
A NOVEL FAULT TOLERANCE APPROACH TO

SCHEDULE JOBS IN GRID ENVIRONMENT

A DISSERTATION

Submitted in partial fulfillment of the
Jlquirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

VINIT KU 1AR

(o

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2011

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled "A

NOVEL FAULT TOLERANCE APPROACH TO SCHEDULE JOBS IN GRID

ENVIRONEMNT" towards the partial fulfillment of the requirement for the award

of the degree of Master of Technology in Computer Science and Engineering

submitted to the Department of Electronics and Computer Engineering. Indian

Institute of Technology Roorkee, Roorkee, India is an authentic record of my own

work carried out during the period from July 2010 to June 2011. under the guidance

of Dr. Padam Kumar, Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee.

The matter presented in this dissertation has not been submitted by me for the award

of any other degree of this or any other Institute.

Date: oJ)oC.1yo1I

Place: Roorkee. 	 (VINIT KUMAR)

CER'TIFICA'TE

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge and belief.

Date.

Place: Roorkee. 	 (Dr. PADAM KUMAR)

Professor

Department of Electronics and Computer Engineering

Indian Institute of Technology Roorkee

ACKNOWLEDGEMENT

It gives me immense pleasure to express my deepest sense of gratitude towards my

guide Dr. Padam Kumar, Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee for his expert guidance,

encouragement and support throughout the dissertation work. His suggestions and

invaluable ideas provided the platform to the entire dissertation work. In spite of his

extremely busy schedule, I have always found him accessible for suggestions and

discussions. I look at him with great respect for his profound knowledge and

relentless pursuit for perfection. His ever-encouraging attitude and help has been

immensely valuable.

Nothing would have been possible without the support of my family members, who

have been backing me up throughout my life. I wish to convey my sincere thanks to

my parents. Without their support, it would not be possible to reach this far with my

studies.

I would also like to thank all faculty members of Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee for their kind help

and support.

VINIT KUMAR

ii

ABSTRACT

Grids are type of distributed machines in which aggregation of resources is done to

provide services. They are present as systems which extend internet environments

with machines distributed across multiple organizations and administrative domains.

The power of Grid computing depends upon abundance of network connected

systems and bandwidth available for computation, collaboration and communication

over the network. Dependable, consistent, pervasive and inexpensive computing

infrastructure is the core of Grid computing. Its virtual image provides a single point

of access to powerful distributed resources. It enables the deployment of resources

such as desktops, databases and storages wherever and whenever needed, as has been

demonstrated by the projects such as SETI@home, MyGrid. As more and more

resources are connecting over network, the grid size becomes more large, which

increase the probability of failure due to network isolation, resource failure etc. To

achieve high performance in grid, task must be continue its processing in the presence

of faults, which means to provide a fault tolerance environment to task, so that high

performance can be achieved in grid.

In this dissertation, a novel fault tolerance approach is proposed. Fault tolerance

approaches mainly lie into two categories, Replica Based approach and Check-

Pointing approach. The main problem with Replica Based approach is its non-

applicability to cost based resources whereas Check-Pointing approach suffers from

inherent disadvantages of taking Check-Point, like overhead and wastage of time. Till

now no one has focused on nature of tasks submitted to grid. In this dissertation, a

novel approach for fault tolerance is proposed. In this approach, large task is divided

into various subtasks on the basis of data flow and control flow dependencies. The

experimental results show that proposed approach is efficient than Check-Point

approach in terms of various parameters like number of Gridlets successfully

completed and average execution time of task.

111

TABLE OF CONTENTS

Candidate's Declaration and Certificatei

Acknowledgement ..ii

Abstract..iii

Table of Contents .. iv

Listof Fig.uresvi

Listof Tables ..viii

1. Introduction and Statement of the Problem1
1.1 Introduction1

1.2 Motivation ..2

1.3 Statement of the Problem ...3

1.4 Organization of the Report............. ..3

2. Background and Literature Review...................
2.1 Grid : An Overview ...4

2.1.1 	Types of Grid5

2.2 Faults in Grid ..6

2.2.1 	The Survey ...7

2.2.2 	Survey Conclusion 9

2.3 Literature Review ...10

2.3.1 	Replica Based Approach ...10

2.3.2 Check-Point Approach 	 1 S

3. Resubmission Based Approach .. 26
3.1 Working Principle:..2 6.

3.2 System Model ..2 7

3.3 Algorithms3 0

3.4 Salient Features ...3 3

iv

4. Simulation Tool and Parameters34
4.1 GridSim: Grid Modeling and Simulation Toolkit34

4.2 GridSim Entites ..:..........35

4.3 Application Model .. 3 7

4.4 Resource Model ...37

4.5 Simulation Environment and Data ..:..38

5. Results and Discussions ..40
5.1 Experiment Results ... 40

5.2 Comparison of Check-Pointing approach and Resubmission

Basedapproach .. 42

	

5.2.1 	Different values of budget ...42

	

5.2.2 	Different values of deadline time44

6. Conclusions and Scope for Future Work46
6.1 Conclusions ..46

6.2 Scope for Future Work ...46

REFERENCES ..47

LIST OF PUBLICATIONS ...49

u

LIST OF FIGURES

Figure 2.1 	Grid Systems .. 	6

Figure 2.2 	Kinds of Failure ... 	8

Figure 2.3 	Fault Treatment Mechanisms in Current Use 8

Figure 2.4 	Greatest User Complaints ... 	9

Figure 2.5 	Degree of User Involvement 	9

Figure 2.6 	The Replication Model for the Grid 12

Figure 2.7 	Operation of the STA Algorithm 16

Figure 2.8 	Five level of security demand ... 	17

Figure 2.9 	Five level of replica ...17

Figure 2.10 	Flow Chart of calculation of Number of optimal replica 18

Figure 2.11 Process state (shaded area) vs. process environment (non-

shaded area) 	... 	20

Figure 2.12 	Architecture of low level check-pointing packages 	22

Figure 3.1 	Resource life time:.. 	26

Figure 3.2 	System Architecture 	27

Figure 3.3 	Interaction of different components 	29

Figure 4.1 	Flow diagram in GridSim based Simulation 	35

Figure 5.1 	Precedence Constraints Directed Acyclic Flow Graph 	41

Figure 5.2 	Number of job success for different values of budget 43

vi

Figure 5.3 	Number of jobs fail to achieve deadline 	44

Figure 5.4 	Number of job success for different values of deadline 	45

vii

LIST OF TABLES

Table 3.1 	Relationship between Job Status and Resource Life Time 	26

Table 4.1 	Simulation Parameters .. 	38

viii

Chapter I

Introduction and Statement of the Problem

1.1 	Introduction

Grid is "A type of parallel and distributed system that enables the sharing, selection,

and aggregation of geographically distributed autonomous and heterogeneous

resources dynamically . at runtime depending on their availability, capability,

performance, cost and users' quality-of-service requirements" [1]. Grid computing

[2] enables aggregation and sharing of geographically distributed resources and data

into a single virtual machine for solving the large-scale problems, which requires

more computational power. Grid can be used for many applications like medical

imaging and diagnosis, biometrics, satellite image processing. Grid has many design

issues like scheduling, data management, resource management, security, load

balancing and fault tolerance. Grid jobs are very large and our grid environment is

more likely to have failure, so fault management becomes more important to give

desired Quality of Service (QoS) to grid user. Due to large size of jobs, it may also be

the case that the cost and difficulty of finding and recovering from faults in Grid

applications is higher than normal applications. In grid environment resources may

enter and leave at any time which may cause fault. The term fault tolerance means to

continue the work correctly in the presence of fault.

Research on fault tolerance in the grid environment divides its mechanism into two

main types: proactive and post-active. Proactive fault tolerance mechanism takes into

account the failure of grid resource before scheduling jobs on grid resources, like

replication approach. On the other hand, the post-active mechanism takes appropriate

action after the job failure, like check pointing approach.

Fault Tolerance approach requires three main steps, failure detection, failure

notification and failure recovery. Failure detection is the phase between the failure

occurrence and the time in which the failure is discovered. Failure notification is the

phase between the failure detection and the instant in which nodes responsible for

1

recovering the failure . are notified. Failure recovery is the phase between failure

notification and the time in which the pre-failure working conditions are recovered.

102 Motivation

The performance of Grid is effected by various issues such as scheduling, load

balancing, fault tolerance, resource discovery etc. Fault tolerance is one of the

important issues in Grid computing. Number of failures in a Grid depends upon two

factors: size of grid and size of jobs. As more numbers of resources are connected to

the Grid, there are more chances of failure in terms of node isolation, network

disconnection, power failure at nodes. Also to take advantages from the Grid's

computational power, applications' size increase tremendously. As the size of grid

jobs increase, job will be for longer duration in the Grid. This will increase the

chances of failure due to vulnerable environment inside Grid. In that case, failure of a

resource may lead to restart all large tasks which are currently being executed on that

resource. This leads to heavy economic and computational losses. To overcome these

problems, fault tolerance is provided in the grid environment. In the literature, there

are two basic approaches used, Replica Based approach and Check-Point approach.

Replica Based approach uses the principle of probability; it means executing multiple

copies of a task increases the probability of successful completion of task. As the

name shows, ' Check-Point approach uses the principle of Check-Pointing, means

taking Check-Point of task at regular intervals and after failure restart the task from

last stored Check-point.

In this report, a novel fault tolerance approach is proposed, which uses the principle of

dividing the large task into small sub tasks, and schedules them on different resources

on the basis of different dependencies.

2

1.3 Statement of the Problem

The main aim of this dissertation is to design and implement a novel fault tolerance

approach for scheduling jobs in Grid environment. The problem is addressed by

using following steps:

• Study •the grid technologies in the areas concerned with fault tolerance

environment in grid.

• Propose a fault tolerance approach for grid environment to guarantee

continuous and reliable execution of task in spite of resource failure.

• Evaluate the performance of proposed approach, taking different resource

capability, deadline and budget.

1.4 Organization of the Report

Rest of the report is organized in various chapters including this one which introduces

the topic and states the problem.

Chapter 2 gives an overview of grid computing and faults in grid.

Chapter 3 presents brief description about work done in field of fault tolerance in grid

computing.

Chapter 4 describes the details of Resubmission Based Fault Tolerance approach.

Chapter 5 discusses about simulation experiment setup, description of classes used

and GridSim-the simulator used.

Chapter 6 discusses simulation results obtained under various conditions i.e: different

resource capability, deadline and budget.

Chapter 7 concludes the dissertation and provides directions for the future work.

3

Chapter 2

Background and Literature Review

2.1 Grid: An Overview

Grids are the type of distributed systems in which aggregation of resources is done to

provide services. They are present as systems which spread internet environments

with machines distributed across multiple organizations and administrative domains.

Grid computing [2] works on the potential in the growth and abundance of network

connected systems and bandwidth: computation, collaboration and communication

over the network. At the core of grid computing is a computing infrastructure that

provides dependable, consistent, pervasive and inexpensive access to computational

capabilities. By aggregating large assets into a virtual system, a grid provides a single

point of access to powerful distributed resources. With a grid, networked resources

such as desktops, servers, storage, databases, and even scientific instruments can be

combined to deploy massive computing power wherever and whenever it is needed

most. The term `Grid' is used to describe, a number of different, but related, ideas,

including utility computing concepts, grid technologies, and grid standards. In recent.

times the term `Grid' is used in the widest sense to describe the ability. to aggregate

and share Information Technology (IT) resources in a global environment in a manner

which achieves seamless, secure, transparent, simple access to a large collection of

many different types of hardware and software resources, (including computer nodes,

software codes, data repositories, storage devices, graphics and terminal devices and

instrumentation and equipment), through non-dedicated wide area networks, to

deliver customized resources to specific applications.

A dynamic set of individuals and/or institutions defined around a set of resource-

sharing rules and conditions, these set of individuals corresponds to the virtual

organization (VO). All VOs share some commonality with respect to architecture,

platform, or some miscellaneous characteristics.

Grid architecture identifies fundamental system components, specifies the purpose

and function of these components, and indicates how these components interact with

one another. The goal is not to provide a complete enumeration of all required

El

components but to identify requirements for general component classes. The result is

an extensible, open architectural structure within which can be placed solutions to key

VU requirements.

Actual computational grid can span several management domains, and in these

domains the very high trust relationship must be supported each other. This is because

sometime for supporting powerful computing, computational resources in different

domains usually should be shared; while this kind of resource sharing may lead to

illegal users acquire much higher security level to access to the resources that they

have no rights to access to. Under these conditions,, the security of Grid may be

threatened. In addition to this, if illegal users -run malicious code in the environment

of computational Grid, certain resources in it may be destroyed and all information in

it will disappear forever. For addressing these problems trust plays a vital role in grid

environment.

2.1.1 Types of Grid

Grid computing can be used in variety of ways to address various kinds of application

requirements. According to the distinct application realms, grid systems can be

classified into three categories but there are actually no hard boundaries between these

grid categories. Real grids may be a combination of one or more of these types. The

three categories [3] of grid systems are describe as below:

• Computational Grid

A computational grid system that aims at achieving higher aggregate computation

power than any single constitute machine. According to how the computing power is

utilized, computational grids can be further subdivided into distributed

supercoinputing and high throughput categories. A distributed supercomputing grid

exploits the parallel execution of applications over multiple machines simultaneously

to reduce the execution time. A high throughput grid aims to increase the completion

rate of a stream of jobs through utilizing available idle computing cycles as many as

possible.

5

Figure 2.1 Grid Systems

• Data Grid

Data grid is mainly used for providing access to the data which spreads across various

organizations. Users only have to care about the location of data until they have

access to that data. For example data grid allows two organizations doing research on

cloud computing having unique data to share their data and other processing on that

data.

• Service Grid

A service grid provides the services those are not provided by any single machine.

This type of grid is further classified in demand, collaborative and multimedia grid.

Demand grid dynamically aggregates different resources to provide new services.

Collaborative grid provides real time interaction between users and applications via a

virtual workspace by connecting users and applications into collaborative

environment. A multimedia grid provides an infrastructure for real time multimedia

applications.

2.2 Faults in Grid

A grid environment is made up of thousands of resources, application and services

which need to interact with each other to provide a powerful executing platform.

Since these elements are extremely heterogeneous, grids are likely to failure. These

failures are not only individual failure; they may cause multiple sites failure, where

:4 u

multiple sites are interacting. Moreover machines may be disconnected from the grid

due to machine failures, network partitions or due to many other reasons. So we

conclude that grid is more prone to failure than traditional computing platform. So

dealing with failure in such environment is a big challenge. Detecting the fault is not a

big deal, the main difficulty arises in fmding out the root of the problem i.e. to

diagnose a failure is a complex task.

2.2.1 The Survey

To correlate such discussion with real world a survey [4] has been done. In the

survey, some multiple choice questions are asked to the grid users and user can select

more than one option, that's why in some graph summation of all options may be

larger than 100%.

• Kinds of failure

The main kinds of failures (Figure 2.2) are related to the environment configuration.

Almost 76% of the responses have pointed this out. Survey reveals the fact that the

main cause of configuration failures in Grid is the lack of control over grid resources.

Also survey shows different types of failures like middleware failures (48%),

application failures (43%) and hardware failures (34%).

s Fault Treatment Mechanisms

Figure 2.3 shows various fault treatment mechanisms used by Grid users. There are

some ad-hoc mechanisms which are based on complaints of users' and analysis of log

files. There are also some automated ways to deal with these failures. Some of them

are dependent on application. Some of them are proprietary ones even in the presence

of monitoring systems. Check-pointing and fault-tolerant scheduling are other

solutions to treat failures in grid environment. These two techniques are able to deal

with crash failure for hardware and software.

rA

Configuration

■ Middleware

Applicatipon

■ Hardware

Figure 2.2 Kinds of Failure

60

50

40

30

20

10

0

* Application
Dependent

■ Monitoring
System

Check-pointing
Recovery

* Fault-Tolerance
Scheduling

Figure 2.3 Fault Treatment Mechanisms in Current Use

• Greatest Problems for Recovering from a Failure

Figure 2.4 shows the problems faced by Grid users in case of a failure. As the figure

shows the most common problem is identifying the main cause of failure. Some says

the difficulty faced in implementing application dependent failure recovery. It shows

the inability in recovery from a failure. Other problems include orphaned jobs on

other systems which affect the performance of the system, corrupted cache files,
unable to access to preserved state in rasp of check-pointing technique is used.

• Degree of User Involvement

Figure 2.5 shows the requirement of user involvement in case of failure recovery

process. It involves things to be done when failures occur or notification of user when

serious errors happen. Survey shows that user involvement in failure recovery process

is very low and they are dependent on the mechanisms of systems.

80

70

60

50

40

30

20

10

0

Complexity of
Failure
Treatement
Abstraction

■ Failure
Occurrence
Rate

The Greatest User
Complaints

Figure 2.4 Greatest User Complaints

70

60

50

40

30

20

10

0

High

0 Medium

Low

Degree of User Involvement

Figure 2.5 Degree of User Involvement

2.2.2 Survey Conclusion

From the responses above, we can infer that failures are not rare. The main source of

failures is related to configuration issues and failure diagnosis is the main problem.

This scenario is a result of the following fact:

Grid is made up of various components like middleware, resource broker etc. One

component uses facilities provided by other component. For example, an application

uses facilities provided by middleware which in turn uses the abstractions of operating

systems. Hence whenever there is a problem in one component, it propagates it in

other components also. Hence one has to narrow down to different components to find

out the original source of the failure. This is exactly like the backtracking technique

used by programming languages to find the source of error. The problem is that, when

everything works, one has to know only what a software component does, but when

things break, one has also to know how the component works. Although not exclusive

of grids, this characterization is a much bigger problem in grids than in traditional

systems. This is because grids are much more complex and heterogeneous,

encompassing a much greater number of technologies than traditional computing

systems. In a grid, one can discover a failure in a grid processor about what user could

never know it's hardware platform model has existed. Thus user knows nothing about

it, how it should work, where its logs are. Thus, solving the problem is a very difficult

task. Hence there is an obstruction between detection and diagnosis of failure.

Actually log files are available to diagnose the problem but the user who uses them is

not able- to interpret them. At this point there is a great requirement of user

association. But at this point focus of developer is lost as he has to focus on

functionality as well.

2.3 Literature Review

2.3.1 Replica-Based Approach

Task replication [5] is an approach used in grid to provide fault tolerance by

scheduling multiple copies of same task, so that to increase the probability of success

of at least one copy. The basic idea is to - produces multiple instance of a given task,

based on the fact that failure probability is known a priori. In such approach, if a

replica fails then it does not restarted and success of task is mainly depends on the

success of other replicas. The replica approach causes an overhead in workload due to

executing multiple copies instead of single. If there are 'ii' identical copies for a task

of workload `w', then the total workload of grid is given by wxn. Number of replica

has a linear relationship with workload on the grid infrastructure. But due to its good

performance replica approach is in use at many grid solutions.

Let there is a set of M processors, which form a grid infrastructure. Each processor

has a fixed computational capacity denoted as Cj, where j e{ 1, 2, 3,..... , M}, thus the

total computational capacity of grid is C= gM , Cj. We also consider a set of N

different tasks Ti, i E {1, 2, 3... N}.

Lets the failure probability of a task T; is. Pf, which is the probability of failure of the

task executed on grid. Similarly success probability Ps; is the probability of success of

the task T1, in executed on grid. There is a correlation between them as follow

IDJ

j;= 1— Psi 	egn(2.1)

Task replicas are generated and assigned to grid infrastructure for execution. By this,

a low probability of task failure can be achieved. Lets k replicas of a task Ti is

produced, denoted by T; f, to T;k. Similarly the failure probabilities are given by Pf,1 to

Pf 1; and the failure probability of task Ti is given by following equation.

Pj=jj~=1 Pij 	egn(2.2)

Similarly probability of success of task T1 is give by:

Ps; =1—P%=1—f k 1 pfij 	egn(2.3)

The value of k is decided by the probability threshold 6, means in order to provide a

low failure probability we produce as many task replicas as need to satisfy the

constraint of success probability 6. We can write as:

P% J 	egii(2.4)

Where 6 is a constant between 0 and 1.

• A Group Communicator for Grid

Communication between replicas is an important part of replication based fault

tolerance. Replicas multicast the messages for other replicas and other replicas must

receive these messages in same order so that all replicas must be in identical state. To

achieve this, Total Order Multicast protocol (TOM) [6] is implemented, which

ensures that all replicas receive the multicast messages in the same order. To achieve

TOM, grid is partitioned into clusters. Each cluster is controlled by a cluster head

called as coordinator. These coordinators are interfaces for the internal node of a

cluster to the external node in other clusters in network. They perform TOM on the

behalf of an ordinary node. We create groups of process for communication. Group

membership services are used to manage a group of processes and are based on the

view, which is the list of processes belonging to a group at a particular time. Change

in view notified to all other members. The basic operations provided are join, leave,

exclude. When a process p want to join a group it uses join operation and all other

processes are notified for this action. A process can be removed from a group by

using exclusion operation, if its crash is detected by a member of group. An exit is a

voluntarily release of process from a group by itself. There are two basic primitives;

11

send multicast to send a multicast message and receive multicast to receive a

message, sent by a process which is a member of group. Atomic broadcast is a special

case of total multicast where TOM message is delivered to all of group or none.

System Model

For implementing TOM, we have to divide Grid in clusters. Figure 2.6 shows the

architecture where different replicas are combined to form a cluster which is

represented by a coordinator. Then clusters are combined to form a process group

which is called replica group. A coordinator group is formed by the coordinators of

different clusters. Whenever previous coordinator crashes, a new coordinator is given.

Coordinator uses multicast communication to communicate in its groups.

Replica Group I
	 Replica Group 2

Co-ordinate
Group

C210

C3

O Q
O

Replica Group 3

Figure 2.6 The Replication Model for the Grid

TOM Protocol

The Tom protocol used here is Static Token Algorithm which employs similar data

structure for the token as in Suzuki-Kasam [7] algorithm for distributed mutual

exclusion. A process that has the system wide token has the right to send a TOM

message. The token data structure is as follow:

- Token sequence_Number(TSN) : integer;

- Token Request_Queue(TRQ) : Queue of nodes;

Each node uses a sequence no. which is local which is actually the seq. no. of last

message. Whenever a node has to send a message, it has to send a request to

12

coordinator. The coordinator of that group (node's group) spreads that message to its

fellow coordinators present in coordinator group. The coordinator set its state to

waiting state and waits for token. When coordinator receives the token, it changes its

state to hold token state and forward this token to the requesting node. Requesting

node sends TOM Msg along with token and coordinator multicasts the message and

sends the token to requesting coordinator. After that coordinator sends a TOM_Chk

message to check the acknowledgement, if all the nodes in group have received the

message, the operation is successful and a final TOM_Set message is sent to all

coordinator to allow the final delivery to nodes. The node which receives TOM_Set

message checks that if. this message has arrived in sequence or not. If yes, it is

transmitted to application otherwise delayed.

Illustration of STA

Figure 2.7 shows an example scenario for STA. Initially, Token is held by coordinator

C2. For simplicity, it is assumed that coordinators are directly connected with the

nodes and each others. Following is the sequence of events:

1. Node n 13 in cluster 1 requests Token from its coordinator Cl.

2. Cl, does not have the Token, hence broadcasts this request in the coordinator

group.

3. C2 has the token which is not being used and has TSN as 0 and its queue is empty.

C2 sets the destination of the token as n13 and sends this token to Cl.

4. Cl receives the Token and sends it to n13 which is received by it. These first four

steps are depicted in Figure 2.7(a).

5. While n13 is • holding the Token, nodes n21 and n32 in clusters 2 and 3 make

requests consecutively to their coordinators for the Token which in turn send requests

R21 and R32 to the coordinator group.

6. R21 and then R32 reach Cl consecutively. Cl queues these requests.

7. When n13 receives the token, it increments TSN of the Token to 1 and sends TOM

message with this sequence number to Cl along with the Token. Steps 5--6-7 are

depicted in Figure 2.7(b).

13

8. Cl receives the Token and the TOM message. It broadcasts TOM on the

coordinator group. Cl also checks its local Coordinator Token Request Queue (CRQ).

It appends the nodes in its local queue to the Token Queue, removes the first node

from the TRQ (n31) and sends the token to C2.

9. C3 and C2, pass an acknowledgement message (TOM Ack) to the source. Steps 8

and 9 are depicted in Figure 2.7(c).

10. If Cl receives (TOMAck) acknowledgements from every node in the group, the

TOM is successful. In this case, Cl issues a TOM Set message to finally initiate the

actual delivery of the TOM message to the application. The replica node however,

checks its LSN with TSN to conclude TOM delivery as described above.

11. When C2 receives the Token from Cl, it proceeds similar to 7-8-9-10 above and

when n21 finishes with the Token, C2 sends it to C3. Steps 10 and 11 are depicted in

Figure 2.7(d). Note that this is performed in parallel with the TOM Msg delivery of

it 13.

CLUSTER GROUP 	 n
31

x1.3 	C3
	 n3,1

Node Rccj

13l (- 	oken Token
L

--

iT

- 0 TRQ t 	! rt
23 	Token

11 ,3,

14

n 12

CLUSTER GROUP

R.,

I1
C 	31

3

N odeiRR

~n

I C2

El
32

Token
req

TOM I
13

R
2.1

TSN 1

TRQ J 	Il ~I
Token

Node 	/

n21

(b)

1123

TOM_Msgs
Il 1 1 	ACKs

CLUSTER GROUP

TOM_Reply

TOM_Msg

TOM_Reply

- I Tr an 	 I C;. 	A.CKs
n 13 	

~ - `--- tea

T.S , 	1 	 1/ / \\0 TOM_Ms s

TRQ 	Ii ; 	 L) 	 ACKs
1 	32 	 '-1

(c)

15

CLUSTER GROUP

~~ 	

i1
31

TOM _Set 	

TO1~1_Set

I~TO_Set
`~- 	C 1 TOM Set 	 C ' 3

0 	

2

33
req

n
13

TOM Chk

T.SNO C
TRQ 	` 2

I- C TOM Set

//'

'oken 	
n
23

(d)

Figure 2.7 Operation of the STA Algorithm

• A Fuzzy Approach to Calculate Number of Replica

As explained in previous section number of replica used, has a relation with workload

of grid infrastructure. However, existing job replication algorithms use a fixed

number of replication and increase the workload whenever a. new job arrives for

execution. Although the grid environment is dynamic in nature (work load, security

demand, trust level etc.), so an adaptive approach [7] can be used for deciding the

number of replicas require to.give the optimal result at any given time depending on

the current grid environment. The security level of grid is dynamic in nature, because

there is no way to predict when and where a grid will be under attack or crash.

Similarly security demand of an application is also changing with time due to budget

or deadline or any other reason which affects user policy. Now mainly two parameters

are under consideration; one is security demand (SD) of application which is taken

during job submission time from the user, and second is trust level which is the

trustworthiness of grid environment, managed throughout the life cycle of grid. The

dynamic nature of these parameters can be presented by two fuzzy set. Depending on

these two fuzzy set we can calculate the number of replicas require for grid at any

given time using rule base fuzzy logic.

16

The Fuzzy Inference Process

A fuzzy set expresses the degree to which an element belongs to a set, this is called

membership value. The membership value of an element in a fuzzy set is calculated

with the help of membership function. The membership function assigns each element

a value between 0 and 1. Where 0 represent no containment and 1 represents full

containment. Two fuzzy set are shown below: the security demand and the number of

replica required.

k 	 --

0.8

	

0.6 	
--Very Low

	

 0.4 	 Low

	

 0.2 	 Medium

	

0 	 —High

0.1 0.3 0.5 0.7 0.9 	Very high

SD;

Figure 2.8 Five level of security demand

	

1 	 -

0.8

	

0.6 	 Very Low f0.6

	

0.4 	 Low

	

0.2 	 Medium

Ln 	Ln Ln Ln 	High

o 	.-4 r̀ m 	Very High

K1

Figure 2.9 Five level of replica

17

Flow Chart:

Figure 2.10 shows the flow chart of calculation of Number of optimal replica.

Compute the SD and TL

Use the membership function to compute
membership value

Apply the fuzzy rule base to map input space (SD,
TL) onto the output space (k)

Use defuzzificaton to compute no of replication.

Figure 2.10 Flow Chart of calculation of Number of optimal replica

Some rule bases are used in fuzzy inference, which are constructed with the past

experience. These rule bases are use for taking the decision. Example of such rules is

following:

Rule 1: IF SD is medium and TL high is THEN k is medium

Rule 2: IF SD is low and TL high is THEN k is low

2.3.2 Check-Pointing Approach

Check-pointing [9] means, we save the running state of the process into an image file,

and then restarts the program based on the image file. So the basic questions are

1) Which state need to be saved

2) How to save these states

3) How to restore the states

Handling persistent state of process in HPC environment [10] is one of the solutions.
The state of a program in execution has many aspects. Basically, all the process

private data needs to be saved and recovered during check-pointing. This includes:

address space, register set, open files/pipes/sockets, System V IPC structures, current

working directory, signal handlers, timers, terminal settings, user identities (uid, gid,

etc), process identities (pid, pgrp, sid, etc), rlimit etc. For check-pointing, we need

mainly two components address space and register set.

Since it is often not possible to checkpoint everything that can affect the program

behavior, it is essential to identify what is included in a checkpoint in order to

guarantee a successful recovery. Figure 2.11 shows the three components which

together determine the program behavior. Volatile state consists of the program stack

and the static and dynamic data Segments. Volatile state also includes those operating

system kernel structures that are essential to current program execution, for example,

the program counter, stack pointer, open file descriptors, signal masks and handlers.

Persistent state includes all the user files that. are related to the current program

execution. OS environment refers to the resources that the user processes must access

through the operating systems, such as swap space, file systems, communication

channels, keyboard, monitors, process id assignments, time, etc.

Since the persistent state is often an important part of most long-running applications,

we can include all persistent state in the process state, as indicated in Figure 2.11, to

guarantee truly consistent check-pointing and transparent recovery. For saving the

disk space there is no use to save temporary file as they can be easily constructed;

now we can remove some part of persistent state from process state (Figure 2.11).

Actually persistent state position is dependent on implementation.

Files and file descriptors introduce several challenges for checkpoint/restart. These

two abstractions are fundamental to the correct execution of most applications. All

input/output paths are built on files and file descriptors. Since file operations occur

frequently, performance is an important concern. Files may be modified between a

checkpoint and the corresponding restart (possibly by the application itself if it is

restarted twice from the same checkpoint or from a periodic checkpoint after a fault).

Worse still, there are no straightforward ways to know what an application has done

to the file system in the interval between checkpoints. If a file descriptor has been

19

closed, or a file has been unlinked, there are no data structures available to recover the

state of the file! Partial solutions to this problem exist, but they involve saving hidden

copies of all files when they are opened, and also when the process is check-pointed.

Even here, correct execution is impossible to guarantee. There are a few techniques

that may be practical. File descriptors are the only link between a process and the

corresponding file. File descriptors associated with normal files should be reattached

to those files when the application is restarted. File descriptors associated with a

terminal (for standard IO) should be attached to the terminal where the restart is

requested. Any flags set for the file descriptor, the access mode, and the file offset

must be restored after restart. Library implementation moves the system call

redirection to maintain a separate copy of the kernel's file - descriptor table. In some

cases, such as read-only access, the file descriptor table may simply be restored

during restart.

Volatile state:" 	persi*0 state

OS environment

EesPetate
OS environment

Volatile state'- 	 :Persistent -tare

OS environment

Figure 2.11 Process state (shaded area) vs. process environment (non-shaded

area)

• Fault tolerance with low level check-pointing packages

Check-pointing gives very good result in fault tolerance. In the case of any failure,

check-pointed application can be recovered from its last check-point. There are many

low-level [11] and high level check-pointing packages available in market. Each

check-pointing package offers different type of services and interfaces. Because of

some technical issues check-pointing packages are application dependent. For

example in case of distributed application a significant problem is how to take check-

20

point of a few co-operating processes and not lose the just in-transit message

simultaneously. Check-pointing packages have some application issues, which have

to consider. These approaches are under consideration of researches due to nice

performance in grid environment. A low-level check-pointing package is presented

below:

Components

A check-pointing application has following components:

Low-level Check-pointer

Functionality of this component is to take system-level check points. Many low-level

check-pointers are available in market but AltrixC/R is famous one due to its unique

features. It is a kernel-level check-pointing package design by PSNC for Altrix

systems. The most recent version works with Linux kernel 2.6. This package comes

with dynamic loader so it is easy to install. This package is able to check-point multi-

process programs that communicate through IPC objects.

Execution Manager

The main task of execution manager is to provide its facilities to GRB with uniform

interface to various computing nodes. It provides interface to different type of clusters

and even with single system. WS GRAM is one of the Executing Manager used now a

day. WS GRAM stands for Web Service Grid Resources Allocation and Management

and is a part of Globus Toolkit.

Local Resource Manager

The component that provides access to local computing resources is named as Local

Resource Manager (LMR). Torque is a Local Resource Manager which is an open

source. LRM basically provides control over the jobs distributed among computing

nodes of a cluster.

Grid Resource Broker

The Grid Resource Broker is a component that coordinates resource allocation and

especially job submissions in Grid environment. This is the component to which end

user interacts directly, in order to submit, monitor and control their jobs. This

21

interface may be GUI, CUI, WWW or WAP-based page. Grid Resource Management

Services of GRIDGE Grid Toolkit is famous one due to its unique feature of ability to

deal with jobs defined as set of tasks with precedence relationship, where the

execution of a child task can be triggered by any status of a parent task.

User Interface

The interface is key component of any application. The interface should provide a

neat interacting platform. Apart from its main functionality of controlling and

mentoring the jobs, the interface should provide the possibility of presenting the

intermediate computing results.

User 	 GRID 	 Cluster 	 Computing
Tier 	 Tier 	 Tier 	 Tier

Figure 2.12: Architecture of low level check-pointing packages

• Adaptive Check-pointing Strategy for Economy based Grid

The economy based grid is a user centric, resource management and job scheduling

approach. It offers incentive and profits to resource owners as award of contributing

their resources. On the other hand, it also provides user a flexible environment to

maximize their goal within their budget by relaxing QoS and deadline. In this way,

economy based grid provide benefit to both of the parties i.e. resource provider and

resource consumer. Fault tolerance in such environment is critical to consider because

it effect the profit of both the parties and in grid, it become more important because

the possibility of faults in grid environment is much higher than a traditional

distributed system due to lack of centralized environment, predominant execution of

22

long jobs, highly dynamic resource availability, diverse geographical distribution of

resources, and heterogeneous nature of grid resources.

Grid jobs are executed by economy based grid as follows:

1._ Grid user submits their job to Grid Resource Broker (GRB) by specifying their

QoS requirements like deadline and budget.

2. GRB schedules user job on best available resource that can fulfill the

requirement of user, and job is executed there.

3. The result of job is submitted to user upon successful completion of its job.

Such an economy based environment has following drawbacks:

1. If a fault occurs at grid resource then job is rescheduled and failed to satisfy

the QoS requirements like budget and deadline because resubmitted job takes

more time and more budget.

2. In such environment there are resources that fulfill the criteria of QoS but have

more tendencies toward fault. But GRB again and again selects these

resources which makes the scenario worst.

So an adaptive check-pointing [12] fault tolerance approach is used in this scenario to

overcome these drawbacks.

System Model

The effect of fault in grid on economy based environment is explained in above

description. Faults mainly affect the resource management strategy. The main aim of

this model is to optimize the user centric metrics (like number of task executed within

and with exceed deadline and budget) in the presence of fault. Here fault occur means

a grid resource is unable to complete the task within given time and budget. When

such ,fault is detected by the Grid Resource Broker (GRB), the fault occurrence

information of that resource is updated. This fault occurrence information is used

during decision making of allocating the resources to the job. This is implemented as

fault index. Fault index is maintained and updated when an allocated job completes.

This fault index indicates the resource vulnerability to fault i.e. higher the fault index

is, higher the failure rate. The fault index of a resource increases every time when the

23

resource fails to complete the assigned task within deadline and budget. Similarly the

fault index decreases every time when resource successfully completes the assigned

job within deadline and budget.

This model has the same components as in low level check-pointing packages, but

with some additional one. The components are Grid Resource, Fault Tolerance

Schedule Manager, Grid Resource Broker, Grid Information Service (GIS) etc. When

GRB receive a grid job from the user, it gets the contact information of available grid

recourse from the GIS and then contacts with resources and tells them to send their

current workload condition. Based on current workload condition of the resources, it

prepares a list of resources that can execute the task with user required QoS. Then

GRB collecis the fault index of selected resources from the Fault Tolerance schedule

manager. Depending on the fault index of the resources GRB implements the

following Algorithm to take the appropriate decision.

Algorithm for Scheduling of job:

• F: Fault index of the selected grid resource

• F(i), i = 0, 1, 2, ... ,N, are integers such that F(0) <F(l) < ... < F(N)

• C(i), i= 1, 2, ... ,N, are the percentage of task completed such that

0<=C(i)<=100 and C(1)>C(2)> • • .>C(N)

Step 1: if F(i) <= F < F(i+l) then queue the job and take checkpoint after C(i)

Step 2: (A) if F(N) <= F Then remove the resource from the list and mark it as

unavailable.

(B) Get the last check point and re submit the job

Step 3: Update the fault index.

The fault index of grid resource is updated by Fault Tolerance Scheduling Manager

using following algorithm.

24

Algorithm for Updating Fault Index:

Step I: If Task is completed then

C c~`~RAL fe

F >= 1 then decrement the fault index.

Step 2: If Task Failure Occur then

i) Increase the fault index.

ii) Resubmit the job with last check-point.

25

Chapter 3

Resubmission Based Approach

3.1 Working Principle

A process is said to be successfully executed on a resource if and only if it starts when

the resource is up and finishes before resource goes down. If a process finish time is

greater than resource failure start time, then the process is called as failed. The Grid

jobs (Gridlet) are large in size, so they require more computing time, which increases

the probability of failure of job. As the execution time of a process is large, larger is

the probability that its fmish time is greater than resource failure start time.

Resource working Time 	Resource Failure Time ` 	Resource Working Time

TI 	 T2 	 T3 f4 	 rT4 I

Figure 3.1: Resource life time

Table 3.1 Relationship between Job Status and Resource Life Time

Job Status Job Start Time(St) Job End Time(Et)

Success Ti < St <T2 Et<T2

Failure T 1 <St Et>T2

Success T3<St<T4 Et<T4

The Resubmission Based approach divides a large task into number of small size

subtasks, which can be executed on grid resources and execution of all the subtasks

have similar effect as execution of large task. Some of the subtasks are independent to

each other, can be executed in parallel to decrease turnaround time which helps in

achieving deadline QoS factor.

26

Sharwan
Stamp

3.2 System Model

System consists of following components:

Grid
Large Task 	 User

Grid Resource Broker
Subtaskl 	Subtask 2 	 Subtask n

Subtask Generator

Subtask Manager

Subtask 1,
Subtask 2

Subtask 4
Subtask n

Resource 	Resource 	Resource 	Resource 	Resource
1 	 2 	 3. 	 4 	 n

Figure 3.2: System Architecture

m Grid User: This component submits Grid jobs (Gridlets) into grid

environment. The Grid is constructed to fulfill the requirement of grid user.

Grid user is the key component for which grid is constructed. Grid looks like a

super computer to the grid user. Grid user thinks, he is the only user which is

using the grid, so that each user is not aware of existence of other user. Grid

user directly communicates to Grid Resource Broker for executing its large

size jobs. Grid Broker returns the results of jobs after execution of job.

27

• Grid Resources Broker: This is the main component, which is responsible

for providing a virtual image of super computer to grid user by hiding internal

details. It receives Gridlets from grid user and executes them on grid

infrastructure and returns back the result of Gridlets. Grid Resource Broker

first communicates to Grid Information Service to get the information of grid

resources in the grid. Grid Information Service contains all static information

of all resources which may be local or global to it after getting the information

about all resources. Grid Resource Broker selects one of them on the basis of

scheduling algorithm used, and assigns the grid job to that resource and uses

heart beat detection approach to detect failure of resource. Grid resource

returns the result of job after execution completed and Grid Resource Broker

hands over the results to Grid user.

• Subtask Generator: It is a part of Grid Resource Broker who deals with

dividing the Iarge size task into small size subtasks and constructs the flow

graph for subtasks. It also gives a guarantee that execution of all subtasks

result in same effect as execution of large size task. Subtask Generator first

divides the task into basic block on the basis of control flow dependency. Then

it starts picking up each basic block and divides them into subtasks on the

basis of data flow dependency. Subtask size checker is a one part of subtask

generator. Subtask size is an important factor, which must be considered in

this approach. If the subtask size is too large then it does not fulfil the working

principle and if the subtask size is too small then most of time is spent in

scheduling the subtask, which increases the overhead as well as execution time

of the task. Subtask upper size limit and lower size limit are two metrics which

are used to decide the subtask size. If subtask size is less then subtask lower

limit then small subtasks at same level of flow graph are merged to make a

subtask whose size lies between the limits. If the subtask size is larger than the

subtask upper limit then subtask is divided into smaller and equal size sub-

subtasks so that each sub-subtask's size lies between the limits. All this

functionality is done inside subtask size checker.

• Subtask Manager: It is also a part of Grid Resource Broker which manages

execution of subtasks. It decides which subtask has to execute on which

28

resource and at what time. It also maintains the sequence of execution of
subtasks in such a way that execution of all subtasks result in same effect as

execution of large size task. In short this part works as the scheduler of

subtasks. It schedules the subtasks on the basis of flow graph. It is also

responsible for generation of output after all subtasks successfully executed_ If
a particular resource fails, it resubmits all the currently executing subtasks on
that resource to some other available resource. .

Regional
GIS

Grid
Resource

Subtask
Generator

Figure 3.3: Interaction of different components

• Grid Resource: This is the component, on which tasks are executed. A grid

resource consists of multiple processing elements. Grid resources are geo-

graphically distributed. Each grid resource is connected with a Grid

Information Service. When a new grid resource is connected or a failed

resource is recovered, first of all it communicates with Grid. Resource

Information Service to register itself It provides its static information like

number of processing elements, speed of processing elements, cost of resource

etc. Static information of a resource is such information regarding a resource

which does not change over a short time of period. Grid Resource Broker

29

directly communicates to grid resource and assigns grid jobs on them and
takes back the result which Grid Resource Broker hands over to grid user.

Figure 3.3 shows interaction between different components of the model. It tells the

order in which different components interact with each other when a grid job is

submitted in grid. The explanation of interaction of different components is as

follows:

1. Each resource registers itself to the designated GIS to inform its availability
and its current static information.

2. Grid user sends job, deadline time and initial budget to the Grid Resource
Broker.

3. Grid Resource Broker queries GIS for the available list of resources.

4. Then Grid Resource Broker calls its Subtask Generator to divide the large task
into small subtask depending on the control and data flow dependency.

5. Then Grid Resource Broker calls its Subtask Manager to schedule the
subtasks.

6. Subtasks are submitted to grid resource for execution.

7. Resource executes the subtasks and results are sent back to the Grid Resource
Broker.

8. Grid Resource Broker hand-over the results to Grid User.

3.3 Algorithms

3.3.1 Subtask Generator

Step 1: Large tasks are divided into basic blocks depending on the control flow

dependency.

Step2: Repeat step3 to step6 for each instruction in every basic block.

Step3: Compare the input variables with input set and output variables with output set

of each subtask generated for basic block in the system till now.

Step4: If no match is found than the instruction does not depend on any existing

subtask, so a new subtask is created with that instruction and input set is initialized

30

with input variables of the instruction and output set is initialized with output

variables of the instruction.

Step5: If only one match is found then it means the instruction depends upon the

instruction of matched subtask, so that instruction is appended in matched subtask and

input variables and output variables are added in input set and output set of the

matched subtask.

Step6: If more than one match is found then it means instruction depends upon more

than one subtask and a common child node is found in flow graph and instruction is

added in that node.

Step7: Flow graph and input and output set of subtasks are returned.

3.3.2 Subtask Manager

Step 1: Repeat the step 2 to step 9 until all subtasks are executed.

Step 2: Find the subtasks in the flow graph that does not depend on any of other

subtasks.

Step 3: Repeat step 4 to step 6 until all independent subtasks are scheduled.

Step 4: Find the resources which can satisfy budget and deadline factor for the

subtask.

Step 5: If no such resource is found then set status of the job as cancel and return.

Step 6: Among the shortlisted resources, find the lightly loaded resource and schedule

the subtask to that particular resource.

Step 7: Wait for the subtask to be completed.

Step 8: If subtask is successfully executed than remove it from the flow graph- and go

to step 2.

Step 9: If subtask fails due to resource failure then reschedule the subtask to any other

available resource.

31

Step 10: Check the total execution time of job, if it is less than deadline then set its

status as successful otherwise set its status as failed. 	 V

3.3.3 Grid Resource Broker

Step 1: Grid Job (Gridlet) is submitted by grid user to grid resource broker (GRB):

Step 2: GRB divides the large task into small subtasks

Step 3: GRB schedules all independent subtasks to different resources and waits for

them to complete and then submits rest of the subtasks according to dependency

sequence.

Step 4: Failure of a subtask leads to resubmitting the failed subtask on other resource.

Step 5: GRB maintains all the information about the subtasks of a task and when all of

the subtasks are executed then GRB returns the result of the task back to the grid user.

The main strength of our approach lies •in step2. In this step, first the jobs are

submitted to subtask generator. The subtask generator first constructs basic blocks of

the given task on the basis of control dependencies. Then it divides each basic block

into subtasks according to their data dependency. Finally all the constructed subtasks

are passed to subtask size checker. Here we. have defined two thresholds for subtask

size. If subtask size is small, it will degrade the performance of grid as lot of

communication overhead is associated with the execution of subtask. Hence to

alleviate this problem, the size checker combines different subtasks on same level of

data dependency graph until size becomes within threshold limit. If the size of subtask

is greater than upper threshold, it divides that subtask into continuous sub-subtasks.

Finally all the subtasks are submitted to the subtask manager (Step 3). Subtask

manager. schedules the subtasks of each basic block according to their data

dependency graph. If any of the subtasks fails, then we have to resubmit only that

particular subtask on another available resource. The benefit in Resubmission Based

approach is that the subtask size is small, so we have less computational -loss and also

no need to have check-pointing as tasks are already sub-divided.

32

3.4 Salient Features

> Failure of one subtask does not affect the other independent subtasks.

> Only failed subtask is resubmitted, not the whole large task.

➢ No check-pointing is required because the size of subtask is small enough.

➢ Task turn-around time is reduced because independent subtask can run in

parallel, which helps us in achieving the deadline QoS factor.

33

Chapter 4

Simulation Tool and Parameters

4.1 GridSim: Grid Modeling and Simulation Toolkit

The - GridSim[I3, 14] toolkit provides a comprehensive facility for simulation of

different classes of heterogeneous resources, users, applications, resource brokers, and

schedulers. It can be used to simulate application schedulers for single or multiple

administrative domains distributed computing systems such as clusters and Grids.

Application schedulers in the Grid environment, called resource brokers, perform

resource discovery, selection, and aggregation of a diverse set of distributed resources

for an individual user. This means that each user has his or her own private resource

broker and hence it can be targeted to optimize for the requirements and objectives of

its owner. In contrast, schedulers, managing resources such as clusters in a single

administrative domain, have complete control over the policy used for allocation of

resources. This means that all users need to submit their jobs to the central scheduler,

which can be targeted to perform global optimization such as higher system utilization

and overall user satisfaction depending on resource allocation policy or optimize for

high priority users. GridSim is better for simulating the grid based algorithms

because

➢ It allows modeling of heterogeneous types of resources.

> Resources can be modeled in two modes: space shared and time shared.

➢ Resource capability can be defined in the form of MIPS (Million Instructions

per Second) as per SPEC (Standard Performance Evaluation Corporation)

benchmark.

➢ Advance reservation of resources can be done.

> Application tasks can be heterogeneous and they can be CPU or I/O intensive.

> There is no limit on the number of application jobs that can be submitted to a

resource.

➢ Multiple user entities can submit tasks for execution simultaneously in the

same resource, which may be time-shared or space-shared.

➢ Network speed between resources can be specified.

➢ It supports simulation,of both static and dynamic schedulers.

34

Output 	R.:ource

Input

a '

Internet

Statistics of all or selected operations can be recorded and they can be

analyzed using GridSiun statistics analysis methods.

4.2 GridSim Entities

GridSiin supports entities for simulation of single processor and multiprocessor,

heterogeneous resources that can be configured as time or space shared systems. It

allows setting their clock to different time zones to simulate geographic distribution of

resources. It supports entities that simulate networks used for communication among

resources. During simulation, GridSi n creates a number of multi-threaded entities,

each of which runs in parallel in its own thread. An entity's behavior needs to be

simulated within its body () method, as dictated by SimJava. GridSim based

simulations contain entities for the users, brokers, resources, information service,

statistics, and network based i/O as shown in Figure 4.1

V:er =i 	Broker -i 	Output

IT.

- I'Jiml '

Input

i

I

Output

Infot mati~u
der vice

Figure 4.1: A flow diagram in GridSim based Simulation

i) 	User: - Each instance of the User entity represents a Grid user. Each user may

differ from the rest of the users with respect to the following characteristics:

35

• Types of job created e.g., job execution time, number of parametric

replications, etc.

• Scheduling optimization strategy e.g., minimization of cost, time, or both,

• Activity rate e.g., how often it creates new job, 	-

• Time zone, and

• Absolute deadline and budget, or
• D-and B-factors, deadline and budget relaxation parameters, measured in the

range [0, 1] express deadline and budget affordability of the user relative to

the application processing requirements and available resources.

ii) Broker: -Each user is connected to an instance of the Broker entity. Every job

of a user is first submitted to its broker and the broker then schedules the

parametric tasks according to the user's scheduling policy. Before scheduling

the tasks, the broker dynamically gets a list of available resources from the

global directory entity. Every broker tries to optimize the policy of its user and

therefore, brokers are expected to face extreme competition while gaining

access to resources. The scheduling algorithms used by the brokers must be

highly adaptable to the market's supply and demand situation.

iii) Resource: - Each instance of the Resource entity represents a Grid resource.

Each resource may differ from the rest of resources with respect to the

following characteristics:

• Number of processors;

• Cost of processing;

• Speed of processing;

• Internal process scheduling policy e.g., time shared or space shared;

• Local load factor; and

• Time zone.

The resource speed and the job execution time can be defined in terms of the ratings

of standard benchmarks such as MIPS and SPEC. They can also be defined with

respect to the standard machine. Upon obtaining the resource contact details from the

Grid information service, brokers can query resources directly for their static and

dynamic properties.

iv) 	Grid Information Service: - It provides resource registration services and

maintains a list of resources available in the Grid. This service can be used by

brokers to discover resource contact, configuration, and status information.

irr

v) 	Input and Output: - The flow of information among the GridSim entities

happens via their Input and Output entities. Every networked GridSim entity

has I/O channels, which are used for establishing a link between the entity and

its own Input and Output entities. Note that the GridSim entity and its Input

and .Output entities are threaded entities i.e., they have their own execution

thread with body() method that handle the events. The use of separate entities

for input and output enables a networked entity to model full duplex and

multi-user parallel communications. The support for buffered input and output

channels associated with every GridSim .entity provides a simple mechanism

for an entity to communicate with other entities and at the same time enables•

the modeling of a communication delay transparently.

4.3 Application Model

GridSim does not explicitly define any specific application model. It is up to the

developers (of schedulers and resource brokers) to define them. In GridSim, each

independent task may require varying processing time and input files size. Such tasks

can be created and their requirements are defined through Gridlet objects; A Gridlet is

a package that contains all the information related to the job and its execution

management details such as the job length expressed in MI (million instructions), disk

I/O operations, the size of input and output files, and the job originator. These basic

parameters help in determining execution time, the time required to transport input

and output files between users and remote resources, and returning the processed

Gridlets back to the Originator along with the results. The GridSim toolkit supports a

wide range of Gridlet management protocols and services that allow schedulers to

map a Gridlet to a resource and manage it throughout the life cycle.

4.4 Resource Model

In the GridSim toolkit, we can create Processing Elements (PEs) with different speeds

(measured in either MIPS or SPEC-like ratings). Then, one or more PEs can be put

together to create a machine. Similarly, one or more machines can be put together to

create a Grid resource. Thus, the resulting Grid resource can be a single processor,

shared memory multiprocessors (SMP), or a distributed memory cluster of computers.

These Grid resources can simulate time- or space-shared scheduling depending on the

allocation policy. A single PE or SMP type Grid resource is typically managed by

KFl

time-shared operating systems that use round-robin scheduling policy for

multitasking. The distributed memory multiprocessing systems (such as clusters) are

managed by queuing systems, called space-shared schedulers, that execute a Gridlet

by running it on a dedicated PE when allocated. The space-shared systems use

resource allocation policies such as first-come-first-served (FCFS), back filling,

shortest-job-first served (SJFS), and so on. It should also be noted that resource

allocation within high-end SMPs could also be performed using the space-shared

schedulers.

4.5 Simulation Environment and Data

Table 4.1 Simulation Parameters.

Resource (Location) Nodes Rating Policy GIS Cost Mean
Name (z) Time

to
Failure

RAL (UK) 41 4900 Space- 2 490 60
Shared

Imp. College 52 6200 Space- 2 620 100
Shared

NorduGrid (Norway) 17 2000 Space- 2 200 340
Shared

NIKHEF (.Netherlands) 18 2100 Space- 0 210 340
Shared

Lyon (France) 12 1400 Space- 0 140 450
Shared

CERN (Switzerland) 59 7000 Space- 0 700 75
Shared

Milano (Italy) 5 7000 Space- 1 700 55
Shared

Torino (Italy) 2 300 Time- 1 30 130
Shared

Rome (Italy) 5 600 Space- 1 60 110
Shared

Padova (Italy) 1 100 Time- . 1 10 150
Shared

Bologna (Italy) 67 8000 Space- 1 80
Shared

> The Grid consists of eleven resources. Their capabilities, mean time to failure

and cost are given in Table 4.1.

> Cost of the resources are in cost per million of instructions.

c:

➢ During simulation 20 Users submit 10 jobs per user.

> Job size is uniformly distributed in [700,000 to 800,000] Million of instruction

(MI) units. Its input and out file size is also uniformly distributed in [300 to

500] kilo bytes.

> Resource failure is exponential distributed with mean time of failure of each

resource is given in table II. Recovery of failed resource is also simulated

using exponential distribution with mean time of 3 minutes.

> In the experiment there are three virtual organizations and each having a GIS.

39

Chapter 5

Results and Discussions

5.1 Experiment Results

Subtask generator component receives a large task as input and returns a set of

subtasks. It also returns precedence constraints directed acyclic flow graph, input and

output set of subtasks. Precedence constraints directed acyclic flow graph is created

by considering control dependency and data dependency of each block. Subtask

generator first converts large task into three address instruction format and then these

three address instructions are provided to dependency calculating unit for further

processing. The output provided by this unit is shown below:

Sub task 0

Adjacency List is: 3 4
Parents List is:
Input Set is: h m
Output Set is: c

Sub task 1

Adjacency List is: 4
Parents List is:
Input Set is: b f
Output Set is: g

Subtask 2

Adjacency List is: 3
Parents List is:
Input Set is: h i
Output Set is: d
===========Subtask 3

Adjacency List is: 6 8
Parents List is; 0 2
Input Set is: a d f k 1
Output Set is: h m
=========== Sub task 4 ======= 	==

Adjacency List is: 6 8
Parents List is: 0 1
Input Set is: a c f n
Output Set is: b c

===========Subtask

Adjacency List is: 8
Parents List is:
Input Set is: f i
Output Set is: j
===========Subtask 6 _________________________

Adjacency List is:
Parents List is: 3 4
Input Set is: b i n o
Output Set is: a h

Sub task 7

Adjacency List is:
Parents List is:
Input Set is: k n
Output Set is: e

Sub task 8

Adjacency List is:
Parents List is: 3 4 5
Input Set is: b c d f j 1 n o
Output Set is: •d f g

Figure 5.1: Precedence constraints Directed Acyclic Flow Graph.

41

The output of dependency calculating unit contains Adjacency List, Parents List,

Input Set and Output Set of subtasks. Initially the subtasks which are having no

parents in Parents List are independent ' and are scheduled in parallel. After

successfully executing a subtask, it is removed from Parents List of the other subtasks

which are dependent on this subtask and then a subtask is searched in system which is

having empty Parents List.

Figure 5.1 shows the flow graph created by subtask generator unit. The node

represents the subtask and a directed edge from i h̀ node to j ì' node represents that jth

subtask is dependent on it'' subtask and j`'' subtask can only be scheduled after the

completion of i`'' subtask.

5.2 Comparison of Check-Pointing approach and Resubmission

Based approach

The system models of Check-Point and Resubmission Based approach are designed

and tested in GridSim Toolkit-4.0. The GridSiin libraries are added to Eclipse. Eclipse

is an integrated development environment (IDE) for Java. The GridSim libraries are

available freely as java runtime environment (JRE), and they are linked to eclipse

platform as an external JRE. A number of resources with different characteristics like

cost, CPU rating are used to design grid infrastructure for simulation purpose as

mentioned in World Wide Grid (WWG testbed). Different numbers of Gridlets are

created to evaluate these approaches. Gridlet is defined in terms of number of

instruction (in Million), input file size (in kilo byte), and output file size (in kilo

bytes). In the experiment, 200 Gridlets are submitted for different values of budget

and deadline for measuring the performance. Gridlets are assigned to two different

grids, one in which Check-Point fault tolerance approach is used and to another in

which Resubmission Based fault tolerance approach is used. In both the scenarios,

first aim is to fulfil the budget and deadline QoS parameter. In Check-Point approach,

we take Check-Point at regular intervals.

5.2.1 Different values of budget

Figure 5.2 shows the comparison on the basis of successfully executed gridlets in

resubmission based and check-point approach for different values of budget varying
42

from 5000 to 17000:, and deadline time is fixed to 120 seconds. Check-Point

approach takes Check-Points at regular intervals, which is a time consuming task so

some of the tasks do not achieve deadline and are considered as unsuccessful. But in

resubmission based approach no Check-Pointing is done and independent subtasks

can run in parallel, which helps in achieving deadline hence more jobs are

successfully executed in resubmission based approach as compared to Check-Point

approach. It is shown in figure 5.2. At the initial stage of the experiment near about 30

jobs get the resources. Rest of 170 jobs fail to satisfy QoS parameters like deadline

and budgets, so these 170 jobs are consider as cancelled jobs. Out of 30 jobs in check-

point approach near about 20 jobs successfully executed and rest of the 10 jobs failed

to complete within deadline time. In resubmission based approach independent

subtasks can execute in parallel so all 30 jobs are successfully executed. It also

reduces average execution time in resubmission based approach.

200

180

160

G 140

	

R 120 	 -
I

	

 100 	 CheckPoint

D

L 80 	 - —._
Resubmission
Based

T 40

20

0

4000 6000 8000 10000 12000 14000 16000 18000

BUDGET(:)

Figure 5.2: Number of job success for different values of budget

43

35

30

25

20

15

10
Resubmission
Based

5

0

4000 	9000 	14000 	19000

BUDGET(?)

Figure 5.3: Number of jobs fail to achieve deadline

Figure 5.3 shows the number of jobs failed due to deadline time in both approaches.

Number of jobs failed to finish within deadline is plotted and it is observed that in

resubinission based approach very few jobs failed to finish within deadline time as

compared to check-point approach. The check-point consumes time in saving status at

each check-point at regular interval which is an overhead in execution of job. Let

assume that I second is consumed in saving status at each check-point and average 10

check-points are taken during execution of a job then overall 10 second (1 * 10) of

extra time is consumed in check-point approach. Other reason for better performance

of resubmission based approach is that it divides large task into small subtasks which

can be execute in parallel. Due to this parallelism between different subtasks,

execution time of a job is lesser as compare to execution tune in check-point approach

which helps the jobs to finish with in dead line time.

G
R
I

D
L

E
T

S

Check-Point

44

5.2.2 Different values of deadline time

180

160

140

G 120
R

	

100 	— 	 -

D 	Check-Point
80

L 	 -- Resubmiss-
E 	60 	 ion Based

T 40
S

	

20 	 -

0

20 40 60 80 100 120 140 160

Deadline(sec.)

Figure 5.4: Number of job success for different values of deadline

Figure 5.4 shows the comparison in number of gridlet successfully executed in

resubmission based and check-point based approach for different values of deadline

time which varies from 20 to 150 second and budget is fixed to 120007. Some time is

consumed in check-pointing which lead to fail a task to complete within deadline.

Graph shows that more jobs are completed within deadline time in resubmission

based approach as compared to check-point based approach. At the initial stage of the

experiment near about 40 jobs get the resources and rest of 160 jobs are failed to

satisfy QoS parameters like deadline and budgets, so these 160 jobs are consider as

cancelled job. Out of 40 jobs in check- point approach near about 20 jobs successfully

executed and rest of the 20 jobs failed to complete within dead line time but in

resubmission based approach 30 jobs are successfully executed due to independent

subtasks can execute in parallel. 10 jobs are failed in resubmission based approach to

finish within deadline time because deadline time is small in initial stage of the
experiment.

45

Chapter 6

Conclusions and Scope for Future Work

6.1 	Conclusions

In this dissertation, a novel fault tolerance approach is proposed that aims to

successfully execute grid tasks in the presence of resource failure in economy based

grid environment. Large grid task are divided into small subtasks to achieve fault

tolerance. Independent subtasks can run in parallel which decrease the average

execution time of task, which helps in completing the task within deadline time.

Resubmission based approach is simulated in GridSim ToolKit-4.0 and compared

with check-pointing approach. The experiment results show that resubmission based

approach reduces the execution time by running subtasks in parallel so that lesser

number of jobs failed to achieve deadline. Resubmission approach is simple and there

is no wastage of time for taking Check-Points, which decreases the execution time of

a job. Experimental results also show that it provides better fault tolerance

environment to grid because more number of jobs are successfully executed as

compared to Check-Point approach.

6.2 Scope for Future Work

In the future, this work can be extended in following ways:

i) Better resource allocation policy can be used, which can consider dynamic

nature of resources.

ii) This work_ can be implemented in actual middle ware like Globus.

iii) More independency can be achieved within the subtasks which lead to less

execution time.

REFERENCES

[1] M. Baker, R. Buyya and D. Laforenza, "Grids and Grid Technologies for

Wide-area Distributed Computing", Published in Journal of Software-Practice

& Experience, Vol. 32, No.15, pp:1437-1466, Dec 2002.

[2] 1. Foster, C. Kesselman, and S. Tuecke. "The anatomy of Grid: Enabling

scalable virtual organizations". Published in the International Journal of

Supercomputer Application, 15(3), Aug,2001.

[3] Klaus Krauter, . Rajkumar Buyya, and Muthucumaru Maheswaran, "A

Taxonomy and Survey of Grid Resource Management Systems for Distributed

Computing", Published in Software: Practice and Experience (SPE) Journal,

ISSN: 0038-0644, vol. 32, Issue 2, 2002, Wiley Press, USA, Feb 2002.

[4] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve, "Faults in Grids: Why are

they so bad and What can be done about it?," In Proc. 4''' International

Workshop on Grid Computing , pp. 18-18, Jan 2003.

[5] A. Litke, K. Tserpes, K. Dolkas, and T. Varvarigou, "A task replication and

fair resource management scheme for fault tolerant grids," In Proc. Of
Advances in Grid Computing-EGC 2005, pp. 1022-1031 ,Jan 2005.

[6] K. Erciyes, "A replication-based fault, tolerance protocol using group

communication for the grid," Parallel and Distributed Processing and

Applications, Lecture Notes in Computer Science, vol. 43, pp. 672-681, Aug
2006.

[7] I. Suzuki and T. Kasami, "A distributed mutual exclusion algorithm,"

Published in ACM Transactions on Computer Systems (TOGS), vol. 3, pp.
344-349, Aug 1985.

[8] C. Jiang, C. Wang, X. Liu, and Y. Zhao, "A Fuzzy Logic Approach for Secure

and Fault Tolerant Grid Job Scheduling," Autonomic and Trusted Computing,
Lecture Notes in Computer Science, vol. 46, pp. 549-558, Jan 2007.

47

Sharwan
Stamp

[9] Partha Sarathi Mandal, Krishnendu Mukhopadhyaya, "Performance analysis

of different checkpointing and recovery schemes using stochastic model",

Published in Journal of Parallel and Distributed Computing, vol. 66, pp 99-

107,2006

[10] P. Riteau, A. Lebre, and C. Morin, "Handling Persistent States in Process

Checkpoint/Restart Mechanisms for HPC Systems," In Proc. Of 9th

IEEE/A CM International Symposium on Cluster Computing and Grid

CCGRID '09., pp. 404-411, May 2009.

[111 G. Jankowski, R. Januszewski, R. Mikolajczak, P. Supercomputing, N. Center,

and J. Kovacs, "Improving the fault tolerance level within the GRID

computing environment-integration with the low-level checkpointing

packages," Core GRID Technical Report Number TR-0158, June 16 2008.

[12] B. Nazir, K. Qureshi, and P. Manuel, "Adaptive checkpointing strategy to

tolerate faults in economy based grid," Published in the Journal of

Supercomputing, vol. 50, pp. 1-18, May 2009.

[13] GridSim toolkit. [Online] Available: http://www.gridbus.org/gridsim/

[14] Rajkumar Buyya and Manzur Murshed, "GridSim: A Toolkit for the Modeling

and Simulation of Distributed Resource Management and Scheduling for Grid

Computing, Concurrency and Computation" Published in Practice and

Experience (CCPE), vol. 14, Issue 13-15, pp: 1175-1220, ISSN: 1532-0626,

Wiley Press, New York, USA, Dec 2002.

LIST OF PUBLICATIONS

[1] 	Vinit Kumar, Dr. Padam Kumar, "Module Based Approach for Fault tolerance

in Grid Environment", Second International Conference on Advances in

Computer Engineering, ACE '11, 25-26 Aug2011, Trivendram, Kerala, India.
[Accepted]

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

