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Aa ST R ACT 

The work presented in this work deals with application 

of sparsity techniques to load flaw studies. As the size of 

the system increases, it becomes increasingly difficult to 

accommodate the problem within the core memory of the computer 

and sparse matrix techniques canes to the aid of the load flew 

analyst to overcane the problem of memory size and these 

techniques are absolutely essential for studying large modern 

interconnected systems. The technique also considerably speeds 

up the execution, as operations involving zero-elements are 

avoided and thereby# finds application especially for on-line 

studies where execution time should be as small as possible. 

Chapter II deals with the review of the load flow calcu-

lation methods and the equations on which the computations are 

based. In Chapter III the various sparsity techniques have 

been dealt with. Chapter IV describes the factorization me-

thods which are generally applied and in detail deals with the 

bi. factorization method which has been used in this work. 

etailed description of the computer algorithms for both Gauss-

Seidel and Newton-Raphson metod have been given in Chapter V. 

The flow charts are given in appendix. Chapter VI gives 

the details and data of the problems studies and results obtained. 

In this wart sparsity techniques have been applied to load 

flow solution both by Gauss-Seidal and by Newton-Raphson method. 
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In the Newton-.Raphson method the techniques of bi-facto... 

rization has been applied. 

It is seen that the Gauss.-Seidal method requires a large 

number of :' ,iterations for getting the solution. The Newton. 

Raphson method takes very few iterations to get the solution. 

However for the smaller systems the execution time is more. 

The methods have been tested on a 5 bus, 8 bus and IEEE 

standard 57 bus and 118 bus systems. The computational work 

has been carried on DEC 2050 computer system of the Roorkee 

University and execution times referred in this work correspond 

to D 2050 system. 



LIST QF PRINCIPAL SYMBOLS USF,t) 
t 

Subscripts/Superscripts 

P, q, I bus numbers 

K,v iteration numbers 

IP = 	Vector of bus currents 

EBUS = 	Bus voltage vector 

YBus = 	admittance matrix 

2Bus = 	Impedance matrix 

EP. VP = 	Vector of Bus voltages 

EP = Conjugate of 5 

R = 	Resistance of transmission line 

X = 	Rectance of transmission line 

pp = 	Driving point admittance 

Yp~ = 	Transfer admittance 

cS = 	Phase angle of the bus voltage 

e = 	angle of the elements of the admittance matrix 
exprre6s-ea4. in polar coordinators 

P P = 	Real pacer input at Bus P 
Qp = 	Reactive pcfr er input at Bus P 
SP = 	Power at P bus 	Pp -JQp 

Y 
pq 

= 	admittance between buses P and Q 
A p = 	Difference between actual and coaputed real bus per 
Q q = 	Difference between actual and computed reactive " " 

Correction required in the bus voltage phase angle 
AJEI = 	Correction required in the bus voltage magnitude. 
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CHAPTER - I 

T NTRODUCTI ON 

1.1 Load Flow Studies 

The principal objective of a utility is to deliver power 

to the consumer satisfactorily (i.e. with voltage and frequency 

within limits) and in a manner most economical to the company 

from the transmission and distribution points of view. 

Load flow calculations provide power flows and voltages for 

a specified power system subject to the regulating capability 

of generators, condensers, and tap changing under load trans-

formers as well as specified net interchange between individual 

operating systems. This information is essential for the con-

tinuous evaluation of the current performance of a power system 

and for analyzing the effectiveness of alternative plans for sys-

tem expansion to meet increased load demand. These analyses re-

quire the calculation of numerous load flows for both normal and 

emergency operating condition. Thus load flow studies form the 

back bone for the design and operation of a power system. 

The load flow problem consists of the calculation of power 

flows and voltages of a network for specified terminal or bus con-

ditions. A single phase representation is adequate since power 

systems are usually balanced. Associated with each bus are four 

quantities: the real and reactive power, the voltage magnitude, 

and the phase angle. Three types of buses are represented in 

the load flow calculation and at a bus, two of the four quantities 

are specified. It is necessary to select one bus, called the 

slack bus, to provide the additional real and reactive power to 

supply the transmission losses, since these are unknown until the 

final solution is obtained. 
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At this bus the voltage magnitude and phase angle are 

specified.. The remaining buses of the system are designated 

either as voltage controlled buses or load buses. The real 

power and voltage magnitude are specified at a voltage con-

trolled bus.. The real and reactive powers are specified at 

a load bus.. 

A given power system subject to a given set of power de-

mands at its various buses can be operated in an infinite 

number of states and still satisfy the given demands. For the 

systers engineer the job becomes one of selecting the best 

possible state out of the myriad of possibilities. He selects 

this particular one after comparing a number of possible 

alternatives, obtained from a load flow study. 

The state of the system could be represented by a vector, 

the state vector, made up of the bus voltage magnitudes and 

phase angles, With all the bus voltages known to both magni-
tude and phase, we in effect also know the line flows. In 

other words, we know the total structure of the power flow in 

the system. 

Having obtained from a such study a selection of possible 

load flow configurations, the one particular configuration we 

should use is selected on the following basis.. 

1.. The total amount of real power in the network emanates from 

the generator stations, the location and size of which are 

fixed. The generation must equal the demand at each moment, 

and since this power must be divided between the generators in 

a unique ratio in order to achieve optinim economic operation, 
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we conclude that the individual generator outputs must be 

closely maintained at predetermined set points. It is impor-

tant to remember that the demand undergoes slow but wide chan-

ges throughout the 24:h of the day. We must therefore slowly, 

either continuously or in discrete steps, change these set 

points. 

2. Certain transmission links can carry only certain amounts 

of power, and we must make sure that we do not operate 

these links too close to their thermal / stability limits. 

3. It is necessary to keep the voltage levels of certain buses 

at rather close tolerances. This can be achieved by proper 

scheduling of reactive powers. 

4. If the power system is part of a larger pool, it must ful-

fil certain contractural power-scheduling commitments via 

its tie lines to neighboring systems. 

5. The disturbances follwwing a massive network fault can cause 

system outages, the effects of which can be minimized by pro-

per pre fault load flow strategies. 

1.1.1 Load Flow Studies of Large Systems. 

As the size of the net work increases it becomes increasingly 

difficult to accomAdate the problem in the available memory 

of the computer. In order to bring such problems within the 

memory size of the computer special techniques called sparsity 

techniques have to be used. 

1.2 Sparsity Techniques. 

A matrix having only a small percentage of non zero ele-

ments is said to be sparse. In a practical sense any nxn mat-

rix is classified as sparse if it has order of n nonzero 
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elements, say two to ten non zero elements in each row, for 

large n. In other words if a is the total number of nonzero 

eleiieftu in the matrix and n is the order of matrix, then 

a < < n2. 

Sprase matrices occur in the , solution of many important 

practical problems, e.g., in structural, analyses, network the-

ory and power distribution systems, numerical solution of diff-

erential equations, graph theory, as well as in genetic theory, 

behavioral and social sciences, and computer programming. As 

our technology increases in complexity, we can expect that large 

sparse matrices will continue to occur in many future applications 

involving large systems, e.g  . , scheduling and simulation of 

interconnected power system problems, scheduling of metroli-

tan fire engines of fire departments and ambulances, simula-

tion of traffic lights, pattern recognition and urban planing. 

The formulation and solution of problems in power systems, 

social, behavioral and environmental sciences in many cases 

lead to large sparse systems [z9 ]: If such systems are non 

linear, then their linearization - often the first step towards 

the solution - will result in still larger sparse systems. 

In the present work we will confine ourselves to the appli-

cation of sparse matrix techniques to load flow problem. 
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CHAPTER - II 

LOAD FLOW PROBI ±f 

The overall load flow problem can be sub divided into 

two sub problems namely: 

1. The formulation of a suitable mathematical network model. 

The model must describe adequately the relationships between 

voltages and p oiwers in the interconnected system, 

2. The application of numerical method for a solution. The 

solution must satisfy Kirchoff's laws, i.e., the algebraic 

sum of all flows at a bus must equal Zero, and the algebraic 

sum of all voltages in a loop must equal zero. Other can- 

straints placed on the solution ares the capability limits 

of reactive per sources, the tap setting range of trans- 

formers as well as specified net inter change between 

individual operating systems. 

2.1 Network Model Formulation 

The first step in any analysis of an electric energy 

system must be the formulation of a suitable network model. 

Such a model should relate a selected set of network voltages 

to another selected set of network currents or powers. 

The networks that we shall be concerned with in aur work 

are very large, containing often many hundreds, perhaps thou- 

sands, of individual network elements, and when we combine 

these individual elements to form the overalls ystem model, 

we are facted with the need of performing tens of thousands of ele- 
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mentary algebraic operations. 

As load flow studies an invariably carried out on a 

digital computer, so there is a need to develop network ass-

embly methods that are systemaic and -amenable to computer use. 

The tabular nature of matrices makes them particularly well 

adopted to digital computer programming. flso, the methods 

should possess flexibility with regard to network changes. 

If we wish to perform investigations of the effects of certain 

localized network changes, we should be able to do so with a 

minimum of computational effort. 

A network matrix equation provides a convenient mathema-

tical model for a digital computer solution. The elements of 

a network matrix depend on the selection of the independent 

variables, which can be either currents or voltages. Corres-

pondingly, the elements of the network matrix will be ing.edances 

or admittances. 

The electrical characteristics of the individual network 

components can be presented conveniently in the form of a pri-

mitive network matrix. This matrix, while adequately describing 

the characteristics of each component, does not provide any 

information pertaining to the network connections. It is 

necessary, therefore, to transform the primitive network matrix 

into a network matrix that describes the performance of the 

interconnected network. 

The form of the network majrix used in the performance 

equation depends on the frame of reference, namely, bus or loop. 
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in the bus frame of reference the vatiables are the nodal 

voltages and nodal currents. in the loop frame of reference 

the variables are loop voltages and loop currents.. 

Generally the bus admittance matrix is chosen to repre-

sent the network for carrying out load fl cw studies because 

of its easy formulation, and alteration and its sparse 

nature. (25) The bus admittance matrix is a very sparse 

matrix and the degree of sparsity for larger systems may be 

in excess of 95 percent (31) . We have also chosen in our 

method the bus frame of reference in the admittance form. 

2.2 Solution Technicues 

The follwoing table gives a brief summary of some of 
the main types of load flow solutions currently in application, 

and the requirements imposed on the numerical precesses(1) . 

Load Flow Calculations - Types and - Reauirements, 

Types of Solution 

	

Accurate 	Approximate 

	

Un adj usted 
	

Adjusted 

Off-1 ine 	 -'line 

	

Single Single case 	itiltiple cases 

PrcPerties required of Load-Flay Solution Method. 

High speed 	especially for; Large systmes, real 
time applications, 

multiple cases 

interactive applications 
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Low storage Especially fors Large systems Computer with 

small core storage availability 

Reliability Especially for: ill-conditioned problems outage 

studies real-time applications 

Versality 	 Ability to handle conventional 

and special features (adjust-

ments, representation of power 

system apperatus); suitability 

for incorporation into more 

complicated processes. 

Simplicity 	Ease (and cost) of coding, 

maintaining, and enhancing 

the algorithm and computer 

program based on it. 

Prior to and for some time after the advent of digital 

computers, load-flow solutions were obtained using network 

analyzers. The first really practical automatic digital 

solution methods appeared in literature in 1956 and sub-

sequently (11-13). 

These Y-matrix iterative methods were well suited to the 

early generations of computers, since they require minimal 

cempnter storage. Although they perform satisfactorily on 

many problems, they converge slowly, and too often not at 

all. The incentive to over-come this deficiency led 



9 

to the develoyrnent of 2-:matrix methods (3-5) which converge 

more reliably but sacrifice some of the advantages of Y-

matrix iterative methods, notably storage and speed when 

applied to large systems. --round the same time, the Newton-

Raphson Method was shown to have very powerful convergence 

properties (6-7), but was corriputationally uncompethtive 

Maj or break through in power-system network computation came 

in the mid - 1960' s, with the development by Tinney and 

others of very efficient sparsity programmed ordered elimi- 

nation (8) . 	e of its earliest succes was in dramatically 

improving the computing speed and storage requirements of 

Newton's method, which has now come to be widely regarded as 

the preeminent general purpose load flow approach (8) and 

has been adopted by much of industry. (i) 

2.3,1  :)timal Load Flow 

tin optimal load-flow calculation optimizes the active-

and reactive-power dispatch of a system, including as con-

trol variables those single-criterion-control parameters 

that are adjusted during an ordinary load flow solution., 

till the relevant static limit constraints on the system 

operation are enforced. 

Some practical approaches to this problem, including 

the now classical Dommel and Tinny method (9), adjust the 

control variables in some optimum-seeking manner in between 

conventional load flow solutions. Polar coordinate load-flog 
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formulations are the most natural choice for the optima_ 

zation application, since voltage magnitudes in particular 

are then explicitly available as variables for control and limit 

enforcement purposes. 

2.3.2 Diakoptic Techniques 

Prior to the advent of sparsity techniques diakoptic 

approach was used to be applied for solving large problems. 

The basic idea of di akopti cs is to solve a large system 

by a breaking or tearing it apart into smaller subsystems; to 

first solve the individual parts, and then to combine and modi- 

fy the solutions of the torn parts to yield the solutions of 

the origional untorn problem. The result of the procedure is 

identical to one that would have been obtained if the system 

had been solved as one (10) . 

The uses of diakoptics are at least two fold: In the first 

application, larger systems can be solved efficientijby the use 

of diakoptics on a given computer than would otherwise be po- 

ssible by processing the torn parts through the computer serially. 

The second application employs a multiplicity of computers which 

essentially operate in parallel, and thus provide more speed of 

execution than by the use of a single computer. The computer 

can be physically next to each other, thus forming a cluster of 

computers, or they can be miles apart. So we can expect larger 

problems to be solved with greater speeds by the use of diakptics 

than by solving the problem by conventiional methods. 
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2,3 Network Performance  Equations 

The equation describing the performance of the network 

of a per system using the bus frame of reference in the 

admittance form is 

IBUS = YBUS EBUS 
	 (1) 

The bus impedance and admittance matrices can be formed 

for the network including the ground bus. The elements of 

the matrices, then, will include the effects of shunt elements 

to ground such as static capacitors and reactors, line chatg-

ing, and shunt elements of transformer equivalents. When the 

round bus is included and selected as the reference, node, 

the bus voltages in the above network performance equation are 

measured with respect to ground.. 

2.3.1  Bus Loading Equations 

The real and reactive pacer at any bus p is 

P - j Qp  = Ep Ip 	
(2) 

and the current is 
I = PP J Qp 	

(3) 

p 

Where I is positive when flowing into the system. 

In the formulation of the network equation, if the shunt 
e}.ments to ground are included in the parameter matrix, then 

equation (3) is the total current at the bus. 

2.3.2  Line Pl cw E g ati on s 
After the interative solution of bus voltages is com-

pleted, line flows can be calculated. The current at bus p 
in the line connecting bus p to q is 
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Y 

ipq = È,p - Eq) Ypq + Bp pq 	 (4) 
2 

where Ypq,= line admittance 

Ypq = total line charging admittance 

Y 
Ep q = current contribution at bus p due to line 

2 

charging 
The per flaw, real and reactive, is 

Ppq-' aopq EPlpq 	 (5) 
S 

or 	 Ypq 
P - j P q = Ep (Ep _ E) Ypq + EP E. --~---- 	(6) 

p q ~i 	 2 

Where at bus p the real power flow from bus p to q is Ppq 

and the reactive is Apg0 Similarly, at bus q the power 

flaw from q to p is 
Ypq  

P - jq =E ~(Eq - K)'Ypq * EQ .q----- 	(7) 
2 

The power loss in line p-q is the algebraic sum of the 
power flows determined from equations (6) and (7) . 

2,4 Solution Methods 
2.4.1 Gauss Iterative Method Using YBUS 

The solution of the load flow problem is initiated by 
assuming voltages for allbuses except the slack bus, where 
the voltage is specified and remains fixed, Then, currents 
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are calculated for all buses except the slack bus s from 

the bus loading equation 
Pp- iQp 	p 	1#2  .....• n 	 (8) 

Ip 	* 	P 1E s 
P 

where n is the number of buses in the network, The per-

formance of the network can be obtained from the equation 

IBUS = BUS EBUS 	 (9) 

Selecting the ground as the reference bus, a set of n -1 

simultaneous equations can be written in the form 

1 	n 
Ep =—€ _ 	y E 	P=1, 2, ...., n (10) 

Ypp  ( P q1  P4 q j 

P 

The bus currents calculated from equation (8), the slack 

bus voltage, and the estimated bus voltage are substituted 

into equation (10) to obtain a new set of bus voltages. 

These new voltages are used in equation (8) to recalculate 

bus currents for a subsequent splution of equation (10) . 

The process is continued util changes in all bus voltages 

are neglible. After the voltage solution has been obtained, 

the per at the slack bus and line flows can be calculated. 

The network equation (10) and the bus loading equation 

(8) can be combined to obtain (ij) 
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n 
1 ( pp >1YE ) p 1t2r....rn (11) 

	

----- ( 	 Pq q ) 
Ep Y 	( 	E* 	 ) P 1~ S 

 

PP (  P  

which involves only bus voltages as variables. Formula. 

ting the load flow problem in. this manner results in a set 

of nonlinear equations that can be solved by an iterative 

c al cukati an.. 
The iterative process must continue until the magnitude 

of the change of the bus voltage between two consecutive 
iterations is less than a certain tolerance level for all 

bus voltages. 
CoMutation of Slack Bus Prower 

This step is simple. After the iterations have convert-
ged, - . . substitute our computed voltages (plus the assumed 

voltages o f slack bus) in equation 2 and obtain directly the 

slack bus power.. 
C orrp utati on of Line Pl car s 

The final step in the load flow analysis is the com-

putation of the load flows on the various transmission lines r 

network, using the equations already described.. 

2.4.2 Gauss-Seidel Iterative Method Using YBUS 

In this method the new calculated voltage immediately 

replaces the old value and is used in the solution of the 
subsequent equations. The flow diagram is shown in Appendix. 
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2.4.3 Newton-star, hs on Method UsiinQ YBUS 

The load flow problem can be solved by the Newton-

Raphson method using a set of nonlinear equations to express 

the specified real and, reactive powers in terms of bus vol-

tages (7) . What follows is the *description of the Newton-

Raphson method using polar coordinates., 

The power at bus p is 

P -JQ =EY 
P P pp 

Substituting from the network performance equation (1) for 

xp in (14) 

* n 
P - jQ =E ç Y E P 	p P _ Pq q 

q=1 

(15)  

Since E_ i EP I E s~ 
P  

Equation (15) becomes 

_ 
and Ypq =IYpqI E 

n 

PP j QP = 	I EPEq pq 
q=1 (16)  

SinceE~~~~'}~~ ~) cos (~pq #`gy_ v) - j sin (pq p -8). th e 

real and imaginary components of power are 

n 
pp = y I EE:Ypq  p 	J cos ( Pq * £ - q) 

q=1 	 (17) n 
Qp =i IE PK : pg lsin (Pq +E 	-Sq ) p =  

q=1 

(14) 
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(assuming nth bus as the reference bus) 

This formulation results in a set of nonlinear simu-

ltaneous equations, two for each bus of the system. The 

real and reactive pavers Pp and Ap are kncwn and the real 

and imaginary components of voltage ep and fp are unknown 

for all buses except the slack bus, where the voltage is 

specified and remains fixed. Thus there are 2(n - 1) equa-

tions to be solved for a load flow solution. 

The Newton-Raphson method requires that a set of linear 

equations be formed expressing the relationship between the 

changes in real and reactive powers and the components of 

bus voltages. Expressing in the matrix form 

	

AP 	J1
~  

J2 

• 

	

Q 	J3 	J4__— 4 

(18) 

The elements of the Jacobian are calculated from 

equations (17) and are 

For  

aPp 
= I E.p .q pq sin (S + q  p - q) 

a$ 
q 

n 
cb P 	— 

 IE Pzq pq Lain ( P + 6' . Z) 
ad 	 q p q p 	q=1 

qAp 

q 1~ p 

A6 

(19) 
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For J2 s 

PP 
----- - .. I Ep Pq I S o$ (P q + p q) q 1 p 
~IEI q (20) 

PP = 2 IEpypp 1 cos a pp+ 
►Ep t 

For J3: 

n 

E Y I cos (Pq + p q) 

q=J. 
p 

- --EpEq pq Icos (pq + p - q) q A p 
abq 

D Op 	n 
I EpEgYpq j cos (8pq +by q) 

b(5p 	q1 

q4P 

For J4: 

c~ ap 
--- = IEP PqI sin (pq +P ...5)  q~P 

ca JEg l 
(22) 

n 

a E 	
2 IEpYpp I sin epp + L IE.gYpq1 sin. (P4 P QI p 	4 
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2,4.4.  Voltage Controlled  Buses 

A modification of, or deviation from, the normal 

computational procedures for the solution of the load 

flow problem is required to take into account voltage 

controlled buses. At these buses the voltage magnitude 

and the real per are specified. 

In the Gauss and Gauss-Seidel methods using YBUS, 

the reactive power at a voltage controlled bus p must 

be calculated before proceeding with the calculation 

of voltage at that bus. Separating the real and imaginary 

parts of the bus p ower equation 

n 
Pp j p E  p 	P 	P q q 

. q=1 

the reactive bus power is 

P =e2 	2 
ep BPP + f  p pp + 

n  

q=1 fp(e,GPq fq Pq)-ep(fq  Pq 
qAP 

-er9pq) 	(23) 

where ep  and fp  are t he. components of voltage at bus p. 

The values of e and f must satisfy the relation 

e2  + f 	= (Epscheduled) 2 
	

(24) 

in order to calculate the reactive bus per required to 

provide the scheduled bus voltage. The present estimates 

of epk  and f must be adjusted, therefore, to satisfy equa- 

ation (24) 

The phase angle of the estimated bus voltage is 
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bP = arctan fpk 

e k 
p 

Assuming that the angles of the estimated and scheduled 

voltages are equal, then adjusted estimates for epk are 

ep (new) =1 Ep I(Scheduled) Cos pk 	
(23) 

fp (new) 	j (scheduled) sin Pk 

Substituting epk (new) and f 	(new) in ;equation (23), 

the reactive per S~pk is obtained and is used with Epk 

(new) for calculating the new voltage estimate Ekp1 (new) 

for calculating the new voltage estimate 

In actual practice the limits of reactive per source 

at the voltage controlled bus must be taken into account. 
If the calculated 0pk exceeds the maximum capability Sip 

(max) of the source the maximum value is taken as the 

reactive parer at that bus. If the calculated value is 
less than minimum capability p(min) the minimum value is 

used.. In either case it is impossible t o obtain a solution 
with the specified scheduled voltage and therfore 

cannot be used in the calcultation of E+1. 
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20 
In the Newton-Raphson method the equations for a 

voltage controlled bus p are (in polar coordinates) 

n 
pP = 	1E P 	q  E  Pq 1cos (p p q) 	(25) 

q=1 

and 

1 E2  1 = E2 	 426) 

where equation (26) replaces the equation for the reactive 

pacer. The matrix equation relating the changes in bus 

powers and the square of voltage magnitudes to changes in 

voltage magnitude and phase angle is 

The elements of the submatrices J1,JZ.J3  and 34  are calculated 

as explained in section (2.43), From equation. (25) both off 

diagonal & diagonal elements of 35  are zero. The off diagonal 

elements of J6  are zero as 

Ep2  
----= 0 	 g1Ep 	 (27) 
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and diagonal elements of J6 are 

. iE ~2 
--- -= 2E 	 (2 8) 

Ep I 	P 

The change in the square of the voltage magnitude at 

bus p is AIEI2 = (SPI scheduled) 2 - JEP~ 2 	(29) 

If sufficient reactive capability is not available 
to hold the desired magintude of bus voltage the reactive 
pacer must be fixed at a limit. 	In this case the voltaje 
cannot be maintained and the solution is not the desired 
one. 
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CHAPTER - III 

SPARSITY TECHNIQUES 

3.1 Introduction 

In sparse matrix techniques, only the nonzero elements 

of the matrix are stored and precessed, which will not only 

reduce the memory requirement but also reduce substantial 
I 

amount of time, as operations involving zeros are not per-

fora ed. Nearly all the schemes make use of two storage com- 

ponents. 

a) A facility for storing either the non-zero elements or an 

aear of the matrix which includes all of the non-zero ele-

ments. This usually takes the form of a one-dimensional array 

and will be called the primary array. 

b) A means of recognizing which elements of the matrix are 

stored in the primary array. This usually takes the form of 

one or more one-dimensional arrays of integer identifiers, 

which will be called the secondary store. 

3.2 Binary Identification 

A novel scheme which makes use of the binary nature of 

computer storage is to record the pattern of non-zero elements 

of the matrix as the binary digits of secondary array ele-

ments. The matrix 

0 	0 	0 	0 	0 

A= 	0 	0 	2.67 	0 	3.12 	3.1 
t 

-1.25 0.29 0 0 2.31 

has a pattern of non-zero elements indicated by the binary 

sequence 
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row 1 row 2 row 3-  

0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 

Hence this matrix could be stored by means of a primary 

array containing the five non-zero elements (2.67 3.12 -1.25 

0.29 2.31) and a secondary store containing the binary se-

quency could be held in a word with fifteen or more bits, 

however, for larger matrices a number of words would be re-

quired. 

If an x n matrix has r as the ratio of the number of 

non-zero elements to total elements and if two words each 
i 

of Ybits are required to store each non-zero element, then 

the primary array will occupy 2mnr words and the secondary 

array will occupy ap?nruximately mn/r words. Since 2mn words 

would be required to store the matrix in the ,conventional 

way, the storage compaction of the binary identification 

scheme may be expressed as the ratio c where 

mn 
2mnc '= 2mnr + Y 

3.2 

giving 

1 
c=r+- 

2Y 	 3.3 

This storage scheme differs from other sparse schemes in 

that some storage space (a single bit in the secondary 

store) is allocated to every zero element. It is therefore 

[Less efficient for very sparse matrices than schemes which 

do not contain any storage allocation associated with zero 

elements. Moreover, the main drawback is the difficulty 
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of implementing matrix operations with matrices stored in 

this way. Normally such implementations would produce much 

less efficient programs than could be achieved by using other 

sparse storage schemes. 

3.3  Random Packing 

Every non-zero element entered into the primary array 

may be identified by specifying its row and column numbers 

in the corresponding locations of two secondary arrays. 

Since each element is individually identified it is possible 

to store them in a random order. Thus matrix (3.1) could 

be represented by 

Real array A = (0.29 3.12 -1,25 2.67 2.31 0 - -} , 

Integer arraylA = ( 3 	2 	3 	2 	3 0 - _)(3.25) 

Integer arrayJA = ( 2 	5 	1 	3 	5 0 - -) 

One advantage of random packing is that extra non-zero ele-

ments can be added to the matrix by inserting them at the end 

of the .list without disturbing the other items. It is often 

convenient to have a null entry in a secondary array to indi-
cate termination of the list. 

3.4 ytematic Packing 

If the elements of a sparse matrix have been read in or 

constructed in a systematic order or have been sorted into a 

systematic order there is no need to adopt both row and column 

indices for each element. For row-wise packing it is the row 

indices which may be dispensed with, except insofar as it is 

necessary to specify where each row begins. 
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3.4 .1. The Use of Row Address 

The address of the first non-zero element in each row 

may be specified in a separate integer array. For example, 

matrix 3.1 could be represented by 

Real array A 	= (2.67 3.12 -1.25 0.29 2.31) 

Integer arrayJA 	= ( 3 	5 	1 	2 	5 ) (3.5) 

Integer arrayISTART = ( 1 	1 	3 	6) 

The array of row addresses ISTART has been constructed so that 

the number of non-zero elements in row i is ISTART(1+1)-ISTART 

(I) , hence for a matrix with m rows, ISTART will contain m+l 

entries. 

3. Li. .2 The Use of Dummy Elements 

Either in place of row addresses, or as an adjunct to them 

dummy elements may be included to indicate the start of each 

row and the end of the matrix. Several formats are possible 

for the dummy element and the corresponding entry in the co-

lumn index array. For instance, a zero entry in the array JA 

could mark the presence of a dummy element and the dumr^y ele-

ment itself could specify the row number (or be zero to indicate 

the end of the matrix) . Hence matrix (3.1) would appear as 

Real arrayA 	= (2) 2.67 3-.12 (3) -1.25 0.29 2.31 ~0~ (3.6) 

Integer arrayJA= ((0)) 3 	5 	(0) 	1 	2 	5 	(0) 
Alternatively, the row number could be specified in the integer 

array and distinguished from column- numbers by a change of 

sign. In this case the dummy element itself would not be used. 
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Matrix (3.1) would appear as 

Real arrayA  _ (x) 2.67 3.12 (x) -1.25 0.29 2.31 ~x) (3.7) 

Integer arrayJA= (-2) 3 	5 (-3) 	1 	2 	5 (0)) 
In some cases(e.g. for the sparse matrix multiplication of 

section 3. ) it is easier to program matrix operations if the 

integer identifier for a dummy element is larger rather than 

smaller than the column indices. This may be achieved by making 

the identifier equal to the row number plus a constant, the 

constant being larger than the largest column number. In a 

similar way it may be convenient to use an even larger number 

to indicate the end of the matrix. Thus, matrix (3.1) would 

appear as 

Real arrayA = ( 	x ) 2.67 3.12 ( 	x ) -1.25 0.29 2.31 

Integer arayJA = (10002 ) 	3 5 ( 10003 1 2 5 

X 

99999 
(3.8) 

A further alternative use for the dummy element is to speci-

fy in the column index position the number of elements in the 

next row. If a dummy element is included for each row even: if 

it is null, then there is no need to record the row number. 

Thus matrix (3.2) could be stored as 

Real arnayA 	=(x x 2.67 3.12 (x -1.25 0.29 2.31 	(3.5) 
Integer arrayJA=(0 2 3 5 (3 1 2 5 

The number of rows in the matrix will need to be specified 

elsewhere. 

In any of the dummy element schemes shown above except the 
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first, the dummy elements in the real array may be omitted 

to save storage space. However, if this is done the addresses 

of the elements and their column will not coincide. 

3.5 Compound Identifiers 

In the random packing schme (3.5) it is possible to re-

duce the storage requirement by combining the two indices for 

each element so that they can be held in one integer store. 

A suitable compound identifier would be m + j where n is an 

integer equal to or greater than the total number of columns 

in the matrix. In a similar way it is possible to avoid the 

use of dummy elements for systematic packing by using a com-

pound identifier for the first element of each row. For ex-

ample, matrix (3_.1) could be represented by 

Real arrayA 	= (2.67 3.12 -1.75 0.29 2.31 	
x ) (3.10) 

Integer arrayJ.A = (2003 5 	3001 2 	5 99999 ) 

However, unless compound identification yields necessary or 

highly desirable storage space savings, it should not be used 

because 

(a) extra program will nearly always be required to interpret 

the compound identifiers and 

(b) it must not be used for matrices whose orders are so large 

that overflow of the integer register would result. 

3.6.1. Necessity of Linked Storage for Matrix Inversion 

The schemes so far described cannot be used when matrix 

inversion is required as in the case of Newton-Raphson method 

for solving the simultaneous equations. These simultaneous 



equations can be solved by direct matrix inversion. Although 

these methods are fairly easy to program, they cannot, however 

exploit, sparsity and unfortunately produce a full inverse 

matrix for large problems, for storage is therefore extremely 

large and the methods are very Inefficient. 

The alternative direct methods to matrix inversion are 

the factorization techniques based on Gauss elimination. 

These methods sparsity can be exploited and, with a suitable 

ordering technique, a direct solution can be obtained with a 

minimum amount of storage and computation time. Factorization 

methods are, in themselves, relatively easy to program, since 

the technique of each method is based solely on the Gauss 

elimination process. The simplicity of these methods, however, 

is upset when the coefficient matrix as a whole is not stored, 

but only the non zero elements in a compact form. 
The previously described storage schemes can be adopted if 

the number of non zero elements in one column did not vary in 

the course of computation. However during the factorization 

process new non zero elements anekontinualiy big generated. 

Also, elements which were previously non-zero, may become :zero. 

However by using a suitable ordering technique, the number of new 

non-zero elements produced during factorization can be minimized. 

It is evident that the compacting and indexing schemes must be 

capable  o f implementing efficiently these continuous changes 

during factorization by inccr`porating the new non-zero ele-

ments in store and recording the available storage space. 
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in order to deal with,  this problem of continually 

changing of non zero terms in each column and raa of the 

reduced matrix, a linked list technique becomes essential 

which is described in the next section. 

3.6.2  Linked List Technique 

Suppose we have stored a list of numbers in an array 

defined as VALUE. 

Location 1 2 3 4 5 6 

VALUE 	30.5 50.9 26,3 45.7 - 	- 

There are many sequences in which the same list of nurn.. 

bers can be stored. Suppose, for instance, that these num-

bers are to be stored in ascending numerical order. the way 

of achieving this requirement is to change the numerical. 

value of the elements in each location. Doing this, the 

new numbers in the array VALUE would bet 

Location 1 2 3 4 5 6 

VALUE 	26,3 30.5 45,7 50,9 - - 

So far this process is very straighforward, even if a 
re-ordering routine has to be included in the program to 

arrange the numbers in a certain preferred sequence. Suppose 
naw that it is necessary to add a new number to the list. If,  

the new number can be added to the end of the list then the 

process is very simple. The size of the list is increased by 
one and the new number is inserted in t he extra available 
position. If, however, the number is to be inserted in the 
middle of the existing list, then the process is more compli- 
cated. 
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Let the new number to be added be 28.2 and the new 

list to be kept in an ascending numerical order. One way 

of achieving this is , to move the last value one position 

down the lists move the last but one value to the position 

previously occupied by the last value and continue this 

process until the new value can be inserted into the app ro-

priate position. Using this method, the new list with the 

value 28.2 added becomes: 

Location 	1 	2 	3 	4 	5 	6 

VA WE 	26.3 	28.2 30.5 45.7 50.9 	- 

For a long list, this process of inserting new in 

a particular position within an 	existing list can be 

computationally very time-consuming. A more efficient method 

is to use a technique known as a linked list. Linked lists 

enable the numerical calces of the numbers -,o be stored in 

any order, the desired sequence of the numbers being deter- 

mined by the linking techniques. This linking technique 

consists of 	allocating a storage location for the numeri- 

cal value of the next item. This associated address is shown 
for one location below. 

Numerical 

value of 

an item 

address of next item 

f 0 if more items to follow 

0 if present item is last .itme 
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This linking technique requires the introduction of 

a New array which may be called LNC T and in which the address 

of the next required number in the list is stored. Using 

such an array, the list of the numbers in the original 

sequence is: 

Location 	2 	4 	5 	6 

VALUE 	30.5 

.LNXT 	2 

50.9 26.3 45.7 

3 41 0 

In addition to the above list, it is necessary to 

record the address of the first number in the list. This 

can be stored in practice as a single integer variable#  but 

for simplicity in the above example this element is marked 

by an asterisk. 

To change the order of the list into ascending numeri-

cal values, the sequence of numbers in the array VALUE can 

be left undistrubed and the order modified by changing the 

addresses in the array 11V . This gives: 

Location 	1 	2 	3 	4 	5 	6 

VALUE 	30.5 50.9 26.3 45.7 - - 

IN P 	4 	0 	1 	2 

If now the number 28.2 is to be added in the list and 

the sequence of numbers is to remain in ascending numerical 

order, it is sufficient to add this new number to the end 

of the existing list and to change the addresses in the array 

LST. This gives: 
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Location 	1 	2 	3 	4 	5 	6 

VALUE 	30,5 50.9 26.3 45.7 28.2 

LIN 	4 	o 	5 	2 	1 

Using the array LNC to re-arrange the sequence of 

numbers in order to accommodate a new number with .n the 

list is coirputationally considerably more efficient than 

the shuffling process that had to be performed with the 

numbers in the gray VALUE in the previous technique. Pre-

viously all the numbers greater than the new value had to 

be shifted sequentially, which, with long lists, could 

invtive a considerable number of operations. In the present 

technique only one value in the original LNXT has to be 

changed and one new value added. The merits of this scheme 

are therefore clearly evident « it does, however, require 

additional storage and this must be balanced against the 

reduced computation time. 

3.6.3 Technic ues adapted in the Present Work 

In our work we have adapted the systematic packing 

technique of storing the matrices. In the case of Gauss-

Seidel method only the diagonal & upper traingular non zero 

elements are stored and a five digit index number has been 

given for each of the diagonal elements viz., 10001 for the 
first diagonal element, 10002 for the second diagonal ele-
ment and so on. An index number of 99999 has been given 

to the last diagonal element which is also the last element 

of the matrix. 
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In the case of Newton-Raphson method the full admittance 

matrix is stored in rcw wise systematic manner and a dummy 

element is inserted at the end of each raw and a five digit 

index number has been given i.e., an index n ber of 10001 

to indicate the end of first raz, 10002 to indicate the end 

of second raw and so on end an index number of 99999 has 

been given to indicate the end of the last raw and also 

the matrix. 

In the case of Newton-Raphson method, the matrix has 

been packed in both row and column wise systematic manner 

and in addition the linked list technique has been adcp-

ted for inversion and post tailtiplication with the vector. 
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CHAPTER IV 

MI rRIX FACT CRIZ TI Ci+1 

4.1 Introduction 

The analysis of a large system using the network approach 

frequently necessitates the solution of hundreds and may be 

thousands of simulateneous equations having the form +Ax = b. 

Furthermore, several solutions are often required with the same 

coefficient matrix A but with a series of different b vectors. 

such equations can be solved using any of the conventional and 

elementary methods. The solution also can be obtained by direct 

matrix inversion, but this requires n2  storage locations for the 

coefficients and about n3.  arithmetic operations for the solution 

of n simulateneous linear equations (28) • Even if the matrix 

',A is very sparse, its inverse is completely full and therefore 

this method is normally a very inefficient technique for soly. 

ing a large number of equations. 

We have already seen in chapter 3.6.1 the alternative to 

direct matrix inversion are the factorization techniques based 

on Gauss elemination,. These are many possible facorizaticn 

methods and adaptations. We will describe some of the important 

methods which have been developed over the past, years. 

4.2 Product Form, of Inverse 

In the product form of inverse the matrix ►"I  is not 

calculated explicitly but is obtained by multiplying n factor 

matrices. i.e., 
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-1 4, 	= Tn.. ................ T3 T  2 T  1 

Each transformation matrix Ti  ( i =  

is unit , natrix except for its i-th columns. Therefpre, in 

digital computer solutions, only this i-th colu.:in need be 

stored; all other elements of the matrix are known imnpli- 

city. In general sparse network problems, the i-th colh.nn 

wil. also contain a large proportion of zero elements. 

4.3  Traingulation of Matrices 

Hnother effective and Lnost widely used method of 

manipulating coefficient matrices to solve simulateneous 

linear equations is that associated with traingulation of 

matrices or traingular decomposition, These nethods factorise 

the coefficient matrix into their traingular form on which 

several important and efficient modern techniques are based. 

The two nethods which are discussed in this work are gener-

rally know as LM (or so:netimes LU) and i. H (or LDU) methods. 

4.3.1  L H Factorization  

The LH method of factorization consists of expressing 

the coefficient matrix P as the product of two factor mat- 

rices such that 

H _LH 

•:here L = a l-- er triangular matrix 

H = a higher (or upper) triangular natrix 

which has unity elements on its diag )nal.. 
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4.3, 2 IDH Factorization 

In the case of LH factorization# the elements in the 
lcolumn of ' L' are different to those in the i-th row 

of H. This means that both L and H must be known expli-

citly and both traingualr matrices must be stored. This 

problem can be alleviated in the case of symmtrical co-

efficient matrix A by decomposing further the lower tri- 
r 

angular matrix L. This method generally known as WH 

factorization, expresses the original coefficient matrix 
A as a product of three factor matrices such that 

AL DH 

Where L = a 3.Wer triangular matrix which has unity 
elements on its diagonal 

H = a higher (or upper) traingular matrix which has 
unity elements on its diagonal . 

I) = a diagonal matrix which has zero off-diagonal 
elements 

4.4 Bi-  factorization 

This method has been adopt°ed in the present work 
for obtaining the inverse in the case of Ne~rton-Raphscn 
method. This method is described in detail in this 

section, 

The bi-factorization method should be used for 
sparse- coefficient matrices that have non zero diagonal 
terms and are either strictly symmetric or asymmetric in 

element value but with a symmetric sparsity structure. 
lUrthermore, it is assumed for reasons of round-off error 
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that the matrix is either symmetric and positive definite 

or is diagonally dominat (we say that a matrix is diagonally 

dominat by rows if each diagonal element is not less than 

the sum of the moduli of the elements in its raf a similar 

definition holds for diagonal dominance by columns) . 

In order to reduce computing time and to save storage, 

an optimally ordered pivotal sequence as well as a packed 

storage,  scheme and special programming techniques are essen- 

tial. 
4 , 4.1 Basic C oa utati on al._Algorithm 

A set of n linear equations can be eressed in matrix 

notation as 
Ax =b 	 (1) 

where A is a non-singular n x n coefficient matrix 

x is a colunn vector of the n unknowns 

and 	b is a known vector with at least one non-.zero 

element. 

in many pratical applications the set of equations 

is to be solved for a series of different right-hand sides 

whereas & remains unchanged. The solution vector may 

then be computed directly from 

x 
	 (2) 

From the point of view of storage requirements and 

computation time it is not efficient to compute the in-

verse of A elicitly. This is particularly true for spcT se 

matrices since it is unusual fort heir inverses to be other 
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than full. The bi-factorization methods is based on the 

equation 

L(n) L(n-1) ... L(2) L(1} AR(1) Rt2) ... R(n-1) R(n) =_ (3) 

where L are left-hand factor matrices, 

R are right-hand factor matrices 

and I is the unity matrix„ 

Equation (3) 	can be modified by simple transformations to 
(i)R (2) A-1 

 

=R •.R(nl)R(n)L(n)L(nl) ( 2)L(1)  (4) 

Equation (4) shows that the inverse of A, in contrast 

to the familiar product form of the inverse, can also be 

e,ressed by a multiple product of 2 n factor matrices. 

In order to determine the factor matrices L and R the 

follwoing sequence of intermediate matrices is introduced in 

equation (3) s 

~.(1) = L(1) A (0) R(1) 

A(2) a L(2) , (1) R(2) 

XCj) a LO) A(j-1) R(i) 

.................. . 

A( 	a L(n) A.(n-1) (n) = 

This representation aims at transforming the initial 

coefficient matrix A. a A. (0) step by step to the unity matrix 

by forming the successive inter triple products L(J)A ( J-1)R(J) 

(j 	1 ........n) . 
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The following general rules are used for computing 

and R (J ) from the elements of 

Reduced matrix A,( J ) : 

aJ (J) - 1: aih3) = 	( j) 0: ajk 	= 0: 

a 	a. (j-i) 

a. ( j) 	a(j-1)- 	ij 	~ k ik 	ik (j-1) 
au 

where j is the pivotal index and for i, k = (j + 1) .. n. 

Factor matrices L( j) 

The left-hand factor matrices L ( j) are very sparse and 

differ from the unity matrix in only column j: 

]. 	0 

(j} 
l j+l, j 	1 

(j) 
lj+2j 	1 

. 	 0 

1 (j)  1 n,j 
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where 1 j . ( j ) _ 1aj . (j 1)  

~j-'1) 	1) and 	li ( j ) _ _ a. 	a (j- 	i = (j=1) ...n 
J  

Factor matrices R ( j ) 

The right-hand factor matrices R ( J ) are also Very - sparse 

and differ from the unity matrix in only rowj:  

 

R( jr 

0 1 r. 	(j) r 	(j) ( . ..  
J • j *1 	- 42  

1 

1 

1 

where r jk(J) = - ajk(i`1) 	(j
-1) k =  

Note that the diagonal teryryunlike that of L( ~ ) , is equal 

to 1 and thus R ( n) = I 
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4.4,2  Symmetrical Matrix A 
For a symmetrical matrix we have 

a  (j-1) _ a  (j-1) 
ik 	k& 

and thus 	rjk(j)  lihj )  for i = k A j. 

This means that because of symmetry the jth raw of R ( j )  

is identical to the jth column of L( j )  , except for the 

diagonal term. Therefore it is unnecessary to perform 

any operations to the right of the diagonal, thus saving 

about half of the reduction operations. 

4.443  Asymmetrical Matrix A► 

In the case of an asymmetrical matrix A it is more advan-

tageous from the computational point of view to further 

decompose each left-hand factor matrix L into a modified 

matrix C and a diagonal matrix D: 

= CO )  D( j )  

The diagonal matrix D(j)  differs from the unity matrix 

in only the jth diagonal term: 

d (j)  = 1 a (j-1) _ 	(j) 
j.7 	jj 	JJ 

The modified matrix C(j)  differs, like L( j ) , from the 

unity matrix in only column j. This is column 

(j) 	(j) 	(jT (c... 4 1 c j  + -1, j() j +  

where c 	- 	 .) _ li,(j)l ( j) i = ( j' 1)..n. 
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4.4.4 Sparsity and Optimal Ordering 

In case of sparse coefficient matrices, i.e, matrices 

with a great number of zeros, significant savings in 

storage and computation time can be obtained if a progra-

mming scheme is used which stores and processes only non-

zero terms. Moreover, sparsity must be maintained as far 

as possible. This can be realised by a sparsity-.directed 

pivotal selection which is referred to as "optimal order-

ing." 

The objective of ptimal ordering is to minimise the 

total number of fill-in terms. An optimum ordering strategy 

was developed by Carpentire and -anal. This strategy, how-

ever, requires relatively high efforts in additional pro-

gramming and computation time so that in general a great 

deal of the obtainable advantages in sparsity get lost 

again. 

Thus it is more advantageous to apply the folbwing 

strategy which is frequently used in practice. This 

strategy yields only a near-optimal ordering sequencer  

but requires comparatively little additional computation. 

The principle of the strategy is to select at each step 

of the reduction process that column as pivot which contains 

that fewest number of non-zero terms. If more than one 

column meets this criterion, any one is selected. This 

scheme requires a current book-keeping of the number of 

non-zero terms in each column or row, 
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4.4.5 Storege Scheme 

In order to exploit the benefits of sparsity, a 

packed (Liatrix storage scheme in which only the non-zero 

terms are retained is employed. This requires, in additiDn 

t.D the natrix elements themselves, tables of indexing 

information to identify the elements and to facilitate 

their addressing. 

suitable storage scheme would be comparatively simple 

if the number of non-zero terms in one column did not vary 

in the course ob comuptation.. 4. difficulty arises, however 

because the number of non-zero terns in each column and row 

of the reduced matrix continually changes. The number of 

non-zero teems, on the one hand, is increased by the fill-

in terms and, on the .other hand, is decreased by the reduc-

tion process.. For this reason a flexible storage mode is 

essential., 

?ne feasible scheme for describing the sym..letrical 

structure of a scarse matrix and identifying and addressing 

its ele:nents in a packed table is described below. This 

scheme is sornefrhat different for the symmetrical case 

(symmetry in element value) and the asymmetrical case 

(asyetry in element value but with a sym ietric sparsity 

structure) . 

Symmetrical matrix 

The nn-zero matrix elements are s teced columnwise in 

array Ct:. The row indices of the elements in CL are stored 
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in a parallel table ITAG, The accompanying table LNXT 

contains the location of the next'v+on-zero element in CE 

in ascending order. The entry 0 in LNXT indicates the last 

term of a column. 

The starting positions of the individual columns 
in CE are stored in table LCOL. The table NOZE cntains 

the number of non zero elements in each column. 

,ks can be seen from the exale, the unused storage 

positions of the reserved arrays CE and LT also must be 

occupied by intial values. The vacant positions of array 

CE and the last position of table LNXT must be set zero. 

The other vacant postions of LNXT must be numbered conse-

cutively. 

Apart from this, the order of the matrix(number of 

columns and rows) is stored in N and the first vacant lo-

cation in tables CE, ITAG and LNXT must be stored in LFe  

Asymmetrical matrix 

The storage mode of an asymmetrical matrix with a 

symmetric pattern of non-zero elements differs from the 

symmetrical case in two points. First, the diagonal terms 

are stored in a separate table DE. Second, the off-diagonal 

terms are stored in both directions, i.e. they are stored 

column-wise in CE 	and, in addition, row-wise in the para- 

llel table RE. Because symmetry in structure is assumed, 

the table ITA.G contains the row indices * of the elements 

stored in CE as well as the coluttn indices of the elements 

stored in RE. In case that a row or column has no off.. 
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diagonal terms, i.eo it consists only in its diagonal-

term (decoupled system), the respective position in table 

LCOL is to be set to zero. 

The dual storage of the off-diagonal terms, in the 

first instance, might seem to be a waste of memory space. 

After having processed the simulation and ordering sub-

routine to be described in the next section, however, each 

off-diagonal terms is stored only once, The storage posi-

tions that become vacant in the course of computation are 

later utilised to store the fill-in terms. The advantage 

of dual storage is that it avoids use of a search subroutine 

and thus accelerates the program.. 

4,4.6 procgrarnnning 

programming is as important as the method itself. 

Optimal ordering can be determicined during the course of 

computation, but it is more efficient to determine it by 

simulating the reduction process beforehand. Hence, the 

program can be split up into three parts: 

1. Simulation and ordering 

2. Reduction 

3. Direct solution 

In accordance with the different storage schemes for 

the sym,aetrical and asymmetrical case the programming is 

also somewhat different.. Detailed flow charts are given 

in Appendix (for asymmetrical case only) . 
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4.4.7 Simulation and Ordering 

The optimal ordering process requires an additional 

table NSIQ. This table initially must contain the integer 

variaoles 1 to n in ascending sequence. At the end of the 

simulation process table NSLQ contains the pivotal sequence 

as it results from the applied ordering strategy. 

Pivotal search 

At first, among all columns which have not been pivotal 

column beoore, the column with the fewest number of non-zero 

elements is selected as pivotal column. If more than one 

column meets this criterion, the column number in the first 

location of table NSEQ is selected. 

After having determined the pivotal index, no actual 

interchange of columns is carried out. 

Instead, only the Iwo respective indices within table 

NSEQ are interchanged such that the near-optimal pivotal 

sequence is built up step by step. 

Indexing and Addressing Modification 

All columns the index of which is contained in the 

pivotal column, are compared term by term with the pivotal 

column, and their accompanying indexing and addressing in-

formation is altered as follaas: 

If the processed column contains the pivotal index, 

the related matrix term is cancelled. 

If any row index of the pivotal column is not contained 

in the column under consideration, this index is added to 
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the rota indices in table ITAG (fill-in terms). The fill-

in terms are stored not only in the vacant locations at 

the end of tales, CE, ITAG and LNC but also in other 

locations becoming vacant in the course of the simula-

tion process. The next vacant location is always indicated 

by LF, 

Whenever a term is cancelled or added, the respective 

addressing in-formation in LNXT and LCOL respectively must 

be altered appropriately. Furthermore, the bookkeeping of 

non-zero terms must be updated. 

M.fter processing the simulation and ordering subpro- 

gram, the tables SCOL, NOZE, NSEQ, ITAG and LNXT no longer 

contain the information on the structure of the original 

coefficient matrix, but contain instead the structure of 

the factor matrices. 

4.4,8. Reduction 

The reduction subprogram operates upon the storage 

image resulting from the simulation and ordering subpro-

gram. The actual reduction of the coefficient matrix is 

guided by the pivotal sequence contained in table NSEQ. 

.t each stage of the reduction process only those terms 

of the reduced residual matrix with subscripts correspon-

ding to the row indices of the pivotal column have to be 

recalculated. For that purpose the corresponding columns are 

compared term by term with the pivotal column in much the 

same way as in the simulation and ordering subprogram. 

Every derived term of the factor matrices is left in 
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the position of the corresponding term of the coefficient 

matrix. 
in the symmetrical case, at the beginning of each re- 

duction step the terms of the povotal column are temporarily 

stored in vacant positions of table CE. This permits norma-

lisaticn of the pivotal column, which means multiplying the 

pivotal column by the reciprocal of its diagonal term in the 

course of the reduction process. 

Intermediate storage of the pivotal column is not nece- 

ssary in the asymmetrical case because the pivotal column as 

well as the pivotal row is stored in CE and RE respectively, 

and the pivotal column has not to be normalised. 

4.4.9. Direct Solution 
The given vector must initially be stored in V. Then 

it is stepwise transformed to the solution vector by succes-

sive factor-matrix by-vector multiplications. 

After having processed -  the direct solution subprogram 

Table V contains the solution. 

The total number of arithmetical operations (multipli-

cations and additions) for computing the direct' solutitn in 

the bi-factorization method is the same as in the triangular 

decomposition method. M important advantage of the bi-fac-

torization method, however, is realized in programming, be-

cause the symmetric structure of the coefficient matrix can 
be completely exploited. 



49 

The bi-factorisation method requires only half as much 

indexing information as the tr~,angular decompositton method 

unless a search subroutine is applied. 

The main characteristics of the bi-factorisation method 

and the programming scheme can be summarised as follows: 

(a) The method allows repeated solutions for different 

right-hand sides without repeating the reduction 

proceiss. 

(b) Small memory requirements and short coz putation 

time can be realised, because only non-zero matrix 

terms are stored and processed. 
(c) The pivotal selection procedure requires only little 

additional computation. 
(d) Symmetry can entirely be exploited in programming 

for matrices having a symmetric pattern of non-

zero terms. 
(e) The applied storage and programming scheme does 

not require any index renumbering nor rearrange-

ment of matrix terms according to the ascertained 

pivotal sequence. 

In this work we have used the bi-factorisation method 

for obtaining the solution by Newton-Raphson method. The 

Jacobian is symmetric in structure but asymmetric in element 

value. Hence the storage scheme as described for asymmetric 
case has been adopted. 
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CHAPTER - V 

AIG CRITH MS AND FL' W CHaRT S 

Gauss-Seidel Method 

i5.s already explained in the chapter III the Y-Bus has 

been packed in the now-wise form and since the Y-Bus is 

symmetric, only the upper triangular portion is stored. 

6.1 Read the System Data 

The data is read in the following manner: 

(a) Number of buses, number of lines, number of voltage 

controlled buses and number of tap changing transformers. 

(b) Acceleration factor. 

(c) Line number, starting bus of the line, ending bus of the 

line, line impedance in p.u. and half line charging 

susceptance in p.u. 

(d) Starting bus number, ending bus number, transformer 

reactance, transformer tapsetting and transformer number. 

(e) Bus number, initial bus voltage (in case of voltage con-

trolled buses the voltage makjnitude to be maintained is 

assumed as the starting voltage and the phase angle zero) , 

real and reactive power generation at the bus, real and 

reactive power demand at the bus. 

(f) Voltage controlled bus number, and magnitude of the vol-

tage to be maintained at the bus for all the voltage 

controlled buses. 

(g) Genetator bus number, minimum reactive power limit and 

maximum reactive power limit. 

'7'90 
U]TP1\L 	f3~ l9 UTVES1T7 O ECORJ( t' 
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6.2 Assembly of Data 

(a) From the tap changing transformer data calculate the 

equivalent series impedance, 

(b) Arnange the initial bus number and ending bus number of 

line data such that the smaller bus number is the start-

ing bus and the larger bus number is the ending bus. 

(c) Now arrange the data in the ascending order of initial 

bus numbers. 

(d) In case where there are more than one line with the same 

initial bus number arrange the data in the ascending order 

of ending bus numbers. 

6.3 Form Y-Bus 

(a) Calculate the diagonal elements which are the algebric 

sum of all admittances incident to a node. 

(b) The off diagonal elements are obtained as the negative 

of the admittance connected between the nodes. 

(c) Since the data is arranged in the required manner the 

elements of the Y-Bus are calculated row wise and also 

the location of the column is given by the ending bus 

number. 

(d) Whenever the initial bus number changes the diagonal 

element is inserted and appropriate cplumn number given 

as eyplained previously, i.e. the first diagonal ele-

ment is given the number 10001, the second diagonal 

element, is given the number 10002 and so on. 

r- 
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(e) if there are no off diagonal elements in the row the 

next diagonal element is inserted and appropriate co-

lumn number given. 

(f) The last diagonal element which is also the last ele-

ment of the matrix is a given an index number of 99999. 

6.4  Iterative Conputation of Voltages 

The iterative algorithm used is as per equation 11 of 

chapter II. It is necessary to begin the iterations with 

an initial guess, and since we know that in a real system 

the voltage spread will not be too great, it is customary 

to use a "flat voltage start", meaxing that we set initially 

all voltages except at the voltage controlled buses equal to 

the specified slack bus voltage V1  for example, 1 + jO p.u. 

In the equation 11 of chapter II quantities Ypp, p, 

Q p  and Ypq  do not change throught the iteration process. 

So the equation can be rewritten: 

* 	1 	( p-i 
V,p+1  = p pv3 _ 	( 	v+1 _ n 	v 

(P) 	Y (2 p VI" 	5 Yp  V" ) 
PP (&j 	 /k =p+1 

for p = 20 3©  .....,n (assuming first bus as reference) 

Here to bbtain the summation of the product of P V 

whech essentially consists of multiplying the each row of 

the admittance matrix by the vector of bus voltages. Sys-

tematic raw wise packing helps in this process. The lager 

triangular elements are built up by scanning the matrix. 
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6.5  Voltage Controlled Buses 

It is convinient to group all the voltage controlled, 

buses at one place as it will simplify the programming. The 

following conditions must be satified for the voltage con-

trolled buses. 

Condition 1 The voltages V must satisfy, the specified 

requirements 

VP VP spec 

Condition 2 We must under no circumstances violate the 

requirement 

0p, min Q< 0p, max 

The second requirement may be violated if the speci-

fled voltage magnitude p spec is either too low or or too 

high. We remembt that the only means of controlling V 

at our disposal is the reactive power 0 and since we a 

priori do not know exactly how much reactice p6wer is need-

ed to reach the specified voltage, it may conceivably happen 

that we have specified a V value beyond the capability 

of the Qp  source. 

The following are steps used for the voltage controlled 

buses: 

(a) Having identified the bus as a voltage controlled bus, we 

immediately make the temporary voltage magnitude substitu- 
tion by the specified voltage but the phase angle is kept 

as is 
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(b) We now compute the reactive bus per needed to main-

twin the voltage magnitude specified. This computation 

is based upon voltage magnitude specified. 

(c) Now we compare the magnitude of the Q computed with the 

allowable limits. If the computed 'Q' is within the 

limits, it means the voltage can be kept at the speci-

fied value. If the computed 'a' value is beyond the 

•Q' limits, we can check the magnitude of 'Q for the 

the next few iterations. If the 'Q' limits are not 

satisfied in the next few iteration also it means the 

voltage cannot be maintained at the specified voltage. 

In this case the solution is not the desired solution 

and we have to raise the 'Q' limits suitably in order 

to maintain the voltage specified• 

6,6  Test for Convergence 

The iterative process must continue until the magni-

tude of the change of the bus voltage, ILS Vpv+l j  between 

two consecutive iterations is less than a certain tolerance 

level for all bus voltages.. We express this in mathe-

matical form as follows: 

I&V viVv+1 	VvI< 
P  1I_  P 	p 

in order to do that a dummy variable LV 	i s max ,  

introduced. Whenever we start the bus count, this variable 

is reset to zero. Upon completion of the bus count, this 

variable tells us the largest ILS Vpv+l  I value that has been 

recorded for any bus. 
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At the end of the bus count, should Vmax not fall 

below the tolerance value , then a new iteration cycle 

is initiated. 

607  Cputation of Slack Bus Power 

After the iterations have converged, we substitute our 

coaputed voltages (plus V1) into equation (15) of chapter II 

to obtain slack bus power. 

6.8 CoMutation of Line Flows 

The line flows are calculated using equations (6 & 7) 

of chapter II. The flow chart is attached in Appendix 

A.2.1. 

7.1 Newton--Raphson Method 

These steps of reading and assembly of data are exactly 

similar to Gauss-Seidel method (6.1 & 6.2) . 

7.2 Formation of Y-Bus 

In this method the full Y-Bus is formed and stored., 

The Y-Bus is stored in the systematic row-wise manner. To 

indicate the end of the row a dummy element of value 0.0 is 

is introduced and a five digit index number given. The end 

of the matrix is indicated by an index number of 99999 

Y-Bus is formed in exactly the same way as explained 

in the previous method. The only change being: 

(a) Whenever the initial bus number changes a dummy ele-

meet of 0.0 is inserted and an appropriate index num-

ber is given. 

(b) after the last element of the matrix a dummy element with 
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an index number 99999 is inserted. 

7 , 3  Cal cul ati on of Jacobi an ' 1atrix 

The j acobian metrix is again a sparse matrix which is 

symmetric in structure but the values are asymmetric. The 

j acobian is stored in the manner described in ciapter IV. 

The elements are calcuhated as per the formulas 

(equation numbers, 19-22 of chapter II), The elements are 

also calculated row wise. The necessary information like 

the, number of non-zero elements in each row, starting po-

sition of columns, location of next term, sequence of pivotal 

indices, and row index of the elements stored ave also cal-

culated simultaneously. The bus pagers are also computed 

based on the assumed bus voltages. The elements are calcu-

lated depending whether the bus is a voltage controlled or 

load bus. 

7.4  Calculation of Voltage Corrections 

The difference in computed bus powers and actual bus 

powers is calculated. If the difference is less than a 

specified tolerance the iterative process is stopped and 

the line flows calculated. 

If the difference is more than the specified tolerance, 

the changes required in the bus voltage magnitude and phase 

angle are calculated by inversion of the j accbian and multi.. 

plication with the vector of differences of computed and 

actual bus powers. 

The sub routine INVI once for all determines the optimum 
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pivotal ordering strategy as the structure of the jacdbian 

remains unchanged with iterations. 

If the convergence is not obtained only the new elements 

of the jacobian are calculated based on the corrected voltage 

magnitude and phase angle in subsequent iterations. 

The flow chart for Load flow solution by Newton-Raphson 

method is enclosed in Appendix (e.2.2) . 
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CHPATER - VI 

TEST PROBLEMS AND RESULTS 

The problems studied along with the data and results 

are appended below: 

6.1  Problem No. 1: 

A single line diagram of a 5 bus power system is shown 

in kppendex A.2,9. With bus one as the slack, and the remain- 

ing buses as load buses find the load flow solution. The line 

data is given in the Table 6.1 and Table 6.2 gives the data 

of scheduled generation and loads at the buses. 

Results of the load flow study are given in TableNose  

6.3, 6.4 and 6.5. Per unit values are on 100 AWA base. 

Table 64 

Line Impedance 
Between ---- Half of 

Line No, Buses R per unit Xper unit Line charging 
susceptance(p.u) 

1 1-2 0.02 0,06 0,030 

2 1-2 0.08 0.24 0,025 

3 2-3 0,06 0.18 0,020 

4 2-4 0.06 0.18 0.020 

5 2-5 0.04 0.12 0.015 

6 3-4 0.01 0.03 0.010 

7 4-5 0.08 0.24 0,025 



Table 6.2 	 59 

ssurned Generation Load 
Bus No. 	Bus _ 

Voltage l egiatts Megavars Megawatts Megavars 

1 1.06 + j0.0 0 0 0 0 

2 1.0 	+ j0.0 40 30 20 10 

3 1.0 	+j0.0 0 0 45 15 

4 1.0 	4 j 0.0 0 0 40 5 

5 1.0 	+j0.0 0 0 60 10 

Table 6.3 

Voltage Phaseangle Real Reactive 
Bus Magnitude (Deg) Power Power 

1 1.06000 0.00000 1,2930 -0.0751 

2 1.04751 -2.80065 0,2000 0.2000 

3 1,02479 -4.98709 -0.4500 -0.1500 

4 1.02367 -5.32044 -0.4000 -0.0500 

5 1.01802 -6.14372 -0,6000 -0.1000 



Table 6.4 
Line Fj2W 

Line SB RB 	Real Power 	Reactive Power 

1 	2 	1 	- 0.87 2b 	0.0619 

1 1 2 0.8866 -0.0864 

2 3 1 -0.3945 -0.0300 

2 1 3. 0.4064 0.0113 

3 3 2 -0.2430 ..0.0678 

3 2 3 0.2465 03540 

4 4 2 0.2747 -0.0592 

4 2 4 0.2791 0.0295 

5 5 2 -0.5369 -0.0716 

5 2 5 0.5482 0.0734 

6 4 3 -0.1892 0.0321 

6 3 4 0.1895 -0.0519 

7 5 4 O.0632 -0.0284 

7 4 5 0.0635 -0.0228 

Table 6.5 

Si Acceleration No. of C.P.U. Time 
No 	Metlod factor iterations (in Sec.) 

1 	Gauss-Seidel 1.0 23 0.31 

1.2 16 0.27 

2 	Newton-Raphson 1.0 2 0.57 
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6.2 Problem No, 2• 

A single line diagram of a 8 bus pager system is shown 

in figure A.2.8. With bus 1 as reference, buses 2,3,4 as 

voltage controlled buses and the balance as load buses, 

find out the load flow solution. Table 6.6 gives the line 

data and Table 6.7 gives the data of scheduled generation 

and loads at the buses. 

Also study the effect of varying the acceleration factor 

on the number of iterations and c.p.u. time, in the case of 

Gauss-Seidel method. 

Results of load flow study are given in Table Nos. 

6.8, 6.9 and 6.10. 

Table 6.6 

Line Impedance 
Line Between -------- 	 Line charging 

No. 	Buses 	R per unit X per unit 	susceptance (p.u.) 

1 1-2 0.010 0.070 0,05 

2 1-6 0.002 0.010 0.0 

3 1-5 0.003 0.300 0.0 

4 1-4 0.008 0.065 0.03 

5 4-5 0.0035 0.020 0.0 

6 3-4 0.0075 0.063 0.06 
7 8-3 0.001 0.015 0.0 
8 7-3 0.0025 0.023 0.0 

9 2-3 0.001 0.081 0.08 
10 2-7 0.0032 0.030 0.0 



62 
Cont........ Table 6.6 

11 6-7 0.0021 0.01 0.0 

12 6-5 0,002 0,013 0.0 

13 5-8 0.0016 0.021 0,0 

14 7-8 0.0021 0.0311 0,0 

Table 6,7 

Amax BUS Bus power 	Voltage in (in M. w.) (in m.v.a.r.) 

1 Unspec. 	1.0+j o.0 

2 -23.30 + j(unspec)V1   = 1.0 -10.00 10.00 

3 15.00 + j(unspec)V2   = 1.0 -10.00 10.00 

4 15.00 + j(unspec)V3   = 1.0 -10.00 10.00 

5 	25.00 + j20.00 	unsp ec. 

6 	-22.00 - j13.00 	unspec. 
7 	25.00 + j 00, 00 	unspec, 
8 	00.00 + j 10.00 	unspec. 
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Table 6.8 

Real 	Reactive 
Power 	Por 

BUS 
-. 

Voltage 
nitude 

Phase Angle 

1 1.00000 0.00000 3.3998 	5.6903 
2 1.00001 .17.90487 - 23, 3000 	9.7992 
3 1,00001 10,70021 15,0000 	6.9128 
4 1,00001 -8.10451 ..20.0000 	2.8639 

5 1.05722 6.27096 25.0000 	20.0000 
6 .92760 0.36610 -22.0000 	-13.0000 
7 .95400 8.54623 25.,0000 	0.0000 
8 .93501 9.04251 0.0000 	•40.0000 

Table 6.9 
LINE FLAW 

Line SB LAB Rent Power Reactive Power 

2 1 .4.2073 1.2680 
.. r • 1 2  . 4 .► 4010 0.0381 

2 4 1 -2.1179 0,3995 
2 1 4 2.1552 -0.1267 
3 5 1 4.0318 1.8242 
3 1 5 -3.9792 .1.2985 
4 6 1 -0.7213 -6.5698 
4 1 6 0.8228 7.0775 
5 3 2 6.0047 0.6515 
5 2 3 _ 5.6029 2.2278 

6 7 2 14.2024 0.3511 
6 2 7 -13.4927 6.3018 
7 4 3 - 4.9457 1.4061 
7 3 4 5.1446 0.2048 

OCAntd.•. 
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1 • 2 3 4 5, 

8 7 3 -1.7426 -1.6895 

8 3 7 1.7588 1.8384 

9 8 3 ..2.0624 -3.8882 

9 3 8 2.0846 4.2206 

10 5 4 13.5288 2.3118 

10 4 5 -12.9389 1.0589 

11 6 5 - 8.9111 _ -7.4778 

11 5 6 9.2257 9.5223 

12 8 5 1.8549 -5.5277 

12 5 8 1.7 9 27 6.3444 

13' 7 6 12.7472 0.7423 

13 6 7 -•12.3710 1.0491 

14 8 7 0.2090 ..0.58 41 

14 7 8 -.0.2081 0.5978 



TabLe 6.10 

Si Acceleration No. of 	CPU Time 
No. 	Method factor ii rations (in Secs) 

Gauss-Seidel 	1.0 26 0.67 

1.1 22 0.59 

1.2 18 0.53 
1.25 17 0.53 

1.3 15 0.52 
1.4 13 0.47 

1.7 29 0.69 

2 	Newton-Raphson 	1.O 3 A 83 
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6.3 Problem No . 3 

IEEE Standard 57 bus problem has been taken. The diagram 

in Appendix A. 2.6. The data has been given in table numbers 

A.4,1 to A.4.5. The last his (57th bus) has been taken as the 

reference his . Buses from 51 to 56 are the voltage controlled 

bus and the rest are load buses. The results of load flow study 

are given in Table 6.11 and 6.12. 

66 
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IEEE 57-BUS TEST SYSTEM 

TABLE A.4.1 Impedance and Line-charging Data 

Line Resistance Reactance Line charging** 
Designation  

1 

57-56 0.0083 0.028 0.0645 

56-55 0.0298 0.08 5 0.0409 

5 	1.. 0.0112 0.0366 .0.0190 

4_ 5 0.0625 0.1320 0.0129 

0.0+30 O.1'i80 0.0174 

5 	7 0.0200 0.1020 0.0138 

5)._.53 0.0339 0.1730 0.0 23 5 

53-52 0.0099 0.0 50 5 0.0271+ 

52-10 0.0369 0.1679 0.0220 

52-11 0.0258 0.0848 0.0109 

52-51 0.06+8 0.2950 0.0386 

52-13 0.0481 0.1580 0.0203 

13--14 0.0132 0.01+31+ 0.0055 

13-15 0.0269 0.0869 0.0115 

57-15 0.0178 0.0910 0.01+91+ 

57-16 0.01+54 0.2060 0.0273 

57-17 0.0238 0.1080 0.0143 

55-15 0.0162 0.0530 0.0272 

0.0000 0.5550 0.0000 

4--18 0.0000 0.4300 0.0000 

5-51+ 0.0302 0.061+1 0.0062 

7-53 0.0139 0.0712 0.0097  contd. 



TABLE A.4.1 contd. 

1 	 2 	 3  

10-.51 0.0277 0.1262 0.0164 

11-13 0.0223 0.0732 0.0094 

51-13 0,0178 0,0580 0.0302 

51-16 0.0180 0.0813 0.0108 

51-17 0.0397 0.1790 0.0238 

14-15 0.0171 0.O5-7 0.0074 

18-19 0. x+610 0.6850 0.0000 

19-20 0.2830 0.4340 0.0000 

20-21 0.0000 0.7767 0.0000 

21-22 0.0736 0.1170 0.0000 

22--23 0.0099 0.0152 0.0000 

23-24 0.1660 0.2560 0.0042 

2.25 0.0000 1.1820 0.0000 
24-25 0.0000 1.2300 0.0000 

2L,.26 0.0000 0.0473 0.0000 

26-.27 0.1650 0.2540 0.0000 

27-28 0.0618 0.095)4- 0.0000 

23-29 0.0418 0.0587 0.0000 

7-29 0.0000 0.0648 0.0000 

25-30 0.1350 0.2020 0.0000 
30..31 0.3260 0.)4970 0.0000 

3132 0.5070 0.7550 0.0000 
32-33 0.0392 0.0360 0.0000 

32-34 0.0000 0.9530 0.0000 	contd. 



TABLE A. tt-.1 contd. 

2 

3)+.35 0.0520 0.0780 0.0016 

35-36 0.0430 0.0537 0.0008 

36-37 0.0290 0.036, 0.0000 

37-38 0.0651 0.1009 0.0010 

37-39 0.0239 0.0379 0.0000 

36..40 0.0300 0.0+66 0.0000 

22-38 0.0192 0.0295 0.0000 

11`.41 0.0000 0.7490 0.0000 

41-42 , 	0.2070 0.3520 0.0000 

41-43 0.0000 0.4120 0.0000 

38-44 0.0289 0.035 0.0010 

0-.1-042 - 	- 0.0-000 

14-46 0.0000 0.0735 0.0000 

46-47 

 

0.0230 0.0680 0.0016 

0.018 2 0.0233 0.0000 

48-19 0.083i- 0.1290 0.0024 

9-50 0.0801 0.1280 0.0000 

50_12 0.1386 0.2200 0.0000 

10-12 0.0000 0.0712 0.0000 

13--i9 0.0000 0.1910 0.0000 

29- 9 0.1142 0.1870 0.0000 

9- 8 0.0762 0.098+ 0.0000 

8-. 6 0.1878 0.2320 0.0000 

6-• 3 0.1732 . 0.2265  0.0000 

11-43 0.0000 0.1530 0.0000 	contd. 
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TABLE A.4.1 contd. 

1 	2 	3 	4 

44-• 4 5 

 

0.062+ 0.1242 0.0020  

1+0-- 	2 0.0000 1.1950 0 ~ 0000 

2-41 0.5530 0.5490 0.0000 

2-42 0.2125 0.35540 0.0000 

39-- 1 0.0000 1.3550 0.-0000 

1_, 	2 0.17+0 0.2600 0.0000 

38-49 0.1150 0.1770 0.0030 

38-48 0.0312 0.082 0.0000 

52- 3 0.0000 01205 0.0000 

Base MVA = 100 

Ski 1i Li-ne- charging -S -One-half-of total - 	_ 	--  charging-of line  

TABLE A. 	Regulated Bus Data 

Bus Voltage Min.MVAR Max MVAR 
Number Magnitude Capability Capability 

P.U. 

51 1.015 .50 155 

52 0.980 -3 9 

53 1.005 -1-0 200 

54 0.980 -8 25 

55 0.985 -10 60 

56 1.010 -17 50 



TABLE A.4.3 Transformer Data 

Transformer Tap Setting 
Designation 

4-18 0.970 

4-»18 0.978 

7-29 0.967 

52- 3 0.940 

10-12 0.930 

11-.~+1 0.955 

11-.+3 0.958 

13.49 0.895 

1~+-.1+6 0.900 

i5-45 0.955 
---- 21-2~- 	- -----1.0.3 - 	- 	--- 	- 	- 	- 	- 

2+-25 1.000 

21f-.25 1.000 

24.26 1.043 

34-32 0.975 

39-. 1 0.980 

+0-. 2 0.958 

TABLE A. I-. 4 Static Capacitor Data 

Bus Number 	Susceptance p.u. 

	

18 	 0.100 

	

25 	 0.059 

 

8  0.063 

71 
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TABLE A.4.5 Generation and Load Data 

BU e  Real power Load 
Number generation Real Reactive 

P.U. P.U. 't 	.u. 

1. 0.0 0.067 0.020 
2 0.0 0.076 0.022 
3 0.0 0.068 0.034 
4 0.0 0.000 0.000 
5 0.0 0.130 0.040 
6 0.0 (; O41 0.014 
7 0.0 0000 0.000 
8 0.0 0.200 0.100 
9 0.0 0.049 0.022 

10 0.0 0.050 0.020 
11 0.0 0.000 0.000 
12 0.0 0,180 0.053 
13 0.0   0..180_ - 	-0.-0.23-- 	-•- 	- 	- 

14 0.0 0.105 0.053 
15 0.0 0.220 0.050 
16 0.0 0.430 0.030 
17 0.0 0.420 0.080 
18 0.0 0.272 0.098 
19 0.0 0.033 0.006 
20 0.0 0.023 0.010 
21 0.0 0..000 0.000 
22 0,0 0.000 0.000 
23 0.0 0.063 0.021 
24 0.0 0.000 0.000 
25 0.0 0.063 0.022 
26 0.0 01000 0.000 
27 0.0 0.093 0.005 
28 0..0 0.046 0.023 
29 0.0 0.170 0..026 
30 0.0 0.036 0.018 	contd. 



TABLE A.4.5 contd. 

1 2 3 4 

31  0.0 o. P5$ 0.029 
32 0.0 0.016 0.008 
33 0.0 0.380 0.019 
34 0.0 0.000 0.000 
35 0.0 0.060 0.030 
36 0.0 0.000 0.000 
37 0.0 0.000 0.000 
38 0.0 0.140 0.070 
39 0.0 0.000 0.000 
40 0,0 0..000 0.000 
41 0.0 0..063 0.030 
42 0.0 0.071 0.044 
43 0.0 0.020 0.010 
44 0.0 0.120 0.018 
45 0.0 0.000 0.000 
46 00 0.000 0.000 
47 0.0 0.297 0.116 
48 0.0 0..000 0.000 
49 0.0 0..180 0.085 
50 0.0 0..210 0.105 
51 3.1 3.770 0.240  
52 0.0 1.210 0.260 
53 4.5 1.500 0.220 
54 0.0 0.750 0.020 
55 0.4 0.410 0.210 
56 0.0 0.039 0.880 
57 slack 0.550 0.770 

bus 

73 

*Base MVA = 100 



74 
Table 6.11 

Vol tags Phase Angle Real Ibwer Reac Power 
Magnitude (DEG) 

.87539 -17.42966 -0.0670 -0.0200 

.88380 -16.81561 .0.0760 -8.0220 

.97047 -10.88694 -0.0680 .0.0340 

.98051 - 7.37273 0.0000 0.0000 

.97640 .. 8.6 05 29 - 0.1300 .0.0400 

.94157 -12.00492 ..0.0410 .0.0140 

.98248  - 7 .6 9161 0,0000 0.0000 

.92267 -12.73050 -0.2000 -0.0370 

.93549 -11.92716 ..0.0490 -0.0220 

.98348. -11.49845 -0.0500 -0,0200 

.97310  -10.19 551 0.0000 0.0000  

.97233 -12.84201 -0. 1800 -0.0530 

.96170 - 9.79313 -0.1800 .-0.0230 

.97407 - 9.31332 -0.1050 -0.0530 

.98749 - 7.17752 -0.2200 - -0.0500 

1.01337 - 8.85126 -0.4300 -0.0300 

1.01746 - 5.39189 -0.4200 -0.0800 

.97265 -12.07293 -0.2720 0.0020 

.93479 -.13.66450 .0.0330 -0.006 0 

.92430 -13.90093 -0.0230 -0.0100 

.92271 -13.53585 0.0000 0.0000 

.92305 -13.47369 0.0000 0.0000 

.92151 -13.55081 -0.0630 -0.0210 

.91188 ..13.94757 0.0000 0.0000 
cont ... 
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2 3 4 5 

.89018 .19.93265 -0.0640 0.0270 

.91313 -13.58858 9.0000 0,0000 

.94029 -11.98298 ..0, 0930 -0.0050 

.95741 -10.86365 -0.0460 ..0.0230 

.97238 -10.10033 -0.1700 ..0.0260 

.86635 -20.60745 -0.0360 -0.0180 

.83242 -21.45155 .0.0580 -0.0180 

.84223 -20.36584 -0.0160 -0.0290 

.83966 -.20.41810 0.0380 -0.0190 

.87659 -15.08632 0.0000 0.0000 

.98384 -14.80767 -0.0600 -0,0300 

.89408 -14.49347 0.0000 0.0000 

.90216 -14.23138 0.0000 0.0000 

.92614 -13.31517 -.0.1400 -.0.0700 

.90058 -14.28833 0.0000 0.0000 
,89284 -141,56610 0.0000 0,0000 

.93345 -14.89041 -0,0630 -0.0300 

.89160 -16.38999 ..0.0710 -0.0440 
,96057 -11.56728 0.0200 .0.0100 
.93835  -12.39412 -0.1200 -0.0180 
,97591 - 9.66806 0.0000 0.0000 
.96055 -11.27404 0.0000 0.0000 

.93842 -12.90833 -0.2970 -0.1160 

..93487 -13.06525 0,0000 0.0000 
.94055 ..13.29973 -0.1800 -0.0850 
.93164 -13.88064 -.0.2100 -0,1050 

co ntd.. 
ri4X ~rv'r~ 	~I 

LOW" . 
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1 2 3 4 5 	6 

51 1.01499 -10.46=38 -0.6700 1.0203 

52 .97999 -9. 59779 -1.2100 !0.2558 

53 d.`jrc -.~~.~_; : 
1.00499 -4.53207 3.0000 0.4248 

54 .97999 -8.74506 -0.7500 0.0094 

55 .98499 -6.00693 -0.0100 -0.2015 

56 1.01000 -1.19273 -0.0300 -0.8874 

57 1.04000 0.00000 4.2361 1.1241 

Table 6. j 2 

Sl Method 	o No• of CPU time 
No factor iterations (in secs.) 

1.  GAUSS- SEIDAL 	1.7 46' 4.42 

1.5 88'. 6.89 
2.  NEW TON-RAPHSON 	1.0 3 2.73 
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6.4 problem No. 4 

IEEE . Standard r, bus problem has taken. The diagram is in 

Appendix A.2.7. The data has been given in table numbers  

to A.55. Bus No. 1 is taken as reference bus and 

Buses from 2 to 54 are voltage controlled buses. Buses from 

56 to 118 are load buses. 	The results of the load flow study 

are given in Table number 6.13 and 6.14. 



iI 
IEEE 118-BUS TEST SYSTEM 

TABLE . . 5.1 Impedance and Line-charging Data 

Line 
Designation 

Resistance 
* 

Reactance 
p.u. * 

Line Charging'"' 
p.u. 

_ 1 	T  2 3 4 

30-55 0.0303 0.0999 0.0063 

30-56 0.0129 0,0424 0.0027 

55- 6 0.0187 0.0616 0.0039 

56-57  0.0241 0.1080 0.0071 

56- 6 0.0484 0.1600 0.0101 

2-60 0.0209 0.0688 0.0043 

2-57 0.0018 0.0080 0.0005 

57-60  0.0203 0.0682 0.0043 

57- 3 0.0119 0.0540 0.0035 

3-58 0.0045 0.0208 0.0013 

58- 6 0,0086 0.0340 0.0021 

4-71 0.0043 0.0504 0.1285 

4-59 0.0024 0.0305 0.2905 

59- 5 0.0026 0.0322 0.3075 

60- 6 0,0059 0.0196 0.0012 

60-61 0,0222 0.0731 0.0047 

6-63 0.0212 0.0834 0.0053 

6-117 0.0329 0.1400 0.0089 

6-62 0.0215 0. 07 07 0. 00 45 
61- 7 0.0744 0.2444 0.0156 

62- 7 0.0595 0.1950 0.0125 

7-64 0.0132 0.0437 0.0111 	contd. 
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TABLE 5.1 contd. 

_ 	1  2 3 ___ 4 

7- 9 0..0120 0O394 0.0025 

7-72 0.0380 0.1244 0.0080 

63-64 0.0454 0.1801 0.0116 

64-53 0.0091 0.0301 0.0019 

64- 8 0.0123 0.0505 0.0032 

64-14 0.0474 0.1563 0.0100 

8- 9 0.0111 0.0493 0.0028 

9-65 0.0252 0.1170 0.0074 

-9-16 0.0752 0.2470 0.0158 

65-66 0.0183 0.0849 0.0054 

66-67 0.0209 0.0970 0.0061 

67-68 0.0342 0.1590 0.0101 

68-15 0.0317 0.1153 0.0293 

68-10 0.0135 0.0492 0.0124 

68-11 0.0156 0.0800 0.0216 

10-31 0.1022 0.4115 0.0255 

10-32 0.0488 0.196 0 0.012.2 

11-13 0.0318 0.1630 0.0441 

12-71 0.0079 0.0860 0.2270 

13-15 0.0229 0.0755 0.0048 

13-116 0.0164 0.0741 0.0049 

13-69 0.0191 0.0855 0.0054 

69-70 0.0237 0,0943 0.0059 

70-14 0.0108 0.0331 0.0020 

71-75 0.0046 0.0540 0.1055 

14-15 0.0298 0.0985 0.0062 	contd. 



8o 
TABLE 5.1 contd. 

1 2 3 4 

15-53 0.0615 0.2030 0.0129 

15-115 0.0135 0.0612 0.0040 

72-74 0.0415 0.1420 0.0091 

16-17 0.0087 0.0268 0.0014 

16-74 0.0026 0.0094 0.0024 

16-78 0.0413 0.1681 0.0105 

73-17 0.0022 0.0102 0.0006 

73-74 0.0110 0.0497 0.0033 

74-76 0.0321 0.1060 0.0067 

74-18 0.0593 0.1680 0.0105 

75-28 0.0.090 0.0986 0.2615 

76-18 0.0184 0.0605 0.0038 

18-77 0.0145 0.0487 0.0030 

18-19 0,0555 0,1830 0.0116 

77-19 0, 0410 0,1350 0.0086 

19-21 0.0358 0.1610 0,0430 

78-79 0.0608 0.2454 0.0151 

79-80 0.0224 0.0901 0.0056 

80-20 0.0400 0.1356 0.0083 

80-2.1 0.0684 0.1860 0.0111 

20-81 0.0380 0.1270 0.0079 

20-82 0.0601 0.1890 0.0118 

81-21 0.0191 0.0625 0.0040 

81- 1 0.0844 0.2778 0.0177 

82-21 0.0179 0.O 0S 0.0031 

21-83 0.0267 0.0752 0.0046 cont d. 



TABLE 5.1 contd. 

_ 	1 2 3 4 

21-84 0.0486 0.1370 0.0085 

21-29 0.0090 0.0459 0.0124 

21- 1 0.0985 0.3240 0.0207 

21-22 0.0398 0.1450 0.0367 

83-87 0.0474 0.1340 0.0083 

84-85 0.0203 0,0588 0.0035 

84-88 0.0255 0.0719 0.0044 

85-86 0.0405 0.1635 0.0101 

86-22 0.0263 0.1220 0.0077 

22-23 0.0169 0.0707 0.0050 

22-24 0.0027 0.0095 0.0018 

22-25 0.0503 0.2293 0.0149 

23 -2 4 0.0048 0.0151 0.0009 

23-25 0.0473 0.2158 0.0141 

24-87 0.0343 0.0966 0.006.0 

24-88 0.0343 0.0966 0.0060 

24-25 0.0407 0.1200 0.0276 

25-89 0.0317 0.1450 0.0094 

25-26 0.0328 0.1500 0.0097 

89-26  0.002 6 0.0135 0.0036 

89-27 0.0123 0.0561 0.0036 

2i-27 0.0082 0.0376 0.0024 

27-29 0.0482 0.2180 0.0144 

27-92 0.0258 0.1170 0.0077 

90-91 0.0017 0.0200 0..0540 

91-28 0.0027 0.0302 0.0950 	contd. 



TABLE 5.1 contd. 

1 2 3 4 

28-93 0.0014 0.0160 0.1595 

29-92 0.0224 0.1015 0.0067 

93-54 0.0003 0.0040 0.0410 

93-98 0.0017 0.0202 0.2020 

1-95 0.0405 0.1220 0.0310 

1-36 0.0309 0.1010 0.0259 

1-31 0.0300 0.1270 0.0305 

31-94 0.0088 0.0355 0.0021 

31-34 0.0401 0.1323 0.0084 

31-95 0.0428 0.1410 0.0090 

94-32 0.0446 0.1800 0.0111 

94-33 0.0087 0.0454 0.0029 

34-95 0.0123 0.0406 0.0025 

95-118 0.0145 0.0481 0.0029 

95-36 0.0601 0.1999 0.0124 

35-118 0.0164 0.0544 0.0034 

35-36 0.0444 0.1480 0.0092 

36-96  0.003 7 0.0124 0.0031 

36-37 0.0108 0.0331 0.0175 

36-99 0.0298 0.0853 0.0204 

96-97 0.0054 0.0244 0.0016 

97-37 0.0156 0.0704 0.0046 

37-107 0.0356 0.1820 0.0123 

37-108 0.0183 0,0934 0.0063 

37-109 0.0238 0.1080 0.0071 	contd.' 



TABLE 5.1 contd. 

1 2 3 4 

37.-44 0.0454 0.2 060 0.0136 

99-107 0.0162 0,0530 0.0136 

99-100 0.0112 0.0366 0.0095 

100-101 0.0625 0.1320 0.0064 

100-38 0.0430 0.1480 0.0087 

101-38 0.0302 0.0641 0.0030 

38-102 0.0350 0.1230 0.0069 

38-103 0.0200 0.1020 0.0069 

38-40 0.0239 0.1730 0.0117 

102-39 0.0282 0.2074 0.0111 

103 -4 0 0.0139 0.0712 0.0048 

40-41 0.0158 0.0653 0.0397 

40-43 00079 0.0380 0.0240 

41-42 0.0254 0.0836 0.0053 

42-43 0.0387 0.1272 0.0081 

43-104 0.0258 0.0848 0.0054 

43-105 0.0481 0.1580 0.0101 

43-45 0.0648 0.2950 0.0193 

43-111 0.0123 0.0559 0.0036 

104-105 0.0223 0.0732 0.0047 

105-106 0.0132 0.0434 0.0027 

105-107 0.0269 0.0869 0. 005 7 

105-45 0.0178 0.0580 0.0151 

106-107 0.0171 0.0547 0.0037 

107-108 0,0173 0.0885 0.0060 	contd. 



TABLE 5.1 contd. 

1  2  3 4 

109-45 0.0397 0.1790 0.0119 

44-45 0.0180 0.0813 0.0054 

45-110 0.0277 0.1262 0.0082 

45-46 0.0160 0.0525 0.0134 

45-47 0.0451 0.2040 0.0135 

45-112 0.0605 0.2290 0.0155 

110-111 0.0246 0.1120 0.0073 

46-50 0.0391 0.1813 0.0115 

46-47 0.0466 0,1584 0,0101 

46-48 0.0535 0.1625 0.0102 

47-48 0.0099 0.0378 0.0024 

48-112 0,0140 0,0547 0.0036 

48-49 0.0530 0.1830 0.0118 

48-113 0.0261 0.0703 0.0046 

112-49 0.0530 0.1830 0.0118 

113-114 0.01,05 0.0288 0.0019 

114-50 0.0278 0.0762 0.0050 

50-51 0.0220 0.0755 0.005E 

5Q-52.. 0.0247 0,0640 o, at55 

1i-U6 0.002.3 0. OO' 0.0007 

4-57 0.0000 0.0267 0.0000 

12-11 0.0000 0.0382 0.0000 

71-64 0.0000 0.0388 0.0000 

75-74 0.0000 0.0375 0.0000 

90-25 0.0000 0.0386 0.0000 	contd. 



TABLE 5.1 contd. 

1 	 2 	 3 	 4 

w 

91-26 	0.0000 

28-29 	0.0000 

93- 1 	0.0000 
98-37 	0.0000 

0.0268 0.0000 

0.0370 0.0000 

0.0370 0.0000 

0.0370 0.0000 

* Base MVA = 100 

" Line charging : one-half of total charging 
of line 



TABLE A.5.2 Voltages at Generator Buses 

Bus 
Number 

Voltage 
Magnitude 

.u. 

Bus 
Number 

Voltage 
Magnitude 

p.u. 
1 1.035 28 1.005 
2 0.998 29 1.050 
3 0.990 30 0.955 
4 1.015 31 0.984 
5 1.050 32 0.980 
6 0.990 33 0.991 
7 0.970 34 0.958 
8 0.973 35 0.943 
9 0.962 36 1.006 

10 0.992 37 1.040 
11 1.050 38 0.985 
12 1.015 39 1.015 
13 0.968 40 1.005 
14 0.967 41 0.985 
15 0.963 42 0.980 
16 0.984 43 0.990 
17 0.980 44 1.010 
18 0.970 45 1.017 
19 0.985 46 1,010 
20 1.005 47 0.971 
21 1.025 48 0.965 
22 0.955 49 0.952 

' 	23 0.952 50 0.973 
24 0.954_ '. 51 0.980 
25 0.985 52 0.975 
26 0.995 53 0.993 
27 0.998 54 1.005 



EiI 
TABLE A.5.3 Transformer Data 

Transformer Tap 
Designation Setting 

4-57 0.985 
12-11 0.960 
71-64 0.960 
75-74 0.938 
90-25 0.960 
91-26 0.985 
28-29 0.935 
93- 1 0.935 
98-37 0.935 

TABLE $.5.4 Static Capacitor Data 

Bus Number Susceptance 
p.u. 

16 0.14 
20 0.10 
34 0.12 
48 0.20 
49 0.06 
50 0.06 
5 7 -0.401 
74 -0,25 
79 0.10 
80 0.10 
82 0.15 
97 0.20 
99 0.20 

100 0.10 

The negative values represent reactors whereas 
the positive values are for capacitors. 



TABLE A.5.5 Generation and Load Data 

is 	Real power 	Load  
Number 	generation 	Real 	Reactive 

p•u •* p.u. 	p.u. 

1 2 3 4 

1 Slack 0.00 0.00 
bus 

2 -0.09 0.3,0 0.12 
3 0.00 0.52 0.22 
4 -0.28 0.00 0.00 
5 4.50 0.00 0.00 
6 0.85 0.47 0.10 
7 0.00 0.90 0.30 
8 0.00 0.60 0.34 
9 0.00 0.45 0.25 

10 -0.13 0.00 0.00 
11 2.20 0.00 0.00 
12 3.14 0.00 0.00 
13 -0.09 0.62 0.13 
14 0.07 0.43 0.27 
15 0.00 0.59 0.23 
16 0.00 0.59 0.26 
17 0.00 0.31 0.17 
18 -0.46 0.20 0.23 
19 -0.59 0.37 0.23 
20 0.19 0.28 0.10 
21 2.04 0.87 0.30 
22 0.48 1.13 0.32 
23 0.00 0,63 0.22 
24 0.00 0.84 0.18 
.25 1.55 2.77 1.13 
26 1.6 0 0.00 0.00 
27 0.00 0.77 0.14 
28 3.91 0.00 0.00 contd.. 



TABLE A.5.5 ' contd. 

1 	 2 	 3 	4 

29 3.92 0.39 0.18 
30 0.00 0.51 0.27 
31 0.00 0.66 0.20 
32 -0.12. 0.00 0.00 
33 -0.06 0.00 0.00 
34 0,00 0..68 0.27 
35 0.00 0,68 0.36 
36 0.00 0.61 0.28 
37 4.77 1..30 0.26 
38 0.00 0.24 0.15 
39 0.00 0.00 0.00 
40 6.07 0.00 0.00 
41 -0.85 0,78 0.42 
42 -0.10 0.00 0.00 
43 0.00 0.65 0.10 
44 -0.4.2 0.00 0.00 
45 2.52 0.37 0.18 
46 0.40 0.23 0.16 
47 0.00 0.38 0.25 
48 0.00 0.31 0.26 
49 -0.22 0.28 0.12 
50 0.00 0.39 ,0.30 
51 0.36 0.00 0.00 
52 -0.43 0.25 0.13 
53 -0.06 0.00 0.00 
54 -1.84 0.00 0.00 
55 0.00 0.20 0.09 
56 0.00 0.39 0.10 
57 0.00 0.00 0.00 
58 0.00 0.19 0.02 
59 0.00 0.00 0.00 
60 0.00 0.70 0.23 
61 0.00 0.34 0.16 	contd. 



TABLE A.5.5 contd. 

1 2  3 4 

62 0.00 0.14 0.01 
63 0.00 0.25 0.10 
64 0.00 0.11 0.03 
65 0.00 0.18 0.03 
66 0.00 0.14 0.08 
67 0.00 0.10 0.05 
68 0.00 0.07 0.03 
69 0.00 0.17 0.07 
70 0.00 0.24 0.04 
71 0.00 0.00 0.00 
72 0.00 0.23 0.09 
73 0.00 0,33 0.09 
74 0,00 0.00 0.00 
75 0.00 0,00 0.00 
76 0.00 0.27 0.11 
77 0.00 0,37 0.10 
78 0.00 0.18 0.07 
79 0.00 0.16 0.08 
80 0.00 0.53 0,22 
81 - 	0.00 0.34 0.00 
82 0.00 0.20 0.11 
83 0.00 0.17 0.04 
84 0.00 0.17 0.08 
85 0,00 0.18 0.05 
86 0,00 0.23 0,11 
87 0.00 0,12 0.03 
88 0.00 0.12 0.03 
89 0.00 0.78 0.03 
90 0.00 0,00 0.00 
91 0.00 0.00 0.00 
92 0.00 0.28 0.07 
93 0.00 0,00 0.00 	contd. 



TABLE A.5.5 contd. 

1 	2 	 3 	4 

94 0.00 0.00 0.00 
95 0.00 0.47 0.11 
96 0.00 0.71 0.26 
97 0.00 0.39 0.32 
98 0.00 0.00 0.00 
99 0.00 0.54 0.27 

100 0.00 0.20 0.10 
101 0.00 0.11 0.07 
102 0.00 0.21 0.10 
103 0.00 0.48 0.10 
104 0.00 0.12 0.07 
105 0,00 0.30 0.16 
106 0.00 0.42 0.31 
107 0.00 0.38 0.15 
103 0.00 0.15 0.09 
109 0.00 0.34 0.08 
110 0.00 0.22 0.15 
111 0.00 0.05 0.03 
112 0.00 0.43 0.16 
113 0.00 0.02 0.01 
114 0.00 0.08 0.03 
115 0.00 0.08 0.03 
116 0.00 0.22 0.07 
117 0.00 0.20 0.08 
118 0.00 0.33 0,15 

91 

`Base MVA = 100 



TABLE NO.+6.1.3 
92 

1  2  3  4 5 BUS Voltage Phase Angle Real Reactive Magnitude (DEG) Power power 

1 1.03500 0.00000,  5.1604 -0.6341 
2  .99798 -14,40884 -0.3900 -0,2414 
3  .98998 -16,69348 -0,5200 -0,0504 
4 1.01500 - 8,93624 -0.2800 1,5818 
5 1,04999 6.04734 4.5000 0.1570 
6 .98997 -17.50190 0.3800 0.9212 
7 .96998 -18.56041 -0.9000 -0,0976 
8 .97298 -18,25133 -0.6000 -0.0003 
9  .96198 -18.72452 .0,4500 -0,3404 

10 .99198 - 8.90146 -0,1300 -0.0412 
11 1.04999 - 1.77088 2.2000 0,6008 
12 1.01500 0.02298 3.1400 0.4402 
13 .96798 -14.38410 -0.7100 -0,0220 
14 ,96697 -17.00560 -0,3600 0.0996 
15 .96298 -14.94035 -0,5900 -0.3154 
16 .98398 -18.55778 -0,5900 -0.0367 
17 .97998 -19.01238 -0.3100 -0.0498 
18 .96998 -22,56691 -0.6600 0.1234 
19 .98499 -21.37960 -0.9600 0,2458 
20 1.00499 -11.44341 -0.0900 0.0151 
21 1.02499 - 8.99635 1.1700 1.0959 
22 .95499 -14,65920 -0.6500 -0.1999 
23 .95199 -14.94896 -0.6300 -0.1560 
24 .95399 -14,76095 -0.8400 -'0.1340 
25 .98500 -10.58796 -1.2200 -0.2344 
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Cunt.... 

26 .99500 -- 5.90271 -1.2200 -0.2978 

21 .99799 r- 6.51950 -0.7700 -0,0899 
28 1.00500 - 2.30082 3.9100 1,5788 
29 1,05000 - 2,46411 3.5300 -0,1542 
30 .95497 -19.01499 -0.5100 -0.2770 
31 ,98400 - 7.37443 -0.6600 -0.0296 
32 .97999 -• 8. 89667 -0.1200 -0,0873 
33 .99100 - 7.99805 -0.0600 0.1059 
34 ,95800 - 8.34431 -0.6800 -0,1798 
35 ,94300 - 8.23884 -0.6800 -0.2834 
36 1.00600 - 3.31204 -0,6100 -0.0245 
37 1,04000 - 1,07710 3,4700 1,0235 
38 .98500 2,21841 -0,2400 -0.1138 
39 1.01500 0,32236 0.0000 0.1367 
40 1,00500 9,49917 6.0700 0,0493 
41 ,98500 3,11223 -1.6300 0..2014 
42 .98000 3.14376 -0.1000 -0.1177 
43 .99000 3,70329 -0.6500 -0.1461 
44 1.01000 - 3.05001 -0.4200 -0.1558 
45 1,01700 •- 2.07822 2,1500 0.9262 
46 1.01000 - 5.82019 0.1700 0,6405 
47 •.97100 - 8.39083 -0,3800 -4.2007 
48 ,96500 - 9,49555 -00100 -0,2018 
49 .95200 -12.5599. -0.5000 0.0270 
50. .97299 .»11.99528 -0.3900 -0,1988 



51 .98000 -10.35059 0,3600 -0,0136 
52 .97499 -15.09490 -0,6800 0.2999 

53 .99297 -16,03479 -0,0600 0,1652 
54 1.00500 - 2.85847 -1,8400 0,9181 
55 ,97098 -18.47270 -.0.2000 -0.0900 
56 .96715 -18.12381 -0,3900 -0.1000 
57 1.00188 . -13.96364 0.0000 »0,4000 
58 .98298 -17.14156 -0.1900 -0,0200 
59 1,03275 -1 .56600 0.0000 0,0000 
60 ,98467 -16.98045 -0,7000 -0.2300 
61 .96686 -18.35205, -0.3400 -0.1600 
62 .98269 -18.21781 -0.1400 -0,0100 
63 ,98210 -17,79244 -0.2500 -0.1000 
64 .99256 -15.99445 •-0,1100 -0.0300 
65 .95381 -17.81185 -0,1800 -0,0300 
66 .95344 -16.20290 -0,1400 -0,0800 
67 ,96457 -13.62939 *0.1000 -0.0500 
68 ,99732 - 8.71453 -0.0700 -0.0300 
69 .96086 -16:1.0805 -0.1700 -0,0700 
70 ,96282 -1V.11500 -0,2400 •»0,D400 

71 .97662 -10.91894 0.0000 0.0000 
72 ,96874 -19,16520 -0.2300 -0.0900 
73 .98002 -19.00848 -0,3300 -0.0900 
74 .98840 -18.07024 0.0000 -0,2500 
75 .95305 -12.88521 0,0000 0.0000 



Cont..... 
76 .96871 .21„47420 -0.2700 -0.1100 

77 .96641 -22.99732 -0.3700 -0.1000 

78 .97263 -18.54239 -0.1800 -0.0700 

79 .97980 -16,02773 -•0.1600 0.0200 

80 .98328 -14.20458 -0.5300 -0,0400 

81 1.01594 - 9.19936 -0.3400 0.0000 

82 1.01977 - 9,98413 -0.2000 0.0400 

83 1.00001 -11.01087 -0.1700 -0.0400 

84 .96443 -13.60405 -0.1700 -0.0800 

85 .95377 -14,55172 -0.1800 -0.0500 
86 .94345 -15.54150, -0.2300 -0.1100 
87 .96933 -13.53727 -0.1200 -0,0300 
88 .95720 -14.38508 -0.1200 -0.0300 
89 .99302 - 6.79354 -0.7800 -0.0300 
90. .96677 - 7.20151 0.0000 0.0000 
91 .98170  - 5.42737 0.0000 0.0000 
92 1,01887 - 5.09583 -0.2800 -0.0700 
93 1.00176 - 2.42376 0.0000 - 	0.0000 
94 .98655 - 7.78369 0.0000 0.0000 
95 .96623 - 7.06798 -0.4700 -0.1100 
96 1.00331 -3,61496 -0.7100 -0.2600 
97 1.00894 - 3.31522 -0.3900 -0.1200 
98 .99335 - 1.88862 0.0000 -0.0000 
99 .98574 - 2.83483 -0.5400 .0.0700 

95 



Cant.... 

 

100  .98190 

 

101  .97852 

 

102  .98474 

 

103  .98691 

 

104  .98391 

 

105  .98769 

 

106  .97766 

 

107  ,98937 

 

108 
 

1.00908 

 

109 
 

1.x'52217 

 

110  .99003 

 

111  .98827 

 

112  .96008 

 

113  .96573 

 

114 
 .96654 

 

115  .96974 

116  .95966 

 

117  .97255 

118  .94869 

S.No. Method 

	

1 	Gauss Seidal 
Method 

-1.69731 

0.73312 

0.56132 

5.40991 

0.71666 

-1.42843 

-2.39092 

-2.54612 

-2+15625 

-2.64544 

-0.49192 

• 2.20642 

-9.74087 

-10.68539 

-11.13837 

-15.26356 

-15.27303 

-19.03045 

- 8.07298 

Tr. able 6.14 

Arc celeration 
factor 

1.7  

-0.2000 
-0.1100 
-0,2100 
-0.4800 
-0.1200 
-0.3000 
-•0.4200 
-0.3800 
-0.1500 
•0.3400 
-0.2200 
-0.0500 
-0.4300 
-0.0200 
*0.0800 
-0.0800 
-0,2200 
-0.2000 
-.0.3300 

No. of 8 
iterations 

116 

0.0000 
-0.0700  
-0,1000 
-0.1000 
-0.07 00 
-0.1600 

-0.3100 

-0.1500 

-0.09 00 

-0.0800 

-0.1500 

-0.0300 

-0.1600 

-0.0100 

-0.0300 

..0.0300 

-0.0700 

-0.0800 

-0.1500 

CPU time 
(in sec s) 
37.58 

1.6 	>150 
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Sparsity techniques have been applied in programming load 

flow studies, both by Gauss-Seidal method and by Newton-Raphson 

method. The row wise systematic packing with necessary index-

ing information has been used in storing the admittance matrix. 

The J aabi an in the case of Newton-Raphson method has been 

stored in both row wise and column wise systematic packed form. 

In addition the linked list technique has been used as. it is 

adept to deal, with the continually changing number of non-zero 

elementss in the rows and columns during the reduction process. 

In the case of Newton-Raphson technique, bi-factorization 

me thod has been used which is especially suitable for load flow 

studies as the j acobi an matrix is diagonally dominant and having 

a symmetric  sparsity structure but asyme tri c in elemement value. 

As the structure of the jacobian remains sane in each iteration., 

the simulation and ordering subroutine will once for all deter-

mine the pivotal sequence which can be applied in subsequent 

iterations. 

The results of the problems studied have been given in 

Chapter VI. It is seen thatin the case of Gauss-Seidal method 

the number of iterations required to reach the solution is more 

compared to the Newton-Raphson method. The effect of acceleration 



factor on the number of iterations in the case of the Gauss-
seidal method has also been studied, For the smaller systems 

the optimum acceleration factor is in the range of 1.2 to 1.4 
(For example for the 5 bus system it is approximately 1.2 and 

for the 8 bus system it is approximately 1..4) . Fcr the larger 
systems it is approximately 1.7 and if it is reduced the number 
of iterations increases. 

The time taken to obtain a solution in the case of Newton-

Raphson method for the smaller systems is more (i.e. for a 5 bus 
system it is o.syseas against 0.27 secs. for Gauss..Seidal method 
with an acceleration factor of 1.2) . This is because of the 
degree of sparsity in the smaller system is small and also due 
to time taken to calculate the jacobian elements. However the 
solution was obtained in two iterations. 

In the case of larger systems the time for sobution by 
Newton Raphson method (time taken for 57 bus system is ~.•'13s~0 

is less than by the Gauss-Seidal rethod(time taken for 57 bis_ 

--- = 	- system is 4.5 secs) . This is due to fast convergence 

of Newton Raphson method(N'o. of iterations 3 in case of 57 bus) 

Also for the 57 bus system studied the percentage of sparcity 

is 93.5 % (only 213 non zero elements in the admittance matrix) 



Suaaestions for variations and imprevementt: 

In the case of Gauss-Seidal met hod only the diagonal 

elements and the non-zero elements of the upper traingle of 

Y Bus are stored. In this case the matrix has to be searched 

everytime to buiU up the remaining non-zero elements of the 

row and so the comr.>utation time is more. This can be reduced 

by storing all the non zero elements of the Y-Bus. However 

•4 	memory requirement will go up. 

In the case of Newton Raphson method the subroutine JACOB 

calculates the elements of the j acobians for each iteration and 
also calculates the real and reactive bus powers. The program 

can be made faster by-  having a separate subroutine calculate 

the bus powere and if the convergence criterion is not met 

with., then only to calculate the elements of the jacobian, 

In the present work, non linear loads and on load tai, 

changing, could not be considered. These can be incorporated 

in the program. 
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APPENDIX 



START; 
i 

A e AD SYSTEM DATA 

'
DO TRANSFORMER CALCULATIONS FOR 

OFF NOMINAL TAP TRANSFORMERS 

ARRANGE THE DATA SO THAT THE FIRST BUS NUMBER 1$ 
GREATER THAN SECOND BUS NUMBER 

ARRANGE THE DATA IN THE ASCENDING ORDER OF FIRST IBS NUMBERS 
AND IN CASE THE FIRST BUS NUMBERS ARE SAME IN THE ASCENDING 

ORDER OF SECOND BUS NUMBERS 

CA1.CIJLATE THE DIAGONAL ELEMENTS 
OF ADMITANCE MATRIX 

FORM ADMITTANCE MATRIX IN THE PACKED FORM 
AND GIVE FIVE DIGIT IPDHX NUMBERS TO THE 

DIAGONAL ELEMENTS 

GIVE THE INDEX NUMBER 99999 TO THE LAST 
DIAGONAL ELEMENT 

COMPUTE Al FOR LOAD BUSES USING 
EGNO t1 

SET ITERATION COUNT N s 0 

SET BUS COUNT I 2 AND OVMAX a 0 
- 	(FIRS'T BUS REFERENCE BUS) 

CALCULATE PRODUCT OF THE ROW OF THE MATRIX 

WITH THE VECTOR OF VOLTAGES 

FIG. A.2.1 FLOW DIAGRAM FOR GAUSS-SEIDEL METHOD 



Abp THE PfOUVCT Of aiAGOP4AL 
ELEMENT W41H VOL1AGi 

FOR VOLTAGE OR 
T 	 LOAD 

sus 

VOLTAGE 
REPLACE TEMPORARILY 

lvinIBY IVIISKc  

COME UTE Of FFOM i;G.23 

fS  f$ 

NO 	aid► a tit max 	` 	4 iN 	'Ot train 	
YLS 

t--•----~-Y- -----•----~ 	 NO 	r------ 
RePLACE 	 REPLACE 

	 REPLACE 

G1) 9Y at mex 	0(N) By Qimfn 
	

I Vv )j BY 

IV E I sP[c 

LRECOMPUIE At 

COMPUTE Vim+t FROM !1 

Is 

< N); AT !i 

NO 

REPLACE Y{tN) GY Vi tN+t) 

GOMPUYe AV,(N) 	i 

SET AVre►an 7° 1 Vt(N) I, 	I 

ADVANCE GU'S COURT N -+►41# 1 

LESS 	is 
N is Na 

....,... 	 GREATER 	 ..,_......... 
ADVANt 	 G TER 	T $T 	 CALCULATE THE rATION COUNT 	 CONVERGENC 	F OWS AND POWEN 
N. 44 t 1 	j LESS 4T a.ACI( BUS 

STOP 

FIG. A.I.1 CONTINUED 



START 

READ SYSTEM DATA 

ARRANGE DATA AND 
FORM-BUS 

SET ITERATION COUNT 
N s 0 	I 

CALL SUBROUTINE. SMR TO CALCULATE ELEMENTS 
OP JACODIAN ALONG WIN INDEXING DATA REAL AND 

REACTIVE BUS POWERS 

CALL INVI SIMULATION ANDORDERING 
SUBROUTINE 

CALCULATE DIFFERENCE BETWEEN 
CHED'ULED AND CALCULATED BUS POWERS 

DETERMINE MAXIMUM CHANGE IN 
POWER MAX APN AND MAX AQN 

CALCULATE LINE 

EQUAL I FLOWS AND 
POWER 

LESS 	AT 
SLACK BUS 

TST FOR CONVERGENCE 
Imal,APNIt 
4max AQ N I C 

CALL JACOB TO GREATER 

CALCULATE NEW JACOD1AN CALL INVI REDUCTION ANDSSOLUTION 

ELEMENTS, SUBROUTINE 

BUS POWERS 

1 CALCULATE NEW 
pUS VOLTAGES 

ADVANCE 	 REPLACE VIN BY VI Nh 1 

ITERATION 
COUNT 	 AND 04N DY S ( N+ 1 

S 	 ! STOP , 

FIG. A.2.2 LOAD FLOW SOLUTION BY NEWION•RAPHSON METHOD 
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A.2.3. flow 'chart of s+r,41olign and ordering subroutine (asymmetrical matrisl 
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[7RE (L)ARM)
CL)*,CE(L)-SCF*CE(LI) 	_. 

	

"RF*REtLI! 	OE(K)■DE(K)—CF*CE{i»lf 

L.LNXT(L) 	 L*4NXTILI 	 LIsLNXTLL1 f 

*1 	[-ITAG(ti.., . 	l'LTl~GIL) 	 IP•ITAGil.I~ 

I LKULNXTtLK) 

A.2.4, flow chart of reduction subroutine (osymmetr&cot matrix( 

N- 



BEGIN 

KaNSE©L)) 

CF *DE (K) o (K ) 
• V(OsCF. 

L LCOLtK1 

• L.0 • 

I*ITAG(L? 

V( 	V(I?— E LI*CE 

LvLNXT(L) 

OO J.N-2.1 

END  SUM=VtK3 

I~ITAGiL3 

1 )1  

• L=LNXT-(L 1 

s0 > l.  

(K)SUM 

ior Gnarl. of direct solution subroutine Iasyrnmatricat matrix) 



Description of paramete r# 

YInteger variables 

I row index of terms in processed column K or running index 

P row index of terms in pivotal column 

J nufaber of reduction step 

It index of column under consideration or runn--., index 

JP pivotal index related to reduction step J 

L 4ocation of terms in processed column K 

1.A location of preceding term in processed column K 

• LF indicator for next vacant location 

LI location of terms in pivotal column (inner loop) 

5 LK location of terms in pivotal column (outer loop) 

LN location of new added fill-in term 
LP location of intermediately stored terms of pivotal column 
N intermediate integer variable 
MIN minimum number of non-zero terms 

1.4 number of unknowns, order of the matrix 

Ileal variables 

CF 	multiplier for columns 
D 	diagonal. (pivotal) term 

RF 	multiplier for row$ 
SUM sum 0f products 

( nteger arrays 

ITAG row index. of elements stored in CE 
LCOL etarting position of columns 
LNXT location, of n. xt term 
NOZE numbet of non-zero terms 
i+" ;Q sequence of pivotal indices 

Real ~arraya 

CF 	OO1 umrzwf qe ritort+d matrix terms 

tr i x to rtes 

•• 	'e Lu'i ve for 
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FIG A.2 8 8- BUS SYSTEM 



FIG. A.2.9 5- BUS SYSTEM 
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