
FACE RECOGNITION USING
NEURAL NETWORKS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMPUTER ENGINEERING
(With Specialization in Control and Guidance)

By

VIJAYENDRA KUMAR
CANT RAL ~I~,~4

c~• a~995--

-
Acc No

Date '1q11'

°f Tic 	 ~ T ROORK.~
~W ors

_ sf

IF

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2011

CANDIDATE'S DECLARATION

I hereby declare that the work, which is presented in this dissertation report entitled,

"FACE RECOGNITION USING NEURAL NETWORKS" towards the partial fulfillment of

the requirements for the award of the degree of Master of Technology with specialization in

CONTROL AND GUIDANCE, submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, Roorkee (India) is an authentic record of

my own work carried out during the period from July 2009 to June 2010, under the guidance of

Dr. M. J. Nigam, Professor, Department of Electronics and Computer Engineering, Indian
Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other Degree.

Date: 2 • 0 6' ?--11

Place: Roorkee 	 VIJAYENDRA KUMAR

CERTIFICATE

This is to certify that the above statement made by the candidate is 	to the best of my
knowledge and belief.

Date: X7 p 6 , 2j ~ 	 J. Nigam,

Place: Roorkee 	 Professor, E&C Department,

IIT Roorkee,

Roorkee — 247667 (India).

ACKNOWLEDGEMENTS

I would like to extend gratitude to my guide, Dr. M. J. Nigam for his intellectual guidance,

attention and constant encouragement that inspired me throughout my dissertation work. I am

greatly indebted to him for teaching me the sweetness of self learning. Also his critical arguments

in correcting the thesis made me to read in between the lines.

I would also like to thank the Lab staff of Control Systems Lab, Department of

Electronics and Communication Engineering, IIT 'Roorkee for providing necessary facilities.

I gratefully acknowledge my sincere thanks to my family members for their inspirational

impetus and moral support during course of this work.

I thank to all my friends, who have graciously applied themselves to the task of helping

me with morale support and valuable suggestions. Finally, I would like to extend my gratitude to

all those persons who directly or indirectly contributed towards this work.

VIJAYENDRA KUMAR

ABSTRACT

Face recognition is a computer application of recognizing persons by their facial images,

which may vary with makeover, expressions, age or due to noise added during image acquisition

or during transmission over a network. Work on Face recognition is going on from around last

twenty years, and has got immense future scope and great commercial value. Face recognition is

being used for Access Control, Protection and Security, Industrial Automation and Robotics etc.

Face recognition system is based on principals of various fields like Image Processing,

Linear Programming, Statistics and Neural Networks etc. Various Image Processing Techniques

like Laplacian, Laplacian of Gaussian, and Histogram Equalization etc. are used for image

preprocessing stage to increase sharpness and dynamic range. Facial images contain redundancies

which do not help in recognition but increase processing overhead, Techniques like Fourier

Transform and Wavelet Packet Decomposition are used for feature generation or dimensionality

reduction. _Concepts from Linear Programming and statistics like Principal Component Analysis,

Singular Value Decomposition, and Independent Component Analysis etc. are also used for

generating features of reduced dimensions from original data, which has same recognition

potential as original data. Neural Networks are powerful tool for recognition type of computation.

They are trained on representative set of images, once trained they can recognize images they

have never seen. Most important feature of such networks are that they tolerate noise extremely

well.

In this dissertation an algorithm for improved Face Recognition has been developed.

Laplacian has been used for preprocessing the facial images. Singular Value Decomposition has

been used for feature generation dimensionality reduction. Neural Networks have been used ' for

recognition purposes. In order to improve noise tolerance of developed face recognition system

Neural Networks has been trained by deliberately generated noisy data. Further, in training

Neural Networks a technique Resilient Backpropagation has been used which made the training

faster.

Face Recognition system developed has an accuracy of 91% under zero random noise

condition. Further a study of variation of accuracy with noise has been carried out and results are

presented in chapter 6.

CONTENTS

Declaration 	 i

Acknowledgements 	 ii
Abstract 	 iii
Contents 	 iv

1. Introduction 1
1.1 Problem Statement 3
1.2 Problem Analysis 4

1.3 Literature Review 5
1.3.1 Eigenface-based Recognition 5

1.3.2 3D Face Recognition 6

1.3.3 Applications of Face Recognition 6
1.4 Organization of the Thesis 7

2. 	Image Preprocessing 8

2.1 Laplacian Operator 8

2.2 Unsharp Masking and Highboost Filtering 11
2.3 Laplacian of Gaussian 12

3. Dimensionality Reduction and Feature Generation 14
3.1 Basis Vectors and Images 15
3.2 Positive Definite and Symmetric Matrices 17
3.3 Covariance and Correlation 18

3.3.1 Definition of the Covariance 18
3.3.2 Interpretation of the Covariance 19

3.3.3 Correlation Coefficient 20

3.3.4 Properties of the Correlation Coefficient 21
3.3.5 Mean Vector and Covariance Matrix 21

3.3.6 Correlation Matrix Diagonalization 22

3.4 Principal Component Analysis 23
3.4.1 Mean Square Error Approximation 24

3.4.2 Steps for Calculation of Principal Component of given Data 25

3.4.3 Example Problem 	 26
3.5 Singular Value Decomposition 	 28

3.5.1 Proof of Singular Value Decomposition 	 29
3.5.2 Low Rank Approximation 	 30
3.5.3 Dimensionality Reduction 	 31
3.5.3 Example Problem 	 33

4. Artificial Neural Systems 	 34
4.1 Neural Processing 	 35

4.1.1 Perceptron 	 36
4.2 Learning and Adaptation 	 38

4.2.1 Supervised and Unsupervised Learning 	 38
4.3 Neural Network Learning Rules 	 40

4.3.1 Hebbian Learning Rule 	 41
4.3.2 Perceptron Learning Rule 	 42
4.3.3 Delta Learning Rule 	 43
4.3.4 Widrow-Hoff Learning Rule 	 44
4.3.4 Winner Takes All Learning Rule 	 45

4.4 Neural Network Training 	 46
4.4.1Backpropogation Algorithm 	 47
4.4.2 Resilient Backpropagation 	 48

5. Software for Face Recognition 	 50
5.1 Algorithm 	 50
5.2 Program for Computation of Principal Component Analysis 	 51
5.3 Program for Creation of Training Set 	 52
5.4 Program for Creation of Noisy Training Set 	 52
5.5 Program for Computation of Singular Value Decomposition 	 53
5.6 Program for Neural Network Training 	 54
5.7 Program for Simulation Neural Network 	 55

6. Results

6.1 Confusion Matrix for Various Noise Levels

V

6.2 Performance Plot 	 70
6.3 Worst Case Accuracy Plot 	 71

7. Conclusion and Future Research Suggestion 	 72
References 	 73

LIST OF FIGURES

Figure 	 Page no.

Figure 1.1 Dummy Track 2

Figure 1.2 The basic stages involved in the design of a classification system. 2

Figure 1.3 Facial variations with expression and make over 3

Figure 1.4 Facial variations with random noise 3

Figure 1.5 Flow diagram of generalized face recognition algorithm using 5

neural networks

Figure 2.1 Laplacian Mask 9

Figure 2.2 Laplacian Mask Including Diagonal Directions 10

Figure 2.3 input image 10

Figure 2.4 Laplacian image 10

Figure 2.5 input —Laplacian 10

Figure 2.6 North Pole of Moon 11

Figure 2.7 Laplacian Filtered 11

Figure 2.8 Filtered using Fig. 2.2 Mask 11

Figure 2.9 3-D Plot of LoG Filter 	6 = 0.5 13

Figure 2.10 Input image 13

Figure 2.11 LoG filtered image 13

vi

Figure 2.12 Mask used for Filtering 	 13

Figure 4.1 a Autoassociation 	 35

Figure 4.1b Heteroassociation 	 35

Figure 4.2a Classification 	 36

Figure 4.2b Recognition 	 36

Figure 4.3 A Perceptron 	 37

Figure 4.4 Tansig Function 	 37

Figure 4.5 Logsig Function 	 37

Figure 4.6 Thresholding Function 	 38

Figure 4.7a Supervised Learning 	 39

Figure 4.7b Unsupervised Learning 	 39

Figure 4.8a Distinguishable Patterns 	 40

Figure 4.8b Undistinguishable Patterns 	 40

Figure 4.9 Perceptron under Training 	 41

Figure 4.10 Perceptron Learning Rule 	 43

Figure 4.11 Delta Learning Rule 	 44

Figure 4.12 Winner Takes All Learning Rule 	 46

Figure 4.13 Neural Network Training 	 46

Figure 6.1 Various Noise levels 	 59

Figure 6.2a Training Images 	 59

Figure 6.2b Test Images 	 59

Figure 6.3 Performance Plot
	

70

Figure 6.4 Worst Case Accuracy Plot 	 71

vii

LIST OF TABLES

Table Page no.

Table I. Noise Level = 0; 91% Recognition Rate 60

Table II. Noise Level =0.05; 91% Recognition Rate 60

Table III. Noise Level =0.1; 89% Recognition Rate 61

Table IV. Noise Level =0.15; 86% Recognition Rate 61

Table V Noise Level =0.2; 83% Recognition Rate 62

Table VI. Noise Level =.25; 78% Recognition Rate 62

Table VII. Noise Level =0.3; 78 % Recognition Rate 64

Table VIII. Noise Level =0.35; 72 % Recognition Rate 64

Table IX Noise Level =0.4; 72 % Recognition Rate 65

Table X Noise Level =0.45; 67 % Recognition Rate 65

Table X1 Noise Level =0.5; 64 % Recognition Rate 66

Table XII Noise Level=0.55; 62 % Recognition Rate 66

Table XIII Noise Level=0.6; 54 % Recognition Rate 67

Table XIV Noise Level=0.65; 54 % Recognition Rate 67

Table XV Noise Level=0.7; 53 % Recognition Rate 68

• Table XVI Noise Level=0.75; 48 % Recognition Rate 68

Table XVII Noise Level=0.8; 38 % Recognition Rate 69

Table XVIII Noise Level=0.85; 34 % Recognition Rate 69

Table XIX Noise Level=0.9; 27 % Recognition Rate 70

Table XX Noise Level=0.95; 24 % Recognition Rate 71

VIII

Chapter 1: Introduction

A Face recognition system is a computer application for automatically identifying or

verifying a person from a digital image which may vary with age, makeover and expressions and

under noisy conditions. In recent years, many algorithms have been proposed on the problem of

face recognition. Recent survey of these algorithms can be found in [1]. Face recognition system

uses algorithms from fields of Image Processing, Linear Algebra, Statistics and soft computing

techniques like Neural Network, Fuzzy Logic etc. Face recognition system is studied under the

broad topic of Pattern Recognition.

Pattern Recognition is scientific discipline whose goal is the classification of object into

number of categories or classes. Depending on application, patterns can be images or signal

waveform or any measurement that need to be classified. Pattern Recognition is an integral part

of most machine intelligence systems built for decision making. Machine vision is an area in

which pattern recognition is of importance. Machine vision is widely used in Automatic Control

areas. A machine vision system captures images via a camera and analyzes them to produce

descriptions of what is imaged. A typical application of a machine vision system is in the

manufacturing industry, either for automated visual inspection or for automation in the assembly

line. For example, in inspection, manufactured objects on a moving conveyor may pass the

inspection station, where the camera stands, and it has to be confirmed whether there is a defect.

Thus, images have to be analyzed online, and a pattern recognition system has to classify the

objects into the "defect" or "nondefect" class. After that, an action has to be taken, such as to

reject the offending parts. In an assembly line, different objects must be located and "recognized,"

that is, classified in one of a number of classes known before hand. Then a robot arm can move

the objects in the right place. Besides, Control applications pattern recognition can be use in

number of different applications like, Character (letter or number) recognition, Handwriting

recognition, Computer-aided diagnosis, Speech recognition, Data mining and knowledge

discovery [9].

Various real life problems can be formulated as pattern recognition problem. For

example, the problem is to design a robot whose task is to move on parallel tracks like railway

tracks and fmd errors in it. Errors can be in the form of broken track, bulged in or bulged out

1

track. Robot has to identify the errors by producing different kind of signal for different kind of

errors. figure 1.1 shows the dummy track and various errors. Conventional method for solving

this problem is to design hardware with sufficient number of sensors array which can distinguish

various kinds of situations, such as distinguishing between turns and errors and further between

various types of errors. The other way to implement this is to use pattern recognition algorithm

like, using soft computing techniques i.e. Neural Networks, Fuzzy Logic etc.

figure 1.1 Dummy Track

The robot in this case can be trained on representative set of track patterns and in recall phase it

can classify, not only the training set but also the patterns it has never seen, which are similar to

training pattern. In this case robot can generalize and also hardware dependencies are reduced.

Patterns 	Sensor 	Feature 	 Feature 	Classifier- 	System-
generation 	selection I I design 	I evaluation

figure 1.2 The basic stages involved in the design of a classification system.

2

figure 1.2 shows the various stages followed for the design of a Pattern Recognition system.

These stages are not independent as depicted by feedback arrows. Depending on the results, one

may go back to redesign earlier stages in order to improve the overall performance [9].

Pattern recognition has a long history, but before the 1960s it was mostly the output of

theoretical research in the area of statistics. As with everything else, the advent of computers

increased the demand for practical applications of pattern recognition, which in turn set new

demands for further theoretical developments. As our society evolves from the industrial to its

postindustrial phase, automation in industrial production and the need for information handling

and retrieval are becoming increasingly important. This trend has pushed pattern recognition to

the high edge of today's engineering applications and research. Face recognition is one of the

applications of Pattern Recognition.

1.1 Problem Statement

Face recognition is a pattern recognition task performed specifically on faces. Face

recognition has become an interesting research area in vision system, image analysis, pattern

recognition and biometric technology. An efficient face recognition system should recognize a

person by his/her facial image which may vary with age, make ups, expressions and with noise.

figure 1.3 shows facial variation of a person with expression and make over. figure 1.4 shows

facial variation with noise. Noise added is normally distributed with mean zero.

figure 1.3 Facial variations with expression and make over

figure 1.4 Facial variations with random noise

3

1.2 Problem Analysis

Broadly, the algorithm of face recognition can be divided into three steps. Each step can be

implemented in a number of ways:

• Image Preprocessing: Pre-processing of facial image is required to enhance some of its

distinguishable features like moles, wrinkles and other small details [2]. Some of the

algorithms that are used to perform this are Unsharp Masking [3], Laplacian of Gaussian

[2], Laplacian [4] etc.

• Feature Generation or Dimensionality Reduction: The basic approach followed in this step

is to transform a given set of measurements to a new set of features which acts as

signature of original Data. Pixels of Facial images have high degree of correlation, to

remove these redundancies; some of the algorithms are Principal Component Analysis [5],

Wavelet Packet Decomposition [6], Singular Value Decomposition [2] etc.

• Artificial Neural Networks: Artificial Neural Networks function as parallel distributed

computing networks. Depending on architecture, there are number of variations in neural

networks which can be used for Face Recognition task, like Auto-associative Neural

Networks [7], Hopfield Neural Networks [6], Feed-Forward Neural networks [2] etc. In

contrast to conventional computers, which are programmed to perform specific tasks,

most neural networks can be taught or trained with representative set of input and output

data. Properly trained neural networks tend to give reasonable answers when presented

with inputs that they have never seen. Typically, a new input leads to an output similar to

the correct output for input vectors used in training that are similar to the new input being

presented [8].

In the algorithm proposed, Laplacian has been used for image pre-processing; Singular

Value Decomposition has been used for dimensionality reduction; and Artificial Neural Networks

for classification. Reliability of the method was tested against Cambridge ORL face database. Ten

different Faces with ten different expressions each, was picked The proposed method was found

to recognize the Faces with high recognition rate and under noisy conditions. figure 1.5 shows

flowchart general algorithm using neural networks of face recognition.

4

Start

Create
database

Select training
images

Dimensionality-
reduction

Parameter 	 Neural networks/

adjustment 	 Learning algorithm

No Goal met 	 Yes

System
created

figure 1.5 Flow diagram of generalized face recognition algorithm using neural networks

1.3 Literature Review

1.3.1 Eigenface-based Recognition

2D face recognition using eigenfaces is one of the oldest types of face recognition. Turk

and Pentland published the revolutionary "Face Recognition Using Eigenfaces" in 1991. The

method works by analyzing face images and computing eigenfaces which are faces composed of

eigenvectors. The comparison of eigenfaces is used to identify the presence of a face and its

identity. There is a five step process involved with the system developed by Turk and Pentland.

First, the system needs to be initialized by feeding it a set of training images of faces. This is used

5

these to define the face space which is set of images that are face like. Next, when a face is

encountered it calculates an eigenface for it. By comparing it with known faces and using some

statistical analysis it can be determined whether the image presented is a face at all. Then, if an

image is determined to be a face the system will determine whether it knows the identity of it or

not. The optional final step is that if an unknown face is seen repeatedly, the system can learn to

recognize it.

1.3.2 3D Face Recognition

3D face recognition is expected to be robust to the types of issues that plague 2D systems.

3D systems generate 3D models of faces and compare them. These systems are more accurate

because they capture the actual shape of faces. Skin texture analysis can be used in conjunction

with face recognition to improve accuracy by 20 to 25 percent. The acquisition of 3D data is one

of the main problems for 3D systems.

1.3.3 Applications of Face Recognition

• Access Control: Face verification, matching a face against a single enrolled exemplar, is

well within the capabilities of current Personal Computer hardware. Since PC cameras

have become widespread, their use for face-based PC logon has. become feasible, though

take-up seems to be very limited.

• Identification Systems: Two US States (Massachusetts and Connecticut) are testing face

recognition for the policing of Welfare benefits. This is an identification task, where any

new applicant being enrolled must be compared against the entire database of previously

enrolled claimants, to ensure that they are not claiming under more than one identity.

• Surveillance: The application domain where most interest in face recognition is being

shown is probably surveillance. Video is the medium of choice for surveillance because of

the richness and type of information that it contains and naturally, for applications that

require identification.

• Pervasive Computing: Another domain where face recognition is expected to become very

important, although it is not yet commercially feasible, is in the area of pervasive or

ubiquitous computing. Many people are envisaging the pervasive deployment of

information devices.

0

1.4 Organization of the Thesis
The report has been organized into seven chapters. Chapter 1 gives an introduction to this

thesis work, Problem statement, literature survey, Applications of Face Recognition and

organization of the thesis. Chapter 2 discusses about image preprocessing techniques that can be

used in face recognition. Chapter 3 contains techniques used for dimensionality reduction or

feature generation. Chapter 4 describes about neural networks, training algorithms and training

parameters. Chapter 5 gives details of the software developed using matlab for implementing the

algorithm. Chapter 6 presents the Simulation results and discussions. Chapter 7 gives

Conclusions and suggestions for future work.

7

Chapter 2: Image Preprocessing

The principal objective of image preprocessing used in face recognition is to highlight fine

details in the facial image or to enhance detail that has been blurred, either in error or particular

method of image acquisition. Mostly sharpening filters are used for this purpose. Various

techniques can be used to implement this step. Technique used in proposed method and related

techniques are discussed below.

2.1 Laplacian Operator

Laplacian is a second order derivative operator. This has been used in proposed method in

the thesis for face recognition. Derivatives of digital functions are defined in terms of differences.

Second order derivative shows different responses when moved over areas of constant grey level,

onset and end of discontinuities and along grey level ramps. Any definition of second order

derivative must satisfy (1) must be zero in constant areas (2) must be nonzero at the onset and

end of an intensity ramp or step (3) must be zero along ramps of constant slope. Basic definition

of second order derivative of f(x) as the difference

aZf = f(x +l)+ f(x —1)-2xf(x)
axZ

This definition satisfies the conditions stated above. A desirable feature of sharpening filter is that

it should be isotropic i.e. rotation invariant which means rotating the image then applying the

filter gives the same results as applying filter to the image and then rotating the result. It can be

shown that the simplest isotropic derivative operator is the Laplacian which for a function

(image) f(x, y) of two variables, is defined as,

z
vZf 	Z + zZ (2.2)

Which is sum of second order partial derivative in x and y direction respectively. In x direction

we have equation which is same as 1, in y direction we have,

(2.1)

E3

a2f = f(y + 1) + f(y —1) —2 x f(y) ay2 (2.3)

From equation 1, 2 and 3 we can write,

V2f(x,y) = f(x +1,y)+f(x-1,y)+f(x,y +1)+f(x,y-1)-4xf(x, y) 	 (2.4)

This equation can be implemented using mask of figure 2.1 by convolving it with image which

gives isotropic results for rotation increments of 90 degree [11].

0 1 0

1 -4 1

0 1 0

figure 2.1 Laplacian Mask

The diagonal directions can be incorporated in the defmition in the definition of digital laplacian

by adding two more terms to equation 4 one for each of two diagonal directions, modified

equation is given by,

Vf(x,y) =f(x+l,y)+f(x,y+l)+f(x—l,y)+f(x, y-1)+f(x-1, y—l)+f(x+1,y-1)+f(x—1, y+l)
+f(x+1,y+l)-8xf(x,y) 	 (2.5)

This equation can be implemented using filter of mask shown in figure 2.2. This mask yields

isotropic results in increments of 45 degree. Laplacian is a derivative operator; its use highlights

intensity discontinuities in an image and deemphasizes regions with slowly varying intensity

levels. This produces images with grayish edge lines and other discontinuities, all superimposed

upon dark featureless background.

0

1 1 1

1 -8 1

1 • 1 1

figure 2.2 Laplacian Mask Including Diagonal Directions

Background features can be recovered while still preserving the sharpening feature of the

Laplacian simply by adding Laplacian image to the original using following equation,

g(x,Y)=f(x,Y) — V2f(x,Y)
	

(2.6)

Results of implementing equation 6 on facial images are shown in figure below, figure 2.3 shows

the input image. figure 2.4 shows Laplacian image of the input image. figure 2.5 shows input

image — Laplacian image. figure 2.5 clearly shows improvement in small details in output image

after applying equation 6.

figure 2.3 input image 	figure 2.4 Laplacian image 	figure 2.5 input —laplacian

Large section of Laplacian image is dark because laplacian contain both positive and negative

pixel values which are clipped to zero by the display. A simple way to scale a Laplacian image to

add minimum value to each pixel so that new minimum is zero and the to scale pixel values to

range [0, L-1].. Another way to solve this problem is to convert integer precision image into,

converted to double precision before applying Laplacian. A typical example showing ability of

masks shown in figure 2.1 and 2.2 is shown in figure below. figure 2.6 shows blurred image of

north pole of the moon. figure 2.7 shows image sharpened using mask of figure 2.1. figure 2.8

shows image sharpened by mask of figure 2.2.

10

figure 2.6 North Pole of Moon 	figure 2.7 Laplacian Filtered 	figure 2.8 Filtered using Fig. 2.2 Mask

2.2 Unsharp Masking and Highboost Filtering

This process has been used for many years in printing and publishing industry to sharpen

images consists of subtracting an Unsharp (smoothed) version of an image from the original
image. This process is called Unsharp Masking. The can also be applied on faces to sharpen small

details. This process consists following steps.

• Blur the original image

• Subtract the blurred image from the original (The resulting difference is called mask)

• Add the mask to the original image.

Letting i (x, y) denote the blurred image, unsharp masking is expressed as following equation,

	

S mac& (X, Y) = f (x, Y) — €(x, Y) 	 (2.7)

Then a weighted portion of mask is added back to the original image.

	

g(x,y) =f(x,y)+kxg(X,Y) 	
(2.8)

Where k is a weight, when k=1 we have Unsharp Masking and when k>l the process is called

Highboost filtering. Choosing k<1 de-emphasizes the contribution of Unsharp mask [3].

11

2.3 Laplacian of Gaussian

The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative. of an image. The

Laplacian of an image highlights regions of rapid intensity change. The Laplacian is applied to an

image that has first been smoothed with a Gaussian smoothing filter in order to reduce its

sensitivity to noise [2] .Additional advantage of Laplacian of Gaussian filter is that bit can be

tuned to act any desired scale, so that large operators can be used to detect blurry edges and small

operators to detect sharply focused fine details. The derivation of mathematical equation for

laplacian of Gaussian function is given as:

Two dimensional Gaussian function is given as

-(X'+r')

G(x, Y) = e 26' 	 (2.9)

Following derivatives are calculated to evaluate Laplacian of Gaussian

,Y)= V2G(x 	a2G(x,Y)+ 92G(x,Y) 	
(2.10) &Z 	'2

a _ -(x'+y') a _ -(x'+yz)

~ZG(x,Y) = I62 e 2a2]+-I62 e Z& l 	 (2.11)

x2 1 -(x'+y2) 2 	_____')

a2]e 2& +[-----]e 2 	2Q= 	 (2.12) Ia

2 	xz +y2 -262
O G(x, Y) = [4]e 2d

6
(2.13)

This expression is called Laplacian of Gaussian. figure 2.9 shows 3-D plot of negative of LoG

function. Because of its shape as shown in figure 2.9, it is also called Mexican hat operator.

Masks of arbitrary size can be generated by sampling equation 2.13 scaling the coefficients such

that they sum to zero. There are two fundamental ideas behind selection of operator VZG(x, y) for

image sharpening purposes. Firstly, the Gaussian part of the operator blurs the image, thus

reducing the intensity of structures at scales much smaller than a. Secondly second order

derivative is isotropic, which not only corresponds to human visual system but also responds

equally to changes in intensity in any mask direction, thus avoiding having to use multiple masks

to calculate strongest response at any point in the image. figure 2.10 and 2.11 shows application

LoG filter with a =0.5 on facial image. figure 2.12 shows the mask used.

12

figure 2.9 3-D Plot of LoG Filter 6 = 0.5

figure 2.10 Input image 	 figure 2.11 LoG filtered image

0.0448 0.0468 0.0564 0.0468 0.0448

0.0468 0.3167 0.7146 0.3167 0.0468

0.0564 0.7146 -4.9048 0.7146 0.0564

0.0468 0.3167 0.7146 0.3167 0.0468

0.0448 0.0468 0.0564 0.0468 0.0448

figure 2.12 Mask used for Filtering

13

Chapter 3: Dimensionality Reduction or Feature Generation

Feature generation is of paramount importance in any pattern recognition task. Given a set

of measurements, the goal is to discover compact and informative representations of the obtained

data. A similar process is also taking place in the human perception apparatus. Our mental

representation of the world is based on a relatively small number of perceptually relevant

features. These are generated after processing a large amount of sensory data, such as the

intensity and the color of the pixels of the images sensed by our eyes, and the power spectra of

the sound signals sensed by our ears[9].

The basic approach followed is to transform a given set of measurements to a new set of

features. If the transform is suitably chosen, transform domain features can exhibit high

information packing properties compared with the original input samples. This means that most

of the classification-related information is "squeezed" in a relatively small number of features,

leading to a reduction of the necessary feature space dimension. We refer to such processing tasks

as dimensionality reduction techniques.

Let us take for example an image resulting from a measuring device, for example, X-rays

or a camera. The pixels (i.e., the input samples) at the various positions in the image have a large

degree of correlation, due to the internal morphological consistencies of real-world images that

distinguish them from noise. Thus, if one uses the pixels as features, there will be a large degree

of redundant information. Alternatively, if one obtains the Fourier transform, for example, of a

typical real-world image, it turns out that most of the energy lies in the low-frequency

components, due to the high correlation between the pixels' gray levels. Hence, using the Fourier

coefficients as features seems a reasonable choice, because the low-energy, high-frequency

coefficients can be neglected, with little loss of information. Fourier transform is just one of the

tools from a palette of possible transforms. Some of the ways to implement dimensionality

reduction are

1. Linear Discriminant Analysis

2. Principal Component Analysis

3. Singular Value Decomposition

4. Wavelet Packet Decomposition

5. Independent Component Analysis etc.

14

3.1 Basis Vectors and Images
Let x(0), x(1), x(2). . . , x(N-1) be a set of input samples and x be the Nx 1 corresponding

vector.

	

XT =[x(0),x(1).......,x(N-1)] 	 (3.1)

Given a unitary NxN matrix A, we define the transformed vector y of x as,

aH 0

y=AHx= 	 x 	 (3.2)
H

a N-1

where H denotes the Hermitian operation, that is, complex conjugation and transposition. From

equation 3.2 and the definition of unitary matrices we have
N-1

x = Ay = I y(i)a; 	 (3.3)
i=O

The columns of A, a; , i=0, 1, ... ,N-1, are called the basis vectors of the transform. The

elements y(i) of y are nothing but the projections of x onto these basis vectors. Indeed, taking the

inner product of x with a j , we have

N-1 	 N-1
< al, x >= ax = I y(i) < al, a, >= E y(i)Sy = y(j)

=o 	 s=o
	 (3.4)

This is due to the unitary property of A, that is, AHA =I or < ai , a~ >= aHa~ = 6. In many problems,

such as in image analysis, the input set of samples is a two dimensional sequence x(i, j) where i, j

=0, 1, 2,......,N-1 , defining an NxN matrix X instead of a vector. In such cases, one can define

an equivalent NZ vector x, for example, by ordering the rows of the matrix one after the other

(lexicographic ordering) and then transform this equivalent vector.

xT =[X (0,0)......X(O,N-1)........X(N-1,o)........X(N-1,N-1)]
	

(3.5)

The number of operations required to multiply a NZ x N2 square matrix A with a N2 x 1 vector x is

of the order of 0 (N4), which is prohibitive for many applications. An alternative possibility is to

15

transform matrix X via a set of basis matrices or basis images. Let U and V be unitary NxN

matrices. Define the transformed matrix Y of X as

Y = UTXV 	 (3.6)

Or 	 X = UYVT 	 (3.7)

The number of operations is now reduced to 0 (N3). Equation (3.7) can alternatively be written

as,
N-1 N-1

X= E IY(i,i)uiVH
i=o j=o

Where ui are the column vectors of U and v j the column vectors of V. Each of the outer products

uiv1 isanNxNmatrix,

ui0vio ... ui0VJN-1

uivH = 	 =A

uiN-1V j0 	uiN-1V jN-1

And (3.8) is an expansion of matrix X in terms of these N Z basis images (matrices). The *

denotes complex conjugation. Furthermore, if Y turns out to be diagonal, then (3.8) becomes
N-1

X = 	Y(i,j)ui vH 	 (3.9)
i=o

and the number of basis images is reduced to N. Inner product between two matrices is defined as

It can be shown that

N-1 N-1
<A,B >= Z Z A*(m,n)B(m,n) 	 (3.10)

m=O n=O

Y(i, j) =< Aij, X > 	 (3.11)

In words, the (i , j) element of the transformed matrix results from multiplying each element of X

by the conjugate of the corresponding element of Aii and summing up all products[9].

(3.8)

16

3.2 Positive Definite and Symmetric Matrices
An 1 xl real matrix A is called positive definite if for every nonzero vector x the

following is true:

	

XTAX > 0
	

(3.12)

If equality with zero is allowed, A is called nonnegative or positive semi-defuute. It is easy to

show that all eigen values of such a matrix are positive. Indeed, let X; be one eigen value and v;

the corresponding unit norm eigenvector (v?v; =1). Then by the respective definitions

	

Av; =29v1 	 (3.13)

	

vTAv; =29>0 	 (3.14)

Since the determinant of a matrix is equal to the product of its eigenvalues, we conclude that the

determinant of a positive definite matrix is also positive.

Let A be an lxl symmetric matrix, AT = A. Then the eigenvectors corresponding to distinct

eigenvalues are orthogonal. Indeed, let 29 ~ ? be two such eigenvalues. From the definitions we

have,

	

Avi = 29v; 	 (3.15)

	

Avg =?. v~ 	 (3.16)

Multiplying (3.9) on the left by vT and the transpose of (3.10) on the right by v; , we obtain

	

vJ Avl - vI Av; =0 = (29 - 	 (3.17)

Thus, yr v; =0. Furthermore, it can be shown that even if the eigenvalues are not distinct, we can

still find a set of orthogonal eigenvectors. The same is true for Hermitian matrices, in case we

deal with more general complex-valued matrices.

Based on this, it is now straightforward to show that a symmetric matrix A can be diagonalized

by the similarity transformation

4TA4 = A 	 (3.18)

Where matrix has as its columns the unit eigenvectors (vv; =1) of A, that is,

	

0=[v V2... VU] 	 (3.19)

17

and A is the diagonal matrix with elements the corresponding eigenvalues of A. From the

orthonormality of the eigenvectors it is obvious that 4TH = I, that is, is a unitary matrix, 	= ~T

.The proof is similar for Hermitian complex matrices as well [9].

3.3 Covariance and Correlation
As the name implies, covariance is a measure of the strength of the link between two

(numerical) random variables. Given two such random variable. x, and x2 , two extreme

circumstances can be encountered:

• There is no link whatsoever between x, and xZ . Knowing the value of x, gives no

clue to what the value of X2 might be. The two variables are said to be independent.

• The link is so strong that it is in fact functional. There is a completely deterministic

function y=f(x) such that knowing the value of x, then determines the value x2 of

without any uncertainty.

x2 =f (x1)

Most often, the link between two random variables somewhere in between knows the value taken

byx, reduces, to a certain extent, the uncertainty about the value that x2 will take. There is no

universal way to define and measure the strength of the link in this intermediary situation.

Covariance is one way to do it, and is very useful in many practical situations despite its

limitations.

3.3.1 Definition of the Covariance

If x, and x2 are strongly (positively) linked, then we could think of defining covariance

in a way that would embody the following idea:

• Whenever (x, - µ,) is positive, then (x2 - µz) is likely to be positive too.

• Whenever (x1 - µ,) is negative, then (x2 - µz) is likely to be negative too.

The product (x, -µ,).(X2 -1.12) is then likely to be very often positive when either because both

quantities are positive, Or because both quantities are negative.

18

Yet, the product (x, - µ,). (x2 - 2) is a random variable, and we want a fixed number. But a

random variable that spends most of its time taking positive values is likely to have a positive

expectation. So we will consider the expectation of (x, -µ,).(x2 -92), and call it the covariance

of x, and x2 .

cov(X1 , Xz) = E((X1 - µ1)(X2 - µz)) 	 (3.20)

Following expression is equivalent to this other one and more convenient in practice,

cov(X,, X 2) = E[X1X2] - E[X,]E[X2] 	 (3.21)

3.3.2 Interpretation of the Covariance

• A large positive value of the Covariance is an indication that (x, - µ,) and (x2 - p.2)

often take large positive or large negative values simultaneously, a circumstance

that strengthens our belief that the variables are indeed tightly linked.

• Where as a smaller positive value of the covariance is an indication that one of the

variables has a fair chance to be close to its mean when the other takes large (positive

or negative) values.

• The Covariance may be low because, indeed, the link between the two variables is

weak.

• But there may exist a strong, non linear link between the two variables, the nature of

this link making the Covariance low.

The argument developed leading to the definition of the covariance on the basis of a positive link

between x, and x2 . But it applies just as well in the case of a negative link. We can use the same

line of reasoning if x, - µ, taking large positive values makes it likely that X2 - µ2 will take

large negative values. In this case, the covariance is a large negative number. A drawback of

covariance is that its value depends on the units used to express the values of x, and x2

whereas a practical measure of the strength of the link between two variables certainly shouldn't.

19

If the two random variables X and Y are independent then their covariance is 0. But the converse

is not true. Two random variables may have 0 covariance, and yet not be independent. For

example, let:

• X be uniformly distributed in [-1, +1].
• Y=X2

In this case, coy (X, Y)=0.

3.3.3 Correlation Coefficient

One problem with covariance is that it is sensitive to the scales on which the values of

the random variable are measured. While computing the covariance between "Height" and

"Weight" in a population, Measuring weights in "Kilos" instead of "Pounds", or heights

in "Centimeters" instead of "Inches", and the value of the covariance changes, whereas the

strength of the link between "Height" and "Weight" remains the same, of course. So we would

like a measure of the strength of the link between "Height" and "Weight" that does not depend on

the units used to measure these quantities.

Now suppose that the unit measuring x, is divided by 2 (so that values of xl are 	'

multiplied by 2). Then the covariance Cov(Xi, X2) is also multiplied by 2. But the standard

deviation of x, (square root of the variance) is also multiplied by 2, so the ratio

Cov(Xl , X2)
i

(Var(X1))2

in unchanged. The same argument applies to x2 , and, more generally, to any change of units in

which x, or x2 are measured.So, quite generally, the number:

Cov(Xl, X2)

P 	Var(X,) V ar(x2)
(3.23)

is called correlation coefficient.

20

3.3.4 Properties of the Correlation Coefficient

• The value of the correlation coefficient is always between -1 and +1.

• If X1 = X2 then Cov(X1, X2) = Var(Xi) = Var(X2). Therefore, p(X, X) =+l.

• The Correlation Coefficient is symmetrical: p(XI, X2) = p(X2, X1).

• If both variables have unit variances, then their Covariance is the same as their Correlation

Coefficient.

• When the two distributions are known only through a sample, the common estimate of the

Correlation Coefficient is :

r= 	

(x - x)(Y - Y) 	 (3.24)

(x-x)2(Y-Y)2

3.3.5 Mean Vector and Covariance Matrix

The first step in analyzing multivariate data is computing the mean vector and the

variance-covariance matrix. Consider the following matrix:

4.0 2.0 .60

4.2 2.1 .59

X= 3.9 2.0 .58

4.3 2.1 .62

4.1 2.2 .63

The set of 5 observations, measuring 3 variables, can be described by its mean vector and

variance-covariance matrix. The three variables, from left to right are length, width, and height of
a certain object, for example. Each row vector Xi is another observation of the three variables (or

components). The mean vector consists of the mean of each variable and the variance-covariance

matrix consists of the variance of the variables along the main diagonal and the covariance

between each pair of variables in the other matrix positions. The Formula for evaluation of

covariance matrix is given by,

COV = 1 XXT
n-1

(3.25)

21

Where n is number of observations

The results are,

Mean= [4.10 2.08 .604]

0.025 0.0075 0.00175

Covariance= 0.0075 0.0070 0.00135

0.00175 0.00135 0.00043

Thus, 0.025 is the variance of the length variable, 0.0075 is the covariance between the length and

the width variables, 0.00175 is the covariance between the length and the height variables, 0.007

is the variance of the width variable, 0.00135 is the covariance between the width and height

variables and .00043 is the variance of the height variable. The mean vector is often referred to as

the centroid and the variance-covariance matrix as the dispersion or dispersion matrix. Also, the

terms variance-covariance matrix and covariance matrix are used interchangeably.

3.3.6 Correlation Matrix Diagonalization

Let x be a random vector in the 1-dimensional space. Its correlation matrix is defined as

R = E[xxT] . Matrix R is readily seen to be positive semidefmite. For our purposes we will assume

that it is positive definite, thus invertible. Moreover, it is symmetric,, and hence it can always be

diagonalized.

eR~ = A 	 (3.26)

Where is the matrix consisting of the (orthogonal) eigenvectors and A the diagonal matrix

with the corresponding eigenvalues on its diagonal. Thus, we can always transform x into another

random vector whose elements are uncorrelated. Indeed

x1 = 4 x 	 (3.27)

i
Then the new correlation matrix is R, = ~TR~ Furthermore, if A2 is the diagonal matrix whose

i 	i

elements are the square roots of the eigenvalues of R (A2 A2 =A), then it is readily shown that

the transformed random vector

22

-1
x, = A 2 Tx 	 (3.28)

-1 	 1

has uncorrelated elements with unit variance. A 2 denotes the inverse of A2 . That is, the

transformed variables are also uncorrelated with unit variance [9].

3.4 Principal Component Analysis
Principal component analysis (PCA) is one of the most popular techniques for

dimensionality reduction. Starting from an original set of 1 samples (features), which form the

elements of a vector x E R', the goal is to apply a linear transformation to obtain a new set of

samples. Let x be the vector of input samples. In the case of an image array, x may be formed by

lexicographic ordering of the array elements. In order to simplify the presentation, we will

assume that the data samples have zero mean. If this is not the case, we can always subtract the

mean value. We have already mentioned that a desirable property of the generated features is to

be mutually uncorrelated in an effort to avoid information redundancies. We begin, by first

developing a method that generates mutually uncorrelated features, that is, (E[y(i)y(j)]= 0), i~ j.

Let

y=ATx 	 (3.29)

Since we have assumed that E[x]=0, it is readily seen that E[y]=0. From the definition of the

correlation matrix we have

Ry = E[yyT] = E[ATxxTA] = ATRX A 	 (3.30)

In practice, R. is estimated as an average over the given set of training vectors. For example, if

we are given n data vectors xk , k = 1, 2... n, then
1 n

R. 	 k=1
(3.31)

Note that R,, is a symmetric matrix, and hence its eigenvectors are mutually orthogonal from

(3.17). Thus, if matrix A is chosen so that its columns are the orthonormal eigenvectors a; i=0, 1, .

.. , N -1, of RX , then RY is diagonal.

RY =ATRXA=A
	

(3.32)

Where A is the diagonal matrix having as elements on its diagonal the respective eigenvalues

i= 0, 1, ... , N - 1, of R. . Furthermore, assuming R. to be positive definite the eigenvalues are

23

positive from (3.14). The resulting transform is known as the Karhunen-Loeve (KL) transform,

and it achieves our original goal of generating mutually uncorrelated features. It has to be

emphasized that the solution provided by the KL transform is not a unique one, and it was

obtained by imposing an orthogonal structure on matrix A (AT A). Also, note that for zero mean

variables the correlation matrix R coincides with the covariance matrix 	. As a matter of fact, a

direct consequence of the respective definitions is that

,,= R. - E[x]E[x]T 	 (3.33)

In case the zero mean assumption is not valid, the condition for uncorrelated variables becomes

E[(y(i)-E[y(i)])(y(j)-E[y(j)])]=0, i j, and the problem results in the eigen decomposition of

the covariance matrix, that is,

ZY =ATE XA=A 	 (3.34)

Although our starting point was to generate mutually uncorrelated features, the KL transform

turns out to have a number of other important properties, which provide different ways for its

interpretation and also the secret for its popularity[9].

3.4.1 Mean Square Error Approximation

From Equations (3.3) and (3.4) we have
N-1

x = E y(i)ai 	 (3.35)
i=o

y(i) = aTx 	 (3.36)

Let us now define a new vector in the m-dimensional subspace
A m-1
x = 	y(i)ai 	 (3.37)

i=o
where only m of the basis vectors are involved. Obviously, this is nothing but the projection of x

onto the subspace spanned by the m (orthonormal) eigenvectors involved in the summation. If we
A

try to approximate x by its projection x , the resulting mean square error is given by
z

E[llx_xll] =E ly(i)aill
i=m

(3.38)

Our goal now is to choose the eigenvectors that result in the minimum MSE. From (3.38) and

taking into account the orthonormality property of the eigenvectors, we have

24

ACC No~\~

Date....................

ROOR`~~~
N-1

E I Y(i)ai = E Z Z.. (Y(i)ai)(Y(.l)a j) 	 (3.39)
i=m 	 i j

_ 	E [y(i)Z] _ m aTE [xxT] ai 	 (3.40)
i=m 	 i=m

Combining this with (3.38) and the eigenvector definition, we finally get

A 2 	N-' 	N-I
E x — xll = i ai Xjai = : ?'i 	 (3.41)

i=m 	i=m

Thus, if we choose in (3.37) the eigenvectors corresponding to the m largest eigenvalues of the

correlation matrix, then the error in (3.41) is minimized, being the sum of the N -m smallest

eigenvalues. Furthermore, it can be shown that this is also the minimum MSE, compared with any

other approximation of x by an m-dimensional vector. This is the reason that the KL transform is

also known as principal component analysis (PCA). A difficulty in practice is how to choose the

m principal components. One way is to rank the eigenvalues in descending order,

X0 X1 >_ >_ X,,,_, >- X m , and determine m so that the gap between the values ?,m _I and X. is large

[9].

3.4.2 Steps for Calculation of Principal Component of given Data

• Estimate the covariance matrix S. Usually the mean value is assumed to be zero, E[x] = 0.

In this case, the covariance and autocorrelation matrices coincide, R = E[xxT] = S. If this

is not the case, we subtract the mean. Recall that, given N feature vectors, Xi ER' , i = 1,2,

... , N, the autocorrelation matrix estimate is given by,
N R = 1 1 xi X i (3.42)

• Perform the eigen decomposition of S and compute the I eigenvalues/eigenvectors, x i , ai

ER1 ,i=0,2,...,1-1.

• Arrange the eigenvalues in descending order, ~,o >_ %, >_ ... >_ ,-, >_ X1 .

• Choose the m largest eigenvalues. Usually m is chosen so that the gap between m-,. and

a,m is large. Eigenvalues ? 0,X,,••• 	are known as the m principal components.

• Use the respective (column) eigenvectors ai , i = 0, 1, 2... m-1 to form the transformation

matrix.

25

• Transform each 1-dimensional vector x in the original space to an m-dimensional vector y

via the transformation y = ATx . In other words, the it element y (i) of y is the projection

of x on ai (y(i) = aTx) [12].

3.4.3 Example Problem

Let us take an arbitrary data matrix,

16 3 2 13

5 10 11 8

A=9 6 7 12

4 15 14 1

2 14 7 23

A has 5 rows and 4 columns i.e. 4 observations with 5 dimensions each.

Mean vector, which is column vector is calculated by taking mean of each dimensions all

observations, is
8.5
8.5

mn = 8.5

8.5

28.5

Data matrix obtained after mean vector is subtracted from each column,

7.5 -5.5 -6.5 -4.5

-3.5 -1.5 2.5 -.5

data= 	.5 -2.5 -1.5 3.5
-4.5 6.5 5.5 -7.5

-26.5 -14.5 -21.5 -5.5

Covariance matrix of this data matrix is calculated using (3.42).

49.6667 -17.6667 14.3333 -46.3333 -1.3333

-17.6667 7.0000 -3.6667 14.3333 6.6667

Covariance= 	14.3333 -3.6667 7.0000 -17.6667 12.0000

-46.3333 14.3333 -17.6667 49.6667 -17.3333

-1.3333 6.6667 12.0000 -17.3333 468.3333

Eigen values and eigen vectors are calculated. Eigen vector are also called basis vectors or

principal components

-469.4782
-106.2776

Eigen values in ascending order = -5.9108
0
0

0.0019 0.6735 -0.4964 0.0776 -0.5477
0.0128 -0.2265 0.4985 0.5075 -0.7303

Eigen vectors = 	0.0275 0.2204 0.5007 .-0.7824 -0.1826
-0.0422 -0.6674 -0.5028 -0.3524 -0.3651
0.9986 -0.0326 -0.0405 0.0000 0.0000

Now, reduced image is obtained by applying transformation y = ATx where A is matrix

containing Eigen vectors as columns, x is data matrix. Original data can be recovered by reverse

transformation i.e. x = Ay and adding the mean vector to the result.

-26.2914
9.8217

Reduced image= -1.8826
0
0

-14.8143 -21.7243 -5.0781
-8.4605 -8.2444 9.1003
-0.4554 1.8262 3.2629

0 0 0
0 0 0

Clearly, it can be observed that final out matrix of the algorithm has lesser dimensions than

original data matrix, which can completely recovered from reduced image.

3.5 Singular Value Decomposition
The singular value decomposition of a matrix is one of the most elegant and powerful

algorithms in linear algebra and it have been extensively used for rank and dimension reduction in

pattern recognition and information retrieval applications. Given a lxn matrix X of rank r

(obviously r<min {1, n)), It can be shown that there exist unitary matrices U and V of dimensions

1 x 1 and nx n, respectively, so that

X=U A2 0 VH
o 0

27

Or, 	 Y = A2 0 = UHXV 	 (3.43)
00

1

Where A2 is the r xr diagonal matrix with elements ~; , and a, are the r nonzero eigenvalues of

the associated matrix XHX . 0 denotes a zero element matrix. In other words, there exist unitary

matrices U and V that transform X into the special diagonal structure of Y. If u; , v; denote the

column vectors of matrices U and V, respectively, then (3.43) can be written as

H a'0 II V0
II H

x = [U U1 	Ur i] 	 V, 	 (3.44)

L 	 a'r-1 	Vri 1

r-1

x= 	 u;v 	 (3.45)
s=0

where Ur denotes the 1 x r matrix that consists of the first r columns of U and Vr the r Xn matrix

formed by using the first r columns of V. More precisely, u; , vi are the eigenvectors

corresponding to the nonzero eigenvalues of the matrices XXH and XHX , respectively. The

eigenvalues X; are known as singular values of X and the expansion in (3.45) as the singular

value decomposition (SVD) of X or the spectral representation of X[9].

3.5.1 Proof of Singular Value Decomposition

Given a matrix X of rank r, it is known from linear algebra that the nxn matrix xHx as

well as the lxn matrix XXH is of the same rank r. Furthermore, both matrices have the same

nonzero eigenvalues but different (yet related) eigenvectors.

	

XXHU; = u1 	 (3.45)

	

X' Xv; = ~,;v; 	 (3.46)

Since both matrices are Hermitian and nonnegative (i.e., ()Q H)H = XXH), they have nonnegative

real eigenvalues and orthogonal eigenvectors. The eigenvectors, given in (3.45) and (3.46), can

28

also be normalized to become orthonormal, that is, uru; =1 and vrv; = 1 .Pre-multiplying (3.45) by

X results in,

(XXH)XVi = ;Xv; 	 (3.47)

That is, u; = axvi , where the scaling factor can be taken as positive and it is found from,

flui2 =1= a2VHXH XVi =a2XiIViII2 =>_ a= 1 	 (3.48)

So, 	 u; = I Xv; 	 (3.49)

Let us now assume that u; , v; , i=0, 1, ... , r-1, are the eigenvectors corresponding to the

nonzero eigenvalues and ui , i= r, . .. ,1-1, vi , i= r, . . _. , n-1, to the zero ones. Then, for the latter

case we have,

XHXV; = 0=>- VHXHXVi = O=>. IIXVi 112 =

Hence,

Xv; =0 	i=r, ..., n-1 	 (3.50)

In a similar way one can show that

XHU; = 0 i=r, ..., n-1 	 (3.51)

Combining (3.49) and (3.50), it can shown that the right-hand side of (3.45) is

r-1 	 r-1 	 n-1
a; u;vI =x 	a,;

1
 vivH = xyv;v' 	 (3.52)

Let us now define a matrix V that has as columns the orthonormal eigenvectors v1 ,

V = [fro ...

Orthonormality of the columns results in VHV =1 that is, V is unitary and hence wH = i . Thus,

it turns out that,
Hi

n-1
1=`7`I H =[VQ ... Vn-1]I 	= 	v vH 	 (3.53)

L H
Vn-1

From (3.52) and (3.53) we obtain
r-1

x = 	u;vx 	 (3.54)
i=o

29

And X can be written as,
I

X=U A2 o VH 	 (3.55)
1 0 0

Where U is the unitary matrix with columns the orthonormal eigen vectors. ui

3.5.2 Low Rank Approximation

The expansion in (3.54) is an exact representation of matrix X. A very interesting implication

occurs if one uses less than r (the rank of X) terms in the summation. Let X be approximated by
A k-1

X=X=Z uivH,k<_r 	 (3.56)
i=o

Matrix x , being the sum of k <-r rank-one independent 1 xn matrices, is of rank k. If the k largest

eigenvalues are involved, it can be shown that the squared error,
2

Ez =Y~IX(i,.i) — X(i,.i)I
i=o j=o

(3.57)

is the minimum one with respect to all rank-k 1 x n matrices. The square root of the right-hand

side in (3.57) is also known as the Frobenius norm IIx-XII of the difference matrixx-x . The

error in the approximation turns out to be
r-1

82 =~a;
	 (3.58)

i=k

Hence, if we order the eigenvalues in descending order, a,o >- a,, > ... >- kr_, , then for a given number

of k terms in the expansion, the SVD leads to the minimum square error. Thus, x is the best rank

k approximation of X in the Frobenius norm sense. This reminds us of the Karhunen-Loeve

expansion. However, in the latter case the optimality was with respect to the mean square error.

This is a major difference in philosophy between SVD and KL. The former is related to a single

set of samples and the latter to an ensemble of them [9].

3.5.3 Dimensionality Reduction

SVD has been used extensively for dimension reduction in pattern recognition and

information retrieval, and it forms the basis of what is known as latent semantics indexing, see,

for example, Adopting the notation used in (3.44) and (3.45), Eq. (3.56) can be written as[2],

30

H
aOVO

A 	 ~VH
x~X=[U0 U1 	Uk-1] V

..l 2

H
a'k-1 Vk-1

= UK ia0 al • • • an_1] 	 (3.59)

where Uk consists of the first k columns of U and the k dimensional vectors a; , i = 0, 1, ... , n-

1
1, are the column vectors of the kxn product matrix AVk ,where vK consists of the first k rows

of VH and Ak is the diagonal matrix having elements the square roots of the respective k singular

values. The formulation given in (3.59) suggests that each column vector, x, of X, is

approximated as,
k-1

X 	_ E U(m) 	i=0, ..., n-1 	 (3.60)
m=0

where a,(m) , m= 0, 1, ... , k - 1, denote the elements of the respective vector a; . In words, the 1-

dimensional vector X; is approximated by the k-dimensional vector a1 , lying in the subspace

spanned by u; , i = 0, 1, ... , k-1 (a; is the projection of x; on this subspace) Furthermore, due to

the orthonormality of the columns u; , i = 0, 1, ... , k- 1, of Uk from (3.60) it is straightforward

to see that,

Ilx —XJ 112 =' IIUk(ai — aj) 2 	 (3.61)

_ (Uk (ai — aJ)T)(Uk (ai — ai)) 	 (3.62)

= (a; —a;)T UkUk (a; —a;) 	 (3.63)

= la; -a jll2 	i, j =0,1,2,...n-1 	 (3.64)

Where 11 - 11 represents the Euclidean norm of a vector. That is, using the previous projection and

assuming the approximation to be reasonably good, the Euclidean distance between x and x j in

the high 1-dimensional space is (approximately) preserved under the projection in the lower k-

dimensional subspace. The previous observation has important implications in applications such

as information retrieval. For example, the simple case where we are given a set of n patterns each

represented by a 1-dimensional feature vector. These patterns constitute the available database.

Given an unknown pattern, the goal is to search for and recover from the database the pattern that

31

is most similar to the unknown one, by computing its Euclidean distance from each vector in the

database. When 1 and n are large numbers this can be a very time-consuming task. A procedure to

simplify computations is the following. We form the lxn data matrix, X having as columns the n

feature vectors. Perform a SVD on X and represent each feature vector, x; , by its lower

dimensional projection, a1 , as described before. Given the unknown vector, one projects it on the

subspace spanned by the columns of Uk and performs Euclidean distance computations in the k-

dimensional space. Since Euclidean distances are approximately preserved, one can decide about

the proximity of vectors by working in a lower dimensional space. If k o 1 substantial

computational savings are obtained. SVD builds upon global information spread over all the data

vectors in X. Indeed, a crucial part of the algorithm is the computation of the eigenvalues of X"X

or H, which, for zero mean data, is directly related to the respective covariance matrix. Hence,

the performance of the SVD, as a dimensionality reduction technique, is most effective for cases

where data can sufficiently be described in terms of the covariance matrix, for example, to be

Gaussian-like distributed. In a modification of the simple SVD is suggested to account for data

with a clustered structure.

Due to its optimal approximation properties, the SVI) transform also has excellent

information packing properties, and an image array can be represented efficiently by a few of its

singular values. Thus, SVD is a natural candidate as a tool for feature generation/selection in

classification. Performing SVD of large matrices is a computationally expensive task. In order to

overcome this drawback, a number of computationally efficient schemes have been developed

[9]

3.5.3 Example Problem
Taking same data matrix as in section 3.4.3

16 3 2 13
5 10 11 8

A=9 6 7 12
4 15 14 1
2 14 7 23

Computing SVD of above matrix yields following matrices,

32

-0.3929 0.5872 0.5501 -0.3850 0.2236
-0.3990 -0.2690 0.1160 0.5523 0.6708

U=-0.4058 0.1710 0.1950 0.5640 -0.6708
-0.3724 -0.7327 0.3131 -0.4200 -0.2236
-0.6189 0.1294 -0.7402 -0.2287 0.0000

42.1015 0 0 0
0 18.0196 0 0

S= 	0 0 13.0419 0
0 0 0 2.5818
0 0 0 0

-0.3482 0.3839 0.8364 -0.1782
-0.5191- -0.5039 -0.1293 -0.6781

V=
-0.4171 -0.5516 0.2257 0.6862
-0.6598 0.5426 -0.4824 0.1938

S is a diagonal matrix, of the same dimension as X and with nonnegative diagonal elements in

decreasing order, and unitary matrices U and V so that

x = USVT

33

Chapter 4: Artificial Neural Systems

Artificial neural systems are machines that have great potential to further improve the

quality of life. Although computers outperform both biological and artificial neural systems for

tasks based on precise and fast arithmetic operations, artificial neural systems represent the

promising new generation of information processing networks. Advances have been made in

applying such systems for problems found intractable or difficult for traditional computation.

Neural networks can supplement the enormous processing power of the von Neumann digital

computer with the ability to make sensible decisions and to learn by ordinary experience, as we

do.

Network computation is performed by a dense mesh of computing nodes and connections.

They operate collectively and simultaneously on most or all data and inputs. The basic processing

elements of neural networks are called artificial neurons, or simply neurons. Often we simply call

them nodes. Neurons perform as summing and nonlinear mapping junctions. In some cases they

can be considered as threshold units that fire when their total input exceeds certain bias levels.

Neurons usually operate in parallel and are configured in regular architectures. They are often

organized in layers, and feedback connections both within the layer and toward adjacent layers

are allowed. Each connection strength is expressed by a numerical value called a weight, which

can be modified.

Artificial neural systems function as parallel distributed computing networks. Their most

basic characteristic is their architecture. Only some of the networks provide instantaneous

responses. Other networks need time to respond and are characterized by their time-domain

behavior, which we often refer to as dynamics. Neural networks also differ from each other in

their learning modes. There are a variety of learning rules that establish when and how the

connecting weights change. Finally, networks exhibit different speeds and efficiency of learning.

As a result, they also differ in their ability to accurately respond to the cues presented at the input.

In contrast to conventional computers, which are programmed to perform specific tasks, most

neural networks must be taught, or trained. They learn new associations, new patterns, and new

functional dependencies. Learning rules and algorithms used for experiential training of networks

replace the programming required for conventional computation. Neural network users do not

34

specify an algorithm to be executed by each computing node as would programmers of a more

traditional machine. Instead, they select what in their view is the best architecture, specify the

characteristics of the neurons and initial weights, and choose the training mode for the network.

Appropriate inputs are then applied to the network so that it can acquire knowledge from the

environment. As a result of such exposure, the network assimilates the information that can later

be recalled by the user [10].

4.1 Neural Processing

Assume that a set of patterns can be stored in the network. Later, if the network is

presented with a pattern similar to a member of the stored set, it may associate the input with the

closest stored pattern. The process is called autoassociation. Typically, a degraded input pattern

serves as a cue for retrieval of its original form. This is illustrated schematically in figure 4.1 a.

The figure shows a distorted square recalling the square encoded.

Associations of input patterns can also be stored in a heteroassociation variant. In

heteroassociative processing, the associations between pairs of patterns are stored. This is

schematically shown in figure 4. lb. A square input pattern presented at the input results in the

rhomboid at the output. It can be inferred that the rhomboid and square constitute one pair of

stored patterns. A distorted input pattern may also cause correct heteroassociation at the output as

shown with dashed line.

Input Auto—
pattern association

E {oo❑} >o
Distorted Square

square

figure 4.1a Autoassociation

Input
pattern

1 Q Hetero-
association

0 ❑ -`O U
Square or X _„ 8 Rhomboid
distorted
square

figure 4.1b Heteroassociation

Classification is another form of neural computation. Let us assume that a set of input

patterns is divided into a number of classes, or categories. In response to an input pattern from the

35

set, the classifier is supposed to recall the information regarding class membership of the input

pattern. Typically, classes are expressed by discrete-valued output vectors, and thus output

neurons of classifiers would employ binary activation functions. The schematic diagram

illustrating the classification response for patterns belonging to three classes is shown in figure

4.2a.

Classification can be understood as a special case of heteroassociation. The association is

now between the input pattern and the second member of the heteroassociative pair, which is

supposed to indicate the input's class number. If the network's desired response is the class

number but the input pattern does not exactly correspond to any of the patterns in the set, the

processing is called recognition. When a class membership for one of the patterns in the set is

recalled, recognition becomes identical to classification. Recognition within the set of three

patterns is schematically shown in figure 4.2b. This form of processing is of particular

significance when an amount of noise is superimposed on input patterns.

Input 	 Class
pattern 	 number

[1]

figure 4.2a Classification

Input 	 Class
pattern 	 number

' {AXc} [j]

figure 4.2b Recognition

4.1.1 Perceptron
Perceptron is fundamental computational element in Neural Networks. figure 4.3 shows

a Perceptron. Each external input is weighted with an appropriate weight w1 , and the sum of the

weighted inputs is sent to the transfer function, which also has an input of 1 transmitted to it

through the bias. Depending upon transfer function used Perceptron can be discrete or continuous
[9].

36

Input 	General Neuron
r~l

R

a =J(W P +b)

Where

R = number of
elements in
input vector

figure 4.3 A Perceptron

Most frequently used transfer functions are as follows

f(net)=2x(1 	
-

1)
l+enet 2

Its transfer characteristic is as given in figure 4.4

a

r1;
0 '

.-- 	~:~........

figure 4.4 Tansig Function

f(net)=2x(1 	_ 1)
1+e _net 2

Its transfer characteristic is as given in figure 4.5

a

...........~+1........

n
0

........

figure 4.5 Logsig Function

(4.1)

(4.2)

37

F(net)=sgn(net)
	

(4.3)

Its transfer characteristic is as given in figure 4.6

a
+1

0
........... 	_~

figure 4.6 Thresholding Function

4.2 Learning and Adaptation
Learning in human beings and animals is an inferred process; we cannot see it happening

directly and one can assume that it has occurred by observing changes in performance. In general,

learning is a relatively permanent change in behavior brought about by experience. Learning in

neural networks is a more direct process, and we typically can capture each learning step in a

distinct cause-effect relationship. To perform any of the processing tasks discussed in the

previous section, neural network learning of an input-output mapping from a set of examples is

needed. Designing an associator or a classifier can be based on learning a relationship that

transforms inputs into outputs given a set of examples of input-output pairs [10].

4.2.1 Supervised and Unsupervised Learning

The majority of the neural networks require training in a supervised or unsupervised

learning mode. Some of the networks, however, can be designed without incremental training.

They are designed by batch learning rather than stepwise training. Batch learning takes place

when the network weights are adjusted in a single training step. In this mode of learning, the

complete set of input/output training data is needed to determine weights, and feedback

information produced by the network itself is not involved in developing the network. This

learning technique is also called recording. Learning with feedback either from the teacher or

from the environment rather than a teacher, however, is more typical for neural networks. Such

learning is called incremental and is usually performed in steps. figure 4.7a shows supervised

learning while figure 4.7b shows unsupervised learning.

38

Adaptive
x 	network 	 o 	x

Learning
signal

Distance 	d
generator

P[d,o]
distance measure

0

figure 4.7a Supervised Learning 	 figure 4.7b Unsupervised Learning

In supervised learning we assume that at each instant of time when the input is applied,

the desired response d of the system is provided by the teacher. This is illustrated in figure 4.7a.

The distance between the actual and the desired response serves as an error measure and is used

to correct network parameters externally. Since we assume adjustable weights, the teacher may

implement a reward-and-punishment scheme to adapt the network's weight matrix W. For

instance, in learning classifications of input patterns or situations with known responses, the error

can be used to modify weights so that the error decreases. This mode of learning is very

pervasive. Also, it is used in many situations of natural learning. A set of input and output

patterns called a training set is required for this learning mode. Typically, supervised learning

rewards accurate classifications or associations and punishes those which yield inaccurate

responses. The teacher estimates the negative error gradient direction and reduces the error

accordingly. In many situations, the inputs, outputs and the computed gradient are deterministic,

however, the minimization of error proceeds over all its random realizations. As a result, most

supervised learning algorithms reduce to stochastic minimization of error in multi-dimensional

weight space.

figure 4.7b shows the block diagram of unsupervised learning. In learning without

supervision, the desired response is not known; thus, explicit error information cannot be used to

improve network behavior. Since no information is available as to correctness or incorrectness of

responses, learning must somehow be accomplished based on observations of responses to inputs.

that we have marginal or no knowledge about For example; unsupervised learning can easily

result in finding the boundary between classes of input patterns distributed as shown in figure

39

4.8a. In a favorable case, as in figure 4.8a, cluster boundaries can be found based on the large and

representative sample of inputs. Suitable weight self-adaptation mechanisms have to be

embedded in the trained network, because no external instructions regarding potential clusters are

available. One possible network adaptation rule is: A pattern added to the cluster has to be closer

to the center of the cluster than to the center of any other cluster.

Unsupervised learning algorithms use patterns that are typically redundant raw data

having no labels regarding their class membership, or associations. In this mode of learning, the

network must discover for itself any possibly existing patterns, regularities, separating properties,

etc. While discovering these, the network undergoes change of its parameters, which is called

self-organization. The technique of unsupervised learning is often used to perform clustering as

the. unsupervised classification of objects without providing information about the actual classes.

This kind of learning corresponds to minimal a priori information available. Some information

about the number of clusters, or similarity versus dissimilarity of patterns, can be helpful for this

mode of learning. Finally, learning is often not possible in an unsupervised environment, as

would probably be true in the case illustrated in figure 4.8b showing pattern classes not easily

discernible even for a human[10].

x2 x2

0 xi of
—

x~

figure 4.8a Distinguishable Patterns 	 figure 4.8b Undistinguishable Patterns

4.3 Neural Network Learning Rules

A neuron is considered to be an adaptive element. Its weights are modifiable depending

on the input signal it receives, its output value, and the associated teacher response. In some cases

40

the teacher signal is not available and no error information can be used, thus the neuron will

modify - its weights based only on the input and/or output. This is the case for unsupervised

learning. The trained network is shown in figure 4.9.

xl
Ah

neuron

x~
o;

xj 	 Aw;

° 	 Laming
° 	 x 	 signal 	 d;
• generator

x„

w;,]' is the weight vector 	C
undergoing training

figure 4.9 Perceptron Under Training

4.3.1 Hebbian Learning Rule

For the Hebbian learning rule the learning signal is equal simply to the neuron's output.

We have,

r.~ f(w;x) 	 (4.1)

The increment ow; of the weight vector becomes

	

Owi =cf(w;x)x 	 (4.2)

The single weight wij is adapted using the following increment

	

= cf(w;x)x~ 	 (4.3)

This learning rule requires the weight initialization at small random values around wij = 0 prior to

learning. The Hebbian learning rule represents a purely feed forward, unsupervised learning. The

rule states that if the cross product of output and input, or correlation term ojx j is positive, this

results in an increase of weight wij otherwise the weight decreases. It can be seen that the output

is strengthened in turn for each input presented. Since its inception, the Hebbian rule has evolved

in a number of directions. In some cases, the Hebbian rule needs to be modified to counteract

41

unconstrained growth of weight values, which takes place when excitations and responses

consistently agree in sign. This corresponds to the Hebbian learning rule with saturation of the

weights at certain, preset level [10].

4.3.2 Perceptron Learning Rule

For the Perceptron learning rule, the learning signal is the difference between the desired

and actual neuron's response .Thus is, supervised and the learning signal is equal to,

r=(d; —o;)
	

(4.4)

where o; = sgn(w; x) , and d; , is the desired response as shown in figure 4.10. Weight adjustments

in this method, ow; , and ow;j , are obtained as follows,

Owi =c[d; —sgn(wfx)]x 	 (4.5)

w;1_c [d; —sgn(w;)x] x~ 	for j=1, ...,n 	 (4.6)

This rule is applicable only for binary neuron response, and the . relationships (4.5) and (4.6)

express the rule for the bipolar binary case. Under this rule, weights are adjusted if and only if o;

is incorrect. Error as a necessary condition of learning is inherently included in this training rule.

Obviously, since the desired response is either 1 or - 1, the weight adjustment (4.5) reduces to

Ow; = ±2cx 	 (4.7)

Where a plus sign is applicable when d; =1, and sgn(w;)x = - 1, and a minus sign is applicable

when d; _ - 1, and sgn(w;)x = 1. The weight adjustment formula (4.7) cannot be used when d; _

sgn(w;)x . The weight adjustment is inherently zero when the desired and actual responses agree

[10].

42

xI

x2

xi

xo

of

d;

c

figure 4.10 Perceptron Learning Rule

4.3.3 Delta Learning Rule

The delta learning rule is only valid for continuous activation functions, and in the

supervised training mode. The learning signal for this rule is called delta and is defined as

follows,

	

r=[ds — f(w~x)]f (wax)
	

(4.8)

The term f' (w; x) is the derivative of the activation function f (net) computed for net = w; x . The

explanation of the delta learning rule is shown in figure 4.11. This learning rule can be readily

derived from the condition of least squared error between o; and d1 . Calculating the gradient

vector with respect to w; of the squared error defined as,

E -1-(d -o)2
	

(4.9)

Which is equivalent to
E = rdl _ f(wix)] 2 	

(4.10)

Error gradient vector value is given by

	

of =-(d; -o;)f (w;x)x 	 (4.11)

The components of the gradient vector are

for =1 	n 	 (4.-12)

43

Since the minimization of the error requires the weight changes to be in the negative gradient

direction, we take

/w; = -i- VE 	 (4.13)

Where ,- is a positive constant. We then obtain from (4.11) and (4.13)

	

Ow; =1(d1 — o;)f (net;)x 	 (4.14)

Or, for the single weight the adjustment becomes

	

= r1(d; - o;)f (net;)x~ 	j=1......,n 	 (4.15)

Weight adjustment as in (4.14) is computed based on minimization of the squared error.

x,

2

Xi

C!

of

d;

C

figure 4.11 Delta Learning Rule

The delta rule was introduced only recently for neural network training. This rule parallels the

discrete Perceptron training rule. It also can be called the continuous Perceptron training rule. The

delta learning rule can be generalized for multilayer networks [10].

4.3.4 Widrow-Hoff Learning Rule

The Widrow-Hoff learning rule is applicable for the supervised training of neural

networks. It is independent of the activation function of neurons used since it minimizes the

squared error between the desired output value d, and the neuron's activation value neti = w; x

The learning signal for this rule is defined as follows,

rrd; —w;x 	 (4.16)

The weight vector increment under this learning rule is,

44

Ow; =c(d; —w;x)x 	 (4.17)

or, for the single weight the adjustment is,

Awl =c(d; —w;x)x~ 	 (4.18)

This rule can be considered a special case of the delta learning rule. Indeed, assuming in (4.8) that

f(w; x) = w; x , or the activation function is simply the identity function f (net) = net, we obtain f

'(net) = 1, and (4.8) becomes identical to (4.16). This rule is sometimes called the LMS (least

mean square) learning rule. Weights are initialized at any values in this method [10].

4.3.4 Winner Takes All Learning Rule

This learning rule differs substantially from any of the rules discussed so far. It can only

be demonstrated and explained for an ensemble of neurons, preferably arranged in a layer of p

units. This rule is an example of competitive learning, and it is used for unsupervised network

training. Typically, winner takes all learning is used for learning statistical properties of inputs.

The learning is based on the premise that one of the neurons in the layer Say m'th has the

maximum response due to input x, as shown in figure 4.12. This is neuron is declared the winner.

As a result of this winning event the weight vector Wm

Wm =[Wm1 Wm2 ... wmn]T 	 (4.19)

Weight increment is computed as follows,

AWm =a(X-Wm)
	

(4.20)

or, the individual weight adjustment becomes,

Owmj = a(x j — Wmj) 	for j=1,.....n 	 (4.21)

Where a >0 is a small learning constant, typically decreasing as learning progresses. The winner

selection is based on following criterion of maximum activation among all p neurons participating

in competition.

wx = max(w;x) 	 (4.22)
i=12....P

45

xt

xi

x„

o1

0,,,

op

(adjusted weights are highlighted)

figure 4.12 Winner Takes All Learning Rule

4.4 Neural Network Training
figure 4.13 shows a Perceptron which is also called Threshold logic Unit (TLU).

i,,=i or -1

figure 4.13 Neural Network Training

Value of output at summation junction is called `net' and is given by,

net= x1w1+x2w2 +•••+xnwi,+wn+l 	 (4.23)

This is an equation of hyperplane in n dimensional space. w„+1 is bias value also represented as

weight with fixed input 1. With proper weight values TLU element can classify, on which side of

the plane the pattern lies, 1 for positive side -1 for negative side respectively[].

46

4.4.1Backpropogation Algorithm

In this dissertation Feed-Forward two layer Neural Network has been used, hidden layer

contained ten neurons. Feed-Forward Neural Networks are also called back-propagation Neural

Networks because of the training method used. Back-Propagation is a gradient descent algorithm

for multilayer network with non-linear differentiable transfer function, in which network weights

are moved in the direction of negative gradient of performance function. Weight adjustment is

repeated using (4.24) to (4.32), until performance function value decreases below a certain low

value. Let z be input and o be target vectors of size Ix 1 and Kx 1 respectively and hidden layer

contain J neurons so output y of hidden layer is of size Jx 1. Layer weight matrix W and input

weight matrix V are of sizes KxJ and JxI respectively, are initialized to small random values, wkj

denote weight connecting kth output neuron to jth hidden layer neuron, similarly vii denote

weight connecting jth hidden neuron to ith input component[2].

y; F- f (net;) 	 (4.24)

net. = vjz 	 (4.25)

Where j=1, 2........., J

Where v~, a column vector, is jth row of V

Ok — f(netk) 	 (4.26)

netk = wky 	 (4.27)

Where k=1, 2........., K

Where Wk, a column vector, is kth row of W

Where most common choice of function f is bipolar continuous activation function given by

equation:

f(net)=2x(1 -- 	 (4.28)
l + e net

47

However, it can be any nonlinear continuous differentiable function.

Error signal vectors for each layer, So and Sy of size Kx 1 and Jx 1 are computed using following

equations:

1 Sok = 2 (dk —Ok)(1 — Ok) 	 (4.29)

Where dk is desired output of kth neuron where

k=1, 2.........., K

K
6., =2(1— Yj)E,Sokwkj 	 (4.30)

k=1

for j= 1, 2 J

Output layer weights are adjusted by equation:

Wkj — W kj +TSokYj 	 (4.31)

for k=1, 2 K and

j=1, 2 J

Hidden layer weights are adjusted by equation:

E- v j; +it z; 	 (4.32)

for j=1, 2,, J and

i= 1,2I

Where i- is learning rate.

Common choice performance function, which is optimized using (4.24) to (4.32), is mean square

error, which is given by following equation [10].

48

4.4.2 Resilient Backpropagation

In this dissertation Resilient Backpropagation as training algorithm has been used.

Multilayer networks typically use sigmoid transfer functions in the hidden layers and output

layer. From (4.29) and (4.30) we find that error signal vector uses slope of transfer function for

calculation, now when input is large derivative of (4.28) is small, which makes error signal vector

small, as a result of which weight adjustment is slow even if weights are far from optimal value.

Resilient Backpropagation eliminates these harmful effects. In this algorithm magnitude of

derivative have no effect on weight adjustment, rather sign of the derivative determines the

direction of weight adjustment. The size of the weight change is determined by a separate term

update_value. The update_value for each weight and bias is increased by a factor deli inc

whenever the derivative of the performance function with respect to that weight has the same sign

for two successive iterations. The update value is decreased by a factor deli dec whenever the

derivative with respect to that weight changes sign from the previous iteration. If the derivative is

zero, the update value remains the same. This algorithm leads to faster convergence.

49

Chapter 5: Software for Face Recognition

5.1 Algorithm

The method proposed uses Laplacian for pre-processing. Singular Value Decomposition for

feature extraction and two layer Feed-Forward Neural Network for recognition and classification.

Database contained Facial image of ten different persons, each person has ten different variations

of facial expression.

A. Pre-Processing

Four images from each group were taken, and processed using (2.6). This step resulted

in sharp image with enhanced small details as shown in figure 2.5. Application of laplacian was

done by mask shown in figure 2.2. Laplacian operator results into image with some pixel values

as negative, which are truncated to zero by display device. So, integer precision image was

converted to double precision before applying Laplacian.

B. Training Vectors Creation

Images after pre-processing stage were arranged in the form of matrix such that, each

column of matrix contains an image data. Image size we used was 92x 112 so, resultant matrix

was of size 10304x40. This Matrix was replicated into three sets, second and third set were added

with normally distributed noise of mean zero and standard deviation 0.05 and 0.1 respectively.

This step was taken to improve noise tolerance of Neural Network. Singular Value

Decomposition was applied to this matrix of size 10304x 120. As a result Feature Matrix of size

120x 120 was created, which was used to train the neural network. Further, orthonormal basis

matrix of size 10304x 120 was also created in this step.

C: Neural Network Training

Columns of Feature Matrix created above were used to train neural network. Various

Training parameters used were, number of epochs was set to 5000, performance function was

sum square error, Goal was set to 0.1, Ten hidden neurons were used, Transfer function for

hidden layer and output layer were tan-sigmoid and log-sigmoid respectively. Learning rate was

set to 0.05. Training function used was resilient Backpropagation with update_value=.07,

50

delt_dec=0.5 and deli inc=1.2. Resilient Backpropagation resulted in faster convergence than

conventional gradient descent algorithm.

D. Network Simulation

Face to be recognized was first pre-processed and, then its projection was taken along

orthonormal basis vectors which columns of orthonormal basis matrix are obtained using Singular

Value Decomposition by following equation:

Ytest — U
T
 Xtest
	 (4.33)

Where xtest is image data with or without noise, arranged in lexicographic form, U is basis

matrix, ytest is feature vector of Face to be recognized. Trained network responded with a 10x I

vector with maximum value, close to one in one position, showing class to which input face

belonged.

5.2 Program for Computation Principal Component Analysis

function [mn,signals,PC,V] = pca_fcn(data)

°rudata=Ixii data mat r ix each columns are samples xvith I dimensions

%mn=column vector with mean of each rows

%signals=mxn dimension output matrix where m<l

%V=variance of each dimensions of output matrix

[M,N] = size(data);

mn = mean(data,2);

data = data - repmat(mn, 1 ,N);

covariance = I / (N-1) * data * data';

[PC, V] = eig(covariance);

V = diag(V);

[junk, rindices] = sort(-1 * V);

V = V(rindices);

PC = PC(:,rindices);

signals = PC'*data;

51

5.3 Program for Creation of Training Set

function [P,T]=create_db(str)

%str=cell array)I ,trinz, contauin iniaze address

%P=pattern data

O1 tar~Let data

[m n]=size(str);

image=imread(str{ 1,1 });

[x,y]=size(image(: ,: , 1));

P=zeros(x*y,m*n);

T=zeros(m,m*n);
x, 011) (1 	;i/L(I'I_

w=fspecial('I 	,[5 5],.5);

for i=1:m

for j=l:n

img =imread(str{iz j});

z=img(:,:,1);

z=im2double(z);

z=z-imfilter(z,w,'rc p I icate', same');

oircl i

%imshow(z);

° oimsave

P(:,n*(i-1)+j)=z(:);

T(i,n*(i-1)+j)=1;

end

end

%[P,ps] -mapstd(P);

52

5.4 Program for Creation of Noisy Training Set

function [P T]= createnoisy_db(R,G)

%R=1xn matrix each column is an log tranformed image of type double

%P=lx 3*n matrix first n columns has original image n+1 to 3n columns

", ha 	nia'-, c 	ith normallv (jistril)uteci na,ic

[m n]=size(R);

rows=112;

cols=92;

R1= R+ randn(m,n). * .1;

R2= R+randn(m,n).*.05;

P=[R R1 R2];

T=[G G G];

img=zeros(rows,cols);

[x y]=size(P);

for i=1:y

for j=1 :cols

img(:,j)=P(((j-1)*rows+1): rows *j,i);

end

%imshow(img);

in save

end

5.5 Program for Computation of Singular Value Decomposition

function [Y U] =svd_compute(P)

%P=-log transh rinied iniaoe matrix in lexicographic form

%size of P is imrows*1mcolumns X numlmages

°oY -m X numlmages size matrix

[U S V]=svd(P,'econ');

Y=S * V';

Q=U*Y;

53

Y1=U'*P;

rows=112;

cols=92;

img=zeros(rows,cols);

[in n]=size(Q);

for 1=1 :n

for j=l :cols

img(:j)=Q(((j-1)*rows+l):rows*j,i);

end

%imshow(img);

°oimsave

end

5.6 Program for Neural Network Training

function [net tr]= train_fcn(P,T,Goal,Epochs,PFcn,Trngfcn,numHneuron,tfl,tf2,lrnRate)

%various paraiiieters in order

%P= pattern vectors

%T=target vectors

%Goal=value of sum square error

%Epochs=num of iterations

%Pfcn='sse' or 'rose' etc.

%Tmgfcn=training function used

%numHneurons=number of neurons in hidden layers

%tf I =string containing transfer function of first layer

%tf2=string containing transfer function of 2nd layer

%lr=network learning rate

°onet--returned trained netvvork

net = newff(P,T,nurHneuron, {tfl,tf2 });

net.trainFcn=Trn gfcn;

net.IW{1,1} =net.IW{1,1}*0.01;

54

net.outputs { 2) .processParams {2 } .ymin=0;

net.LW{2,1) = net.LW {2,1 } *0.01;

net.b { 2 } = net.b { 2 } *0.01;

net.b{1} = net_b{1}*0.01;

net.divideFcn='div iJci 	(1';

net. divideParam.trainRatio=1.00;

net. divideParam. valRati o=0.00;

net. divideParam. to stRatio=0.00;

net.performFcn=PFcn;

net.inputs{l}.processFcns={'hxunknowns' 'removeconstantrows 'mapnuiimax','inapstd'};

)Ill',t 	U1j)III, 	:.I)Ik)CC»I CIIti TIIIaI)Std'j

net.trainParam. showCommandLine=1;

net.trainParam. goal=Goal;

net. trainParam. epo chs=Epochs;

net. trainParam.Ir=lrnRate;

[net,tr] = train(net,P,T);

5.7 Program for Simulation Neural Network

function [0 result Y]= simulate_fcn(str,U,noiseLevel,net)

%str=one ro~v string cell array Ilav In aaddre;, o I iiacc to he recownised

%U=matrix whose columns are basis vectors used for trannsforming input

%image into reduced subspace

%noiseLevel=amount of noise level to be added in input image

°gilt net\vcrk after t aininr

[m,n]=size(str);

image=imread(str{ 1,1));

[x,y]=size(image(:,:, 1));

P=zeros(x*y,m*n);

w=fspecial('Io),)' ,[5 5],.5);

noise=randn(x,y).*(noiseLevel);

for i=1:m

55

for j=1 :n

img =imread(str { i,j });

z=img(:,:,1);

z=im2double(z);

z=z-imfilter(z,w,'rcE)licate','sain c');

z=z+noise;

imshow(z);

°uIIll'~l\L;

P(:,n*(i-1)+j)=z(:);

end

end

Y=U'*P;

O=sim(net,Y);

[rows,cols] =size(0);

result=zeros(rows,cols);

[Z,index]=max(0);

for i=1:cols

i) 	.4)

result(index(i),i.)=Z(i);

end

if(index==1)

figure,imshow('I 	lace 	ae 	\ :1I

elseit(index=2)

figure,imshow(I = lace ima~e 	N Ni

else i f(index==3)

figure,imshow('I 	lice uu~ie 	C 	('I

elseif(index==4)

figure,imshow('I 	lace ima 	e' I) I))

elseit(index=5)

figure,imshow('I . lice im~ie; I. I-.I

56

elseif(index=6)

figure,imshow('1 : f<ac. ;ti 	!

elseif(index=7)

figure,imshow(F Iacs 	(t

elseif(index=8)

figure,imshow('I : Dice inu<i c ,, 1

else] f(index=9)

figure,imshow('1: ijcc 	I

elseif(index=10)

figure,imshow('1-: Iaee images.l

end

57

Chapter 6: Results

Neural Networks designed with the proposed method recognized images with an accuracy

rate of 91%. at zero noise level. Noise response of the network has been studied for twenty

different noise levels. It was found that Neural Network designed by proposed method tolerated

the noise extremely well. As shown in the plot of figure 6.4. Though recognition rate decreased as

noise increased, it is 83%, which is appreciably high, even at random noise of standard deviation

-.O.2 and mean zero. figure 6.1 shows Facial images contaminated by normally distributed random

noise with zero mean value and various standard deviations. The training method used is Resilient

Backpropagation, which led to faster learning of the Network. It took 37 epochs to converge or to

reach the goal. As shown in the performance plot of figure 6.3.

figure 6.2a and figure 6.2b shows Training and Test images respectively. Out of ten

images of each person four has been used for training the network and remaining six test images

which network has never seen has been used for verification.

Section 6.1 shows Confusion matrix from Table I to Table XX. A confusion matrix is

analysis of Network Performance at a given noise level, in a confusion matrix ten persons are

denoted by alphabets A to J, where columns denote group indicated by the network and rows

indicate actual group to which person belong. For example, say in Matrix shown in Table I, a

particular cell say (C, B) shows a number 2, which means that 2 images that belonged to group C

were erroneously grouped into group B by the Network. Similarly a cell (C, C) which shows

number 7 indicates that 7 images of group were classified correctly by the Network. Sum of

diagonal elements in confusion matrix is proportional to the accuracy of the Network. Accuracy

of the algorithm was found to be 91% under zero random noise condition.

a=0 r=.05 a=.1 a=.15 a=.2 a=.25 a=.3 6 =.35 6=.4 6 =.45 a=.5

figure 6.1 Various Noise levels

58

Training Images 	 Test Images

figure 6.2a

59

6.1 Confusion Matrix for Various Noise Levels

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 00

B 0 10 0 0 0 0 0 0 00

C 1 2 7 0 0 0 0 0 00

D 0 0 0 8 2 0 0 0 0 0

E 0 0 0 0 10 0 0 0 00

F 0 0 0 0 0 10 0 0 00

G 0 0 0 0 0 0 10 0 00

H 0 0 0 0 1 0 0 9 00

I 0 0 0 0 0 0 1 0 9 0

J 0 1 0 0 1 0 0 0 0 8

Table I. Noise Level=0; 91% Recognition Rate

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 0 0

B 0 10 0 0 0 0 0 0 00

C 1 2 7 0 0 0 0 0 00

D 0 0 0 8 2 0 0 0 00

E 0 0 0 0 10 0 0 0 00

F 0 0 0 0 0, 10 0 0 00

G 0 0 0 0 0 0 10 0 00

H 0 0 0 0 1. 0 0 9 00

I 0 0 0 0 0 0 1 0 9 0

J 0 1 0 0 1 0 0 0 0 8

Table II. Noise Level=0.05; 91% Recognition Rate

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 00

B 0 10 0 0 0 0 0. 0 00

C 1 2 7 0 0 0 0 0 00

D 0 1 0 7 2 0 0 0 00

E 0 0 0 0 10 0 0 0 0 0

F 0 0 0 0 1 9 0 0 00

G 0 0 0 0 0 0 10 0 0 0

H 0 0 0 0 1 0 0 9 00

I 0 0 0 0 0 0 1 0 9 0

J 0 1 0 0 1 0 2 0 06

Table III. Noise Level=0.1; 89% Recognition Rate

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 0 0

B 0 8 0 2 0 0 0 0 0 0

C 0 2 8 0 0 0 0 0 0 0

D 0 0 0 8 0 0 1 0 1 0

E 0 0 0 0 10 0 0 0 0 0

F 0 0 0 0 1 9 0 0 0 0

G 0 0 1 0 1 0 8 0 0 0

H 0 0 0 0 1 0 0 9 0 0

0 1 0 0 0 0 0 0 9 0

J 0 0 1 0 0 0 2 0 0 7

Table IV. Noise Level=0.15; 86% Recognition Rate

61

A B C D E F 	.G H I J

A 10 0 0 0 0 0 0 0 00

B 0 9 0 1 0 0 0 0 00

C 1 2 6 0 0 1 0 0 00

D 0 1 0 7 2 0 0 0 0 0

E 0 0 0 0 10 0 0 0 00

F 0 0 2 0 0 8 0 0 00

G 0 0 0 0 0 0 10 0 00

H 0 0 0 0 1 0 0 9 00

I 0 0 0 1 0 0 1 0 80

J 0 1 0 0 1 0 2 0 06

Table V Noise Level=0.2; 83% Recognition Rate

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 0 0

B 0 8 0 2 0 0 0 0 00

C 1 2 6 0 1 0 0 0 0 0

D 0 1 0 5 2 2 0 0 00

E 0 0 0 0 10 0 0 0 00

F 0 0 2 1 0 7 0 0 0 0

G 0 0 0 0 0 0 10 0 00

H 0 1 0 0 1 0 0 8 00

I 0 0 0 0 0 0 1 0 9 0

J 0 1 0 2 1 0 1 0 05

Table VI. Noise Level=.25; 78% Recognition Rate

62

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 00

B 0 8 0 2 0 0 0 0 00

C 1 2 6 0 0 1 0 0 00

D 1 2 0 5 2 0 0 0 00

E 0 0 0 0 10 0 0 0 00

F 0 0 2 0 0 7 0 1 00

G 0 0 0 0 0 0 10 0 00

H 0 1 0 0 1 0 0 8 00

1 0 0 0 0 0 0 1 0 9 0

J 0 1 2 0 1 0 1 0 05

Table VII. Noise Level=0.3; 78 % Recognition Rate

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 00

B 0 8 0 2 0 0 0 0 00

C 1 2 7 0 0 0 0 0 00

D 0 0 0 6 2 2 0 0 00

E 0 0 0 0 10 0 0 0 00

F 2 0 2 0 0 6 0 0 0 0

G 0 0 0 2 1 1 6 0 0 0

H 0 3 0 0 1 0 0 6 00

I 0 0 0 1 0 0 1 0 8 0

J 0 1 2 0 1 1 0 0 05

Table VIII. Noise Level=0.35; 72 % Recognition Rate

63

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 00

B 0 7 1 2 0 0 0 0 00

C 1 2 6 0 0 1 0 0 00

D 1 0 0 5 2 0 2 0 00

E 0 0 2 0 8 0 0 0 0 0

F 0 2 0 0 0 6 0 2 00

G 0 0 0 0 0 0 10 0 00

H 0 0 3 0 0 0 0 7 00

I 0 0 0 1 0 0 1 0 8 0

J 0 1 0 0 1 0 3 0 05

Table IX Noise Level=0.4; 72 % Recognition Rate

A B C D E F G H I I

A 9 0 0 0 1 0 0 0 00

B 0 6 0 0 0 2 2 0 00

C 1 2 6 0 0 0 0 0 10

D 0 0 0 6 2 0 0 2 0 0

E 0 0 0 0 9 0 1 0 00

F 0 0 2 2 0 6 0 0 00

G 1 2 0 0 0 0 7 0 00

H 0 0 3 0 1 0 0 6 00

I 0 0 0 1 0 0 1 0 8 0

J 0 1 0 0 1 2 0 2 04

Table X Noise Level=0.45; • 67 % Recognition Rate

A B C D E F G H I J

A 10 0 0 0 0 0 0 0 00

B 0 6 2 2 0 0 0 0 00

C 1 2 4 0 0 3 0 0 00

D 0 0 2 5 2 0 0 1 0 0

E 0 1 0 0 9 0 0 0 00

F 0 0 2 0 0 6 2 0 0 0

G 0 0 0 3 0 0 7 0 00

H 0 3 0 0 1 0 0 6 00

I 0 0 2 0 0 0 1 0 70

J 0 1 2 2 1 0 0 0 04

Table XI Noise Level=0.5; 64 % Recognition Rate

A B C D E F G H I J

A 8 0 0 0 0 0 0 0 20

B 0 6 0 0 0 2 0 2 00

C 1 2 6 0 0 0 0 1 00

D 0 2 0 5 2 0 1 0 00

E 0 1 0 0 9 0 0 0 00

F 0 2 2 0 0 6 0 0 00

G 0 0 0 0 3 0 7 0 00

H 0 0 0 0 1 2 2 6 0 0

I 0 0 0 3 0 0 1 0 6 0

J 0 2 1 0 3 1 0 0 03

Table XII Noise Level=0.55; 62 % Recognition Rate

65

A B C D E F G H I J

A 8 0 0 0 2 0 0 0 0 0

B 0 6 2 2 0 0' 0 0 00

C 1 2 6 0 0 0 1 0 0 0

D 0 0 0 5 2 0 1 2 00

E 0 0 0 0 8 0 2 0 0 0

F 0 0 2 0 2 6 0 0 0 0

G 0 2 0 2 0 0 3 0 30

H 0 2 2 0 1 2 0 3 00

I 0 0 0 3 0 0 1 0 60

J 0 1 2 0 1 2 1 0 03

Table XIII Noise Level=0.6; 54 % Recognition Rate

A B C D E F G H I J

A 7 0 2 0 0 1 0 0 00

B 0 6 0 0 2 2 0 0 00

C 1 2 5 0 0 0 2 0 00

D 0 0 0 5 2 0 2 1 00

E 0 0 0 0 8 2 0 0 00

F 0 0 0 0 0 5 4 1 00

G 0 0 0 0 2 0 7 0 10

H 0 0 3 3 1 0 0 3 00

I 0 0 0 2 2 0 1 0 50

J 0 1 4 1 1 0 0 0 03

Table XIV Noise Level=0.65; 54 % Recognition Rate

A B C D E F G H I J

A 8 0 0 2 0 0 0 0 0 0

B 0 6 0 0 2 2 0 0 0 0

C 1 2 4 0 0 3 0 0 0 0

D 0 0 2 4 2 0 0 2 0 0

E 0 0 2 0 6 0 2 0 0 0

F 0 2 0 3 0 5 0 0 0 0

G 0 0 2 2 0 0 6 0 0 0

H 0 3 0 2 1 0 0 4 0 0

I 0 2 2 0 0 0 1 0 5 0

J 0 1 3 0 1 2 0 0 0 3

Table XV Noise Level=0.7; 53 % Recognition Rate

A B C D E F G H I J

A 8 0 2 0 0 0 0 0 0 0

B 0 6 2 2 0 0 0 0 0 0

C 2 2 4 0 0 0 0 4 0 0

D 0 4 0 4 2 0 0 0 0 0

E 0- 0 0 3 3 0 0 3 1 0

F 0 0 0 2 0 5 3 0 0 0

G 0 0 2 0 2 0 6 0 0 0

H 0 3 0 0 1 2 0 4 0 0

I 0 2 0 2 0 0 1 0 5 0

J 0 1 0 0 1 3 2 0 0 3

Table XVI Noise Leve1=0.75; 48 % Recognition Rate

67

A B C D E F G H I J

A 5 0 2 2 0 1 0 0 00

B 0 6 0 3 0 0 0 1 00

C 1 2 5 0 0 2 0 0 00

D 0 0 0 4 2 0 3 1 00

E 0 3 2 0 3 0 2 0 00

F 0 3 0 3 0 4 0 0 0 0

G 0 0 2 4 0 0 4 0 0 0

H 2 0 0 2 1 3 0 '2 0 0

I 0 1 0 3 3 0 1 0 3 0

J 2 1 0 0 1 3 0 0 0 3

Table XVII Noise Level=0.8; 38 % Recognition Rate

A B C D E F G H I J

A 5 0 2 3 0 0 0 0 00

B 0 4 0 4 2 0 0 0 00

C 1 2 2 0 3 0 2 0 00

D 1 0 0 2 2 0 2 0 3 0

E 0 2 1 0 3 0 0 4 00

F 0 0 3 4 0 3 0 0 0 0

G 1 0 0 2 2 0 5 0 0 0

H 0 3 0 0 1 4 0 2 0 0

1 0 2 0 3 0 0 1 0 4 0

J 0 1 0 0 2 3 0 0 0 4

Table XVIII Noise Level=0.85; 34 % Recognition Rate

68

A B C D E F G H I J

A 6 0 2 0 0 2 0 0 0 0

B 0 4 0 3 1 2 0 0 0 0

C 2 3 2 0 0 2 1 0 0 0

D 0 0 3 1 2 0 2 1 1 0

E 1 0 3 0 2 4 0 0 0 0

F 1 3 0 5 0 1 0 0 0 0

G 0 0 0 0 0 0 2 0 0 0

H 0 2 4 0 1 0 0 3 0 0

I 0 0 3 0 3 0 1 0 3 0

J 0 1 2 1 2 1 0 0 0 3

Table XIX Noise Level=0.9; 27 % Recognition Rate

A B C D E F G H I J

A 6 2 0 2 0 0 0 0 0 0

B 0 4 2 0 4 0 0 0 0 0

C 1 2 1 0 3 1 2 0 0 0

D 0 2 0 2 2 0 4 0 0 0

E 0 1 4 0 1 0 4 0 0 0

F 0 0 3 0 0 1 0 4 2 0

G 0 0 0 0 0 0 .2 0 0 0

H 0 3 0 5 1 0 0 2 0 0

I 0 0 2 3 0 0 1 0 4 0

J 0 2 0 3 1 0 0 0 0 4

Table XX Noise Level=0.95; 24 % Recognition Rate

10'

S 	 10 	 '5 	 2u 	 3 	 3o
Epahs

lea

C,

6.2 Performance Plot

Performance Plot gives values of performance function as training vectors are presented to

Neural Network. Epoch is measure of number of training vectors. As shown in the figure 6.3

initially Error value which in this case is sum square error was close to 300. As training

proceeded error value reduced and net the dashed goal line at epoch number 37.

figure 6.3 Performance Plot

70

6.3 Worst Case Accuracy Plot

This plot is called worst case accuracy plot because, each image was tested 10 times under

different noisy conditions and worst recognition of all 10 runs was used to create the plot. It was

done because under noisy condition, though we know mean and standard deviation of noise, noise

value at a particular pixel position were unknown. So in some runs noise values may affect, those

parts which help in recognition the most, like mouth, nose, eyes etc. while in some runs noise

only affect redundant information which had no effect on recognition. Hence worse case was

picked.

Accuracy plot
100

90

80

70

Cu 60
U
L)
CU

60

40

30

20
0 0.1 	0.2 	0.3 	0.4 	0.6 	0.6 	0.7 	0.8 	0.9 	1

noise [evel(std. dev.)

figure 6.4 Worst case Accuracy Plot

71

Chapter 7: Conclusions and Future Research Suggestions

In this dissertation an algorithm for face recognition using Feed Forward Neural Network with

faster learning and improved noise tolerance has been developed. Faces were recognized using Neural

Networks under noisy conditions and with variation in looks of a given Face. Reliability of the

method was tested against Cambridge ORL face database. Ten different Faces with ten different

expressions each were picked up. The proposed method was found to recognize the Faces with high

recognition accuracy under noisy conditions.

It can be concluded that Neural Networks perform extremely well for computations like

recognition and classification. Singular Value Decomposition is efficient method for redundancy

removal (Feature generation or Dimensionality reduction). Neural Network designed with proposed

method tolerated the noise extremely well and training algorithm used led to its faster learning. This

approach does provide a practical solution to facial recognition with a simple algorithm under noisy

condition. Resilient Backpropagation led to faster convergence. Further, with worst case performance

plot shown in figure 6.4, one can conclude that noise tolerance of the Network will be at least as good

as shown in the plot.

Area of Face Recognition has immense research potential and developing at a fast rate. Its

scope for development lies in more advanced techniques of feature generation and dimensionality

reduction. In some latest papers it has been proposed that techniques like wavelet packet

decomposition and 3D Face Recognition can take the accuracy level close to 100%. Area of Neural

Network has to be understood more clearly to harness its immense computational potential over

conventional computing. Advanced training methods can be applied for faster learning. Reliable

methods of face recognition can boost various sectors like automated surveillance, industrial

automation, security systems, robotics etc.

72

References

[1] W. Zhao, "Face Recognition: A Literature Survey", ACM Computing Surveys, pp.
399- 458, 2003.

[2] Pritha, D.N., Savitha, L., Shylaja, S.S., "Face Recognition by Feed forward Neural

Network Using Laplacian of Gaussian Filter and Singular Value Decomposition"

2010 First International Conference on Integrated Intelligent Computing (ICIIC),

vol.,no.,pp.56-61,5-7Aug.2010.

[3] Guang Deng, "A Generalized Unsharp Masking Algorithm," , IEEE Transactions on
Image Processing, vol.20May2007.

[5] Fukunaga, K. Olsen, D.R., "An Algorithm for Finding Intrinsic Dimensionality of

Data,", IEEE Transactions on Computers, vol.C- 20, no.2, pp.176-183,Feb.1971.

[6] Jun-Ying Gan, Mengfei Liu, "Face recognition using wavelet Packets decomposition
and Hopfield neural network, ", ICWAPR 2009. International Conference on

Wavelet Analysis and Pattern Recognition,vol.,no.,pp.335-339,12-15July2009.

[7] Palanivel, S, Venkatesh, B.S, Yegnanarayana, B., "Real time face, recognition system
using autoassociative neural network models," (ICASSP '03). IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol.2,no.,pp.lI-833-6.2,6-

10April2003.

[8] Howard Demuth and Mark Beale, Neural Network ToolboxTM User's Guide . version
6 Natick :The MathWorks, Inc,2008

[9] Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, Fourth
Edition, Burlington: Academic Press.2008.

[10] J. M. Zuradah , Introduction to Artificial Neural System, Third Edition. Mumbai: Jaico

Publishing House 1999.

[11] R. C. Gonzalez and R. E. Woods, Digital image processing, Third Edition. New Delhi:

Dorling Kindersley India Pvt. Ltd 2008.

[12] Sergios Theodoridis and Konstantinos Koutroumbas, An Introduction to Pattern

Recognition: A Matlab approach, Fourth Edition, Burlington: Academic Press.2008.

73

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Conclusion
	References

