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ABSTRACT

The work presented in this work deals with application
of gparsity techniques to load flow studies, As the size of
the system increases, it becomes increasingly difficult to
accanmmodate the problem within the core memory of the computer
and sparse matrix techniques comes to the aid of the load flww
analyst to overcome the problem of memory size and these
techniques are absolutely essential for studying large modern
interconnected systems, The technique also considerably speeds
up the execution, as operations involving Zero-elements are
avoided and thereby finds @pplication especially for on-line

studies where execution time should be as small as possible,

Chapter II deals with the review of the load flow calcu-
lation methods and the equations on which the computations a#e
based. In Chapter III the various sparsity techniques‘have
been dealt with, Chapter IV describes the factorization me~
thods which are generally applied and in detail deals with the
bi-factorization method which has been used in this work,
Petailed description of the camputer algorithms for both Gaugse

Seidel and Newton-Raphson metod have been given in Chapter V,

The flow charts are given in appendix. Chapter Vi gives

the details and data of the problems studies and results obtained.

In this were spdrsity techniques have been applied to load

flos solution both by Gauss-Seidal and by Newion-Raphson method,
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In the Newton-Rgphson method the techniques of bi-facto.-

rization has been applied,

It is seen that the Gauss~Seidal method requires a large
number Of . iterations for getting the solution, The Newton-

Raphson method takes very few iterations to get the solution.

However for the smaller systems the execution time is more,

The methods have been tested om a 5 bus, 8 bus and IEEE
standard 57 bus and 118 bus systems, The computational work
has been carried on DEC 2050 camputer system of the Roorkee
University and execution tipes referred in this work cofresPGnd

to DEC 2050 system,



LIST OF PRINCIPAL SYMBOLS USED

Subscripts/Superscripts

P,q, I bus numbers

K,v iteration numbers
(

IP = Vector of bus currents
Equs = Bus voltage vector
Ygus = admittance matrix
zBus = Impedance matrix
Epe Vp = Vector of Bus voltages
EP = Conjugate ,o.f.E'P
R = Resistance of transmission line
X = Rectance of transmission line
pr = ‘Driving point admittance
qu = Transfer admittance
$ = Phase angle of the bus voltage
e = angle of the elements of the admittance matrix
expPrresded: in polar coordinators
Pp = Real power input at Bus P
Qp = Reactive pover input at Bus P
Sp = Pq&er ;t P bus Pb - JQp
?bé = admittance between buses P and Q
Ap = Difference between actual and computed real bus pover
A g = Difference between actual and computed reactive "
A8 = Correction required in the bus voltage phaseAangle
Al et = Correction required in the bus voltage magnitude,
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CHAPTER - T

INTRODUCTION

1.1 Load Flow Studies

The principal  objective of a utility is to deliver power
to the consumer satisfactorily (i.e. with voltage and frequency
within limits) and in a manner most economical to the company
from the transmission and distribution points of view,

Load flow calculations provide power flows and voltages for
a specified power system subject to the regulating capability
of generators, condensers, and t&p changing under load trans-
formers as well as specified net interchange between individual
operating systems., This information is essential for the con-
tinuous evaluation of the current performance of a power system
and for analyzing the effectiveness of alternative plans for sys-
tem expansion to meet increased load demend. These analyses re-
quire the calculation of numerous load flows for both normai_and
emergency operating condition, Thus load flow studies form the
back bone for the design and operation of a power systenm.

The load flow problem consists of the calculation of power
flows and wvoltages of a network for specified terminal or bus con-
ditions. A single phase representation is adequate since power
systems are usually balanced., Associsted with each bus are four
quantitiess the real and reactive power, the voltage magnitude,
and the phase angle, Three types of buses are represented in
the load flow calculsgtion and at a bus, two of the four quantities
are specified, It is necessary to select one bus, called the
slack bus, to provide the additionel real and reactive power to

supply the transmission losses, since these are unknown until the

final solution is obtained.



At this bus the voltage magnitude and phase angle are
specified. The remaining buses of the system are designated
either as voltage controlled buses or load buses, The real
power and voltage‘magnitude are specified at a voltage con-
trolled bus. The real and zeactive powers are specified at
a load bus..

A given power system subject to a given set of power de-
mands at its various buses can be operated in an infinite
number of states and still satisfy the given demands, Fqor the
systers engineer the job becomes one of selecting the best
possible state out of the myriad of possibilities. He selects
this particular one after comparing a number of possible
alternatives, obtained from a load flow study,

The state of the system could be represented by a vector,
the state vector, made up of the bus voltage maomitudes and

phase angles, With all the bus voltages known to both magni-
tude and phase, we in effect also know the line flows., In
other words, we know the total structure of the power flow in
the system,

Having obtained from a such study a selection of possible
load flow configurations, the one particular configuration we
should use is selected on the following basis..

1.. The total amount of real power in the network emanates from
the generator stations, the location and size of which are
fixed, T7The generation must equal the demand at each moment,
and since this power must be divided between the generatore in

a unicue ratio in order to achieve ontinim economic operation,
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we conclude that the individual generator outputs must be

closely maintained at predetermined set points, It is impor-

tant to remember that the demand undergoes slow but wide chan-
ges throughout the 24h of the day. We must therefore slowly,
either continuously or in discrete steps, change these set
points.,

2. Certain transmission links can carry only certain amounts
of power, and we must make sure that we do not operate

these 1links too close to their thermal / stability limits.,

3., It is necessary to keep the voltage levels of certain buses
at rather close tolerances, This can be achieVed by proper
scheduling of reactive powers,

4, If the power system is part of a larger pool, it must ful-
fil certain contractural power-scheduling commitments via
its tie lines to neighboring systems.

5. The disturbances follwwing a massive network fault can cause
system outages, the effects of which can be minimized by pro-

per prefault load flow strategies.

1.1.1 load Flow Studies of Large Systems.

As the size of the net work increases it becomes increasingly

difficult to accomadate the probiem in the available memory
of the computer, In order +to bring such problems within the

memory size of the computer special techniques called sparsity

techniques have to be used.
1.2 Sparsity Techniques,

A matrix having only a small percentage of non zero ele-
ments is said to be sparse. In a practical sense any nxn mat-

rix is classified as sparse if it has order of n nonzero
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elements, say two to ten non zero elements in each row, for

large n, In other words if a is the total number of nonzero

élements in the matrix and n ‘is the order of matrix, then
a << n2.

Sprase matrices occur in the solution of many important
practical problems, e.g., in structurel, analyses, network the-
ory and power distfibution systems, numerical solution of diff-
erential equations, greph theory, as well as in genetic theory;
behaviorel and social sciences, and computer programming. As
our technology increases in complexity, we can expect that large
sparse matrices will continue to occur in many future applications
involving large systems, e.g., scheduling and simulation of
interconnected power system problems, scheduling of metroli-
tan fire engines of fire departments and ambulances, simula-
tion of traffic lights, pattern recognition and urban planing.

The formulation and solution of problems in power systems,
social, behavioral and envirommental sbiences in many cases
lead to large sparse systems [29 ]i If such systems are non
linear, then their linearization - often thé first step towards
the solution - will result in still larger sparse systems.

In the present work we will confine ourselves to the appli=-

cation of sparse matrix techniques to load flow problem.



CHAPTER = II

LOAD FLOV PROBIEM

The @erdl load flow prablem can be sub divided into

tWvo sub prdblems namely:

1, The formulation of a suitable'ma'thematical network model,
The modlel must describe adequately the relationships between
voltages' and povers in the interconnected system,

2. The application of numerical method for a solution, The
solution must satisfy Kirchoff's laws, i.e., the algebraic
sum of all flows at a bus must equal zero, and the algebraic
sum of all voltages in a loop must equal 2€L0, Other con=
straints placed on the solutiun are: the capabilit_y limits |
of reactive poWver sources, the tap setting range of -_1;r‘ans-
formers as well as specified net inter changé between
individual operating systems,

2,1 Network Model Formulation

The first step in any analysis of an electri.c energy
system must be the formulation of a suitable network model,
Such a model should relate a selected set of network voltages
to another selected set of network currents or povers.

The networks that we shall be concerned with in aur work
are very large, containing ofﬁen many hundreds, perhgps thou-
sands, ©of individual network elements, and when we combine
these individual elements to form the overall s ystem model,

we are facted with the need of performing tens of thousands of ele=-



mentary algebraic operations,

As load flow studies an invarisbly carried out on a
digital computer, so there is a need to develop network ass-
embly methods that are systemaic and .smenable to computer use.
The tabular nature of matrices makes them particularly well
adopted to digital computer programming., 4Also, the methods
should possess flexibility with regard to network changes,

If we wish to perform investigations of the effects of certain
localized network changes, we should be able to do so with a
minimum of computational effort,

A network matrix equation provides a convenient mathema-
tical model for a digital computer solution, The elements of
a network matrix depend on the selection of the independent
variables, which.can be either currents or.voltages. Corres~
pondingly, the elements of the network matrix will be im@gdances
or admittances,

The electrical characteristics of the individual network
components can be presented conveniently in the form of é pri-
mitive network matrix, This matrix, while adequately describing
the characteristics of each component, does mot provide any
information pertaining to the network commections. It is
necessary, theréfore, to transform the primitive network matrix
into a network matrix that describes the performance of the
interconnected network,

The form of the network mabrix used in the performance

equation depends on the frame of reference, namely, bus or loop.
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In the bus frame of reference the variables are the nodal
voltages and nodal currents. In the loup frame of reference
the variables are loop voltagés and loop currents.

Generally the bus admittance matrix is chosen to repre-
sent the network for carrying out load flow studies because
of its easy formulation, and alteration and its sparse
nature.(25) The bus admittance matrix is a very sparse
matrix and the degree of sparsity for larger systems may be
in excess of 95 percent (31). We have also chosen in our
method £he bus frame of reference in the admittance form,

2,2 Solution Technigues

The follwoing table gives a brief summary of some of
the main types of load flow solutions currxently in application,

and the requirements imposed on the numerical precesses(l),

Load Flow Calculations = Iypes and - Requirements

Types Oof Solution

Accurate Approximate
Unadjusted Adjusted

Off=-1line On=line
Singlé case Maltiple cases

Properties required of Load-Flow Solution Method.

High speed especially fors Large systmes real
time applications,
multiple cases

interactive applicatians
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Low storage Especially for: Large systems Camputer with
small core storage availability
Reliability Especially for: ill-conditioned problems outage
studies real-time applications
Versality Ability to handle conventional
and special features (adjuste
ments, representation of power
system apperatus); suitability

for incorporation into more

=

complicated processes.
Simplicity Ease (and cost) of coding,
maintRining, and enhancing
the algorithm and computer
program based on it,

Prior to and for same time after the advent of digital
camputers, load=flow solutions were obtained using network
analyzers., The first really practical automatic digital
solution methods appeared in literature in 1956 and sub-
sequently (11-13),

These Y-matrix iterative methods were well suited to the
early generations of computers, since they 'require minimal
campiiter storage, Although they perform satisfactorily on
many problems, they converge slowly, and too often not at

all. The incentive to over-come this deficiency 1led
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to the development of Z-matrix methods (3-5) which converge
more reliably but sacrifice some of the advantages Of Y-
matrix iterative methods, notably storsge and speed when
applied t» large aystems, «round the same time, the Newton-
Raphson aethod was shown to have very paverful convergence
properties (6~7), but was computationally uncompetative .
Major break through in power-system network computation came
in the mid = 1960's, with the development by Tinney and
others of very efficient sparsity programmed ordered elimi-
nation (8), e of its earliest succes was in dranatically
improving the computing speed‘énd storage requirements of
Newton's method, which has now come to be widely regarded as
the preeminent general purpose load flow approach (8) and
has been adopted by much of industry. (1)

26301 Jtimal Load Flow

An optimal load=-flow calculation optimizes the active-
and reactive-power dispatch of a system, including as cbn-
trol wvariables those single-criterion-control parameters
that are adjusted during an ordinary load flow solution.
All the relevant static limit constraints on the system
operation are cenforced.,

Some practical approaches to this problem, including
the now classical Dommel and Tinpny method (9), adjust the
‘control variables in sowe optimum-seeking manner in between

conventional load flow solutions, Polar coordinate load-=flow
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formulations are the most natural choice for the optimi.-

zation apolication, since voltage magnitudes in particular
are then explicitly @vailable as variables for control and limit
enforcement purposes.
2+3.2 Didkopti¢c Technidues

Prior to the advent of sparsity techniGues diakoptic
dpproach was used to be applied for solving large problems.

The basic idea@ of didkoptics is to solve a large system
by a bredking or tearing it apart into smaller subsystems; to
first solve the individual parts, and then to combine and modi-
fy the solutions of the torn parts to yield the solutions of
the origional untorn problem. The result of the procedure is
identical to one that would have been obt?ined if the system
had been solved as one (10), |

The uses of diskoptics are at ledst two fold: In the first
application, larger systems can be solved efficienthkyby the use
of diakoptics on a given computer than would otherxrwise be po-
ssible by processing the torm parts through the computér serially.
The second application employs a muitiplicity of computers which
essentially operate in paralle}, and thus provide more speed of
execution than by the use of 2 single computer. The computer
can be physically next to edch otﬁer, thus forming a cluster of
computers, or they can be miles apart. So we can expect larger
problems to be solved with greater speeds by the use of diagkptl cs

than by solving the problem by conventiional methods.
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2,3 Network Performance Equations
The equastion describing the performance of the network
of a pover system using the bus frame of reference in the

admittance form is

- - : (L
I = YBUS EBUS

BUS
The bus impedance and admittance matrices can be formed
for the network including the ground bus, The elements of
the matriqes, then, will include the effects of shunt elements
to ground such as static capacitors and reactors,_line chgﬁg-
ing, and shunt elements of transformer eqpivalents. When the
ground bus is included and selected as the reference. node,
the bus voltage’in the above network performance equation are
measured with respect to ground.

2,3.1 Bus Loading Equations

The real and reactive pover at any bus p is

*»
P . - . '
By JQp Ep I, (2)

and the current is
P
I = P jqp :
P (3)
*
E
&

Where Ip is positive when flowing into the system,
In the formulation of the network equation, if the shunt
elments to ground are included in the parameter matrix, then

equation (3) is the total current at the bus,

243.2 Line Flow Equations
After the interative solution of bus Voltages is come

Pleted, line flows can be calculated. The current at bus P

in the line connecting bus p to q is
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Y
E_ -E)Y +E_ _Pd (4)

1pg = Ep = BQ¥pq * % -
where qu,= line admittance

Yl;q = total line charging admittance
B Y
P Pd . current contribution at bus p due to line

2
charging

The pover flow, real and reactive, is

*

P 3 A = E .
pq = 19%q = plpq (5)
[}
Y
or . . pPa
P =3 =E (E_ -E )Y <wEE (6)
pq = I%q = 5B ~ EdYpq * B

Where at bus p the real pover flos from bus p to g is qu

and the reactive is qu. Similarly, at bus g the power

flow from q to p is .

Y .
P Q E (E EJ)Y._ _+ EE pd (7
@ "V =Fq%q " ' Ypqg * Pq'q 2

The power 10ss in line p-q is the algebraic sum of the

power flows determined from equations (6) and (7).,

204 Solution Methods

2.4.1 Gauss lterative Method Using YBUS

The solution of the load flow problem is initiated by
assuming voitages for allbuses except the slack bus, where

the voltage is specified and remains figed, Then, currents
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are calculated for all buses except the slack bus s from

the bus loading equation

Pp" jQp P = 1.2 eeescg I (8)
IP = * P As
E
P

where n is the number of buses in the network, The per=

formance of the network can be dbtained from the equation

Igys — Ysus Fmus | (9)

Selecting the ground as the reference bus, a set of n =1

simultaneous equations can be written in the form

n

1
— ) o
E - E p = 1 “ XX RN J n (10)
P YEIp‘z—quq; ’
PP ( a=1 P ESs
e

The bus currents calculated from equation (8), the slack
bus voltage, and the estimated bus voltage are substituted
into equation (10) to obtain a new. set of bus voltages,
These new voltages are used in equation (8) to recalculate
bus currents for a subsequent selution of equation (10).
The process is continued util changes in all bus wvoltages
are neglible., After the voltagé solution has been obtained,
the pover at the slack bus and line flows can be calculated,

The network equation (10) and the bus loading equation
(8) can be combined to obtain (14)
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(p Q n )
1 ( P - J P - = ecoe
e = E . Z ququ p =1,2, n (11)
Y
P P g=1 ; phe
P

which involves only bus voltages as variables. Formula-
ting the load flow problem in this manner results in a set
of nonlinear equations that can be solved by an iterative
calcukation,

The iterative process must continue until the magnitude
of the change of the bus voltage between two consecutive
iterations is less than a certain tolerance level  for all
bus voltages.

Computation of Slack Bus Power

This step is simple., #5fter the iterations have conver-
ged, , substitute our computed voltages (plus the assumed

voltages of slack bus) in equation 2 and dbtain directly the

al ack bus pover.

Computation of Line Flows

The final step in the load flow analysis is the cowo-
putation of the load flows on the various transmission lines .
network, using the equations already described.

2,4,2 Gauss=Seidel Iterative Method Using YBUS

In this method the new calculated voltage immediately
replaces the old value and is used in the solution of the

subsequent equations., The flow diagram is shown in Appendix,
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2.4.3 Newton-Raphson Method Using YBUS

The load flow problem can be solved by the Newton=-
Raphson method using a set of nonlinear equations to express
the specified real and reactive povers in terms of bus vol=-
tages (7)., What follows is the description of the Newton-
Raphson method using polar coordinates.

The power at bus p is

*
- - E
Pp J Qp olp (14)

Substituting from the network performance equation (1) for

Ip in (14)
= R .
P -3 = EBE < Y_ E '
p =% =B S Yoy (15)
g=1
: Ys’? | I e-x 9\“’
E = =
Since E IEpl & and Yo qul |
Equation (15) becomes |
n _y (BraT Sy - §v)
P = jQ EEY
p =38 =5 B EFpgl € (16)
g=1
-8 » ;
Sinceé*te"“’hgr 3) cos (fpq 1-‘5?..%) - j sin (epq «tc{) ...6(‘1), the

real and imagimary components of pover are

] .
P, = Z |EpE-quql cos (qu +é;> -Sq)
g=1 (17)

n
Qp = % |Eququ|sin (epq ""{) -gq ) P =1,2,,.,n=1
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(assuming nth bus as the reference bus)
This formulation results in a set of nonlinear simu-
lganeous equations, two for each bus of the system, The

real and reactive povers Pp and Qp are knovn and the real

and imaginary components of voltage e, and fp are unknown

for all buses except the slack bus, where the voltage is
specified and remains fixed., Thus there are 2{n - 1) equa-
tions to be solved for a load flow solution.

The Newton-Rzgphson method requires that a set of linear
equations be formed expressing the relationship between the
changes in real and reactive povers and the components of

bus voltages., Expressing in the matrix form

AP Jl JZ A&

(18)

1"

AIE|
agQ J3 J4

The elements of the Jacdbian are calculated from

equations (17) and are

For le \
BPP | 5

= EEY i (5} -§ 1
— Pqqu Sln(pq*p q) q 0P
o8

q
n (19)

'pr Qe

= |l E Y i 6 Y
— 2 pqpqlsz.n(pq+p-<é)
BcSp qa=1

or e
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For st
DPP S
— g - Y g8 (6 »d &)
> 1B Yy 1 808 (g ¥ =& a#p
E
« (20)
oP n
— ‘ ST
= E Y e +8§ ~3)
BlEI-ZlEpYPp|cosepp+ 4_' qqucos (pq b =8
p' =l
a#p
For J3z
aop
— T B E 6 + & - &
]Lp quq|COS ( 2q > q) q AP
08q
(21)
29 n :
p = N -
= >__ |Eququl cos (qu *s Sq)
chp =1
AP
For J4:
BQP
—_— = B i & & 4
‘ IPqulsm(pq b =) akvp
'c)lqu
(22)
3] Qp n
= 21E © , B +8 =&)
3 E ] 21 prpl sin op ¥ ; lEquqlsin. ‘pq‘.’p 6q
P

P
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2,4.4. Voltage Controlled Buses

A modification of, or deviation from, the normal
computational procedures for the solution of the load
flow problem is required to take into account voltage
| controlled buses, At these buses the voltage magnitude
and the real power are specified,

In the Gauss and Gauss=-Seidel methods using YBUS'
the reactive power at a voltage’ controlled bus p must
be calculated before proceeding with the calculatimn

of voltage at that bus. Separating the real and imaginary

parts of the bus pover equation
e D
P - =B Y E
p jQP p Z Pq q
o g=l

the reactive bus power is

‘ n
2 2 <=
= B B - f G
% =% %t ot 2, Bl%%qYfed ~p g
a#p

where ep and fp are t he components of voltage at bus p.

The values of e and fp must satisfy the relation
2 2

' 2
e, + fp = (Epsched_uled) (24)

in order to calculate the reactive bus power required to
provide 1_:he scheduled bus voltage, The present estimates

k

. k . : :
of ep and fp mist be adjusted, therefore, to satisfy equa-

ation (24)

The phase angle of the estimated bus voli:ag’e is
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k k
‘_Sp = arctan fp

k
e
P
Assuming that the angles of the estimated and scheduled

k
voltages are equal, then adjusted estimates for ep are

X (new) =|E_|(Scheduled) Cos& ®
p P _ P (23)

f]; (new) ={E1p| (schedulfed) sin Spk‘

Substituting e K

o (new) and fpk (new) in (equation (23),

the reactive pcwef ka is obtained and is used with E k

ke
(new) for calculating the new voltage estimate E pl (new)

for calculating the new voltage estimate
In actual practice the limits of reactive pover source
at the voltage controlled bus must be taken into account.

If the calculated ka exceeds the maximum capability Qp

(max) of the source the maximum value is taken as the
reactive pover at that bus, If the calculated value is

less than minimum ¢apability Qp(min) the minimuam value is

used., In either case it is impossible to obtain a solution

With t he specified scheduled voltaée and therfore E];(new)

k+l

cannot be used in the calcultation of E



20
In the Newton-Raphson method the equations for a

voltage controlled bus p are (in polar coordinates)

n
< |E_E @ ¢& =&
P =Z lqupqmos( > q)

P Pq (25)
q=1
and
2 2
= E 26
IEP I 5 €26)

where equation (26) replaces the equation for the reactive
pover, The matrix equation relating the changes in bus
povers and the square of voltage magnitudes to changes in

voltage magnitude and phase angle is

AS
AP Iy J,
“ ’3 "4 AlE)
2
| BE. | JIg Je

| The élements of the submatrices Jl,Jz,J3 and J4 are calculated

as explained in section (2,4,3), From equation. (25) both off
diagonal & diagonal elements of J5 are zero, The off diagonal

elements of J6 are zero as

2
E‘
al

it
o

27
S| qip (27)
q
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and diagonal elements of J,. are

6
) lEpl2

= 2 E (28)
‘aiEpl P

The change in the square of the voltage magnitude at

k|2 2 F 2
= (E - B :
bus p is AEP | ( plscheduled) ] (29)

If sufficient reactive capability is not available
to hold the desired magintude of bus voltage the reactive

powver must be fixed at a limit. In this case the voltéag

cannot be maintained and the solution is not the desired

one,
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CHAPTER - ITI

SPARSITY TECHNIQUES

3.1 Introduction

In sparse matrix techniques, only the nonzero elements
of the matrix are stored and precessed which will not only
reduce the memory rquirement but also reduce substantial
amount of time, as operations inwolving zeros are not per-
formed, Nearly all the schemes make use of two storage com-
ponents. |
a) A fecility for storing either the non-zero elements or an
aear of the matrix which includes a1l of the non-zero ele-
ments. This usually takes the form of a one-dimensional array
and will be called the primary array.

b) A means of recognizing which elements of the matrix are
stored in the primary array. This usually takes the form Qf
one or more one-dimensional arrays of integer identifiers,
which will be called the secondary store. .

3,2 Binary Tdentification

A novel scheme which makes use of the binary nature of
computer storage is to record the pattern of non-zero elements
of the matrix as the binary digits of secondary array ele-

ments. The matrix

0 0 0 0 0
A= 0 0 2,67 0 3.2 3.1
4
| -1.25 0.29 0 0 2.3

has a pattern of non-zero elements indicated by the binary

sequence
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row 1 row 2 row 3 -

00000 00101 J]1001
Hence this matrix could be stored by means of a primary
array containing the five non-zero elements (2.67 3.12 -1.25
0,29 2,31) and a secondary store containing the binary se-
quency could be held in a word with fifteen or more bits,
however, for larger matrices a number of words would be re-
quired.

If an X n matrix has r as the ratio of the number of
non-zero elements to total elements and if two words each
of Ybits are required to store each non-zero element, then
the primary array will occupy 2Zmnr words and the secondary
array will occupy approximately mn/ words. Since 2mn words
would be required to store the matrix in the conventional
way, the storage compaction of the binary identification

- scheme may be expressed as the ratio ¢ where

mn
2nne & 2mnr + ——
Y 3.2
giving
1
c¥r ¢ —
2r 343

This storage scheme differs from other sparse schemes in
that some storage space (a single bit in the secondary
store) is allocated to every zero element., It is therefore

dess efficient for very sparse matrices than schemes which

do not contain any storage allocation associated with'zero

elements, Moreover, the main drawback is the difficulty

’
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of implementing matriX operatioris with matrices stored in
this way. Normally such implementations would produce much
less efficient programs than could be achieved by using other
sparse storage schemes.

3.3 Random Packing

Every non-zero element entered into the primary array
may be identified by specifying its row and column numbers
in the corresponding locations of two secondary arrays.
Since each element is individually identified it is possible
to store them in a random order. Thus matrix (3.1) could
be represehted by

Real array A

]

(0629 3,12 =1,25 2,67 2,31 0 = =),
(3 2 3 2 3 0=-)(3.25)
Integer arrayJa = ( 2 5 1 3 5 0- =)

AN

Integer arrayla

One advantage of random packing is that extra non-zero ele-
ments can be added to the matrix by inserting them at the end
of the list without disturbing the other items. It is often
convenient to have a null entry in a secondary array to indi-
cate temination of the list.

3.4 Systematic Packing

If the elements of a sparse matrix have been read in or
constructed in a systematic order or have been gorted into a
systematic order there is no need to adopt both row and column
indices for each element, For row-wise packing it is the row
indices which may be dispensed with, except insofar as it is

necessary to specify where each row begins,



25

3.,4,1, The Use of Row aAddress

The address of the first non-zero element in each row
may be specified in a separate integer array. For example,
matrix 3.1 could be represented by

Real array A (2,67 3,12 =1.25 0,29 2.31)

(3 5 1 2 5 ) (3.5)
(1 1 3 6)

it

i}

Integer arrayJi

Integer arraylSTART

The array of row addresses ISTART has been constructed so that
the number of non-zero elements in row i is ISTART(1+1)-ISTART
(1), hence for a matrix with m rows, ISTART will contain m+l
entries.

3.4,2 The Use of Dumnmy Elements

Either in place of row addresses, or as an adjunct to them
dummy elements may be included to dndicate the start of each
row and the end of the matrix. Several formats are possible
for the dummy element and the corresponding entry in the co-
lumn index array. For instance, a zero entry in the array JA
could mérk the presence of a dumﬁy element and the dumny ele-
ment itself could specify the row number (or be zero to indicate
the end of the matrix)., Hence matrix (3.1) would appear as

Real arrayA = 22; 2,67 3,12 23; -1.25 0.29 2.31 Eog (3.6)
Integer arrayJa= (0) 3 5 (0) 1 2 5 (0)
A ternatively, the row number could be specified in the integer
array and distinguished from column. numbers by a change of

sign, In this case the dummy element itself would not be used,
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Matrix (3.1) would appear as

Real arrayA = (x) 2.67 3,12 (x) -1.25 0.29 2,31 %xg (3.7)

Integer arrayJa= (-2) 3 5 (=3) 1 2 5 (0)
In some cases(e.g. for the sparse matrix multiplication of
section 3, ) it is easier to program matrix operations if the
integer identifier for a dummy element is larger rather than
smaller than the column indices. This may be achieved by making
the identifier equal to the row number plus a constant, the
constant being larger than the largest column number. In a
similar way it may be convenient to use an even larger number
to indicate the end of the matrix. Thus, matrix (3.1) would
appear as
Real arrayd = X ) 2,67 3.12 X ) =1.25 0.29 2.3l
Integer arayJA = (10002 ) 3 5 ( 10003 3 | 1 > 5

o |
( 99999 (3.8)

A further alternative use for the dummy element is to speci-
fy in the column index position the number of elements in the
next row. If a dummy element is included for each row even if
it is null, then there is no need to record the row number.

Thus matrix (3.2) could be stored as
Real armayA  =(x x% 2.67 3.12 (x) -1.25 0.29 2,31} (3.5)
s

The number of rows in the matrix will need to be specified

Integer arrayJa=(0 2 1. 2 5

el sewhere,

In any of the dummy element schemes shown above except the
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first, the dummy elements in the real array may be omitted
to save storage space., However, if this is done the addresses
of the elements and their column will not coincide.

3.5 Compound Identifiers

In the random packing schme (3.5) it &s possible to re=
duce the storage requirement by combining the two indices for
each element so that they can be held in one integer store.

A suitable compound identifier would be m + j where n is ean
integer equal to or greater than the total number of columns
in the matrix. In a similar way it is possible to avoid the
use of dummy elements for systematic packing by using a com-
pound identifier for the first element of each row. For ex-
ample, matrix (3.1) could be represented by
Real arrayi = (2,67 3,12 =1.75 0.29 2,31 x ) »
Integer arrayJA = (2003 5 3001 2 5 99999 ) (3.2
However, unless compound identification ylelds necessary or
highly desirable storage space savings, it should not be used
because
(a) extra progrem will nearly always be required to interpret
the compound identifiers and
(b) it must not be used for matrices whose orders are so large

that overflow of the integer register would result.

3.641s Necessity of Linked Storage for Matrix Inversion

The schemes so far described cemnot be used when matrix
inversion is required as in the case of Newton-Raphson method

for solving the simultaneous equations, These simultaneous
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equations can be solved by direct matrix inversion. Although
these methods are fairly easy to program, they cannot, however
exploit, sparsity and unfortunately produce a full inverse
matrix for large problems, for storsge is therefore extremely
large and the methods ape very éneffiéient;

The alternative direct methods to matrix inversion are
the factorization technigues based on Gauss eliminatione
These methods sparsity can be exploited and, with a suitable
ordering technique, a direct solution can be obtained with a
minimum amount of storage and computetion time, Factorization
methods are, in themselves, relatively easy to program, since
the technique of each method is based solely on the Gauss
elimination process. The simplicity of these methods, however,
is upset when the coefficient matrix as a whole is not stored,
but only the non zero elements in a compact form. ]

The previously described storage schemes can be adopted if
the number of non zero elements in one column did not vary in
the course of computation. However during the factorization
process new non zero elements amefontinually big generated.
Also, elements which.were previously non-zero, may become 2ero,
However by using a suitable ordering technique, the number of new
non=-zero elements produced during factorization can be minimized.
It is evident that the compacting and indexing schemes must be
capable of implementing e€ficiently these continmuous changes
during factorization by inca-porating the new non-zero ele-~

ments in store and recording the available storage space,
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In order to deal with this problem of continually
changing of non zero terms in each column and row of the
reduced matrix, a linked list technique becomes essential
which is described in the next section,

3.6.2 Linked List Technioue

Suppose we have stored a list of numbers in an array

defined as VALUE,

Location 1 2 3 4 5 6

VALUE 30,5 50,9 26,3 45,7 =~ -

There are many sequences in which the same list of nume
bers can be stored. Suppose, for instance, that these num-
bers are to be stored in ascending numerical order. One way
of achieving this requirement is to change the numerical
value of the elements in each location., Doing this, the
new numbers in the array VALUE would bes

Location -1 2 3 4 5 6

VALUE 26,3 30,5 45,7 50,9 = =

So far this process is very straighforward, even ifa
re-ordering routine has to be included in the program to
arrange the numbers in a certain preferred sequence, Suppose
now that it is necessary to add a new number to the list, If
the new number can lﬁe' added to the end of the list then the
process is very simple. The size of the list is increased by
one and the new number is inserted in the extra available
position, If, havever, the number is to be inserted in the

middle of the existing list, then the process is more complie

cated,
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Let the new number to be added be 28,2 and the new
1ist to be kept in an ascending numerical order. One way
of achieving this is to move the last value one position
dovn the list, move the last but one value to the position
previously occupied by the last value and continue this
process until the new value can be inserted into the gppro-
priate position, Using this method, the new list with the
value 28,2 added becomess

Location 1 2 3 4 5 6

VALUE 2643 2842 30,5 45,7 50,9 -
For a long list, this process of inserting new in
a particular position within an existing list can be
conputationally very time-consuming. # more efficient method
is to use a technique known as a linked list. Linked lists
enable the numerical calues of the numbers ﬁ.o.bé stored in
any order, the desired sequence of the numbers being deter=-
mined by the linking techniqueg, This linking technique
consists of allocating a storage location for the numeri-

cal value of the next item., This associated' address is shavn
for one location below,

Numerical
value of

an item

addregs of next item

A 0 if more items to follow

‘ = 0 1f present item is last itme
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This linking technique requires the introduction of
a Mew array which may be called LNXT and in which the address
of the next required number in the list is stored. Using
such an array, the list of the numbers in the original

sequence is:

*
Location 1 /.2 /,3 /4 5 6
VALUE 30.5/ 50.9/26.3/ 45,7 v -
| LNXT 2 3 4 "0

In addition to the above list, it is necessary to

record the address of the first number in the list. This
can bé stored in practice as a single integer variable, but
for simplicity in the above example this element is marked
by an asterisk.

To change the order of the list into ascending numeri-
cal values, the sequence of numbers in the array VALUE can
be left undistrubed and the order modified by changing the
addresses in the array mer.* This gives: |

Location 1 2 3 4 5 6
VALUE 30,5 5009 26.3 45.7 = -
LNXT 4 0 1 2

1f now the number 28,2 is to be added in the list and
the sequence of numbers is to remain in ascending numerical
order, it is sufficient to add this new mumber to the end

of the existing list and to change the addresses in the array
LNXT, This gives:
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="
Location 1 2 3 4 5 6
LNXT 4 o 5 2 1

Using the array LNXT to re-~arrange the sequence of
numbers in order to accommodate a new number within the
list is computatiocnally considerably more efficient than
the shuffling process that had to be performed with the
numbers -in the aray VAIWUE in the previous technique, Pre-
viously all the numbers greater than the new value had to
be shifted sequentially, which, with long lists, could
invblve a considerable number of operatioms. In the present
technique only one value in the original LNXT has to be
changed and one new value added. The merits of this scheme
are therefore clearly evident, It does, haowever, require
additional storage and this must be balanced against the
reduced computation time,

3.643 Technigues Adopted in the Presgent Work

In our work we have adopted the systematic packing
technique of storing the matrices., In the case of Gauss-
Seidel method only the diagonal & upper traingular non gzero
elements are stored and a five digit index number has been
given for each of the diagonal elements viz., 10001 for the
first diagonal element, 10002 for the second diagonal ele-
ment and so on, An index number of 99999 has been given

to the last diagonal element which is also the last element

of the matrix,



33

In the case of Newton-Raphson method the full admittance
matrix 1s stored in row wise systematic manner and a dummy
element is inserted at the end of each rawv and a five digit
index number has been given i,e., an index number of 10001
to indicate the end of first raw, 10002 to indicate the end
of second row and s0 on end an index nurber of 99999 has
been given to indicete the end of the last raw and also
the matrix.

In the case of Newton-Raphson method, the matrix has
been packed in both row and columm wise systematic manner
and in addition the linked list technique has been adcp-

ted for inversion and post multiplication with the vector,
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CHAPTER 1V

MATRIX FACTORIZATI N

4.1 Introduction

The analysis of a large system using the network approach
frequently necessitates the solution of hundreds and may be
thousands of simulateneous eguations having the form AX = b,
Furthermore, several solutions are often required with the same
coefficient matrix A but with a series of diffel_:ent b vectors,
Such equations can be solved using any of the conventional and
elementary methods., The solution 8lso can be obtained by direct
matrix inversion, but this requires n2 storage locations for ﬁhe

coefficients and about n3

" arithmetic operations for the solution
of n simulateneous linear equations (28), ZEven if the matrix
'A' is very sparse, its inverse is camwpletely full and therefore
this method is normally @ very inefficient technique for solv-
ing a large number of equations.

We have already seen in chapter 3,6,1 the alternative to
direct matrix inversion are the factorization technigues based
on Gauss elemination, These are many possible facorization
methods and adaptations, We will describe scme of the important
methods which have been developed over the past.years.

4,2 Product Fom. of Inverse '

In the product fom of inverse the matrix A+ is not

calculated explicitly but is cbtained by multiplying n factor

matrices, i, Qo0
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Each transformation wmatrix T, (1 =1,2/0000eceesen)
ia unit matrix except for its i-~th column, Therefpre, in
digital computer solutions, only this i=-th colum need be
stored; all other elements of the matrix are known imnpli-
city. In general sparse network prablems, the i~th cola.n
wi Ti wili also contain a large proportion of zero elements,

4,3 Traingulation of Matrices

spnother effective and wmost widely used method of
manipulating coefficient matrices to éolve simulateneous
linear equations is that associated with traingulation of
matrices Or trainqular decomvosition, These wmethods factorise
the coefficient matrix into thei; trazingular form on which
several important and efficient modern techniques are based.
The two .aethods which are discussed in this work are gener-
rally know as LH (or sonetimes IU) and IDH (or LDU) methods.

4,3,1 I H Facgorization

The LH method 0f factorization consists Of expressing
the coefficient matrix 2 as the product of two factor mate-
rices such that

A = LH
<here L = a lower triangular matrix

| H = a higher (or upper) triangular .atrix

which has unity elements on its diagnal.
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443,2 LDH Factorization

In the case of LH factorization, the elements in the
-"_f,"}:@.};\.colum of ‘L*are different to those in the i-th row

of H, This means that both L and H must be known expli-
citly and both traingﬁalr matrices must be stored. This
problem can be alleviated in the case of symmtrical co-
efficient matrix {\ by decomposing further the lower tri-
angular matrix L:’ This method generally known as LDH
factorization, expresses the original coefficient matrix
A as a product of three factor matrices such that

A =1'DH

Where L = a }lover triangular matrix which has unity
elements on its diagonal
H = a higher (or upper) traingular matrix which has
unity elements on its diagonal
D = a diagonal matrix which has zero off-diagonal
elements
4,4 Bi-factorization

This method hés been adopted in the preéent work
for obtaining the inverse in the case of Newton=-Raphson
method. This method is described in detail in this
section,

The bi-factorization method should be used for
sparse” coefficient matrices that have non zero diagonal
terms and are either strictly symmetric or asymmetric in
element value but with a symmetric sparsity structure,

Furthermore, it is assumed for reagons of round-off error
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that the matrix is either symmetric and positive definite

or is diagonally dominat (we say that a matrix is diagonally
dominat by rons if each diagonal element is not less than
the sum of the moduli of the elements in its row; a similar
definition holds for diagonal dominance by columns),

In order to reduce camputing time and to save storage,
an optimally ordered pivotal sequence as well as a packed
storage scheme and special programming techniques are essen=-
tial,

4,4.1 Bagsic Computational Algorithm
A get of n linear equations can be expreséed in matrix
notation as |
Ax = b (1)
where A is a nonesingular n x n coefficient matrix
x 1s a colurm vector of the n unknoWns
and b is a known vector with at least one non-~zerd

element,

In many pratical applications the set of equations
is to be solved for a series of different right-hand sides
whereas A remains unchanged, The solution vector may
then be computed directly from

x = A~lp, (2)

From the pdint of view of storage regquirements and
computation time it is not efficient to compute the in-
verse of A explicitly, This is particularly true for spa« se

‘matrices since it is unusual for their inverses to be other
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than full. The bi=factorization methods i1s based on the

equation

(n) I_'(n--l)

. (2) (1) (D) p(2) pn=1) o(n)

=I (3)

eee L

where L are left-hand factor matrices,

R are right=hand factor matrices
and I is the unity matrix,
Equation (3) can be modified by simple transformations to

a=1 _ p(1)(2) ...a(n“l)a(") LR yn-1) . (2);(1) (4)

Equation (4) shows that the inverse of A, in contrast
to the familiar product form of the inverse, can also be
expressed by a multiple product of 2 n factor matrices.

In order to determine the factor matrices L and R the
follwoing sequence of intermediate matrices is introduced in

egquation (3)s
al0) . a

a0 L) 5 (0 ()

a2 (2) At p(2)

LA A RN R X NN ENFE R NENE NN N NI

ald) _ (@) A= o

(AN ENNEF R ENNERXNERNENRENRY N

aln) I"(n) aln=1) R‘_(n)

This representation aims at transforming the initial
coefficient matrix A = A.(o) step by step to the unity matrix
by forming the successive inmher triple products L(j)A(j'l)R(j) \

-
.

(j B 1l escacecenl)e
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The following general rules are used for computing
ald) R L(j) and R(j) from the elements of A(J"l)z
&
Reduced matrix A :

a (3) = 1;

() -0 o 3 oo
33 '

qn T V7
(j~1) (j=1)
(j=-1)
%33
where j is the pivotal index and for i, k = (j + 1) ..n.

(j)

Factor mgtrices L s

(3)

(j=1)
k- T %k T

e

The left-hand factor matrices L(j) are very sparse and

differ from the unity matrix in only column j:

e
g

1 0

()

n,Jj




where ljj(j) =1 aj{(j-l)

(5 _ _ V=0 (§-1)
and lijv = aJ. ajj
(j)a

i = (j=1)...n

Factor matrices R

The right~hand factor matrices R(J) are also very-sparse

and differ from the unity matrix in only rowj:

i
‘ () (i &) 0] :
0O ¢ o0 ¢ 01 rjpj*‘l _rj*,z Y:j;\‘ ", !
1 I
rUIL
1 ﬁ
. |
!
1
- ; (j=1) -
where rjk(J) = = ajk J ajj(J'l) k = (j*1) eeeen

Note that the diagonal terymunlike that of L(j), is equal

to 1 and thus R(n) = I
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4.4,2 Symmetrical Matrix &

For a symmetrical matrix A we have
(i=1) _ (j-1)
%k = %ka
and thus rjk(j) liéj) for i =k £ j.

This means that because of symmetry the jth row of R(j)
is identical to the jth column of L(j), except for the
diagonal term, Therefore it is unnecessary to perform
any operations to the right of the diagonal, thus saving
about half of the reduction cperationé.

4,43 Asgymmetrical Matrix A

In'the case of an asymmetrical matrix A it is more advan=
tageous from the computational p®int of view to further
decompose each left-hand factor matrix L into a modified

matrix C and a diagonal matrix D:
(i) o (i) ped)
The disgonal matrix D'J) differs from the unity matrix

in only the jth diagonal term:

(3) (j=1) _ (3)
935 7 =1 3y =1j;

(1)

The modified matrix C differs, like L(j), from the

unity matrix in only column j., This is column

- - ”?
(‘_0_0000 1 Cj + 1, j(J) c‘j +* 2 Q J n' JK}T

(3) _ ..aiju““ = lij(j)ljj(j) i = (j% 1)..n.

-~

where cij
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4,4,4 Sparsity and Optimal Ordering

In case of sparse coefficient matrices, i.e. matrices
with a great number of zeros, significént savings in
storage and computation time can be obtained if a progra-
moing scheme is used which stores and processes only none
zero terms, Moreover, sparsity must be maintained as far
as possible, This can be realised by a sparsity-directed
pivotal selection which is referred to as "optimal order-
ing."

The objective of ptimal ordering is to minimise the
total nimber gf £fill-in terms, &n optimum ordering strategy
was developed by Carpentire and “anal. This strategy, how=-
ever, requires relatively high efforts in additional pro-
gramming and computation time so that in genéral é great
deal of the dbtainable advantages in sparsity get lost
again., -

Thus it is more advantageous to apply the folbwing
strategy which is frequently used in practice, This
strategy yields only a near-optimal ordering sequence.
but requires comparatively little additional computation,
The principle of the strategy is to select at each step
of the refluction process that column as pivot which contains
that fewest number of hbn-zero terms, If more than one
column meets thigs criterion, any one 1s selected, This
scheme requires a current book-keeping of the number of

nm=zero terms in each column or row,
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- 4,4,5 Storege Scheme

In‘order to expnloit the benefits of sparsity, a
packed watrix storage scheme in which only the non-zero
terms are retained is employed. This requires, in addition
t> the natrix élements themselves, tables of indexing
information to identiﬁy the elements and to facilitate
their addressing.

A guitable étorage schéme would be comparatively simple
if the number of non-zero terms in one column did not vary
in the course of comuptation. & difficulty arises, however
because the number of non-zero terms in each coluwmn and row
of the reducéd matrix continually changes. The number of
non-zero teems, on the one hand, ié increased by the £ill-
in terms and, on the other hand, is decreased by the reduc-
tion proceésm For this reason a flexible storage mode is
essential.

‘ne feasible schemne for describing the symuietrical
structure oif a sgrarse matrix and identifying and addressing
its elements in a packed table is described below, This
scheire 1s somewhat different f£or the sywmetrical case
(symmetry in element value) and the asymmetrical case

(asy.nuetry in element value but with a symietric sparsity

structure) .

Symnetrical matrix

The non~zero matrix elements are stored coluinwise in

array Ck, The row indices of the elements in Cs are stored
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in a parallel table ITAG, The accompanying table LNXT

- contains the location of the nact':non-zero element in CE
in ascending order. The entry 0 in LNXT indicates the last
term of a column,

The starting positions of the individual columns
in CE are stored in table LCOL, The table NOZE cntains

the number of non zero elements in each column.

As can be seen from the example, the unused storage
positions of the reserved arrays CE and LNXT also must be
occupied by intial values, The vacant positions of array
CE and the last position of table LNXT must be set zero,
The other yacant posﬁions of LNXT must be numbered conse-
cutively.

Apart from this, the order of the matrix(number of
colums and rows) is stored in N and the first vacant 1o0-
cation in tables CE, ITAG and LNXT must be stored in LF,

Asymmetrical matrix

The "storage mode of an asymmetrical matrix witﬁ a
symnetric pattern of non-zero elements differs from the
symmetrical case in two points, First, the diagonal terms
are stored in a separate table DE, Second, the off-diagonal
terms are stored in both directions, i.e. they are stored
column-wise in CE and, in addition, row-wise in the para-
llel table RE, Because symnetry in structure is assumed,
the table ITAG contains the row indices of the elements
stored in CE as well as the colukm indices of the elements

stored in RE, 1In case that a row or colummn has no off=
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diagonal terms, i.e, it consists only in its diagonal-
term (decoupled system), the respective position in table
LCOL is to be set to zero,

The dual storage of the off-diagonal terms, in the
first instance, might seem to be a waste of memory space,
After having processed the simulétion and ordering sube
routine to be described in the next section, hawever, sach
off-diagonal terms is stored only once, The storage posi-
tions that become vacant in the course of computation are
later utilised to store the fill-in terms, The advantage
of dual storage is that ié avoids use of a search subroutine
and thus accelerates ﬁhe program,

4.,4,6, Programning

Programming is as important as the method itseif.
Qptimal ordering can be determiined during the course of
computation, but it is more efficient to determine it by
simulating the reduction process beforehand, Hence, the
program can be split up into three parts:

l. Simulation and ordering

2, Reduction

3, Direct solution

In accordance with the different storage schemes for
the symoietrical and asymmetrical case the programming is
also somewhat different, Detailed flow charts are given

in Appendix (for asymmetrical case only).
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4,4,7 Simulation and Ordering

The optimal ordering process requires an additional
table NSEQ, This table initially must contain the integer
variaples 1 to n in ascending sequence. At the end of the
simulation process table NSEQ contains the pivotal seguence
as it results from the spplied ordering strategy,
Pivotal search

At ﬂ.;rst, among all columns which have not been pi\)otal
colum b;oore, the colum with the fewest number of non-zero
elements is selected as pﬁvotal column, If more than one
column meets this criterion, the column number in the first
location of table NSEQ is selected,

After having determined the pivotal index, no actual
interchange of columns is carried out,

Instead, only thetwo resﬁective indices within table
NSEQ are interchanged such that the near-qptimallpivotal
sequence is built up step by step.

Indexing and Addressing Modification

All colums the index of which is contained in the
pivotal column, dre compared term by term with the pivotal
column, and their accompanying indexing and addressing in-
formation is altered as follows:

If the processed column contains the pivotal index,
the related matrix term is cancelled.

If any row index of the pivotal column is not contained

in the column under consideration, this index is added to
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the row indices in table ITAG (fill-in terms)., The £fill-
in terms are stored not only in the vacant locations at

the end of tawles, CE, ITAG and LNXT but also in other
locations becoming vacant in the c¢ourse of the simula-
tion process. The next vacant location is always indicated
by LF,

Whenever a term is cancelled or added, the respective
addressing in-formation in LNXT and ILCOL respectively must
be altered apprqpriately, Furthermore, the bookkeeping of
non-zero terms must be updated.

After processing the simulation and ordering subpro-
gram, the tables 1COL, NOZE, NSEQ, ITAG and LNXT no longer
contain the information on the structure of the original
coefficient matrix, but contain instead the structure of
the factor matrices,

4.,4,8, Reduction

The reduction subprogram operates upon the storage
image resulting from the simulation and ordering subpro-
gram, The actual reduction of the coeffickent matrix is
guided by the pivotal sequence contained in table NSEQ,
At each stage of the reduction process only those terms
of the reduced residual matrix with Egp§cripts corresp One
ding to the row indices of the pivotal column have to be
recalculated, For that purpose the corresponding columns are
compared term by term with the pivotal column in much the
same way as in the simulation and ordering subprogram,

Every derived term of the factor matrices is left in
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the position of the corresponding term of the coefficient
matrixe.

In the symmetrical case, at the beginning of each re-
duction step the terms of the povotal column are temporarily
stored in vacant pqsitions of table CE, This permits norma-
lisation of the pivotal column, which means multiplying the
pivotal column by the reciprocal of its diagmnal tem in the
cbnrse of the reduction process,

Intermediate storage of the pivotal column is not nece-
ssary in the asymmetrical case because the pivotal column as
weli_l. as the pivotal row is stored in CE and RE respectively,
and the pivotal column has not to be normalised.

4,4,9, Direct Solution

The given vector must initially be stored in V, Then
it is stepwise transformed to the sélqtion" vector by succes-
sive factor-matrix by-vector multiplications,

After having processed  the direct solution subprogram
Table V contains the solution. »

The total number of arithmetical operations (multipli-
cations and additions) for camputing the direct solutién in
the bi-factorization method is the same as in the triangular ,
decomposition method, Am important advantage of the bi-fac-
torization method, however, 1is realized in programming, be-
cause the symmetric structure of the coefficient matrix can
be completely exploited.,



The bi-factorisation method requires only half as much

indexing information as the triangular decomposition method

unless a search subroutine is applied.

The main characteristics of the bi~factorisation method

and the programuing scheme can be summarised as follows;

(a)

(b)

(c)

(a)

(e)

The method allows repeated solutions for different
right-hand sides without repeating the reduction
Process,

Small memory reqguirements and short computation

time can be realised, because only non-zero matrix
terms are stored and processed, |

The pivotal selection procedure requires only little
additional computation,

Symmnetry can entirely be exploited in programming
for matrices having a symmetric pattern of none

zero terms,

The applied storage and programning scheme does

not require any index renumbering nor rearrange=
ment of matrix terms according to the ascertained

pivotal Sequence,

In this work we have used the bi-factorisatiOn method

for obtaining the solution by Newton-Raphson method., The

Jacobian is symmetric in structure but asymmetric in element

value,

Hence the storage scheme as described for asymmetric

case has been adopted,
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CHAPTER - V

ALG (RITHMS AND FLO¥ CHaRTS

Gsuss-seidel Method
As already explained in the chapter III the ¥Y-Bus has
been packed in the now-wise form and since the Y-Bus is

symmetric, only the upper triangular portion is stored.

6.1 Read the System Data

The data is read in the following manner:

(a) Number of buses, number of lines, number of voltage
controlled buses and number of tgp changing transformers,

(b) Acceleration factor.,

(c) Line numbet, starting bus of the line, ending bus of the

~ line, line impedance in p.u. and half line charging
susceptance in p.u,

(@) Starting bus number, ending bus number, transformer
reactance, transformer tepsetting and transformer number,

(e) Bus number, initial bus voltage (in case of voltage con-
trolled buses the voltage magnitude to be maintained is
assumed as the starting voltage and the phase angle zero),
real and reactive power generation at the bus, real and
reactive power demand at the bus,

(£) Voltage controlled bus number, and magnitude of the vol=-
tage to be maintained at the bus for all the voitage
controlled buses,

(g) Genetator bus number, minimum reactive power limit and

maximum reactive power limit,

176 940
CARAL TAPRARY DUIVERSTTY ©F ROORIG:

Qo b



602
(a)

(b)

(c)

(a)

603

(a)

(b)

(c)

(a)
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Agssembly of Data

From the tap changing transformer data calculate the
equivalent series impedance,

Armange the initisl bus number and ending bus number of
line data such that the smaller bus number is the start-
ing bus and the larger bus number is the ending bus,

Now arrange the data in the ascending order of initial
bus numbers,

In case where there are more than one line with the same
initial bus number arrange the data in the ascending order
of ending bus numbers.

Form Y-Bus

Calculate the dizgonal elements which are the algebric
sum of all admittances incident to a node,

The off diagdnal elements are obtained as the negative
of the admittance connected between the nodes,

Since the data is arranged in the required manner the
elements of the Y-Bus are calculated row wise and also
the location of the c¢olumn is given by the ending bus
number,

Whenever the initial bus number changes the diagonal
element is inserted and appropriate. column number given
as explained previously, i.e. the first diagonal ele=-
ment is given the number 10001, the second diagonal

element, is given the number 10002 and so on,
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(e) If there are no off diagonal elements in the row the
next diagonal element is inserted and appropriate co-
lunn number given, '
(£) The last diagonal element which is also the last ele-
ment of the matrix is a given an index number of 99999,

6.4 Iterative Coqputatién of Voltages

The iterative algorithm used is as per equation 11 of
chapter II, It is necessary to begin the iterations with
an initial guess, and since we know that in a real system
the voltage spread will not be too great, it is cwstomary
to use a "flat voltage start", meaming that we set initially
all voltages except at the voltage controlled buses equal to
the specified slack bus volgage V1 for example, 1 + jO p.u.
In the equation 11 of chapter II quantities pr, ?p,
Qp and qu do n§t change throught the iteration process,

So the equation can be rewritten:

v A sty V)*- ! ép-l VL 2 v )
i PIP) T (2 Bt > k)

PP (p =1 ,"-=p+l )
for P = 2535 ee...en (assuming first bus as reference)

Here to bbtain the summation of the product of ?p v

whi¢h essentially consists of multiplying the each row of
the admittance matrix by the vector of bus voltages. Sys-
tematic row wise packing helps in this process, The lower

triangular elements are built up by scanning the matrix,
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6.5 Voltage Controlled Buses

It is convinient to group all the voltage controlled
buses at one place as it will simplify the programming, The
following conditions must be satified for the voltage con-
trolled buses.

Condition 1 The voltages V must'satisfy, the specified

requirements
Vp = Vp spec

Condition 2 We must under no circumstances violate the
requirement

< Qp< Qp’max s

Qp.' min
The second requirement may be violated if the speci-

fied voltage magnitude Vp spec is either too low or or too

high, We remembéz that the only means of controlling vy
at our disposal is the reactive power Qp and since we a

- priori do not know exactly how much reactice ptwer is need-
ed to reach the specified voltage, it may conceivably happen

that we have specified a YP value beyond the capability

of the Qp source,

The following are steps used for the voltage controlled
buses:
(a) Having identified the bus as a voltage controlled bus, we

imnediately make the temporary voltage magnitude substitu-
tion by the specified voltage but the phase angle is kept

as is
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(b) We now compute the re::-lctive'bus power needed to main-
tain the voltage magnitude specified, This computation
is based upon voltage magnitude specified,

(c) Now we compare the magnitude of the @ computed with the
allowable limits, If the computed 'Q' is within the
limits, it means the voltage can be kept at the speci-
fied value, If the computed 'Q' value is beyond the
'Q' limits, we can check the magnitude of 'Q' for the
the next few iterations, If the 'Q' limits are not
satisfied in the next few iteration also it means the
voltage cannot be maintained at the specified voltage,
In this case the solution is not the desired solution
and we have to raise the 'Q' limits suitably in order
to mainta-in the voltage specified-: _

6.6 Test for Convergence .

The iterative process must continue until the magni-

tude of the change of the bus voltage, ’A. va*lj between

two consecutive iterations is less than a certain tolerance
level for all bus voltages,. We express this in mathe-

matical form as follows:

Vel _ vel gV c
lAVp | = ivp v, | <

In order to do that a dummy variable 'Avmax . 1is

introduced, Whenever we start the bus count, this variable
is reset to zero, Upon completion of the bus count, this

variable tells us the largest IAVPV*]' | value that has been

recorded for any bus,
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At the end of the bus count, should Vmax not fall
below the tolerance value , then a new iteration cycle
is initiated.

6,7 _Cpmputation of Slack Bus Power

After the iterations have converged, we substitute our
computed voltages (plus Vl) into equation (15) of chapter II
to obtain slack bus power,

6.8 Computation of Line Flows

The line flows are calculated using equations (6 & 7)

of chapter II. The flow chart is attached in Appendix

Al2,1.

7.1 Newton=-Raphson Method

These steps of reading and assembly of data are exactly
similar to Gauss=-Seidel method (6.1 & 6.2).

7.2 Formation of Y=Bus

In this method the full Y-Bus is formed and stored.
The Y=Bus is stored in the systematic row-wise manner, TO
indicate the end of the row a dummy element of value 0,0 is
is introduced and a five digit index number given, The end

of the matrix is indicated by an index number of 99999 .,
Y-Bus is formed in exactly the same way as explained

in the previous method. The only change beings:

(a) Whenever the initial bus number changes a dumny ele=

ment of 0,0 is inserted and an appropriate index num-

ber is given,

(b) After the last element of the matrix a dummy element with
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an index number 99999 is inserted.

7.3 Calculation of Jacobian atrix

The jacobian metrix is‘again a sparse matrix which is
symmetric in structure but the values ére asymmetric, The
jacobian is stored in the manner described in chapter IV.

The elements are calcukated as per the formulas
(equation numbers, 19-22 of chapter II), The elements are
also calculated row wiée. The necessary information 1like
the, number of non-zero elements in each row, starting po-
sition of columns, location of next term, sequence of pivotal
indices, and row index of the elements stored ame also cal=-
culated simultaneously. The bus povers are also computed
based on the assumed bus voltages. The elements are calcu-
lated depending whether the bus is a voltage controlled or
load bus,

7.4 Calculation of Voltage Corrections

The difference in cdmputed bus pavers and actual bus
povers is calcu;ated. If the difference is less than a
specified tolerance the iterative process is stopped and
the line flows calculated,

If the difference is more than the specified £olerance,
the changes required in the bus voltage magnitude and phase
angle are calculated by inversion of the jacobian and multi-
plication with the vector of differences of computed and

actual bus powers.

The sub routine INV1 once for all determines the optimum
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pivotal ordering strategy as the structure of the j'a'c‘obian
remains unchanged with iterations,

If the convergenée is not obtained only the new elements
of the jacobian are calculated based on the corrected voltage
magnitude and phase angle in subsequent iterations,

The flow chart for Load flow solution by Newton-Raphson
method is gnclosed in Appendix (A,2,2).
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CHPATER = VI

TEST PROBLEMS AND RESULTS

The problems studied along with the data and results
are appended below:

6.1 Problem No, 1:

A single line diagram of a 5 bus pover system is shown
in Appendex A,2,9, With bus one as the slack, and the remain-
' 'ing buses as ¥oad buses find the load flow solution, The line
data is given in the Table 6.1 and Table 6,2 gives the data
of schedulcd generation and loads at the buses,

Results of the load flow study are given in TableNos,

663, 6.4 and 6,5, Per unit values are on 100 NA base.

Table 6,1

Line Impedance
Between Half of

hneo. Buses  {perumitiperunic  Lane chersing
1 1=2 0,02 0,06 0,030
2 1=2 0,08 0424 0,025
3 2-3 0,06 0,18 0,020
4 2-4 0,06 0.18 0,020
5 2-5 0,04 0412 0,015
6 3-4 0,01 0,03 0,010
7 4-5 0,08 0424 0,025




Table 6,2 ' . 59

Agsumed

Generation Load
Bus No. Bus =
Voltage Megawatts Megavars Megawatts Megavars
1 1,06 + j0O,0 0 0 0 0
2 1,0 + j0.0 40 30 20 10
3 1.0 + jO,0 0 0 45 15
4 1.0 < j0,0 0 0 40 5
5 1,0 %+ jO,0 0 0 60 10
Table 6,3
_Voltage Phaseangle Real Reactive

Bus “agnitude (Deq) Power Pover
1 1,06000 0.,00000 1,2930 -0,0751
2 1,04751 -2.80065 0.2000 0.2000
3 1,02479 -4,98709 -0,4500 -0,1500
4 1.02367 =5,32044 -0,4000 -0,0500
5 1,01802 -6414372 -0,6000 -0,1000
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Ta 6.4
Line Flow
Line SB EB Real Power Reactive Power
1 2 1 -0.8726 0.0619
1 1l 2 0.8866 -0,0864
2 3 1 -0,3945 -0,0300
2 1 3. 0.,4064 0.0113
3 3 2' -0, 2430 -0,0678
3 2 3 '0,2465 23540
4 4 2 -0, 2747 -0,0592
4 2 4 0,2791 10,0295
5 5 2 -0.5369 ~0.0716
5 2 5 0.5482 0,0734
6 4 3 -0,1892 10,0321
6 3 4 10,1895 -0,0519
7 5 4 -0,0632 -0,0284
7 4 5 0.0635 | -0, 0228
Table 6.5
81 ) Acceleration No. of C.P.U. Time
No Method factor iterations (in sec.)
1 Gauss-Seldel 1.0 23 0,31
" 1.2 16 0.27
2 Newton-Raphsen .0 2 0.57
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' 6.2 Problem No, 2:

A single line diagram of & 8 bus pover system is shown
in figure A,2,8, With bus 1 as reference, buses 2,3,4 as
voltage controlled buses and the balance as load buses,
find out the load flow solution, Table 6,6 gives the line
data and Téble 6.7 gives the data of scheduled generation
and loads at the buses,

Also study the effect of varying the acceleration factor
on the number of iterations and c.P.u. time, in the case of
Gauss-Seidel method,

Results of load flow study are given in Table Nos.
6.8, 6.9 and 6.10. \

Table 6,6

Line Impedance

Line Between Line charging
No., Buses R per unit X per unit susceptance (p.u.)

1 1-2 0.010 0,070 _ 0,05 -

2 1-6 0.002 0,010 0.0

3 1=5 0,003 0,300 0.0

4  1-s 0,008 0,065 0.03

) 4=5 0,0035 0,020 0.0

6 3=4 0,0075 0,063 | 0,06

7 B=3 0.0017 0.015 0.0

8 7=3 0,0025 0,023 0.0

9 2=3 0,001 0,081 0.08

10 2=7 0.0032 0,030 0.0
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Contoo.o.onv Table 6.6

11 6=7 ~0,0021 0,01 | 0.0
12 6=5 0,002 0,013 0.0
13 5-8 0.0016 0.021 0.0
14 7-8 0.0021 0.,0311 0.0

Table 6,7

BUS Bus power Voltage Qin  Bnax
(in m, w.)

(in m.v.2.r,)

1 " Unspec, 1,0+jo.0

2 ~23,30 + j(unspec)V, = 1,0 =10,00 10,00
3 15,00 + j(unspec)V2 = 1,0 -10,00 10,00
4 ‘ 15,00 + j(unspec)V3 = 1,0 -10,00 10,00
5 25,00 + j20,00 unspec, .

6 =-22,00 = 713,00 unspec,

7 25,00 + jOO,00 unspec,

8 00,00 + j10,.,00 unspec,
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Table °.8 .
BUS Vol tage Phase Angle Real Reactive
Maanitude (DEG) Powver Powver
1 1.00000 ~ 0,00000 - 3,3998 5,6903
2 1,00001 -17,90487 23,3000 9,7992
3 1, 00001 10,70021 15,0000 6,9128
4 1,00001 -8.,10451  -20,0000 2.8639
5 1,05722 6.,2709% 25,0000 20,0000
6 « 92760 0.36610 ~22,0000 -13,0000
7 «95400 8.54623 25,0000  0.0000
8 « 93501 9.04251 0.0000 ~10,0000
Table 6,9
LINE FLOW
Line SB BB Real Fowver Reactive Fower
2 2 1 -4.2073 1.2680
T 1 ” 4,4010 0,0381
2 4 1 -2.1179 10,3995
2 1 4 2.1552 ~-0.,1267
3 5 1 ~4,0318 1.8242
3 1 5 -3.9792 ~1,2985
4 6 1 -0,7213 -6 ,5698
4 1 6 - 0,8228 7.0775
5 3 2 6,0047 0.,6515
5 2 3 -5.6029 2.2278
6 7 2 14,2024 0.3511
6 2 7 «~13.4927 6.3018
7 4 3 - 4.9457 1.4061
7 3 4 5.1446 0, 2048

,Oontd...
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2 3 4 5

8 7 3 -1.7426 ~1.6895

8 3 7 1.7588 1.8384

9 8 3 -2.0624 ~3.8882

) 3 8 2.0846 4, 2206

10 5 4 13,5288 2,3118
10 4 5 - =12,9389 1.0589
11 6 5 - 8.9111  _7.4778
11 5 6 9.2257 19,5223
12 8 5 1.8549 -5.5277
12 5 8 -1.7927 6.3444
13’ 7 6 12.7472 0.7423
13 6 7 -12,3710 11,0491
14 8 7 ~ 0,2090 -0.5841
14 7 8 ~ 0.2081 0.5978




Table 6,10

sl Acceleration No. 'of CPU Time

No. Method factor iterations (in secs)

 § Gausgs-Seldel 1.0 26 0.67
l.1 22 0.59
1.2 ' 18 . 0,53
1.25 17 0.53
1.3 15 0.52
1.4 13 0.47
1.7 | 29 0.69

2 Newton-Raphson 1.0 3 083




6.3 Prohlem No. 3

IERE standéxﬂ 57 bus problem has been taken. The 4iagram
in Appendix A. 2.6. The data has been given in tsble numbers
A,4,1 to A.4.5. The last bus (57th bus) has been tsken as the
reference ‘bus. Buses from 51 to 56 are the wvoltage controlled

bus and the rest are load buses. The results of load flow study

are given in Table 6.11 and 6.12.
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IEEE 57-BUS TEST SYSTEM

TABLE A.4.1 Impedance and Line-charging Data

Line : Resistance Reactance Line charging ¥ *
Designation p.u.* p.u. % p.u. ¥
* 2 _ 3 L

5756 0.0083 0.028 0.0645
. 56=55  0.0298 0.085 0.0409
55— L 0.0112 0.0366 0.0190
4 5 0,0625 041320 040129
a5k o;oﬁéo 0.1480 040174
S 7 0.0200 0.1020 0.0138
5453 0.0339 0.1730 0.0235

53-52 0.0099 0.0505 0.027%
5210 . 0.0369 0.1679 0.0220
5211 0.02%8 0.0848 040109
5ou5L 0.06%8 0.2950 10.0386
52~13 0.0481 0.1580 0.0203
13~1h 0.0132 04043k 0.0055
- 13-15 0.0269 040869 0.0115
5715 ©0.0178 0.0910 0,049k
57-16 0.0L5k 0. 2060 0.0273
57-17 . 0.0238 0.1080 0.01k43
55-15 0.0162 0.0530 00272
4-18 0.0000 045550 040000
L-18 00000 0.4300 o.ooob
G 5L 0.0302 0,064 0.0062

753 040139 040712 0.0097 contde



TABLE A.4.1 contd.

T 2 3 "
10-51 0.0277 0.1262 0.016k%
11-13 0.0223 0.0732 0.009%
51-13 0.0178 0.0530 0.0302
5116 0.0180 0.0813 0.0108
51-17 0.0397 0.1790 0.0238
1415 0.0171 - 0.0547 0.007k4
18-19 04610 068 50 040000
19=20 042830 044340 0.0000
20-21 0.0000 0.7767 0.0000
21-22 0.0736 041170 040000
22+23 0.0099 0+0152 040000

. 23-2k4 041660 0a2560 1 0.0042
2lm25  0.0000 1.1820  0.0000
o425 0.0000 1.2300 0.0000
2426 0.0000 0.0473 0.0000
2627 0.1650 0. 2540 0.0000
27-28 0.0618 0.09 54 0+0000
2829 0.0%418 0.087 040000

7-29 040000 0.0648 0.0000
25=30 041350 0e 2020 0.0000
30-31 0+3260 04 4970 040000
3132 0.5070 047550 00000
32-33 0.0392 040360 00000

32-34 0.0000 09530 0.0000 contd.
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1 2 3 L
34-35 0.0520 0.0780 0.0016
35-36 0.0430 0.0537 0.0008
36-37 0.0290 0.036 6 0.0000
37-38 00651 0.1009 040010

- 37-39 0.0239 0.0379 0+0000
36-40 0.0300 0.0466 040000
2238 0.0192 0.0295 040000
1141 040000 07490 040000
h-h2 02070 03520 0.0000
Hlab3 040000 044120 00000
38kl © 0.0289 0,058 5 'om@ﬁ
15-45 = T 0.0000 - 0.10%2 - - _ - 0.0000
1L4-L6 0.0000 0.0735 0.0000
4617 0.0230 0.0680 ' 0.0016
L47-148  0.0182 0.0233 0.0000
48 -L9 0.083k 01290 0.0024
4950 0.0801 0.1280 0.0000
50-12 0.1386 02200 0.0000
10-12 00000 0.071.2 0.0000
13-49 00000 041910 0.0000
29~ 9 0.1%k42 041870 ©0.0000
-9~ 8 040762 040984 00000
8~ 6 0.1878 042320 0.0000

6= 3 - 041732 042265. 040000
11-43 040000 0.1530 0.0000

contd.
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TABLE A.4.1 contd.

1 2 3 ly
Lhalt5 0.0624 Oal242 0.0020
- 2 00000 1.1950 00000

2-141 0. 5530 045490 00000

2-142 0.2125 043540 ~ 0.0000
39-1 0.0000 13550 00000
1~ 2 0.17%0 0.+ 2600 ' 0.0000
38 49 0.1150 0.1770 0.0030
3818 0.0312 0.0182 0.0000
52— 3 00000 0.1205 0.0000

%
Base MVA = 100

© ¥Mine charging 4 One-half of total charging of Iine~ -

TABLE A.%.2 Regulated Bus Data

Bus Voltage Min.MVAR Max MVAR

Number Maggigude Capability Capability
51 | 1.015 ~50 155
52 0.980 ‘ -3 9
53 1.005 -140 | 200
St 04980 -8 25
55 0.985 © 10 60

56 1.010 =17 50
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TABLE A.4%.3 Transformer Data

Transformer Tap Setting
Designation

4-18 0.970
4-18 0.978
7=29 0967
52- 3 - 0+940
10~12 04930
1141 0.955
1143 04958
13-49 0.895
1446 0.900
15-45 0.955

T 2l-20 1.043
2425 1.000
2k4~25 1.000
2L=26 1.043
34-32 0.975
39~ 1 0.980
40~ 2 0.958

TABLE A.%.% Static Capacitor Data

Bus Number Susceptance p.u.*
18 0.100
25 0.059
8 0.063
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TAPLE A.4.5 Generation and Load Data

Bus Real power Toad
Number generation Real Reactive
Detle ¥ Dol ¥ Delle
1 ] 3 N
1. 0,0 0,067 0.020
2 0.0 0,076 0,022
3 0.0 0.068 0.034
4 0.0 0..000 0,000
5 0.0 , 0.13¢ 0,040
5 0.0 041 0.014
7 0.0 0,000 . 0.000
8 0.0 0.200 0.100
9 0.0 0,049 0.022
10 0.0 0,050 0,020
11 0.0 0. 000 0. 000
12 0.0 0,180 0.053
13 © 0.0_ _ ___ 0,080 - 0,023 - - -
14 0.0 0,105 0.05%
15 0.0 0,220 0.050
16 0.0 0,430 0,030
17 0.0 0.420 0.080
18 0.0 0.272 0.098
19 0.0 0,033 - 0.006
20 0.0 0,023 . 0,010
21 /0,0 0. 000 0. 000
22 0.0 0. 000 0. 000
23 0.0 0.063 0.021
24 0.0 0,000 0,000
25 0.0 0,063 0.022
26 0.0 0.000 0,000
27 0.0 0,093 0,005
28 0.0 0.046 0,023
29 0.0 0,170 0.026

W
o
o
O

0.0%6 0.018 contd.
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1 2 3 4
31 0.0 0,58 0,029
32 0.0 0,016 0,008
33 0.0 0,380 0,019
34 0.0 0,000 0,000
35 0.0 0,060 0,030
36 0.0 0,000 0. 000
37 0.0 - 0..000 0.000
38 0.0 0,140 0.070
39 0.0 0.000 0.000
40 0.0 0.000 0.000
41 0.0 0,063 0.030
42 0.0 0. 071 0,044
43 0.0 0.020 0.010
44 0.0 0.120 0,018
45 0.0 0,000 0. 000
46 0.0 0.000 0,000
47 0.0 0.297 0.116
48 0.0 0,000 0.000
49 0,0 C.180 0.085
50 0,0 0,210 0.105
51 3.1 5770 0.240
52 0.0 1.210 0,260
53 445 1.500 0.220
54 0.0 0.750 0.020
55 0.4 0.410 0.210
56 0.0 0.030 0.880
57 slack 0.550 0.770

bus

%*Base MVA = 100
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Tahle 6.11
Vol tage Phase dngle Real Power Reac Power
Magnitude (DEG)
87539 ~17.429%6 -0.0670 -0, 0200
.88380 -16.81561 -8.0760 -6.0220
.97047 ~10.886 94 -0.0680 -0, 0340
.98051 - 7.37273 10,0000 10,0000
976 40 - 8.60529 -0,1300 ~0.0400
.94157 ~12,00492 ~0.0410 ~0,0140
«98248 = 7.69161 10,0000 0.0000
92267 ~12.73050 -0,2000 -0,0370
493549 ~11.92716 -0,0490 =0,0220
.98348 -11.49845 -0.0500 ~0,0200
.97310 -10.19551 © 0.0000 10,0000
.97233 ~12.84201 -0, 1800 -0,0530
.98170 - 9,79313 ~0.1800 -0,0230
97407 - 9.31332 -0.1050 ~0.0530
.98749 - 7.17752 -0.2200 " ~0,0500
1.01337 - 8.85126 ~0.4300 =0,0300
1.01746 - 5.39189 ~0, 4200 -0, 0800
.97265 -12,07298 -0.2720 0.0020
.93479 ~13.66450 ~0,0330 © ~0,0060
.92430 -13,90093 -0.0230 ~0.0100
«92271 ~13.53585 0.0000 0.0000
+92305 -13.47369 0.0000 10.0000
«92151 -13,55081 -0.0630 -0,0210
91188 -13.94757 0.0000 0.0000

contd,...
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. : s PR
rrymanm TIPS N DT
! v . v d 2 . A

oo, 0

2 3 4 5
.89018 v19,93265  -0.0640  0,0270
.91313 -13.58858 9.0000  0,0000
.94029 ~11,98298  -0,0930 -0,0050
95741 -10.86365  -0,0460 -0,0230
.97238 -10.10033  -0,1700 -0.0260
.866 35 ~20.60745  -0,0360 -0,0180
.83242 ~21,45155  -0,0580 -0,0180
84223 -20,36584  -0,0160 -0,0290
.83966 ~20.41810 0,0380 -0,0190
.87659 -15,08632 10,0000  0,0000
88384 -14.80767 -0,0600 -0,0300
.89408 -14,49347 0.0000  0.0000
.90216 | -14.23138 0.0000  0.0000
92614 -13.31517  -0,1400 -0,0700
.90058 -14,28833 0.0000  0.0000
.89284 -14,56610  0,0000  0,0000
.93345 ~14.89041 ~0,0630 -0,0300
.89160 -16.38939  -0,0710 -0.0440
,96057 ~11,56728 0.0200 -0,0100
.93835 -12.39412  -0,1200 -0,0180
.97591 - 9.66806 0.,0000  0,0000
.96055 -11,27404 0.0000  0.0000
.93842 -12,90833  -0,2970 -0,1160
93487 ~13.06525 0.0000  0.0000
.94055 -13,29973  -0.1800 -0,0850
.93164 -13,88064  -0,2100 -0,1050

contd...
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.2 3 4 5

52 097999 =9. 59779  =1.2100 +0.2558
53. 2. 2313 =100 i et

1.00499 =4.53207 3.0000 0.4248
54 .97999 -8.74506 -0.7500 0.0094
55 .98499 =6.00693 -0.0100 -0.2015
56 1.01000 =1.19273 ~0.0300 ~0.8874
57 1.04000  0.00000 4.2361 1.1241
s1 ae No. of CPU time
No Method factor iterations (in secs.)
1. GAUSS-SEIDAL 1.7 46

1.5 8s'.

2. NEW TON=RAPHSON 1.0 3



6.4 problem No. 4

IEEE,standa:d:%us problem Was taken. The diagram is in
Appendix A,2,7. The data has bkeen given in table numbers
A.5.1 to A,5,5. Bus No. 1 is taken as reference bus and
Bugses from 2 to 54 are wltage contrmwlled buses. Buses from
56 to 118 are load buses. The results of the load flow study
are given in Tabie number 6.13 and 6.14.
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IEEE 118-BUS TEST SYSTEM

TABLE A.5.1 Impedance and Line-charging Data

Line ' Resistance | Reac‘tar;ce Line Charging w3
Designation Deu. ¥ Dolls ¥ Dells v
T 2 3 7
30-55 0, 0303 0, 0999 0. 0063
30-56 0,0129 0. 0424 0. 0027
55- 6 0.0187 0.0616 0. 0039
56-57 0.0241 0.1080 0. 0071
56~ 6 0.0484 0.1600 0. 0101
2-60 0.0209 0. 0688 0. 0043
2-57 0.0018 0. 0080 0. 0005
57-60 0.0203 0.0682 0.0043
57~ % 0.0119 0.0540 0. 0035
3-58 0.0045 0.0208  0.0013
58~ 6 0, 0086 00,0340 0. 0021
4-71 0. 0043 0.0504 0.1285
4=59 0,0024 0, 0305 ' 0.2905
59~ 5 8.0026 0.0322  0.3075
60~ 6 0. 0059 0.0196 0.0012
60-61 0.0222 0, 0731 0. 0047
6-63 0.0212 0.083 4 © 0.0053
6-117 0, 0329 0.1400 0. 0089
6-62 0. 0215 0. 0707 0. 0045
61— 7 00,0744 0.2444 0,0156
62— 1T 0.0595 0.1950 0.0125.

7-64 0.013%2 0,0437 0.0111 contd.,



TABLE 5.1 contd,

79

1 2 3 4
7- g 0.0120 0.0394 0. 0025
7-72 0. 0380 0.1244 1 0.0080

6364 0. 0454 0.1801 0.0116
6453 0.0091 0.0301 0. 0019
64~ 8 0. 0123 0.0505 0. 0032
64-14 0.0474 0.1563 0.0100
8~ 9 0.0111 0. 0493 0.0028
965 0.0252 0.1170 0.0074
916 0. 0752 0.2470 0. 0158
65~66 0. 0183 0.0849 0. 0054
66~67 0.0209 0.0970 0. 0061
67-68 0.0542 0.1590 0.0101
68-15 0.0317 0.1153 0. 0293
68~10 0.0135 0.0492 0. 0124
68-11 0.0156 0. 0800 0.0216
10-31 ' 0.1022 0.4115 0.0255
10-32 0. 0488 0.1960 0.0122
11-13 0.0318 0.1630 0.0441
12-71 0. 0079 0. 0860 0.2270
13-15 0.0229 0.0755 0.0048
13-116 0. 0164 0.0741 0. 0049
13-69 0.0191 - 0.0855 0.0054
69~70 0.0237 0, 0943 0.0059
70-14 0.0108 0, 0331 0.0020
71-175 0.0046 0.0540 0.1055
0.0298 0. 0985 0. 0062

14~15

contd,



TABLE 5.1 contd. .

8o

1 2 4
15-53 0.0615 0.2030 0.0129
15-115 0. 0135 0. 0612 0. 0040
72-T4 0.0415 0.1420 0.0091
16-17 0. 0087 0. 0268 0. 0014
16-74 0.0026 0.0094 0.0024
16-78 0. 0413 0.1681 0. 0105
73-17 0.0022 0,0102 © 0.0006
13=T4 0.0110 0.0497 0. 0033
T4-T6 0,0321 0.1060 0, 0067
74-18 0. 0593 0.1680 0.0105
75-28 0.0090 0. 0986 0,2615
76-18 0.0184 0, 0605 0.0038
18-77 0. 0145 0. 0487 0.003%0
18-19 0,0555 0,183%0 0.0116
77-19 0.0410 0.1%50 0. 0086
19-21 0.0358 0,1610 0, 0430
78-T79 0.0608 0.2454 0.0151
79~-80 0,0224 0.0901 0.0056
80-20 0. 0400 0,1356 0,0083
80-21 0. 0684 0.1860 0. 0111
20~81 0. 0380 C.1270 0. 0079
20-82 0, 0601 0.1890 0.0118
81-21 0.0191 0. 0625 0. 0040
81~ 1 0. 0844 0.2778 0. 0177
82-21 0.0179 0., 0EO5 0. 0031
21-83 0,0267 0. 0752 0.0046

contd. .



TABLE 5,1 contd.
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1 2 3 4
21-84 0. 0486 0.1370 0. 0085
21-29 0. 0090 0.C459 C.0124
21- 1 0, 0985 0,3240 0. 0207
21-22° 0.0398 0.1450 0.0367
83-87 0.0474 0.1340 0. 0083
84-85 0, 0203 0, 0588 0.0035
84-88 0.0255 0.0719 0. 0044
85-86 0.0405 0.1635 0.0101
86-22 0.0263% 0,1220 0.0077
2225 10,0169 0.0707 0.0050
22-24 0.0027 0.0095 © 0.0018
22=25 0,0503 0.2293 0.0149
2% —24 0.0048 0.0151 0.0009
23-25 0.0473 0.2158 0.0141
24~87 0.0%43% 0.0966 0. 0060
24-88 0. 0343 0. 0966 0.0060
24~25 0.0407 0.1200 0.0276
25-89 0.0317 0.1450 0.0094
25-26 0.0%28 0.1500 0.0097
89-26 0.0026 0. 0135 0. 0036
89-27 0. 0123 0.0561 0.0036
2627 0. 0082 0.0376 0. 0024
27-29 0.0482 0.2180 0.0144
27-92 0.0258 0.1170 0. 0077
90-91 0.0017 0, 0200 0.0540
91-28 0.0027 0.03%02 0.0950

contd,



TABLE 5.1 contd.

82

1 2 3 4
28-93 0.0014 0.0160 0.1595
29-92 0. 0224 0.1015 0.0067
93-54 0.0003 0.0040 0.0410
95-98 0.0017 0,0202 0.2020
1-95 0.0405 0.1220 0.0310
1-36 0.0309 0.1010 0.0259
1-31 0. 0500 0.1270 0.0305
3194 0.0088 0.0355 0.0021
31-34 0.0401 0.1323 0.0084
31-95 0.0428 0.1410 0.0090
94-32 0.0446 0,1800 0.0111
94-33 0. 0087 0, 0454 0. 0029
34-95 0.0123 0. 0406 0. 0025
95-118 0.0145 0, 0481 0.0029
95-36 0.0601 0.1999 0.0124
35-118 0.0164 0.0544 0.0034
3536 0.0444 0.1480 0.0092
36-96 0.0037 0.0124 0.0031
36-37 0,0108 0,0331 0.0175
36-99 © 0.0298 0. 0853 0.0204
96-97 0.0054 0.0244 0.0016
97-37 0.0156 0.0704 0.0046
37107 0.0356 0.1820 0.0123
37-108 0.018% 0.0934 0. 0063
37109 0.0238 0.1080 0.0071

contd.
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TABLE 5,1 contd,

1 2 3 4

37=44 0.0454 0.2060 0.0136
99-107  0.0162 0.0530 0.0136
99-100 0.0112 0,0366 0. 0095
100-101 0. 0625 0.1320 0.0064
100-38 0.0430 0.1480 0.0087
101-38 0.0302 0.0641 0.0030
38102 0, 0350 0.1230 0.0069
38-103 0. 0200 0.1020 0. 0069
38-40 0.0239 0.1730 0.,0117
102~39 0. 0282 0,2074 0.0111
103-40 0.0139 0.0712 0.0048
10-41 0.0158 0. 0653 0.0397
40-43 0. 0079 0.0380 0. 0240
41-42 0.0254 0,0836 0.005%3
42-43 0.0387 0.1272 0.0081
43-104 0. 0258 0.0848 0, 0054
43-105 0. 0481 0.1580 0.0101
43-45 0. 0648 0.2950 0.0193
43-111 0.0123 00559 0. 0036
104-105 0. 0223 0.0732 0.0047
105-106 0.0132 0.043 4 0.0027
105-107 0.0269 0.0869 0.0057
105-45 0.0178 0.0580 0.0151
106-107 0.0171 0,0547 0.0037

107-108 0,0173 , 00,0885 0, 0060 contd,



TABLE 5.1 contd,

84

1 2 3 4
109-45 0.0397 0.1790 0.0119
44-45 0.0180 0, 0813 0. 0054
45-110 0.0277 0.1262 0.0082
45-46 0.0160 0.0525 0.0134
45-47 0. 0451 0.2040 0, 0135
45112 0. 0605 0.2290 0.0155
110-111 0.0246 10,1120 0. 0073
46-50 0.0391 0.1813 0.0115
4647 0.0466 0,1584 0.0101
46-148 0. 0535 0.1625 0.0102
47-48 0.0099 0.0378 0.0024
48-112 00,0140 0.0547 0.00%6
48-49 0.053%0 0;1830 0.0118
48-113 0.0261 0.0703 - 0. 0046
112—49 0.0530 0.183%0 0.0118
113-114 0, 0105 00,0288 C.0019
114-50 0.0278 0.,0762 C. 0050
50*51 0.0220 0. 0755 C. 0056
50~52 0. 0247 0. 0640 0. 155
115116 0.0023 0.0T0% 0. 0007
4-57 0. 0000 0.0267 0.0000
12-11 0.0000 Of0382 0.0000
T1-64 0. 0000 0.0388 0.0000
75-T4 0. 000C 0.0375 0. 0000
90-25 0.000C 0.0386 0.0000

contd.
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.TABLE 5.1 contd,

1 - 2 3 4
91-26 0.0000 0.0268 0.00CO
28-29 . 0. 0000 0. 0370 0. 0000
98-37 0, 0000 0.0370 0. 0000

* Base MVA = 100

ek Line charging : one-half of total charging
of line



TABLE A.5.2
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Voltages at Generator Buses

Bus Voltage Bus Voltage
- Number Magnitude Number Magnitude
Pelo ) Pello
1 1.035 28 1.005
2 0.998 29 1.050
3 0.990 30 0.955
4 1,015 31 0.984
5 1.050 32 0.980
6 0.990 33 0.991
7 0.970 34 0.958
8 0.973 35 0.943
9 04962 36 1.006
10 0.992 37 1.040
11 1.050 38 0,985
12 1,015 39 1,015
13 0,968 40 1,005
14 0.967 41 0.985
15 0.963 42 0.980
16 0.984 43 0.990
17 0,980 44 1.010
18 0.970 45 1.017
19 0.985 46 1,010 .
20 1.005 47 0.971
21 1.025 48 0.965
22 0.955 49 0.952
23 0.952 50 - 0.973
24 0.954_" 51 0,980
25 0.985 52 0.975
26 0.995 53 0.993
27 0.998 54 1.005
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TABLE A,5.3 Transformer Data

Transformer Tap

Designation Setting
4=57 . 0.985
~12-11 0.960
71-64 0,960
15-74 0.938
90~25 . 0.960
91-26 0,985
28-29 ‘ 0.935

93- 1 0.935
98-37 0.935

TABLE A.5.4 Static Capacitor Data

*Nw

Bus Number - Susceptance
'p.u.*
16 - | 0.14
20 0.10
34 - 0.12
48 | 0.20
49 0.06
50 0,06

87 . ~0,401L
74 -0.25
79 0.10
80 0.10
82 | 0.15
97 | 0.20
99 | 0.20
100 . ~ 0.10

¥ ** The negative values represSent reactors whereas
the positive values are for capacitors.
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TABLE A.5.5 Generation and Load Data

Bu s Real power Load
Number generation Real Reactive
peu.¥ Do, ¥ P.u.*
1 2 3 4
1 Slack . 0.00 0.00
bus : o
2 -0.09 0.30 0.12
3 0,00 0.52 0.22
4 -0.28 0.00 0.00
> 4,50 ( 0.00 0.0C
6 0.85 _ 0.47 0.10
T 0..00 0.90 0.30
8 0.00 0.60 0.34
9 0,00 Ced5 0.25
10 -0,13 0.00 0.00
11 2.20 0.00 0.00
12 3.14 . 0,00 0. 00
13 ~-0.09 0.62 0.13
14 0.07 0443 0.27
15 0.00 0.59 0.23
16 0. 00 0.59 0.26
17 0.00 0.31 0.17
18 -0. 46 0,20 0.23
19 ~0.59 0.37 0.23
20 0.19 0.28 0.10
21l 2.04 0.87 0.30
22 0.48 1.13 0,32
23 0.00 0.63 0.22
24 0,00 C.84 0.18
25 1.55 2,77 1.13
26 1,60 0.00 0. 00
27 0.00 . 0.7 0.14
28 3491 0,00 0,00 contd..



TABLE A.5.5 contd.

89

1 2 3 4
29 3,92 0.39 0.18
30 0.00 0.51 0.27
31 0,00 0.66 0.20
32 -0.12. 0,00 0. 00
33 -0, 06 0.00 0.00
34 0,00 0.68 0.27
35 0.00 0.68 0.36
%6 0. 00 0.61 0.28
37 4,77 1.30 0.26
38 0, 00 0.24 0,15
39 Q.00 0. 00 0. 00
40 6,07 0. 00 0. 00
41 -0,85 0.78 0,42
42 -0.10 0. 00 0.00
43 0.00 0.65 0,10
44 ~0.42 0.00 0.00
45 2,52 0.37 0.18
46 0.40 0,23 0.16
47 0.00 0.38 0.25
48 0,00 0.31 0.26
49 -0.22 0.28 0.12
50 0. 00 0.39 0.30
51 0,36 0. 00 0.00
52 -0,43 0.25 0,13
53 -0.06 0.00 0,00
54 -1.84 0.00 0, 00

55 0. 00 0.20 0.09
56 0,00 0439 0.10
57 0.00 0.00 0.00
58 0.00 0.19 0,02
59 0.00 0. 00 0. 00
60 0.00 0.70 0.23
61 0,00 0.34 0.16

contd,



TABLE A.5.5 contd,

—

90

1 2 3 4
62 0. 00 0.14 0.01
63 0, 00 0.25 0.10
64 0, 00 0.11 0. 03
65 0,00 0.18 0.03
66 0,00 0.14 0,08
67 0.00 0.10 0.05
68 0,00 0.07 0. 03
69 0,00 0.17 0.07
70 0, 00 0.24 0. 04
71 0.00 0. 00 0, 00
72 0.00 0.23 0. 09
73 0.00 0.33 0. 09
T4 0, 00 0. 00 0. 00
75 0.00 0.00 0,00
76 0.00 0.27 0.11
77 0. 00 0.37 0.10
78 0.00 0.18 0.07
79 0,00 0.16 0.08
80 0,00 0.53 0.22
81 0.00 0.34 0,00
82 0.00 0.20 0.11
83 0.00 0.17 0.04
84 0,00 0.17 0.08
85 0. 00 0.18 0.05
86 0. 00 0.23 0,11
87 0.00 0.12 0. 03
88 0. 00 0.12 0.03
89 0.00 0.78 0.03
90 0.00 0,00 0.00
91 0,00 0.00 0.00
92 0, 00 0.28 0.07
T 93 0,00 0,00 0.00

contd,



TABLE A.5.5 contd.
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1 2 3 4
94 0,00 0. 00 0. 00
95 0. 00 0.47 0.11
96 0., 00 0.71 0,26
97 0. 00 0,39 0.32
98 0.00 0. 00 0. 00
99 0. 00 0.54 0.27
100 0. 00 0.20 0,10
101 0. 00 0.11 0.07
102 0. 00 0.21 0,10
103 0. 00 0.48 0.10
104 0. 00 0.12 0. 07
105 0. 00 0.30 0.16
106 0. 00 0, 42 0.31
107 0. 00 0.38 0.15
103 0.00 0.15 0.09
109 0.00 0.34 0.08
110 0.00 0.22 0.15
111 0. 00 0. 05 0.03
112 0. 00 0. 43 0.16
113 0.00 0.02 0.01
114 0. 00 0.08 0.03
115 0.00 0.08 0. 03
116 0,00 0.22 0. 07
117 0. 00 0.20 0.08
118 0. 00 0.3% 0,15

*Base MVA = 100



TABLE NOe$6,]1 3

92
1 2 3 4 5
BUS Voltage Phase angle Real Reactive
Magnitude (DEG) Power power
1 1,03500 0.00000. 5.1604 -0,6341
2 +99798 -14,40884 -0,3900 -0.2414
3 «98998 -16.69348 -0,5200 -0,0504
4 1,01500 - 8,93624 -0,2800 1,5818
5 1,04999 6.04734 4,5000 0,1570
6 «98997 =17,50190 0,3800 0.,9212
7 «96998 =-18,56041 ~0,9000 ~0,0976
8 »97298 -18,25133 ~0,6000 ~0,0003
9 «96198 -18,72452 ~0.,4500 ~-0,3404
10 «99198 - 8,90146 -0,1300 ~0,0412
11 1,04999 - 1,77088 2.2000 0,6008
12 1.01500 0.02298 3.1400 0,4402
13 «96798 ~14,38410 -0,7100 -0,0220
14 «96697 -17,00560 -0,3600 0.0996
15 «96298 ~14.94035 ~0,5900 =0,3154
16 .98398 ~18,55778 =0,5900 ~0,0367
17 «97998 «-19,01238 -0,3100 -0,0498
18 96998 -22,56691 ~0,6600 041234
19 « 98499 =-21,37960 =049600 0.2458
20 1,00499 -11,44341 ~-0,0900 0,0151
21 1,02499 - 8,99635 1.1700 1.0959
22 «95499 ~14,65920 ~0.6500 -0,1999
23 «95199 ~14,94896 -0.6300 ~0,1560
24 +95399 ~14,76095 ~-0,8400 «0,1340
25 +98500 ~10,58796 -1.2200 042344
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Cont,...

26 .99500 - 5,90271 ~1,2200  -0,2978
27 .99799 - 6,51950 -0,7700  -0,0899
28 1,00500 - 2.30082 3.9100 1,5788
29 1,05000 - 2,46411 3.5300  =0,1542
30 95497 ~19,01499 ~0,5100  -0,2770
31 +58400 ~ 7.37443 ~0.6600  =0,0296
32 97999 - 8, 89667 -0,1200  =0,0873
33 99100 ~ 7.99805 -0,0600 01059
34 +95800 ~ 8,34431 -0.6800  -0,1798
3s «94300 - 8,23884 -0,6800  -0,2834
36 1,00600 - 3.31204 ~0,6100  =0,0245
37 1,04000 - 1,07710 3.4700 1,0235
38 +98500 2,21841 -0.2400  =0,1138
39 1.01500 0432236 0.0000 0.1367
40 1,00500 9,49917 6.0700 0,0493
41 +98500 3,11223 -1.6300___ 0,2014
42 98000 3,14376 =0,1000  =0,1177
43 +99000 3,70329 ~0,6500  ~041461
4q 1,01000 - 3,05001 -0,4200  -0,1558
45 1,01700 - 2,07822 2,1500 0.9262
46 1,01000 - 5,82019 0.1700 0,6405
47 497100 - 8,39083 -0,3800  -0,2007
48 +96500 - 9,49555 -043100  =0,2018
49 « 95200 -12,55991 =0,5000 0.0270
50, +97299 -11,59528 -0,3900  -0,1988



. Conteceo

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

98000
97499
« 99297
1.,00500
97098
096715

1,00188

.98298
1,03275
+98467
«96686
.98269
.98210
.99256
.95381
«95344
«96457
«99732
«96086
«96282
+97662
«96874
«98002
.98840
.95305

-10,35059
-15,09490
-16,03479
- 2,85847
-18,47270
-18.12381

" =13,96364

-17.14156
-1 456600
~16,98045
-18,35205,
-18,21781
~17,79244
-15,99445
-17.81185
~16.20290
-13,62939
- 8,71453
~16,10805
~17,11500
~10,91894
-19,16520
-19,00848
-18,07024
-12,88521

0.3600
=0,6800
-0,0600
=-1,8400
~0,2000
-0,3900

0,0000
=0,1900

06,0000
«~0,7000
-0,3400
-0,1400
=042500
-0,1100
-0,1800
-0,1400
»0,1000
-0,0700
-0,1700

«0,2400

0.0000
~042300
~043300

0,0000

0,0000

94

«0,0136
0,2999
0.1652
0,9181

-0,0900

-0,1000

=0,4000

«0,0200
0,0000

-0,2300

~0,1600

-0,0100

-0,1000

~0,0300

-0,0300

«0,0800

=0,0500

~0,0300
~0,0700

«0.0400
0.0000

~0.0900

~0,0900
~0,2500
0.0000



Contecece
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90 . .

- 91

92
93
94
95
96
97
o8
99

96871

.96641

97263
97980
.98328
1,01594
1.01977
1,00001
96443
95377
94345
.96933
.95720
99302
496677
.98170
1.01887
1,00176
.98655
496623
1.00331
1,00894
99335
98574

=21,47420
~22,59732
-18,54239
-16,02773
-14,20458

- 9419936

- 9,98413
-11,01087
=~13,60405
=14,55172
-15,54150,
=13,53727
414.33508

- 6,79354

= 7,20151
- 5,42737
- 5,09583
- 2,42376

- 7,78369

- 7,06798
- 3461496
- 3431522
- 1,88862
- 2,83483

-04,2700
-0,1800

-043400

~0,2000
~0.1700
=041700
-0,1800
~042300
-0.1200
-0,1200
-0.7800
0.0000
0,0000
-0,2800
0,0000
00000
~0,4700>
~0,7100
~0,3900
0,0000
~0,5400

95

-0,1100
«~0,1000
-0,0700
1 0.0200
-0,0400

0,0000
- 0,0400
-0,0400
-0.0800
-0,0500
-0,1100
~0,0300
~0,0300
~0,0300

0.0000

0,0000
~0,0700

0,0000

0.0000
-0.1100
-0,2600
~041200
-0, 0000
+0,0700



COnt....

100 «98190 =1,69731 ~0,2000 0,0000
101 .97852 0,73312 «0,1100 -0,0700
102 « 98474 056132 =0,2100 ~0,1000
103 98691 5.40991 ~0,4800 «0,1000
104 «98391 0,71666 ~0,1200 -0,0700
105 .98769 -1,42843 -0,3000 -0,1600
106 .97766 -2,39092 «0,4200 -0,3100
107 «98937 ~2,54612 ~0,3800 ~0,1500
108 1.,00908 =2415625 =0,1500 ~0,0900
109 1.02217 -2,64544 -0,3400 -0,0800
110 « 99003 ~0,49193 -0,2200 ~0,1500
111 «98827 2,20642 ~0,0500 ~0,0300
112 «96008 -9,74087 -0,4300 -0,1600
113 .96575 =10,68539 ~0,0200 -0,0100
114 «96654 ~11,13837 »0,0800 -0,0300
115 «96974 -15426356 -0,0800 ~0,0300
1le « 95966 ~15,27303 =0,2200 «0,0700
117 «97255 «19,03045 «0,2000 -0,0800
118 94869 - 8,07298 ~043300 =0,1500
T able 6.14

S.No. Method 'Acceleration No. of 8 CPU time

factor iterations (in secs)

1 Gauss Seidal 1.7 | 116 37.58

Method ) ‘

106 >150 veo o
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CHAPTER VII
conN U S IO N;

Sparsity technidues have been applied in programming load
flow studies, both by Gauss-Seidal method and by Newton-Raphson
method. The row wise systematic packing with necessary indeX-
ing information has been used in storing the admittance matrix.
The Jacobian in the case of Newton-Raphson method has been
stored in both row wise and clumn wise systematic packed form,
In addition the linked list technidue has been used as it is
adept to deal with the continually changing number of non-zero

elements in the rows and columns during the reduction process.

In the case of Newton-Raphson technidue, bi-factorization
me thod has been used which is especially suitable for load flow
sf.ud:l.es as the jacobian matrix is diagonally dominant and having
a symmetric sparsity structure but asymmetric in elemement value.
As the structure of the jacobian remains same in each iteration,
the simulation and ordering subroutine will once for all deter-

mine the pivotal seduence which can be applied in subseduent
iterations.

The results of the problems studied have been given in
Chapter VI. It is seen thatin the case of Gauss-Seidal method

the number of iterations reduired to reach the solution is more

compared to the Newton-Raphson method. The effect of acceleration
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factor on the number of iterations in the case of the Gauss-.
 Seidal method has also been studied, For the smaller systems
the‘thimum acceleration factor is in the range of 1.2 to 1.4
(For example for the 5 bus system it is approximately 1.2 and
for the 8 bus system it is approximately 1.4). Fa the larger
systems it is aspproximately 1,7 and if it is reduced the number

of iterations increases,

The time taken to obtain a solution in the case of Newton-
Raphson method for the smaller systems is more (i,e, for a 5 bus
system it is o.s7s«s@s against 0,27 secs, for Gauss-Seidal methaod
with an acceleration factor of 1.,2). This is because of the
degree of sparsity in the smaller system is small and also due -
to time taken to calculate the jacobian elements, However the

solution was dotained in two iterations.,

In the case of larger systems the time for sobution by
Newton Rgphson method (time taken for 57 bus system isJ.713s9

is less than by the Gauss-Seidal method(time taken for g7 phg_

Sl ol ~ system is 4.5 secs). This is due to fast convergence
of Newton Raphson method(No, of iterations 3 in case of 57 bus)
Also for the 57 bus system studied the percentage of sparcity

is 93.5 % (only 213 non zero elements in the admittance matrix)
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Suggestions for variations and imprevements:

In the case of Gauss-3eidal method only the diagonal
elements and the non-zero elements of the upper traingle of

Y-Bus are stored, In this case the matrix has to be searched
everytime to build up the remaining non-zero elements of the
row and so the computation time is more., This can be reduced
by storing all the non zero elements of the Y-Bus. However

$#2- memory requirement will go up.

In the case of Newton Raphson method the subroutine JACOB
calculates the elements of the jacdbians for each iteration and
also calculates the real and reactive bus powers., The program

can be made faster by having a separate subroutiné calculate

the bus powere and if the convergence criterion is not met

with, then only to calculate the elements of the jacobian,

In the present work, non linear loads and on load tap

changing, could not be considered. These can be incorporated

in the program,
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APPENDTIX



( READ SYSTEM DATA )

DO TRANSFORMER CALCULATIONS FOR
OFF NOMINAL TAP TRANSFORMERS

ARRANGE THE DATA SO THAT THE FIRSY BUS NUMBER IS
GREATER THAN SECOND BUS NUMBER

l

ARRANGE THE OATA IN THE ASCENDING ORDER OF FIRST BUS NUMBERS
AND INCASE THE FIRST BUS NUMBERS ARE SAME IN THE ASCENDING
ORDER OF SECOND BUS NUMBERS

y

CALCULATE THE DIAGONAL ELEMENTS
OF ADMITANCE MATRIX

FORM ADMITTANCE MATRIX IN THE PACKED FORM .

ARD GIYE FIVE DIGIT INDHX NUMBERS TO THE
DIAGONAL ELEMENTS

GIVE THE INDEX NUMBER 99999 TO THE LASY
DIAGONAL ELEMENT

l

COMPUTE A FOR LOAD BUSES USING
EGNO W

l

SET ITERATION COUNT N= O

1

o SEY BUS COUNT [ =2 AND DVMAX = 0
(FIRST BUS REFERENCE BUS)

4

CALCULATE PRODUCT OF THE ROW OF THE MATRIX
WITH THE VECTOR OF VOLTAGES

™

FIG.A.2.1 FLOW DIAGRAM FOR GAUSS-SEIDEL METHOD



ADD THE PRODUCT OF DIAGONAL
ELEMENT WiTH VOLTAGE

.;

TEST
¥OR VOLTAGE OR

LOAD
BuUS

VOLTAGE

REFLACE TEMPORARILY
Jvitl ey Jvilseee

1

COMPUTE Qi FROM £Q.23

NO

QN < Q) mox

O = 'O min

REPLACE REPLACE REPLACE
P o 9t max o™ sy aimin | [v{l av
- |vi] sere
RECOMPUTE A{
f N
b compute viR*+' eroM n -—-—e| compure avyiW)
- . - -
'S\ .
'Mﬂm)‘ £ AVman ves :-}
set avmaz = {avi(N)].
repLace vi'N gy v INFY Lo ¥
ADVANCE BUS COUNT N -= N1
Abvance « | catcuLare he
ATION COUNT E4PLOWS AND POWER
M+ AY SLACK BUS

FIG.A.2.1 CONTINUED



( reao SYSTEM DATA )

ARRANGE DATA AND
FORM - BUS

1

SEY ITERATION COUNT
N=zO

t

CALL SUBROUTINE SNR TO CALCULATE ELEMENTS
oF JACOBIAN ALONG WITH INDEXING DATA REAL AND
REACTIVE BUS POWERS

Y

CALL INV1 SIMUL ATION AND ORDERING
SUBROUTINE

t

a,Lc::‘:Lcume DIFFERENCE BETWEEN

DULED AND CALCULATED BUS POWERS

DETERMINE MAXIMUM CHANGE IN
POWER MAX APN AND MaX AQN

. Y CALCULATE LiNE
TiST FOR CONVERGENCE Eoual | FLOWS AND
[max. aptiie POWER
jmox aqWNle LESS At

Y

CALL JACOB 10 § GREATER SLACK BUS

CALCULATE NEW JACODIAN CALL INV2 REDUCTION ANDSOLUTION

BUS POWERS ¥

: CALCULATE NEW
' ‘ : | BUS VOLTAGES

ADVANCE nepLace N sy v N+!

ITERATION |
COUNT AND gN py gy N¥!

FIG.A.2.2 LOAD FLOW SOLUTION BY NEWTON-RAPHSON METHOD
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Description of paramete-

Q{iﬁteger variables

1 . row index of tefma in proeéaaed column K or running index
IP  row index of terms in pivotal column
J hutber of reduction step
K index of column unéer cbnsideration or runn®- 5 index
KP , pivotul'indek related to reduction stey J
.I. 1ocation of terms in prbcessed column X
LA ,locétion of preéeding term in processed column K
LF indicator for next vacant location
LI location of -terms in pivotal column {inner loop)
.iLK location qf terms in pivotai column (outer 1009)
LN location ot new added fill-in term
LP location of intermediately stored ilerms of pivotal column
FM intermediate integer variable .

MIN minimum number of non-zero %terms

N number of unknowns, order of the matrix

lReal variables

~CF multiplier for colunmns

| .di&gOn&I (pivotal) term
RF multiplier for rows
'SUM  sum of products

{Intager arrays

ITAG row index of elements stored in CE
LCOL starting position of columns

LNXT location of next term

NC2E number of non-zero terms

W3kQ sequence of pivotal indices

Real arrays

cr columnwiane stored matrix terms
JALS dirpyorel terma
Hi Tovwel o . 1 rotrix Ltema

h : RN A u:.}(us'_w:;ﬂ, ectutian vector
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FIG A.28 8- BUS SYSTEM



FIG.A.2.9 5-BUS SYSTEM
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