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ABSTRACT 

Face recognition is a computer application of recognizing persons by their facial images, 

which may vary with makeover, expressions, age or due to noise added during image acquisition 

or during transmission over a network. Work on Face recognition is going on from around last 

twenty years, and has got immense future scope and great commercial value. Face recognition is 

being used for Access Control, Protection and Security, Industrial Automation and Robotics etc. 

Face recognition system is based on principals of various fields like Image Processing, 

Linear Programming, Statistics and Neural Networks etc. Various Image Processing Techniques 

like Laplacian, Laplacian of Gaussian, and Histogram Equalization etc. are used for image 

preprocessing stage to increase sharpness and dynamic range. Facial images contain redundancies 

which do not help in recognition but increase processing overhead, Techniques like Fourier 

Transform and Wavelet Packet Decomposition are used for feature generation or dimensionality 

reduction. _Concepts from Linear Programming and statistics like Principal Component Analysis, 

Singular Value Decomposition, and Independent Component Analysis etc. are also used for 

generating features of reduced dimensions from original data, which has same recognition 

potential as original data. Neural Networks are powerful tool for recognition type of computation. 

They are trained on representative set of images, once trained they can recognize images they 

have never seen. Most important feature of such networks are that they tolerate noise extremely 

well. 

In this dissertation an algorithm for improved Face Recognition has been developed. 

Laplacian has been used for preprocessing the facial images. Singular Value Decomposition has 

been used for feature generation dimensionality reduction. Neural Networks have been used ' for 

recognition purposes. In order to improve noise tolerance of developed face recognition system 

Neural Networks has been trained by deliberately generated noisy data. Further, in training 

Neural Networks a technique Resilient Backpropagation has been used which made the training 

faster. 

Face Recognition system developed has an accuracy of 91% under zero random noise 

condition. Further a study of variation of accuracy with noise has been carried out and results are 

presented in chapter 6. 
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Chapter 1: Introduction 

A Face recognition system is a computer application for automatically identifying or 

verifying a person from a digital image which may vary with age, makeover and expressions and 

under noisy conditions. In recent years, many algorithms have been proposed on the problem of 

face recognition. Recent survey of these algorithms can be found in [1]. Face recognition system 

uses algorithms from fields of Image Processing, Linear Algebra, Statistics and soft computing 

techniques like Neural Network, Fuzzy Logic etc. Face recognition system is studied under the 

broad topic of Pattern Recognition. 

Pattern Recognition is scientific discipline whose goal is the classification of object into 

number of categories or classes. Depending on application, patterns can be images or signal 

waveform or any measurement that need to be classified. Pattern Recognition is an integral part 

of most machine intelligence systems built for decision making. Machine vision is an area in 

which pattern recognition is of importance. Machine vision is widely used in Automatic Control 

areas. A machine vision system captures images via a camera and analyzes them to produce 

descriptions of what is imaged. A typical application of a machine vision system is in the 

manufacturing industry, either for automated visual inspection or for automation in the assembly 

line. For example, in inspection, manufactured objects on a moving conveyor may pass the 

inspection station, where the camera stands, and it has to be confirmed whether there is a defect. 

Thus, images have to be analyzed online, and a pattern recognition system has to classify the 

objects into the "defect" or "nondefect" class. After that, an action has to be taken, such as to 

reject the offending parts. In an assembly line, different objects must be located and "recognized," 

that is, classified in one of a number of classes known before hand. Then a robot arm can move 

the objects in the right place. Besides, Control applications pattern recognition can be use in 

number of different applications like, Character (letter or number) recognition, Handwriting 

recognition, Computer-aided diagnosis, Speech recognition, Data mining and knowledge 

discovery [9]. 

Various real life problems can be formulated as pattern recognition problem. For 

example, the problem is to design a robot whose task is to move on parallel tracks like railway 

tracks and fmd errors in it. Errors can be in the form of broken track, bulged in or bulged out 
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track. Robot has to identify the errors by producing different kind of signal for different kind of 

errors. figure 1.1 shows the dummy track and various errors. Conventional method for solving 

this problem is to design hardware with sufficient number of sensors array which can distinguish 

various kinds of situations, such as distinguishing between turns and errors and further between 

various types of errors. The other way to implement this is to use pattern recognition algorithm 

like, using soft computing techniques i.e. Neural Networks, Fuzzy Logic etc. 

figure 1.1 Dummy Track 

The robot in this case can be trained on representative set of track patterns and in recall phase it 

can classify, not only the training set but also the patterns it has never seen, which are similar to 

training pattern. In this case robot can generalize and also hardware dependencies are reduced. 

Patterns 	Sensor 	Feature 	 Feature 	Classifier- 	System- 
generation 	selection I I design 	I evaluation 

figure 1.2 The basic stages involved in the design of a classification system. 
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figure 1.2 shows the various stages followed for the design of a Pattern Recognition system. 

These stages are not independent as depicted by feedback arrows. Depending on the results, one 

may go back to redesign earlier stages in order to improve the overall performance [9]. 

Pattern recognition has a long history, but before the 1960s it was mostly the output of 

theoretical research in the area of statistics. As with everything else, the advent of computers 

increased the demand for practical applications of pattern recognition, which in turn set new 

demands for further theoretical developments. As our society evolves from the industrial to its 

postindustrial phase, automation in industrial production and the need for information handling 

and retrieval are becoming increasingly important. This trend has pushed pattern recognition to 

the high edge of today's engineering applications and research. Face recognition is one of the 

applications of Pattern Recognition. 

1.1 Problem Statement 

Face recognition is a pattern recognition task performed specifically on faces. Face 

recognition has become an interesting research area in vision system, image analysis, pattern 

recognition and biometric technology. An efficient face recognition system should recognize a 

person by his/her facial image which may vary with age, make ups, expressions and with noise. 

figure 1.3 shows facial variation of a person with expression and make over. figure 1.4 shows 

facial variation with noise. Noise added is normally distributed with mean zero. 

figure 1.3 Facial variations with expression and make over 

figure 1.4 Facial variations with random noise 
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1.2 Problem Analysis 

Broadly, the algorithm of face recognition can be divided into three steps. Each step can be 

implemented in a number of ways: 

• Image Preprocessing: Pre-processing of facial image is required to enhance some of its 

distinguishable features like moles, wrinkles and other small details [2]. Some of the 

algorithms that are used to perform this are Unsharp Masking [3], Laplacian of Gaussian 

[2], Laplacian [4] etc. 

• Feature Generation or Dimensionality Reduction: The basic approach followed in this step 

is to transform a given set of measurements to a new set of features which acts as 

signature of original Data. Pixels of Facial images have high degree of correlation, to 

remove these redundancies; some of the algorithms are Principal Component Analysis [5], 

Wavelet Packet Decomposition [6], Singular Value Decomposition [2] etc. 

• Artificial Neural Networks: Artificial Neural Networks function as parallel distributed 

computing networks. Depending on architecture, there are number of variations in neural 

networks which can be used for Face Recognition task, like Auto-associative Neural 

Networks [7], Hopfield Neural Networks [6], Feed-Forward Neural networks [2] etc. In 

contrast to conventional computers, which are programmed to perform specific tasks, 

most neural networks can be taught or trained with representative set of input and output 

data. Properly trained neural networks tend to give reasonable answers when presented 

with inputs that they have never seen. Typically, a new input leads to an output similar to 

the correct output for input vectors used in training that are similar to the new input being 

presented [8]. 

In the algorithm proposed, Laplacian has been used for image pre-processing; Singular 

Value Decomposition has been used for dimensionality reduction; and Artificial Neural Networks 

for classification. Reliability of the method was tested against Cambridge ORL face database. Ten 

different Faces with ten different expressions each, was picked The proposed method was found 

to recognize the Faces with high recognition rate and under noisy conditions. figure 1.5 shows 

flowchart general algorithm using neural networks of face recognition. 
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Start 

Create 
database 

Select training 
images 

Dimensionality- 
reduction 

Parameter 	 Neural networks/ 

adjustment 	 Learning algorithm 

No   Goal met 	 Yes 

System 
created 

figure 1.5 Flow diagram of generalized face recognition algorithm using neural networks 

1.3 Literature Review 

1.3.1 Eigenface-based Recognition 

2D face recognition using eigenfaces is one of the oldest types of face recognition. Turk 

and Pentland published the revolutionary "Face Recognition Using Eigenfaces" in 1991. The 

method works by analyzing face images and computing eigenfaces which are faces composed of 

eigenvectors. The comparison of eigenfaces is used to identify the presence of a face and its 

identity. There is a five step process involved with the system developed by Turk and Pentland. 

First, the system needs to be initialized by feeding it a set of training images of faces. This is used 
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these to define the face space which is set of images that are face like. Next, when a face is 

encountered it calculates an eigenface for it. By comparing it with known faces and using some 

statistical analysis it can be determined whether the image presented is a face at all. Then, if an 

image is determined to be a face the system will determine whether it knows the identity of it or 

not. The optional final step is that if an unknown face is seen repeatedly, the system can learn to 

recognize it. 

1.3.2 3D Face Recognition 

3D face recognition is expected to be robust to the types of issues that plague 2D systems. 

3D systems generate 3D models of faces and compare them. These systems are more accurate 

because they capture the actual shape of faces. Skin texture analysis can be used in conjunction 

with face recognition to improve accuracy by 20 to 25 percent. The acquisition of 3D data is one 

of the main problems for 3D systems. 

1.3.3 Applications of Face Recognition 

• Access Control: Face verification, matching a face against a single enrolled exemplar, is 

well within the capabilities of current Personal Computer hardware. Since PC cameras 

have become widespread, their use for face-based PC logon has. become feasible, though 

take-up seems to be very limited. 

• Identification Systems: Two US States (Massachusetts and Connecticut) are testing face 

recognition for the policing of Welfare benefits. This is an identification task, where any 

new applicant being enrolled must be compared against the entire database of previously 

enrolled claimants, to ensure that they are not claiming under more than one identity. 

• Surveillance: The application domain where most interest in face recognition is being 

shown is probably surveillance. Video is the medium of choice for surveillance because of 

the richness and type of information that it contains and naturally, for applications that 

require identification. 

• Pervasive Computing: Another domain where face recognition is expected to become very 

important, although it is not yet commercially feasible, is in the area of pervasive or 

ubiquitous computing. Many people are envisaging the pervasive deployment of 

information devices. 
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1.4 Organization of the Thesis 
The report has been organized into seven chapters. Chapter 1 gives an introduction to this 

thesis work, Problem statement, literature survey, Applications of Face Recognition and 

organization of the thesis. Chapter 2 discusses about image preprocessing techniques that can be 

used in face recognition. Chapter 3 contains techniques used for dimensionality reduction or 

feature generation. Chapter 4 describes about neural networks, training algorithms and training 

parameters. Chapter 5 gives details of the software developed using matlab for implementing the 

algorithm. Chapter 6 presents the Simulation results and discussions. Chapter 7 gives 

Conclusions and suggestions for future work. 
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Chapter 2: Image Preprocessing 

The principal objective of image preprocessing used in face recognition is to highlight fine 

details in the facial image or to enhance detail that has been blurred, either in error or particular 

method of image acquisition. Mostly sharpening filters are used for this purpose. Various 

techniques can be used to implement this step. Technique used in proposed method and related 

techniques are discussed below. 

2.1 Laplacian Operator 

Laplacian is a second order derivative operator. This has been used in proposed method in 

the thesis for face recognition. Derivatives of digital functions are defined in terms of differences. 

Second order derivative shows different responses when moved over areas of constant grey level, 

onset and end of discontinuities and along grey level ramps. Any definition of second order 

derivative must satisfy (1) must be zero in constant areas (2) must be nonzero at the onset and 

end of an intensity ramp or step (3) must be zero along ramps of constant slope. Basic definition 

of second order derivative of f(x) as the difference 

aZf  = f(x +l)+ f(x —1)-2xf(x) 
axZ  

This definition satisfies the conditions stated above. A desirable feature of sharpening filter is that 

it should be isotropic i.e. rotation invariant which means rotating the image then applying the 

filter gives the same results as applying filter to the image and then rotating the result. It can be 

shown that the simplest isotropic derivative operator is the Laplacian which for a function 

(image) f(x, y) of two variables, is defined as, 

z  
vZf 	Z + zZ (2.2) 

Which is sum of second order partial derivative in x and y direction respectively. In x direction 

we have equation which is same as 1, in y direction we have, 

(2.1) 
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a2f  = f(y + 1) + f(y —1) —2 x f(y) ay2 (2.3) 

From equation 1, 2 and 3 we can write, 

V2f(x,y) = f(x +1,y)+f(x-1,y)+f(x,y +1)+f(x,y-1)-4xf(x, y) 	 (2.4) 

This equation can be implemented using mask of figure 2.1 by convolving it with image which 

gives isotropic results for rotation increments of 90 degree [11]. 

0 1 0 

1 -4 1 

0 1 0 

figure 2.1 Laplacian Mask 

The diagonal directions can be incorporated in the defmition in the definition of digital laplacian 

by adding two more terms to equation 4 one for each of two diagonal directions, modified 

equation is given by, 

Vf(x,y) =f(x+l,y)+f(x,y+l)+f(x—l,y)+f(x, y-1)+f(x-1, y—l)+f(x+1,y-1)+f(x—1, y+l) 
+f(x+1,y+l)-8xf(x,y) 	 (2.5) 

This equation can be implemented using filter of mask shown in figure 2.2. This mask yields 

isotropic results in increments of 45 degree. Laplacian is a derivative operator; its use highlights 

intensity discontinuities in an image and deemphasizes regions with slowly varying intensity 

levels. This produces images with grayish edge lines and other discontinuities, all superimposed 

upon dark featureless background. 
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1 1 1 

1 -8 1 

1 • 1 1 

figure 2.2 Laplacian Mask Including Diagonal Directions 

Background features can be recovered while still preserving the sharpening feature of the 

Laplacian simply by adding Laplacian image to the original using following equation, 

g(x,Y)=f(x,Y) — V2f(x,Y) 
	

(2.6) 

Results of implementing equation 6 on facial images are shown in figure below, figure 2.3 shows 

the input image. figure 2.4 shows Laplacian image of the input image. figure 2.5 shows input 

image — Laplacian image. figure 2.5 clearly shows improvement in small details in output image 

after applying equation 6. 

figure 2.3 input image 	figure 2.4 Laplacian image 	figure 2.5 input —laplacian 

Large section of Laplacian image is dark because laplacian contain both positive and negative 

pixel values which are clipped to zero by the display. A simple way to scale a Laplacian image to 

add minimum value to each pixel so that new minimum is zero and the to scale pixel values to 

range [0, L-1].. Another way to solve this problem is to convert integer precision image into, 

converted to double precision before applying Laplacian. A typical example showing ability of 

masks shown in figure 2.1 and 2.2 is shown in figure below. figure 2.6 shows blurred image of 

north pole of the moon. figure 2.7 shows image sharpened using mask of figure 2.1. figure 2.8 

shows image sharpened by mask of figure 2.2. 
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figure 2.6 North Pole of Moon 	figure 2.7 Laplacian Filtered 	figure 2.8 Filtered using Fig. 2.2 Mask 

2.2 Unsharp Masking and Highboost Filtering 

This process has been used for many years in printing and publishing industry to sharpen 

images consists of subtracting an Unsharp (smoothed) version of an image from the original 
image. This process is called Unsharp Masking. The can also be applied on faces to sharpen small 

details. This process consists following steps. 

• Blur the original image 

• Subtract the blurred image from the original (The resulting difference is called mask) 

• Add the mask to the original image. 

Letting i (x, y) denote the blurred image, unsharp masking is expressed as following equation, 

	

S  mac&  (X, Y) = f (x, Y) — €(x, Y) 	 (2.7) 

Then a weighted portion of mask is added back to the original image. 

	

g(x,y) =f(x,y)+kxg(X,Y) 	
(2.8) 

Where k is a weight, when k=1 we have Unsharp Masking and when k>l the process is called 

Highboost filtering. Choosing k<1 de-emphasizes the contribution of Unsharp mask [3]. 
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2.3 Laplacian of Gaussian 

The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative. of an image. The 

Laplacian of an image highlights regions of rapid intensity change. The Laplacian is applied to an 

image that has first been smoothed with a Gaussian smoothing filter in order to reduce its 

sensitivity to noise [2] .Additional advantage of Laplacian of Gaussian filter is that bit can be 

tuned to act any desired scale, so that large operators can be used to detect blurry edges and small 

operators to detect sharply focused fine details. The derivation of mathematical equation for 

laplacian of Gaussian function is given as: 

Two dimensional Gaussian function is given as 

-(X'+r' ) 

G(x, Y) = e 26' 	 (2.9) 

Following derivatives are calculated to evaluate Laplacian of Gaussian 

,Y)= V2G( x 	a2G(x,Y)+ 92G(x,Y) 	
(2.10) &Z 	'2 

a _ -(x'+y') a _ -(x'+yz) 

~ZG(x,Y) = I62 e 2a2 ]+-I62 e Z& l 	 (2.11) 

x2 1 -(x'+y2) 2 	_____') 

a2 ]e 2& +[-----]e   2 	2Q= 	 (2.12) Ia  

2 	xz +y2 -262 
O G(x, Y) = [ 	4 	]e 2d 

6 
(2.13) 

This expression is called Laplacian of Gaussian. figure 2.9 shows 3-D plot of negative of LoG 

function. Because of its shape as shown in figure 2.9, it is also called Mexican hat operator. 

Masks of arbitrary size can be generated by sampling equation 2.13 scaling the coefficients such 

that they sum to zero. There are two fundamental ideas behind selection of operator VZG(x, y) for 

image sharpening purposes. Firstly, the Gaussian part of the operator blurs the image, thus 

reducing the intensity of structures at scales much smaller than a. Secondly second order 

derivative is isotropic, which not only corresponds to human visual system but also responds 

equally to changes in intensity in any mask direction, thus avoiding having to use multiple masks 

to calculate strongest response at any point in the image. figure 2.10 and 2.11 shows application 

LoG filter with a =0.5 on facial image. figure 2.12 shows the mask used. 

12 



figure 2.9 3-D Plot of LoG Filter 6 = 0.5 

figure 2.10 Input image 	 figure 2.11 LoG filtered image 

0.0448 0.0468 0.0564 0.0468 0.0448 

0.0468 0.3167 0.7146 0.3167 0.0468 

0.0564 0.7146 -4.9048 0.7146 0.0564 

0.0468 0.3167 0.7146 0.3167 0.0468 

0.0448 0.0468 0.0564 0.0468 0.0448 

figure 2.12 Mask used for Filtering 
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Chapter 3: Dimensionality Reduction or Feature Generation 

Feature generation is of paramount importance in any pattern recognition task. Given a set 

of measurements, the goal is to discover compact and informative representations of the obtained 

data. A similar process is also taking place in the human perception apparatus. Our mental 

representation of the world is based on a relatively small number of perceptually relevant 

features. These are generated after processing a large amount of sensory data, such as the 

intensity and the color of the pixels of the images sensed by our eyes, and the power spectra of 

the sound signals sensed by our ears[9]. 

The basic approach followed is to transform a given set of measurements to a new set of 

features. If the transform is suitably chosen, transform domain features can exhibit high 

information packing properties compared with the original input samples. This means that most 

of the classification-related information is "squeezed" in a relatively small number of features, 

leading to a reduction of the necessary feature space dimension. We refer to such processing tasks 

as dimensionality reduction techniques. 

Let us take for example an image resulting from a measuring device, for example, X-rays 

or a camera. The pixels (i.e., the input samples) at the various positions in the image have a large 

degree of correlation, due to the internal morphological consistencies of real-world images that 

distinguish them from noise. Thus, if one uses the pixels as features, there will be a large degree 

of redundant information. Alternatively, if one obtains the Fourier transform, for example, of a 

typical real-world image, it turns out that most of the energy lies in the low-frequency 

components, due to the high correlation between the pixels' gray levels. Hence, using the Fourier 

coefficients as features seems a reasonable choice, because the low-energy, high-frequency 

coefficients can be neglected, with little loss of information. Fourier transform is just one of the 

tools from a palette of possible transforms. Some of the ways to implement dimensionality 

reduction are 

1. Linear Discriminant Analysis 

2. Principal Component Analysis 

3. Singular Value Decomposition 

4. Wavelet Packet Decomposition 

5. Independent Component Analysis etc. 
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3.1 Basis Vectors and Images 
Let x(0), x(1), x(2). . . , x(N-1) be a set of input samples and x be the Nx 1 corresponding 

vector. 

	

XT =[x(0),x(1).......,x(N-1)] 	 (3.1) 

Given a unitary NxN matrix A, we define the transformed vector y of x as, 

aH 0 

y=AHx= 	 x 	 (3.2) 
H 

a N-1 

where H denotes the Hermitian operation, that is, complex conjugation and transposition. From 

equation 3.2 and the definition of unitary matrices we have 
N-1 

x = Ay = I y(i)a; 	 (3.3) 
i=O 

The columns of A, a; , i=0, 1, ... ,N-1, are called the basis vectors of the transform. The 

elements y(i) of y are nothing but the projections of x onto these basis vectors. Indeed, taking the 

inner product of x with a j , we have 

N-1 	 N-1 
< al, x >= ax = I y(i) < al, a, >= E y(i)Sy = y(j) 

=o 	 s=o 
	 (3.4) 

This is due to the unitary property of A, that is, AHA =I or < ai , a~ >= aHa~ = 6. In many problems, 

such as in image analysis, the input set of samples is a two dimensional sequence x(i, j) where i, j 

=0, 1, 2,......,N-1 , defining an NxN matrix X instead of a vector. In such cases, one can define 

an equivalent NZ vector x, for example, by ordering the rows of the matrix one after the other 

(lexicographic ordering) and then transform this equivalent vector. 

xT =[X (0,0)......X(O,N-1)........X(N-1,o)........X(N-1,N-1)] 
	

(3.5) 

The number of operations required to multiply a NZ x N2 square matrix A with a N2 x 1 vector x is 

of the order of 0 (N4 ), which is prohibitive for many applications. An alternative possibility is to 
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transform matrix X via a set of basis matrices or basis images. Let U and V be unitary NxN 

matrices. Define the transformed matrix Y of X as 

Y = UTXV 	 (3.6) 

Or 	 X = UYVT 	 (3.7) 

The number of operations is now reduced to 0 (N3 ). Equation (3.7) can alternatively be written 

as, 
N-1 N-1 

X=  E IY(i,i)uiVH  
i=o j=o 

Where ui  are the column vectors of U and v j  the column vectors of V. Each of the outer products 

uiv1 isanNxNmatrix, 

ui0vio ... ui0VJN-1  

uivH = 	 =A 

uiN-1V j0 	uiN-1V jN-1 

And (3.8) is an expansion of matrix X in terms of these N Z  basis images (matrices). The * 

denotes complex conjugation. Furthermore, if Y turns out to be diagonal, then (3.8) becomes 
N-1 

X = 	Y(i,j)ui vH 	 (3.9) 
i=o 

and the number of basis images is reduced to N. Inner product between two matrices is defined as 

It can be shown that 

N-1 N-1 
<A,B >= Z Z A*(m,n)B(m,n) 	 (3.10) 

m=O n=O 

Y(i, j) =< Aij, X > 	 (3.11) 

In words, the (i , j) element of the transformed matrix results from multiplying each element of X 

by the conjugate of the corresponding element of Aii  and summing up all products[9]. 

(3.8) 
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3.2 Positive Definite and Symmetric Matrices 
An 1 xl real matrix A is called positive definite if for every nonzero vector x the 

following is true: 

	

XTAX > 0 
	

(3.12) 

If equality with zero is allowed, A is called nonnegative or positive semi-defuute. It is easy to 

show that all eigen values of such a matrix are positive. Indeed, let X; be one eigen value and v; 

the corresponding unit norm eigenvector (v?v; =1). Then by the respective definitions 

	

Av; =29v1 	 (3.13) 

	

vTAv; =29>0 	 (3.14) 

Since the determinant of a matrix is equal to the product of its eigenvalues, we conclude that the 

determinant of a positive definite matrix is also positive. 

Let A be an lxl symmetric matrix, AT = A. Then the eigenvectors corresponding to distinct 

eigenvalues are orthogonal. Indeed, let 29 ~ ? be two such eigenvalues. From the definitions we 

have, 

	

Avi = 29v; 	 (3.15) 

	

Avg =?. v~ 	 (3.16) 

Multiplying (3.9) on the left by vT and the transpose of (3.10) on the right by v; , we obtain 

	

vJ Avl - vI Av; =0 = (29 - 	 (3.17) 

Thus, yr v; =0.  Furthermore, it can be shown that even if the eigenvalues are not distinct, we can 

still find a set of orthogonal eigenvectors. The same is true for Hermitian matrices, in case we 

deal with more general complex-valued matrices. 

Based on this, it is now straightforward to show that a symmetric matrix A can be diagonalized 

by the similarity transformation 

4TA4 = A 	 (3.18) 

Where matrix has as its columns the unit eigenvectors (vv; =1) of A, that is, 

	

0=[v V2... VU ] 	 (3.19) 
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and A is the diagonal matrix with elements the corresponding eigenvalues of A. From the 

orthonormality of the eigenvectors it is obvious that 4TH = I, that is, is a unitary matrix, 	= ~T 

.The proof is similar for Hermitian complex matrices as well [9]. 

3.3 Covariance and Correlation 
As the name implies, covariance is a measure of the strength of the link between two 

(numerical) random variables. Given two such random variable. x, and x2 , two extreme 

circumstances can be encountered: 

• There is no link whatsoever between x, and xZ . Knowing the value of x, gives no 

clue to what the value of X2 might be. The two variables are said to be independent. 

• The link is so strong that it is in fact functional. There is a completely deterministic 

function y=f(x) such that knowing the value of x, then determines the value x2 of 

without any uncertainty. 

x2 =f (x1 ) 

Most often, the link between two random variables somewhere in between knows the value taken 

byx, reduces, to a certain extent, the uncertainty about the value that x2 will take. There is no 

universal way to define and measure the strength of the link in this intermediary situation. 

Covariance is one way to do it, and is very useful in many practical situations despite its 

limitations. 

3.3.1 Definition of the Covariance 

If x, and x2 are strongly (positively) linked, then we could think of defining covariance 

in a way that would embody the following idea: 

• Whenever (x, - µ,) is positive, then (x2 - µz ) is likely to be positive too. 

• Whenever (x1 - µ,) is negative, then (x2 - µz ) is likely to be negative too. 

The product (x, -µ,).(X2 -1.12) is then likely to be very often positive when either because both 

quantities are positive, Or because both quantities are negative. 
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Yet, the product (x, - µ, ). (x2  - 2 ) is a random variable, and we want a fixed number. But a 

random variable that spends most of its time taking positive values is likely to have a positive 

expectation. So we will consider the expectation of (x, -µ,).(x2 -92),  and call it the covariance 

of x, and x2 . 

cov(X1 , Xz) = E((X1  - µ1)(X2 - µz )) 	 (3.20) 

Following expression is equivalent to this other one and more convenient in practice, 

cov(X,, X 2) = E[X1X2  ] - E[X, ]E[X2  ] 	 (3.21) 

3.3.2 Interpretation of the Covariance 

• A large positive value of the Covariance is an indication that (x, - µ,) and (x2 - p.2 ) 

often take large positive or large negative values simultaneously, a circumstance 

that strengthens our belief that the variables are indeed tightly linked. 

• Where as a smaller positive value of the covariance is an indication that one of the 

variables has a fair chance to be close to its mean when the other takes large (positive 

or negative) values. 

• The Covariance may be low because, indeed, the link between the two variables is 

weak. 

• But there may exist a strong, non linear link between the two variables, the nature of 

this link making the Covariance low. 

The argument developed leading to the definition of the covariance on the basis of a positive link 

between x, and x2 . But it applies just as well in the case of a negative link. We can use the same 

line of reasoning if x, - µ, taking large positive values makes it likely that X2  - µ2  will take 

large negative values. In this case, the covariance is a large negative number. A drawback of 

covariance is that its value depends on the units used to express the values of x, and x2  

whereas a practical measure of the strength of the link between two variables certainly shouldn't. 
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If the two random variables X and Y are independent then their covariance is 0. But the converse 

is not true. Two random variables may have 0 covariance, and yet not be independent. For 

example, let: 

• X be uniformly distributed in [-1, +1]. 
• Y=X2 

In this case, coy (X, Y)=0. 

3.3.3 Correlation Coefficient 

One problem with covariance is that it is sensitive to the scales on which the values of 

the random variable are measured. While computing the covariance between "Height" and 

"Weight" in a population, Measuring weights in "Kilos" instead of "Pounds", or heights 

in "Centimeters" instead of "Inches", and the value of the covariance changes, whereas the 

strength of the link between "Height" and "Weight" remains the same, of course. So we would 

like a measure of the strength of the link between "Height" and "Weight" that does not depend on 

the units used to measure these quantities. 

Now suppose that the unit measuring x, is divided by 2 (so that values of xl  are 	' 

multiplied by 2). Then the covariance Cov(Xi, X2) is also multiplied by 2. But the standard 

deviation of x, (square root of the variance) is also multiplied by 2, so the ratio 

Cov(Xl , X2  ) 
i 

(Var(X1))2  

in unchanged. The same argument applies to x2 , and, more generally, to any change of units in 

which x, or x2  are measured.So, quite generally, the number: 

Cov(Xl, X2) 

P 	Var(X,) V ar(x2  ) 
(3.23) 

is called correlation coefficient. 
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3.3.4 Properties of the Correlation Coefficient 

• The value of the correlation coefficient is always between -1 and +1. 

• If X1 = X2 then Cov(X1, X2) = Var(Xi) = Var(X2). Therefore, p(X, X) =+l.  

• The Correlation Coefficient is symmetrical: p(XI, X2) = p(X2, X1). 

• If both variables have unit variances, then their Covariance is the same as their Correlation 

Coefficient. 

• When the two distributions are known only through a sample, the common estimate of the 

Correlation Coefficient is : 

 
r= 	

(x - x)(Y - Y) 	 (3.24) 

(x-x)2(Y-Y)2  

3.3.5 Mean Vector and Covariance Matrix 

The first step in analyzing multivariate data is computing the mean vector and the 

variance-covariance matrix. Consider the following matrix: 

4.0 2.0 .60 

4.2 2.1 .59 

X= 3.9 2.0 .58 

4.3 2.1 .62 

4.1 2.2 .63 

The set of 5 observations, measuring 3 variables, can be described by its mean vector and 

variance-covariance matrix. The three variables, from left to right are length, width, and height of 
a certain object, for example. Each row vector Xi is another observation of the three variables (or 

components). The mean vector consists of the mean of each variable and the variance-covariance 

matrix consists of the variance of the variables along the main diagonal and the covariance 

between each pair of variables in the other matrix positions. The Formula for evaluation of 

covariance matrix is given by, 

COV =  1  XXT 
n-1 

(3.25) 
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Where n is number of observations 

The results are, 

Mean= [4.10 2.08 .604] 

0.025 0.0075 0.00175 

Covariance= 0.0075 0.0070 0.00135 

0.00175 0.00135 0.00043 

Thus, 0.025 is the variance of the length variable, 0.0075 is the covariance between the length and 

the width variables, 0.00175 is the covariance between the length and the height variables, 0.007 

is the variance of the width variable, 0.00135 is the covariance between the width and height 

variables and .00043 is the variance of the height variable. The mean vector is often referred to as 

the centroid and the variance-covariance matrix as the dispersion or dispersion matrix. Also, the 

terms variance-covariance matrix and covariance matrix are used interchangeably. 

3.3.6 Correlation Matrix Diagonalization 

Let x be a random vector in the 1-dimensional space. Its correlation matrix is defined as 

R = E[xxT] . Matrix R is readily seen to be positive semidefmite. For our purposes we will assume 

that it is positive definite, thus invertible. Moreover, it is symmetric,, and hence it can always be 

diagonalized. 

eR~ = A 	 (3.26) 

Where is the matrix consisting of the (orthogonal) eigenvectors and A the diagonal matrix 

with the corresponding eigenvalues on its diagonal. Thus, we can always transform x into another 

random vector whose elements are uncorrelated. Indeed 

x1 = 4 x 	 (3.27) 

i 
Then the new correlation matrix is R, = ~TR~ Furthermore, if A2 is the diagonal matrix whose 

i 	i 

elements are the square roots of the eigenvalues of R (A2 A2 =A ), then it is readily shown that 

the transformed random vector 
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-1 
x, = A 2 Tx 	 (3.28) 

-1 	 1 

has uncorrelated elements with unit variance. A 2 denotes the inverse of A2 . That is, the 

transformed variables are also uncorrelated with unit variance [9]. 

3.4 Principal Component Analysis 
Principal component analysis (PCA) is one of the most popular techniques for 

dimensionality reduction. Starting from an original set of 1 samples (features), which form the 

elements of a vector x E R', the goal is to apply a linear transformation to obtain a new set of 

samples. Let x be the vector of input samples. In the case of an image array, x may be formed by 

lexicographic ordering of the array elements. In order to simplify the presentation, we will 

assume that the data samples have zero mean. If this is not the case, we can always subtract the 

mean value. We have already mentioned that a desirable property of the generated features is to 

be mutually uncorrelated in an effort to avoid information redundancies. We begin, by first 

developing a method that generates mutually uncorrelated features, that is, (E[ y(i)y( j)]= 0), i~ j. 

Let 

y=ATx 	 (3.29) 

Since we have assumed that E[x]=0, it is readily seen that E[y]=0. From the definition of the 

correlation matrix we have 

Ry = E[yyT ] = E[ATxxTA] = ATRX A 	 (3.30) 

In practice, R. is estimated as an average over the given set of training vectors. For example, if 

we are given n data vectors xk , k = 1, 2... n, then 
1 n 

R. 	 k=1 
(3.31) 

Note that R,, is a symmetric matrix, and hence its eigenvectors are mutually orthogonal from 

(3.17). Thus, if matrix A is chosen so that its columns are the orthonormal eigenvectors a; i=0, 1, . 

.. , N -1, of RX , then RY is diagonal. 

RY =ATRXA=A 
	

(3.32) 

Where A is the diagonal matrix having as elements on its diagonal the respective eigenvalues 

i= 0, 1, ... , N - 1, of R. . Furthermore, assuming R. to be positive definite the eigenvalues are 
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positive from (3.14). The resulting transform is known as the Karhunen-Loeve (KL) transform, 

and it achieves our original goal of generating mutually uncorrelated features. It has to be 

emphasized that the solution provided by the KL transform is not a unique one, and it was 

obtained by imposing an orthogonal structure on matrix A (AT A ). Also, note that for zero mean 

variables the correlation matrix R coincides with the covariance matrix 	. As a matter of fact, a 

direct consequence of the respective definitions is that 

,,= R. - E[x]E[x]T 	 (3.33) 

In case the zero mean assumption is not valid, the condition for uncorrelated variables becomes 

E[( y(i)-E[ y(i)])( y( j)-E[ y( j)])]=0, i j, and the problem results in the eigen decomposition of 

the covariance matrix, that is, 

ZY =ATE XA=A 	 (3.34) 

Although our starting point was to generate mutually uncorrelated features, the KL transform 

turns out to have a number of other important properties, which provide different ways for its 

interpretation and also the secret for its popularity[9]. 

3.4.1 Mean Square Error Approximation 

From Equations (3.3) and (3.4) we have 
N-1 

x = E y(i)ai 	 (3.35) 
i=o 

y(i) = aTx 	 (3.36) 

Let us now define a new vector in the m-dimensional subspace 
A  m-1 
x = 	y(i)ai 	 (3.37) 

i=o 
where only m of the basis vectors are involved. Obviously, this is nothing but the projection of x 

onto the subspace spanned by the m (orthonormal) eigenvectors involved in the summation. If we 
A 

try to approximate x by its projection x , the resulting mean square error is given by 
z 

E[llx_xll]  =E ly(i)aill 
i=m 

(3.38) 

Our goal now is to choose the eigenvectors that result in the minimum MSE. From (3.38) and 

taking into account the orthonormality property of the eigenvectors, we have 
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ACC No .................~\~ 

Date.................... 

ROOR`~~~ 
N-1 

E I Y(i)ai = E Z Z.. (Y(i)ai )(Y(.l)a j) 	 (3.39) 
i=m 	 i j 

_ 	E [y(i)Z ] _ m aTE [xxT ] ai 	 (3.40) 
i=m 	 i=m 

Combining this with (3.38) and the eigenvector definition, we finally get 

A 2 	N-' 	N-I 
E x — xll = i ai Xjai = : ?'i 	 (3.41) 

i=m 	i=m 

Thus, if we choose in (3.37) the eigenvectors corresponding to the m largest eigenvalues of the 

correlation matrix, then the error in (3.41) is minimized, being the sum of the N -m smallest 

eigenvalues. Furthermore, it can be shown that this is also the minimum MSE, compared with any 

other approximation of x by an m-dimensional vector. This is the reason that the KL transform is 

also known as principal component analysis (PCA). A difficulty in practice is how to choose the 

m principal components. One way is to rank the eigenvalues in descending order, 

X0 X1 >_ >_ X,,,_, >- X m , and determine m so that the gap between the values ?,m _I and X. is large 

[9]. 

3.4.2 Steps for Calculation of Principal Component of given Data 

• Estimate the covariance matrix S. Usually the mean value is assumed to be zero, E[x] = 0. 

In this case, the covariance and autocorrelation matrices coincide, R = E[xxT] = S. If this 

is not the case, we subtract the mean. Recall that, given N feature vectors, Xi ER' , i = 1,2, 

... , N, the autocorrelation matrix estimate is given by, 
N R = 1 1 xi X i (3.42) 

• Perform the eigen decomposition of S and compute the I eigenvalues/eigenvectors, x i , ai 

ER1 ,i=0,2,...,1-1. 

• Arrange the eigenvalues in descending order, ~,o >_ %, >_ ... >_ ,-, >_ X1 . 

• Choose the m largest eigenvalues. Usually m is chosen so that the gap between m-,. and 

a,m is large. Eigenvalues ? 0,X,,••• 	are known as the m principal components. 

• Use the respective (column) eigenvectors ai , i = 0, 1, 2... m-1 to form the transformation 

matrix. 
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• Transform each 1-dimensional vector x in the original space to an m-dimensional vector y 

via the transformation y = ATx . In other words, the it  element y (i) of y is the projection 

of x on ai  (y(i) = aTx) [12]. 

3.4.3 Example Problem 

Let us take an arbitrary data matrix, 

16 3 2 13 

5 10 11 8 

A=9 6 7 12 

4 15 14 1 

2 14 7 23 

A has 5 rows and 4 columns i.e. 4 observations with 5 dimensions each. 

Mean vector, which is column vector is calculated by taking mean of each dimensions all 

observations, is 
8.5 
8.5 

mn = 8.5 

8.5 

28.5 

Data matrix obtained after mean vector is subtracted from each column, 

7.5 -5.5 -6.5 -4.5 

-3.5 -1.5 2.5 -.5 

data= 	.5 -2.5 -1.5 3.5 
-4.5 6.5 5.5 -7.5 

-26.5 -14.5 -21.5 -5.5 

Covariance matrix of this data matrix is calculated using (3.42). 

49.6667 -17.6667 14.3333 -46.3333 -1.3333 

-17.6667 7.0000 -3.6667 14.3333 6.6667 

Covariance= 	14.3333 -3.6667 7.0000 -17.6667 12.0000 

-46.3333 14.3333 -17.6667 49.6667 -17.3333 

-1.3333 6.6667 12.0000 -17.3333 468.3333 

Eigen values and eigen vectors are calculated. Eigen vector are also called basis vectors or 

principal components 



-469.4782 
-106.2776 

Eigen values in ascending order = -5.9108 
0 
0 

0.0019 0.6735 -0.4964 0.0776 -0.5477 
0.0128 -0.2265 0.4985 0.5075 -0.7303 

Eigen vectors = 	0.0275 0.2204 0.5007 .-0.7824 -0.1826 
-0.0422 -0.6674 -0.5028 -0.3524 -0.3651 
0.9986 -0.0326 -0.0405 0.0000 0.0000 

Now, reduced image is obtained by applying transformation y = ATx where A is matrix 

containing Eigen vectors as columns, x is data matrix. Original data can be recovered by reverse 

transformation i.e. x = Ay and adding the mean vector to the result. 

-26.2914 
9.8217 

Reduced image= -1.8826 
0 
0 

-14.8143 -21.7243 -5.0781 
-8.4605 -8.2444 9.1003 
-0.4554 1.8262 3.2629 

0 0 0 
0 0 0 

Clearly, it can be observed that final out matrix of the algorithm has lesser dimensions than 

original data matrix, which can completely recovered from reduced image. 

3.5 Singular Value Decomposition 
The singular value decomposition of a matrix is one of the most elegant and powerful 

algorithms in linear algebra and it have been extensively used for rank and dimension reduction in 

pattern recognition and information retrieval applications. Given a lxn matrix X of rank r 

(obviously r<min {1, n)), It can be shown that there exist unitary matrices U and V of dimensions 

1 x 1 and nx n, respectively, so that 

X=U A2  0  VH  
o 0 
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Or, 	 Y = A2 0 = UHXV 	 (3.43) 
00 

1 

Where A2 is the r xr diagonal matrix with elements ~; , and a, are the r nonzero eigenvalues of 

the associated matrix XHX . 0 denotes a zero element matrix. In other words, there exist unitary 

matrices U and V that transform X into the special diagonal structure of Y. If u; , v; denote the 

column vectors of matrices U and V, respectively, then (3.43) can be written as 

H a'0 II V0 
II H 

x = [U U1 	Ur i] 	 V, 	 (3.44) 

L 	 a'r-1 	Vri 1 

r-1 

x= 	 u;v 	 (3.45) 
s=0 

where Ur denotes the 1 x r matrix that consists of the first r columns of U and Vr the r Xn matrix 

formed by using the first r columns of V. More precisely, u; , vi are the eigenvectors 

corresponding to the nonzero eigenvalues of the matrices XXH and XHX , respectively. The 

eigenvalues X; are known as singular values of X and the expansion in (3.45) as the singular 

value decomposition (SVD) of X or the spectral representation of X[9]. 

3.5.1 Proof of Singular Value Decomposition 

Given a matrix X of rank r, it is known from linear algebra that the nxn matrix xHx as 

well as the lxn matrix XXH is of the same rank r. Furthermore, both matrices have the same 

nonzero eigenvalues but different (yet related) eigenvectors. 

	

XXHU; =  u1 	 (3.45) 

	

X' Xv; = ~,;v; 	 (3.46) 

Since both matrices are Hermitian and nonnegative (i.e., ()Q H )H = XXH ), they have nonnegative 

real eigenvalues and orthogonal eigenvectors. The eigenvectors, given in (3.45) and (3.46), can 
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also be normalized to become orthonormal, that is, uru;  =1 and vrv;  = 1 .Pre-multiplying (3.45) by 

X results in, 

(XXH )XVi  = ;Xv; 	 (3.47) 

That is, u;  = axvi  , where the scaling factor can be taken as positive and it is found from, 

flui2 =1= a2VHXH XVi =a2XiIViII2  =>_ a= 1 	 (3.48) 

So, 	 u;  = I Xv; 	 (3.49) 

Let us now assume that u;  , v;  , i=0, 1, ... , r-1, are the eigenvectors corresponding to the 

nonzero eigenvalues and ui  , i= r, . .. ,1-1, vi  , i= r, . . _. , n-1, to the zero ones. Then, for the latter 

case we have, 

XHXV;  = 0=>- VHXHXVi  = O=>. IIXVi 112  = 

Hence, 

Xv;  =0 	i=r, ..., n-1 	 (3.50) 

In a similar way one can show that 

XHU;  = 0 i=r, ..., n-1 	 (3.51) 

Combining (3.49) and (3.50), it can shown that the right-hand side of (3.45) is 

r-1 	 r-1 	 n-1 
a;  u;vI  =x 	a,; 

1 
 vivH = xyv;v' 	 (3.52) 

Let us now define a matrix V that has as columns the orthonormal eigenvectors v1 , 

V =  [fro  ... 

Orthonormality of the columns results in VHV =1 that is, V is unitary and hence wH = i . Thus, 

it turns out that, 
Hi 

n-1 
1=`7`I H  =[VQ  ... Vn-1]I 	= 	v  vH 	 (3.53) 

L  H 
Vn-1 

From (3.52) and (3.53) we obtain 
r-1 

x = 	u;vx 	 (3.54) 
i=o 
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And X can be written as, 
I 

X=U A2 o VH 	 (3.55) 
1 0 0 

Where U is the unitary matrix with columns the orthonormal eigen vectors. ui 

3.5.2 Low Rank Approximation 

The expansion in (3.54) is an exact representation of matrix X. A very interesting implication 

occurs if one uses less than r (the rank of X) terms in the summation. Let X be approximated by 
A k-1 

X=X=Z uivH,k<_r 	 (3.56) 
i=o 

Matrix x , being the sum of k <-r rank-one independent 1 xn matrices, is of rank k. If the k largest 

eigenvalues are involved, it can be shown that the squared error, 
2 

Ez =Y~IX(i,.i) — X(i,.i)I 
i=o j=o 

(3.57) 

is the minimum one with respect to all rank-k 1 x n matrices. The square root of the right-hand 

side in (3.57) is also known as the Frobenius norm IIx-XII of the difference matrixx-x . The 

error in the approximation turns out to be 
r-1 

82 =~a; 
	 (3.58) 

i=k 

Hence, if we order the eigenvalues in descending order, a,o >- a,, > ... >- kr_, , then for a given number 

of k terms in the expansion, the SVD leads to the minimum square error. Thus, x is the best rank 

k approximation of X in the Frobenius norm sense. This reminds us of the Karhunen-Loeve 

expansion. However, in the latter case the optimality was with respect to the mean square error. 

This is a major difference in philosophy between SVD and KL. The former is related to a single 

set of samples and the latter to an ensemble of them [9]. 

3.5.3 Dimensionality Reduction 

SVD has been used extensively for dimension reduction in pattern recognition and 

information retrieval, and it forms the basis of what is known as latent semantics indexing, see, 

for example, Adopting the notation used in (3.44) and (3.45), Eq. (3.56) can be written as[2], 
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H 
aOVO 

A 	 ~VH 
x~X=[U0 U1 	Uk-1] V

..l 2 

H 
a'k-1 Vk-1 

= UK ia0 al • • • an_1 ] 	 (3.59) 

where Uk consists of the first k columns of U and the k dimensional vectors a; , i = 0, 1, ... , n- 

1 
1, are the column vectors of the kxn product matrix AVk ,where vK consists of the first k rows 

of VH and Ak is the diagonal matrix having elements the square roots of the respective k singular 

values. The formulation given in (3.59) suggests that each column vector, x, of X, is 

approximated as, 
k-1 

X 	_ E U(m) 	i=0, ..., n-1 	 (3.60) 
m=0 

where a,(m) , m= 0, 1, ... , k - 1, denote the elements of the respective vector a; . In words, the 1-

dimensional vector X; is approximated by the k-dimensional vector a1 , lying in the subspace 

spanned by u; , i = 0, 1, ... , k-1 (a; is the projection of x; on this subspace) Furthermore, due to 

the orthonormality of the columns u; , i = 0, 1, ... , k- 1, of Uk from (3.60) it is straightforward 

to see that, 

Ilx —XJ 112 =' IIUk(ai — aj) 2 	 (3.61) 

_ (Uk (ai — aJ )T )(Uk (ai — ai )) 	 (3.62) 

= (a; —a;)T UkUk (a; —a;) 	 (3.63) 

= la; -a jll2 	i, j =0,1,2,...n-1 	 (3.64) 

Where 11 - 11 represents the Euclidean norm of a vector. That is, using the previous projection and 

assuming the approximation to be reasonably good, the Euclidean distance between x and x j in 

the high 1-dimensional space is (approximately) preserved under the projection in the lower k-

dimensional subspace. The previous observation has important implications in applications such 

as information retrieval. For example, the simple case where we are given a set of n patterns each 

represented by a 1-dimensional feature vector. These patterns constitute the available database. 

Given an unknown pattern, the goal is to search for and recover from the database the pattern that 
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is most similar to the unknown one, by computing its Euclidean distance from each vector in the 

database. When 1 and n are large numbers this can be a very time-consuming task. A procedure to 

simplify computations is the following. We form the lxn data matrix, X having as columns the n 

feature vectors. Perform a SVD on X and represent each feature vector, x;  , by its lower 

dimensional projection, a1 , as described before. Given the unknown vector, one projects it on the 

subspace spanned by the columns of Uk  and performs Euclidean distance computations in the k- 

dimensional space. Since Euclidean distances are approximately preserved, one can decide about 

the proximity of vectors by working in a lower dimensional space. If k o 1 substantial 

computational savings are obtained. SVD builds upon global information spread over all the data 

vectors in X. Indeed, a crucial part of the algorithm is the computation of the eigenvalues of X"X 

or H,  which, for zero mean data, is directly related to the respective covariance matrix. Hence, 

the performance of the SVD, as a dimensionality reduction technique, is most effective for cases 

where data can sufficiently be described in terms of the covariance matrix, for example, to be 

Gaussian-like distributed. In a modification of the simple SVD is suggested to account for data 

with a clustered structure. 

Due to its optimal approximation properties, the SVI) transform also has excellent 

information packing properties, and an image array can be represented efficiently by a few of its 

singular values. Thus, SVD is a natural candidate as a tool for feature generation/selection in 

classification. Performing SVD of large matrices is a computationally expensive task. In order to 

overcome this drawback, a number of computationally efficient schemes have been developed 

[9] 

3.5.3 Example Problem 
Taking same data matrix as in section 3.4.3 

16 3 2 13 
5 10 11 8 

A=9 6 7 12 
4 15 14 1 
2 14 7 23 

Computing SVD of above matrix yields following matrices, 
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-0.3929 0.5872 0.5501 -0.3850 0.2236 
-0.3990 -0.2690 0.1160 0.5523 0.6708 

U=-0.4058  0.1710 0.1950 0.5640 -0.6708 
-0.3724 -0.7327 0.3131 -0.4200 -0.2236 
-0.6189 0.1294 -0.7402 -0.2287 0.0000 

42.1015 0 0 0 
0 18.0196 0 0 

S= 	0 0 13.0419 0 
0 0 0 2.5818 
0 0 0 0 

-0.3482 0.3839 0.8364 -0.1782 
-0.5191-  -0.5039 -0.1293 -0.6781 

V= 
-0.4171 -0.5516 0.2257 0.6862 
-0.6598 0.5426 -0.4824 0.1938 

S is a diagonal matrix, of the same dimension as X and with nonnegative diagonal elements in 

decreasing order, and unitary matrices U and V so that 

x = USVT 
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Chapter 4: Artificial Neural Systems 

Artificial neural systems are machines that have great potential to further improve the 

quality of life. Although computers outperform both biological and artificial neural systems for 

tasks based on precise and fast arithmetic operations, artificial neural systems represent the 

promising new generation of information processing networks. Advances have been made in 

applying such systems for problems found intractable or difficult for traditional computation. 

Neural networks can supplement the enormous processing power of the von Neumann digital 

computer with the ability to make sensible decisions and to learn by ordinary experience, as we 

do. 

Network computation is performed by a dense mesh of computing nodes and connections. 

They operate collectively and simultaneously on most or all data and inputs. The basic processing 

elements of neural networks are called artificial neurons, or simply neurons. Often we simply call 

them nodes. Neurons perform as summing and nonlinear mapping junctions. In some cases they 

can be considered as threshold units that fire when their total input exceeds certain bias levels. 

Neurons usually operate in parallel and are configured in regular architectures. They are often 

organized in layers, and feedback connections both within the layer and toward adjacent layers 

are allowed. Each connection strength is expressed by a numerical value called a weight, which 

can be modified. 

Artificial neural systems function as parallel distributed computing networks. Their most 

basic characteristic is their architecture. Only some of the networks provide instantaneous 

responses. Other networks need time to respond and are characterized by their time-domain 

behavior, which we often refer to as dynamics. Neural networks also differ from each other in 

their learning modes. There are a variety of learning rules that establish when and how the 

connecting weights change. Finally, networks exhibit different speeds and efficiency of learning. 

As a result, they also differ in their ability to accurately respond to the cues presented at the input. 

In contrast to conventional computers, which are programmed to perform specific tasks, most 

neural networks must be taught, or trained. They learn new associations, new patterns, and new 

functional dependencies. Learning rules and algorithms used for experiential training of networks 

replace the programming required for conventional computation. Neural network users do not 
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specify an algorithm to be executed by each computing node as would programmers of a more 

traditional machine. Instead, they select what in their view is the best architecture, specify the 

characteristics of the neurons and initial weights, and choose the training mode for the network. 

Appropriate inputs are then applied to the network so that it can acquire knowledge from the 

environment. As a result of such exposure, the network assimilates the information that can later 

be recalled by the user [10]. 

4.1 Neural Processing 

Assume that a set of patterns can be stored in the network. Later, if the network is 

presented with a pattern similar to a member of the stored set, it may associate the input with the 

closest stored pattern. The process is called autoassociation. Typically, a degraded input pattern 

serves as a cue for retrieval of its original form. This is illustrated schematically in figure 4.1 a. 

The figure shows a distorted square recalling the square encoded. 

Associations of input patterns can also be stored in a heteroassociation variant. In 

heteroassociative processing, the associations between pairs of patterns are stored. This is 

schematically shown in figure 4. lb. A square input pattern presented at the input results in the 

rhomboid at the output. It can be inferred that the rhomboid and square constitute one pair of 

stored patterns. A distorted input pattern may also cause correct heteroassociation at the output as 

shown with dashed line. 

Input Auto— 
pattern association 

E {oo❑} >o 
Distorted Square 

square 

figure 4.1a Autoassociation 

Input 
pattern 

1  Q Hetero- 
association 

0 ❑ -`O U 
Square or X _„ 8 Rhomboid 
distorted 
square 

figure 4.1b Heteroassociation 

Classification is another form of neural computation. Let us assume that a set of input 

patterns is divided into a number of classes, or categories. In response to an input pattern from the 
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set, the classifier is supposed to recall the information regarding class membership of the input 

pattern. Typically, classes are expressed by discrete-valued output vectors, and thus output 

neurons of classifiers would employ binary activation functions. The schematic diagram 

illustrating the classification response for patterns belonging to three classes is shown in figure 

4.2a. 

Classification can be understood as a special case of heteroassociation. The association is 

now between the input pattern and the second member of the heteroassociative pair, which is 

supposed to indicate the input's class number. If the network's desired response is the class 

number but the input pattern does not exactly correspond to any of the patterns in the set, the 

processing is called recognition. When a class membership for one of the patterns in the set is 

recalled, recognition becomes identical to classification. Recognition within the set of three 

patterns is schematically shown in figure 4.2b. This form of processing is of particular 

significance when an amount of noise is superimposed on input patterns. 

Input 	 Class 
pattern 	 number 

[1]  

figure 4.2a Classification 

Input 	 Class 
pattern 	 number 

' {AXc} [j] 

figure 4.2b Recognition 

4.1.1 Perceptron 
Perceptron is fundamental computational element in Neural Networks. figure 4.3 shows 

a Perceptron. Each external input is weighted with an appropriate weight w1 , and the sum of the 

weighted inputs is sent to the transfer function, which also has an input of 1 transmitted to it 

through the bias. Depending upon transfer function used Perceptron can be discrete or continuous 
[9].  

36 



Input 	General Neuron 
r~l 

R 

a =J(W P +b) 

Where 

R = number of 
elements in 
input vector 

figure 4.3 A Perceptron 

Most frequently used transfer functions are as follows 

f(net)=2x( 	1 	
- 

1) 
l+enet 2 

Its transfer characteristic is as given in figure 4.4 

a 

r1; 
0  ' 

.-- 	~:~........ 

figure 4.4 Tansig Function 

f(net)=2x( 	1 	_ 1) 
1+e _net 2 

Its transfer characteristic is as given in figure 4.5 

a 

...........~+1........ 

n 
0 

........ 	.......... 

figure 4.5 Logsig Function 

(4.1) 

(4.2) 
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F(net)=sgn(net) 
	

(4.3) 

Its transfer characteristic is as given in figure 4.6 

a 
+1 

0 
........... 	_~ ...... 

figure 4.6 Thresholding Function 

4.2 Learning and Adaptation 
Learning in human beings and animals is an inferred process; we cannot see it happening 

directly and one can assume that it has occurred by observing changes in performance. In general, 

learning is a relatively permanent change in behavior brought about by experience. Learning in 

neural networks is a more direct process, and we typically can capture each learning step in a 

distinct cause-effect relationship. To perform any of the processing tasks discussed in the 

previous section, neural network learning of an input-output mapping from a set of examples is 

needed. Designing an associator or a classifier can be based on learning a relationship that 

transforms inputs into outputs given a set of examples of input-output pairs [10]. 

4.2.1 Supervised and Unsupervised Learning 

The majority of the neural networks require training in a supervised or unsupervised 

learning mode. Some of the networks, however, can be designed without incremental training. 

They are designed by batch learning rather than stepwise training. Batch learning takes place 

when the network weights are adjusted in a single training step. In this mode of learning, the 

complete set of input/output training data is needed to determine weights, and feedback 

information produced by the network itself is not involved in developing the network. This 

learning technique is also called recording. Learning with feedback either from the teacher or 

from the environment rather than a teacher, however, is more typical for neural networks. Such 

learning is called incremental and is usually performed in steps. figure 4.7a shows supervised 

learning while figure 4.7b shows unsupervised learning. 
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Adaptive 
x 	network 	 o 	x  

Learning 
signal 

Distance 	d  
generator 

P[d,o] 
distance measure 

0 

figure 4.7a Supervised Learning 	 figure 4.7b Unsupervised Learning 

In supervised learning we assume that at each instant of time when the input is applied, 

the desired response d of the system is provided by the teacher. This is illustrated in figure 4.7a. 

The distance between the actual and the desired response serves as an error measure and is used 

to correct network parameters externally. Since we assume adjustable weights, the teacher may 

implement a reward-and-punishment scheme to adapt the network's weight matrix W. For 

instance, in learning classifications of input patterns or situations with known responses, the error 

can be used to modify weights so that the error decreases. This mode of learning is very 

pervasive. Also, it is used in many situations of natural learning. A set of input and output 

patterns called a training set is required for this learning mode. Typically, supervised learning 

rewards accurate classifications or associations and punishes those which yield inaccurate 

responses. The teacher estimates the negative error gradient direction and reduces the error 

accordingly. In many situations, the inputs, outputs and the computed gradient are deterministic, 

however, the minimization of error proceeds over all its random realizations. As a result, most 

supervised learning algorithms reduce to stochastic minimization of error in multi-dimensional 

weight space. 

figure 4.7b shows the block diagram of unsupervised learning. In learning without 

supervision, the desired response is not known; thus, explicit error information cannot be used to 

improve network behavior. Since no information is available as to correctness or incorrectness of 

responses, learning must somehow be accomplished based on observations of responses to inputs. 

that we have marginal or no knowledge about For example; unsupervised learning can easily 

result in finding the boundary between classes of input patterns distributed as shown in figure 
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4.8a. In a favorable case, as in figure 4.8a, cluster boundaries can be found based on the large and 

representative sample of inputs. Suitable weight self-adaptation mechanisms have to be 

embedded in the trained network, because no external instructions regarding potential clusters are 

available. One possible network adaptation rule is: A pattern added to the cluster has to be closer 

to the center of the cluster than to the center of any other cluster. 

Unsupervised learning algorithms use patterns that are typically redundant raw data 

having no labels regarding their class membership, or associations. In this mode of learning, the 

network must discover for itself any possibly existing patterns, regularities, separating properties, 

etc. While discovering these, the network undergoes change of its parameters, which is called 

self-organization. The technique of unsupervised learning is often used to perform clustering as 

the. unsupervised classification of objects without providing information about the actual classes. 

This kind of learning corresponds to minimal a priori information available. Some information 

about the number of clusters, or similarity versus dissimilarity of patterns, can be helpful for this 

mode of learning. Finally, learning is often not possible in an unsupervised environment, as 

would probably be true in the case illustrated in figure 4.8b showing pattern classes not easily 

discernible even for a human[ 10]. 

x2  x2 

0  xi  of  
—  

x~ 

figure 4.8a Distinguishable Patterns 	 figure 4.8b Undistinguishable Patterns 

4.3 Neural Network Learning Rules 

A neuron is considered to be an adaptive element. Its weights are modifiable depending 

on the input signal it receives, its output value, and the associated teacher response. In some cases 
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the teacher signal is not available and no error information can be used, thus the neuron will 

modify - its weights based only on the input and/or output. This is the case for unsupervised 

learning. The trained network is shown in figure 4.9. 

xl 
Ah 

neuron 

x~ 
o; 

xj 	 Aw; 

° 	 Laming 
° 	 x 	 signal 	 d; 
• generator 

x„ 

w;,]' is the weight vector 	C 
undergoing training 

figure 4.9 Perceptron Under Training 

4.3.1 Hebbian Learning Rule 

For the Hebbian learning rule the learning signal is equal simply to the neuron's output. 

We have, 

r.~ f(w;x) 	 (4.1) 

The increment ow; of the weight vector becomes 

	

Owi =cf(w;x)x 	 (4.2) 

The single weight wij is adapted using the following increment 

	

= cf(w;x)x~ 	 (4.3) 

This learning rule requires the weight initialization at small random values around wij = 0 prior to 

learning. The Hebbian learning rule represents a purely feed forward, unsupervised learning. The 

rule states that if the cross product of output and input, or correlation term ojx j is positive, this 

results in an increase of weight wij otherwise the weight decreases. It can be seen that the output 

is strengthened in turn for each input presented. Since its inception, the Hebbian rule has evolved 

in a number of directions. In some cases, the Hebbian rule needs to be modified to counteract 
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unconstrained growth of weight values, which takes place when excitations and responses 

consistently agree in sign. This corresponds to the Hebbian learning rule with saturation of the 

weights at certain, preset level [ 10]. 

4.3.2 Perceptron Learning Rule 

For the Perceptron learning rule, the learning signal is the difference between the desired 

and actual neuron's response .Thus is, supervised and the learning signal is equal to, 

r=(d; —o;) 
	

(4.4) 

where o; = sgn(w; x) , and d; , is the desired response as shown in figure 4.10. Weight adjustments 

in this method, ow; , and ow;j , are obtained as follows, 

Owi =c[d; —sgn(wfx)]x 	 (4.5) 

w;1_c [d; —sgn(w; )x] x~ 	for j=1, ...,n 	 (4.6) 

This rule is applicable only for binary neuron response, and the . relationships (4.5) and (4.6) 

express the rule for the bipolar binary case. Under this rule, weights are adjusted if and only if o; 

is incorrect. Error as a necessary condition of learning is inherently included in this training rule. 

Obviously, since the desired response is either 1 or - 1, the weight adjustment (4.5) reduces to 

Ow; = ±2cx 	 (4.7) 

Where a plus sign is applicable when d; =1, and sgn(w; )x = - 1, and a minus sign is applicable 

when d; _ - 1, and sgn(w; )x = 1. The weight adjustment formula (4.7) cannot be used when d; _ 

sgn(w; )x . The weight adjustment is inherently zero when the desired and actual responses agree 

[10]. 
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figure 4.10 Perceptron Learning Rule 

4.3.3 Delta Learning Rule 

The delta learning rule is only valid for continuous activation functions, and in the 

supervised training mode. The learning signal for this rule is called delta and is defined as 

follows, 

	

r=[ds — f(w~x)]f (wax) 
	

(4.8) 

The term f' (w; x) is the derivative of the activation function f (net) computed for net = w; x . The 

explanation of the delta learning rule is shown in figure 4.11. This learning rule can be readily 

derived from the condition of least squared error between o; and d1 . Calculating the gradient 

vector with respect to w; of the squared error defined as, 

E -1-(d -o)2 
	

(4.9) 

Which is equivalent to 
E = rdl _ f(wix)] 2 	

(4.10) 

Error gradient vector value is given by 

	

of =-(d; -o;)f (w;x)x 	 (4.11) 

The components of the gradient vector are 

for =1 	n 	 (4.-12) 
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Since the minimization of the error requires the weight changes to be in the negative gradient 

direction, we take 

/w; = -i- VE 	 (4.13) 

Where ,- is a positive constant. We then obtain from (4.11) and (4.13) 

	

Ow; =1(d1 — o; )f (net; )x 	 (4.14) 

Or, for the single weight the adjustment becomes 

	

= r1(d; - o; )f (net; )x~ 	j=1......,n 	 (4.15) 

Weight adjustment as in (4.14) is computed based on minimization of the squared error. 

x, 

2 

Xi 

C! 

of 

d; 

C 

figure 4.11 Delta Learning Rule 

The delta rule was introduced only recently for neural network training. This rule parallels the 

discrete Perceptron training rule. It also can be called the continuous Perceptron training rule. The 

delta learning rule can be generalized for multilayer networks [10]. 

4.3.4 Widrow-Hoff Learning Rule 

The Widrow-Hoff learning rule is applicable for the supervised training of neural 

networks. It is independent of the activation function of neurons used since it minimizes the 

squared error between the desired output value d, and the neuron's activation value neti = w; x 

The learning signal for this rule is defined as follows, 

rrd; —w;x 	 (4.16) 

The weight vector increment under this learning rule is, 
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Ow; =c(d; —w;x)x 	 (4.17) 

or, for the single weight the adjustment is, 

Awl =c(d; —w;x)x~ 	 (4.18) 

This rule can be considered a special case of the delta learning rule. Indeed, assuming in (4.8) that 

f(w; x) = w; x , or the activation function is simply the identity function f (net) = net, we obtain f 

'(net) = 1, and (4.8) becomes identical to (4.16). This rule is sometimes called the LMS (least 

mean square) learning rule. Weights are initialized at any values in this method [10]. 

4.3.4 Winner Takes All Learning Rule 

This learning rule differs substantially from any of the rules discussed so far. It can only 

be demonstrated and explained for an ensemble of neurons, preferably arranged in a layer of p 

units. This rule is an example of competitive learning, and it is used for unsupervised network 

training. Typically, winner takes all learning is used for learning statistical properties of inputs. 

The learning is based on the premise that one of the neurons in the layer Say m'th has the 

maximum response due to input x, as shown in figure 4.12. This is neuron is declared the winner. 

As a result of this winning event the weight vector Wm 

Wm =[Wm1 Wm2 ... wmn]T 	 (4.19) 

Weight increment is computed as follows, 

AWm =a(X-Wm) 
	

(4.20) 

or, the individual weight adjustment becomes, 

Owmj = a(x j — Wmj) 	for j=1,.....n 	 (4.21) 

Where a >0 is a small learning constant, typically decreasing as learning progresses. The winner 

selection is based on following criterion of maximum activation among all p neurons participating 

in competition. 

wx = max(w;x) 	 (4.22) 
i=12....P 
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figure 4.12 Winner Takes All Learning Rule 

4.4 Neural Network Training 
figure 4.13 shows a Perceptron which is also called Threshold logic Unit (TLU). 

i,,=i or -1 

figure 4.13 Neural Network Training 

Value of output at summation junction is called `net' and is given by, 

net= x1w1+x2w2 +•••+xnwi,+wn+l 	 (4.23) 

This is an equation of hyperplane in n dimensional space. w„+1  is bias value also represented as 

weight with fixed input 1. With proper weight values TLU element can classify, on which side of 

the plane the pattern lies, 1 for positive side -1 for negative side respectively[]. 
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4.4.1Backpropogation Algorithm 

In this dissertation Feed-Forward two layer Neural Network has been used, hidden layer 

contained ten neurons. Feed-Forward Neural Networks are also called back-propagation Neural 

Networks because of the training method used. Back-Propagation is a gradient descent algorithm 

for multilayer network with non-linear differentiable transfer function, in which network weights 

are moved in the direction of negative gradient of performance function. Weight adjustment is 

repeated using (4.24) to (4.32), until performance function value decreases below a certain low 

value. Let z be input and o be target vectors of size Ix 1 and Kx 1 respectively and hidden layer 

contain J neurons so output y of hidden layer is of size Jx 1. Layer weight matrix W and input 

weight matrix V are of sizes KxJ and JxI respectively, are initialized to small random values, wkj 

denote weight connecting kth output neuron to jth hidden layer neuron, similarly vii denote 

weight connecting jth hidden neuron to ith input component[2]. 

y; F- f (net;) 	 (4.24) 

net. = vjz 	 (4.25) 

Where j=1, 2........., J 

Where v~, a column vector, is jth row of V 

Ok — f(netk) 	 (4.26) 

netk = wky 	 (4.27) 

Where k=1, 2........., K 

Where Wk, a column vector, is kth row of W 

Where most common choice of function f is bipolar continuous activation function given by 

equation: 

f(net)=2x( 1 -- 	 (4.28) 
l + e net  
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However, it can be any nonlinear continuous differentiable function. 

Error signal vectors for each layer, So  and Sy  of size Kx 1 and Jx 1 are computed using following 

equations: 

1 Sok  = 2 (dk —Ok)(1 — Ok) 	 (4.29) 

Where dk  is desired output of kth  neuron where 

k=1, 2.........., K 

K 
6., =2(1— Yj)E,Sokwkj 	 (4.30) 

k=1 

for j= 1, 2 . ............ J 

Output layer weights are adjusted by equation: 

Wkj — W kj +TSokYj 	 (4.31) 

for k=1, 2 . ............ K and 

j=1, 2 . ............. J 

Hidden layer weights are adjusted by equation: 

E- v j;  +it z; 	 (4.32) 

for j=1, 2, ........., J and 

i= 1,2 ...............I 

Where i-  is learning rate. 

Common choice performance function, which is optimized using (4.24) to (4.32), is mean square 

error, which is given by following equation [10]. 
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4.4.2 Resilient Backpropagation 

In this dissertation Resilient Backpropagation as training algorithm has been used. 

Multilayer networks typically use sigmoid transfer functions in the hidden layers and output 

layer. From (4.29) and (4.30) we find that error signal vector uses slope of transfer function for 

calculation, now when input is large derivative of (4.28) is small, which makes error signal vector 

small, as a result of which weight adjustment is slow even if weights are far from optimal value. 

Resilient Backpropagation eliminates these harmful effects. In this algorithm magnitude of 

derivative have no effect on weight adjustment, rather sign of the derivative determines the 

direction of weight adjustment. The size of the weight change is determined by a separate term 

update_value. The update_value for each weight and bias is increased by a factor deli inc 

whenever the derivative of the performance function with respect to that weight has the same sign 

for two successive iterations. The update value is decreased by a factor deli dec whenever the 

derivative with respect to that weight changes sign from the previous iteration. If the derivative is 

zero, the update value remains the same. This algorithm leads to faster convergence. 
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Chapter 5: Software for Face Recognition 

5.1 Algorithm 

The method proposed uses Laplacian for pre-processing. Singular Value Decomposition for 

feature extraction and two layer Feed-Forward Neural Network for recognition and classification. 

Database contained Facial image of ten different persons, each person has ten different variations 

of facial expression. 

A. Pre-Processing 

Four images from each group were taken, and processed using (2.6). This step resulted 

in sharp image with enhanced small details as shown in figure 2.5. Application of laplacian was 

done by mask shown in figure 2.2. Laplacian operator results into image with some pixel values 

as negative, which are truncated to zero by display device. So, integer precision image was 

converted to double precision before applying Laplacian. 

B. Training Vectors Creation 

Images after pre-processing stage were arranged in the form of matrix such that, each 

column of matrix contains an image data. Image size we used was 92x 112 so, resultant matrix 

was of size 10304x40. This Matrix was replicated into three sets, second and third set were added 

with normally distributed noise of mean zero and standard deviation 0.05 and 0.1 respectively. 

This step was taken to improve noise tolerance of Neural Network. Singular Value 

Decomposition was applied to this matrix of size 10304x 120. As a result Feature Matrix of size 

120x 120 was created, which was used to train the neural network. Further, orthonormal basis 

matrix of size 10304x 120 was also created in this step. 

C: Neural Network Training 

Columns of Feature Matrix created above were used to train neural network. Various 

Training parameters used were, number of epochs was set to 5000, performance function was 

sum square error, Goal was set to 0.1, Ten hidden neurons were used, Transfer function for 

hidden layer and output layer were tan-sigmoid and log-sigmoid respectively. Learning rate was 

set to 0.05. Training function used was resilient Backpropagation with update_value=.07, 
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delt_dec=0.5 and deli inc=1.2. Resilient Backpropagation resulted in faster convergence than 

conventional gradient descent algorithm. 

D. Network Simulation 

Face to be recognized was first pre-processed and, then its projection was taken along 

orthonormal basis vectors which columns of orthonormal basis matrix are obtained using Singular 

Value Decomposition by following equation: 

Ytest — U
T 
 Xtest 
	 (4.33) 

Where xtest  is image data with or without noise, arranged in lexicographic form, U is basis 

matrix, ytest  is feature vector of Face to be recognized. Trained network responded with a 10x I 

vector with maximum value, close to one in one position, showing class to which input face 

belonged. 

5.2 Program for Computation Principal Component Analysis 

function [mn,signals,PC,V] = pca_fcn(data) 

°rudata=Ixii data mat r ix each columns are samples xvith I dimensions 

%mn=column vector with mean of each rows 

%signals=mxn dimension output matrix where m<l 

%V=variance of each dimensions of output matrix 

[M,N] = size(data); 

mn = mean(data,2); 

data = data - repmat( mn, 1 ,N); 

covariance = I / (N-1) * data * data'; 

[PC, V] = eig(covariance); 

V = diag(V); 

[junk, rindices] = sort(-1 * V); 

V = V(rindices); 

PC = PC(:,rindices); 

signals = PC'*data; 
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5.3 Program for Creation of Training Set 

function [P,T]=create_db(str) 

%str=cell array )I ,trinz, contauin iniaze address 

%P=pattern data 

O1 tar~Let data 

[m n]=size(str); 

image=imread(str{ 1,1 }); 

[x,y]=size(image(: ,: , 1)); 

P=zeros(x*y,m*n); 

T=zeros(m,m*n); 
x, 011) (1 	;i/L(I'I_ 

w=fspecial('I 	,[5 5],.5); 

for i=1:m 

for j=l:n 

img =imread(str{iz j}); 

z=img(:,:,1); 

z=im2double(z); 

z=z-imfilter(z,w,'rc p I icate', same'); 

oircl i 

%imshow(z); 

° oimsave 

P(:,n*(i-1)+j)=z(:); 

T(i,n*(i-1)+j)=1; 

end 

end 

%[P,ps] -mapstd(P); 
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5.4 Program for Creation of Noisy Training Set 

function [P T]= createnoisy_db(R,G) 

%R=1xn matrix each column is an log tranformed image of type double 

%P=lx 3*n matrix first n columns has original image n+1 to 3n columns 

", ha 	nia'-, c 	ith normallv (jistril)uteci na,ic 

[m n]=size(R); 

rows=112; 

cols=92; 

R1= R+ randn(m,n). * .1; 

R2= R+randn(m,n).*.05; 

P=[R R1 R2]; 

T=[G G G]; 

img=zeros(rows,cols); 

[x y]=size(P); 

for i=1:y 

for j=1 :cols 

img(:,j)=P(((j-1)*rows+1):  rows *j,i); 

end 

%imshow(img); 

in save 

end 

5.5 Program for Computation of Singular Value Decomposition 

function [Y U] =svd_compute(P) 

%P=-log transh rinied iniaoe matrix in lexicographic form 

%size of P is imrows*1mcolumns X numlmages 

°oY -m X numlmages size matrix 

[U S V]=svd(P,'econ'); 

Y=S * V'; 

Q=U*Y; 
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Y1=U'*P; 

rows=112; 

cols=92; 

img=zeros(rows,cols); 

[in n]=size(Q); 

for 1=1 :n 

for j=l :cols 

img(:j)=Q(((j-1)*rows+l):rows*j,i); 

end 

%imshow(img); 

°oimsave 

end 

5.6 Program for Neural Network Training 

function [net tr]= train_fcn(P,T,Goal,Epochs,PFcn,Trngfcn,numHneuron,tfl,tf2,lrnRate) 

%various paraiiieters in order 

%P= pattern vectors 

%T=target vectors 

%Goal=value of sum square error 

%Epochs=num of iterations 

%Pfcn='sse' or 'rose' etc. 

%Tmgfcn=training function used 

%numHneurons=number of neurons in hidden layers 

%tf I =string containing transfer function of first layer 

%tf2=string containing transfer function of 2nd layer 

%lr=network learning rate 

°onet--returned trained netvvork 

net = newff(P,T,nurHneuron, {tfl,tf2 } ); 

net.trainFcn=Trn gfcn; 

net.IW{1,1} =net.IW{1,1}*0.01; 
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net.outputs { 2) .processParams {2 } .ymin=0; 

net.LW{2,1) = net.LW {2,1 } *0.01; 

net.b { 2 } = net.b { 2 } *0.01; 

net.b{1} = net_b{1}*0.01; 

net.divideFcn='div iJci 	(1'; 

net. divideParam.trainRatio=1.00; 

net. divideParam. valRati o=0.00; 

net. divideParam. to stRatio=0.00; 

net.performFcn=PFcn; 

net.inputs{l}.processFcns={'hxunknowns' 'removeconstantrows 'mapnuiimax','inapstd'}; 

)Ill',t 	U1j)III, 	:.I)Ik)CC»I CIIti TIIIaI)Std'j 

net.trainParam. showCommandLine=1; 

net.trainParam. goal=Goal; 

net. trainParam. epo chs=Epochs; 

net. trainParam.Ir=lrnRate; 

[net,tr] = train(net,P,T); 

5.7 Program for Simulation Neural Network 

function [0 result Y]= simulate_fcn(str,U,noiseLevel,net) 

%str=one ro~v string cell array Ilav In aaddre;, o I iiacc to he recownised 

%U=matrix whose columns are basis vectors used for trannsforming input 

%image into reduced subspace 

%noiseLevel=amount of noise level to be added in input image 

°gilt net\vcrk after t aininr 

[m,n]=size(str); 

image=imread(str{ 1,1)); 

[x,y]=size(image(:,:, 1)); 

P=zeros(x*y,m*n); 

w=fspecial('Io),)' ,[5 5],.5); 

noise=randn(x,y).*(noiseLevel); 

for i=1:m 
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for j=1 :n 

img =imread(str { i,j } ); 

z=img(:,:,1); 

z=im2double(z); 

z=z-imfilter(z,w,'rcE)licate','sain c'); 

z=z+noise; 

imshow(z); 

°uIIll'~l\L; 

P(:,n*(i-1)+j)=z(:); 

end 

end 

Y=U'*P; 

O=sim(net,Y); 

[rows,cols] =size(0); 

result=zeros(rows,cols); 

[Z,index]=max(0); 

for i=1:cols 

i) 	.4) 

result(index(i),i.)=Z(i); 

end 

if(index==1) 

figure,imshow('I 	lace 	ae 	\ :1I 

elseit(index=2) 

figure,imshow(I = lace ima~e 	N Ni 

else i f(index==3 ) 

figure,imshow('I 	lice uu~ie 	C 	('I 

elseif(index==4) 

figure,imshow('I 	lace ima 	e' I) I)) 

elseit(index=5) 

figure,imshow('I . lice im~ie; I. I-.I 
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elseif(index=6) 

figure,imshow('1 : f<ac. ;ti 	!  

elseif(index=7) 

figure,imshow(F Iacs 	( t  

elseif(index=8) 

figure,imshow('I : Dice inu<i c ,, 1  

else] f(index=9) 

figure,imshow('1: ijcc 	I 

elseif(index=10) 

figure,imshow('1-: Iaee images.l 

end 
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Chapter 6: Results 

Neural Networks designed with the proposed method recognized images with an accuracy 

rate of 91%. at zero noise level. Noise response of the network has been studied for twenty 

different noise levels. It was found that Neural Network designed by proposed method tolerated 

the noise extremely well. As shown in the plot of figure 6.4. Though recognition rate decreased as 

noise increased, it is 83%, which is appreciably high, even at random noise of standard deviation 

-.O.2 and mean zero. figure 6.1 shows Facial images contaminated by normally distributed random 

noise with zero mean value and various standard deviations. The training method used is Resilient 

Backpropagation, which led to faster learning of the Network. It took 37 epochs to converge or to 

reach the goal. As shown in the performance plot of figure 6.3. 

figure 6.2a and figure 6.2b shows Training and Test images respectively. Out of ten 

images of each person four has been used for training the network and remaining six test images 

which network has never seen has been used for verification. 

Section 6.1 shows Confusion matrix from Table I to Table XX. A confusion matrix is 

analysis of Network Performance at a given noise level, in a confusion matrix ten persons are 

denoted by alphabets A to J, where columns denote group indicated by the network and rows 

indicate actual group to which person belong. For example, say in Matrix shown in Table I, a 

particular cell say (C, B) shows a number 2, which means that 2 images that belonged to group C 

were erroneously grouped into group B by the Network. Similarly a cell (C, C) which shows 

number 7 indicates that 7 images of group were classified correctly by the Network. Sum of 

diagonal elements in confusion matrix is proportional to the accuracy of the Network. Accuracy 

of the algorithm was found to be 91% under zero random noise condition. 

a=0 r=.05 a=.1 a=.15 a=.2 a=.25 a=.3 6 =.35 6=.4 6 =.45 a=.5 

figure 6.1 Various Noise levels 
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Training Images 	 Test Images 

figure 6.2a 
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6.1 Confusion Matrix for Various Noise Levels 

A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 00 

B 0 10 0 0 0 0 0 0 00 

C 1 2 7 0 0 0 0 0 00 

D 0 0 0 8 2 0 0 0 0 0 

E 0 0 0 0 10 0 0 0 00 

F 0 0 0 0 0 10 0 0 00 

G 0 0 0 0 0 0 10 0 00 

H 0 0 0 0 1 0 0 9 00 

I 0 0 0 0 0 0 1 0 9 0 

J 0 1 0 0 1 0 0 0 0 8 

Table I. Noise Level=0; 91% Recognition Rate 

A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 0 0 

B 0 10 0 0 0 0 0 0 00 

C 1 2 7 0 0 0 0 0 00 

D 0 0 0 8 2 0 0 0 00 

E 0 0 0 0 10 0 0 0 00 

F 0 0 0 0 0, 10 0 0 00 

G 0 0 0 0 0 0 10 0 00 

H 0 0 0 0 1. 0 0 9 00 

I 0 0 0 0 0 0 1 0 9 0 

J 0 1 0 0 1 0 0 0 0 8 

Table II. Noise Level=0.05; 91% Recognition Rate 



A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 00 

B 0 10 0 0 0 0 0. 0 00 

C 1 2 7 0 0 0 0 0 00 

D 0 1 0 7 2 0 0 0 00 

E 0 0 0 0 10 0 0 0 0 0 

F 0 0 0 0 1 9 0 0 00 

G 0 0 0 0 0 0 10 0 0 0 

H 0 0 0 0 1 0 0 9 00 

I 0 0 0 0 0 0 1 0 9 0 

J 0 1 0 0 1 0 2 0 06 

Table III. Noise Level=0.1; 89% Recognition Rate 

A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 0 0 

B 0 8 0 2 0 0 0 0 0 0 

C 0 2 8 0 0 0 0 0 0 0 

D 0 0 0 8 0 0 1 0 1 0 

E 0 0 0 0 10 0 0 0 0 0 

F 0 0 0 0 1 9 0 0 0 0 

G 0 0 1 0 1 0 8 0 0 0 

H 0 0 0 0 1 0 0 9 0 0 

0 1 0 0 0 0 0 0 9 0 

J 0 0 1 0 0 0 2 0 0 7 

Table IV. Noise Level=0.15; 86% Recognition Rate 
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A B C D E F 	.G H I J 

A 10 0 0 0 0 0 0 0 00 

B 0 9 0 1 0 0 0 0 00 

C 1 2 6 0 0 1 0 0 00 

D 0 1 0 7 2 0 0 0 0 0 

E 0 0 0 0 10 0 0 0 00 

F 0 0 2 0 0 8 0 0 00 

G 0 0 0 0 0 0 10 0 00 

H 0 0 0 0 1 0 0 9 00 

I 0 0 0 1 0 0 1 0 80 

J 0 1 0 0 1 0 2 0 06 

Table V Noise Level=0.2; 83% Recognition Rate 

A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 0 0 

B 0 8 0 2 0 0 0 0 00 

C 1 2 6 0 1 0 0 0 0 0 

D 0 1 0 5 2 2 0 0 00 

E 0 0 0 0 10 0 0 0 00 

F 0 0 2 1 0 7 0 0 0 0 

G 0 0 0 0 0 0 10 0 00 

H 0 1 0 0 1 0 0 8 00 

I 0 0 0 0 0 0 1 0 9 0 

J 0 1 0 2 1 0 1 0 05 

Table VI. Noise Level=.25; 78% Recognition Rate 
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A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 00 

B 0 8 0 2 0 0 0 0 00 

C 1 2 6 0 0 1 0 0 00 

D 1 2 0 5 2 0 0 0 00 

E 0 0 0 0 10 0 0 0 00 

F 0 0 2 0 0 7 0 1 00 

G 0 0 0 0 0 0 10 0 00 

H 0 1 0 0 1 0 0 8 00 

1 0 0 0 0 0 0 1 0 9 0 

J 0 1 2 0 1 0 1 0 05 

Table VII. Noise Level=0.3; 78 % Recognition Rate 

A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 00 

B 0 8 0 2 0 0 0 0 00 

C 1 2 7 0 0 0 0 0 00 

D 0 0 0 6 2 2 0 0 00 

E 0 0 0 0 10 0 0 0 00 

F 2 0 2 0 0 6 0 0 0 0 

G 0 0 0 2 1 1 6 0 0 0 

H 0 3 0 0 1 0 0 6 00 

I 0 0 0 1 0 0 1 0 8 0 

J 0 1 2 0 1 1 0 0 05 

Table VIII. Noise Level=0.35; 72 % Recognition Rate 
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A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 00 

B 0 7 1 2 0 0 0 0 00 

C 1 2 6 0 0 1 0 0 00 

D 1 0 0 5 2 0 2 0 00 

E 0 0 2 0 8 0 0 0 0 0 

F 0 2 0 0 0 6 0 2 00 

G 0 0 0 0 0 0 10 0 00 

H 0 0 3 0 0 0 0 7 00 

I 0 0 0 1 0 0 1 0 8 0 

J 0 1 0 0 1 0 3 0 05 

Table IX Noise Level=0.4; 72 % Recognition Rate 

A B C D E F G H I I 

A 9 0 0 0 1 0 0 0 00 

B 0 6 0 0 0 2 2 0 00 

C 1 2 6 0 0 0 0 0 10 

D 0 0 0 6 2 0 0 2 0 0 

E 0 0 0 0 9 0 1 0 00 

F 0 0 2 2 0 6 0 0 00 

G 1 2 0 0 0 0 7 0 00 

H 0 0 3 0 1 0 0 6 00 

I 0 0 0 1 0 0 1 0 8 0 

J 0 1 0 0 1 2 0 2 04 

Table X Noise Level=0.45; • 67 % Recognition Rate 



A B C D E F G H I J 

A 10 0 0 0 0 0 0 0 00 

B 0 6 2 2 0 0 0 0 00 

C 1 2 4 0 0 3 0 0 00 

D 0 0 2 5 2 0 0 1 0 0 

E 0 1 0 0 9 0 0 0 00 

F 0 0 2 0 0 6 2 0 0 0 

G 0 0 0 3 0 0 7 0 00 

H 0 3 0 0 1 0 0 6 00 

I 0 0 2 0 0 0 1 0 70 

J 0 1 2 2 1 0 0 0 04 

Table XI Noise Level=0.5; 64 % Recognition Rate 

A B C D E F G H I J 

A 8 0 0 0 0 0 0 0 20 

B 0 6 0 0 0 2 0 2 00 

C 1 2 6 0 0 0 0 1 00 

D 0 2 0 5 2 0 1 0 00 

E 0 1 0 0 9 0 0 0 00 

F 0 2 2 0 0 6 0 0 00 

G 0 0 0 0 3 0 7 0 00 

H 0 0 0 0 1 2 2 6 0 0 

I 0 0 0 3 0 0 1 0 6 0 

J 0 2 1 0 3 1 0 0 03 

Table XII Noise Level=0.55; 62 % Recognition Rate 
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A B C D E F G H I J 

A 8 0 0 0 2 0 0 0 0 0 

B 0 6 2 2 0 0' 0 0 00 

C 1 2 6 0 0 0 1 0 0 0 

D 0 0 0 5 2 0 1 2 00 

E 0 0 0 0 8 0 2 0 0 0 

F 0 0 2 0 2 6 0 0 0 0 

G 0 2 0 2 0 0 3 0 30 

H 0 2 2 0 1 2 0 3 00 

I 0 0 0 3 0 0 1 0 60 

J 0 1 2 0 1 2 1 0 03 

Table XIII Noise Level=0.6; 54 % Recognition Rate 

A B C D E F G H I J 

A 7 0 2 0 0 1 0 0 00 

B 0 6 0 0 2 2 0 0 00 

C 1 2 5 0 0 0 2 0 00 

D 0 0 0 5 2 0 2 1 00 

E 0 0 0 0 8 2 0 0 00 

F 0 0 0 0 0 5 4 1 00 

G 0 0 0 0 2 0 7 0 10 

H 0 0 3 3 1 0 0 3 00 

I 0 0 0 2 2 0 1 0 50 

J 0 1 4 1 1 0 0 0 03 

Table XIV Noise Level=0.65; 54 % Recognition Rate 



A B C D E F G H I J 

A 8 0 0 2 0 0 0 0 0 0 

B 0 6 0 0 2 2 0 0 0 0 

C 1 2 4 0 0 3 0 0 0 0 

D 0 0 2 4 2 0 0 2 0 0 

E 0 0 2 0 6 0 2 0 0 0 

F 0 2 0 3 0 5 0 0 0 0 

G 0 0 2 2 0 0 6 0 0 0 

H 0 3 0 2 1 0 0 4 0 0 

I 0 2 2 0 0 0 1 0 5 0 

J 0 1 3 0 1 2 0 0 0 3 

Table XV Noise Level=0.7; 53 % Recognition Rate 

A B C D E F G H I J 

A 8 0 2 0 0 0 0 0 0 0 

B 0 6 2 2 0 0 0 0 0 0 

C 2 2 4 0 0 0 0 4 0 0 

D 0 4 0 4 2 0 0 0 0 0 

E 0- 0 0 3 3 0 0 3 1 0 

F 0 0 0 2 0 5 3 0 0 0 

G 0 0 2 0 2 0 6 0 0 0 

H 0 3 0 0 1 2 0 4 0 0 

I 0 2 0 2 0 0 1 0 5 0 

J 0 1 0 0 1 3 2 0 0 3 

Table XVI Noise Leve1=0.75; 48 % Recognition Rate 
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A B C D E F G H I J 

A 5 0 2 2 0 1 0 0 00 

B 0 6 0 3 0 0 0 1 00 

C 1 2 5 0 0 2 0 0 00 

D 0 0 0 4 2 0 3 1 00 

E 0 3 2 0 3 0 2 0 00 

F 0 3 0 3 0 4 0 0 0 0 

G 0 0 2 4 0 0 4 0 0 0 

H 2 0 0 2 1 3 0 '2 0 0 

I 0 1 0 3 3 0 1 0 3 0 

J 2 1 0 0 1 3 0 0 0 3 

Table XVII Noise Level=0.8; 38 % Recognition Rate 

A B C D E F G H I J 

A 5 0 2 3 0 0 0 0 00 

B 0 4 0 4 2 0 0 0 00 

C 1 2 2 0 3 0 2 0 00 

D 1 0 0 2 2 0 2 0 3 0 

E 0 2 1 0 3 0 0 4 00 

F 0 0 3 4 0 3 0 0 0 0 

G 1 0 0 2 2 0 5 0 0 0 

H 0 3 0 0 1 4 0 2 0 0 

1 0 2 0 3 0 0 1 0 4 0 

J 0 1 0 0 2 3 0 0 0 4 

Table XVIII Noise Level=0.85; 34 % Recognition Rate 
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A B C D E F G H I J 

A 6 0 2 0 0 2 0 0 0 0 

B 0 4 0 3 1 2 0 0 0 0 

C 2 3 2 0 0 2 1 0 0 0 

D 0 0 3 1 2 0 2 1 1 0 

E 1 0 3 0 2 4 0 0 0 0 

F 1 3 0 5 0 1 0 0 0 0 

G 0 0 0 0 0 0 2 0 0 0 

H 0 2 4 0 1 0 0 3 0 0 

I 0 0 3 0 3 0 1 0 3 0 

J 0 1 2 1 2 1 0 0 0 3 

Table XIX Noise Level=0.9; 27 % Recognition Rate 

A B C D E F G H I J 

A 6 2 0 2 0 0 0 0 0 0 

B 0 4 2 0 4 0 0 0 0 0 

C 1 2 1 0 3 1 2 0 0 0 

D 0 2 0 2 2 0 4 0 0 0 

E 0 1 4 0 1 0 4 0 0 0 

F 0 0 3 0 0 1 0 4 2 0 

G 0 0 0 0 0 0 .2 0 0 0 

H 0 3 0 5 1 0 0 2 0 0 

I 0 0 2 3 0 0 1 0 4 0 

J 0 2 0 3 1 0 0 0 0 4 

Table XX Noise Level=0.95; 24 % Recognition Rate 
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6.2 Performance Plot 

Performance Plot gives values of performance function as training vectors are presented to 

Neural Network. Epoch is measure of number of training vectors. As shown in the figure 6.3 

initially Error value which in this case is sum square error was close to 300. As training 

proceeded error value reduced and net the dashed goal line at epoch number 37. 

figure 6.3 Performance Plot 
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6.3 Worst Case Accuracy Plot 

This plot is called worst case accuracy plot because, each image was tested 10 times under 

different noisy conditions and worst recognition of all 10 runs was used to create the plot. It was 

done because under noisy condition, though we know mean and standard deviation of noise, noise 

value at a particular pixel position were unknown. So in some runs noise values may affect, those 

parts which help in recognition the most, like mouth, nose, eyes etc. while in some runs noise 

only affect redundant information which had no effect on recognition. Hence worse case was 

picked. 
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figure 6.4 Worst case Accuracy Plot 
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Chapter 7: Conclusions and Future Research Suggestions 

In this dissertation an algorithm for face recognition using Feed Forward Neural Network with 

faster learning and improved noise tolerance has been developed. Faces were recognized using Neural 

Networks under noisy conditions and with variation in looks of a given Face. Reliability of the 

method was tested against Cambridge ORL face database. Ten different Faces with ten different 

expressions each were picked up. The proposed method was found to recognize the Faces with high 

recognition accuracy under noisy conditions. 

It can be concluded that Neural Networks perform extremely well for computations like 

recognition and classification. Singular Value Decomposition is efficient method for redundancy 

removal (Feature generation or Dimensionality reduction). Neural Network designed with proposed 

method tolerated the noise extremely well and training algorithm used led to its faster learning. This 

approach does provide a practical solution to facial recognition with a simple algorithm under noisy 

condition. Resilient Backpropagation led to faster convergence. Further, with worst case performance 

plot shown in figure 6.4, one can conclude that noise tolerance of the Network will be at least as good 

as shown in the plot. 

Area of Face Recognition has immense research potential and developing at a fast rate. Its 

scope for development lies in more advanced techniques of feature generation and dimensionality 

reduction. In some latest papers it has been proposed that techniques like wavelet packet 

decomposition and 3D Face Recognition can take the accuracy level close to 100%. Area of Neural 

Network has to be understood more clearly to harness its immense computational potential over 

conventional computing. Advanced training methods can be applied for faster learning. Reliable 

methods of face recognition can boost various sectors like automated surveillance, industrial 

automation, security systems, robotics etc. 

72 



References 

[1] W. Zhao, "Face Recognition: A Literature Survey", ACM Computing Surveys, pp. 
399- 458, 2003. 

[2] Pritha, D.N., Savitha, L., Shylaja, S.S., "Face Recognition by Feed forward Neural 

Network Using Laplacian of Gaussian Filter and Singular Value Decomposition" 

2010 First International Conference on Integrated Intelligent Computing (ICIIC), 

vol.,no.,pp.56-61,5-7Aug.2010. 

[3] Guang Deng, "A Generalized Unsharp Masking Algorithm," , IEEE Transactions on 
Image Processing, vol.20May2007. 

[5] Fukunaga, K. Olsen, D.R., "An Algorithm for Finding Intrinsic Dimensionality of 

Data,", IEEE Transactions on Computers, vol.C- 20, no.2, pp.176-183,Feb.1971. 

[6] Jun-Ying Gan, Mengfei Liu, "Face recognition using wavelet Packets decomposition 
and Hopfield neural network, ", ICWAPR 2009. International Conference on 

Wavelet Analysis and Pattern Recognition,vol.,no.,pp.335-339,12-15July2009. 

[7] Palanivel, S, Venkatesh, B.S, Yegnanarayana, B., "Real time face, recognition system 
using autoassociative neural network models," (ICASSP '03). IEEE International 

Conference on Acoustics, Speech, and Signal Processing, vol.2,no.,pp.lI-833-6.2,6-

10April2003. 

[8] Howard Demuth and Mark Beale, Neural Network ToolboxTM User's Guide . version 
6 Natick :The MathWorks, Inc,2008 

[9] Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, Fourth 
Edition, Burlington: Academic Press.2008. 

[10] J. M. Zuradah , Introduction to Artificial Neural System, Third Edition. Mumbai: Jaico 

Publishing House 1999. 

[11] R. C. Gonzalez and R. E. Woods, Digital image processing, Third Edition. New Delhi: 

Dorling Kindersley India Pvt. Ltd 2008. 

[12] Sergios Theodoridis and Konstantinos Koutroumbas, An Introduction to Pattern 

Recognition: A Matlab approach, Fourth Edition, Burlington: Academic Press.2008. 

73 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Conclusion
	References

