
INTEL 8086 MICROPROCESSOR BASED
DIGITAL FILTER REALIZATION

A DISSERTATION
submitted in partial fulfilment of the

requirements for the award of the Degree
of

MASTER OF ENGINEERING
in

ELECTRICAL ENGINEERING
(System Engineering & Operational Research)

by 	#.

SAROJ AMBARDAR 	K'= 	

,3 -9- -2

—mo ba

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE

ROORKEE U.P. (INDIA)
August, 1982

(i)

CERT I F 1 AT E

Certified that the dissertation entitled

"II TEL 8086 -MICROPROCESSOR BASED DIGITAL, FILTER REALIZATION

which is being submitted by Ms Saroj An.bardar in partial

fulfilment for the award of the degree of MASTER OF

El]GINEERING in ELECTRICIJL ENGINEERING (Syst m Engineering

& Operational Research) of the University of Roorkee,

Roorkee, is a record of studrrit's own work carried out

by her under my supervision and guidance. The matter

embodied in this dissertation has not been submitted for

the award of any other degrsi or diploma.

This is further to certify that she has worked. for

a p°-rio d of about V 	
months from j a -n .)92-. to

(UI- ? 9192- for preparing this dissertation at this

University.)

(K. VASANTA)
Reader

Electrical Engineering Department
University of Roorkee

Dated August j 6 , 1982 	Roorkee

ACKNOWL E DGEMENTS

I wish to express my indebtedness and grateful

thanks to Shri M. K. Vasanta, of the Department of

Electrical Engineering for the invaluable guidance

provided by him in carrying out the work contained

In these pages. His guidance has been a constant

source of encouragement and inspiration throughout

the course of this sj,udy.

I also thank all those who helped me directly

or indirectly in preparing this dissertation.'

(SAROJ AMBARDAR)

Digital filtering is a major subdivision of

Digital signal processing. The, practical realizations

of a Digital filter have been discussed in this disser-

tation. To avoid coefficient sensitivity problems, the

Z Transfer function of 8. Digital filter is implemented

as a cascaded or parallel combination of' second order

modules. Bah module in itself can be one of the four

Direct structures.

The significant brea4-through in the area of

IC technology have opened up new options for the imple-

mentation of Digital filters, The present day research

is centred around the microprocessor based design of a

Digital filter. Digital filters are now implemented

making use of 16-bit word length microprocessors. Intel

8086 has been considered in this dissertation. The

Assembly language of 8086 is used to implement all the

Digital filter modules. The software programs are given

for k'th order Digital filter using N second order modules

in cascade. It has also been shown that the same sub-

routines developed for second order modules can bo: used

for parallel structure implementation.

C 0 N T ENT a

lap der PgEe No.

0 INTRODUCTION 	 1 	- 6

0.1 	Historical Introduction 	... 1
0.2 	Outline of Work 	 ... 5

I TRANSFER FUNCTION AND REALIZATIONS ... 7 - 17
OF A DIGITAL FILTER

1.1 	Introduction 	 ... 7
1.2 	Z-Transfer Function 	... 7
1.3 	Filter Realization Techniques ... 10

1.3-1 	Direct form Realization 10
1.3-2 	Cascath form Realization 14
1.3-3 	Parallel :forth Realization 16

1.4 	Summary 	 ... 17

II 'SALIENT FEATURES 0P Ili: TEL 8086 	... 18 - 42
MICROPROCESSOR

2.1 	Introduction 	 ... 18
2.2 	Salient Fcatu . es of Microprocessor 18

8086

2.2-1 	Functional 	in Description 19
2.2-2 	Register Organization 	... 24
2.2-3 - Memory Organization 	... 26
2.2v4 	Addressing Modes 	... 29
2.2-5 	Instruction 	sot 	... 33

2.3 	Summary 	 ... 42

III REALIZATION OF DIGITAL FILTERS USING SECOND 43 - 64
ORDER 1 D STRUCTURE AS BASIC MODULES

3.1 	Introduction 	 ... 43
3.2 	Why a Second Order Module 	... 43

3.3 Second Order Digital. Filer 	 44

3.3-1 1'A a tr ,;m ti c`1 Derivation 	 44
3.3-2 Algorithm for Implenrntation 	46

3.3-3 Software Program using Intel 	47
8086 Instruction St

3.4 	Cascade Structure of KI th order Fitt ==r - H 50
Second Order 1D Modules in Cascade.

3.4-1 S'th Module 	... 51

3.4-2 Memory Organization 51

3.4-3 Identification of Subroutine 53

3.4-4 Su1Jroutineli .tilization 1D 54

3.4-5 Subro tine Input 1D 55

3.4-6 Subroutine Output 1 D 57

3.4-7 Subroittin 	Delay 1D 58

3.4-8 Subroutine Prepro cessing 1 D 59

3.4-9 Main Pograin 60

3.5 Para1lel Implcrentation of K.' tri 	 61
Order Digital Filter

3.6 Su =ary 	 64

IV 	IMPLEMIENTATION OF SECOND ORDER . 65 - 82
DIGITAL FILTER THROUGH OTHER STRUCTURES

4.1 	Introduction 65

4.2 	2D Structure 65

4.3 	3D Structure 69

4.4 	4D Stru.ctura 73

4.5 	1X and 2X Structure 76
4.6 	Summary 82

V 	CONCLUSIONS & SUGGESIONS FOR FURTHER WORK 83 - 85

REFERENCES 86 - 90

APPENDICES (I to V) 91 - 178

QI~.2TER - 0

I N T N 0 DU CTI O N

0.1 HISTORICAL BITRODL CTICN

As man becomes more certain of his control of

physical things, an ever more important narb of his work is

the manipulation of syrb::cls he uSe.s to describe and control

these physical things. the fii ld of waveform manipulation

or signal pro ccssine, as in radio, radar, sonar, seismology

of c. , is one of th koystont s of science and tc chnology. The

tochnicjues and applications of this fila. are as old as

1Vewton and G ausc aid as new as digital computer and into-

gratod circuits.

During the-. dcca: of 1960-70, it bocainc practical

to roprosEent informaticn-boaring waveforms digitally and to

do signal proc-- 3sine on th4 digital representation on of this

wave form. Th} availability of high speed digital computors

fosterc:.d th. dovclopm m tt of i s creasingl y camplcx and sophis-

ti catcd signal processing algorithms... thms... The significant break

through in the area of integrated circuit te~ri ology promise:

economical inpl:.m :-ntations of vary complex digital signal

processing systems.

Fig. (0.1) illustrates oni view of how the field

has cm crged and spread .ou-i;. Digital Tilt offing ic one of the

major subdivisions of Digital signal processing. Digital

filtering processing algorithms have boon us:a:d primarily in

cr

r

U,-- 	 1
Ln cr

cQ

LJ 	 LJ I

Ju 	IL

H 	4L

lz

LI 4

r 	 I 	j
cr

ul

CL

-j.

r
v -.

I 	
.-

(D

Ul

Ln

LD

2:

Li

C)

LU

Li
>
0

L

2

computer simulation, sampled data analysis and data

reductio' Oomputacion.13. , With the increasing ,xte~.sive

application of digital p o c~ sso rs to may? y syst -. mrm s, more, and

more importance is place on tho development ci mathematical

tools for its a lalysiti and d:.:sign.. The 'Z-transform' rosalt

in considerable simplification and understanding. The. work

of Kaiser, th.==, first major cc 	ibutlon to he field of

Digital sig. al procossing, snowHd hcw much of the wcll-

developed theory of the design of filters made of resistors,

capacitors and inductors could be translated, with the aid

of the Z-transform into straightforward digital filter tech-

niqu :s. At. about th s amo t imc tremendous impetus was given

to this c.mc;rging field by the Oool•y--Tukoy (196 5) pap; r on

a fast method of computing the- discrete Fourier transform, a

method that was subsequently popularized and cxto.nded via.

many papers in thy:: IEEE Transactions of the Grouji on Audio

and Electroacoustics and other journals. At this, timtio,

the development of a foi ial and quite comprehensive theory of

digital filters was well under way.

Perhaps the most interesting aspect of the develop-

ment of the field of Digital signal processing is the

changing relationship between the roles of FIR (finite

impulse response) and IIR (infinite impulse response)

digital filters. Initially Kaiser analysed FIR filters

3

using window functions, which indicated that IIR filters

were more efficient than FIR filters. However, Stc, okharn's

work on the FFT method of performing convolution, car more

specifically FIR digital filtering, indicated that implo-

m cntation of high-order FIR f .lt rs could be made extremely

computationally effici(,Lnt; thus comparisons between FIR

and IIR. filters arc no longer strongly biased towards the

latter. These results also inspired significant research for

efficiont design for FIR filters.

The Digital .filter implementation till now was confine-d.

priiiarily to co::mputor pro rame for simulation, ;ork or for

pro ceasing relativoly small amountti of data. However, with

the rapid devlopmen f of :i.ri egrated circuit technology and

ospCcially the potential for lc.rg scsl-.-i- t--, ration (-",SI)

of digital circuits made many of the; Digital filters mc:r,C

attractive from the standpoint of cost., Sino and e x±-v C 1c.

reliability.

Tho design of high spaod multipliers was of prime

concern to many hardware and software impl ,montaticns of signaL

procssirlg algorithms. Standard TTL components gave suffi -W

ciy>n.t speed to allow an cffectivc filter to bc. inplenentod.

Int.grated circuits such as the Advanced Micro Dcvi cs

,f 25 LS14 2's complement multiplier was itroducc d spcci-

fically for signal processing applications. Poled and Liu

M

used semiconductor mombrios for the purpes.c of fast

multiplication, and rosulted in significant saving in the

cost and t owor co neumption.

The Digit filter .nay be regarded as a special purpose

computer built from an 'off--the shelf logic family. The

'design d ,:pnds upon the sapling rate and flexibility

roqu.irca. For simple sections a special puri;:so hardwcrk

filter will be more efficient than a general purpose micro-

processor. Instruction sets allow greater flexibility. Tht-

uitable; mlcropr°ocessor selected depend: upon the particular

application. Digital filters for different purp ae :;s have

been implemented making use of 8 bit, 16 bit microprocessors

Much credit hero goes to ic4 ;1e &. fjcelson.For most , L))lzca.tion;=

16-bit accuracy is sufl' .ciont to avoid qui:. 	'-i

with filters of moderate order (n 10) . 	It has bee o o e n

that with Intel 8086 (axed other 16 bit r i c rrprct c^ ss a rs

presmtly available) a significant improvement cv .r the

sanpling rates can be achieved as ccmparo,d with the prcviou J

generation of rlicroprc ces >ors, without significant increase

in system cost.

0.2 OUTLINE OF THE PRESENT i 0EK

Chapter I discusses the general. Transfer function

and the various techniques for realizing a Digital filter.

5

Four Direct structure,:; Lays been d::rive:d dfld it is in

on:% of the - st: uctur s that a Digital filter is usually

i,-,I-Pl am Ont e. .

The aliont features of Intel 8086 microproces 'or

which is s leected for ous purpose has been carried out in

cons,idorable det^ it in Ch.aptr 21. 8086 mi.croprc.cc::sor

is a totally new desig , than any zmii cr°opro ccs or parrs vinous

offer•c-ed by t1i Intel group and has a pow rfui. st of

ins tructior . T1emory to memory string op =:rations,

r.ardwi~~ d nul =;ipli cat,.c i and division, and flexible addres s-.-

ing mos are some of th(.-. s .gii±iCaf t operations.

Referring to hai er' e work a se.cond order strlc ,urt

is best suited for impl ranting higher oorde_c liters.

Chapter Ili ;orn-vb thy: iu le.nenta`, on of a second or d. r

1 D module. A flow chart and a main program _ii 8086 assembly

language and t1 e various, subroutines :s wits. e.xplaiatio-c is

given. A K; -th order cascaded filter has been discuss- d.

Also a 4th order parallel i'ilt r has been given as an

example. Use, of 1D s': cond order module subroutine is made

in tho programs.

Chapter IV discuses the other types of structures

used for realization of Digital filters. The sequence of

study here is the derivadon of the necessary equa' ions,

algorithm and the flow chart programs in 8086 Assembly

6

language. A second order module is considered ,i eadi

of the five cases viz. 2D, 3D, 4D, 1X, 2X.

The dissertation concludcs with the summary of

the work done alongt,rith suggestions for .future: study and

.developraint.

7

CHAPTER - I

TRANSFER FUNCTION AND REALIZATIONS OF A D .GITAI F.: , TERR

1.1 INTRODUCTION

A major subdivision of Digital Signal Processing is

Digital filtering -- a computational algorithm performed on

a sampled input signal resulting in a transformed output

signal. Digital filtering processing algorithms have been

used in computer simulations sampled data analysis and data

reduction computations. Kas44r 6 shows that the Z,-Transform.

results in considerable simplification and understanding of

problems associated with sampled data system. In this

chapter the Transfo;r function of a Digital filter and its

pictorial representations are discussed. Also, the. various

-types of realizations of a Digital filter arc studied.

1.2 Z-TRANSFER FUNCTION,

In Linear continuous (Analog) filter theory, linear

differential equation is one of the mathematical tools

available to describe the Transfer function. Similarly, in

line=ar Digital, (Sampled) filt or theory the link,.ar differcne

equation is available as a mathematical tool for analysis and

synthesis.

The linear difference equation 7 defines the sampled

output pulse amplitude- as a function of the present input

pulse and any number of past input and output pulses. A

general form of the difference equation is

N

Y(nT) = 	A .X(nT - iT) 	IL. B ..Y(nT - iT) 	... (1.1)
1=0 i 	 i=9 i

where X(nT) represents the present input samples and X(iT)

are, the past input samples. similarly, Y(nT) and Y(iT) are

present output samples and past output sample, respectively.

and B coefficients are constants thich determine the

response of the filter.

The Z-Transform 1,3,5,7

difference equation (1.1) is :

of the above mentioned general

N 	 M
Y(z) = X(z) . j A.. Z 	- Y(z) . i B .. Z-1 	... 	(1.2)

i=0 1

This equation is in.tarprcted as :the present output is

dependent on the present and past inputs, each multiplied by

the respective coefficients Ai and the past output each multi-
plied by the respective. coefficient Bi. Equation (1.2) is

represented in the Transfer function form as :
N

Y(z) 	. - 	iI0 A. Z`i

D(z) = X z 	~'. 	M 	... (i.)
1 +

i=1

Equation (1.3) is the Transfer function representation of a

Recursive type of Digital filters. Appendix-I gives the

classification of Digital filters.

Y(z) = A0 .X(z) + A1 .Z 1 .X(z) -

hence,
Y(z D(z) = X(Z)

A0 + L1 Z-

1 +B1 .Z 1

9

In order to roprosont Digital filtor in th form of

a block diagrun, the purpos' of which is to graphically

dopiot the way in which a particular øysbom is. riicd,

the terminology 4,8 shown in Fig. (1 0 1) is ecominonded,

A first order jff 	 ion i

Y(nT) 	4,X(n) + A1,X(rT *) 	,Y(1?) ... 	(1.4)

Zrxiforn of equation (1 4) is to

A second order difference equation is rpresontod as :

Y(nT) = AX(nT) +I 	 + A2.X(nT - 2T)

Y(nT -T) - B2.Y(nT - T) 	..

Z-transforta of equation (1.7) is :

Y(z) = 	.X(z) + A. z 1 .X(z) + A2. z 2.X(z)

- B1 .Z.Y(z) 	B 9 .Z.Y(z) 	•.. 	(1.8)

hence, 	 -1 	-2
D(z)XT-y-- ,

= 	1 	B 	
24
	

(1.9). z

Fig. (1.2) represents the block diagram representation of

the above dorived gnr• f4st and soqqn.d. order Digital

transfer functions of equations (1e6) and(1.9) rspoctively.

x;n)+ yn}

_ _ _ 	+ 	-
UNF G '. AY 	 + ADDER/

SUBTRACTOR

y(r)

o. x(n+ 	I

MWTiPL ItR

FIG 11 	BASIC BULL 0 NG RL CCKS

r - - - 	 ___

:z'

j

(a) FIRST ORDER MP,- IMF NTA1'ON

J
(b) SECCNC ORDER IMPL[MENTAT)ON

FIG 1 2 	IMPL;MENTATION OF DIG1TA'- FILTERS

10

1 .3 FILTER REALI ZATI0 TECHNIQUES

This section gives the signal flow diagrams for

Digital filter Transfer function in textus of the Digital

filter elements namely, the adder, multiplier and the delay.

These diagrams are known as realization structures 4, 5,6

because it is in one of these forms that the practical

realization is usually carried out. Thos:: different struc-

tures are classified into canonic and non-canonic roali za-

tions. By the term canonic rea .i zat? on 2,9 it is meant that

the number of delay elements employed is precisely equal to

the order of Transfor function (i.e. the highest dogree

between the numerator and denominator polynomials). The

roali zation t v chniques include the following forms :

(1) Direct form 	(a) Direct form (canonical)

(b) Direct form (non-canonical)

(2) Cascade or Series Canonic form

(3) Parallel Canonic form

1 .3-1 DIRECT FORM REALIZATION

This form includes all those Digital filters in which

the real coefficients Ai and Bi of equation (1.3) appear as

multipliers in the block diagram implementation. The: follow-

ing sections describe four types of direct structures.

11

1 .3 - 1 .1 FIRST DIRECT STRUCTURE (1D)

From oquation (1.3)
N.

A.Z 1
D(z) =

Bi . Z 1
1=0

where, B 	= 1 	and N _ N ,

Introducing intermediate variable M(z)
N

_ 	z_ Y z 	M.,~., I_ 	1=0
D(Z 	X(z) 	M z 	X(z) 	N i ...

c B .Z
i=0

(1 .10)

Equating numc rator and denominator separately

A..L~' 	and NZ
N

Y(z) 	_ 1. Ai.Z 1.(1~4(z)
i=C

N
X(z) _ j B.. Zw'.f1(z)

i=0

rX zBi.Z ~T

1=0

. . .

N
or M(z) = X(z) - i.

i =1
... 	(1.15)

In the time domain equations (1 .1 5) and (1.13) bi- come.
N

m(k) = x(k) - 	'$_ 	Di.m(k--i) 	 ... 	(1.15)
1=1

N
y(k) _ 	...• A..m(k-i) 	(1.17)

1=0

12

Equations (1 .16). and (1.17) define the first Direct

structure 1D and is shown in Fig. (1 .3) . This structure is

canonical because it possesses only N time delay elements, the

minimum number for the N'th order Transfer function of squa-

tion (1..10).

1.3 - 1 .2 SECOND D. T-tE C`T STKJ CT JRD 2 ; }

2D realization of Digital filter makes usc of the

principle of transposition 	4' 1 1. Appendix-Il, explains the

transpose principle;. The transpose of a Digital filter

structure is accomplished by reversing the signal flow in all

branches of th block diagram but leaving their transmittances

the same. The transpose of a filter structure has the same

Transfer function as the original structure.

The 2D structure repres ant cd in Fig. (1.4) is the

transpose of 1D structure. It implements equation (1 .10) but

requires (n + 1) difference equations (Summing Junctions) .

The 2D structure difference equations are of the form

pi(k) = p11(k-1) + Ai.x(k) - Bi.y(k); i=1, N-1 ... 	(1.1a)

p(k) = AN.x(k) - BN..y(k) 	 ... 	(1.19)

y(k) = A0 1x(k) + p1 (k-1) 	 ... 	(1.20)

This structure is also canonical because it possesses

only N time-delay elements, the minimum number required for

an N'th ordor Transfer function of equation (1.10).

82 1

.- 63

z'

pn(k)

"eN

FIG 1 4 2D STRUCTURE

AN

fmk)
A

► 1

1 3 	1D STRUCTURE

A3

Ac
y(K)

L , K

13

1.3 - 1.3 THIRD DIRECT' STRUCTUIU; D)

Rewriting equation (1.10)

N
A 	u i

D(z) 	= ___=0 1 .,.. ... -i (1.21)
Bi.

N N
or B.. Z 	.Y(z) _ Ai. Z 1.X(z) (1.22)

i=0 i0

N N
or 	Y(z) = 	Ai.Z 1.X(z) - Iii.Z'.Y(z) 	... (1.23)

.1=0 1=1

In the time domain, equation (1 .23) becomes

11 	 N
y(k) _ 	Ai.x(k-i) - 	Bi.y(k-i) (1.24)

i=0 	i=1

Equation (1.24) is the difr ere nce equation for the 3D

Direct structure, which is block diagramed in Fi.g. (1 . 5) .

This structure has only one summing jun ct . on, but has 2N

time delay elements, hence, a noncanonical form.

1.3 - 1.4 FOURTH DIRECT STRUCTURE (4)

The 4D Direct structure. is the transpose of 3D struc-

ture and is shown in Fig. (1 .6) . This structure has only one

signal distribution point, but has 2N difference equations,

expressed as follows e

r(k) 	= x(k) + r1 (k - 1) 	... 	(1.25)

q(k) = AN.ro(k) 	 .. 	(1.26)

r ($) 	= -B .r (k) 	 ... 	(1.27)
N 	N o

#1.

h

-

Y k

H Li
81

I

A

71

x 	

_

	

(n 	2 	
- .

L/r'J 	[71

	

3 ~ 4 3 	 L- % k 3

H
L r •J 	I 	 L

BN L

iG 5 3, STRUCTUkE

4-

Li

Al

AN

FIG 1 6 4D STRUCTURE

V(k 1

{ 	Z~ t~

(a) 10 MODULE

A2 B2

;b) 3D MODULE

v t L Vtitl

a,

A 	 8• 	 B, ~ / 	 1 	Ai
i 	 11

(c) 20 Mr)C)U —E - 	 (d) 4D MCCLl r

FIG 1 7 SECTN OR ER NMnf;LL F STRLCT' RE.S

14

q(k) = A1.ro(k) -1

r(k) = B..ro(k) + ri+1 (k-1)

p i = 1, N--1 	... (1.28)

... (1.29)

A comparison of the various characteristics of the four

Direct structurr.s discussed in Section 1.3-1 is summarized in

TABLE - 1.1.

TABLE - 1.1

PROPERTIES OF DIRECT STRUCTURES

CHARACTERISTICS 	 1D 2D 3D 4D

Time' Delay Elements N 	N 2N 2N

Multipliers 2W+1 	2i`3+1 2N+1 2N+1

Summing Junctions 2 	N+1 1 2N

Signal Distribution Points N+1 	2 - 2N 1

As will be explained in A- later chapter second order

Digital filter is the basic building block for realizing any

N' th order Digital filter. Th Transfer function of equation.

(1 .10) can be implemented making us of those four structures.

Fig. (1.7) illustrates the 1D, 2D', 3D and 4D structures for

second order modules.

1.3-2 CASCADE FORM REALIZATION

Th . Cascade or Serifs canonic -form structurti for

Digital filter is impl :m, ntod from the Transfer function of

equation (1.10), written as a product of factors.

15

N
D(z) = 7 E11(z) 	•0• 	 ... (1.30)

1=1

1
A. 	 Al

H(z) 	 for first ordor..(1.31)
1 	1 +

-1 	-2
or H.(z) 	= 	 for second

1 + B.Z 	+ BaZ2 	order 	... (1.32)

The configuration is shown in Fig. (1.8). It consists

of a series of lower- order filters connected in cascade. The

individual second order or first order equations are generally

realized in one of the Direct forms. Fig. (1.9) illustrates

tho use of the Direct structures in cascade. Equations

derived for the cascaded structures is same as that derived

for the Direct form structures. These structuros arE compared

in TABLE - 1.2.

TABLE - 1.2
PROPERTIES OF CASCADED STRUCTURES

QHARACT.RISTIC 	 1D 	2D 	3D 	4D

Time Delay Elements 2N 2N 2N+2 2N+2

Multipliers SN 5N 5N 5N

Summing juzictions N+1 3N N 3N+1

Signal Distributing Points 3N' N+i 3Ni-1 N

v'kl

2D

zi7 	
t7) } 	- 	i'~II•~ 	= 	00 O., - 	{HN(Z) 	

Y)z)

s ,G ' 8 CASCACE ",' SLCON;; CRCLR MODULES

,
+ —~ 	' 	+ > _-~- 	~ -{~-- 	+ ~} ~

II
EJ B AV 	 A

- 	

1 	 TE1 r
4 ~qt 	-alt 	Al?

4j 	Li 	UJ
L A7t _ 	Z 1.. 	A22 	8?1 	AIN 	 7~Y

— :~— 	 J 	 Tr

A,• 	-Pi

[J 	 [L
YY C 	r~~ 	tt?. 	i': t 	x:,77

FIG 1 9 CASCADED FILTER STRCC ; '— W - `-

16

1.3- 3 P 	FOIE

The Parallel Canonic 'c' nn sticture for Digital

filter is implemented by expanding the equation (1.10) in

partial fraction form as

D(z) = 	+ 	H() 	... 	(1.33)
i=1.

where, ~, + . 	9Z 1
Hl(

Z)
= 	of 	1 i 	for first

1 + B21 . Z 	order 	... 	(1.34)

4 	+ A . Z--1 + 	. G- 2
or Hi(z) = of 	1 i r 	v 2i _2 for second

1 +B .Z 1 +B .Z 	order ... 	(1.35)

This configuration is shown in Fig. (1 .10) and

consists of a group of lower order filters each operating
on the input signal with the output parallel bank summed _.
up together. The individual second order or first order

.sections can be realized in on, of the direct forms. IF

the Direct structures arc use some elom :nt sharing may be
the

accomplished as was done inLca.scade case. Fig. (1.11) shows

the direct parallel •s tri ctur.o and T, BLE - 1.3 compares their

characteristics. Equations for the parallel structure is

same as that derived for Direct four! structure.

i-

v ! 4

D)R SFR M7' S ES

rr
I

Air

3G

{k)

Ail

4D

t L

•

•

~" t -

I

; 	A.

F !G 1.1' 	F/•RAE L L1 Cl[TE R STRLCTURE'S

17

TABLE - 1.3

PROPERTIES OF . PARALLEL STRUCTURE

CHARACTERISTIC 1D 2D 3D 4D

Time Delay Elements 2N 2N 2N+1 2N+1

Multipliers

Summing Junctions

Signal Distributing Points

4ti+1 4N+1 4N+1 4N+1

N+1 25N+1 N+1 2N+3

2N+1 N+1 2N+3 N+1

1.4 STJIVIIVIARY

The Z-Traansform calculus is the mathematical basis

for the analysis and design of Digital filters. Such Digital:

filters are best understood by emphasizing thFo relations

between the difference equations, the black diagram and

filter response function. Various realization types have

been discussed and the general equations involvod, derived.

Also, a comparison of the different characteristic present

in each structure is made. The second order Digital filter,

a basic modulo for realization of a N'th order structure,

will be discussed in later chapters..

CHAPTER - II

SALIENT FEATURES OF INTEL 8086 MICROPROCESSOR

2.1 INTRODUCTION

Intel introduced its first microprocessor in November

1971. This was followed with tho delivery of 8008 in 1972,

the 8080 in 1974, the 8085 in 1976 and 8086 in 1978. Each

successive, product implementation depended on fabrication

innovations, sophisticated software, and throughout this

development upward compatibility not envisioned by the first

designer was maintained.

The selection of a suitable microprocessor 1 3 depends

primarily on the particular application. since the character-

istics of the various processors are quite different, a

number of factors must be considered in making a good choice.

The selection process involves investigating the software,

hardware and system design of the microprocessor.

In this chapter the salient features of Intel 8086

microprocessor are discussed. The various microprocessor

of the Intel group have been compared in Appendix -IZI for

the selection of this suitable microprocessor.

2.2 SALIENT FEATURES OF MICROPROCESSOR 8086

Intel 8086 201 21 22 introduced in June 1978 is the

first of the high performance, generation of 16 bit micro-

processors. It is impl::m .nt ed in N channel depletion load,

19

silicon gate technology (HfOS) and packaged in a 40 pin Car.

DIP package. The 8086 is able to directly address one mega--

bytes (1024 K bytes) of external memory. The detailed pin out

of the 8086 is shown in Fig. (2. 1) .

2.2-1 FUNCTIONAL PIN DESCRIPTION

1.. AD1 5 - AD0 : 2 - 16, 39, (I/0) Address Data Bus

Time multiplcx ?d ?ii.=mory / 10 address (T1) and data

(T2, T;, Tw, T4) bus,

2. A19/S6 - A16/S3 : 3 5 - 38, (OUT) Address / Status

During T1, used as addr :.ss lines for memory operations.

Lines LOW during I/O operation. In T2, T3, T and T4 status

information is available on these lines. 35 and 34 indicate

which of the se em (relo cation) rUgister is used .(to cans-

tract the ph rsi cal address us^d in the bus cy`cle) . 35 	*

reflects the stats of the interrupt enable flag. S6 is

always LOW.

S 4 	33

0 	0 Extra Sti gm nt (Alternate Data)

0 	1 	Stack Segment

1 	0 	Code Segment or none;

f 	1 	1 	Data Segment

3. BHE/S7 : 34, (OUT) Bus High Enable / Status

During T1 the B,as high enable signal (BHE) is used to

enable data on the most significant half of data bus

GND

AD 14

AC 13

40 12

4011

4010

AC 9

ADO

AD7

AD 6

405

AD 4

AD

402

AD 1

ADO

NMI

INTR

CLK

GND

vcc

AC 15

A16/S 3

Aly ,/54

18 155

419/SE

BH/S7

Mh/MX

RD

RQ/G'0 (HOLC)

Rd!C*1 (HLCA)

LoER 'WR)

S2 	(M: 1C)

Si 	;DT/R)

SO (DEN)

©SO (ALf)

QS' (INTA)

TEST

RE A CY

RESET

FIG. 2.1 8086 PIN DIAGRAM

20

(pin D15 - D5). 37 is a spare status line whose contents

are undefined.

4. MN/MX : 33, (IN) 	Minimum / Maximum mo di

Indicates the system. configuration. When this pin is

grounded tho 8086 treats pins 24 through 31 in maximum mode,

when it is strapped to 5V it acts in ,tho minimum mode.

5. RD : 32, (OUT) Rad

Indicates that processor is performing a memory or I/O

read cycle.

6.. TEST : 23 	, 	(IN) Test

TEST input exam _nod by the WAIT (wait for TEST) instruc-

tion. If the signal gos go. LOW execution continues, otherwise

the processor waits in the ' Idl-c' Cstate.

7. RESET : 21 , (IN) Rest

Causes the pro cisor to immediately terminat% its

present activity and starts oxs cution from FFFFO (H) .

8. G JK : 19 , (INN) 	Clock

Provides basic timing for the processor and bus

cont roll er.

9. INTR : 18 , (IN) Interrupt Request

It is a singly, interrupt request line which can be

ma:&ed internally by software ith the resetting of the

Interrupt enable: flab; status biJ. During th,. interrupt

21

response sequcnc further intorxupts aro disabled. A

single byte is then expected from interrupting device which

is multiplied by 4 and gives the address of service routine

pointer stored from 00000 (H) to 003FF (H) .

10. N171I : 17 , (IN) Narmiaskabl o interrupt

Is a single nonmaskable interrupt which has a

highor priority than the rf askable interrupt request pin and

causos .a typo 2 intcr.~•upt.

1 1 . GND ; 1, 20 	Ground pin

12. VCC : 	40 	+ 5V + 10.

Pin functions which arc. unique in the minimum mode

are defined below.

(1) INTA 	24 , (OUT) Interrupt Acknowledge

Is used as a read strob_o, for interrupt acknowledge

cycle. It is active LOTS, in T', 13 and TW states.

(2) ALL s 25 , (OUT) Address Latch Enable

Is provided to latch the address into the 8282/8283

address latch.

(3) DEN : 26 ? (OUT) Data Enabl e

Is .provided as an output enable for the data bus

transceiver.

(4) DT/R : 27 , (OUT) Data Transmit/Receive

This is needed in minimum mode system that desires

22

to use a data bus transceiver. It is used to control the

direction of data flow through the transciever.

5. M I0 : 28, (OUT) Status line

Is used to distinguish a memory access from an I/O

access. HIGH, on this line indicates a memory operation and

a LOW indicates an I/O operation.

6. WR : 29 , (OUT) 14rite

Indicates that the processor is performing a write

memory or write I/O cycle, depending on the state of the

M/IO signal.

7. HOLD and HIDA 31, 30 (I/o)

Indicates that another master is requesting to take

control of the address and data bus. To be acknowledged,

HOLD must be active HIGH. The processor receiving the `hold'

request will issue HLDA (HIGH) as an acknowledgement. When

HOLD go z:s LOW, the pro ce - nor will LOWer HLDA and the processor

start on its next cycle.

When the 8086 is in the maximum mode the functions

unique to it are described below.

1 • 	QSJ , Q30 : 24, 25, (OUT) 	Queue Status

Queue status valid during the CLK cycle after which

the queue operation is performed. These provide status to

allow external tracking of internal 8086 inst . queue.

23

Q3 	Q50

0 	0 	No operation

0 	1 	First Byte of Op code from queue

1 	0 	Empty the queue

1 	1 	Subsequent byte from queue

2t a2' • 	t 26 - 28, (otrT) Status

Status is used by the 8288 Bus controller to generatd

all memory and I/O access control signals. These status

lines are encoded as

S2 	S1 So

0 	0 0 Interrupt Acknowledge

0 	0 1 Lead I/O Port

0 	1 0 Write I/O Port

0 	1 1 Halt

1 	0 0 Code Access

1 	0 1 Rc ad M mory

1 	1 0 Write Memory

1 	1 1 Passive

3. 	LOCK : 29, 	(OUT) 	Lock

It indicates that other system bus masters are not

to gain control. of the system bus while L0(is active LOW.

It is activated by the ' L0 	' prefix ins: . and remains

active until the corn.plti:-Uion o f next instructio a.

24

4. RQ / GT, R(/ GT1 30, 31, (OUT) Requ. st/Grant.

These are used by local bus masters to force the

processor to rolE'asc the local bus at the end of the pro-

cessor' s current bus cycle. Each pin is bidirectional with

RQ / GTo having higher priority than RG? / GT1 .

2.2-2 REGISTER ORGANIZATION

The 8086 processor contains a total of thirteen 16-bit

registers and nine 1-bit flags: Tha set of registers Fig. (2.2)

can be divided into the following four groups.

General Registers - Thcrs: are four 16-bit general

registers which can bo used as either 8- or 16- bit registers.

The, dual nature of these r : ..Esters permits them to handle both

byte and word quantities with equal ease. They are Accumu-

lator (AX) , Base (BX) , Count (CX) and Data (DX). The X can

be replaced by H or L for referring to high or low order

byte respoctiv--ly.

The AX register is used in arithmetic operations to

hold one of the two operands. The BX register can as used.

to hold an offset addre-ss for computing the effective

address (EA) of an inst r~ ct ion operand. The Cl and LX

registers are used for specific purposes (dedicated general

registers) . Those may be used as scratch pad during the

evaluation of expressions or for holding the shift count in

some shift and rotate instructions.

GENERA, REG.S1ERS

AX AN AL ACC;~M

BX BH 8L BASE

CX CH CL COUNT

OX ^N CE CATA

POINTER ANC INC€X 	REG~STEP
s5 _

SF STACK POINTER

— —I

BP BASE POINTER

S(SOURCE 	INDEX

DI BEST 	INL°EX

SEGMENT REGiSTFRS

15

CS

CATA

STACK

EXTRA

INST. POINTER ANC FL AGS
15 	 0

	

IP 	 INST POINTFR

	

FL AGS 	JO ID 1 1 T 	P I C

DS

SS

ES

0

CODE

FIG.2.2 8086 REGISTER STRUCTURE

25

Pointer and IndF. RLP i st ; ^s - This group consists

of the 16-bit rcgist :x•s S ta ckpointo-:- (SP), Basz pointer (BP)

Source Index (SI) and D Linat±on Inde=x (DI) . Th :s e

rw gisters usually contain offs. t addresses for addressing

within a segment. Thay rduce. the Size of programs by not

requiring each instruction to specify frequcnUly used

addresses. Another important function is that they provide

for dynamic eff o cti v .-address computations. In order to

accomplish this the pointer and index registers participates

in arithmetic and logical operations alongwith 16-bit

general registers.

S_gm::.nt Rf_ ____ -rs - This group consists of four

16-bit registers Cods ScgmF:-nt (CEO, Data -:gm nt (DS) ,

Stack Segment (SS) and Extra S~:.gmcnt (ES). 	Each s gm nt

can be at most 64K bytes in s1zi=. 	A s 	g ifxr..t 	can begin

from any to cation in th ' ms-inory that is diva_sibla by 16

The segment reg± s er , ax used for calculation of

physical. address (PA) . All instruction ft es s are tck an

from the current code segm•.nt, (CS) using the, offset specified

in the instruction pointer (II') register. The (SS) register

points to the current stack segment; stack operations are

porfolm d on locations in this segment. The (DS) points to

current data sgment and generally contains program variables.

The ES contents define the current t extras n. nt, it has no

26

$pacific use although it is usually treated as an additional

data segment.

Instruction Pointer and Flag Registers - The 16-bit

instruction pointer (IP) (analogous to the program counter

in the 8080/8085), is not dirs=ctl r accessible to the programmer;

it is manipulated with control transfer instructions. There

are nine 1-bit flags, six of uhesF C;arry (CF), Parity (PF),

Auxiliary carry (AF) , Zero (ZF) , Sign (Sr) and Overflow (OF)

flags record processor status information of the latest

arithmetic and logical operation and the additional three

flags Direction (DF) , Int: r:r.•upt (IF) and Trap (TF) control

processor operations.

2.2-3 MEMORY ORGAI.yI ZATION

The 8086 can address u.p to 1 Megabyte or 51 2 K words

of memory directly. Logically- the memory is organized as a

sequence of 220 bytes but physically it is organized in two

banks each of 51 2 K bytes Fig. (2. 3) . One bank is connected

to the lower half of th,. sixteen-bit data bus (D7 - Do) and

contains even addressed. bytes. The other bank is connected

to the upper half of the data bus (1 3 - D8) and contains odd

addressed bytes. A spacifi c byte within each bank is selected

by address lines Al - A1 . The most signifi cant address bit

Ao (AD0) and the output signal BEE are used to select

appropriate bytes to be road from or written into the memory.

512 K BvTFS 	 512 K EYES

Ff. P 	 [F F F F 	 FFF FE

FF r- ; t — 	 I 	FFcF(FF~FC

i 	L T_

M BYTE 	 A19 - A l 	D15 - Dg 	` 	 D7 — Dp

6HF'

FIG 2 3 8086 MEMORY ORGANISATION

AO

TRANSFCR (X t1)

A1

TR NrcFR(X +'1,x

Y

07 -DQ 	An
(L -,W) 	 (L 'W) 	A17

Ap

(HIGH)

4(:x' EVf. N ADDRLS') W RC 	FIG 2 4(b) DDC ADDRESS BYTE
TRA NSF E R 	 TRANSFER

TRANSFER X

C~ 	8 	6hE

A19 A s
SECCNC BUS CYC(F

r '❑

—Do

D15 — D8 	(HIGH) 	 A C

(OWE

FIG.2.4(c) EVEN ADDRESS BYTE TRANSFER

FiRST BUS CYCLE

JsJ
D15 -08 	BHE 	 07 --CSO 	An

(HIGH)

(LOW)

ODD ADDRESSING WORD TRANSFER

FIG 2 4'd) ADDRESSING TRANSF ER

27

TABLE - 2.1 describes the use of BHE and k_ combination.
V

TABLE - 2.1

BHE 	110 	 _

0 	0 	One 16 bit word

0 	1 	One byte_ from / to odd address
0

1 	0 	One type- _frog. / to even address

1 	1 	None:

Organization of N bytes of memory is shown in Fig. (2.4) .

The low bank consists of only oven-addr .ss bytes and the high

bank consists of only odd-address bytes.

(1) x word is to be fetched from an oven byte location.

For this BHE Ao = 0 0 ; low byte of word falling on even-

address byte and high byte on odd-address byte.

(2) A word is to be fetched from odd-address. This

shall require two machine cycles. 	In the first, odd byte

shall be road and in the next machine cycle the even byte

shall be read.

(3) A byte is to be fetched from v-n--addres s location.

For this BHE A = 1 0 and data shall be transferred on
O

Do - D7 lines.

(4) A byte is to be fetched from odd-address.

For this BHE A = 0 1 and data shall be transferred on

D8 - D1 5 lines.

The memory can be further logically divided into code,

data, alternate data and stack segments of upto 64 K bytes

each, with each segment falling on '16 byte boundary

(Fig. 2.5).

Certain memory locations are reserved for specific

processor operations. Locations 00000 (H) through 003FF (H)

are, reserved for interrupt operations. Each of the 256

possible interrupts, have their serice routine pointed by

a 4-byte 'pointer element. Following RESET, the pro cessor

will jump to FFFFO (H) . FFFFQ (H) through FFFF F(H) are

reserved for operation including a jump to the initial

program loading routine (Fs =;. 2.6) .

It is useful to think of every memory location as

having two kinds of addresses, physical and logical. A

physical address is the 20-bit value that uniquely identifies

each byte location in the megabyte memory space. Physical

address may range from 0(H) through FFFFF (H) . All exchanges

between the CPU and memory components use this physical

address.

Programs deal with logical, ra t h r than physical

addresses and allow coda to be developed without prior

RESET 	BOOT STRAP

PRO RAM TUMP

INTERRUPT 	PAINTER

FOR TYPE 	255

INTERRUPT 	POINTER

FOR TYPE

INTERRUPT POINTER
FOR TYPE 	0

FFFc F (H)

FFFFG (H)

3FF (H)

3FC(H)

7 (H)

4(H)
3 (H)

OH)

f FFFF- (H)

COCE SEGMEN*

J
XXXXO (H)

64I8

1 t~ 	-

+ OFFSET

SEGMENT RFGISTER 	 {

F[LE

D5

STACK SF G MFNT

LATA SEGMENT

EXTRA LATA
SEGMENT

00000 (H

FIG 2.5 MEMORY ORGANIZATION

FIG.2 6 RESERVED MEMORY LOCATIONS

29

knowledge of wh'ro the code is to be located in memory. A

logical address consists , f a segment base value and an offset

value. For any given memory location, the segment base value

locates the first byte of the containing segment and the

offset value is the distance, in bytes, of the target location

from the beginning of the segment. Segment base and of f_s«t

values are . unsigned 16-bit quantities. Many different

logical addresses can map to the ss physical location.

A physical address is generated from a logical

address by shifting the segment base value four bit

positions and adding the offset. Calculation of the offset

of a memory variable is based on the addressing mode specified

in the instruction; the 'result is called the operand's

effective address (E),

2.2-4 ADDRESSING MODES

Following are the diff :rent ways of calculating

effective address (EA) and are shown in Fig. (2.7) .

Direct Address ing - It is the simplest memory address-

ing mode. No registers are involved; the EA is taken

directly from the da.sp:.l.oement field of the instruction.

Direct addressing is used to access simple variables. The

EA is added to the DS segment, to get the physical address.

(EA) = DISP

(PA) = (DS) * 16 + DI SP

30

Example : The instruction NOV AX , VALUE

specifies that the contents of VALUE are to be moved to

16-bit accumulator. Let address associated with VALUE be

021(H), then the physical address from which the low data

byte will be fetched is

- 1000(H) * 16 + 021(H)

= 10000(H) + 021(H) = 10021(H)

The high byte will be fetched from the physical address

10022(H).

Based Addressing- Here the effective address is the

sum of a displacement value and th content of register BX

or BP. If BP is specified as a base rekister, the BIU is

directed to obtain the op :rand from the current stack segment.

This makes based addressing a very convenient way to access

stack data.

Based addressing provides a straightforward way to

address structures which may bc located at diff'rent places

in memory. A base register can b,̂ pointed at the base of

the structure and .elements of the structure .ddressed by

their displacements from the base. Different copies of the

same structure can be accessed by simply changing the base

register.

31

(EA) 	= 	(Bk/BP) + DISP

for BX , (PA) = 	(DS) * 16 + (BX) + DISP

for BP , (PA) = 	(SS) * 16 + (BP) + DISP

Example : The in, tru ction IMTUL BETA (BX) implies

that the contents of AX are to b.° multiplied by the contents

of (Eli). The (EA) is computed as DISP + (BX) where DISP is the

16 bit address of BETA. The, 32 bit product will be placed in

registers DX (high word) and A (low word) .

Indexed xddrossiM. -' The effective address is calcula-

ted from the sum of a displacement plus content of an index

register (SI or DI, SP or B?). Indexed addressing often is

used to access elements in an array. Also it is assumed that

the operand resides in the current data segment and hence DS

register is used for computing physical address.

(EA) = (IX) + DISP

(PA) = (DS) * 16 + (IX) + DI.SP

Based Index (Indi,rect~ 	 dressi. - This addressing

generates an effective address that is the sum of a base

register, an index register arid a displacem =nt . Based index

addressing is a very .flexible mode because two address compo-

nents can be varied at , x =cution time. It provides a

convenient way for a procedure to address an array allocated

on a star,k. Arrays contained in structures and matrices

(two dimensional arrays) also could be accessed with based

32

index addressing.

(EA) = (BX,/BP) + (IX) + DISP

(PA) = (BX) + (Ix) + DISP + (DS) * 16

(PA) = (BP) + (IX) + DISP +- (SS) * 16

String Addressin , - String instructions do not use

the normal memory addressing modes to access their operands.

Instead, the index registers are used implicitly, when a

string instruction is executed, SI is assumed to point to the

first byte or word of the source string, and DI is assumed

to point to the first byte or word of the destination string.

In a repeated string operation the CPU automatically adjust

SI and DI to obtain subsequent bytes or words.

I/O Port Addressing - If an I/O port is memory mapped,

any of the memory operand addressing modes may be used to

access the port. String instructions also can be used to

transfer data to memory-mapped ports with appropriate hardware

interfac .

Two different addressing modes can be used to access

ports located in the I/O space. In direct port addressing,

the port number is an 8 bit immediate operand. This allows

fixed access to ports numbered 0-255. Indirect port address-

ing is similar to register indirect addressing of memory

operands.. The port number is taken from register DX and

can range from 0 to 65,535.

q/m 	DISP_Al 'EMFNT

DIRE: T AD: R(STING

T -

OPCODE I M0C R/M

i±tjrT E A
j•

REGISTER INDIRECT ADDRE.SS;NG

F-0PCODE 	I MOD R/M 	CtSPL AC TMeNT

L1I 1

1 ._.

BP

BASEL ADDRESSING

CONTD.

r ococ 	M 	'7 M-1 Y— i' S;: [AC t

INDEX i 	rbc SS1N

OPCO QE MO C R/M 	J 	DrSPLAC EMENT

Bx 1

51

L: _1.
INDEX ADDRESSING

C OPC D~

_I L 5 - -J 	 -.-< SOURCE EA•

- r

	

CI 	 — .[FS 	IO TINATN EA ` 	 J 	 L

STRING OPERANf1 ADDRESSING•

OPCCCE I DATA

PORT ADDRESS

DIRECT PORT ADDRESSING

OPC ODE

DX 	 — 	PORT ADDRESS

INDIRECT PORT ADDRESSING

FIG. 2.7 CALCULATION OF EFFECTIVE ADDRESS

BYTE I 	BYTE 2 	BYTE 3 	BYTE 4 	BYTE 5 	BYTE 6

OW 0 'F~ ~ HIGH " iSP/ I LOW 	HIGH

DATA 	ATA 	I DATA 	~ DATA
OPC OL~F D MOAF~RXM. 	 _ ~

—REGISTER OPERANDS/REGISTER TO USE IN FA CALCULATION

REGISTER OPERAND / E9TF NSION OF OPCO(`c
A

i 	 REGISTER MODE /MEMORY MODE WITH EFSP LENGTH

WORD/BYT*t OPERATION

DIRECTION IS TO REGISTER / DIRECTION IS FROM REGISTER

OPERATION C INSTRUCTION) CODE

FIG.2.8 TYPICAL 8086 MACHINE INST. FORMAT

33

2.2-5 INSTRUCTION SET

The 8086 instruction set is divided in six groups

(1) Data Transfer 	(q-) String Manipulation

(2) Arithmetic 	(5) Control Transfer

(3) Bit Manipulation 	(6) Process ;or Control

These instructions treat different type of operands

uniformly. Nearly every inst -action can operate on either

byte or word data. Register, memory and immediate operands

may be specifiea interchangeably in most instructions. The

instruction 'set can be viewad as existing at two levels; the

assembly level and the machine level. These two levels

address two different requirements; efficiency and sitplicit.y

The numerous forms of machine level instructions allow these

instructions to make very efficient use of storage. The

assembly-level instructions simplify the programmer's view

of the instruction set.

To pack instructions into memory as densely as possible

the 8086 CPU utilizes an ;fficient coding techniques.

Machine instructions vary from one to six bytes in length.

One byte instructions, Wr iich gens rally operate on single

registers or flags, ar: simple to -J d€ntify. The key

to decoding longer -instructions arP in the first two bytes.

The format of these by-i;ss can vary, but most instructions

follow the format shown in Fig. (2,8).

34

The first six bits of a multibyte instruction generally

contain an opcode that identifies the basic instruction type.

ADD, XOR, etc. The following bit, called the D, fir=ld,

generally spr-cifies the ' d.ire ction of the operation

1 = the REG field in the 2nd byte ideutifi-,s the
destination op.- rand.

0 _.the REG fic-ld identifies th z source operand

The w field distinguishes between byte and word operations

0 = byte, 	1 - word

One , of the three additional single bit ficlds., a,

V or Z appr;ars in sonic, instruction fomuats. a is used in

conjunction with W to indicat :. sign ext-,..nsion of imu.ediate

fields in arithmetic instructions. V distinguishes between

single and variable bit shifts and rotates. Z is used as a

compare: bit with the zero flag in conditional repeat and

loop . instructions. All single bit fiiold settings are

suinmari z d in TABLE 2.2.

TABLE 2.2
SINGLE BIT FIELD ENCODING

FIELD VALUE FUNCTION
S 0 No sign extension

1 Sign extension 8-bit immediate data to 16-bit
W 0 Inst. operates on byte data if w =1

1 Inst. operates on word data
D 0 Inst. source specified in REG field

1 Inst. Destination specified in REG field
V 0 Shift/rotate count is one

1 Shift/rotate count specified in OX register
Z 0 Repeat/Loop while zero flag is clear

1 Repeat/Loop while zero flag is set.

35

The second byte usually id. ntifl s the instra ct .on' s

op' rands. The mode (MOD) fig: ld indicates whether one of the

operands is in memory or whether both operands are registers

TABLE - 2.3. The register (REG) field identifies a register

that is one of the instruction operands. 	TABLE -- 2.4.

In a number of instructions, chiefly the imm=;z .at, -to-mmory

variety, REG is used as an extension of the opcode to

identify the typo of operation. The encoding of the. R/M

(rogistor/memory) fi -ld in T BLE - 2. 5, do p =nds upon how the

mode fi.=ld is sot. If MOD = 11 (register too-register mode),

then R/M id.c ntifie s the second register operand. If 1``10D

selects memory mode, then. R/M indicates how the effective

address of the memory operand is to be calculated.

Bytes 3 through 6 of an instruction are optional

folds that usually contain the displacement value of a

memory operand and/or the actual value of an iiruncdiate

constant op :rand. Ther may be one or two d ..splacement .

bytes. The MOD fi !ld indicates how many displac rent byte

art present. Following Inti ,:-1 contention, if the displacement-

is two bytes the most significant byte is stored second in

the instruction. if the displacom.c:nt is only a single byte

the 8086 automatically sign-extends this quantity to 16

bits before using the information in further address

calculations. Taniediat : values always follow any displace

36

TABLE - 2.3

MODE FIELD EF CODILG

CODE 	 EXPLANATION

00 	emory mod.,, no displace ent follows
(except whc n R/M is 110)

01 	Memory mods:, €3--bit displac :m.nt
follows

10 	Memory mode, 16-bit displac' ne'nt
follows

11 	Registzr mode., no di-placan.ont

TABLE- 2.4
REGISTER/FIELD ENCODING-

REGISTER 	i = 0 	W = 1

000 , AL AX

001 C1 CX

010 DL DX
011 B1 BX

100 AH SP

101 Oh BP
110 DH SI
111 BH DI

O LO LO LO

37

s-
A

e-
A

r
A

--
A

+ + + +

O
~-

H u H A H cc H A LO .-
A

\O .-
A

L
A

LO t--
A

A + + + + + + + +

pW p ca A ~ pq
O H

•~ + + + +

lxi
cc

+ + . . . + + +

H `

W
FTS

O
O S1 A •• o) Q `/ __ /1 r

E

W t~ S-h, ID

O

O
-
O

0
t-

-
-

0

0
r

0 r-
O

N A N pq W zrz P-i pa F--i
zf)

H
A

tY
O O
O O

O
0 0

O O 0 T

H

mont values that may be prosnt. Thi: second byte of a two

bytt immc diat . value is th,: most significant.

Sonic of th; instructions from tho instruction sot

given in Appondix-IV arc oxplain- d here with examples.

The Data Transfer Groin includod MOV, PUSH, POP,

G, IN, OUT, LOAD and STORE instructions.

Example : 	II0V 	CX, 	TOP (BX)

This instruction shall move thy; contents of TOP + (BX) to

the CX register and, will occu.py 4 bytes.

w = 1, it is a word operation

d = 1, the destination is a register

mod = 10,

DISP = disp. high, disp. low

destination register CX = 001

r/m field = 111

EA .= (BX) + (TOP) address

PA = DS * 16 + (BX) + (TOP) address

o 	00 	10 ;i ii io 	00)
i 	

+ Dtsp 	J _Disr.

d~ j rood 	Jest. 	,-m

Ck

The Arithmetic Group includes ADD, ADC, DEC, INC,

MUL, IDIV etc. instructions which can operate on signed and

unsigned numbers.

39

Example : 	ADI AX , OO5i(H)

This is an add immdia 	ho v1u 005P to AX

registr and cccupilas 4 bytos.

S : 1.4 	01 	16 bits of immediate data froia

operation

mod = 11,

r/m is rgis1r fi€ld

r/m = 000, 	 register (AX) = 000

_Il 	
1•

00 000:oil I 	000 ! 000

L 	d 	de.

	

R7 	
je*4

Th 	 includes AND, OR, NOT, ROTATE,

SHIFT, TET iristmctiom3

Examp1-c 3.1m ALP11ALPHA

The contents of mmioiy location ALPHA (1

	

shift' b 	wher.r2is the shift count stored in th

registcr.

It occup±e. 4 conscutiv bytt:S

	

V 	1 	as the ahfting is to be doneCiY times

W = 1 	word operation

mod = 00
EA = disp. high; disp. low.

r/m = 110

— --~., t/ w 	 --__

I of oo 	OU 	oo i i o 	D 'sP

-v

The Str n ,.Man ..?j l.ation -roux is a 3et of very useful

inbtruction used for moving blocks of data. NOVS Fig. (2.9)

is a single byte instruction with th_a least significant bit

(the w-fiuld) specifying whether a word or a byte is to be

moved.. The sourc = is picked-up from the address specified

in SI register and the destination from the address spocifie,c1

in the DI registers. After transferring :he source byte (s)

to dost i.n.atiouu, the I and DI index registers are incrernented/

decr.c snted by 1 or 2 depending ending upon whether W - 0 or 1.

The direction flag DF is used to determine whether the index

register arc to be d crimc:ntod (DF = 1 by STD) or incremented

(DF = 0 by CLD) after data has been moved. If a REF (single

byte) instruction pri cedes the 2'i0V6 instruction the lattor

is executed repetitively while the CX register remains

non zero. Each time the 1'MOVS instruction is executed, CX

is decrem:;nted by 1, and if not zero, the ;instruction is

executed again. Four more useful instructions for strip;

manipulation are GT'IPS, SCAS, LOTS, STOS.

T 	
C x #N
	 RPP

ti

Li:
	

MOYS~

NO

WORD

+5
YES 	 NO

G' 0 	,

DI ---2
S-'-- 51-2

S: -r- sI -2 	5

1
C X -~-- C X -1

" YES

NEXT 	INST

IG 2 9 STRING MANIPULATION INSTRUCTIONS Rr p

41

Example 	at])

MOVS 	NsEir1, 	OLD

W - 1 ; transfer word.

The, words starting from location OLD shall be transfcrrE.;d

Lo locations starting from NEW. Tho ' a` , a instruction

pry: coding the. MOVS shall r::xpeat till CX 	0.

For 	OLD(LA) 	_ (SI) * 16 + DISP

and 	N 1(Eli) 	= (DI) * 16 + LISP

The Control Transf or f~,rp''o camp ri s os of CALL, .RET,

ii~1P, LOOP, INT instructions.

Exampl . : 	LOOP 	iTUIIMER

Docr:msnt Cis by 1 and transfer to]ftJ BER if CX ,A 0.

In this cas e, tho 16 bit displac~.xn.:.xnt is calculated by

oxto:nding 8 bit displ.ac,.m ,: nt. This is a two byte instruc-

tion so can only loop + 128 bytos from -uhc. pr. spilt location,

otherwise use JMP.

Th-_: P ro cossor Cot: -rol Croup has instructions for

carry, direction, and interrupt -'lags s HALT, WAIT, LOCK

and 13S C.

Example

LOCA ,

AL'1 	NU",' ' 	FB8C: (H)

42

Th;; bus shall be locked till the end of the instruc-

tion. No external device shall be able to take over the

bus till ADI is cx.ecut9.d.

2. S SUTiliARY

In this chaptera study of the, sale cent features of

Intel 8086 mi croprfo ccssor has boon carried out in considera-

bl'' detail. This study indicates that th: 0PiT of 8086 is

more powerful than any microprocessor previously off'oorc::d. by

Intal Group •8086 is totally s. now design and has a power s: t

of instructions discussed in Appendix - IV. Memory to

memory string operation is available for e fi.cient character

data .manipulation, hence useful for reducing the complexi--

bility of -uhf;: program. The various types of addressing modes

are useful in solving many problems. The hardwiro multipli-

cation cation and division of signed. and unsigned binary numbers are

quit: powerful instruction S.

In the next chapter use is made of the 8086 Assembly

language to impl ;went the Digital filter structure described

earlier in Chapter I.

aiAPTER - III

REALIZATION OF DIGITAL FILTERS USING SECOND ORDER
1D STRUCTURE AS BASIC MODULES

3.1 INTRO DU CTI ON

Filters have been implemented in hardwired logic,

special purpose computers and general purpose computers. Tho

high speed 16-bit microcomputers with built in multipticatioxn

hardware has created a new option for implementing Digitalfilte1

23, 24 with high sampling rate. In this chapter the Intel

8086 microcomputer is used to implemont th individual seconcl

order ID module. Also the Intel 8086 is used to implement

Digital filtors by cascaded. and paralleled second order module.

3.2 WHY A SECOND ORDER MODULE

The three basic forms for realizing linear Digital

filters of the Recursive typo are the Direct, Cascade and

Parallel forms. As far as the stability quosti n gc the two

variations of the Direct form Fig. (1.3) and Pig. (1.5) are

entirely equivalent, with the configuration of Fig. (1.3)

requiring _ fewer delay elements. The stability result derived

indicates clearly that the, coefficient accuracy problem will tae

by far the most acute for the Direct form realization. For

any reasonably complex filter with step transitions , between

pass and stop bands the use of Direct foie should be avoided.

The choices between the utilization of either the

cascade or parallel forms is not clear out but depends

X(z)
	

u
	M(z)

T1 rt _ -
•8,

82

M(z; 	A 	 r'z) 	I 	Vfzl

+7_ I

-- - --°--~- 	T2
Z -1M(z) 	A,

Z

Z -2 M(z) 	A2

FIG 3.1 SIGNAL FLOW DIAGRAM IN Z-DOMAIN OF A
SECOND ORDER DIGITAL FILTER

somewhat on uho initial form of the continuous filter and on

the digitilization chin f: 6 used. In any case the denom:i.nnatoY

of D(z) must b known in facto~'e:c. form. In order to avoid

coefficient sensitivity problems, the transfer function D(z)

of equation (1 .3) is implr~mentcd. as a cascade or parallel

combination of second order modules.

3.3 SECOND ORDER DIGITAL FI.DTE . - 1 D STRUCTURE

Second or di r Digital filtor has tho form

z

A + Al .Z 1 + A
D

2 .Z-2
() r 	 ... 	 (3.1)

1 +B1 .Z +B2.Z

and can be represented by any sorm explained in 3oction 1.3-1

with N = 2 .g. (1 .7) . In this chapter 1D structure is speci-

ficaily chosen for explanation and implementation using Int l

8086 mic;oproccssor instructions :t.

3.3-1 MATFIMM 	DERIVATION

The Transfer function on of second or d c.•r Digital filter

is given in equation (3.1) . Introducing Sri intermediate

variable T'7(z)

D(z) = 	t z•X z 	(3.2)

T her .for :

Y 	M1 z 	A + A . Z-1 + AG . ZT
 1 + B . 	_2 Z +B2.Z

45

Equating the numcrator and denominator s~.paratly

M z 	= Ao + x~Z~ + A2.Z"2 	... 	(3.4)

and 	M Z 	= 1 + B1 .Z 1 + B(.Z 2 	.•.. 	(3.5)
}

From equation (3.4)

1(z) = A0.M(z) + Al ..Z 1 .i1(z) + A2. Z 2.M(z) ... 	(3.6)

and from t quation (3.5)

M(z) = X(z) - B1 . Z 1 .N7(z) - B2. Z 2̀.N(z) 	... 	(3.7)
Equations (3.6) and (3.7) in time domain are

y(k) = Ao .m(k) + Al .m(k-1) + A2.m(k-2) 	... (3.8)

m(k) = x(k) 	- B1 .m(k-1) - B2.r(k--2*) 	... 	(3.9)

Equations (3.8) and (3.9) clearly show that m(k) is to be

found out before y(k) is calculated.

Lot T1 = -B1.m(k-1) - B2.m(k-2) 	... (3.10)

and T2 = 	Al .m(k-1) + A2.m(k--2) 	 .. (3.11)

Equations (3.8) and (3.9) becomes

y(k) = Ao.m(k) + T9 	 ... 	(3-.1)

m(k) = 	x(k) + T' 	 ... 	(3.1)

Equations (3..6) through (3.13) define first direct structZare

1D, for second order Digital filter. Fig. (3.1) is the sigro.L

flow diagram in Z domain for the second order Digital filter

in 1 D form, and uses these equations. This signal flow

diagram can be used to implement, through hardwired logic a

second order Digital filter using summers, multipliers and two

delay elonments 4'8.

It is to be. noted that the int<erm3diate variable i1 and

I2

depend on the previous samples and therefore can be evalua-

ted in the interval (K-1) T •'. t KT and shall be available bofoYe

KT sampling point. The output •y(k) may rapidly be calculated

upon the receipt of input x(k).

3.3-2 ALGORITHM FOR IMPLENTATIOi'1

Equations (3.6) through (3.13) can also be used for

obtaining the algorithm for the implementation in a micro-

processor. The information can be grouped as follows

OUTPUT m(k) = x(k) + T1 ... (3. 1 3)

y(k) = A0.m(k) + T 2 	... 	(3.12)

DELAY 	 m. (k- 2) ' °-•~- 	m (k-1)

m(k-1) * 	m(k)

PRECALCULATIONS 	T1 - -B1 .m(k-1) - B2.m(k-2) ... (3..10)
in the interval
(K-1)T 4 t <KT 	T2 = Al .m(k-1) + A2.m(k-2) ... (3.11)

It is to be noted that the above algorithm when

implemented gives the maximum sampling rate possible in a

microprocessor.

47

3.3-3 SOFTWARE PROGR, J1' USING INTEL 8086 INSTRUCTI01J ST

The flow chart rcpr sonting the process of 1 D Stricture

derived above is shown in Fig. (3.2). Steps involved are

(1) Initialization

(2) Input X(k)

(3) Compute Mo and Y(k_)

(4) Output Y(k)

AID, D/A c env rters
a`a.d all varlablr=s.

y From A/D converter.

9 To D/A converter.

(5) Perform Time: Delay

(6) Compute T1 and T2 	; Precal. culation of T1 & T2.

The Assembly language software program is give in

PROGhk ''.--3.1 . The following salient features of the software

program written are to be noted.

1. Input/Output are connected through A/D and D/A

converters for M:mor'y Mapped I/O operations.

2. The value of X(k) is inputed from A/D converter

through CPU initiated Polled I/O transfer.

3. The value of the constants A0, A1 , A2, B1 and B2

are stored as half values. This is explained in d stail in

Appendix - V. Thus the VALUE STORED = L' Value' * 214 +

where ' x _: means largest integer smaller than or equal to X.

'Value' in the, paranthesis is the value- of the constant which

is assumed to lie between -1 and 2.

START

INITIALIZE A/D 	D/A CONVERTER

AND ALL VARIABLES

, Al, A2, TI ,T2

IN PUT 	(X)

FROM A/D CONVERTER

COMPUTE 	Y 	-~

MO=X+T1

Y_ AQEMQ!-rT2

_Iii_______IIi_-
OUTPUT (Y)

TO D/ CONVERTER

liIIL___
 PERFORM TIME DELAY

M2 a 	Mt

Mt s 	Mfg

PREPROCESSING CALCULATIONS

I 11 = —(B1 * M1 -1- B2 * M2)

T2 	All* Ml +AZ *M2

L 's

NO 	PROCESSING 	YES
TIME 	--~--

0 V E R

FIG. 3. 2 FLOW CHART OF SECOND ORDER M(

4. This program is written exclusively for second orde"/

Digital filter. Once started it continues to sample input X(k)

at maximum sampling rate and outputs Y(k) immediately there-

after, this continues till the processor is instructed to stop.

This is done through an input PORT4.

PROGRIJVI - 3.1

FILTER SECOND ORDER 1 D STRUCTURE

9 INITIALIZATION CLEAR MO, Mi, M2, Ti AND T2

CLD
NOV 	AX , 9 0 ; CLEAR ACCUMULATOR
NOV 	CX , I 6 9 S`2OPE 6* N IN CX REGISTER

DI Mo 	9 DI POINTS TOWARDS ADDR LOC M10
REP 	y STORES CONTENTS OF AX

• STOS W 	 9 IN LOCATIONS

p INPUT X FROM A/D CONVERTER THROUGH POLLED I/O TRANSFER
9 A/D CONNECTED FOR MEMORY NAPPED I/O OPERATION

CONT : 	NOV PORT3 , AX 9 ISSUE START CONVERSION PULSE
TO A/D CONVERTER

IN-LP 	NOV AX , PQRT2 READ 'BUSY' SIGNAL FROM A/D
AND AX 	8ØØØ(H~ ,
JZ IN-LP 	9 WAIT UNTIL READY
NOV AX , PORT1 	9 X IS NOW IN A/D CONVERTER

COMPUTE OUTPUT SAMPLE Y
;. NOTE THAT ADJUSTMENTS ARE NECESSARY SINCE CONSTANTS
g ARE STORED AS HALF VALUES

OUTP-1 D.: ADD AX , 	Ti 	; MO IS NOW IN AX : 	X + Ti
NOV MO , AX 	; STORE Mo IN ITS LOCATION
IMUL AO 	9 MO * 4/2 IN DX, ice:
SAL DX, 	1 	; MO*AO IN DX
ADD DX,, 	T2 	9 A0 * MO+T2 IN DX = Y
MOV AX ,DX 	y YIN AX

9 OUTPUT Y IN .X TO OUT PORTO , PORTO BEING THE ADDRESS
ASSIGNED TO D/1-i CONVERTER IN MEMORY NAPPED I/O MODE

NOV 	PORTO , AX

49

; PERFORIN DELAY OPERATION SO THAT M2 	Ml AND 1 4- MO.

DE.LjiY-1 D : LEA DI , T1-2 	y DI POINTS TO M2
LEA SI , I~i2-2 	; SI POINTS ,`0 Ni
NOV CX , / 2 	y COUNT DATA MOVE
STD 	 SET D FLAG FOR AUTOD.ECREijiENT
REP
T0V b1 a
OLD 	 9 CLEARS D PJ AG FOR AUT- If Gd12t',ENnJi

PREPROCESSING CALCULATIONS BEGINS HERE TO CAL CC LATE Ti AND T2
Ti = -(B1 * Ml + B2 * M2), T2 = Al * Ni + A2 * M2

PRE-1D : 	LEA SI , Al
LODvi

ipm Mi
MOV BX , DX
LODW

IMUL M2
ADD BX , DX
SAL BX , 1
NOV T2 , BX
LODW
IMUL Mi
MOV BX , DX

LODW
IMUL N2
ADD BX , DX
SAL Bpi , 1
NOT BX
INC BX
MOV Ti ,BL

SI POINTS 'i'0 COEFF Al
Ai/2 IS LOADED TO AX AND
SI - SI + 2
Al * M1 /2 IN DX, AX
SAVE Al * M1 /2 IN BX

9 2/2 IS NOW LOADED TO AX
AND SI -c" SI + 2
A2 * M 2, 2 IN DX, AX
T2/2 I S NOT IN BX
T2 IS NOW IN 3X
STORE NEW VALUE OF T2
B1/2 IS NO xT IN AX AND SI.— SI+2
B1 * M1/2 IS IN DX, AX
SAVE B1 * if1/2 IN B3I
B2/2 IS IN A., NOW

9 P12 * B2/2 IN DX, AX
-Tl/2 IS IN BX
BX THEN CONTAIl\TS -T,
NOT AND INC I1\TSTRUC'TI0" S
TOGETHER 1, EG.1.~TES BX, SO Ti IN BX

9 STORE NEW VALUE IN Ti

IT IS ASSURED INPUT DEVICE PORT 4 SHALL CONTAIN NO FFFF IF
PROCESS CONTINUES', OTHERWISE STOP.

NOV AX , PORT4
NOT AX
JZ CONT

1.H ALT

50

3.4 CASCADE STRUCTURE OF K' TR ORDER DI GI TAD FILTER
--- N SECOND ORDER 1D MODULES IN CASCADE

In order to avoid coefficient sensitivity problems, the

Digital filter ''Transfer function is implemented using a cascade

of second order modules.

N
• (A 0 + Al i. Z-1 + k21. Z-2)

1=~ 	 •.. 	(3.i)
N

(I + B1 i . Z 1 + B2i. Z `)
i-1

where N is the smallest integer greater than or equal to

K/2. If the numerator and denominator factors are paired and

the modules ordered in cascade, then

N

	

D(Z) _Hi(z) 	 ... 	(3.1 5)
i=1

A +A .Z-1 +A .Z-2
where 	I,i(z) = 	of 	1 i 	 1 	2i

	
.. . 	(3,16)

1 	+ B1 . Z 	+ B2i. Z

Equations (3.14) and (3.15) are the same as discussed in

Section (1.3-2). The problems encountered in pairing and

ordering in cascaded second order modules has been extensively

studied in the literature 26, 27, 	ich provides guidelines for

designing filters.

The cascaded block diagram in Z-domain for equation (3.1)

is shown in Fig. (3.3). The signal flow diagram for i'th

cascaded block is shown in Fig. (3.4), this is similar to

Iwr 	! ,' •1119 ~~. 	
... {"_'j"'S•' ~i.0'Rf A~' yAA~q~.. T ~•,.....~akriLW

' 	+ 	'..1 x' 	 - a 	r7 z; 	 x'z) 	t 	Yitz' 	 xN{z 	s t n ~N~z', Y(z)

•
r 	r 	 0 	 81 ~C~t 	 HOCK

FIG 3 3 BLOCK E HAGRAM OF N-STAGES IN CASCADE

	

* (z' 	t 	Mi(z) 	I 	 M1(z) 	V(z) 	i 	Y,(z)

0

Ti{

Z -'M 1 (z)

FIG.3 4 SIGNAL FLOW DIAGRAM IN Z- DOMAIN FOR i th
CASCAr)E T BLOCK

51

Fig. (3.1) except for introducing 'i' for i ' th block i. dent i--

fi cation, which impl ernent s equation (3.16).

3.4-1 ALGORITHM FOR i -I X70 DULE

Using the equations derived from Section (3.3) , the

following equations can be written for i' th stage.

OUTPUT 	mi(k) - xi(k) + T11 	... 	(3,17)

y1(k) = ~oi •ini(k.) + T2i 	... 	(3.18)

DELAY 	: mi (k-2) -Cz mi (k-1) 	... 	(3.19)

91i(k-1) -E-- m. (!i) 	... 	(3.20)

PRECI~I,CULATION: T1 . = -B1 . .mi (k.-1) - B21.mi(k-2) .. (3.21)

= A1i ,mi(k-1) + B2i .mi(k-2) , (3.22)

These equations are valid for all ± = 1 to N.

3. 4-2 MEMORY ORGANIZATION

From equations (3.17) through (3.22) for a.i-, i = 1 to N

it is obvious that coefficients (Aoi, Ali etc.) , delayed value.

of the intermediate variables (mi(k), m. (k-1) etc.) and tempo•

rary storage variables (T11, 	T2i etc.) are to be stored in the

R.k~1 memory interfaced with Intel 8086 microprocessor. 	They ave

to be arranged in a particular way so that the String Manipul&--

tion instructions can be effectively used. The arrangement

is shown in rib. (3.5).

N

j

1i

SZ $. -.

~ + r

?A1

12

N

,2

N 	 J

T1

A % -`-AWi 	_ _
A 02

r s •

• a

I

A a'v

FIG 36(a) ME MCRY ORGAN ZAT:ON OF
CONSTANTS AO1 COEFFICIENTS

-- — - - 1

A21 IIIII- 'St 	STAGE
--I CONSTANTS

E~ Z,

•

Ap

An
i t h STAGE

- 	_ CONSTANTS
Bt1

B2, -
I

- 	-
A?n, + Nth STAGE

CONSTANTS

B2N

TZ

3 5 MEMORY ORGANIZATION OF FIG.3 6(b)MEMORY ORGANlI~'.ATLON; CF
VARIAB-FS 	 CONSTANTS COE FFIC LENTS

Ali>A2, ,B,i , 82~

52

The displacem. nt variable MO initially points towards

NØ1 with index zero. After performing the desired calculatioTT

the index is incremented by two and by the index addressing

modes available, the pointer is changed to NØ2. Thus MO

pointer points to m1(k) of all the cascaded stages, i = 1 to

Similarly' N11 is the displacement pointer initially pointed

towards mi(k-1) of all the stages, i = 1 to i . This follows

immediately after N values of N. Soon after N values of

mi(k--1), the storage of second delay values mi(k-2) should

start. M2 is the displacem;ant pointer address mi(k-2) ,

i = 1 t6 N. Thus (M2 - 2) gives the address of the last

location of first delay storage which stores m1,1(k-1). Ti

is the pointer for temporary storage T1 , i = I to N and

this follows soon after the second delay storage values.

Thus Ti - 2 gives the address of the last location of second

delay storage which stores mN(k-2) . After all T11 are

stored., T2i variables area stored consecutively starting

from T2 displacement address.

Fig. 3.6 giv yes the memory organisation for constant

coefficients. These arc stored as half values as explained

in Appendix - V.

Note that by properly loading SI and DI registers with

proper starting indices, the pointer d~ splacemcn_t address

can be used alone with inch.xed addressing modes to identify

53

any address in the corresponding pointer blocks. For

Example, AO pointer address can point to any address AØ1

to AON. Similarly Al pointer address can address all th-

constants of N stages (Fig. 3.6b) . Smdlarly, :12 pointer

address can bti used along with index addressing modes to

identify all the addresses from M21 (HN2) to Id2N.

3.4-3 IDENTIFICATION OF DIFFER' NT SUBROUTINES

The operations involv•Yd in the cascaded modules can be

broken up into different parts giving rise to the following

subroutines.

(1) SUBROUTINE INITI LIThTION called !!,IT-1 D.

This initializes moi, m1 i , m2i, T11, T2i locations

by clearing all the memory locations given in Fig. (3. 5) .

(2) SUBROUTINE INPUT called IT1P-1 D.

•As explained earlier CPU initiated Polled i/O transfer

is used for inputting X(k) and storing it in AX register

through Memory Mapped I/O connc.;ction.

(3) SUBROUTINE OUTPUT called OUT-1 D.

This calculates equations (3.17) and (3.18) for all

i = 1 to N. This subroutine, is entered only after passing

X(k) value in {;X register and the number of stages N in CX

register. The calculated valine Y(k) of the last stage is

returned in AX register when the subroutine is executed.

54

(4) SUBROUTINE DELAY called DEL-1 D.

This subroutine implem<:nts the transfers given in

equations (3.19) and (3.20) for all i = 1 to N. The String

ivianipulation block move instructions (REP NOVS) is vary

useful here.

(5) SUBROUTINE PREPROCESSING called PRE-1 D..

This subroutine calculates all the tempprary storage

values T1 . arid T21, 	i = 1 	to N for f ach sampling period and

updates the information during (K--1) : t ! KT. 	again String

lanipulatlon instructions and LOOP instruc tio::l simplifie s

the software program to a very gr;.-at extent.

3.4-4 SUBROUTINE FOR IMT aLI Zr TI01

The R.T.L. (Register Transfer Logic) flow chart for

initialization subroutine is shown in Fig. 3.7, and the

corresponding subroutine: program; is given in PROGRA N1 - 3.2..

In PROGR a.N - 3.2 the String; anipulauion instruction STOSW

along with REPeat instruction is used to implement the last

three blocks of the flow chart. Thus, REP STOS clears

all the memory locations Mo to N1011T, Ni to N1N, M2 to N2N,

Ti to T1 N and T2 to T2N. Ong: more block of N word. locations

will also be cleared as 6*N hao boon stored in CX register

N should bs known, and 6*N should be loaded into the CX

register before clearing she m..mory l.o cations.

M l C'
Ui ---- ^ + 2

J

E LA T E R

Ax -• 	C

DF LA G

FIG .3.7 R. T. L. FLOW CHART OF SUBROUTINE INITIL IZATION -ID

55

PROGRAM - 3.2

I I T--1 D 	NOV AX , , 0 	g CLEAR AR A 00` UZ AT OR
MOV 	OX , , 6*N ; STORE 6*N IN CX
CLD
LEA 	Di , MO

	9 DI POINTS TOvJjf.DS I 1 O
REP
STOSW
	 STORES OOT TENTS OF AX

T \T LOCATIONS
WM

3.4-5 SUBROUTINE INPUT - 1 D)

Here, it is assumed. that the I/O operation is Nemory

Mapped, i.e., I/O devices may be placed in the memory space.

An advantage of .1emory-Napped I/O is that it provides addi-

tional programming flexibility.

A/D converters are devices that convert analog input

data into digital form. The block d3iagram of a tristate A/D

converter is shown in Fig. (3.8a). The analog 	voltage

is converted into its 1'6-bid equivalent digital output. The

output appears at the OUTPUT terminals only when Output-.EnabJ :

goes LOIN from HIGH. When Output-Enable is LOW the 16 output

terminals are in tristate condition. Start-pulse is a

control input terminal, when it is LOW the A/D converter is

dead — not working and when. this Start-pulse goes from HIGH

to LOVE the A/D converter starts the conversion process. The

A/D conversion is not instantaneous and takes om,3

B& SY

1 	t,6
tel_ l SE

PUT
,Bl t:

A/ CBNVFRTER

START I

BUSY 	 tc~

OUTPUT
ENABLE

~DELAY

(a Block diagram 	 (b) . 1ming d,agram

FIG 3 8 A/C CONVERTER

ISSUE START PULSE

INPUT BUSY

5=1 INO

FIG.3 9 410 OPERATION IN POLLED I/O CONDITION

56

During the conversion process the A/D converter is said to

be BUSY and is indicated by Busy--control output signal. This

BUSY is normally HIGH goes LOW at the start of A/D conversion,

remains LOW for T tc' sec., till the conversion is complete

and the required data is ready for. transfer.

To perform the operations as in Fig. (3.9) different

signals of Fig. (3.8b) are to be issued by proper interfacing

of Fig. (3.Sa) of A/D converter with the given microprocessor

This is shown in Fig. (3.10) and the corresponding subroutine

program is givdn in PROGR1j,1 - 3.3. Twenty-bit address bus is

got by making use of 8282 latches (3 Nos.) . The ALE issued

out o microprocessor latches s the address in first (T1) stat

The 8282 propagates the address through to the outputs while

ALE is high and latches the address on the falling edge, of

ALE.

PROGRAM - 3.3

INP-1 D •: 	NOV PORTS, AX
IN-LP o 	NOV AX , PORT2

AND XX , §00O(H)
J7 IN-LT
NOV AX , PORT1
RET

ISSUE START O3 VERSION PULSE
READ BUSY SIG.iNNAL FROM A/D

WAIT UNTIL READY
9 X i NOW IN A/D

s
W

z
0 U

0 LL
F-

U tx
U
C7
Z

LL

cr

W
z

0

U-

Al

3.4-6 SUBROUTINE OUTPUT - 1 D

The R.T.L. flowchart is shown in Fig. (3.11) and the

corresponding program is given in PROGRAM - 3.4. The foll.owig-~

points are to be noted while reading the flowchart.

(1) X(K) is passed in AX register before onteri:lg

this subroutine.

(2) N, the number of cascades second order modules,

is passed in CX register before entering the subroutine.

(3) The coeffi cient s are assumed to be arranged as

shown in Fig. (3.6a) and stored as half values as explains d

& 	 in Appendix - V.

(4) M/1, Ml, M2, T1 and T2 pointers points to the

first address of the corresponding block, Sixteen bit opera-

tions are assumed.

PROGRAT'L - 3.4

OUT-1D a 	NOV SI , 14 0 ; STAGE INDEX
LEA DI , NO ; M(K) POINTER POINTS TO FIBS

^~- 'r 9 ADDRESS

OLP-1 D : 	ADD AX , 	Ti 	SI j ; M¢ is NOW IN AX
STOSW 9 STORE IN MØ LOCATION

DIS- DI + 2
INUI ÄØ SI J ; M(* AØ/2 IN DX, AX
SAL DX 	, 	1 5 TRUNCATE AND MULTIPLY BY 2

TO GET Ho * AØ IT 	DX
ADD DX , T2 151J 9 Y(K) IN DX
MOV AX DX , y Y(h) NOW IN AX READY FOR

1 EXT ST.?SGE
ADD SI, 14 2 y MOVE INDEX TO POIi T NEXT

STAGE LOCATIONS
LOOP OLP-1 D '; LOOP BACK' TO C.ICULALE

NEXT STAGE
RET

E NIL R

St--fol 	.MQl

AX- AX 1-M !?t {SI)

AX CCNTAINS M{r

Mt) -- AX

DI +2

DX ? AX 	AX

L DX' AX CONTA NS M)6i~E AYE/

__ I _

DX 4 	SHI ?3X

PRODUCT TRUNCATrD MLu TIPC IFO RY 2
TO GE T MØ•* AØ 'N L`X

DX 	DX +M(? +5;;

DX CONTAINS yl (k)

AX CONTAINS x +~ (k)

SI INDEX NOW POINTS TO NEXT STAGE
OCATIONS

L 	 1
c x -►-- c x- t

IS '

NO 	/
Ki--- 	

Y~ S
~ C X = 0 7

FIG 3 11 R T L F LFW CHART FOR OUTPUT-ID SUBROUTINE

r%

3.4-7 SUBROUTINE DELAY - 1 D

The R.T.L. flowchart for this subroutine is shoVm in

Fig. (3.12) and the corresponding program in PROGRAM - 3.5.

The following points rust be noted.

(1) MO, Ml, M2, Ti & T2 displacement addresses points

to the first address of each block as given in Fig. (3. 5) .

From Fig. (3.5) it is clear that M2-2 points to M1N namely

m(k-1) of the N'th stage and T1-2 points to m(k-2) of the

last stage (= M2N) .

(2) N, the number of cascade stages of second order

modules is passed in C`- r.;gister before entering the delay

subroutine.

(3) The String Manipulation block move instructions

alongwith REP at instruction performs the complete transfer

operations so that all mi (k-1) are transf orred to mi (k-2)

locations and therbaftor all mi(k) are transferred Vo mi (k. 1

locations. Thus, 2N locations are to be transferred from on e

block to the other. Hence, the count in CX register must be

multiplied by 2 before executing the block move instructions.

PROGRAM - 3.5

CX CONTAINS N NOS OF CASCADED STAGES BEFORE ENTERING
DEL-1D o 	LEA DI , (T1--2) 9 POINTS TO M2

LEA SI , (M2-2) 9 POINTS TO M1
STD 	 9 SETS DIR.FLAG FOR ALTODECREMENT
S t~L CX , 1 	9 DOUBLE LOOP CO TJNT FOR TWO MOVS
REP 	y PERFORMS
MOVS 	 9 BLOCK MOVE OPERATION
RET

A

f

E a 	1

(T l -2i
DI POINTS TO m(k-2) Or ,.AST STAGE

S 	- --- (M2-2)
S̀1 POINTS TO m 	OF LAST STAGE!

U-+ 	~

SET DiRECT;ON F, AG FOR
A„^w ::F SCCREM(N'

Sk, C

ENSURES THAT CX CONTAINS 2*N

I

I
` 	 I 	M (o:) --. 	wI S

- 'T 	 --.

Si --c - 	-(S: 	2

DI -~
Cx ,-... _,Cx 	i)

FIG 3.12 R.T.L FLOW CHART FOR DEL

4-

A.

3.4-8 SUBROUTINE PROCESSING - 1 D

The R.T.L. flowchha t is shown in Fig. (3.13) and the

corresponding program in PROGR 7 - 3.6. As b,,forc, N, nunber

of cascaded stages should be passed in CX before entering th

subroutine. iJso Ml, M2, T1 , TR displacement addresses

points to the first address of each block as given in Fig. (3Y `

Al displacement ac dress points to the first address of

the coefficients, Al 1 , A21, , B1 1 , B21 etc. , as shown in Fig.

(3.6b). The coefficients are stored in these locations as hai.~'

values explained in Appendix - V. Again the usee of String

Mani 'lation instructions and LOOP instruction simplifies

writing the Assembly language Program shown in PRCGRtXI'i -- 3.6.

PROGR.~ivM - 3.6

PRE-1 D : LEA SI , Al 	y POINTS TO FIG. 3.6(L COEFS
NOV DI , 	0 	9 INDEX TO POINT CURRENT $TACE

C, LCUL1~TICNS
CLD

PEP-1D 	LODSW 9 A1/2 IS NOW IIv AX AN 	SI 	SI --~
IMUL Mi fDI 9 Al 	* M1/2 IN DX , AX
NOV BX ,DX 9 Al * M1/2 IN BX 	SAVE
LODSW y x12/2 IS NOW IN AX AND SI ~— SI -.~
IMUL M2 	DI y h2 * M2/2 IS NOW IN DX, AX
ADD BX DX , ; T2/2 IS NOW IN BX
SAL B: , 	1 9 T2 IS NOW IN BX
NOV T2 	DI!, BX y STOLE T2 113 ITS LOCATION
LODSW ; B1/2 IS NOW IN AXANJ]3 	SI +2
IMUT, MI !„ DI. 9 B 1 	* Iii 1 / 2 IN DX, 	AX
NOV BX DX , y B1 * M1/2 IS NOW IN BX
LODSW 9 B2/2 IS NO 	IN AX AND SI 	-° SI +2

SI TIHEt 	POINTS TO NEXT STAGE
CONS AXT Al

IMUL M2 .!_ DIJ y B2 * M2/2 IN DX, AX
ADD BX , DX 9 -11/2 IS NOW IN BX

AX -~
AX CONTA'NS A•;1

5' - 	5:+2

	

--- 	S,_TSN P INISTO A2 _ -

DX AX —r 	AX # M . MI +P!

TRUNIC ATF , VA•. .'E A+ * ►.1'/2 IN DX

L Bp IGNOWNG rONTL NTS OF AX

	

J - 	T

gx —r 	Dx

BX NOW CONTAINS Al # M`/2

AX —r 	-
AX CONTAINS A2/2

5I 	- 51 t2
SI THEN POINTS TO 81

Y

DX, AX ;---(AX):- M(M2 +D()

TRUNCATED VALUE A2* M2/2 eN DX
BY IGNORING CONTl` NTS OF AX

ITTI___

(BX)— 	(BX) + (OX)

NOW T2/2 IS AVAILABLE IN BX

BX 	SHL 	BX

BX IS MULTIPLIED BY 2 TOGET 12

P

__._ 	- CON I U _-I

.1

r 	i~:--

TH,S STORE5 T2 IN T!1

L 	
; CSR Rf 5 	NG ~OCATV N

.l
-- i -

AX C:7N"A NS

- AX) I' M t 	+ 4^l)

TR,.NCATEC VA1. i'[H * M1 	N DX

	

f3 'r "SNORING FH F CSA t ti 'S 	AX

Fix NOW CONTA NS S I * ►-1', 2

_ 1
AX— 	M{5:

AX 'sOW CCNTA,NS B2/2
SI -- -5(42

THEN51 POINTS TOAlFNEXTSrAGF

OX, AX —• (AX)*M!M2 +u()
TRUNCATE:: VAL"P B2#M2 IS(N CrX

BY IGNORING THE CONTENT'- OF AX

(Bx) ~• 	{Bx) +(CX)

BX NOW CONTAINS — Ti/2

;BX) -- 	SHL (BX)

17(
BX)IS MULTIP',IE0 BY 2 rOGIF.T- Ti

(BX) -- - 	-(BX)
SIGN CHANGET TOGET Ti

L

ION TO.

o.)— 	-(s:
- 	1 m (r, 	+

STQRF T, ,N C ORRESPONL ANG IDC A' ON

.., 	 +/ -i
••, Nf)W PPINT4 TO NEXT cTAGP LOC Ar , ~,rye,

:Cx > 	- (fix)

-LOW CHART FOR PREPROCESSING - 1D SUBROUTINE

60

SAL BX , 	1 9 —Ti IN BX
NEG BX 9 TI IS NOW IN BX
NOV Ti.DI,', BX; STORE Ti IN ITS LOCXXTION
ADD DI 	, 2 	9 DI T} EN POINTS TO NEXT aTAGE

LO Ci TI ONS
LOOP PLP-1D ; C.C IS DECRFF`rENTED 1;ND LOOPS

B ACom: IF NOT ZERO
RET

3.4-9 Ty7XIN FROGR., lM

The flowchart for the main program is shown in Fig.

(3.1 4) and the corresponding program in PROGR.121 - 3.7. The

main program is written in the same way as in PROGRAM - . 1

but by utilizing the subroutine programs (3.2 to 3.6) exp1a...- c:a

in earlier sections in seg pence. Fig. (3.3) is implemented

this main program.

PROGRAM - 3.7

NFILTR 	: CL INIT-1 D ; IN THE PROGR.nM PROPER CONST"NTS
BE LOI DED IN 	CX REGISTER

Sl PiiPLE 	: 	CALL INP-1D 9 INPUT 	X(K) INTO AX
IMUL So 9 X(K) * S0/2 IN DX, AX
SAL DX, 	1 :; X (k) * SO I 	DX
NOV AX , DX AX NOW CONT.;INS SCALED X(K)
NOV CX 	# , N JNERIC: 	'N' ' B 	LOADED TO C
CALL OUT-1D 9 COMPUTE Y(K) AND MAKE 1 T

AVAILABLE IN AX
NOV PORTO , AX 9 PORTO IS THE OUTPUT PORT _,DDR.
NOV Cr 	, 	./ N g LOAD OX AGAIN WITH NUMERICAL

VALUE OF 'N1
CALL DE:L-1 D BLOCK MOVE M2 tom°- Ni ; M 1 	M- N'$
MOV CX , # N j LOAN CX WITH 'N' FOR PRE-

CAL CULA,TION~TS
CALL PRE-1 D y CALCULATES Ti AND T2 OF ALL

STAGES

ci
IN IT: A: ISE 	M(d, Ml, M2,T1 i 12

ASSUME COEn"FICIENT STORE C AS IN FIG 3 6

--

(__
INPUT X(k)

IMUL So

GET S9* X(k)IN AX REGISTER

OA6. OOP COUNT

VIZ. NO OF CASCADED STAGES 'N' tN

EXREGISTER CX-+

-N

CALCULATE OUTPUT

Y(K)

OUTPUT PORT %
OUTPUT Y(k) TO OUTPUT PORT 0

SUBROUTINE

INIT-1D

SL BROUTCNE
INP-1Q

SUBROUTINE
OUT-- 10

NO
Y

IS

PROCESSING
OVER

YE S

STOP

SUBROUTINE
DELAY- 1D

PREPROCESSING CALCULATIONS 	SUBROUTINE

CALCULATE Ti AND T2 FOR ALL STAGES 	PRE 10

FIG. 3.14 FLOW CHART FOR MAIN PROGRAM

61

MOV 1X , PORT4

NOT Ai.

JZ SAMPLE
HALT

REAL PORT4 FOR PROCLSSING
OVER OR NOT
PORT4 CO T1li1S FFPP (H)
TO CONTINUE

3.5 P LLEL IMPLL IaTTATIOT1 OF K' Thi ORDER DIGITAL FILTER

Another method of avoiding coeffi cient sensitivity

is to implement the filter as a sum of partial fraction of

the given Transfer f unction. Equation for Parallel Canonic

fort? is

N
D(z) = Bo + 	H.(z) 	(3.23)

i

	

A. +A ..Z 	+A ..Z'"2
where 	H. (z) = B 	 i i ~~ 	P2 	... (3.24)

	

1 + PI i . Z 	+ B2i . Z

where, !,oi = 0 and is introduced to mare th =: se coy order

Z--Transfer function identical to equation (3.1) . This en.:-...rc~

that the subroutine dev:lopOd for cascaded structure, can he

made use of judiciously in paraILeestructugi+rc implez;entation

The coofficients of Pip. (3.15) are adjusted such that

= 2K, this ensures that he yT-:sults o bta:znk,d from outpu

subroutine program can De easily modified by shifting the

result left by K-bits, which is equivalent to multiplying

K by 2

)~0

J 'ti tst STA GF

Nth.STAGE

FIG.3.15 BLOCK DIAGRAM REPRESENTATION OF PARALLEL
STRUCTURAL

po

Yl(k) 	- 	y(k)

AØi 	ZAA„ 	/ `A 2~

lBtf 	 S21

A 02 	` A '2 	A22

-B,2

B 72

FIG 3 16 4th ORDER PARALLEL FILTER USING TWO SECOND ORDER
1D MODULES

1((r)

X(k)

62

Fig. (3.15) giv ..=s the block diagram representation

of the parallel N'th ordor Digital filter. Asa specific

example 29 for parallel s±xucture implementation consider o.

4th order Digital filter. Transfer function is as

D(z) = 3o - 8.

• AQ 1
+A

l 1 0 Z-1 +A 21 .Z

1 	+ B11.Z 1 + B21.Z--2

A02 + t~1 2.Z 1 +
-4 •

1 + B1 2` Z-1 + B22. Z2

... 	(3.25)

where, A01 , = Ao2 = 0, and all the constant 1 1 1'

2l' etc. lie between -2 and +2 so that they can be stored

as half values and 	= -8, P2 = °4. It can be rc lized

shown in Fig. (3.16) . The complete program for impleeme ntxn9

equation (3.25) is shotim in PROGIL11 - 3.8. The comm .r,t s

in the comment field of each instruction in the program o,me

self-explanatory.:. 	 f

PROGRL-,N - 3.8

MAIN PROGRI:M FOR 4TH ORDER DIGITAL FILTER PARALLEL STRUCTURE

THE EQUN BE MADE VAIL.riBLE AS GIVEN IN EQUN i.25
THE COEFFICIENTS ARE STORED z.S HiLF VALUES AS
EXPLAINED IN FIG. 3.611, FIG. 3.6B WITH AØ1 - A02 = ~6
CALLS ALL SUBROUTINES DEVELOPED FOR CASCADED S?RU TURE

63

1ILTR4 c CALL INIT-1 D 9 Cff EAR Ml, N2, Ti AND T2
CONT 	s CALL INP—ID ; GET X(K) PRO? a./D

X(K) IS NOW IN .aX
NOV BX , AX 9 X(K) IS NOW IN BX
IMUL B0 'y Bo * X(K)/2 IN JJ 	, AX

SAL D 	1 y BO * X(K) IN D

NOV TSI' , DX TEMP LOCATION NOW CONTAINS THE
FT;ZST TERM OF OUTPUT Y(K) MOV ; BK

3

AND BA HAS X(K)
ST 	E OUTPUT NOV CX t 	1 s G.LCJ14TE FIRST 	,G

FROM THERE ON WARDS
CALL QUTP-1D p CA .,CULT TE Y 4 (K).

Y 	(K) 	IS 	, 	SI . 	_,. SI-Q2
' W1 	RETUPNED

S.f~L 1~1 	, 	3 ; —Y1 (K) IS NOW IN AX(=$.Y11(K))
NEG AX ; Y 'i) IN AX NOW
ADD AX , TEMP Ak NOW CONTAINS SUM 0k+` TWO 'CERAS

OF OUTPUT = B x(K) + Y (K)
NOV T 'IP , X y (T IP) = B0X() + Y1 (Ki
NOV AX , BX y AX 	ND BX BOTH CONTAIN X(K)
NOV CX , # 1 9 CALCULATE SECOND STAGE OUTFU`

HERE ONWARDS
l NOT dA.ZL QUT .-11) ROUTINE OMITFIRST TWO INNSTRUCTIONt.)

BECAUSE INDEX 31 MUST POINT TO SECOND ST1 GE LQC.:~TION'$ WI TI-r
DI POINTING TO MO + 2. SO CALL PROM OPL-1 D

CALL OPL-1D

SAL AX , 2
KG AX
AD 3 kX , TEMP

NOV PORTO , AX
NOV CX,2
CALL DEL-1D

NOV 	, # 2
CILLI+ PRE-1D

NOV AX , PORT4

NOT
JZ OONT
HALT

Y21 (K) IS RETURNED IN AX

—Y (K) IS NOW IN AX
Y22(K) IS IN AX NOW
AX E-- BX (K) + Y1 (K) + Y2(K)
MOVE OUT TO D/rA IN PORTO
DEL4Y .1 D INITIALIZATION
M2 4* Ml AND Ml K- M:o FOR
TO O STAGES
Pm'-1 D INITIALIZATION
CALWLLTES TI AND T2 FOR
T JdO STAGES
IYPUT PROCESSING OVER.
OR OT SIGNAL ISSUED
SIGNAL IS FFFF(HI) CONTINUE

9 JUMP TO ST 4RT IF AX I3 ZERO

3.6 SU1Y11.~RY

In order to avoid coefficient sensitivity problems

a Digital filter is impl ui nted as a cascade or parallel

combination of second order modules. In this chapter the

second 'order 1D modulo has' baa, n 'extensively dealt with. The

mathematical derivation, algorithm and the software program

using Intel 8086 instruction set has been derived. The K'th

order Digital filter using N second order 1 D modules in

cascade and in parallels have also been discussed : the various
}

subroutines for these' s tlucturs~s are written. Finally, a

main program for the cascade and parallel (4th order) struc-

ture using thus M subroutines wr1 t - n.

65

CHAPTER - IV

IMPLEMENTATION OF SECOND ORDER DIGIT. FILTER
THROUGH OTHER STRUCTURES

4.1 INTRODUCTION

The Transfer function for the It th stage second order

modulo is r yrrittcu as

AOi + .t ..L-1 + A2i.Z-2

D(z) = 	 ... (4.1)
1 	+B 	Z 1 +B 11 	2i Z-2'

Equation (4.1) can b.: implernented by any of the

realization structures discussed earlier in section 1.3.

Fig. (4.1) is a flow chart that models all the second order

modules implemented by those Direct structures 25.

In this chapter the necessary mathematical equations,

algorithm and finally the ibroutino programs for 2D, 3D

and 4D second, order structures will be discussed. Also two

other structures viz. 11 and 2X crosscouplod structures 3G

will be used to implcmtnt the above equation (4.1) .

4.2 2D STRUCTURE

Cross Multiplying both sides of equation (4.1)

Y(z) + B1 . Z 1 .Y(z) + B2. Z2.Y() = A0.X(z) + Al . Z 1 .X(z)

+ A2.Z 2.X(z) 	... 	(4.2)
0

START

INITIAL kZATION

SUBROUTINE INST — C n

OUT P L T 	Y (x)

PRE PROCESSING

SUBROUTINE PRE - DOO

Fid X4.1 GENERAL FLOW CHART OF SECOND ORDE
MODULES

Y(z) = A0.X(z) + 1 . z-1 .X(z) + x2. Z-2.X(z)

- B1.Z-1.Y(z) - B2.Z-2.Y(z) 	a.. 	(4.3)

Arranging in the po wors of' Z 1 and Z7 2

Y(z) _ AA0.X(z) + (A1 0k(z) - B1.Y(z))•z 1

+ (A2.X(z) - B2.Y(z)).Z 2 	... 	(4.4)

Lot P2(z) 	_ 2.X(z) 	- B2•Y(z) 	... (4.5)

So P2(z).Z 	= (A2.X(z) - B2.Y(z)).Z 	1 	... (4.6)

Also let P1 (z) _ (A1 .X(z) 	- B1 .Y(z)) 	+ p2(z) . Z-1 	• • (4.7)

So P1 (z) . Z-1 	= (A1 .X(z) - B1 .Y(z)) . Z-1 	+ P2(z) . 7-2 	.. (4.8)
Substituting the value of P1 (z) . 2 1 	and P2(z)

in equation (4.4)

Y(z) = Xo.X(z) + P1(z).Z-1 	... 	(4.9)

P1(z) = A1.X(z) - B1.Y(z) + P2(z).Z 1 	... 	(4.10)

and 	P2(z) = A2.X(z) - B2.Y(z) 	... 	(4.1 1)

In the time domain

y(k) _ Ao.x(k) + p1 (k-1) 	... (4.12)

p1 (k) _ "1 .x(,k) - B1 .y(k) 	+ p2(k-1) 	... (4.15)

p 2(k) = 1a2.x(k) - B2.y(k) 	... (4.14)

From equations (4.12) 	through (4.14) y(k) is to be

found out first. The values of p1 (k) and p2(k) ar calc xlatc d.

e

67

during KT <t' KT + T. A stepwise procedure is

OUTPUT y(k) = A0.x(k) + p1 (k-1)

POST PROCESSING p1 (k) 	= Al .x(k) 	- B1 •y(k) 	+ p2(k-1)
in the interval
KT' t 	KT + T p 2(k) = A2.x(k) - B2.y(k)

DELAY p2(k-1) p2(k)

p1 (k-1) -p1 (k)

The flow chart of Fig. 	(4.1) represents the process.

Precalculation is not needed. The steps involved are,

(1) Initialization; A/D, D/A converters and all
9 variables

(2) Input X(k) 	; From A/D convertor

(3) 	Ccmput';: Y(k)

(4) Output Y(k) 	; To D/A converter

(5) Perform Tine D:alay

(6) Computo P1 and P2; ;Host calculation of PI and PZ

The subroutines for 2D structure making use of the

instruction sot of 8086 microprocessor arc given in

PROGRAM - 4.1.

PROGRAM - 4.1

FILTER SECOND OILDER 2D STRUCTURE

9 SUBROUTINE INITIALIZATION ND SUBROUTINE INPUT ARE SAME

9 AS IN PROGRAM - 3.2 FIG. (3.7) !iND PROGR. N - 3.3 FIG. (3 5)

s RESPECTIVELY.

SUBROUTINE OUTPUT COMPUTES OUTPUT SAMPLE Y = AO . X + P12

; X PASSED IN AX Y RETURNED IN AX.LOOP COUNT IN CX.

OUT - 2D 	9 NOV SI ' 	0 ;STAGE INDEX
LEA DI , X(K) ;POINTS TO X

OLP - 2D 	: STOSW ;SAVE X
IMUL AO "SIJ ;X * AO / 2 IN DX
SAL DX, 1 ;x * .Ø IN DX
ADD DX , 	P 1 1, SIg. ;y
NOV AX , Dr ;Y IN AX READY FOR NEXT STAGE
ADD SI # 2 ;MOVE INDEX TO POINT NEXT STA&E

;LOCATION
LOOP OLP-2D ;USB COUNT IN OX
RET

; OUTPUT Y IN AX TO OUTPUT PORTO. PORTO BEING THE ADDRESS
ASSIGNED TO D/A CONVERTER IN MF TORY Mi PPED 1O MODE

NOV 	PORTO , AX
COMPUTE DELAY P 1 2 	21 	, P22 f--- P2

DLL-2.D LEA 	DI, P1 9P(k)
LEA 	SI ;P(k-1)
REP MOVS y PERFORM BLOCK MOVE
RET

;PREPROCESSING 2D NOT USED IN 2D MODULE SECOND ORDER
;STRUCTURE

PRE-2D 	RET
;POST PROCESSING - 2D CALCULATIONS BEGIN 	HERE TO CALCULATE
9 '1 	= Al *X - B1 *Y + P22 AND 22 = A,.2*X - B2*'Y
;LOOP COUNT IN CX

:COST - 2D : LEA 	SI , Al 9 COEFFICIENT i-OINTER
LIA 	BX , X ;POINTS TO INPUTS
NOV 	DI # 0 y STAGE INDEX

POLP-2D : LODSW ;A1/2 IN AX AND SI -*' ? 	SI + 2
INDUL BX [DI $;'(Al1 	*X/2 IN DX,; 	.Lad: AND

9 BX 4-- DX + 2
PUSH 	DX ;SAVE
LODSW ;B1/2
tMUL 	2 BX [DI) ;B1 * 1/2 IN DX, AX and

9 AND BX 4-- BX + 2
POP AX
SUB 	2X , DX 	9ii1 * X - Bi * Y)/2
SAL 	tiX, 1_;A1 *X-B1 *Y
ADD 	AX , :t' 21 DI,= y COMPUTE P1
NOV ill ,DI? , Ai ;STORE 21
LODSW . 	_ 	;A2/2 IN AX AND SI <- SI + 2
IMUL j BXJ DI j 	;X + A2/2 IN DX, AX

; ND BX E-- BX + 2

PUSH DA
LODSW

IMUL 2 D EJ LDI J
.O±, tX
SUB AX,DA
SAL
NOV

13.i., 	1
P2 [DI7

ADD DI 1A2

LOCI POLr-2D
RET

yB2/2 IN AX AND SI- SI + 2
9y * B2/22

(X * A2 - Y t B2)/2
912
; STORB P2
;MOVE INDEX TO POINT NEXT
;STAGE LOCATION
IVUSE COUNT IN CX

2D CONSTANT STORAGE FOIA N ST..GES
DW A01, x02,,,,, iiON 	9 1 	FOR N STAGES

Al 	DW Al 1, B 1 I, 	A21, B 21 	9 	STS -.GL 1 	CGE'FFI CI EN T S
DW Al2, B12, 	A22, B22 	y STAAGL. 	2 CO AFI+'ICIENTS

DW Al N, BIN., A2N, B2N y STAGE N CO ,FFI CI LNT';

2D TEMPORARY STORAGE FOR N STORAGE

X 	DW 	- (N+1) DUi'y6 	p IN2UTS/OUT1UTS
P1 	DW 	N DUI
P2 	DW 	N DIJPØ.

4.3 3D STRUCTURE

Equation (4.1) can be written as

Y(Z) _ (A0 + Al . Z-1 + 1a2. Z-2) :X(Z) — (B1 . Z 1 + B2. Z 2) .Y(z)

... 	(4.15)
or Y(z) = J1-.X(z) + x1 . Z .X(~) +

- B1 .Z 1 .Y(z) - B2.Z 2.Y(z) •• 	(4.16)

In the time domain

y(k) = A .x(k) + Al .x(k-1) + A2.x(k-2)

- B1 .y(k-1) - B2.y(•k-2) 	... 	(4.17)

70

Let T3 = 1 .x(k-1) + ,2.x(k-2) - B1 .y(k-1) - B2.y(k-2)

... 	4.18)

Equation C4.17) is represented as

y(k) = lY0 .x(k) + T7 	... 	(4.19)

It is to be noted that the intermediate variable T3

depends on the previous samples and is evaluated in the

interval KT - T t < KT and shall be available before KT

sampling point. The output y(k) can be calculated upon the

receipt of input x(k) . 	stepwise procedure is

C T TI~UT 	: r(k) = .a . x(k) + T3
~ 	J

Ci CB:JJI LT 	9 .L 	= .l • x"'"1) + L],.~. .(k-2) - B 1 . „4 (k-1

in the interval 	3 	G
KT-T <t (KT 	 - B2.y(k-2)

DEL..Y 	; 	x (k-1) — x(k) , 	x (k- 2) *--- x (k- `!)

y(k-1) -- y(k) , y(k-2) 4--ti y(k-7)

The flow chart of Pig. 	4.1 represents the process,

1- ost calculation is not no=:,ded. Following are the strips

involved.

(1) Initialization; 1./D B/ 1 convortc.rs and all

9 variables

(2) Compute (k)

(3) Compute, Y(k)

(4) Output Y(k)

9 Prom 1./L convoriter

To B/a converter

0

71

(5) Perform Time Delay

(6) Compute T3 Precalculation of T3

Various subroutines in the 3D implementation are

given in. PROS-RAM - 4.2.

PRO GRAN - 4.2

FILTER SECOND ORDER 3D STRUCTURE f

9 SUBROUTINE ,INITIALIZATION AND SUBROUTINE INPUT ABLE SAME

;AS IN riiOGR.P NN. - 3.2 FIG. (3.7) AND PROGRAM - 3.3 FIG. (3.8)

RESPECTIVELY.

y SUBROUTINE OUTPUT C IPUTE6 Y - 	* X ± T3

;LOOP COUNT IN CX

GUT - 3D : 	LEA DI, X I 9 PCINT~a TO
NOV SI 	, 9 STAGE INDEX

CLP - 3D : STOSW 9 SAVE X , Y
IMUL AØ 13 y 1i 	* X/2 IN DX

SAL DX , 	1
ADD DX , 	T3 SIj COMPUTE Y
MCV rii 	, 	DX 	- 9 RETURN Y IN AL
ADD SI , 41 	2 ; POINTS TO NEXT ST,.GE
LC,CP uLP-3D
STCSW 9 SAVE LEST Y
ET

;OUTPUT Y IN 1 . TO UUT: PUT 	GRTØ . PORT 	BEING THE ADDRESS
9 £ SSIGNTED TO D/A CGNVE T LCL Ii: 	M? I' ORY Mi PPED I/O MODE

I'1CV 	PC RT , AL

COMLUTE DELAY X2 -- Xi.. ,LGLP COUNT IN QX

DEL - 3D 	: 	LEA 	SI , h1 	9 POINTS TC. X(k)
LEA DI , X2 	; LINTS TO X(k-1)

72

DEL - 3D SUBACUTINE OCNTINUBS

INC CX 	; MVE X VALUES AND
LAFCJIb

MLvs 	 BLOCK MOVE O}ATICN
AET

PAEI'ACCESSING 3D CALWLTIGNS BEG-IN HERE TC CALCULATE
T3 = Al.X1 + A2.X2 - B1.Y1 - B2.Y2
LCC1 COUNT IN CX.

£ U/

RE 	3D 	LEA SI 	 l 	; , C CEFIOIENT 	OINTE1t
NCV DI 	, 	4; INDEX

- 3D : 	L(.DSW ; 1/2
IMUL X1 	DI 	; XI * Al / 2 IN DX
NOV 	BX , DX 	; LjiTIL SUM IN DX

A2/2
IMUL X2 1,,Dlj 	; X2 * A2/2 IN flL

i)D BA , DX ; £iiT1AL 	UM
LODSW ; B1/2
IMUL Xl ±2A)I; Yl * Bl/2 IN DX
SUB BX; DX 	; TOTAL
LC, :DSW ; B2/2
IMUL X2+2! 	; Y2 * B2/2
SUB DX 	DX ;
SAL DX, 	1 	; T3
MOV T 	 DI , BK 	STORE
ADD DI ', 	2 ; MOVE INJEX TC, i'CINT

NEXT STAGE LLC•:2ICN
LOO i'L-3D ; U} 	CLLINT IN CX

CST AOCE)SiNG 31) NOT Ufl.iJ I1' 3D SEC\)A1.) O1dit NODULE

)OST- 31'

3D CONSTANT STLiAG-E FLA N STAG-ES

: 	Dd l, A2 	4N ; 4 FOAN STAG-ES
Al : 	DV All, 311, 	A21, 	321 ; 	STAGE 1 GCEFPICIENTS

Dil Al 2 7 .h22, 	B22 ; 	STAG-B 2 COEFFICIENTS

1)W .lN, DVN, 2N, B2N 	 ; STGE N COEFFICIENTS
3D TE GiY JT AiGE FO N STAGES

X -1 DW (N+1) ML 	 ; X(k), Y(k)
X2 DJ (A+i) DU 	 ; X(k-l), Y(k-1)
T3 JiJ N 	iJLJ4

73

40 4 	S TiC7CTUst

Introducing intermediate variable 0(z) in equation (4.1y

i(z) 	no + 1 1 .Z 	+ li2•Z-2 	,.. 	(4.20) o T77 	 - 2 o z 	z 	1 + B . Z 	+B. Z

~ Y(z) = li • (z) 	+ A
1

s Z-1 ♦lt
0

(`z) iC
0

+ 1~2• Z 2.i 0 (`l+) • • • 	(4.21)
o

and X(z) 	= R (z) 	+ B1 .Z1 .(z) 	+ B2•z 2.i0(z) •.. 	(4.2.2)

	

f-~ 	e 	it 	Z Hence

	

He 	() 	=
-

I 	r 	B, • Z 1 .R (z
) 	

- (Z) 	- B 2. 	 .R0 (z)
... 	(4, 2))

s

Let t1 (z) 	= °B 1 . rio (z) 	- D2 @. Z 	1 . ate (z) ... 	(4.24:

Sc J., 	Z) 	= X(z) 	+ i l (z) • Z ... 	(4.25)

ret 01 (z) .f'~ 	•LLf (z) 	+ 	2 s. Z-1 •R0(z) • • • 	(4.26)

~~ c~ S S1(Z) A 	s i`{ 	(z.A) 	+ 	Q 	(G) • u 	' 1 o 0
• • • 	(4.27)

1: owr i ting oquations (4.23) through (4.27)

=X(z) + 	(z).z
1

• . 	(4.25)

Y(z) = 	A).. 0 (Z) 	+ Q1 (z)•Z 1 ..• 	(4.27)

2 4_ ,

Q1 (z) = 	~~ 	. lco (z) 	+ 	2.Ito (z) . Z 	1 • .. 	(4, 20)

In the time domain this sot of equations is

r(k) = x(k) + r1 (k--1)

Y(k) 	= 0 .r0 (k) + q1 (k--1)

r1 (k) = B1 .rc~(k) - B2 •r_o(k-1)

q1 (k) _ =-i1 .r0(k) + 2.r0(k-1)

74

From above it is clear that y(k) is to be calculated

first and r1 (k) and q1 (k) Oan lie calculated.in the interval

KT 	t c KT + T. A stepwise proceduzeis

CUTPUT 	: r0 (k) = x(k.). + r1 (k-i)

y(I) =.,r0(k) + q1 (k-1)

PTCLATIN 	(k) 	-B 	(k) - B20 r(k-1
0

)
in tic interval' 	 0,

KT (t <KT + T 	q 1 (k) = Al r(k) + 	r
0

DELAY 	 x (k-i) 	r (k)

(k-1) E-'-----r1 (k)

q1 (k-1) - q1 (k)

Flow chart of Fig. (4.1) repront the 4D structure and the

program is given in PROGRAN 4.3. No prcaicuia'tionis

needeth

- 473___

FILTER SECOND ORDER 4D 3TRUCTUL

INITIALIZATION SUBROUTINE IJ'D IPJJT KTBRCDTINB ARE SAME

AS IN. PROG-Rt.N - 3.2 FIG. (3.7) ARD PROGL 	- 3.3 FIG. (38)

RESPECTIVELY.

STJBRC'UTINE OUTPUT CO1VIPUTES 4 = X + Ri 1 AND OUTPUT $NPLE

= 	* 4, + Q.11.' PASS X IN X, RETU1N Y IN AX

LOC COUNT IN cZ.

75

CUT — 4D : 	L.EA DI , 	RSG 9 POINT TO iØ
MCV SI NG , ST 	INDEX

CLP— 4D y 	ADD AX. , 	R.1[SI7; -X+il1
STCSW 9 STCJJL IN LOCATION
IN UI

4L51
y i / 	4 / G IN DX

S' Dpi
LL.., 1

ADD DA , 	i 	sf 9 Y 	aL # yLo 	+ Q11
Ivi t~ V AX, DX 9 AL T.U1U IN ZX
~iDD SI 2 , g MLVE INDEX TOO POINT ELAT

9 aTGE LO C..if'IC.NS
LOOP OLP-4D 9 USE COUNT IN CX
RET

9 OUTPUT Y TIN AX TO OUTPUT PORTS. PORT O BEING THE ADDRESS
ASSIGNED TO D/A CONVTERTER. IN MEMORY MAPPED I/O MODE

MOV .PO ATO ; AX

;PREPROCESSING 4D NOT USES IN 4D SECOND ORDER STRUCTURE

PRE- 4D RET

;DELAY 4-D CALCULATIONS BEGIN 	RO t o-- RO AND SO ON
DEL-4D 	: 	LEA SI , RO 	; SI POINTS TO RO

LEA DI , RØ1 	; DI POINTS TO RØ1
INC GFX

LD
REP '9 PERFORMS
DVS 	 y BLOCK MOVE
RET

PO 5! PRO
R1 = -B1 .RO - B2.RO1 , Q1 = A1 .RØ + A2.RR1 .
LOOP COUNT IN CX

LEA SI , 	B 1
NOV DI,
LODSW
IMUL Ro [DI
MOV BX DX ,
LODSW
IMUL RØ1 [DI]
SIDD BX , 	I
SAL BX , 	1
NEC- BX
1V'I O V R 1 (IDI],

9 COEFFICIENT POINTER
v STAGE INDEX
9 B1/2
9 RO * B1/2 IN DX, AX

y B2/2
RØ1 * B2/2 1N DX, AX
-R1/2

;R1
BX; STORE R1 IN LOCATION

POST-4D :

POLP-4D :

76

LODSW
IN'UL ROS [DI)
NOV BX , DX
LODSW
IMUI RO1 [DIJ
ALD DX , DX
SAL BX/, 	1
MOV Q1 [D11 , 	DX
.DD DI , # 	2

LOOP POLP- 4D
RET

9 h1/2
9 RO*A1/2

A2/2
Rol * A2/2

y Q1/2
;Q1

STORE Q1 IN LO Ci-~T10a'TS
MOVE INDEX TO POINT NEXT STRGE
LOCATION
USE COUNT IN CX

4D CONSTANT STO_R ,GE FOR N STAGES

Ali DW 10 1 , Ø2 A ~1 A 	FOR N STAGES :' DW i,1 1, B1 1, 	A21, B21 q STAGE 1 	COEFFICIENTS DW x;12, B12, 	A2 B22 ? STAGE 2 CCEPFICIENTS

DW MN, B1T'J, 	A2N, B2N : ST,".GE N COEFFICIENTS

4D TV1PORARY STORAGE FOR NNT STr GES
RO : DW 	N DUP(0) 9 	RSL(k)
R01 : D',1 	N DUP (j) 9 	Ro (k-1) R1 	s DW 	N DUP() 9 	R1(k) Q1 	: DW 	I`: DUP(Ø) Q1 (k) 9

4.5 1X AND 2X STRUCTURES

Another method of realizing a Digital fi, -der i s

the cross coupled .structure of Fig. 4.2. These derivata,.onF

of these structures is extensively dealt with in 30:

The difference equations (in time domain) Inployod for

1X Structure :

y(k) = A0.x(k) + s2(k-1) 	... (4.28)
S1 (k) = g1 .s1 (k-1) - g2.s2(k-1) + g3.x(k) ..
s2(k) = g1 •s1 (k-1) .+ g2 	2(11) 	+ g3.x(k) .. 	(o)

77

whr the g. comes ±'rom

D(z) 	+ 	+

This is a canonical 	ructui 	sinc two ciiay .1mens

ar used io irnp.1nifl a 3CcOfld order ruod.u1. A StEp-

wise proced1a s

OUTPUT
	

y(k) 	x(k) + s2(k-i)

POSTCLJLATIO1J 06

in tirie in;ervaJ
KT < 	icT + I +

=(-.i) + 22 1)

-

DELAY

2(k-i)

The flow chart of Fi 	(I. 1) iLso repreEens the 1X s;ruc-

tu:e and 	program i given in PROGR1 - 4.4.

PROGRAM - 4.4

PILTLR 3ECOD ORDER 1X 3TRUCTRE

INITI.ALIZATICN D INPUT SUBkOUTINES ARL SAME

AS IN PROGRi'I - 3.2 PIG (.7) 	PROGRAMT - 3.3 1"1 G- - (3 s)

RESPECTIVELY.

A 	 ~

I1

_9t

1X STRUCTURE
Ao

2X STRUCTURE

FIG 4,2 1X AND 2X STRUCTURES

9
SUBROUTINE OUTPUT COMPUTES Y 	AO *4 32

9 PASS X IN Aid, RETURN Y IN AX. LOOP COUNT IN CX

OUTP — 1 X : LEA DI , X. ; POINT TO X
NOV SI , ~6 y STAGE INDEX

OLP — 1X ; STOSW 9 SAVE X
IMUL AO SI 9 X * AO/ 2
SAL DX, 1 y X*AO
ADD DX , 32(SIJ ; Y = AO*X + 32
NOV AX , DX 9 RETURN IN AX
ADD SI , 2 : MOVE INDEX T-G—POINT

9 NEXT STAGE LOCATIONS
LOOP OLP-1X 	9 USE COUNT IN CX
RET

9 OUTPUT Y IN AX TO OUTPUT PORT. PORTO BEING THE ADDRESS
ASSIGNED TO D/A 'CONVERTER IN MEMORY MAPPED I/O MODE

NOV PORTO , AX

PREPROCESSING-1X NOT USED IN 1X SECOND ORDER STRUCTURE

PRE-1X RET

DELAY 1X CA-LCULATIONS BEGIN i (k-1) H 31(k); 2(k-1) —
32(k) . LOOP COUNT IN OX.

DEL — 1X : LEA 	SI, 1311 	; SOURCE
LEA 	DI, 311 	y DESTINATION
ADD CX, CX 	9 DOUBLE COUNT FOR X1 AND X2
REP 	 ; PERFORM
MOVS 	 9 BLOCK MOVE
RET

POST CALCULATIONS 1X BEGIN. Si. = G1*S1 1 -- G2*S21 + G3*X ,
32 = G1*S21 — G2 'S1 i + G-4 'X"

POST....1X : LEA 	SI, G1
NOV DI, 	,LSO

POLP-1 X 	BODS1
IMUL S 1 I [:i3Tj
NOV BX, DX
10 DS
I UIQ 	S 21 IDIJ
SUB BX, D
LODSW
IMUL X DIJ
ADD BX, 	X
SAL BX, 	1
MDV 31 - DI 	, 	BX

COEFFICIENT POINTER
9 STAGE INDEX

G1/2
31 1 *0-1 /2

G2/2
9 $21*G2/2

G3/2
*G3/ 2

S1/2

S1
9 STORE 31

79
•

9
° POSTCAL GJLATIONS SUBROUTINE IvOR 1X MODULE CONTINUES

LODSW
IMUL S 21 L DIJ
MOV BX, Dl
L0DSI
IMUL S 1 1 LDIJ
ADD EL, DX
LO D3/
IMUL A I DIJ
ADD BA, 	Dl
SAL LA, 	1
i10V S2[DIJ, BA
ADD DI 	/= 	2

LOOP POLI'-1 L
RET

G1/2
321 *G1/2

G2/2
S11*G2/2

G4/2
A. 	-1-
X2/2
32
STORE 32
NOV IN NEXT TO i OIL T
NEXT STAGE LOCATIONS

S - 	;STT 	T 	;~ ` TTa.~ ~"0~~.; i 	1`~ V~~

1X CONSTANT STOhLAGL -`OR
AC D AØ1, AØ 2 A N 	; AØ FOR N STAGES
G1 s 	DW G1 1, G21., G31 , 	5-1 1 , 	G21., 541 	9 STAGE 1 	COEFFICIENTS

DUI G1N, G2N, G3N, 	G1N, 	Gx2N, G4NN; STAGE N COEFFICIENTS

9 ° 	1X DATA STORAGES FOR N STAG-.3
X 	o LW N DUP()0) 9 INPUTS
Si : DW iJ DU.r'(0) 31(k) 	; Si (k)
S2 DW N DUP(0) 32(k)
311 : 	Lw N DUBS) S 31 (k--1)
312: 	D",d N DUP(0) ; 32(k-1)

B. 2X STRUCTURE

This structure is th trarsposs (Appendix - II)

of 1X struc lure. Equat:Lcns involved are

y(k) = A0 .x(k) + g3.1 1 (k-1) + g4.12(k-1) 	... (4.31)

11 (k) = 91-11(k-') + L="2.12(k--1) (4.32)

12(k) = x(k) + g 1 .l2(k--1) - g2.11 (k-1) 	... (4.33)

80

A Stepwise :procedure is

OUTPUT 	 v(k) - Ac.x (k) + L.

POST CALCULATIONS ; 11 (k) - g1 .11 (1.--1) + g2•12(k-1)
in the interval
KT t KT + T 	l (̀) = x(k) + 1 .12(11) - 	2. 1 (1-1)

PRE CALCULATIONS : L 	- g 3.1.1 (k--1) + g 4.12 (k-T 1)

DELAY : 	Not n ~A c «s o a.rTy

Fig. 4.1) also repre nts this 2K structure amd

the program is giver, in . ROGRANN -- 4.5.

	

PRO 	 i 	4. 5

~'t l SECOND
	1.~. 	r 	..a (l;r'r i~ 1 i—l' L ` Fl.LTERR SECOND ORD1aR 2X >T~tUCTUR~.

I.NITI1- 1 ZATICT 1 SND INPUT SL 	U INE$

AS IN PROGIti G 4̀i — 3.2 FIG-. (3.7) IUD PROGi" 	— 3.3 FIG. (3.8)

SUBROUTIA OUTPUT CUA\;J LT ES Y 	Ø.X +L3 . PASS X IN

Y LOOP COUNT IN C.X.

0UTP — 2K: LEIS DI, K 9 POINT TO K
NOV SI, 9 STAGE INDEX

OLP — 2K : STOSW _ ; SAVE INPUTS TO STAGES
IMUL AØ iSI j 9 X*AAO/2
SI. L DX,~ 1

.DD Dl, L3LSI J 9 COMPUTE Y
NOV• X, Dl y r;.ETURN IN x

Z, 	2 9 NOVE INDEX TO POINT
NEXT :. T STAGE LOCATIONS

LOOP OLP-2X 	y USE COUNT IN CX
RETURN

81

POST CALCULATIONS 2X BEG-IN Li 	= G1 .L1 (k-1) 	+ G2.L2(k:-1) ,
12 	= X 	+ 0-1.12 	(k:-1) 	-- 	G2.L1 (l;:—'1). 	.LGG.' 	COUNT 	I'LL 	CL.

POST-2X 	: LEA 	SI, 0-i 	(;C)ET`PI CIL T -POINT R
NOV 	DI, 	y 	; STAGE INDEX

POLP-2X 	: LODSW 	y 0-1/2
INUL. L1 1 [DIJ 	°, 	Ll 1 #G1 /2
NOV 	BX, DL

LGDSW 	G-2/2
INUL 	121 	LDI7 	p L 21*g2/ 2
,ADD 	EL, 	DX 	; L1/2
Sit' 	8L, 	1 	; 	L1

nIJ . 	~} 	, , 	- -r NOV 	L1 	b,i. 	~~~ 	9 	SrOI D L1 (k)
SUB 	SI , 	q. 	; BECK POINTER UPTO G1/2

LODSVJ 	y 	0-1/2
IiiUL 	121 LDIJ 	; 	G1 *L21 ./2
NOV 	EL, 	Dl's.

L0DS,., 	y 	G2/2 	.
Ziviul 	Li 1[DIJ 	,° 	0-2 	Li 1/2

SUB 	BL, DX 	111JLTI1JJ SUN
SAL 	BX, 1 	L2 — X
.-'D 	BX 	L [DIJ 	L2

NOV 	L2tDI., EL 	STORE L2(k)
ADD 	DI. 	2 	; MOVL INDDL TO POINT

T~L1rT 	STil-GD 	JG r ,1TGT\S
LOOP i'0L '-2L 	USE COUNT IN C
1 T ~.0

DELAY 1 X. C,J C,JL_:'TIG NOT ULCES 	FOR. 2X
DEL — L I l:t `_

;: PRLPRO CLOSING CAL QWUTIOR a 2X BEGIN. .
L3 = G 5*L i (k.-- i) + G4*L2('k_. i) . LOG? COUNT IN CX.

PRE-2X 	: 	LLQ: 	81, G3
NOWT 	DI, 	L0

PLP-2X 	: 	LODSW
INUL L 1 11 DII
NOV 	BX, DL
LODOW
INUL L3 	DIS
.:DD 	EL, D
SAL 	BL, 	1
NOV 	L3 i '?I , BL
ADD 	D1 	, 	 L- 2

iu

COEFI`I'T POINTER
ST £G- ±1.DiL

9 G3/2
G3*L11/2

G4/2
G4 L21 /2
L3/2
L3
STORE L3(k) .
NOVE IND EL '10 POINT
1`J -LLL1 2'T1.GE LG C.,.T1O S
LOOSE COUNT TN CX

82

2X CONSTJd\IT STOReLGE FOR N STE

G-1 	DW 011, 012
DW G21 G22

SiGE 1
rr-

DW- 0N1, 0N2

G3 DW @13, 0-14
LW G23, G-24

ST0E 1 COEFFICIENT
ST•!.G 	2 COEFii OiEJ'TT

DW GN 3, G-N4 	 ; TGE N 00EFFICI\TT

LW AØ 1 , Ø 2 	. .

2X TEMPORARY STORAGE FOR 3TLJL3

X :D 	N LUP) ; 1NPJT 	TO 	JTAG

Li 1 	LW 	N DUP(Ø) ; 	Li (k) 	OR Li (ii

T1 2 LW 	N LUP(Ø) L2(k) 	GR L2(k.-1)

L3 	LW 	N IYJP() L3(k)

4.6 SUNI'1ARY

In this chapter, all the other realization techniquas

discussed in section 1,35 	used to imrl'mnt a second

order module. The iiecssary equations for the Algorithm

are deiived and the various; subroutines 1mplildntirig the

main 	flow chart of Fig, (4,1) written. Finally, two

cross coupled Stru.CtUrsE: are us ,-, d to implement the suie

flow chart of Fig. (4.1). 	 -

e3

V

CONCLUSIONS AND SUGG`ESTIONS FOR FURTHER WORK

5.1 	CONCLUSIONS'

Digital filters have been implemented in harwired

logic, special purpose= computers and General purpose

computers. The recent advent of 16-bit microcomputers

with built in multiplication hardware has created a new

option for implementing Digital.. filters. A typical 16-

bit microcomputer. Intel 8086 has been selected here.

There is a significant imp:rovcmant in the semplin

rate, because of the avail bil!t:T of multiplication

instruction in the Instruction set of 8086 m.icr

.

	;pro-

censor.

In this dissertation, the various realization

t ochpique s for Digital i f.:ilt ,rs are die cues ;d and their

characteristics compared. A7..l the Direct form stru.ctur .s

Huffer extreme coof 1 	^t ~y 	 r~~ 	~[T t 	I 	the suffer 	L i. 4~llt U'.s11 ~-1 .,t. 1J~ Y ~ U~ as + , ~/h 4. order

of the filter grows large. In order to avoid Co,,fficiont

ssitivi.ty, the Digital filter Transfer function is

implemented as a cascaded or parallel combination of

second order modules. The second order module in itself

can be any one of the Direct form structures.

84

Th:: salient f eaturea of the Int 808C micro-

processor has boon studied in considerable detail. Using

the Instruction scat of 8086 ir_ccroprocossor the Assembly

language. programs for the various realizations of a

second order module written. Th . mathematical equations

for tho corresponding, ai orith;7ms are derived, prior to the

R.T.L. flowchart -i2odel. Tv_iain programs for the cascade

and parallel Digital fillers are also written making

use of the various subroi_tines and each stage in itself

is a second or• ior-• 1D structure.

5.2 S GGEST'IONS FOR FUTURE WORK

Because of the non-availability of the Intel 8086

microcomputer lit the various programs could not be tested.

These programs. can be t,.:,wtod as and when a 'Lit is made

available in the Department.

All - of 16-bit microprocessors viz. Intel 8086

Motorola MC 68000, Texas In trumorits TMS 9900, Zilog

Z8000, Fairchild 9445 ar,.: similar in basic word size and

The programs written down using ari ~hmc:ta. c capabilities. 	 g

the Intel 8086 micropro c:s•sor can be modified for the

rust of the microprocessors.

0

85

In this dissortatlon Ir:L1 8086 rnicroprocssor

is us,.c. toimp1:m.?I'± 	Liva1 flIt crs -, on section

of Digital signal pro cssing 	It can be exterith;ci

to other sctiors ,)f Digital signal procossin.

This le.,-ids to the m1crocc:mpLlt()r study of anrpI:d.

Data Systoms.

00

R E F E R B N C B S

1. Pabiner, L. R. and G-old, B . 'Thoory and Application, of

Digital Signal 2.:oc.':::;ing' , Englwood Oli±'fs, N. J.

Prontic -Hall, lao., 1975.

2. Bogner, R. E. and Constantin:Lds, A. G. 'Introduction

to Digital Piltring , Now York : John Wiley, 197•5

3. Tretter, S. i.. TInoot..on to Dicrtc limo Signal

Yroceing' , Nen York : John Wiley, 1976.

4. Oppenlisin, ... V. an-d_ Soha±h;, R.W. 'Digital Signal

Processing', Bng1ewod Cliffs ? IN. J.

Prenti'. Hall, Inc., 1975.

5. Lam, H. Y-P. 'ualo and Jii..al Fllters - Dosi.gn and

R'alisation' , Lnglc'woud Cliffs, N. J. : Prntic

Hall, Inc. 1979.

6. KaisEr, J. F. 'Digital Piltero' in Kuo, F. F. and

Kaiser, U. b. da., 	rstern Analysis by Digital

Coropu±sr, Chap, 7, N.: w York 	John !iley, 1966.

7. Rador, C. H. and Gold, B. 'J.lgital Ffltr Ds-Ii

Tec1miques in th Frecuency Domain' , Proc. IEEE,

Vol. 55, Fb. 1967, pp. 149-171.

87

8. Rabifltr, L. Ft., Cooley, 3, I. et.al 'TexTfinolOgy in

Digital Signal Proce; ing t IEEE Trans. on Audio

Electroacoust., Vol. Afl-20. Dec. 1972, pp 322-377.

9. Jackson, L. B., Kaiser, J. F., aid. Mc donald, 11. S.

'An approach to the Implementation of Digital

Filt rst, IEEE Trance. on Audio Electroacoust.,

Vol. AU-16, Sept. 1968, pp. 415-421.

10. Rabiner, L. Ft., 7ai2r, 3. F., Horrmann, C. and

Dolan, M. I. 'Soms Cor!lparisons between FIR and

HR DigHal Fil rs' . Bell System Tech. J.

Vol. 55,1 1974, pi. 305-331

11. Pettw'is, A. I A g'.;noral Thoorom for Signal Flow

Networks with Applications' , 'Arch. Lick.

bertragag' Vol. 25 1971. pp. 557-561.

Reprinted in Lawrcnce, R. R. & Radr, C. i'.

'lctec. .apers in Digital Signal roccsalng'

New York 	John Iilcy, 1972.

12. Soviora, R. E..aacl Sab al- ash, J'. 'A Tcllugon's

Theorcm for Digital Filtors' , IEEE Trans. Circuit

Theory, Vol. CT-18, Jan. 1971, pp 201-203.

13. Woissborgor, A. J. 'MOS/LSI Microproc.sscr Soic:ction',

Electronic Dosin, Vol. 22 No. 12, unc 1974.

1.4. Ogdin, I. L. Nicrocoinputors : Promis-'~ s and Practic3s t ,

IEEE Intrcon0 74, Ssion 17, N.Y., Marth 1974,

15. Cushman, R. H.. This Intol 8080 : Pirst of tho Socond

GcnerationMioroprocsors', EDN, Vol. 19, No, 9,

May 1974

16 Gorgu 	Ai !Got mIn!computr foaturo at ton imo 	th.

QO spod with th. 	8086!, .loctronic Dosign,

Voll 26, Spt1 1978, pi 60-66k

17. Katz, B. ci., Mor, 	P., Pohl,,),m i, Wi P and Bruoc,

R. !8086 microconputcr br ios the gap tiotwoon

8 and 16 1-it dcin& , Elctronics Intornational,

Vol; 51, P:i 1978 pp 99-1041

18. I1orso, S. P , Fohln;an, W6 B., an RavonL;l, B. Wk

Tho IntiL 8006 mi ororo cssor, a 16 it Evolution

of tho 8080! EB Trans; Oonipu1;,r Vol. 11 Nq1 6,

1978,

19, Morso, S P , .avoncl, B 	. , Mazor, Si and Fohiman,

B, ITnt:1 i'Iicropiccoc3sors - 8008 to 6086 , IEEE

Tm 	0omutar, Voli3ro.Pob. 1980, pp 42-60

20. Garland, I1 '1ntrod.ucior to MioroprocosEor yst

Dosign , Toko; Mo Gram Hill Kogakua1.ia, 1979!

89

21. MathLr, A. P. 'IflL;fodct10n to Micro -pr occssort

New Dcliii 	Ta a M c Or -caw Hill,

22. PICS-86 Jser' a Ua.al, mid Corp., 	ita Clara,

CA, 1979.

23. Neale, D. F. , and, Wilson, D. H. tApplication of

Microprccesorc in Signal Frocessin , Warsaw,

Polish-English Seminar on Real Time Process

Control, Jan. 1977.

24. Nagle, Jr., H. T., and. Carrol, o, C. 'Organizing a

SpcLal Pu:'c oar Oomputr to ralizo Digital

Piltors for 3ainlc;d Jata Systornst, IEEE `Trans.

Audio E1'ctroacoaat. Vol. AU-16, Sopt. 1978.

25. Naglo, Jr., H. T. and Nelson, V. P., Digital Filtor

ImpiL'mcntation on 16-bit Microcomputors , IEEE

Micro, Pot. 1981, pp. 23-41.

26. Hwang, S. I. 'An Optimization of Cascade Bixod ±-oint

Digital Filora' IEHH Trans. Circuits and

Systms, Vol. CAS-21, No. 5, Jan. 1974, pp 163-•16e

27. Lee, W. S. 'Optimization of Digital Filters for Low

Round off Noise, 	IEE Trans. Circuits and

Systems. Vol. OAS-21, No. 5, May 1974, pp. 423-431

90

28. Liu, B. and Peled A. 'Heuristic Optimization, of the

Cascade Real izat:Lon cf Fixed Poiflt Digital Filter

IEEE Trans.Acoustics, Speech. and Signal Pi'ccess

Vol. ASSP-23, No 5, Oct. 975, pp. 454-473

29. Nagle, Jr., H. T., 	id. Carroll, C. C. 'Realization of

Digital Controfler& , Proc. IFAC Syinp. Auto

Control in Spacc. Annnia, USSR, Aug. i974,

pp.. 23-35.

30. Jackson, L B, Lindgren, A. G-., and Kim, Y.

"Opcimal yanosiaifor second Order Stato 3pace

Structure ±or 'igtal iiltcrs", .LEE Iran

Cir cit sn Sys;c.m, Vol.CAS-z, 2N3,

March 1979, pp 149152

LASSIPICATIO OF DIGITAL FILTERS

The term Di$tl filtring rafers to a compuatima1

algorithm performed on a sampled input signal re lung in a

transformed output sig1ia1.. th computational pro csss can

correspoid to high pCS: filtering, low pass fii: ing, bad

pass, filtering., intagration,; dif: rent iaton etc0 	:h

is assumed to be lin:•, that man the principle of supc:

position applies to th input output rolationship The ifljut

Signa-1- is a s udnc of numjcrs. from oithor an Analog-to-

Digital (A/D.) convet 	or a direct digital ij&t -ou-c'..The
OULkt 4LoL is tLftcv 	yeck 	LLt&cL

ganoratod anaicg signal :froiri a Digit al-to-Anal og (DA)

cn-crc•t or.

The unique advsmi;r cff:;red by Digital filter are

1.. The performenc fromunit to unit is stable arid
repeatablc

2. Arbitrarily high prcision is a .c•vd tbat is
limit-,0, only by the number of bits carried in mey
and by •th inut and output rosoltt ion capabilities

3. No impeancs iatiin; problems exist in he &Jgit1
domain.

4. Critical f11.tcr frequsncy can b: placd T jthOUt

restriction but it infiuncos tho 	quircd peci s.r

5. Component value v nation. pro hlms a.'e non e:±e±

6. Greater £lsxi bd:Lty is acjiievod since- .FiJte.r response
can b e thaged. by var;jing the proper arithmeti c
coofficicuts,

92

7. The intrinsic possibility of time sharing major
implementation section exist.

8. Small size results from integrated circuit
implementation.

9. Periodic calibration as is required with analog
circuits is ::1,i xiated.

10. Ferformatic , limitations of physical analog
components are avoided.

Two gonoral typos1 ' f ' of configurations of Digital

filters are Q

(a) Rocursivzo Digital filter

(b) Nan--Recursive; Digital fillI r

The Recursive Digital filter is a discrote time fiiev

which is realized via a recursion r- lation. It means the.

output samp_. as of the filter ara expli ci t y determined as A.

weight cd sure of past output samples as well as past and./or

present input sampl= . For <cxample

y(n) = a0.x(n) + a1 .x(n-1) + a2.x(n-2)

- b1 .y(n-1) - 	... 	(.A.1 .1)

The i' on-Recursiv Digital filter is a discrot' time

filter for which the output sampi ~s of th}c filter arc

explicitly doter-minod as 2. weighted sum of past and pr{..sonf7

input samples only. For example,

y(n) = ao .x(n) + a1 .x(ri-1) + a9.x(n-2) 	... 	(A.1 .2),

93

Thus Recursive Digital filters are those filters

which possess a transw_re f' action as given by equation (1.3)

D(Z 	_ 	_. 	~ 	~.~.,.~ 	(~1 .3)
N

1 r• 	< 	B. . Z-1

i=1

It has all common factors cancelled. he denominator co-ffi-

cients are identically non._z, ro. The zeros and Doles are

located on the ,~1 pi ane The Non Recursive Digital filters

however possess a transfer function hi ch is a polynomial of

Z 1 and all common factor in equation (1 . 3) are cancr;llod.

this case, the transfer function is of the form.

D(Z) 	— 	i 	± D . Z 1 + D . L7-+ ` • • • D
	(J~~.d ♦ • 	(A 1 - `Y.

)

This equation is a finit.. degree polynomial, no poles can
1

appear in any finite d part of the: Z ' 1 plane. Non Recursive

filter, as a result" is always stable. (This of course is

consistent int with the absence of fs:G;d back) .

Consider the ;: n:.ral. transfer function of equation

(Al .3) which is reproduced here for convenience in the

factor . form.

(1 - Z. Z-1)
i=1 	... 	(A1.5)
N

k z1)

94

whrc p1 , 	p2 	... are the pol-s and Z1 , Z2 	...
ZIIVI

are

th 	zeros.

Any filter whose txanscr function is given by (A1 .5) with N

is called an infinit iinpalso r;sponse (1IR) Digital filter,

bocausc thoro doos not oxist a finitc intogor L such that

d(n) = 0 for n) L

whcrc d(n) is th-: irnlo rcspons of th f 	For liFt

digital filters assumc. 	N. This assumption holds txio for W.
almost all cases ofpractical interest. A partial fraction

expansion of (A1.5) is

1pZ 	1 2Z 1 	1 - p

=

= 0 if 11

and 	= 	(1 	p z) Di)/Z = p1 for I = 1, 2 .. N

Hnc, the corrapondi:g :Lmpulsc rspcnso i

h(n) =[:A. p 	± ; 2T2 + 	l\TPN]1A1) ±• ()

Olearly, thc.5 	cssax:/ and sufficient conditions for the

impulse respons- abcv to satisfy the stability criteria of

WE

is that

p1j< for i = 1, 2 N

That is, all the pole locations of the digital filter a:r

within the unit circl in the Z-plane.

When the transfer function of a Digital filter is

given by equalion

(l.6) D(z) = B 0 + D1 .Z 1 + D?

which is equivalent to the case when N = 0, the Digital

filter is said to be of finite impulse response (FIR) type.

This name is used because the impulse response of equation

(Al .6) has the property that h(n) = 0 for nM and for n< 0.

That is the corresponding impulsL. respons is o. finite

duration. In this case, thcir are no poi,.. and this type

of filter is always stable.

From the above it is clear that Transfer function in

equation (Al .3) represents an IIR Digital filter while the

Transfer function of equation (Al .4) represents an FIR

Digital filter. The FIR filters are all stable and casual

while the IIR filter is stable if the poles of D(Z) are

within the unit circle in the Z plane, and casual if B0

the first nonzero coefficient in the denominator. As we

are concerned with casual filters it is convenient to asewec

B 0 = 1.

96

10 The major dffirmces ar listed in 	. IIR

Digital filters cannot have perfect linear phase character-

istics whil FIR filters are always designed to bav linear

phase characteristic. Implem'ntation of an FIR Digital

filter re 	...-quires mor computations and more-digital compo--

ilonts; hence FIR filters are more. expensive than IIR filters

The amount of computation and hardware needed to perfonn a

filtering process is usually an important practical consid.e

tion. In general !IH Digital filters roquir loeser compu

tations and/or hardware to achieve a. particular filtering

function than those roquirod by the corresponding FIR

Digital filters, FIR Digital filters are called for to

perform tasks not possil"Le and/or riot practical by IIR

Digital filters such as linear phase fiU;ers, and multirate

filters whore the input, signals and the corrospnding

output signals are sampled at different rates.

Although IIR Digital filters are generally realized

recursively and FIR filters nonrecursively, HR filters

can be realized nonrecursivoly and FIR filters can be

realized re cursii ely.

7

97

APPUTDIK - II

PRINCIPLE OF TRANSPOSE AND TRANSPOSITION THEOR '!

Tellegen's theorem is an important basic theorem of

conventional network theory. As Digital filter ri of work s are

not subject to Kirchoff's laws, Tellegen's theorem in its

most general form does not apply. A restricted form of

Tellegen's theorem referred to as the. difference form, can be

derived 5, 1 1, 1 2 	rom this a number of useful properties of

digital networks can be developed. In classical. networks

Tellsgen's theorem is in the form of a relationship between

the voltage disttibution. in one network and the current dis-

tribution in a second network, when: the only relationship

between the networks is that they have the same, topology but

otherwise unrelated. In a similar manner, if we consider

every flowgraph to have a branch in each direction b it ween

every pair of nodes, with the transmission of some of the

branches being zero, then any two flow graphs with the same

number of nodes can be considered to be topolpgically equi--

val,-nt.

Consider two signal flow-graphs with the sarn topology

Let N denote the number of network nodes. The network node

variables, branch outputs and source node values in the first

network are denoted by wk, v.
~k

and x. respectively and in the
~

second network by w'
k jk

and XL. Then, the, Tellegen's

theorem is

N N 	 N
1 	(wk .vt k - w'k .v .k) + 	(w' k .xk -~ w' kxk) = 0
k=1 j=1 	 k=1

... 	(A2.1)

Proof: 	The proof of equation (A2.1) follows almost directly

from the definition of a signal flow graph. The branch outputs

are related to the node variables and source inputs by

N 	M
wk =V jk + 	S, jk 	 ... (A2.2)

j=1 	j=1

Adopting the convention that each network is drawn in such

a way that each network node has associated with it a

source node connected to i t by a branch with unity transmi-

ttance. Also, this source node is not connected to any other

network nodes.

With the convention regarding source nodes equation

(A2.2). changes to

N
wk = ` 	v k +xk 	(A2.3)

Writing the identify

N
(wk ,w' k -- w' k Wk) = 0 	... 	(A2.4)

k=1

Equation (A2.1) follows in a straightforward manner by

substituting equation (A2.3) into equation (A2.4).

ra t

99

Equation (A2.1) is referred to as T -ll egen' s theorem for

signal flow graphs or for digital filters. If variables Wk uk,

V.k , V' jk, Ik and X' k are d,rivecd throug1 a linear operation

from wk , W' k , v k , v' k, xk and. Xk respectively, then
J J

N N N
(1 - V' J k - '.i' ~. V. k) + 	(~[k' 	;. - 	- 0

k=1 k=1 	 k=-.1
. . . 	(A2.5)

Thus Teilegen' s theorem applies either to the sequence

values or to the 2-transforms,

For passive analog networks consisting of interconnec-

tions of resistors, inductors and capacitors, the notion of

reciprocity plays an impor.+ sn.t role. For digital networks

there exists corresponding notions of reciprocity and inter-

reciprocity consider a given network excited by two different

	

sets of sources. The 	transf'orTns of the sour cry node values

for the two different sets will be denoted by Xk and X'11 . The

value of the node variables of the k' tri nods when the network

is excited by uhs unprimed sources will ba - denoted by ►Wk.

When the network is excited by the primed sources, this

variable will be denoted by W' k . The network is said to

satisfy recipro city if for any two signal distributions.

N

	

(1h. • ~'i' k 	- 	0 	... 	(A2.6)
k_1

IOo

As a cons :quence of reciprocity, if we excite the graph at

network node i a! and observe th output at node ' b' ; then

for a reciprocal graph, thy: same axci_tation at node !b' ta.i U

result in the same output at node 1 al

Most • digital networks are not rMciprocal; A related concept

that is more useful with r:=gard to digital network is that

of interreciprocity; In thi case we consider two distinct

signal flow graphs; Let X~y denote the source node values

and i denote the nods vainables for one network and X' k and

b~' k the source node values and network node variables for

the second network: Th .n the- two networks are said to be

mnt erreCiprocal if

ir

k=1
	L!k -- 	k z. 	= D 	::: 	(.2;7)

tgyuatiotis (A2;7) is similb,:r to equation (A2 .) ; here for

reciprocity the primed and unpriL ed ievwork differ only in

i h s sources, whereas for int err : Cipro city both the sources an

and branch transmittares : c :s. differ in the primed and unpri-

mod networks„ A network that is reciprocal is also inter-

reciprocal with its -1f.

DRAT' S?OaTTiON THECR I

A property of digital networks is that they are

int :rreciprccal with their transpose4 he transpose of a

flow graph is generated by reversing the dir^ctions of all

101

the branches but leaving their transmittances the same.

Consider a digital network where Wk denotes the node

variable for the k' th node. The transmission from node 'j

to node 'k' is denoted by 'F jk

o 'V jk =

In the transposed network, the node variable of the k'th node

is denoted by 'k and the branch transmittance. between nodes 'j'

	

and 'It' is denoted. by F' 	so that

f 	 f 	t V jk = F jk. j

By definition of the transposed r ctwork F' jk

To prove that a network and its transpose are inter-

reciprocal -- i -- to show that equation (A2.7) holds for

the above conditions, we utilize the fact that a network and its

its transpose have the same topology so that To-.logen' s theorem

equation (A2.5) holds.

Thus,

N N N
~_krTkrV' 1~ 	t k'V~l.~l + 	(W.k'X ~k - 	k 'Xk) =

-1 	k=1 	 1 j 	k�1

.,. (A2.8)

Substituting valu< of V~k and V' 1 in (A2.8) we obtain

N
• y,,f 	_ F 1 	k;' 	• j

=1 	k 	
(Ti .. E- 	`i, 	

jk 	
ks '6 j.Fjk).

1
N

+ 	4' ~'1 X' - w' 	X 	= 0

	

1 _1 k 	k 	k' k~

102

N N 	 N N
or 	. W' . F' 	- 	'fi,~,.,,, . 	k . W j . F 1 k

k=1

N
+ 	~~'. (K. ' k - Wk - W' k .Xk) = 0 ... (A2.9)

k=1

Interchanging the indices of summation in the first double

sum of equation (A2.9).

N 	N
5 	(Vd' k.Wi .F' jk - W' k .W j.F jk)
j=1 	k=1

N + 	`'~,,, (ç•!.' k - w k.hk) = 0 	... 	(A2.10)
k=1

Since, the primed and unprimed networks are transposes,

=Fjk , and therefore the double sum is zero and jk

N

k=1 (w .X. - ~"T' k.X) - 0 , which proves that a network and its

transpose are interreciprocal.

For single input - sing1f. output networks, a network

and its transpose have the same transfer function. For a

2nd. order section the diagramatic changes are shown in
Fig. (A2.1) .

bN-1

Z-1

bN

y(n)

a,
y(r '1)

z.1

	

1ti 	y(n--2)
v 	 M

-

4 	
7.1

aN

	

v 	yt •-N)

(a) Nth ORDER SINGLE INPUT OUTPUT NETWORK

x(n,

Z ,

b,

b2

Y 	 1 bN

Z 1 I

bN

y;n-N+1)

. 	a " 	y(n N)

(b) SIGNAL FLOW AND INPUT OUTPUT REVERSED
() 	 b o 	 y(n!

{=•---0- - -~ -_ - - - _ter—_ —c
7 	~

1'

1 ~ r

— 	
aN

.c) TRANSPOSED Nth ORDER NETWORK

FIG. A2.1

10 ..3

APPENDIX s- III

RISE OF INTEL MICROPROCESSOR 8008 TO MICROPROCESSOR 8086
AND THEIR COMPARISON

The Intel 8008 14r17919 was the first 8 bit, mono-

lithic, p channel MOS device to be developed. The 8008

processor architecture is quite simple compared to that of

today's microprocessors. The instruction set is small but

symmetrical with only a few operand addressing modes

available. The addressable memory space is 16k bytes which

seemed to be lot back in 197Q when memories were expensive

and LSI devices were slow. The memory size limitation was

imposed by the lack of available pins.

The microprocessor does not have instructions with

direct addresses since two CPU registers must be used to

reference main storage. Also, some operations such as

moving data from one place= in storage to another, are somewhat

awkward. Another problem ara-oa. is that associated with an

interrupt. Interrupt; pro cessin was not a requirement for

the 8008, only the most primitive mechanism conceivable -

not incrementing the program counter was provided. Such a

mechanism permit; an interrupting device to jam an

instruction into the processor's instruction stream. Since

memory is addressed during the interrupt, two of the

s cratchpad registers are to be reserved as interrupt

104

registers. This reduces the effective number of the

registers in the scratch pad file from seven to five. There

is no instruction for disabling the interrupt mechanism; thus

this function must be realized with external hardware.

Finally, the single 8 bit bus into processor requires a

large amount of support hardware. If a single IC is

produced which will replace these components, this processor

will be valuable in many mora applications. •

The Intel 8080 16, 17, 19 an 8 bit, monolithic,

channel MOS device; is a second generation microprocessor

with many improvements over its predecessor, the 8008 15

The 8080 was the first processor designed specifically for

the microprocessor mark; =t. Thr main objective of the 8080

was to obtain a ten-to-one improvement in throughput

eliminate many of the 8008 short comings that had= by 1973

become apparent and provide new processing capabilities not

found in the 8008. Ths latter included handling of the

16 bit data types, BCD arithmo:tic, enhanced operand

addressing modes, and improved interrupt processing. Memory

costs had come down and pro c.sssing speed was approaching

TTL, so larger memory spaces seemed more practical and

direct addressing of more than 16K bytes was achieved.

Symmetry was not a goal because the benefits to be gained

from making the extensions symmetric would not have

105

justified the resulting increase in chip size and opcode

space. Most of the external logic required to support the

8008 is on the 8080 CPU, and all the .important interfacing

signals are generated on designated processor pins.

The 8080 architecture is significantly different

from that of 8008. The byte handling facilities are

augmented with a limited number of 16-bit facilities. The

memory space is 64K bytes, the address bus 16 bits wide,

so an entire address can be sent down the bus in one memory cycle.

The 8080 extends the 32 port capacity of the 8008 to 256

input ports and 256 output ports. The 8080 processor

contains a file of seven 8-bit general registers, a 16-bit

program counter and stack pointer and five 1 -bit flags.

 the

chip, a strategy which removes the restriction of only seven

levels of nested subroutin; s. The programmer can directly

access the stack pointer in 8080, unlike in the 8008. A

fifth flag, Auxiliary Carry, augments the 8008 flag set.

It indicates whether a carry was generated out of the four

low order bits. This flag, in conjunction with a decimal

adjust. instruction, makes possible packed BCD addition.

The 8080 includes the entire 8008 instruction set as a

subset. T 	eü instructions provide some new operand

addressing modes and somo 16 bit data manipulation

106

facilities. The 8080 has an interrupt mechanism identical

to that of 8008, but includes instructions for enabling

and disabling the mechanism.

The 8080 is packaged in a 40 pin DIP and has separate

address and data buses havilg Instate outputs. As a result

of the separate data and address buses, a microcomputer

is formed with as few as six TTL packages. A disadvantage,

however, is that 8080 requires three separate power

supplies.

In 1976 advances in technglogy allowed Intel

to consider enhancing the 8080. The objective was a

processor set utilizing a single power supply and requiring

fewer chips (the 8080 required both an oscillator chip and a

system controller chip) . The new processor, called the

Intel 8085 was constrained to b compatible w -ch the 8080 at

the machine--code level. This meant that extensions to the

instruction set could use oi.y the 12 unused opcodes of

the 8080. Architecturally, the 8085 turned out to be not

much more than a repackaging of the 8080. The major diffe-

rences were added features such as on chip oscillator,

power on reset, vectored interrupts, decoded control lines,

a serial I/O port and a single power supply. Two new

instructions RIN! and SIH were added to handle the serial

port and the interrupt mask.

107

Th : Intel 8086 was designed to provide an order

of magnitude 17 ' 18' i ncrase in processiag throughput over

the 8080. The processor was to be compatible with the 8080

at the assembly language, level, so that existing 8080 soft-

ware could 	be reassembled and correctly executed on

the 8086. To allow this, the 8080 register and insttuction

set were to appear as logical subsets of the 8086 registers

and instructions.

The goals of the 8086 architecture were symmetric

extension of existing 8080 features and the addition of

processing capabilities not found in the 8080. Jew features

and capabilities included 16 bit arithmetic, signed 8-16-bit

arithmetic (including multiply and divide), efficient*

interruptible byte string operations, improved bit manipu-

lation facilities and m^chanisms to provide for re-entrant

code, position-independent cods., and dynamically relocatable

programs. By 1977 memory had become inexpensive and micro-

processors were being used in applications requiring large

amounts of code and data. Another achievement was the direct

addressing of more than 64K bytes and support of multipro-

cessor configurations.

The 8086 processor architt-cture comprises a memory

structure, a register structure, an instruction set, and an

external interface. The 8086 external interface consists of

I:

interrupts, multiprocessor synchronization and resource

sharing, this all goes way beyond the facilities provided

in the 8080. The 8086 can access upto one million bytes of

memory and upto 64K input/output ports. The I/O space

consists of 6.4 K ports a 256-fold increase over the 8080.

The processor contains a total of thirteen. 16-bit registers

and nine 1-bit flags. The 8080 register set is a subset of

the 8086 register set as shown in Fig. (A3.1). The 8086

instruction set is not a superset of the 8080/8085 instruc-

tion set. Most of the 8080/8085 instructions are included

in the 8086 while some of the infrequently used ones (e.g. g.

conditional calls and-returns) are not. The operand address-

ing modes of the 8080 have been greatly enhanced.. Signifi-

cant new operations includes : (a) multiplication and

division of signed and unsigned binary numbers as well as

unpacked decimal numbers, (b) move, scan and cimpare

operations :.or strings upto 64 K bytes in lcorigth, (c) non-

destructive bit testing, (d) byte translaticn from one

code to another, (e) software generated interrupts and

(f) a group of instructions that can help coordinate the

activities of multiprocessor systems.

The more six years of microprocessor evolution has

yielded a three orders of magnitude performance improvement,

TABLE - 2.1 and TABLE 2.2 trace the comparison of those

processors in respect of featurds, and technology.

0

R 	¶T, R5
f 0 7 }

A

f~ 	 C

D 	 F

GF NIRA .. R"Gl5"F RS
7 07 0

~x E AH A. ACCUM

Bx L -- OH BE BASE

CX CH JCOUNT

DX

L
- ~H DL DATA

POINTFR AN3 INDEX REGISTERS
15 0

PO'NTER AND INDEX REGISTER

'S 3

STACK
S~ !POINTE R

F BASE
POINTER

S+ , SOuRCE
INDEX

0: DFST 	i
INDEX

SEGMI- NT RF"GISTFR5

INST POINTER AND FLAGS

_L: __

IS 0

> 	 S Z A P 	C

- PRESF N7 IN B086 OUT
NOT IN 8080

SEGMENT REGISTERS

INST P(

15

IP

FLAGS 	
011)

FIG A3.1 8080 SUBSET OF 8086 REGIS

co

1

ti

O

riD

j o

0

W
N H
q
C-4 	4

C--4

H

O
Cr)

8

C-~
Qi
P1

•
•.

0 ,
0~
D

0

4 D

C4

H

109

1

a

t cD O

* *~W O 	IN al e-- lO l0

U -W N t

I'D

If i.r 	~ 0 03
co d 1r. Lc\ `r

O N N

430
Naq - a -P -3 	Id

rO

st

~ 0 O O c0 	•tet N N L nn 11

A w 	cd c3- d t~c
.o NN

N

40 .r-{
C!)

CJ
-P
rQ iP P

N 0 	GJ 	CO * 00 - -HO
co

(.n

U) U
0 }3

U CH

4H CH 0

P F? •o . kN 0
H °: ° U

N M d U\

° F cc3-p ai • rd rd - 43 rd -P

•
l0 L` - 03 r31

110

C)
C)

(1) r3 	r1

Or C) 	c

co U H 	H

H
C)
(1)

Id
H *

C)
4.' •r1 H

Lc\ • C) 	c5
o co H

C)

Go
r

VI H
(\i

4.'
C)

CC) -p C)

0 C)

d H'
rd rd 	C)

H
rd

0 0 H

C)

00
N
CV

rn

O

P4
W
O

H

CV

CV 	(.si

i ' H
p 	!
FR

O

cb
U
N
0

W

H

III

cc U
H
H

U

O 	N
L

O
o lc

zil 	9

O
O 	cc

H

•
N

00
A
U1 Ln lC\ (V

C) U N

S -wA Lc\.
w •4--;)

Aa rn

A
N

N

CD
r -t

U) •n

N

-N 	a.1
S.+ U cc
0 a

O N to
c"3

Ui 0
O 0

f4 W N 0

hl
0
H
O

Ui o

O N 0) G) O
cad cad

cd
a) ¢, 'uj . c i
Ui

0 t~p
v I~ y O cr3 r

~e-I r4 •r-4 	U) F-4 	E-4 i-+ U)
p

O
E-+

-1
-d 0

111

112

APPENDIX -- IV

INSTRUCTION 3ET OI 806 hI CRORO CEOR

The JJ!strdctLon sc of 8086 microp rocessol, car be

studied. wider th foliowin lads o.

• (A) Data Transfer Intractions

(P 	Arithmotic Ins bructioris

(a) Bit Ma.ipuJaion Instructions

(D) String Instruc bions

(E) Frgrsin T.'aisf or IDs' ructions

(P) Processor Cont-OL Instructions

The :fourt.con data tra 	iastructions can bc studied

under thc foiloing four Iiad 	The flags in this case

remain uflaLtored5
(A))1 	41UCTI0N
(a) Gncral Purpose

I . MOV 	Mayo b.yt o word

(i) Rg •/ msicrr, r:r

100010dw mod rugr,/rn

('a) hsg1E/momory16, 	100011dO modrcg rim
Sag r, C>

(c) Acc, emer 	101000dw 	A'.dr low Addr high

(a) 	ag irnod 	1011w reg da;a 	data if w=1

(1100011 w mod 000 r/m data data
if W::-

113

2. PU SR 	PUSH word onto stack

(a) Register 	01010 reg

(b) Seg-reg 	000reg110
(CS legal)

(c) Memory 16/regi 6 1 1 1 1 1 1 1 1 m.odl 10r/m

3. POP 	POP word off stack

(a) Register

(b) Seg--reg
(CS-illegal)

(C) Memory/reg

4. XCHG Exchang.D byte or word

(a) Reg/mem with 	1000011w modregr/m
register

(b) Reg, ace 	10010 reg

5.)MAT Translate; byte

(a) Translate byte 	11010111
to AL

(b) Input/Output

6. IN 	Input byte or word

(a) Acc, immed 	1110010W 	Port

(b) Acc, Dir- 	 111011Ow

7. OUT 	Output byte: or word

(a) Acc, immed 	'1110011W 	Port

(b) Acc, DX 	 1110111w

010.:11reg

000 reg 1 11

10001111 mod000r/m

114 .

(c) Address Ob j s ct

8. LEA 	Load Effective Address

(a) Load EA to reg 	10001 101 modregr/m

9. LDS 	Load poin-Jer using DS

(a) Load pointer to DC 11000101 modregr/m

10. LES 	Load pointer using ES

(a) Load poiivcer to : S 1 1000100 modregr/m

(d) Flag Transfer

11. PUSHF Push flags on:Go stack

(a) Load AH with flags 	10011100

12. POPF 	Pop flags off stack

(a) Pop flags 	10011101

13. SAS-i.F 	Stern Aga register in flags

(a) Store AR into flags 	10011110

1 4. LAHF 	Load CJI register r from flags

(a) Load AU with flags 	1001 1 1 1 1

B. ARITHMETIC INSTRUCTIONS

8080' arithmetic operations may be performed on. A

types of numbers unsigned, binary, signed binary, unsigned

packed decimal and unsigned unpacked decimal. Following is

the effect of the flags.

. CF Carry flag : ADO and SBB incorporate the Carry

flag in their operations. Th:;.i Carry flag is set (a) if an

115

addition results in a carry out of the high order bit of

the result and (b) if a. subtraction results in a borc; ;;7 into

the 1 igh order bit of the result. Otherwise the CF is

cleared.

AF Auxiliary Cary flag s The AF is set (a) if an

addition results in a carry out of the lower order half

byte of the result and (b) if a subtraction results in a

borrow into the lower order half byte: of the result... The AF

is provided for the decimal adjust instructions.

SF Sign flag : Ar.itb:;metic and Logical instruction

set the Sign flag equal to the high order bit ((or 15)

of the result. Programs performing unsigned operations

ignore SF.

ZF Zeroflag s If the result of an arithmetic or

Logical Operation is zero, the ZF is set, otherwise:- ZF is

cleared.

PF Parity flag o If the low order eight bits of an

Arithmetic or Logical result contains an even number of

1-bits, then the PF is set, otherwise it is cleared. It

also checks ASCII characters for correct parity.

OF Overflow flag : If the result of an operation

is too large a positive number, or too small a negative

number to fit in the destination operand (excluding the

116

sign bit) then the OF is sot, otaerwis o it is cleared.

OF indicates signed arithhm :tic overflow.

(a) Addition

1. ADD Add. byte or word

(a) Reg 	/memory with register to either
000000dw modrogr/m

(b) Immed. , reg/mem 	100000sw mo d000r/r Data

(c) Immed , acc 	0000010w Data Data w = 1

2. ADC Add i,yte or word with carry

(a) Reg / mom with register to either
000100dw modrgr/m

(b) Immod reg / m em 100000sw , modOlOr/m Da.ati

(c) Immed , 	acc 	0001010w Data Da: :a w =1

3. INC Incr ni-,nt byte or word by one

(a) Register 	C1000rcg

(b) Reg/mein 	1 1 1 1 1 1 1 w 	r o d.0OC /m

4. AIA ASCII 	adjust for ad.di tion

(a) ASCII adjust for add 001 1 U ; 1 1

5. DAA Decima1 adjust for addit: on

(a) Decimaa adjusc, for add 	0010C1 1

(b) Subtraction

6. SUB 	Suhtract byte or word

(a) Reg/mem and register to either

00101 Odea rno dregr/m.

117

(b) Immed , reg/mom 100000sw mod011r/m Da.ta

(c) Immed , acc 001011 Ow Data Data if w=1

7• 	J3B 	Subtract byt:° or word with borrow

(a) R 'g/memory and register to either

000110dw modregr/m

(b) Immed , reg/mem 	100000sw mod011r/m Data

(c) Immed , acc 	 0001110w Data 	Data if w=1

8. DEC D scr rn nt ' byte= or word by one

(a) Rag/morn 1 1 1 1 1 1 	od001 r1m,

(b) register 01001reg

9. NEG Negat 	byte or word

(a) Change sign 1111011w 	mod011r/m

10. QUIP Compare byte or word

(a) Reg/m&m 	, rg 00111 Odw 	me R.regr/m

(b) Immed , rag/men 100000sw ; mod1 1 1 r/.m 	Data

(c) Imined , 	acc 0011110w 	Data 	Data if w=1

11. AAS ASCII Adjust fox subtraction 00111111

12. DAS Decimal adjust for subtraction 00101111

(c) Multiplication

13. MUZ 	Multiply byGa or word unsigned

1111011w mod10Or/m

14. IMUL Integer multiply byte or word
1 1 1 101 1 wmo dl 01 r/m

118

15. A.PIN ASCII Adjust for multiply
11010100 00001010

(d) Division

16. DIV 	Divide byte or word unsigned

1111011w modl 10r/m

17. IDIV Integer divide byte or word
1111011w mod111r•/m

18. AAD 	ASCII adjust for division
11010101 00001010

19. CBW Convert byte, to word 10011000

20. CWD Convert word to double word 	10011001

(C) BIT MANIPULATION INSTRUCTIONS

8086 provides threR groups of bit manipulating

instructions.

(a) Logicals - Here RIOT has no effect on the flags.

AND OR, XOR, TEST affect the flags as 	The OF and CF

are always cleared, the contents of the AF is always

undefined following execution of a, logical instruction.

The SF, ZF, PF are always posted to reflect the result of

operation and can be tested by conditional jiinp instruction.

1. NOT Invert 1111011w mod010r/m

2. AND 'And byte or word

(a) Reg/mem , register

001 000 dw mo dreg/mi

(b) Imm.ed , reg/.gem
1000000w modl0Or/m

(c) Immed , Acc
0010010w Data

119

Data

Data if i\ = 1

3. OR 	'Inclusive or' byte or word

(a) Reg/mem ,register
000010dw modregr/m

(b) Inun:gid ,
100000w mod001 r/m Data

(c) Immed , acc

	

0000110w Data 	Data ii w = 1

4. XOR 'Exclusive or byte or word

(a) Reg/m m , register
001100dw modr•egr/m

(b) Immed , reg/mein

	

1000000w mod110r/m 	Data

(c) Immed , ace 0011010w 	Data 	Data if w = 1

5. TEST fTestt byte or word

(a) Reg/mem , register
1000010w modregr/:1

(b) Immed , red;/mein
11 1 101 T w mod000r/m Data

(c) Immed , acc
00110101,7 	Data 	Data if w = 1

1 20

(b) Shift - Bits are shifted arithmetically or logically.

Upto 255 shifts may be porfo 'ncnd according to the value of

the count 	perand coded in the -instruction. The 	c.. 	1_ i, 	"..a

be specified as a constant 1, or as reg. CL allowi 	t11e

shift count to be a variable supplied at execution time.

Arithmetic shifts may be used to multiply or divide binary

numbers by powers of two . Logical shifts can be used to

isolate bits,. Shift instr ctions affect the flags as follows°

AF is always undefined follotiri.ng a shift operation. PT', SF,

ZF are updated. CF conta-i-ri the value of the last bit shift(.

out of the destination operand. OF is u.ndef -.zed folloni.ng

a multibit shift. In a single bit shift, OF is set if the

value of the high order (sign) bit retains the original vaLu .

otherwise OF is cleared.

6. SHL/SHA 	Shift logical ant hmc. Gi c left b; ,e
or word 	110100vw mcd100r/n

7. SHR 	shift logical right b, *e or c

1 10100TTw mo dl 01 r/m

8. SAR 	Seii : arithmetic nigh; byte r r word
1 "' 	OOvw,,w mo d1 1 1 r/._i

(c) Rotate - Here the CF may e 	as an exten;'ion c,-° the

operand in two of the :rotatJ^ Instructions, chewing a bit

to be isolated in CF and the: tested by a jump t_f carr or

jump if not carry ins t —S"

1 21

9. ROL 	Rotate l Mft byte or word

110100vw mod000r/m

10. ROR 	Rotate right byte or word

1 10100vw mo d001 r/m

11. RCL 	Rotate through carry left byte or word
110100\rw mod010r/m

12. ROR 	Rotate through carry right byte or word
1 10100vw mod01 1 r/m

D. STRING INSTRUCTIONS

String instructions do not use the normal memory

addressing modes to access their operands. Instead Index

registers are used implicitly. Following are the string

instructions which allow, strings of bytes or words to be

operated on, o ne element at a time.

1. MOVS 	Move byte or word, string 	1010010w

2. CAPS 	Compare byte or word string 1010011w

3. SCAS 	Scan byte or word string 	1010111W

4. LODS 	Load byte or word string 	1010110w

5. STOS 	Store byte or word string 	1010101w

6. REP 	Repeat 	1 1 1 1001 z

E. PROGRAM TRANSFER INSTRUCTIONS

The sequence of execution of instructions in a program

is determined by the CS & IP. CS contains the base address

of the current code segment (64 K portion of memory) from

which instructions ar, presently being fetched. IP is used

1 22

as an offset from the beginning of the code sediment.

The combination of CS & IP points to the memory location

from which the next instruction is to be fetched.

The program tra ±er instructions operate on. ';he

IP and CS thereby changing the: con its; This changing

causes 	e1 s€jcU!§n bj ,l execution to be altered . ihen

a program transferred occurs the queue no longer contains

the correct instructions and. the BIU obtains the next

instructions from memory using the new IP and CS ralu Is.

and passes the instruction directly to th:. EU and then

begins refilling the:. queue from the n"w locations. The

flags are not effected except in interrupt related

instructionso

(a) Unconditional Transfer

(1) CALL, 	Call procedure

(a) Direct within segment
11101000 DDsp low 	Disp High

(b)_ Indirect within segment
1 1 1 1 1 1 1 1 mo d010 r/m

(c) Direct inter segmel-it
10011010 offset low offset high

seg low 	seg high

(d) Tudire ct intersegment
1 1 1 1 1 1 1 1 m o d01 1 r/m

1 23

. RET 	Return from procedure

(a) within segment. 	11000011

(b) 	ithin seg;. adding Immed. to SP
11000010 Data low

Data High

(c) Inters=:gmcnt 	11001011

(d) Interseg. adding immed. to SP
11001010 Data low

Data high

	

3. JMP 	Unconditional jump

(a) Direct within. segment
11101001 displacement low

displacemcat high

(b) Direct within seg. -- short
11101011 disp.

(c) Indirect within segment
11111111 mod100r/m

	

(d) 	Direct intersegment
1110/010 	offset low offset high

seg. low 	seg. high

	

(e) 	Indirect intersegment
1 1 1 1 1 1 1 1 modl01 r/m

(b) Conditional Transfer

4. JO Jump if overflow 	01110000 Disp

5. JNO Jump if not overflow 01110001 displacement

6. JB/JNAE/JC Jump on below/not above or equal/ carry
01110010 displacement

1 24

7. JNE/JAB/JNC Jump if not equal/not carry/abovs or equal

01110101 	disp

8. JE/JZ Jump if r.qual/ zero

01110100 	disp

9. JL/JNGE Jump if less/not greater or equal

01111100 	diep

10. JI,E/JIG Jump if less or equal/not greater

01111110 	disp

11. JBE/JNA Jump if above or equal/not above

01110110 	disp

12. JP/JPE Jump if parity/parity even

01111010 	disp

13. JS Jump if sign

01111000 	disp

14. JNL/JGE Jump if not less/greater or equal

01111101 	disp

15, JNLE/JG Jump if not less or equal/greater.

01111111 	disp

16. JJE/JA Jump if not below 	or equal/abovE.'

01110111 	disp

17, JNP/JPO Jump if not parity/parity odd

01111011 	disp

18. JN S Jump if not sign
01111001 	disp

1 25

19. LOOP
20. LOOPZ/LOOPE

21. LOOPN Z/LOOPNE

22. JCXZ

(d) Interrupt
23. Type specified
24. Type 3
25. INTO
26. IRET

Loop CX times 11100010 	disp
Loop while zero/equal

11100001 	disp
Loop while not zero/not equal

11100000 lisp
Jump on CX zero 11100011 	disp

11001101 type
11001100

Interrupt on overflow 11001110
Interrupt return 	11001111

PROCESSOR CONTROL INSTRUCTION

These instructions allow programs to control various CPU,
functions. There are three groups (a) Flag operation - this
updates flags, (b) External Synchronization - used for
synchronizing the 8086 with external events, (c) No -operation
causes CPU to do nothing. Except for the flag operation
none of the processor control instructions affect the flags.

1. CLC 	Clear carry 	 11111000
2.

CMC 	Complement carry 	1 1 1 10101

3. STC 	Sot carry 	 1 1 1 1 1001
4. CLD 	Clear direction 	11111100
5, STD 	Set direction 	 11111101
6 , CLI 	Clear int Irrupt 	11111010
7.

STI 	Set interrupt 	 11111011

8. HALT 	Halt 	 11110100
9. WAIT 	Wait 	 10011011

10. ESC 	Escape to external device 11011xxx modxxxr/m
11. LOCK 	Bus lock prefix 	11110000

127

Consider multiplication in the two's complement

number system. An n-bit multiplicand (perhaps a signal

variable) is multiplied by an n-bit multiplier (perhaps

a filter coefficient). The product has 2n bits and may be

used as another multiplicand in a later multiplication so

it is quantized (truncated here) back to n bits.

Suppose the multiplier is 'X' and the coefficient is -

'a', then.

a
a X

and. the product is quant i zed Q„

a 	= l a X /2'J

The computer hardware actually handles the inters of

equation (. a.1) so that in hardware
X . 2n-1

a *. 2n-1

a X * 22n-2

is quantized as Q a X _ J a X* 22n-2 / 2n t 	*. 	2

Consequently, the product must be multiplied by 2 (shifted

one place left) so that til final trancat.ed "tern is.

aX _ aX * 2n-1J 	--

Code- sequence in Intel 8086 programing language is as
LEA 	Si , A 	9 	COEFF. POINTER
LODW 	 q A / 2 LOADED
IMUL X 	y 	1sX / 4 IN DX. REGISTER
SAIL 	DX , 2 	9 	AX IN DX REGISTER

1 26

APPENDIX - V

COEFFI CIENT REPRESENTATION

Intel 8086 represents all the numbers in the two` s

complement number system, so

N = (S M14 M13 	M1 Mo) 2 cans .. (A5.1)

where,

-215~N <215 -1

If we consider all numbers to be scaled, such that

N = (S. M1 4 N13 , M1 Mo) 2 cris

thus,

As a result, coefficients in the range 1 N <2 cannot be

represented. Therefore, all coefficients will be stored as

half their actual value, and

VALUE STORED = LValu e * 214 + 0. 5

and a left shift (multiply by 2) operation will be _performed.

in each routine to compensate for this changa. The symbol Li

means the largest integer loss than X.

As an example suppose coefficient S¢ = .4383164 is to

be stored in the Intel 8086. microprocessor.

VALUE STORED = SO * 214 + .5

_ J .4383164 * 16384 + • 5
_ L7181 '3759 + .5j

_ 181 8759y= 7181

128

The following operations are actually performed

(1) Load the. coefficient ' a' into AX - register

..X = a * 2 2

(2) Multiply by the variable 'X'

DX, AX= (a * 2n1_2) * (X * 2n-1)

=aX* 221i-3

_ (a X / 4) * 22n-1

the product is now in the DX, AX register.

(3) Shift DX. Register left 2 places (quantize: to 16
bits and multiply by 4) .

DX 	tL(a.X/ 4) * 22n-1 / 2nI '•4
La X / 4 *221J * 4

a X * 21-1

The operation l~-ft justifies the register DX and fille in

two zeros in the least significant bits. 	The DX. register

now contains the truncated, properly scalod result.

On computers with double register shifting, on would

perform the double left shift first.

Double register = (a X / 4 * 22n-1) * 4

- a X # 22n-1

and then truncate to the n most, significant bits.

For Single register = (a L * 22n-1) / 2n

- 	(a X 	211_i)

which 'is more accurate than above.

	Title
	Abstract
	Chapter 0
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

