign of the microprocessor. j

In this chapter the salient features of Intel 8086
microprocessor are discussed. The various microprocessor

of the Intel group have been compared in Appendix -III for

the selection of this suitable microprocessors

2.2 SALIENT FEATURES OF MICROPROCESSOR 8086

2 .
Intel 8086 <0221922 4 ntroquced in June 1978 is the
first of the high performance generation of 16 bit micro-

processors. It is implam=nted in N channel depletion load,
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silicon gate technology (HMOS) and packaged in a 40 pin Cer.
DIP package. Tha 8086 is able to directly address one mega-
bytes (1024 K bytes) of sxternal memory. The detailed pin out

of the 8086 is shown in Fig. (2.1).

2.2-1 FUNCTIONAL PIN DESCRIPTION

(B AD15 - ADO : 2 - 16, 39, (I/0) Address Data Bus
Time multiplexed memory / I0 address (T1) and data

or T30 T T4) bus,

2. A19/D6 - A16/SB : 35~ 38, (OUT) Address / Status

During T1,used as address lines for memory operations.

o9 T3’ Tﬁ and T4 status

information is available on these lines. S3 and 84 indicate
N . " ’ " - , ! . .

which of the segment (relocation) register is used .(to cons-

Lines LOW during I1I/0 operation. In T

truct the physical addreds used in the bus cycla);a“SS;'n
reflects the statz of the interrupt enable flag. S6 is

always LOW.

54 53 .
0 0  Extra Segment (Alternate Data)
0 1 Stack Segment
1 0 Code Segment or nong
’ 1 1 Data Segment

3. BHE/S7 : 34, (OUT) Bus High Bnable / Status
During T1 the Bus high @nable signal (BHE) is used to

engble data on the most significant half of data bus
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(pin Dyg - D8). S, is a spare status line whose contents

are undefined.

4. MN/MX s+ 33, (IN) Minimum / Maximum modé
Indicates the system configuration. When this pin is
grounded the 8086 treats pins 24 through 31 in maximum mode,

when it is strapped to 5V it acts in.the minimum mode.

~

5. RD : 32, (OUT) Ruad

Indicates that procéssor is pgrforming a memory or L/O
read cyclca,

6. TEST : 23 , (IN) Tasu

TEST input examincd by the WAIT (wait for TEST) instruc-
tion. If the signal geas LOW exccution continues, otherwise

L]

the processor waits in the 'Idle' state.

7. RESET : 21 , (IN) Resst

Causes the processor to immediately terminats its
present activity and starts exscution from FRFFO (H).

8, CLK : 19 , (IN) Clock

Provides basic timing for the processor and bus
controller,

9. INTR : 18 , (IN) Interrupt Request

t is a single interrupt request line which can be

ma:ged internally by softwara with the resetting of the

Interrupt enablc flag status bit. During th: interrupt

~
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response sequencs further interrupts ar:e disabled. A
single byte is then expected from interrupting device which
is nultiplied by 4 and gives the address of service routine

pointer stored from 00000 (H) to OO3FF (H).

10, MNMI : 17 , (IN) Nonmaskable interrupt
Is a single nonmaskable interrupt which has a
higher priority than the maskable interrupt request pin and
causcs a type 2 intersupt.
11, GND ; 1, 20 Ground pin
12. VCC : 40 + 5V + 10, %
Pin functions whidch arz unique in the minimum mode
ars defined below.
(1) INTA 24, (OUT) Interrupt Acknowledge
Is used as a read strobc for interrupt acknowiedge
cycle. It is active LOW in Té, T3 and TW states.
(2) ALE :+ 25, (OUT) Address Latch Enable
Is provided to latch the address intc the 8282/8283
address latch.
(3) DEN : 26, (OUT) Data nable
Is provided as an output snable for thes data bus
!
transceiver.
(4) Dr/R : 27, (OUT) Data Transmit/Receive

This is needed in minimunm mode systzm that desires
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to use a data bus transceiver. It is used to control the

direction of data flow through the transciever.

5. M/I0 : 28, (OUT) Status line
Is used to distinguish a memory access from an I/0
access, HIGH, on this line indicates a memory operation and

a LOW indicates an I/0 operation.

6« WR ¢ 29 , (OUT) Write
Indicates that the processor is performing a write
memory or write I/0 cycle, deépending on the state of the

M/I0 signal. ' ,

7. HOLD and HLDA 31, 30 (I/0)

Indicates that another master is requesting to take
control of the address andvdata bus. To be acknowledged,
. HOLD must ve active HIGH. The processor receiving the ‘'hold’
request will issue HLDA (HIGH) as an acknowledgement. When
HOLD goss LOW,lthe Processor will LOWer HLDA and the processor

start on its next cycle.

When the 8086 is in tlie maximum mode the functions

unique to it are described below.
1. QS1, QSO s 24, 25, (0UT) GQueue Status

QueVe status valid during the (LK cycle after which
the queue operation is performed. These provide status to

allow external ?racking oI internal 8086 inst . qu2ue.
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Wy &
4] 0 No operation
0 1 Pirst Byte of Opcode from queue
1 0 Empty the gqueue
1 1 | Subsequent byte from gueue
2, 3,, 8, 8,1 26 - 28, (OUT) Status

Status is used by the 8288 Bus Controller to generate
all memory and I/0 access control signals. These status

lines are encoded as

'§2 > §o

0 0 0 Interrupt Acznowlédge
0 0 1 Read I/0 Port

0 1 0 Write 1/0 Pors

0 1 1 Hal'

1 0 0 Code Access

1 0 1 Read Memory

1 1 -0 Write Memory

1 1 1 Passive

5. LOCK : 29, (OUT) Lock

It indicates that other system bus masters are not
to gain control of the system bus while I0CK is active LOW.
I+ is activated by the 'LOCK' prefix inst . and remains

active until the completion of next instructica.
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4. RQ / ETO,' RO / €T1 30, 31, (OUT) Request/Grant.
These are used by locasl bus masters to force the
processor to release the loecal bus at the end of the pro-
cessor's curraent bus'cycle. Bach pin is bidirectional with

RG / @TO having higher priority than RQ / 5@1.

2.2-2 REGISTER ORGANT 7ATION

The 8086 procsssor contains a total of thirtsen 16-bit
registers and nine 1-bit flags. The set of registers Fig. (2.2)

can be divided into th= following four groups.

General Registers ~ Therz ars four 16-bit general

registers which can be ussd as sither 8- or 16— bit registers.
The duwal naturs of thsse registers permits them to handle both
byte and word quantities with squal eass. They are Accumu-
lator (AX), Base (BX), Count (CX) and Data (DX). The X can

be replaced by H or I for rzferring to high or low ordar

byte respectively.

The AX regisier is used in arithmetic operations to
hold one of the two oprrands. The BXY register can be uéed
to hold an offs=t address for computing the sffective
address (EA) of an instruction operand. The CX and ILX
registérs arc used for spscific purposas (dedicated general
registers). Thes2 may be used as scratch pad during the
evaluation of exprassions or for holding the shift count in

gsome shift and roitate instructions.
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Pdinter and Indsx Registoers ~ This group consists

of the 16-bit registers Stéckpointer (SP), Bas: pointer (BP)
Source Index (SI) and Dostination Index (DI). Thasa
rogisters usually contain offset addresseg for addressing
within a ssgmont. Thayuraduc@ the size of programs by not
requiring each instruction to specify frequently used .
addresses. Another important function is that they provids
for dynamic effectivi-address computations. In order to
accomplish this th2 poinier and index registers participétes
in arithmetic and logical operations alongwith 16~bit

general registers.

Sagmaent Roeigterg - This group consists of four

16-bit registers Codsz Segment (C3), Data Sazgnent (DS),
Stack Segmant (S8) and Extra Segment (ES). Bach ssgment
can be at most 64K bybes in sige. A segment can begin

from any location in ths meamory that is divisible by 16.

The segment registerc ar« used for calculastion of
physiéal address (PA). 41l instruction friches are takm
from fhe current code ssgmsnt (CS) using ﬁhe offset speocified
in thé instmction pointer (IP) ragister. Thz (SS) reéister
points to the current stack segmant; stack operations are
performsd on locations in this segment. The (DS) points to
current data segment and gensrally contains program  variables.

The ES contents define ths current extra s2gment, it has no
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specific use although it is usually treated as an additional

data segment.

Instruction Pointer and Flag Registers - The 16-bit

instruction pointer (IF) (analogous to tﬁe program counter
in the 8080/8085), is not dirsctly accessible to the programmer;
it is manipulated with control transfer instructions. ‘Thare
are ninc 1-bit flags; six of these (Carry (CF), Parity (PF),
Auxillary carry (AF), Zero (ZF), Sign (SF) and gverflow (OF)
flags record processor status information of the latest
arithmetic and logical cperation and the additional three
flags Direction (DF), Intsrrupt (IF) and Trap (TF) control

processor operations,

2.2-3 MEMORY ORGANT ZATTON

The 8086 can address up to 1 Megabyte or 512 K words
of memory directly. Logically the memory is organized as a
sequence of 220 bytes but physically it is organized in two
banks each of 512 K bytes Fig. (2.3). One bank is conunected
to the lower half of tho sixtesn-bit data bus (Dg - D) and
contains even addr%aéad bytes. The other bank is connected
to the upper half of the data bus (D15 - D8) and containsg odad
addressed bytes. A spacific byte within each bank is selected

by address lines 4 - A The nmost significant address bit

1 1°
AO(ADO) and the output signal BHE are used to select

O

appropriate bytes to be read from or written into the memory.
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.

TABLE - 2.1 describes the use of BAE and AO combination.

TABLE - 2.1
BHE A
C 0 Cne 16 bit word
0 1 One byte from / to aedd address
1 0 | One type from / 4o even address
1 1 None

Organization of N bytes of memory is shown in Fig. (2.4).

The low bank consists of only even-address bytes and the high

bank consists of only odd-address bytes.

(1) 4 word is %o bz fetched from an even byte location.
For this BLE AO =00 ; low byte of word falling on even-

address byte and high byte on add-address byte.

(2) 4 word is to be fetched from odd-address. This
shall require two machine cycles. In the first, odd byte
shall be read and in the next machine cycle the even bvyte
shall be read.

(3) 4 bybte is to be fotched from sven-address location.
For this BHE A =1 0 and data shall be transferred on

DO - D7 lines.
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(4) A byte is to be fetched from odd-address.
For this BHE Aq = 0 1 and data shall be transferred on

The memory can be further logically divided into code,
data, alternate data and stack segments of upto 64 K bytes
each, with each segment falling on 16 byte boundary

(Fig, 2.5).

Certain memory locations are reserved for specific
processor operations. Locations 00000 (H) through OO03FE (H)
are, reserved for interrupt cperations. Each of the 256
possible interrupts.have thair ser¥ice routine pointed by
a.4-byte'pointer element. Following RESET, the processor
will jump to FFFFO (H).  FFFFO (H) through FFFFR(H) are
reserved for operation including a jump to the initial

pfogram loading routine (Fiz. 2.6).

It is useful to think of every memory location as
having two kinds of addresses, physicel and logical. 4
physical address is the 20-bit value that uniquely identifies
each bybe location in the megabyte memory space. Physical
“address may range from O(H) through FFFFF (H). All exchanges
between the CPU and wmemory componsnts use this physical

addrass.

Programs deal with logical, rather than bhysical

addresses and allow cods to be developed without prior -
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knowledge of whore the code is to be located ih memery. A
logical address consists of a segment base value and an cffset
value. PFor any given memory location, the segment base value
locates the first byte of thas containing segment and the
offset value is the distance, in bytes, of the target locaticn
from the beginning of the ssgment. Segment base and of fsut
values are . unsigned 16-bit guantities. Many different

logical addresses can map to the sams physical location.

A physical address is generated from a logical
address by shifting the segment bvase value four bit
pocsitions and adding the offset. Calculation of the offsat
of a memofy variable is based on the addressing mode specified
in the instruction; the‘result is callad.the operand's

effective address (EA).

2.2+~4 ADDRESSING MODES

Following are the different ways of calculating

effective address (EA) and are shown in Fig. (2.7).

Direct Addrescing - It is the sinplest meméry address-—
ing mode. No registers are invalved; the BA is taken
directly from the displzcement field of.the instruction.
Direct addressing is used to access simple variables. The

EA is added to the DS segment 10 get the physical address.

(EA) = DISP

(PA) (DS) * 16 + DISP

1l
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Example ¢ The instruction MOV AX , VALUE
specifies that the contents of VALUE are to be moved to
16-bit accumulator. Let address associated with VALUE be
021(H), then the physical address from which the low data
byte will'be fetched is

1000(H) * 16 + 021(H)

1]

10000(H) + 021(H) = 10021(H)

i

The high byte will be fetchesd from the physical address

10022(H).

Based Addressing -~ Here the effective addresss is the

sum of a displacement value and thz content of register BX

or BP. If BP is specified as a base register, the BIU is
difected to obtain the operand from the curront siack segment.
This makes based addressing a vary convenisant way to access

-

stack data.

Based addressing provides a straightforward way to
address structures which may be located at different placses
in memory. A base register can b2 pointed at the bvase of
the structure and elements of the structure dddressed by
their displacements from the bass. Different copies of the
samne structure can be accessed by simply changing the base

register,
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(EA)

(BX/BP) + DISP

for BX , (P4) (DS) * 16 + (BX) + DISP

for BP , (Pa) = (S8) * 16 + (BP) + DISP

Example ; The instruction MUL BETA (BX) implies
that the contents of AX are to bas multiplied by the contants
of (EA). The (Ei) is computed as DISP + (BX) where DISP is the

16 bit address of BETA. The 32 bit product will be placed in

registers DX (high word) and 4% (low word).

‘Indexed addressing - The effective address is calcula-

ted from ths sum of a displacement plus content of an index
register (SI or DI, SP or BP)., Indexed addressing often is
used to access elements in an array. slso it is assumed that
the operand resides in the current data segment and hence DS

register is used for computing physical addruss.

(E4) (IX) + DIS?P

T

(Pa)y = (DS) * 16 + (IX) + DI3P

Based Index (Indirect) sddressing - This addressing
generates an effective addrzss that is the sum of a base
register, an index register and a displacsmant. 'Based index
addressing is a very flexible mode because two address compo-
nents can be varied at cxecution time. It provides a
convenient way for a proccdure to address an array allocated
on a stack., Arrays containzd in structures and matrices

(two dimensional arrays) also could be accessed with based
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index addressing.

(Ex) = (BL/BP) + (IX) + DISP

(P4) = (BX) + (IX) + DISP + (DS) * 16

(P4) = (BP) + (IX) + DISP + (S5) * 16

String sddressing - String instructions do not use

the normal memory addressing modes to access their opcrands.
Instead, the index registefs are uséd implicitly, when a
string instruction is exccuted, SI is assumed to point to tha
first byte or word of the scurce string, and DI is assunmed

to point to the first byte or word of the destination string.
In a repeated string operation the CPU automatically adjust

SI and DI to obtain subsequent bytes or words.

I/0 Port Addregsing - If an I/0 port is memory mapped,

any of the memory operand addressing modes may bz used to
access the port. String instructions alsc can be used to
transfer data to memory-mapped ports with appropriate hardware

interfac:.

Two different addressing modes can b2 used to ascess
ports located in the I/C spacw. In direct port addressing,
the port number is an 8 bit immediate operand. This allows
fixed access to ports numbered 0-255. Indirect port address-
ing is similar to reéister indirect addressing of memory
operands. The port number is taken from register DX and

can range from O to 65,535.
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2.2-5 INSTRUCTION SET

The 8086 instruction set is divided in six groups

(1) Data Transfer (4) String Manipulation
(2) Arithmetic (5) Control Transfer
(3) Bit Manipulation (6) Processor Control

These instructions treat different type of operands
uniformly. Nearly every instruchtion can operate on sither
byté or word data. Register, memory and immediate dperands
may be specifiéd- interghangeably in most instructions. The
-inétruction‘éet can be viewad as existing at two levels; the
éssembly.level and the machine lavel. :Thesa éwo lavels
addreés two different requirements; efficiency'and;siﬁﬁlicity
The numerous forms of machine level instrucﬁions allow these
instructions to make verj efficient use of storage. The
assembly-level instructions simplify the programmer's view

of the instruction set.

To pack instructions into memory as densely as possibie
the 8086 CPU utilizes an sfficient coding technigues.
Machine instructions vary from one to gix bytes in length.
One byte instfuotions, which gensrally operats on single
registers or flags, ars simple to identify. The key
to decoding longer instructions are in the first two bytes.
The format of these byﬁss can vary, but most instructions

follow the format shown in Pig. (2.8).
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The first six bits of a multibyte instruction generally

contain an opcode that identifies the basic instruction‘type
ADD, XOR, etc. The following bit, called the D field,

o

generally specifies the 'direction' of the operation :

1 the REG field in the 2nd  byte identifiszs the

i

dastination oporand.
O = .the REG ficld identifiss ths source operand

The w field distinguishos between byte and word operations

0 = byte L. 1 = word

’

One of the threc additional single bib ficlds, 3,
v or’Z'appears in some¢ instruction formats, 'S is used in
conjuncﬁion with W to indicate sign.ﬁxt:néion of immadiate
fields in arithmetic instructions. V distinguishcs between
sinéle and variable bit shifts and rotates. 2 is used as a
compare bit with the zero flag in conditional repeat and
locp . instructions. All single bit fiéld setbings are

summariz=2d in TABLE 2.2,

, TABLE 2.2
'SINGLE BIT FIELD ENCODING
FIELD VALUE ' FUNCTION
S 0 No sign extension
1 Sign extension 8-bit immediate data to 16-bit
W o) Inst. operates on byte data if w =1
1 Inst. operatzzs on word data
D 0 Inst. source specified in REG field
1 Inst. Destination specified in REG field
v 0 Shift/rotate count is one
1 Shift/rotatz count sprcified in CX register
Z 0 Repeat/Loop while zero flag is clear
1 Repeat/Loop while zero flag is set.
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The second byte usually identifies the instruction's
opefrands. The mode (MOD) fisld indicates whebther ons of the
operands is in memory or whether both operands are registers
TABLE - 2.3. The register (REG) field identifies a registexr
that is onc of the instruction ovperands., TABLE - 2.4.
In a number of instructions, chiafly the immédiaﬁﬁ-to—memory
variety, REG is used as an extension of the opcode to
identify the type of operation. The encoding of the R/M
(registor/memory) fizld inTABLE - 2.5, dep:nds upon how the
mods fisld is set. IFf MOD = 11 (register to-register mode)¢
then_R/M idintifies the sccond rogister operana. 1f MOD
selacts memory modé,'thon R/M indicates how the effective

address of the memoyry operand is t0 be calculated.

Bytes 3 through 6 of an instruction are optional
ficlds that usually contain thz displacement value of a
momory operand and/or thn actual valuc of an immcdiate
constant oporand. Thor may b on? or two displacement
bytes. The< MCD field indicates how many displacenent bytes
ar. pressnt. Following Int<l convention, if the displacement
is twoO bytes the most significaqﬁ byte is stored sccond in
thé instruction. If the displacuament is only a'single byte
the 8086 autcematically sign-ﬁxtcnds this quantity to 16
bits bsfore using the information in furthef address

calculations. Immediate valucs always follow any displaca-



TABLE ~ 2.3

MODE PFIELD ENCODING

CODE EXPLANATION

00 :lemory mod>2, no displacement follows
- (except when R/M is 110)

o1 Memory modz, 8--bit displacemw«nt .
follows

10 . Memory moda, 16.bit displacoment
follows

11 | Registar mode, no displacement

TABLE - 2.4

REGISTER/FIELD ENCODING

- REGISTER W= 0 Wo= 1
000! AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 cH BP
110 IH SI
111 BH DI
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ola + (X4) ea  + (¥Z€) (xq)
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ment valuows that may be proswunt, The sccond byte of a two
byt immodiate value is the most significant.

Soma of tha instructions from the instruction sct

given in Appendix-IV arc 2xplainsd hore with examples.

The Data Transfor Group includaed MOV, PUSH, POP,

XCHG, IN, OUT, LOAD and STORE instructions.

Bxample @ MOV CX, TOFP (BX)
This instruction shall move th: contents of TOP + (BX) to

the X register and will occupy 4 bytes.

w=1, it is a word oparation

a =1, the dostination is a rﬁgiéter
mod- = 10,

DISP = disp. high, disp., low

destination rogister CX = 001

r/m ficld = 111

BA =  (BX) + (TOP) addrsss

PA = DS * 16 + (BX) + (TOP) address

. ] ] | | )
o ooto!ly1 | 10} OOty 11 Disk Disf.
4w ngd dest. V] v
i ey, fiedd
Cx

The Arithmetic Group includes ADD, ADGC, DEC, INC,

MUL, IDIV etc. instructions which can operate on signed and

unsigned numbers.




Gxample : ADI  4X , OCOSF(H)

n

This is an add immediahe tho velus 005F to AKX

. -

registar and ccecuples 4 tytes
Ss W o= 01 16 bits of immediate data from
cperation
mod = 11,

r/m is register Tield

r/m = 000, . cestinavion register (4Xx) = 000
T | '
IC)o<>oo§oh I | ooo !ooo Dato. D@bquNkm
e e e e e . ) !

& 0 mod d@&t

J’leid ‘Y/'m

The Logical Group includes AND, OR, NOT, ROTATE,
SHIFT, TEST instructions
Example 3 oHL ALPHA
The contents of mmoiy loecation ALFHA (14 »i% velue)
s oL ) . e N . \ -
shift by, wherz‘n’is the shift count stored in the CL

register,

It occupies 4 consacutive bytes
V = 1 a8 the shifting is to be done‘n’ times

W= 1 ord operation

=

il

med 00

EA

i

disp. high; disp. low.
r/m = 110
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2N Req,
e — ' - _
Il OF 0o :'E;I 00 E'OOE ) Dise DisP
7 mmode 'y/
Ba%
fretd Jretd

The String Manipulation group is a set of very useful

instruction used for moving blocks of data. MOVS Fig. (2.9 )
i3 a single byts instruction with the least significant bit
'(the w-£131d) specifying whethsr a word or a byte is to be
moved. The sourct is pickod-up from the address specified

in 3I register and thz destination from the address specified
in thc DI rugisters. After transferring tha source byte (s)
to destination, the 8L and DI index rogisters are incremented/
decremented by 1 or 2 depending upon whether W = 0 or 1.

The direction flag DF is usecd to dotormine whether ths index
registor arc 4o bo dscrrmentod (DF = 1 by STD) or incromentod
(DF = O by CLD) aftcr data hee been moved. If a REP (single
byte) instruction pricodes the MOVS instruction the latter

is executced repoititively while the (X registcr remains

non zero. Each time the MOV3 instruction is execut:&, CcX

is decremcnted by 1, and if no% gero, the instruction is
executod again. Four more useful instructions for string

manipulation are CMPS, SCA3, LODS, STOS.



__ L
~
i l — >
I .y

l M (DI) == M(SD)
— el

e

P | A s m y——
—- Dl +2 Dl =~—D!—2 Dl =— DL —1
- = S1 +2 Sl ~== S] -2 Sl ~+- SL —1

Dl =+— DI +1
S =+— SI +1

NE XT INST

FIG 29 STRING MANIPULATION INSTRUCTIONS

RI P
MOV
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Example CLD
REP,
MOVS NEW, OLD

W = 1 ; transfer word.
The words starting from location OLD shall be transferred
to lccations starting from NEW. The REPIat instruction
prezcoding the MOVS shall repeat $111 CX £ O.
For  OLD(EA) = (SI) * 16 + DISE

and NEW(EA) (DI) * 16 + DISP

The Control Transfor zroup compriscs of CALL, RET,
JiP, LOOP, INT instructions.

Exampls 3 LOOP NUMB&ER

Dacrement CX by 1 and transfer to NUMBER if CX £ O.
In this cas2, th2 16 bit displacem:nt is calculated by
oxtending 8 bit displaciment. This is a two byte instruc-
“tion so can only loop + 128 bytes from the present location,
othurwi$a usae JMP.

Ths Processcr Control group has instructions for

carry, direction, and interrupt flags ¢ HALT, WAIT, LOCK
and ESC,
Example @

LOCK .
ADT  NUMBER FBSCUH)
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The bus shall be locked till the end of the instruc-
tion. No external devics shall be able to take cver the

hus till ADI is executed.

2.5 SUMMARY

In this chapter & study of the saliont features of
Inﬁel 8086 micropreccessor has been carried out in considora-
ble detail. This etudy indicates that the CPU of 8086 is
more powerful than any microprocessor previously offerad by
Intel group-8086 is totally a2 new design and has a power sob
of instructions discussed in Appendix - IV. Memory to
memory string operation is available for e«fficient character
data manipulation, henc2 useful for reduciig the compleii-
bility of the program. Tho Various types of addressing mcdes
are useful in soiving mnany problems. The bardwire multipli-
.cation and division <f signed‘and unsignoed binary mumbers are

quite powsrtul instruction S.

In tho next chapter use is made of the 8086 Assembly

language to impliment the Digital filter structure described

¢arlier in Chapter I.
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CHAPTER - III

REALI ZATION OF DIGITAL FILTERS USING SECOND ORDER
1D STRUCIURE A4S BASIC MODULZES

3.1 INTRODUGTION

- Filters have been implemented in hardwired logic,
special purpose computers and general purpose computers. The
high speed 16-bit microcomputers with built in multiplication
hardware has crzated a new option for implementing Digitalfiltev
??iw24s with high sampling rate. In this chapter the Intel
8086 microcomputer is used to implement the individual second

order 1D module. Also the Intel 8086 is used 1o impl@ment

Digital filtcrs by cascaded and paralleled second order module.

3.2 MWHY A SECOND ORDER MODULE

The three basic forms for iaalizing iin=2ar Digital
filtesrs of the Recursive type are the Direct, Cascadc and
Parallel forﬁs. As far as the stability questi.u gcos the twe
-variations of the Direct form Fig. (1.3) and Fig. (1.5) are
entirely equivalent, with ﬁhs cbnfiguration of Fig. (1.3)
regquiring fewsr delaylelém@nts. The stability result derived
indicates clearly that th@.coafficicnt accuracy proeblem will be
by far the moét acute for ths Direct form realigzation. For
any reasonably complex filter with stesp transitions between
.pass and stop.bands the use of Direct foxrm should be avoided.

The choice betwesn fhe utilizatibn cf either theo

cascade or parallel fcrms is not clear cut but depends



X(z) 1 M(z) 1 M(2} Ag y'z) ) viz)
- C—pm — —— —-—---T——,»-——o
1 z" 1
Ty - - — e ———— Ty
~1
8, FALEVIPS) Ay
7! I
)
- - ———— »—-—-—4
B2 272 M(z) Az

FIG 3.1 SIGNAL FLOW DIAGRAM IN Z-DOMAIN OF A
SECOND ORDER RIGITAL FILTER

]
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somavhat on tha initial form of the continuous filter and on
the digitilization scheme 6 used. In any case the denominatoy
of D(z) must be known in factored form. In order to avoid
coefficient sensitivit& problems, the transfer function D(z)
of equation (1.3) is implémentad as a cascade or parallel

combination of second ordar modules.

3.5 SECOND ORDER DIGITAL FILTER - 1D STRUCTURE

Second ordsy Digital filter has the fom

b + A1.z"1 + A2.2“2
D(Z) = ~1 _2 v oe (3.1)
1 +-B1.Z +-B2.Z

and can be reprcsented by any form oxplained in Sccticn 1.3-1
with N = 2 Bg.(1.7). 1In this chapter 1D structure is speci-
fically chosen for explaration and impleomentation using Intal

8086 microprocessor instruction set,.

%e3-1 MATHBMATI CAL DERTVATION
The Transfer function of sccond ordor Digital filter
is given in equation (3.1). Introducing an intermediate

variable M(z)

X
D(Z) - M; . % O e (3.2)

Theraeforc A |
D'II Z L ] Z - —1 -2 e ® *
1 4+ B1.Z + B..7
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‘. I?
Bquating thc neumerator and dcnominator scparately
= A+ AT 4 aTC (3.4)
o) 1 2

Xl z -1 -2 o
and —E%;% 1 +-B1.Z + B2.Z L e (D.?)

From equation (3.4)

K I
N N
|

]

P

v.Z'"2.M( z) v.. (3.6)

7 Ji(g) + A,

Y(z) = AO.M(z) + A,

and from equation (3.5)

M(z) = X(z) - B,oZ ' M(2) & Bouz 2u(z) ... (3.7)

1
Equations (3.6) and (3.7) in %ime domain are
y(k) = ajum(k) + Apom(k=1) + Ayom(k-2) ... (3.8)
m(k) = x(k) - B1.m(l«:-—1) - B,um(k-2) ... (3.9)
Bquations (3.8) and (3.9) clearly show that m(k) is to be

found out before y(k) is calceulatad.

Lot T, = -By.m(k-1) - Byum(k-2) - ... (3.10)

and T, = Aj.m(k-1) + Ayum(k-2) oo (3417
Equations (3.8) and (3.9) becomes
y(k) = Ajem(k) + T, o cese (3312)
n(k) = x(k) + T, , eon (3412)
Bquations (3.6) through (3.13) define first direct structure,
1D, for second order Digital filter.' Pig. (3.1) is the signal

flow diagram in 7 domain for the second order Digital filter

in 1D form, and uses these equations. This signal flow



diagram can be used to implement,
sccond order Digital filter using

dalay elements 4’8.

It is to be noted that the
TZ depend on the previous samples
ted in the interval (K-1)T-. t ¢ KT
KT sampling point.

upon the receipt of input x(k).
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through hardwired logic a

summers, multiplicrs and two

and

intermzdiate variabls T1

and therafore can be evalua-

and shall be available bafove

The outpub (k) may rapidly be calculated

Ze3=2 ALGORITHM FOR IMPLEMENTATION

Equations

(3.6) through (3.

13) can also be used for

obtaining the algorithm for the implementation in a micro-

processor. The informetion can bs grouped as follows ¢
OUTPUT m(k) = x(k) + T, eee (3.13)
y(k) = & .m(k) + T, eer (3.12)
DELAY n(k-2) € m(k-1)
m{k-1) €= m(k)
PRECALCULATIONS T1 = ~B1.m(k~1) ~ Bg.m(k~2) eeo (3410)
%Q__%ﬁj;“fgal T, = 4yem(k-1) + Ag.m'(lc—é) cee (3.011)

It is to be noted that the above algorithm when

implemented gives the maximum sampling rate possible in a

microprocessor.
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3,%3-3 SCRTWARE PROGRAM USING INTEL 8086 INSTRUCTION SET

Thz flcw chart represonting the process of 1D Structure
derived abovée is shown in Fiz. (3.2). Steps involved are

(1) Initializaticn s A/D, D/A converters
and all variables,

(2) Iaput X(k) s From A/D converter.
(3) Compute M@ and Y(k)

(4) Output Y(k) : To D/A convarter.
(5) Perform Tims Delay

(6) Compute T, and T, ; Precalculation of T, & T,.

The Assembly language software progrsm is given in
PROGRaM~3.1. The following salient features of the softwars

program written are to be noted.

1. Input/Cutput are connected through A/D and D/a

converters for Memory Mapped I/0 operations.

2. The value of X(k) is inputed from A/D converter

through CPU initiated Pclled I/0 transfer,

3. The value of tha constants AO, L A2, B1 and 32

are stored as half values. This is explained in detail in

Appendix - V. Thus the VALUE STORED = L' Value' * 214

+ 0.5
where | x | means largest integer smaller than or equal to X,
'Value' in the paranthesis is the value of the constant which

is assum=2d to lie bestwesen -1 and 2.



F INITIALIZE A/p , D/a CONVERTER ]

AND ALL VARIABLES

‘ Ad, AV, A2, T1,T2 j
— T
/’ INPUT (X)

3

\- FROM A/p CONVERTER
‘ COMPUTE v

1 MZ =X+ T
|‘ Y= A ¥ M@ + T2

]

[

oOuTPUT (V)

T0 D/, CONVERTER

— —

PERFORM TIME DELAY 1

M2 <t—— Mi

Ml <— MZ

R \

PREPROCESSING CALCULATIONS
Ty = —( By % My -+ By % M)

Taz Ay ¥ M+ A %M,

S

PROC E SSING
TIME s sTOP

oV ER

FIG.3 2 FLOW CHARTOF SECONC ORCER MOLULE - 1D
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4, This program is written exclusively for second ordey

Digital filter.

Once started it continues to sample input X(k)

at maximum sampling rate and outputs Y(k) immediately there-

after, this continues till the processcr is instructed to stop.

This is done through an input PORT4,

PROGRAM ~ 3.1

FILTER SECOND ORDER 1D STRUCTURE

o

: INITIALI ZATION

CLD
MOV
MOV
LEA
REP
. STOS w

wve

CLEAR M@, M1, M2, T1 AND T2

AX , A ¢ ; CLEAR ACCUMULATOR
CX , # 6 ; STORE 6 * N IN CX REGISTER
B S (1 DI POINTS TOWARDS ADDR LOC M@

STORES CONTENTS OF AX
IN LOCATIONS

Mo we Wo WO wa

INPUT X FROM A/D CONVERTER THROUGH POLLED I/0 TRANSFER

; 4/D CONNECTED FOR MEMORY MAPPED I/0 OPERATION

CONT : MOV

IN-LP : MOV
AND
Jz
MOV

COMPUTE OUTPUT

wo wol wo

OUTP-1D. ¢ 4ADD
MOV
IMUL
SAL
4DD
MOV

PORT?3 , 4X ; ISSUE ST4LRT CONVERSION PULSHE
: TO 4/D CONVERTER

AX , PQRT2 ; REALD 'BUSY' SIGNAL FROM A/D

KX, 8gpg(u)

IN-LP ; WaIT UNTIL READY

AX , PORT1 ; X IS NOW IN 4/D CONVERTER

SAMPLE Y

. NOTE THAT ADJUSTMENTS ARE NECESSARY SINCE CONSTANTS
ARE STORED A4S HALF VALUES

AX , T ; M@ IS NOW IN AX ;we X 4 D7
Mg , AX ; STORE M@ IN ITS LOCATION
A s M@ * A@/2 IN DX, aX

DX , 1 s M@ * AP IN DX

Z,, T2 s AP * M@+T2 IN DX = Y

AX , DX s Y IN aX

; OUTPUT Y IN AX TO OUT PORT$ , PORTY BEING THE ADDRESS
; ASSIGNED TO D/i CONVERTER IN MEMORY MAPPED I/O MODE

MOV

PORTY , 4X
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DELAY-1D

5 PREPROCESSING CALCULATIONS BEGINS HERE TO CALCULATE T1
: -(B1 % M1 + B2 * M2),

™ =

: PERFORM DELAY OPERATION SO THAT M2 <~ M1 AND i1

LEA DI ,
LBA SI ,
MOV CX ,
STD
REP
MOVS
CLD

T1=-2
M2-2
A2

LEA SI , At
LODW

IMUL M1
MOV BX , DX
LODW

CIMUL M2

ADD BX , DX
SAL BX , 1
MOV T2 , BX
LODW

IMUL M1

MOV BX , DX
LODW -

IMUL M2

ADD BX , IK
SAL BX , 1
NOT BX

INC BX

MOV T™ , BL

M@.

DI POINTS TC M2
Si POINTS 70 M1
COUNT DATA MOVE
SET D FLAG FOR AUTODECREMENT

Y o W o

: CLEAR3 D FLAG FOR AUTOINCRIMEWY
AND T2
T2 = A1 % M1 + A2 * M2

SI POINTS 10 COEFR Af

A1/2 IS LOADED TO AX AND

ST & SI + 2

A1 ¥ M1/2 IN DX, AX

SAVE A1 * M1/2 IN B¥

£2/2 IS NOW LOADED TC AX

AND ST & SI + 2

A2 * M2/2 IN DX, &X%

T2/2 IS WOW IN BX

T2 IS NOW IN 3X

STORE NEW VALUE OF T2

Bi/2 IS NOW IN AX AND SI &= SI*2
B1 * M1/2 IS IN DX, AX

SAVE B1 * M1/2 IN BX

B2/2 IS IN AX NOW

M2 * B2/2 IN DX, AX

-T1/2 IS IN BX

BX THEN CONTAINS -1,

NOT 4ND INC INSTRUCIIOLS
TOGETHER WEGATES BX, SO T1 IN BX
STORE NEwW VALUE IN Ti

MO WO We WO WO WO MC WE WO Wwo WO e WE WS WO WO N0 Vo Wo woe wa

: IT IS ASSUMED INPUT DEVICE PORT4 SHALL CONTAIN NO FFFF IF
; PROCESS CONTINUEE, OTHERWISE STCF.

MOV AX , PORT4
NOT  AX

J7z  CONT

HALT

I3
2
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3.4 CASCADE STRUCTURE OF K'TH ORDER DIGITAL FITTER
— I _SECOND ORDER 1D MODULES IN CASCADE

In order to avoid ccefficient sensitivity problems, the
Digital filter Transfer function is implemented uvsing a cascade

of second order modules.

g(A +Auf1+Auf%

i ol 17 2% (3.14)
D(Z)-———‘ ) .o De

N » .,

P G T ByjeZ  +Byye’ <)

i=1

where N is the smallest integer greater than or egual o
K/2. If the numsrator and denominator factors are paired and
the modules ordered in cascsds, then

N

Nz) = % H(2) ve. (3.15)
i=1
. + A, ..Z + A2
vhere H.(z) = QL 11 23 oo (3.16)
* 1 +B...7 0 4B, .77
11°“ 24°

Equations (3.14) and (3.15) are the same as discussed in
Section (1.3-2). The problems encountered in pairing and
ordering in cascadesd sacond order mcdules has been extensively
studied in the literature 26’27’g%hich provides guidelines for

designing filters,

The cascaded block diagram in Z-domain for equation (3.1)
is shown in PFig. (3.3). The signal flow diagram for i'th
cascaded block is shown in PFig. (3.4), this is similar to

177666
EFTDCY PR 0 Mpeneres i ~mmmeee

R i SRR

T by g



— l, — — l, S

b [ 4 Yo »‘2'.2“ 74 *\"] z X_fz) I"tn Yi'{Zj XN(Z "'”“[i‘\‘(z) v{z)

4> ) . e L - = e —® — - — — - - -t l B
8 7 ¥ v QLA B 20w 8LOCK

" . l |
] LS - —

FIG 33 BLOCK CT!AGRAM OF N-STAGES IN CASCADE

FIG.3 4 SIGNAL FLOW CIAGRAM IN 7Z- DOMAIN FOR th
CASCADED BLOCK
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Pig. (3.1) except for introducing 'i' for i'th block identi-
fication, which implements equation (3.16).

3.4-1  ALGORITHM FOR I'TH MODULE

Using the equations derived from Section (3.3), the

following eguations can be written for i'th stage.

OUTPUT : mi(k) = xi(k) + Ty (2.17)
yi(k) = Aoi.mi(lc) + T (3.18)
DELAY : mi(k~2) S aa mi(k—1) (3.19)
mi(k—1) ‘e mi(lf) (3.20)
PRECALCULATION: T, = -B, .m, (k-1) ~ B, .m (k-2) ..(3.21)
T, = A1i.mi(k—1) + By, emy (k=2) ,,(3.22)

These equations are valid for all i = 1 to N.

3.4~2 DMEMORY ORGANI ZETTION

From equations (3.17) through (3%.22) for ai. i = 1 to W
it is obvious that coefficients (Aoi, Ay ate.), delayed value
of the intermediate variables (mi(k), mi(k~1) etc.) and tempo-
rary storage variables (TTi’ Tos etc.) are to be stored in the
RAM memory interfaced with Intel 8086 microprocessor. They are
to be arranged in a particular way so that the String Manipula-

tion instructions can be affectively used, The arrangement

is shown in Fig. (3.5).
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The displacemant variable M@ initially points towards

M@1 with index gzero. After performing the dssired calculation
the index is incremsnted by two and by the index addressing
modes available, the pointer is changed tc M@2. Thus M@
pointer points to mi(k) of all the cascaded stages, 1 = 1 to
Similarly’ M1 is the displacement pointer initially pointed
towards m (k-1) of all the stages, i = 1 to IN. This follows
inmediately after N values of M@. Soon after I values of
mi(kui),'the storags of second dﬁléy'val@es mi(k—z} should
start. M2 is the displacem®nt pointer address mi(k*Z),

i =1 %6 N. Thus (M2 - 2) gives the address of the last
location of first delay storage which storés mr(k~1)- 1

is the pointer for temporary storage T1i’ i=1 1tc N and
this follows soon after ths second delay storage values.
Thus Tt - 2 gives the address of the last location of second

delay storage which stores mN(k—Z). After all T,. are

11
storcd, TZi variables are storad consecubively starting

from T2 displacement address.

Fig. 3.6 givas the manory organisation for constant
coefficients. These arse storzad as half values as explained

in Appendix - V.

Note that by properly loading SI and DI registers with
proper starting indices, the pointer displacement address

can be used along with indexed addressing modes to identify
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any address in the corresponding pointer blocks. For
example, AP pointer address can point to any address A@1
to APN. Similarly Al pointer address can address all tﬁq
constants of ¥ stages (Fig. 3.6b). Similarly, M2 pointer
address can be used along with index addressing modes to

identify all the addresses from M21(=2) to IM2N,

3.4~3 IDENTIFICATION OF DIFFERLUNT SUBROQUTINES

The operations involvad in the cascaded modules can be
broken up into different parts giving rise to the following
subroutines.

(1) SUBROUTINE INITIALIZATION called INIT-1D.

This initialigzes Mg Byir Moy T1i’ Tzi locations
by clearing all the memory locations given in Fig. (3.5).

(2) SUBROUTINE INPUT called INP-1D.

-As explained earlier CPU initiated Polled ./0 transfer
is usecd for inputting X(k) and storing it in AL register
through Memory Mapped I/0 connection.

(3) SUBROUTINE OUTPUT celled OUT-1D.

This calculates equations (3.17) and (3.18) for all
i =1 to N. This subroutine is entered only after passing
X(k) value in iX register and the number of stages N in (X
register. The calculated value Y(k) of the last stage is

returned in AX register when the subroutine is exscuted.



(4) SUBROUTINE DELAY called DEL-1D.

This subroutinc implem nts the transfers given in
equations (3.19) and (3%.20) for all i =1 to N. The String
Manipulation block move instructions (REP MOVS) is very

usaful herc.

(5) SUBROUTINE PREPROCESSING called PRE-1D..
This subroutine éalculates all the temporary storage

values T,. and T i =1 to I for mach sampling period and

1i 2i’
updates the informetion during (K-1)< t « KT. 4gain String
Manipulation instructions and LOOP instruction simplifics

the software program o a very groat axtent.

3.4-4 SUBRQUTINE FOR INITIALT ZATTION

The R.T.L. (Register Transfer Logic) flow chart for
initialigation subroutine is shown in Fig. 3.7, and the
corresponding subroutine program is given in PROGRAM - 5.2.
In PROGR&M - 3,2 tha String Marnipulation instruction STOSW
along with REPeat instruction is uscd to implement the last
three blocks of the flow chart. Thus, REP STOS% claoars
all the memory locations M@ tc MgN, M1 +o MIN, M2 to M2W,

T1 to TN and T2 to T2N. One more block of N word locations
will also be cleared as 6*N has been storsd in CX rsgister
N should bz known, and 6*N should be loaded into the CX

register before clearing the memery locations.
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PROGRAM -~ 3.2

INIT-1D : MOV AX , & ¢ ;s CL3AR ACCUMULATOR

MOV X , A£ 6%N ; STORE 6*N IN X

CLD

LEA DI , M@ : DI POINTS TOWARDS Mif
REP

STOSW . STORES CONTENTS OF AX

. IN LOCATIONS
RET

3.4~5 SUBROUTINE INPUT -~ 1D

Here, it is assumed that the I/0 operation is Memory
Mapped, i.e., I/0 devices may be placed in the memory space.
An advantage of HMemory-Mappad I1/0 is that it provides addi-

tional programming flexibility.
g

A/D converters arc devices that convert analog input
data into digital form. The block diagram of a tristate A/D
converter is shown in Fig. (3.8a). The analog input voltage
is converted intc its 16-bit equivalent digital output. The
output appears at the OUTPUT terminéls only when Output-Enable
goes LOW from HIGH. When Output-Enable is LOW the 16 output
terminals are in tristate condition. Start-pulse is a
control input terminsl, when it is LOW the A/D converter is
dead — not working and when this Start-pﬁls& goes from HIGH
~£o LOW the A/D converter starts the conversion process. The

A/D conversion is not instantanceous and takes come time.

-
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During the conversion process the A/D convertef is said %o
be BUSY and is indicated by Busy-control output signal. This
BUSY is normally HIGH goes LOW at the start of A/D conversion.
remains XOW for ’tc' sec., bill the conversicn is complete

and the required data is ready for transfer.

To perform the operations as in Fig. (3.9) different
signals of Fig. (3.8b) are to be issued by proper interfacing
of Pig. (3.8a) of A/D converter with the given microprocessor
This is shown in Fig. (3.10) and the corragponding subroutine
program is given in PROGRAM — 3.3. Twenty-bit address bus is
got by making use of 8282 latches (3 Nos.). The ALE issuad
out of microprocessor latches the address in first (T1) stats
Tha 8282.propogatﬁs the address through to ths oﬁtputs wnile

ALE is high and latchzs the address on the falling edge of

ALE.

PROGRAM - 3.3
INP-1D 3 MOV PORT3, AX ¢ ISSUE START CONVERSION PULSE
IN-LP ¢ MCV  AX , PORT2 . READ BU3Y SIGWAL FROM A/D

AND  AX , B000(H)

J7Z IN-LP WAIT UNTIL READY
MOV  AX , PORTY ¢ X I8 NOW IN 4/D
RET

wo
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%3.4-6 SUBROUTINE OUTPUT - 1D

The R.T.L. flowchart is shown in Fig. (3.11) and the
correspending program is given in PROGRAM - 3.4. The followivg

points are to be noted while reading the flowchart.

(1) X(K) is passed in AX register before entering

this subroutine.

(2) N, the number of cascades second order modules,

is passed in CX register beforc entering the subroutine.

(3) The coefficients are assumed to be arranged as
shown in Fig. (3.6a) and stored as half values as explainsd.

in Avpandix - V.

(4) Mg, M1, M2, T and T2 pointers points to the
first address of th2 corresponding block, Sixteen bit opera-
tions are assumed.

PROGRal: - 3.4

OUT-1D ¢ MOV SI , A ¢ STAGE INDEX
LEA DI , Mp . M(X) POINTER POINTS TO FIRST
s ADDRESS

e

s -
0LP-1D : ADD 4X , T1_SIj M¢ is NOW IN AX
STOSW - STORE IN M@ LOCATION

DI €~ DI + 2

M@ * A@/2 IN DX, AX
TRUNCATE AND MULTIPLY BY 2
TO GET Mg * AP IN-DX

Y(E) IN DX

Y(K) NOW IN AX READY TOR
NEXT STaGE

INMUL APiSI.
SAL DK, 1

40D DX, T2 1]
MOV AX , IX

ADD SI, # 2 MOVE INDEX TO POIWT NEXT
STAGE LOCATIONS
LOOP OLP-1D LOOP BACK TO CaLCULATE

MO e o e WT wo Wwo Wa WO Wo WO we wo

NEXT STaGE
RET
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3.4-7 SUBROUTINE DELAY — 1D

The R.T.L. flowchart for this subroutine is shown in
Fig. (3.12) and the corresponding program in PROGRAM -~ 3.5.

The following points must be noted.

(1) Mg, M1, M2, T1&T2 displacement addresses points
to the first address of each block as given in Pig. (3%.5).
From Fig. (3.5) it is clear that M2-2 points to M1N namely
m{k-1) of the N'th stage and T1-2 points to m(k-2) of the

last stage (= M2N).

(2) N, the number of cascade stages of seecond order
modules is passed in C& ragister before entering the delay

subroutine.

(3) The String Manipulation block move instructions
atongwith REPzat instruction performs the complete transfer
operations so that all mi(k-1) are transferred to mi\ﬁ~2)
locations and therdaftsr all mi(k) are transfarred o mi(km1)
locations. Thus, 2N Jocations are to be transferred from one
block to the other. Hence, the count in CL rsgister must be
multiplied by 2 bvefore executing the blodk move instructions.

PROGRsM - 3.5

: CX CONTAINS N NOS OF CASCADED STAGES BEFORE ENTERING
DEL-1D : LEa DI , (T1-2) POINTS TO M2
1Ba SI , (M2-2) POINTS TO M1

9

9
STD . SETS DIR.FLAG POR AUGTODECREMENT
SAL X, 1 . DOUBLE LOOPCOUNT FOR TWO MOVS
REP . PERFORMS
MOVS : BLOCK MOVE OPERATLON

RET
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! r_--—-_ _-_-—1
| :
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3,4-8 SUBROUTINE PROGCESSING - 1D

The R.T.L. flowchart is shown in Fig. (3.1%3) and the
corresponding program in PROGRAM - 3.6. 4s before, N, number
of cascaded stages should be passed in CX before entering th
subroutine. also 11, M2, 71, T2 displacenant addresses

points to the first address of each block as given in Fig. (3.0°

il displacement address points to the first address of
the coefficients, 411, 421, B11, B21 ete., as shown in Fig.
(3.6b). The coefficients are stored in thesc locations as half
values explaired in appendix - V. Again the use of String
Mani~lation instructions and LOCF instruction simplifies

writing the Assembly language Program shown in PROGEaM - 3.6.

PROGR&M - 3.6

PRE-1D : LE4 SI , &l ¢ POINTS TO FIG. 3.6(u, COEFS
MOV DI , A ¢ : INDEX TO POINT CURRENT STaGE
s Cal CULATIONS
CLD
PLP-1D : LODSW s 41/2 IS NOW IN AX alD SI & SI 42
¢ Al *M1/2 IN DX, iX
: 41 * M1/2 IN BX  SAVE
s 42/2 IS NOW IN AX AND SI %= SI .
s 42 * M2/2 IS NOW IN DX, AX
ADD  BX , DX ¢ T2/2 IS NOW IN BX
SaL  BZ, 1. : T2 IS 0W IN BX
MOV T2 “DI;, BX ; STORE T2 IE ITS LOCATION
LODSW s B1/2 IS NOW IN 2% 4D SI &~ 31 +2
b
]
;
9
9
9

IMUL M1 DI)
MOV  BX ,DX
LODSW . ..
IMUL M2 [ DI)

INUL M1 { DI ; B1 % M1/2 IN DA, 4%

MOV  BX , DX . B1 * M1/2 IS NOW IN BX

LODSW B2/2 IS NOW IN 4X 4liD SI &= SI -2
. ST TIEN POINTS TO YEXT ST4GE

s CONSTLNT 4.

: B2 * M2/2 IN DX, aX

. -T1/2 I3 NOW IN BX

IMUL M2 {. DI
ADD BX , IX
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SAL BX , 1 ~-T1 IN BX
NEG BX 71 IS NOW IN BX

MOV m 7Dr7, BX; STORE T1 IN ITS LOCLTION
ADD , A 2 5 DI THEN POINTS TO NEXT STAGE

LOCsTIONS
CX IS DECRFMIENTED AND LOOPS
BaCK IF WOT ZERO

LOOP PLP-1D

WO WD Wwo WO Wo Ve o

RET

J5¢4-9 MiIN PROGRAM

The flowchart for the main program is shown in Fig.
(3.14) and the corresponding program in PROGR/M - 3,7. The
main prog'ram is written in the =ame way as in PROGR:M - 5.1
but by utilizing the subroutine programs (3.2 to 3.6) expla.
in earlier sections in sequencs, Fig. (3.3) is implemented

this main program.

PROGRAM ~ 3.7

NFILTR ¢ CaLL INIT-1D Ii THE PROGR.M PROPER CONST.NTS

BE LOLDED IN CX REGISTER
SsMPLE ¢ CalL INP~1D INPUTS Z(K) INTO 4X
IMUL S¢ X(K) * S¢/2 IN Dz, aX
SAL DX, 1 Z(K) * 8¢ IN DX

Ak NOW CONTLINS SCALED X(X)
NUMERIC,L 'N' BE LOADED TC ¥
COMPUTDE Y(X) AND MAKE IT
AVAIL/BLE IN A%

MOV AKX , DK
MOV X , AL N
CALL OUT-1D

Wo wa ws Wo WE Lo wh wo we

A (l

MOV~ PORTP , & 3 PORTPY IS THE CUTFPUT PORT .'.DDR.‘

LOLD 04 4G.IN WITH NUMERI C.L
VALUE OF 'N!

BLOCK MOVE M2 €= M1; M1 & ¢
LOsD CX WITH 'N' POR PRE-

CalL CULATIONS

CALCULATES T1 &ND T2 OF ALL
STLGES

MOV 04, A N

C4LL DEL=1D
MOV CX , A N

Calll., PRE-1D

WM& e We wo WD WS o W



INITIALISE MZ; M1, M2,T14 T2 SUBROUTINE
ASSUME COEFFICIENT STOREC AS IN FIG 3 6 INIT-10

3 i

SUBROUTINE
INPUT X(k) INP=1D

R

IMUL S
GET S@# X(k)IN AX REGISTER

Ao

L0AL _OOP COUNT
VIZ.NO OF CASCADED STAGES ‘N’ N
EXREGISTER CX= - N

.

CALCULATE OUTPUT SUBROUTINE
Y(K) OuT- 1D

~ QUTPUT PORT &
OUTPUT Y(k) TO OUTPUT PORT @

;
CX =+— =N

i

PERFORM TIME DELAY

SUBROUTINE
M2 == M1 DELAY-1D
M1 < - M@
.
CX =+—-N
; S
PREPROCESSING CALCULATIONS SUBROUTINE
PRE 1D

CALCULATE T1 AND T2 FOR ALL STAGES

FIG.3.14 FLOW CHART FOR MAIN PROGRAM
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e
MOV 4X , PORT4 ; RE.D PORT4 FOR PROCESSING
. OVER OR NOT
NOT &% . PORT4 CONT.INS FFFF (H)
' . 10 CONTINUE

3.5 PaARALLEL IMPLEMENTATTION OF K'TH ORDER DIGIT.L FILTER

Another method cf avoiding coefficiznt sensitivity
is to implement the filter as a sum of partial fraction cf

the given Transfer function. Equation for Parallel Canonic

form is
N
D(z) = ?o + o Hi(z) oo .. (3.23)
T N 2L S ol
where ®H.(z) = ?i, oL 1 2 - (%.24)
* 1 4B, .7 +B...7
1i 21

whers, Aoi = 0 and is introduced to maxe ths secor? order
7-Transfer function idantical to equation (3.1). This ene. ves
that thes subroutine developed for cascaded structure can he
made use of judiciously in parallelstructure implementation
The coefficients of Fig. (3.15) ars adjusted such that

pi = 2K, this ensures that the results obtained from outpuy
subroutine program can vé¢ casily modified by shifting the
rasult left by K-bits, which is equivalent to multiplying

by 2K.
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FIG.3.15 BLOCK DIAGRAM REPRESENTATION OF PARALLEL
STRUCTURAL

Bo

X(k)

L__..._,__ /L -
ANpre

FIG 316  4th CRDER PARALLEL FILTER USING TWO SECOND ORDER
1D MODULES
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Fig. (3.15) gives the block diagram representation
of the parall¢l N'th order Digital filter. As a specific
gxample 29 for parallcl shructure implenentation consider o

4tk order Digital filter. Tranafor function is as

Aoy A11,,z"1 + 1421.2"2
D(Z) = P - 8
© 1 +3B,..7 ) +3B..77
ol 11. 21.

, , -1 ) -2

-4 “LOZ + -ﬁ,j 20Z + A22.Z
T T A

*J12bél 220&-

o ey (3‘25>

Where, A ,- = A
! Lo 02

A21, etc. lie between -2 and +2 so that they can be stored

= 0, and all the constant A11,

a8 helf values and B, = -8, B, = -4. It can be roslized
shown in Pig. (%.16). The complete program for implamenting
equation (3.25) is shown in PROGR.Y - 7.8. The comménts
in the comment tield of each instruction in the program ave

self-explanatory.

F

PROGR&M - 3.8

MAIN PROGRaM FOR 4TH ORDER DIGITAL FILTER PARALLEL STRUCTURE

; THE EQUN BE MaDE AVAILALBLE AS GIVEN IN EQUN 3,25

; THE COEFFICIENTS 4RE STORED ..8 HalF VaLUES 4S

; BXPLAINED IN PIG. 3.64, FIG. 3.6B WITH af1 = 42 = ¢

; CsLLS aLL SUBROUTINES DEVELOPED FOR CaSCADED STRUIIURE
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(LB4R M1, M2, T1mmT2
GET %(K) FROM 4YD
Z(K) I8 NOw IN aX

FILTR4 ¢ Call INIT-1D
coNT ¢ CalL INP-1D

;
;
;

MOV  BX , aX ; X(K) IS NOW IN BX

INUL BY 1 B¢ * X(K)/2 IN DX , AX

SAL DK, 1 : BY * X(K) IN DX

MOV  TEMP , DX ; TSNP LOCATION NOg’ggN$€%§s THE
: FLRST TERM OF QUTRUT Y(K

MOV Af ; BX  ERR O8O

JALCULATE PIRST ST4GE OUTFUT
FROM HERE ON Wg,RDb

MOV CX , # 1

-

GALL OUTP-1D chuNULkTL Y
(K) I8 tﬁ AX hND ST - ST# °
wﬁﬁm RETURNED
SAL  uX , 3 ~Y, (K) IS NOw I ax(=8. Y, K))
NEG  AX v {E) IN 4X NOW

Ai NOW CONTAINS SUM OF TWO TERMS
OF OUTPUT = B X(K) + Y, (¥)
MOV TEMP , AX (TP) = Box(ﬁ) + 1, ()
MOV  4X , BX &QMDBKBMECWWJL Z{X)
MOV X, A# 1 ; CiLCULATE SECOND STaGE OUTPUT
‘ s HERE ONWLRDS
D0 NOT GALL QUTP-1D ROUTINE OMIT #TRST TWO INSTRUCTIONS
BECAUSE INDEX SI MUST POINT TO SECOND STAGE LOC.TIONS WITH
DI POINTING TO M@ + 2. SO CsLL FROM OPL-1D

ADD  AX , TENP

WO WO w2 MO WD 90 WS es Wb 8o

o Wb wo

CalL OPL-1D ; (K) IS RETURNED IN AX
Sal X, 2 ;-Y (K) IS NOW IN aX
NEG aX ' ; K) IS IN AX NOW

ADD  4X , TEMP ;JG-B,KD+Y(M+Y(D

MOV  PORT@ , 4X ; MOVE OUT TO D/i IN PORT¢
MOV CK, A 2 DELAY-1D INITIALI ZATICON
CALL DEL~1D M2 = M1 AND M1 € M@ FOR
TWO ST.GES

FRE-1D INITIALIZATION
CALCULLTES T1 4AND T2 FOR
TWO STAGES

INPUT PROCHSSING OVER

OR MOT SIGHAL ISSUED
SIGN.L Is FrPR(H) CONTINUE
JUMP TO ST.LRT IF 4X I3 ZBRO

MOV (X, & 2
CALL PRE-1D

MOV  4X , PORT4
NOT X

JZ CONT
HALT

We %o W WO WO ot WO wWwo W3 Wwo wo
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3.6 SUMMaRY

In order to avoid coefficient sensitivity problems
a Digital filter is implemznted as a cascade or parallel
combination of se¢cond order modules, In this chapter the
second order 1D moduls has'been extensively dealt with. The
mathematical derivation, algorithm and the software program
using Intel 8086 instruction set has been derived. The K'th
order Digital filter using N sscond order- 1D modules in
cascade and in paréllels haveé also been discuséed ¢ thé various
subfoutinss for these¢ structuras are written. Finally, ai
main program for the cascad:s and ﬁarallal (4th 5rder) struc-

ture using these subroutines writien.
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CHAPTER - IV

IMPLEMENTATION OF SECOND ORBER DIGITAL FILTER
THROUGH OTHER STRUCTURES

4.1 INTRODUCTION

The Transfer function for the i'th stage second order

module is rewrittceun as

A+ A TV pa. 78
23

D(z) = oi = M4’ (4.1)

—1 ”2 LI
1 + B1i.z + B2i.z

Equation (4.1) can be implemented by any of the
realigzation structures discussed earlicr in section 1.3.
Fig. (4.1) is a flow chart that modcls all the sccond order

25

modules implemented by these Dircct structures .

In this chapter tho necessary mathematical cquations,
algorithm and finally the subroutine programs for 2D, 3D
and 4D sucond order structures will ba discussed. Also two
30

other structures viz. 1X and 2X crosscoupled structurcs

will be used to implement the above equation (4.1).

4.2 2D STRUCTURE

Cross Multiplying both sides of cquation (4.1)

L7 x(2)

Y(z) + B1.Z"1.Y(z) + 32.2—2‘“ z) = AO.X(z) + A,

+AZ.z’2.X(z) cee (4.2)
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OUTPUT PROCESSING
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/

POST PROCE SS5ING
SUBROUTINF POST -1
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PERFORM TIME DEL AY

SUBROUTINE DEL — 3D

!

PRE PROCESSING
SUBROUTINE PRE - DO

PROCFESSING
OVER
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FIG 4.1 GENERAL FLOW CHART OF SECOND ORDER
MODULES




| Y(z) = AO.X(z) + A1.Z_1.X(z) + A2;Z—2.X(z)

- B,.27¥(2) - B,.77%.1(2)

1 2

Arranging in the powers of Z = and 7

T(2) = 4.5(2) + (4 .3(2) - B, .X(z)).2
+ (AZ.X(Z) - B2.Y(z)).z-2
Lot Pg(z) = AZ.X(Z) - 32~Y(z)

So Pz(z).z-1 = (4,.5(2) - B,.Y(2)). 7
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(4.3)

(4.4)
(4.5)

(4.6)

Also let P1(z) = (A1.X(z) - B,.7(2)) + Pz(z).z"1 oo (4.7)

So 131(2).2"1 = (A1.X(z) - BQ.Y(Z)).Z—1 + 192(z).z"2 ee. (4.8)

Substituting tho valuc of P1(z).z'1 and Pz(z).z"

in equation (4.4)

Y{z) = AO.X(z) + ]?1(2).27;'1

LA J

P, (2) = 4.%(2) - B,.7(2) + P (2).27 ...

and P2(z) = Az.X(z) - BZ.Y(Z)

In the time domain
y(k) = Ao.x(k) + p1(k—i)
py(k) = i, ox(k) - By.y(k) + p,(k-~1)

p,(k) = hy0x(k) - B,.y(k)

A
2

(4.9)
(4.107

(4.11)

(4.12)
(4.13)
(4.14)

From equations (4.12) through (4.14) y(k) is to be

found out first. The valucs of p1(k) and p2(k) ar: calaalatoed
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during KL <t< KT + T. A stepwise procedure is

QUTPUT y(k) = AO.;&k) + p1(k—1)

POST PROCESSING p1(k)
in the interval
KT<t¢KT + T p2(k) = Ag.x(k) - B2.y(k)

A1.x(k) - B1.y(k) + p2(k-1)

DELAY p,(k=1) &= p,(k)

p1(k~1) 4?“~'p1(k) |

The flow chart of Fig. (4.1) represents the process.

Precalculation is not needed. The steps involved are

(1) Initialization; 4/D, D/A converters and all
; variables

(2) Input X(k) : Prom A/D converter
(3)  Compute Y(k)

(4) Cutput Y(k) ; To D/A converter
(5) Perform Tine Dilay

(6) Computc P1 and P2; Host calculation of P1 and P2

The subroutinces for 2D structurc making usc of the
instruction sot of 8086 microprocessor are given in

PROGRAM - 4.1

FILTER SECOND OZDER 2D STRUCTURE

: SUBROUTINE INITIALIZATION aND SUBROUTINE INPUT ARE SAME

. AS IN PROGRAM - 3.2 FIG. (3.7) 4ND PROGRaM - 3.3 FIG. (3.8 |
; RESPECIIVELY.
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s SUBROUTINE OUTPUT COMPUTES OUTPUT SAMPLE Y = Af.X + P12
s X PASSED IN AX Y RETURNED IN AX.LOOP COUNT IN CX.

OUT - 2D ; MOV  SI # ¢ s STAGE INDEX
LEA DI , X(K) ;POINTS TO X

OLP - 2D : STOSW ) :SAVE X
IMUL A@ [ SI{ sX * A9 / 2 IN DX
SAL DX , 1 _ X * 4P IN DX
ADD DX , P11{sT ;Y -
MOV  4X , DX :Y IN AX READY FOR NEXT ST.GE
ADD SI # 2 :MOVE INDEX TO POINT NEXT STAGE
s LOCATION
LOOP OLP-2D -USE COUNT IN CX
RET

sOUTPUT Y 1IN 4X TO OUTPUT PORT@. PORTY BEING THE ~DDRESS
9AsSIGNED TO DfA CONVERTER lN MEMORY MAPrED IFO MODE
MOV  PORTY ,

s COMPUTE DELAY P12 <— P71 , P22 & P2

DEL-2D LE: DI, P1 ;P (k)
LEA SI sP(k=1)
REP MOVS ; PERFORM BLOCK MOVE
RET

: PREPROCESSING 2D NOT USED IN 2D MODULE SECOND ORDER
- STRUCTURE
PRE-2D  RET
:POST FROCESSING - 2D CALCULATIONS BEGIN HERE TO CALCULATE
D1 = A1%¥X - B1*Y + P22 AND P2 = 42%X - B2*Y
- LOOF * COUNT IN OX

FOST — 2D ¢ LBA SI , A&l s COEFFICIENT rOINTER
Lii BX , X ;POINTS TO INXUTS
MOV DI # ¢ ¢ STLGE INDEX
POLP-2D :+  LODSW ,n1/2 IN aX 4ND SI#= SI + 2
IMUL BX[:DI‘ | sl *TX/2 IN DX, ; Ax AND
BX &= DX + 2
EUSH DX _ ASAVE; a
LODSW sB1/2 |

IMUL 2 BX [DL]  ;B1 * ¥/2 IN DX, iX and
s AND BX €— BX + 2
POF  4X »
SUB & , IX cial ¥ X = Bl * Y)/2
- 8aL aX , 1 sal * X - B1 * Y

ADD  4X , ¥2{_DI}!;COMIUTE X1
MOV  P1[DI}, AL ;STORE ¥1
LODSW . . . _  3k2/2 IN aX AND SI €= SI + 2
IMUL {BX}iDI;’ ;X + 42/2 IN DX, &X'

~ ;aND BX €— BX + 2
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PUSH DX
LODSW -9 :B2/2 IN aX ALND SI €= SI + 2
UL 2 pX){p1j ;Y * B2/2
¥Or  ax
SUB 44X , DX sF2/2 = (X * 42 = Y ¥ B2)/2
SAL . 4K, ) sE2
MOV  P2[DI] . ;STORE 22
' 4DD DI A2 :MOVE INDEX TO POINT NEXLT
s ST4LGE LOCATION
LOOF POLr-2D #USE COUNT IN CX
RET

'>D CONSTANT STORAGE FOX N ST..GES

ag

Py

d
L)
*
*

DW AP, aP2,,,,, &fN 3 4f FOR N STAGES
DV al1, B11, 421, B21 ; STaGE 1 COEFFICIENTS
DW 412, B12, 422, B22 3 STAGE 2 COZFFICLENTS

DW 41N, BN, 42N, B2N ; STAGE N COSFFICILNTS

2D TEMIORARY STORAGE FOR N STORAGE

b
P1

r2

DW < (N+1) DUz¢ s INPUTS/0UTRUTS

DW . N DUIg
DW N DUEg

4.3 3D STRUCTURE

Equation (4.1) can be written as

-( , =] S 2y s -1 =2

T(z) = (b + &,22 + 4,.77).K(2) ~ FB1.Z +B,.2 7).¥(2)
[ 2N 3K 3 (4'15)

or Y(z) = AQ.X( z) + o ._Z"1 () + AQ.Z'Z.K( 2

- B..7.Y(z) - B L72.Y(2) .. (4.i6)

1 2

In the time domain

y(k) = Ao.x(k) + A1.x(k—1) + AQ.x(k-B)

- BLy(k-1) = Bouy(k=2) ... (4017)
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Let T3 = A1.X(k—1) + s,

x(k-2) - B1.y(k-1) - B2.y(k-2)
LI Y (4(18)

Fguation (4.17) is represented as
v(k) = AO.X(k) + T5 ‘oo (4.19)

It is to be noted that the intermediate variable TB
depends on the previous samples and 1z ovaluated in the
interval KT - T« ¢t < KT and shall be available bafore KT
sampling point. The output y(k) can be calculated upon thc

reccipt of input x(k). 4 stepwise procedure is

CUTYUT 1 g{k) = Ao.x(k) + TB

rabliRCCESsING 3 T, = “1.3(;«1) + 32.X(k—2) - Bi.y(k—1}
in the interval 2

KT-T <t < KT - BZ,y(k_g)

DELAY 2 x(k-1) ¢ x(k) , x(k-2) <— x(k-1)

ylk-1) < y(k) , y(k-2) €— y(k-1)

<
The flow chart of Fig. 4.1 ropresents tho procoss,
p ,
rost calculation is not nceded. Following are tho stdps

involved.

(1) Initializaticn: 4/D D/4 convertors and all
; Variablos

(2) Compute £(k) From i/D convepter

(-2

(3) Compute Y(k)

(4) Output Y(k) Tc D/a convorter

v
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(5) Perform Time Delay

(6) Compute T3 . ¢ Precalculation of T3

Various subroutines in the 3D implementation are

given in PROGRAM - 4.2.

PROGRAM - 4.2

FILTER SECOND ORDER 3D STRUCTURE

; SUBROUTINE . INITIALI ZATION AND SUBROUTINE INPUT AuE SAME
;AS IN PROGRAM - 3.2 FIG. (3.7) AND PiOGuAM - 3.3 FIG. (3.8)
. RESPECTIVELY. |
; SUBROUTINE CUTPUT CUMPUTES Y = 4 * X + T3

; LOOP COUNT IN CX

OUT - 3D LEA DI, X1 s PCINTS 0 X
. MOV ST , A ¢ ; STAGE INDEX
CLP - 3D :  STGSW s SAVE X , ¥
IMUL A¢Eﬂ s Af * X/2 IN DX
SAL DX, 1 o3 L * X
4DD DX , T3fSI; ; CCMPUTE Y
MOV 4% , DXT 7 ; RETURN Y IN 4iX
ADD  SI , # 2 ; PCINTS TC NEXT STLGE
LCCP  ULP=3D -
STUSW ~ © oy BaVE LAST Y
RET
:OUTPUT Y IN 4X TC CUT PUT TCAT¢. LCAT@ BEING THE ADDRESS
: 435IGNED TC D/4 CONVERTE I MEMCKY MAPrED I/O MODE

MOV BPCRTY , &X
s CLMLUTE DELAY X2 €— Xi., LCUF CCUNT IN CE

DEL - 3D ¢ Lia SI, K1 s PUINTS TC X(k)
LiEs DI , X2 s FUCINTS TC X(k-1)
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; DEL - 3D SUBK(UTINE CUNTINU=S

INC CX s MLVE X VaLUBS 4ND Y
Rk 5 rERPCMS

MOVS 5 BLOCK MOVLE OrucATION
WET 3

o PREPRCCUSSING 3D CaLCULATICNS BLGIN HERL TC C4LCULATE
s T3 = 41,41 + A2.42 - B1.Y1 - Ba.¥2
; LCOr CCUNT IN CX.

TRE
PRE - 3D : IB& SI , 41 ; CCEFFICIENT POINTEX
MCV DI, #¢; INDEX

YLy -~ 3D ¢ LLDSW . 3 al/?
IMUE X17D1) 5 X1 % a1/2 IN DX
MLV BX ,”DX 3 1aiTIal SUM IN BX
LODSW .~ . s L2/2
INUL X2 {LI s X2 * 42/2 IN DX
ADD BX , DX rAGTIAL SUM
LCDSW . Bi/2
IMUL X1+2/DIY; Y1 * B1/2 IN IX
SUB  BX;DX T TUTAL
LCDSW . .3 B2/2
IMUL X2+2!DIt ;3 Y2 * B2/2
SUB  BL, DX ; u3/2
Sal BX , 1 i T3
MLV D300, BX STCRE

s NEAT STAGE LUCLTICN

hd - 9 . . . - -
alo 2, He2 ; MCVE INDEX TC pCINT
8
; Uk CLUNT IN CL

LiCry 1Le-3D
T

s +CST rROCESSING 30 NOT Uskbu IN 30 SECOND OwbLr MOUULE

¥UST-30
RLT

3L CONSTANT STCRAGE Fln N OTAGIES

A s D AN, A2 i AFN s Af BOR N STAGES
A1 ¢ DW 411, B11, 421, B2 s STAGE 1 CCEPFICIENTS
A2 1 DW A12, BY2, u22, B22 : STAGE 2 CUIFFICIENTS

LW 41N, B#N, £2N, B2N
30 TEMrCRauY STHaGE Iu N 3TAGES
X1 OW (Na+1) Uy
X2 W (L41) DUy
T3 OW N ULy

Z(k), Y(k)
A(k=1), Y(k=1)

ws 9o

5 STAGE N CUCEFFICILNTS



4.4 4Y STRUCTULE

13

Introducing intermediate variable Ro(z) in equation (4.1

Y{ 2z - 2 . e
g, lz) * 2z 1+ 131.2"1 +-B2.z“2
-1 _ ) -0
Y(z) = i lt (z) + hyo? ..Lf.O(Z) + hgel ".ﬁo(z)
) N -
and X(z) =R (2) + B,.2 _ﬂb(z)-+52.z ‘ﬁo(d

1

¥

S -~ - e - ¥ . _2 -
Hencee ILO<Z) 1{-( A) - D,L.Z .RQ< u) - 52.2 .RO((J)

% — W - T =1 .
av 1(1(2) = }31.110(2) 32..2 .L{O(a)
N . -1
50 J:io( z) = X(z) + d'l (z).72
i . p— N T K -1 3
Let Qq(z) = A,!-Lio(z) + 32.2. .RO(Z)
S0 T(z) = Ao.ﬁo(z) + Q1(z).z"

Rewriting cquations (4.23) through (4.27)

h.d(2) + Q(2).2

g =Bt (2)n B (2 7]

Q1(Z) (z) + 52-1{0(2).2—1

B 1

In the time domain this sct of equations is

ro(k) = x(k) + 1*1(k—1}

y(k) = Ao.ro(‘k) + g (ie=1)
r,(k) = B1.r0(k) - Bz.ro(k_1)
q1(k) = 31.ro(k) + ;12.1«0(1&-1)

(4.20)

ve. (4.21)

... (4.22)

ve. (4.27)
(4.24)

(4.25
(4,26)

(4,277

(4.25)

(4.27)
(4.,24)

(4.26)

3

/
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From above it is clear that y(k) is to be calculated
first and r,(k) and q,(k) can be calculated in the interval

KT £ < KT + T. A stepwise procedure is

CUTPUT v (k) = x(k) + vy (k-1) }
y(k) =& or (k) + q;(k-1)
PUSTCALCULATICN @ (k) = “Byaz, (k) - Bur, (k=1)
in thc interval - : - '
KT ¢t «<XKT + T (k) Ayar, (?{:) + hoer (h-1)
.!.'):«_‘, - & o
DELAY :i,ré(k—1)-§~— r (k)
r, (k-1) €2, (k)
Coqy(k=1) & g, (k)
R

Flow chart of Fig. (4.1) reprecmt the 4D structurs and the
program is given in PRUGRAM - 4.3. No precaiculation is

needed.

PROGREI=473—

FILTER SECLND CRDER 4D STRUCTURE

'; INITIALI ZATICN SUBRCUTINE AND INEUT SUBRCUTINE ARE SAME

g A3 IN. PROGRAM.u 3.2 FIG,'(3.7) AVD PROUGLALN - 3.3 FIG. (3.8)
s ”EWWM&. |

; bUBﬁLUTIND CUEPUT CLMPUTES n¢ X + R11 AND OUTPUT 34MPLE

s Y = A0 * RY + Q1% PASS X IN 4X, WETURN Y IN 4X

; LOCP COUNT IN CK.
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(UT - 4D : LEA DI , R{ PCINT TC uf
| MOV BI A STAGE INDEX
CLP - 4D ; . 4BD X , RI{ SI]; &/ = X + &1
STCSY , o STOUE IN LUCATICN
TMUL af [ST] R * af / 2 IH IX
sl Di RE * af

1
4DD Dx , Qi st
MUV 4X, DX
ADD ST , # 2

Y = A¢ * Y + @11

WETURN IN 4K

MCVE IMDEL TC POINT NELT
STLGE LOCLIICHS

USE COUNT IN CX

Wo VI WO WD WH 3 MEe Wwe VI WO Vo

LOOP OLP-4D
RuT

s OUTPUT YTIN AX TU OUTPUT PORT@P. PORTY BEING THE ADDRESS
: ASSIGNED TO D/4 CONVERTER IN MEMORY MAPPED I/0C MODE

MOV  BURTP ; AX
; PREPROCESSING 4D NOT USED IN 4D SICOND ORDER STRUCTURE
PRE-4D RAT |

; DELAY 4-D CALCULATIONS BEGIN 'R{»€—~ R AND SO ON

DEL-4D : 1BA SI , R . SI POINTS TO R¢
LEA DI , RY1 : DI POINTS TO R@1
INC OX
CLD :
REP : PERFORMS
MOVS . BLUCK MOVE
RET

: - SSING 4eD CALCULATIONS BEGIN-HERE-IO—CALCULATE
: R1 = -B1.R§ - B2.R@1, Q1 = A1.R§ + A42.R¢1.
s LOOP COUNT IN CX /

. POST-4D LEA 31 , B! ; COEFFICIENT POINTER

3
MOV DI , # ¢ ; STAGE INDEX
POLP-4D :  LODSW ' . B1/2
INUL Rg [ DI} . BR$ * B1/2 IN DX, AX
MOV BX , IX
LODSW ; B2/2
IMUL Rg1[DI/ . RP1 * B2/2 IN DX, &X
ALD BX , DX & - R1/2
SAL BX , 1 : - R
NEG BX . R

MOV R1(DI} BZ; SIORE R1 I LOCATION



LODSW s K1/2
INUL R@{DI) : RP * 4a1/2

MOV BX , DX

LODSW L A2/2

INUL Rg1{DI] s Rg1 * 42/2

ADD DX , DX 5 Q1/2

S4L  BIL/, 1 5 Q o
" MOV ; Qx[nﬂ DX ; STORE Q1 IN LOCATIONS
ADD , £ 2 i NOVE INDEZ 70 POINT NEXT STAGE

5 LOCATION
LOOP POLE~4D "5 USE COUNT IN CX
RET
4D CONSTANT STORAGE FCR N STLGES
AP s DW A1, ap2 ..... APN 5 A@ PUR N STAGES

al = DW 411, B11, 421, B21 STAGE 1 COEFPICIENTS
DW 412, B12, 422, B22 ; STaGE 2 COEFFICIENTS

“wo

Dw A1, B1L, A2K, B2N : STLGE N COEFFICTENTS

4D TEMPURARY STORAGE FCR N ST=GES

RY : N DUP(¢) s RE(k)
R¢1:_Dw N DUP(g) 5 BP(k-1)
"R1 : DW N DUP(¢, 5 R1(xk)

Qi+ Dy ¥ DUR(g) | . 01 (k)

4.5 1X AND 2X STRUCTURES

“

Another method of realiéing a Digital filter ig

the cross coupled StruCthb of Fig. 4. 2. These derivations
of thesc structures i1s extensively dealt with in 361
The difference equations (in time domain) cmployed for
1X Structure
y(k) = Ajex(k) + s, (k1) cee (4.28)
s, (k) = g1-8,(k-1) - g2.sg(k—1) + gB‘X(k) .o (4.20)

s,(k) = gqe8,(k=1) 4 8pe8,(k=1) + gz x(k) .. (4;3Q}
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where ths g, comss iron

A-X-
Dz) = AO T + '2“5“5*
This is a'canonical structurs, slace two drlay el-=mencs
ax

vre used Tor impl=msniing a s8cond order module, A shep-

wise procedure is

e

OUTPUT ’ v(k) = a_.x(k) + 32(k~1)

PCSTCALCULATION
in the intearval
KT <5 LT + T

3

oo
U.
—_
—~
e
L
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i
o
—
3
>
—
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i
—
S
i
2]
™o
.
n
N
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1
!
-—
S

(=}
s
i
B
Lo
L -3
M)
—
Ve
=
i
e’

Thz flow chart of Fis., (4.1) also repressnbta the 1X shruc-

ture end the progrem i given in FROGRAM - 4.4,

PROGRAM - 4.4

" 2 e B B Tt T T T L Tt At

FILTER SECOND ORDER 1X STRUCIURE
; INITIADIZATION AGD LNPUT SUBEOUTINLS AR SANE

43 IN PROGRAM - 3.2 FIG. (3.7) AND PROGR&M - 3.3 FIG., (3.8)

o

RESFEZCTIVELY,

o
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FIG 4.2 1X AND 2X STRUCTURES |
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SUBROUTINE OUTPUT COMPUTES Y = Ag*Z+ S2

PASS X IN AX, RETURN Y IN AX. TLOOP COUNT IN CX

OUTP - 1% : LEA DI , X : POINT T0 X
MOV  SI , #¢  : STAGE INDEX
OLP - 1X : STOSW . SAVE X
IMUL A@ SI s X % A/2
SAL DX, 1 s X % Af
ADD DL, S2[SI) ; Y = AP*K + 82
MOV AY , DX . RETURN IN AX
ADD ST, £ 2 3 MOVE INDEX T—POINT
. NEXT STAGE LOCATIONS
LOOP OLP-1X . USE COUNT IN CX
RET

. OUTBUT Y IN AX TO OUTPUT PORT¢. PORTP BEING THE ADDRESS
ASSIGNED TO D/A CONVERTER IN MENMORY MAPPED I/O MODE
MOV  EORTY , AX
. PREPROCESSINGIX NOT USED IN 1X SECOND ORDER STRUCTURE
PRE-1X RET

s DELAY 1X CALCULATIONS BAGIN »1(k-1) <& 31(k); 52(k-1) &—
: 82(k), LOCP COUNT IN CX.

BL - 1X ¢ LBA 3T, 51 ; SOURCE
L4 DI, St ; DESTINATION
ADD Tk, CX ; DOUBLE COUNT FOR X1 AND X2
REP s PERFORM
MOVS ; BLCCK MOVE
RET

; POSTCALCULATIONS 1X BEGIN., &1 = G1%311 - G2¥821 + G3*X |
82 = G1%521 - G2¥S11 + G4*X. -

POST--1X : LEA  SI, G1 ; COEFFICIENT POINTER

9
MOV DI, 40 . STAGE INDEX
POLP-1% : LODSY . G1/2
UL 511/ DLf : S11%G1/2

MOV BX, DX
LODSW ;5 G2/2

UL s21 [p1) . 521%G2/2
SUB B, DX

LODSW ; G3/2
IMUL X (1) . A*G7)2
ADD BX, ¥ . 81/2

SAL BX, | . 51

MOV 81 [DI}. BX ; STORE S1



o

?

°
g

%o

79
e
POSTCALCULATIONS SUZROUTINE FOR 1X MODULE CONTINUES

LODSw . . : G1/2

IMUL $21[DIJ . §21%G1/2

MOV BX, DI

LODSW . : G2/2

IMUL 11 [DL) : S11%62/2

ADD BZ, DX

LODSW ; G4/2

IMUL  X|{DLj s A*G4/2

ADD BZ, DX ; X2/2

SAL DL, 1_ ;52

MOV 82{DI], BLZ ; STORE §2

ADD DI # 2 ; MOV IN NEXT 70 POINT
’ ; NEXT 3TAGE LOCATIONS

LOOP POLE-1X : USE COUNT IN C

RET

1X CONSTANT 3TORAGE FOR & 3LaGhS |
A0 3 DW AQY, AP2 .... AQN : A¢ FOR N STAGES
G1 s DW G11, G21, G31, G11, Gz2t, G41 ; STAGE 1 COEFFICIENTS

-

DW G1N, GoN, G3N, GIN, GaN, G4N; STAGE N COBFFICIENTS
1X DATA STORAGES FOR N STACES '

X 2 DW N DURQY) : INPUTS
S1e DW L DUR(P) 81(k) s 31(k)
S2 : DW N DUP(Y) s S2(k)
S11: Dw I DUPQP) S = S1(k-1)
S12: DY N DUP(Q) s S52(k=-1)

2X STRUCTURE :

This structure is the transpose (appendixz - II)

of 1X structure. Eguaticns involved are

v(k) = AO.X(k) + g3.11(k—1) + g4.12(k—1) R (4.31)

1,(k) = gge1y(k=1) + go0d (k=1) e el (4032)
12(k) = x(k) + g1.12(k~1) - g2.l1(k—1) eeo (4.33)
‘. ;’l e - “* Wf""f.’l -

[Ty
C
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A Stepwise procedursa isg
QUTPUT : v(k) = Ao.x(k) -i-L3

POSTCALCULATIONS ; 1,(k) = g1.11(km1) + gg.lq(k—1)
in the interval ‘ c
KT t KT + T i (k) = x(k)+-g1.12(b4) ~ gpdw(k—T)

PRECALCULATIONS ¢ L. = g3.11(k~1) + g4.12(k~1)
DELAY ¢ Nobt necessary

Fig. (4.1) alsoc repreccnts this 2X structure and

the program is given in PROGRAM - 4.5.

FROGRAM -~ 4.9

A s v

FILTER SECOND~ORDER 2% STRUCTURY

s INITIALTZATION AND INPUT SURROUTINES LRE SAME

s 45 IN PROGRM - 3.2-?1@.\(3.7) AlD PROGRAM - 3.3 FIG. (3.8)
. RESPLOTIVILY. |

s SUBROUTINE OUTPUT COMPUTES Y = af.X +L3 . PaSS X IN aX

LOOP COUNT IN CX.

xe

OUTP - 2Xt: LEL DI, Z
MOV  SI, 4 ¢
OLP ~ 2% : STOSW |

POINT TO X
ST..GE INDEX o
SLVE INPUTS TO STAGES

UL APfET) Z*4ff /2
Sal D&, 1 - i*ag

COMPUTE Y

aRETURN IN aX

MOVZ INDZX TO POINT
NuAT STAGE LOCATIONS
USL COUNT IN CX

4DD DA, L5[SIj
MOV wX, DX
4DD 3L, # 2

o B 0o e VS WS WO WI woe WO

LOOP OLP-2X
RETU
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; POSTCALCULATIONS 2X BEGIN L1 = G1.L1(k-1) + G2.L2(k-1),
L2 =X + 31,512 (k-1) - G2.L1(k-1). LOOP COUNT Ik CZ£.

1
POST-2% : LE4  SI, G1 ; COLFFICIGUT POINTER
MOV DI, #4{ . STAGE INDEX
POLP-2X : LODSW - cG1/2
UL L11] DI : L11%G1/2
MOV  B¥, D£ |
LODSW ‘ ©G2/2
INUL I21 [DI] 5 L 2#g2/2
ADD  BX, D4~ : LA/
S&an X, s I
10V L{DI], Ba ; $TOiE L1(k)
SUB  SI, # ; B4CK POINTER UPTO G1/2
LODSW . G1/2
VUL Ip1 {DI)  G1*I21 /2
MOV B4, DX
 LODSW . G2/
IMUL  L11 [ DLJ s G2% L11/2
SUB BX,IK . PARTIAL SUM
S AL BK, : L2 - X
£DD Eh] e
MOV thp, BZ . 2 ST0xE Lo(k)
iDD DI, # 2 . MOVL INDEZ TO POINT
| . NLZT STaGE LOC.PIONS
LOOP POLE-24 . USL COUNT IN CH
ROT

°
J

DELAY 1X CALCUL.LTION NCGT NECESSARY POu ZX
' DEL-2X RET

PREPROCESSING CnLLCULATIONS 2X BLEGIN.
: Lj = G3*L1 (k-1) + G4*L2(x-1). LOBZ> COUNT IN cCX.

PRE-2X ¢ LE: S8I, G3 ; COBRFICIENT POINTER
MOV DI, # ¢ s STiGu INDEL ‘
PLE-2X ¢ IODSW . . s (3/2
IMUL L11{ D1} s GEXLI1/2
MOV BA DX
LODSW : G4/ 2
IMUL 13 [DI] ; G4*I21 /2
SaL BA, 1 : L3
MOV L),ILY, BA 3 STORE L3(k) .
4ADD , =2 s 1OVE INDEL TG POINT
© NLXT 5T.GE LOCATIONS
LOOE~115-24. : LCOSDT QOUNT IN X

nBT
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2X CONSTANT STORAGE FOr I STAGES

G1: DW G11, G12 ; STWGE 1
DW G241 G22 > STAGE 2
. DW-GN1, GN2 ; ST.G50 N
G3 DW G113, G14 . o STLGE 1 COEFPICIENT
- D G23, G24 ; STaGE 2 COBFFLCLIENT
DW GN3, GN4 s STAGE I COEPFICIENT
AF sDW AQ1, a2 .. APN
OX TEMPORARY STORAGE FCR N ST.JlEd
X : DW N DUBGE) » THPOTS TO ITAGES
Li1 DWW K DUR(¢) s L1 () OR L1 (k-1)
“M2 Dy N DUP(¢) s L2(k) CR L2(k-1)
(

L3 DW N DUR(@) ; L7(k)

4.6 SUMMARY

In this chapter, all the ovher realization techniques
discussed in Section 1.3 ure used o implement a second
order modulae. The necessary equations for the Algorithm
are derived and the various subroutines implementing the
main  flow chart of Fig., (4.1) written. Finally, two

cross coupled structurss ars us+d to implement the same

~flow chart of Fig. (4.1).



CHAPTER - ~ ¥
CONCLUSIONS AND SUGGBSTIONS FOR FURTHER WORK

5.1 CONCLUSIONS

Digital filteres have beean implemented in hiarwired
logic, special purpose computers and general purpose
computers. The recent advent of 16-bit microcomputers
with built in multiplication hardware has created a new
option for implementing ﬁigital filters. A typical 16~
bitvmicrocomputar, Intel 8086 has been selected here.
There is a significant imgrovemunt'in the sampling
rate bocausc of the availability of multiplication
instruction in the Instruction seb of 8086 micrmpro—

ces3380rT. *

In this dissortation, the various rcalization
tochiniques for Digital filters are discusscd and their
charactoristics comparcd. All the Dircet form structur s
suffor oxtreme cociriiciont sonsitivity as N, the order
of the filter grows largoe., In ordoer to aveid coocfficiont
sensitivity, the Digital filter Tramsfer function is
implemented as a cascadad or parallal combination of
second ordor modules. The second order modulce in itscldf

can be any onc of the Direct form structurcs.



The salicnt Teatures of the Iantsl 8084 micro-
processor has bzoon studisd in considerable detail. JUsing
the Instruction set of 8086 microprocessor the Assembly
language programs for the various realigations of a
second order module written. The mathematical equations
for the corresponding, algorithms are derived prior to the
R.T.L. flowchart wodel. lMain Programs for the cascade
and parallel Digital filters are also written making
usc of the various subroutines and each stage in itsclf

is a second crder 1D structure.

5.2 SUGGESTIONS FOR_FUTURE WORK

Bocause of the non-availability of the Intel 8086

L1

microcomputer kit tho various programs could not be

4 Iy 3

LESTa0.
These programs can bo tustcd as and wheon a kit 1s made

available in the Dupartmant.

‘All.of 16-0it microprocessors vizg. Intol 8086
Motorola MC 68000, Toxas Ingdruments TMS 9900, Zilog
78000, Fairchild 9445 ar. similar in basic word sizc and
arithmctic capabiliticg., Tho programs writton down using
thé Intcl 8086 microproc.ssor can be modified for the

rest of the microprocessors.
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In this disscrtation Intdl 8086 microprocoessor
is us.d to implomont Digital filters - ons section
of Digital signal processing. I+t can be extendad
to other swuctions of Digital signal procuossing.
This leads to the micro-ocmpuiver study of Samplad

Data Sy tome,

P 7; e
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APFEND L - T
CLASSIFICATION OF DIGITAL FILTERS

The term Digitel Tiltering rs afers to a cemputatinnal
algorithm performed on a sampled input signal resuliing in a
transformed output signal. Uhz computational procass can
correspond %o high pass filtering, low pass filteriwgy hand
pass filtering, integration. difrerventiatzion etce The process
is assumed %o be linisw, thatlméa ¢ the princple of super-
position applies %o th: input output relatiomship. The input
signél-is a sequanes of numbﬁrs from cither an Anwlog-to-
Digital (A/D) converier or = dircch digital imput - souvce.The
output /SkgquL 5 etthe vy o diveck Algtal sequence o o
regencrated analcg signal from a Digital-to-Analog (D/A) -

gonvertor.

The unique advanlages cifsred by Digital filters are

1. The porformenc: from unit to unit is stable and

rup @atable.

2. Arbitrarily high procision is acﬁzfv“d that is
limitzd oniy by tho number of blts carried in memoxj

and by the input and ocutput rosolvtion capebilities
3. No impazcance asbehing problems exist in the digital
domain,

4. Critical filler frequency can b: placed without

-

restriction hut it influancas the reguirce pyecisron
5. Component value variation problims as@ non existent

6. Graagter flexi bility is achieved since filter re 2 DONS e
“can ve changed by varring the prover arithimeiic

coafficLinty,
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7. The intrinsic possibility of time sharing major

implementation section exist.

8. »Small size results from integrated circuit

implementation.

9. Periodic calibration as is required with analog

circuits is sllminated.

10, Performance limitations of physical analog

components zre aveoided.
NN I PY - B - - N i s
Twe general Typoes of configurations of Digital
ilters are
(a) Recursive Digital filter
(b) Non-~Recursive Digital filbar
The Recursive Digital filter is a discrete time filtev

which is realigzed vie g recursion relation. It means the

weighted sum of past outpul samples as well as past end/or
present input samples. For oxample
y(n) = ao.x(n) + a1.x(n—1) + az.x(n—Q)
- b1.y(n_1) - bg.y(n—Z) vae  (A1.1)
The Non-Recursiv: Digital filter is a discrete tims
filter for which tht output samples of the filter are

explicitly dotermined as a weighted sum of past and presont

o

input semplcs only. PFor exampla,

y(n) = aj.x(n) + a1.x(n—1) + ag.x(m~2) ee. (h.1.2)
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Thus Recursive Digitel filters are those filters

which possess a transfer function as given by equation (1.3)

M -1
S Az
D(Z) — izON cs e em e (A1.3)
. o 1
1 s f‘: Bitb
i=1
It has 211 common factors cancelled, The denominator coaffi-

o

cients are identically ronzsrc. The zeros and poles ar

located on the 7 = plsne. The Non Recursive Digital filters

however possess a ftransfer fanction which is a polynomial of

-1

Z and all common factocr in aquation (1.3) are cancslled.

this case, the tTransfoer function is of the form
D(7) = D +D,.7" + D2 ® uuu Dy 20 .. (A1-4)
O i 2 N
This equation is a finit. dagrae polynomial, no poles can
-1 .
appcar in any finite part of the Z  plane. Non Racursive
filter, as a result is alwsys stable. (This of course is
consistent with the absence of fsed back).
Consider the seniral transfor function of egquation

(A1.3) which is

faotofih.form.

reproduced hers for cocavenience in the

N
/NG

il-\_;? - ee. (41.5)
7\ (1 - o Z—1)
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where p1, DAL ot are tha polss and Z1, Z2 N %W are

3

the zeros.

Any filter whose¢ transfer function is given by (41.5) with N>|
is called an infinite iwpulse response (IIR) pigital filter,
bccausc thore docs not oxist a finitc intoger L such that

.
d(n) = 0 for n» 1

where d(n) is the imrmlsc rospous: of the filtor. For IIR
digital filters assum: « % N. Thie assumption holds truc for
almost all cascs of practical intercst. A partial fraction
cxpansion of (A1.5) is

§i éz_ . gH

B T —— R T— T

f—p co=1 -
20 4 1 - Py L

whero % = of iF W =N
la]
= O if Ny 1II
. . _._.‘i S A -
and S = (1 -9, 7 Yy DY/ z = p, for i =1, 2 ... N

Hrmee, the corrggsponding impulsc rusponse is

A

—-—

o f <, kS) n _ -
B N T TR - L ICO IS JO=TEY

Clearly, thd nscenssary aund sufficient conditicns for the

impulsC responsa above o satisfy tho stability criteria of

A

_(" i’ "oy

- B \ o J
< En. ()} £ =

YU -
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is that

;Pif‘<¥f01“i=1, 2 o e 0 N

That is, all the pole locations of the digital filter ars

within the unit circls in the Z-plane.

When the transfer function of a Digital filter is
‘given by equation '
1 -M ,

D(Z) :DO+D1.Z- + eeeacee DM;Z e s s \A1.6)

which is equivalsnt to the caée whesn N = 0, the Dgital
filter is said té be of finite impulse responsa (FIR) type.
This name is used because tho impulse responsa of eguation
(41.6) has the proporty tuat h(n) = 0 for n»M¥ and for n<O.
That is the correspondirs impuls. responsa is of linite

duration. In this case, there arc no polus and this type

of filter is always stable.

From the above it is clear that Transfer function in
cquation (41.3) represents an IIR Digital filter while the
Transfer function of cquaticn (A1.4) represents en FIR
Digital filter. The FIR filtars are ali stable and casual
while the IIR filter is stable if the poles of D(Z) ars
within fhe unit circle in the 7 plane, and casual if BO ig
the first nongzero cocfficient in the ﬁ@nominator. As we

11t ers 1t is convénient to assunc
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10
L in . IIR

]

pa

The major differaoncos ar: listed
Digital filtefs cannot hava parfect linear phaso character-
istice whil. FIR filters ars always designed to have linear
phase characteristic. Implemantavion of an FIR Digital
filtor roguires more computations and more digitel compo-
nonts; henes PIR filters are more expensive than IIR filt@ﬁs
The¢ amount of cbmputation and hardwar: nceded to perform a
filterang process is usually an important practical considor
tion. In goensral IIR ligital fiiters reguire lesser compu-
tations and/or hardwar: to achieve a particular filtoring
function than those roquired by the corresponding FIR

igitel filtors. PFIR Digitel filtors are calloed for to
perform tasks not possitls and/or not practical by IIR
Digital filtors such as linsar pha@é filters, and multirate
filters wherc the input signals and the corresponding

output signals are sampled at differcnt ratoes.

Although IIR Digital filters are gonerally realigzed
recursively and FIE filters nonrccursively, IIR filters
can be realized nonrecursively and FIR filters can be

realized recursively.
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APPENDIL - II

PRINCIPLE OF TRANSPOSE AND TRANSPOSITION THEORENM

Tellegen's theorem is én important basic theorem of
conventional network theory. As Digital filter networks are
not subject to Kirchoff's laws, Tellegen's theocrem in its
most general form does not apply. A4 restricted fomm of
Tellegen's theorem referrsd tc as the difference form, can be
derived 2111512 rom this a nunber of useful propertiss of
digital networks can be developed. In classical networks
Tellsgen's theorsm is in the form of a relationship batween
the voltage distfibution in one network and the current dis-
tribution in a s=zcond notwork, where tﬂe only relationship
gﬁtwe&n the networks is that they have the same topology but
otherwise unrelated. In a similar manner, if we consider
every flowgraph fo have a branch in esach direction batween
every pair of nodes, with the transmission of some of the
branches being zero, then any two flow graphs with the same
nunber of nodes can be considered to ba‘topclpgically agui~

valent.

Consider two signal flow-gfaphs with the sams topology
Let N denote the number of network nodes. The network node
variables, branch outputs and source node vaiues in the firet
hetwork are denoted by w, , ij and xj respectively and in the

.,-\."

second network by w'k

ik and x'j. Then, the Tellegen's
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theorem is

N
4 vt - ! v bl s _
;é (Wk . w VL) o+ ) (w K Fe m W k&k) =0

veo  (A2.1)

Proof: The proof of equation (A42.1) follows almost directly
from the definition of a signal flow graph. The branch outpubs
are related to the node variables and source inputs by

N M
W, = ;% ij‘* ‘:g S,Jk . cee (42.2)

j: 3:1

Adopting the convention that each network is drawn in such

a way that each network node has associated with it a
source node connected to it by a branch with unity transmi-
ttance. Also, this source node is not connected tc any other

network nodes.

With the convention regarding source nodes equation

(A2.2). changes to -
- v
W, o= kT cees (42.3)

Writing the identify

N

(w, . w'. - w 0 v (A2.4)

w) =
ket k k k 'k ‘

Equation (42.1) follows in a straightforward manner by

substitﬁting equation (A2.3) into equation (42.4).
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Equation (42.1) is referrsd to as T=llagen's theorem for

signal flow graphs or for digital filters. I1If variables Wk: wlﬂ
i

v AR Xk and X', are derived through a linear operation

jk’ jk’ k ™
! v AL % rvespective the
from Wies W, jx? ik Xy and X ;esp,ctlvoly, then
N N N
<< <! (N_Vf -~ WV ) + (.f Dd - W'.. X ) = 0
e o S e 7 s Lo, Lo
kel ke ik k " jk e k X k 7k

Thus Tellegen's theorem applies either to the sequence

values or to the I-transiorms,

For passive analog networks consisting of interconnec-
tions of resistors, inductors and capacitors, the notion of
reciprocity plays an‘impor+ant role. For digital nstworks
there oxists corresponding notions of r&ciprocify and inter-
reciprocity consider a given networic excited by two diffsrent
sats of sources. The Z-transforms of the source node values

for the two different sets will bz denotad by Xk and X’ The

I
value of the node variables of the k'th nodz when the network
ig excited by the unprimed sources will be- denoted by Wk.
wWwhen the network is excited by the primed sources, this

variable will be denoted by V'k. The netwerk is said to

satisfy reciprocity if for any two signal distributions.

N
lé1( }{&X'k - H"k Kk) = ) .. (A2.6)
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As a consequence of reciprocity, if we excite the graph at
network node fa! and observe the output at node fb'; then
for a reciprocal graph, the same axcitation at node 'b' will

result in the same output at node 'a',

Most digital networks are not reciprocal: 4 related concept
that is more useful with rzgard to digital network is -that
of interreciprocity: In this caée»we censider two distinct
signal flow graphs: Let Xk dencbe the source node valueé

and Q& depote the node variables for one network and X'y and
W‘k the solurce ncde values and nebwork node variables for
the second network;, Th=n the two networks are said to be

intexrreciprocal if

N
z. (¥ K*k - ﬁ*”‘k L) =0 sis (4£2:T)
k=1 , K |
Bouations (A2:7) is similar to equation~(A2.@); rere for
reciprocity tha primed and unprimed network differ only in
the sources, whersas for interiaciprocity both the sources an
and branch transmittancer zen differ in the primed and unpri-~
med networks. & network that is reciprocal is aiso inter-
reciproéal with its 11,
DRANSPOSITION THEOREM

A property of digital networks is that they ars
interreciprocal with their transpose. The transpose of a

flow graph is generated by reversing ths dircctions of all

r
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the branches but leaving their transmittances the same.
Consider a digital nevwork where ”k denotes the node
variable for the k'th nodes The transmission from node 'j'

to node 'k' is denoted by 'ij'.

S“o'vjk = PN

In the transposed network, the node variable of the k'th node

is denoted by ;!k and the branch transmittancs between nodes 'j!'

and 'X' is denoted by F‘jk; so that
Vf. . = F, . - t.
gk T Wy

By definition of the transposed natwork Frjk = F.,
J

To prove that a network and its transpose are inter-
reciprocal - i.e. to show that equation (A2.7) holds for
the above conditions, we utilize the fact that a network and its
its transéose have the same topology so that Teilegen's theorem

equation (A42.5) holds.

Thus,
g N N
é . %; (W7t = W)+ » (W, .2 =W X) =0
o (A2.8)
Substituting value of Vj, and V', in (42.8) we obtain
TS v e W s )
PO ER Vour BN N I Tk
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N é% NN
’ W OVI' ..F' - hnal . W' .V{..F.
. §§; Cxp B3Ik jf% kig k37 gk
‘ N v
+ 2 (Wk.x'k - W'k - W'k.xv) = O «e e (A209)
k=1 ' =

Interchanging the indicies of summation in the first double

- sum of equation (A2.9).

S = w,
W WW.oP . = W, WP,
5% o ( k* ¥ jk k] 3k)
N
WK - WY —
+ kg']. (AK.A k E’]. k‘xk) . — O ) - (A2.10)

Since, the primed and unprimed networks are transposes,

F'jk = ij, and therefore the double sum is zero and
N

(w,_.x*

K

g ok - w1k’Xk) = 0, which proves that a network and its

transpose are interreciprocal.

For single input - single output networks, a network

and its transpose have the same transfer function. TFor a

2nd order section the diagramatic changes are shown in
Fig. (42.1). |
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APPENDIX = III

RISE OF INTEL MICROPROCESSOR 8008 TO MICROPROCESSOR 8086
AND THEIR COMPARISON

O
The Intesl 8008 14, 17,19

was the first 8 bit, mono-
lithic, p channel MOS device ©0 be developed. The 8008

. processor architecture is quite simple compared to that of
today's microprocessors. The instruction set is small but
symnetrical with only a few operand addressing modes
évailable. The addrassable memory space is 16K bytes which
seemed to be lot back in 1970 when memories were expensive

and LSI devices were slow. The memory size limitation was

imposed by the lack of available pins.

The microprocessor does not have instructions with
direct addresses since two CPU registers must be usad to
reference main storage. Also, some operations such as
moving data from one placs in storasge to another, are someawhat
awkward. Another problem arsa is that amsociated with an
interruptf Interrupt processing was not a requiremént for
the 8008, only the most primitive mechanism conceivable —
-not incrementing the program counter was provided. Such a
mechanism permits an interrupting device to jam.an
instruétion into the processor's instruction stream. Since
memory is addressed during the_interrupt, two of the

s cratchpad registers are to be reserved as interrupt
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r@gisters.' This reduces the effective number of the
registers in the scratch pad file from seven to fivs. Therse
is no instruction for disabling the interrupt mechenism; thus
this function must be realized with external hardware.
Finally,'the single 8 bit bus info procsssor requires a
large amount of support hardware. If a single 1IC is
produced which will replace thase components, this processor
will be valuable in meny more applications.

The Intel 8080 10917419 an & vit, monolithic, n
channel MOS device is a second_geheration microprocessor
with many improvements over its predecessor, the 8008 15
The 8080 was the first processor daesigned specifically for
the microprocessor markat. Th+ main objectivz of the 8080
, was to obtain a ten-to-one improviment in throughput
eliminate many of the 8008 shoxtcomings that had by 1973
become appareht and provide new processing capabilities nbt
found in the 8008. The latter included handling of the
16 bit data types, BCD arithmetic, enhanced operand
addressing modes, and improved interrupt processing. Memory
'posts had come down and processing speed was approaching
ITL, so larger memory spaces seemed more practiéal and
direct addressing of more than 16K bytes was achieved.

: Symmetry’was not a goal baecause the benefits to bé gained

from making the extensions symmetric would not have
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justified the resulting increase in chip size and opcode
space. Most of the external logic required to support fhe
8008 is on the 8080 CPU, and all the importent interfacing

signals ars generated on designated processor pins.

The 8080 architecture is significantly differenf
from that of 8008. The byte handling facilities are
augmentedAwith 2 limited number of 16-bit facilitigs. The
memory space 1s 64K bytes, the address bus 16 bits wide,
s0 an entife address can be sent down the bus in one memory cycle.
The 8080 extends the 32 port capacity of the 8008  to 256
input ports and 256 output ports. The 8080 processor
contains a file of seven 8-bit general registers, a. 16-Dbit
program counter and stack pointer and five 1-bit flags.

I DU AP T WP mQTnmy,(QAM)_iﬂsfeﬂd of on the

TITTC XL

chip,'a strategy which removes the restriction of only seven
1evels of nested subroutinzs, The programmer can directly
sceess the shack pointer in 8080, unlike in the 8008. A
fifth flag, Auxiliary Carry, augments the 8008 flag set.

It indicates whether a carry was generated out of the four
low order bits. This flag, in conjunction with a decimal
adjust. instruction, makes possible packed BCD addition.

The 8080 includes the entire 8008 instruction set as a‘

subset. The ndded iastructions provide some new operand

addressing modes and som@ 16 it data manipulation
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facilities. The 8080 has an inverrupt mechanism identical
to that of 8008, but includes instructions for enabling

and disabling the mechanisn.

The 8080 is packaged in a 40 pin DIP and has separate
~ address and daté buses having tnstate outputs. As a result

of the separate data and address buses, a microcomputer

is forméd with as few as six TIL packages. A disadvantage,
however, is that 8080 requires three separate power

supplies.

In 1976 advances in technplogy allowed-Intel
to considerrenhancing the 8080. The objective was a
processor set utilizing a single power supply and requiring
fewer chips (the 8080 required both an oscillator chip and a
system controller chip). The new pTocessor, called the
Intel 8085 was constrained %o bé compatible wich the 8080 ab
the machine-code level. This meant that extensions o the
instruction set could use only the 12 unused opcodes of
the 8080. Architecturally, the 8085 turned out to be not
much more than a repackaging of the 8080. The major diffe-
rences were added features such as on chip oscillator, —
-power on reset, vectored interrupts, decoded control lines,
a serial I/0 port‘and a single power supply. Two new
instructions RIM and SIM, were added to handle the serial

port and the interrupt mask.
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The Intel 8086 was designed to provide an order

11518549 croase in processimg throughput over

of magnitude
the 8080. The processor was"to be compatible with the 8080
at the assembly language level, so that existing 8080 soft-
ware could be reassembled and correctly executed on

the 8086. To allow this, the 8080 register and iﬁstruction

set were to appear as logical subsets of the 8086 registers

and instructioms.

The goals of the 8086 architecture were symmetric
extension of existing 8080 features and the addition of
processing capabilities not found in the 8080. New features
and capabilities included 16 bit arithmetic, signed 8-16-bit
arithmetic (including multiply and divide), efficient’
interruptible byte string operations, improved bit manipu-
lation facilities and m=chanisms to provide for re—eﬁtrant
code, position—indepéndﬁnt code, and dynamiceliy relocatable
programs. By 1977 msmory-had become inexpensive and micro-
processors were being used in applications requiring large
gmounts of code and data. Another a¢hievement was the direct
addressing of more than 64K bytes and support of multipro-

cessor configurations.

The 8086 processor architecture comprises a mamory
structure, a register structure, an instruction set, and an

external interface. The 8086 =xternal interface consists of
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interrupts, multiprocessor syncnronization and resource
sharing, this all goes way beyond the facilities provided
in the 8080. The 8086 can access upto one million bytes of
memory and upto 64K input/output ports. The I/0 space
consists of 64 K ports a 256-fold increase over the 8080.
The processor contains a total of thirteen 16-bit registers
and nine 1-bit flags. The 8080 register set is a subset of
the 8086 register set as shown in Fig. (4A3.1). The 8086
instruction set is not a superset of the 8080/8085 instruc-
tion set. Most of the 8080/8085 instructions are included
in the 8086 while soﬁe of the infrequently used ones (e.g.
conditional calls and -returns) are not. The operand address-
ing modes of the 8080 have been greatly enhanced.. Signifi-
cant new operations includes : (a) multipdication and
division of signed and unsignéd binary numbers as well as
unpacked decimal numbers, (b) move, scan and compare
operations i1or strings upto 64 K bytes in longth, {c) non-~
destructive bit testing, (4) byte translaticn from one
code to another, (e) software genﬂrated interrupts énd
(f) 2 group of instructions that can help coordinate the

- .

activities of multiprocessor systems,

The mere six years of microprocessor evolution has
yielded a three orders of magnitude performance improvement,
TABLE - 2.1 and TABLE 2,2 trace the comparison of these

processors in respoct of featurés, and technology.
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INSTRUCTICH =ET OF 806 NICROPROCESSOR

-

The instruction sei of 8086 microprocessor can be

gtudied under ths following liwads @

(A) Data Transfer Instruciions
(R) Arithmotic Instructions
(C) Bit Mavipulation Instructions

[ 35 S w 4
) Btring Instructions

o

Program Transfer Instructions

,\
o
~

-

(F) Processor Control Instructions

&3]

The fourteun dats tra:sfer instruchlons can be studied
vnder the following four hzads. The fia&8 in this case

ES \.Jrll_,e.hi] Una..L 11\;‘{ »j(,l, By
(&) DAPA TRANSCER INSTRUCTION
(a) Gamoral Purpcse

. MOV Move byt:o o word

(1) EReg / momecry, v 1000108w mod rog r/m
(v) HRegl6/menmorylt, 10001140 mod O reg x/m

-

0

I 24
. (¢}  Ahce, memory 101000dw  AJdr low Addr high

(a) Reg, fmmaor, 1011w reg data data if w=1

Tlr
og/
(r; Mom, domed 1100011w  mod 000 r/m data data

if w=



2. PUSH PUSH word onto stack
(a)- Register 0101C reg

(b) Seg-reg 000reg110
(CS legal)

(¢) Memory 16/regi6 11111111 modl10x/m -

3. POP POP word off stack
(a) Register - 01011 reg
(b) Seg-reg 000regl 11

(CS-illegal)

(e¢) Memory/reg 10001111 modC00r/m

4, XCHG Exchang> bytes or word

(a) Reg/mem with ' 1000011w modregr/m
register
(b) Reg, acc 10010 rag

5. ZXLAT Translatce bytse

(a) Translate byie 11010111
to AL

(b) Input/Output

6., IN - Input byte or word

(a) Acc, immed 1110010w  Port
(b) Acc, DX 1110110w

7. QUT Cutput byte or word

(a) Acc, immed 1110011w  Poxrt

(b) Acc, DX 1110111 w
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(c) Address Objact

8. LE4 Load Effsctive Address
(a) Load EA to reg 10001101 modregr/m
9. LDS Load poinver using DS

(a) Load pointer to DE 11000101 modregr/m

10. LES Load pointer using ES

(a) Losd pointer to ES 11000100 modregr/m

" (d) Flag Transfer
11. PUSHF  Push flags dnﬁo stack
(a) Lload AH with flags 10011100
12. POPF Pop fiags 6ff sthack
(a) Pop flags' 10011101
1%3. SAHF Sthre AH register in flags
(a) Store AH into flags 10011110
14, LAHF Load AH register from flags

(a) Load AH with flage 10031111

B. ARITHMETIC INSTRUCIIONS

8086 arithmetic operations may be performed on 4
types of numbers unsigned, binary, signed binary, unsigned
packed decimal and unsigned unpacked decimal. Following is

the effect of the flags.

CP Carrvy flag : A4ADC and 3BB incorporats vhe Carny

flag in their opsrations. The Carry flag is set(a) if an
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addition results in a carvy out of'the high order bit of
the result and (b) if a subtraction results in a tourrcw into
the high order bit of the result. Otherwise the CPF is
cleared.

AF AuxiliaryvCariy flag : The AF is sot (a) if an
addition results in a carry out of the lower order half
byte of the result and (b) if a subtraction results in a
borrow into the lower ordsr khalf byte of the result. The AF

is provided for the decimal adjust instructions.

SEF Sign flag : arithmetic and Logical instruction
set the Sign flag equal to ithe high order bit (7 or 15)
of the result. Programs performing unsigned opsrations

ignore SF.

ZF Zeroflag 3 If tas ressult of an Arithmetic orxr
Logical Operation is zero, the ZF is set, otherwise ZF is

cleared.

PF Parity flag : If the low order eight bits of an
Arithmetic or Logical result contains an even number of
1-bits, then the PF is set, otherwise it is cleared. It

also checks ASCII characters for correct parity.

OF Overflow flag : If the result of an operation

is too large a positive number, or too small a negative

number to fit in the destination operand (exciuding the
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sign bit) then the OF is set, otaerwise it is cleared.

OF indicates signed arithmaetic overflow.

(a) Addition
1. ADD Add byte or word

(a) Reg /memory with ragister to either
| 000000dw modregr/m

() Immed , reg/mem 100000sw modd00r/m  Data
(c¢) Immed , acc 000C010w Data Data w = 1
2. ADC Add byte or word with carry

(a) Reg / mem with register to either
000100dw modregr/m

(b) Immed , rog / mem 100000sw mod010r/m Daia

(c) Immed , acc 0001010w Data Data w =1
3. INC Incremsnt byt2 or word by one
(a) Register 01000reg
(b) Reg/menm 1111 11w mod00Cx/m
4. AsA v ASCITI adjust for addition
(a) ASCIT adjust for add 00110311
5. DAA Decimal adjust for addit: on
(a) Decimar adjustc for add 00100171

(b) Subtraction
6. SUB Suhtract byte or word
(a) Reg/mem and register fto either

001010dw modregr/m
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(b) Immed , reg/mem 100000sw modOlir/m Data
(¢) Immed , acc 0010110w  Data Data if w=
7. 8BB Subtxract bytx or word with borrow

(a) Reg/menmory and rsgister to either

0001104w modregr/m

(b) Immed , reg/mem 100000sw mod011r/m Data
(c) Immed , acc 0001110w Data  Data if w=1
8. DEC Decrem:nt byte or word by one

(a) Reg/mem 111111wmod00% r/m

(b) register 01001 reg

9. NEG Negats byte oxr word

(a) Change sign 1111011w mod011z/m
10. MP Compars byte or word
(a) Reg/mem , rsg 0011108w modregr/m
(p) Immed , reg/men 100000sw ~mod11ir/m Data
(c) Immed , acc 0011110w Data  Data if w=l

1. AAS ASCII Adjust foxr subtraction 00111111
12, DAS Decimal adjust for subtraction C0101111
(e¢) Multiplication

13, MUL Multiply byte or word unsigned
1111011w mod100r/m

14. IMUL Integer multiply by¥te or word
111101 1wmod101r/m
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15. AAM ASCII Adjust for multiply
11010100 00001010
(d) Division
16, DIV Divide byte or word unsigned
1111011w mod110xr/m

17. IDIV Integer divide byte or word
1111011w modl11r/m

18. AAD ASCII adjust for division

11010101 00001010
19. CBW = Convert byte to word 10011000

20. CWD Convert word to doublz word 10011001

(¢) BIT MANIPULATION INSTRUCTIONS

8086 provides thre= groups of bit manipulating

instructions.

(a) ZLogicals - Here NOT has no effect on the flags.
AND OR, XOR, TEST affect the flags as : The OF and CF
are always cleared, the contents of the AF is always
undefined following executicn of a logical instruction.
The SF, ZzF, PF are‘always posted to reflect the result of
operation and éan be testéd by conditional jimp instruction.

1. NOT Invert 1111011w mod010r/m

2. AND 'And' byte oxr word

(a) Reg/mem , register

00100Cdw modreg/mm



(b) Immed ,

(¢) Immed ,

reg/mem
1000000w modi00xr/m  Data

Acc
0010010w Data Data if
OR tInclusive or'byte or word

(a) Reg/mem
(b) Immed ,

(c) Immead ,

,register
000010dw modregr/m

rag/mam
100000w mod001r/m Data
ace

0000110w Data

XOR 'Exclusive or' byte or word

(a) Reg/mem

(b) Immed ,

" (¢) Immed ,

TEST 'Test’

(a) Reg/mem

(b) Immed ,

(¢) Immed ,

, register
1

001100dw modregr/m

reg/mem
1000000w mod110r/m Data

ace 0011010w Data Data if w = 1

byte or word

, register
1000010w modregr/1

reg/men
1111011Tw mod000r/m Data

acce
0011010w Data Data if

1

P —

Data if w = 1

1
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(b) Shift - Bits are shifted arithmetically or logically.
Upto 255 shifts may be performed aceording to the valus of
the count eperand coded in vhe instruction., The cc i gy

be specified as a constant 1, or as reg. CL allowing the

shift count to be a variabls supplied at exzcution time.
Arithmetic shifts may be used to wuliiply or divide binary
numbers by powers of two. Logical shifts can be usad o
isolate bits. Shift instructions affect the flags as follows:
AF is always undefined following a shift operation. PT, 8T,
ZF ame updated. CI containg the value of the last bit shifted
out of the desiination operand. OF is undefiazed following

a multibit shift. In a single bit shift, OF is set if the
value of the high order (sign) bit retains the original valur,

otherwise OF is cleared.

6. SHL/SHA Shi®s logical arithmesic lefu b e
or word 110100vw  med100r/ir
7. SHR vhify logical right b.Ze or orl

1101007w  mod101r/m
8. SAR Poif s arithmetic righs byte or word
1151700vw modl 11x/in
(c) Rotate - Here the CF may anh as an sxter.ion o< the
operand in two of the wotat~ instructions. aliowing a rit
to be isolated in CF and then tested by a jump if corr - or

jump if not carry instr-%Eion,
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9. ROL  Rotate left byte or word
110100vw mod00gpr/m

10. ROR Rotate right byte or word
110100vw mod001r/m

11. RCL Rotate through carry left byte or word
110100vw mod010r/m

12. RCR Rotate through carry right byte or word
110100vw modO11r/m

D. STRING INSTRUCTIONS

String instructions do not use the normal'memory
addressing modes to access their operands. Instead Index
registers are used implicitly. ZFollowing are the string

instructions which allow strings of hytes or words to be

operated on, o ne clsment at a time,.

1. MOVS Move byte or word stiing 1010010w
2. CMPS  Compare byte or word string 1010011w
3. SCAS Scan byte or word string 1010111 w
4, LODS Loadlbyte or word string 1010110w
5. STOS Store byte or word string 1010101 w
6. REP Repeat 1111001 4

E. IEROGRAM TRANSFER INSTRUCTIONS

The sequence of execution of instructions in a program
is determined by the CS & IP. CS contains the base address
of the current code segment (64 K portion of memory) from

which instructions ars presently being fetched. IP is used
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as an offset from the beginning of the cod: sediment.
The combination of CS & IP points to the memory location

from which the next instruction is to be = fetched.

Tha program transfer instructions operate on “ae
IP and CS thereby changing thzir contents; This changing
causes normal sequeniiel exscution to be altered . When
a program transferrasd occurs the queue né long =zr contairs
the correct instructions and the BIU obtains the next
instructions from memory using the new IP and CS waluszs.
and passes the instruction direetly to the BU and then
befins refilling th: qu=u= from the n~w locations. The
flags ars not effected =xcopt in interrupt related

instructions.

(a) Unconditional Transfer
(1) CALL Call procsadure

(a) Direct within segment
11101000 Diksp low Disp High

(b) Indirect within segment
11111111 modl010r/m

(c¢) Dirsct inter segment
10011010 offset low offset high
seg low seg high
(d) Tndirect intersegment
11111111 modo1ir/m
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O RET Return from procedure
(a) within segment. 11000011

(b) within seg. adding Immed. to SP

11000010 Data low
Data High

(c) Intersagment 11001011

(a) Interseg. adding immed. to SP

11001010 Data low
Data high

3. JMP Unconditional jump

(a) Direct within segment

11101001 displacement low
: displacement high

(b) Direct within seg. - short
11101011 disp.

(¢) Indirect within segment
11111111 mod100r/m

(d) Direct intersegment

11101010  offset low offset high
seg, low seg. high

(ei Indirect interssgment
11111111 modl101r/m

(w) Conditional Transfer
4, JO. Jump if overflow 01110000 Disp
5. JNO Jump if not overflow 01110001 displacement

6. JB/JINAE/JC Jump on below/not above or equal/carry
01110010 displacament
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7. JNE/JAE/JNC Jump if not eqﬁal/not carry/above or equal
| 01110101  @isp |

8., JB/JZ Jump if equal/z2ro
01110100 disp

9. JL/JNGE Jump if less/not greater or equal
01111100 disp

10, JLE/JNG Jump if less or equal/mot greater
01111110 di.sp

11. JBE/JNA Jump if above or equai/not above
01110110 disp

12. JP/JPE  Jump if parity/parity even
01111010 disp

13 J3 Jump if sign
01111000 disp

14. JNL/JGE Jump if not less/greater or equal
01111101 disp

15. JNLE/JG Jump if not less or =qual/greszter
01111111 disp

16. JNBE/JA - Jump if not below or equal/above
01110111 disp |

17, JNB/JPO Jump if not parity/parity odd
01111011 disp

18. JNS - Jump if not sign
01111001  disp
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19, LOOP Loop CX times 11100010 disp
20, LOOPZ/LOOPE Loop while zero/equal

: 11100001 disp

21, LOOPNZ/LOOPNE ZLoop while not zero/not equal

' 11100000  aisp

22. JCXZ Jump on CX zero 11100011 disp
(d) Interrupt

23. Type specified 11001101  type

24. Type 3 11001100

25. INTO Interrupt on overflow 11001110

26. IRET Interrupt return 11001111

PROCESSOR_CONTROL INSTRUCTION _
These instructions allow programs to control various CPU,
functions. There are three groups (a) Flag operation - this
updates flags, (b) External Synchronization - used for
synchronizing the 8086 with external cvents, (c¢) No-operation

causes CPU to do nothing. Except for the flag operation

none of the processor control instructions aftect the flags.

1« CLC Clcar carry , 11111000

2. @MC Complement carry 11110101

3. STC Sot carry 11111001

4, (LD Clecar direction 11111100

5. STD Set dircction 11111101

6. CLI Clear intoerrupt 11111010

7. BS8TI Set interrupt 11111011

8. HALT Halt 11110100

9. WAIT Wait 10011011
10. ESC Escape t0 external device 11011xxx modxxxr/m

1. LOCK Bus lock prefix 11110000
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Consider multiplication in the two's complement
number system. An nubit multiplicand {perhaps a sigﬁal
variable) is multiplied by an n-bit multiplier (perhaps
a filter coefffciéht). The product has 2n bits and may be
used as another multiplicand in a’later‘multiplication S0

it is quantized (truncated here) back to n bits.

Suppose the multiplier is 'X' and the coefficiemt is

'a', then.

and the product is quantized Q [_ 4t
fxd o 1a
Q jaX § = jaX / Z%J

The computer hardware actually handles the initdgers of

equation_(ﬂ”.1) so that in hardware

x * oAt
* o * 2n--1
a X * 22n--2

Ty i

| o | a2
=VLEX*22n2/2n_§=‘LaX*2n \

et

ro
is quantized as Q |(a ‘j
Consequently, the product must be multiplied by 2 (shifted

one placée left) so that thz final truncated tem is

Q EX] _ la x * 2“"1_' | .~

boe

Code sequence in Intel 8086 programing language is as

LEA SI , &4 - COEFF. POINTER

LODW 4 / 2 LOADED

IMUL X AX / 4 IN DX REGISTER
SAL Dx , 2 LX IN DX REGISTER

we WO WO WO
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APPENDIX - V

COEFFICIENT REPRESENTATION

Intel 8086 represents all the numbers in the two's
complement number system, so

N = (S M M MO) 2 ons ve (A5e1)

| 14M13 L I ) 1
where,

21548 €215
If we consider all numbers %0 be scaled, such that

N = (S.M M MO) 2 ons

14 My5 eeees M
thus,
a1 £ 1§ & p =515
~ - ; -
AS a result, coefficients in the range 1¢N<2 cannot be

represented. Therefore, all coefficidnts will be stored as

half their actual value, and =
VALUE STORED = [ valus * 2"+ 0.5 ]

and a left shift (multiply by 2) operation will be;pérformed
in each routine to compensate for thils changz. The symbol i X
means the largest integer less than X.

As an example suppose coefficient S@ = .4383164 is to

be stored in the Intcl 8086, microprocessor.

VALUE STORED = Ls¢ * 2'% .+ .5

]

|_.4383164 % 16384 + .5
L7181 «8759) = 7181

il

i
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The following operations are actually performed

(1) Load the coefficient 'é' into AX rvegister
X =g * 202
(2) Multiply by the variable 'X!
DX, AL = (a * 2872) = (x » 2271y
—aX % 22n—3 '
=(aX/ 4) * pen-1
the product islnow in the DX, AX register.

(3) shift DX Register left 2 places (quantize to 16
bits and multiply by 4).
’DX:-L(_a-X/Ar)*Zsz/ZnJ * 4
= JaX/ 4 x o=l 4wy .
T
The operation l=ft justifies the register DX and fille in
two zeros in the least significant bits.. lThe DX register

now contains the truncated, properly scaled rﬁsﬁlt.

On computers with dogble register shifting, onz would
perform the double left shift first.
Double register = (a X/ 4% 22n—1) * 4
‘ I
and then truncate to the n most significant bits. .
For Single register = (a X * 22n—1) /l2n
| = (axx2®h

which is more accurate than above.
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