GENERATION PLANNING UNDER
UNCERTAINTIES

A DISSERTATION

Submitted in partial fulfilment of
the requirements for the wward of the Degree

of
MASTER OF ENGINEERING

n

ELECTRICAL ENGINEERING
( System Engineering and Operation Research )

By
S. P. SINGH

176469
/e -23-&/

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247 672 (INDIA)
November, 1980



CERTLI'ICATE

Certified that the dissertation entitled
"Generation planning under uncertainties" which is
keing submitted ky Mr. S . SINGH in partial fulfil-
ment of thé requirements for the avard of the degree of
Master of Engineering in Electrical Engineering
(System Enag. and operation Research) of the University
of Roorkee, Roorkee (U,P.) is the record of student's
own work carried out by him under my supervisiom and
~quidance. The matter emkodied in this dissertation
has not reen su@nitted for the award of any other degrec

or diploma.

It is further certified that he has worked for
a paricd of 10 months from January 1980 to Octok=r 1880

for preparing this dissertation at this University.

f.-

Tated : Nov. (4 , 1980 (pr. K.B. MISRA)
Professor in Blectrical BEnoineering

University of Roorkese
Roorkee (U.P.)



ACKN OWLEDGEMENT

The author wishes to express his deep sense
of gratitude to Dr. K.B.Misra, Professor in Electrical
Engineering Department, University of Roorkee, Roorkee,U.P.
for providing his able guldance and ehcouragement during

the course of work.

The author is thankful to Dr. L.M. Ray,
Professor and Head of Electrical E‘nginee;'ing Department,
University of Roorkee, Roorkee for providing the
necessary facilities during the period of this dissertation.
The author would like to thank to'Dr. A.XK.Pant, Reader in
Electrical Engineering Department for his kind help "during
the writeup. '

The author is also thankful to Sri K. Srinivas,
Q.1.P. Research Scholar for his valuable help and suggestions

during the course of work.

Lagtly thanks are also due to all the friends
who helped the anthor in connection with the work.



ABSTRACT

A nunber of mathematical programming methods
have been applied for the generation expansion planning
problems by various authors (azs descriked the review work).
The cost of operation of energy produced depends upon the
following factors. A part of the cost is directly
proportional to the power injected at the generating Buses.
A part is proportional to square of the power at these buses
and there ‘is}fixed coste Considering the above the generation
planning problem shall be formulated as quadratic
programming proklem. The constraints are that the sum of
the generated powers at these Buses is greater than or
equal to the total demand at the load buses, At each Bus

the power that can be injected is limited by maximum value,

The Beales algorthim is applied to the
generation planning problem for which the results are
available by other method, In this method the quadratic
cost function is represented by an upper Triangular matrix.
This results in saving of Computer space, compare to other

type of programming. Therefore the memory is comparatively
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not more as the constraint matrix is represented in
the same way except thaf; Zaroth row of A (Constraint)
matrix is not used. In this method the¥e are no
artificial constints used for optimization purpose.

A feasible basic solution has to be chosen in this
proklem for choosing initial values of injected power
are taken equal to the original injected power (for the
previous stage) plus additional demand distributed
equally among generating buses, It 1s found that for
the £ive Bus system to which this algorithm is ar;plied
the optimal splution is oktained@ in one iteration only.

The uncertainity of generation is taken into
account in the following way. The loss of load
probakility at sach generating bus is ealculated using
the recurssive convolution integral equation. The
injected power at each bus is consider as equivalent load.
The probability of this load exceeding the installed
cﬁpacity gives the LOLP,
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INTRODUCTION
i.1 er System Planningt

Power gystem planning may be defined as the

optimal expansion behedule of facilities in an electric
Lutility system to meet future requirements. The planner
has to decide to what capacity the facllities to be
expandad, where to hé located and when the expansion to ke
completed. The study generally includes the expansion of
existing facilities and in stallation of new facilities
such as installation of new power plants, Transmission

linas, Sub~Transmission lines, Substation and feeders etc.

The estimation of future expansion is very camplex.

In planning studies one has to considar'tha electrical
and econcmic relationship in the gsystem and adjacent area,

character of gmw!ﬁh demand, the non-linearity of
relationship between characteristics, rating and operating
conditions of the plants and network and probabilistic

nature of data.

The power system expansion and installation
involves huge investments. Tierefore the alternative

eXxpansion policies available for meeting system
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requirements should be selected wery carefully.

Additionally, the expansidn of facilities ghould be

within 'the budgetary limitations. The selected

expansion policy should provide cheap and reliable

supply of power to consumers. The constraints that

may be imposed oh planning ame following:

1)

LE’?«,-& A {J/’
- Grvest” e
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ii)

oY iv)

>.,,(v"»~‘(l- tT ',-~'!‘ﬂ4

Security of systam: Security of system .
means that no overloading of ecircuits is
pemitted under steady state operating
conditions.

Capacity Constraints: These are due to the
physical ‘limits on the maximum capacity ‘
available for expansion at the power plant
sites or the number and type of circuits

that can be added in the right of ways in

the gystem.

Power output constraintg: The maximum power
output of any plant can not be exceeded the
, dinstalled capacity.

Choice of variables: The variables in the

planning problem represent the expansion of

generation facilities, Transmission facilities,
distribution facilities and the power £low
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through the circuits. These variables

may he discrete or cohﬁinuous. For example,

the capacity expansion of power plants may he
selected from descrete unit sizes or it can be
continuously varied. The type of cost function
which represents the generation expansion

capital costs may require the use of mixed |
variables for its formulation. The representation
of Transmission network expansion in the problem
formulation requires generally dg%érete variables,
The variables associated with the output of
gnerators are represented by continuous variables.
These variables are non-negativa since in the
formulation, it }gwgsamed that no retirement of
existing facilities occurs during the planning
horizon. The power system planning may be
ddvided into the following:

1. Gensration planning
2, Transmission planning
3. Distribution planning

l.1.1 GCemeration Planning

S L . , The general object of power system planning
L
» ¢ ' problem is to ensure the provision of reliable supply of

r :fu-s,-,'
7 :.VVI; )

power to consumer at the lowest possikle cost. As the
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part of this generating plant expansion must be
determined which will ensure that q.iven atandard of
reliability can be met, and which promises the lowest
cost of solution available, The planning engineer
has to consider a number of uncertainities while
designing the system. The uncertain factor have a
great influence on the planning decisions. These
uncertainities arise from different sources, among them
are the random nature of forecast, money values and the
availability of capital. The aim of planning engineer
is to design a system that provides a reliable power
of supply at the lowest possible cost to consumer. ‘

Under uncertain conditions, it is
customary to provide adequate reserve capacity i.e.
gansration level in excess of the expected demand
requirements to meet the fluctuation in demands.
In a practical Generation System Planning the number of
variables is very large. Further more the capacity can

Increments

be added in descretdonly, The planner is confronted
with multitude of technical and economical constraints
(such as system reliakility requirements, Geographical 7 |

———
—

and budgetary limitation). The equation relating



- S

capital and operating costs to the system eonfeguration
are usualiy mn=lirear. Therefore the planning problem
is very complex even without considering the difficulty
posed by uncertainities about future eventa. The
planner needs to have access to an appropriate
computational technigque. This would give him a unified
approsch to many different system expansion problems
and would enable him to arrive at optimal J,ong-t;eim
plan directly without usual trial and error method.

In other words long~temm system planning problem should
be formulated as a problam of mathematical optimization
which could be programmed and executed on a digital

computer,

The selection of 2 sultable computational
technigque for an outlined proklem poses gevére
difficultiegs. The presence of uncertainities, descrete |
nature of pﬁoblem and large rnumber of constraints seem
to rule ouﬁ all known optimization methods suwh as |
gradient procedures, linear proyyramming and branch and
bound algoritims. But the dynamic prograwning is the
axesption. But for the large numter variables would
make the dynamic programming approach computationally

infeasible since more than few variables, both the
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computer storage requirements and computation time

become excessive,

The ok jective of the generation planning in
rower system,is to what generating is to built, where
the additional capacity is to be located and when it is
to be completed in power system for a given future
demand forecast considering the uncertainities in the
demand and unit outage.

l.1.2 Transmission Planning

Historically, tranamission planning has followed
gneration system planning kecause the construction time
of Transmission facilities is much shorter than for
generation facilities and transmission planning depends
upon knowledge of the location and capacity of both
generation and demand centres. The main aim of Mgﬁ
planning is to develope a Tranamission network in an
electric . utility system capable of meeting future
gereration and load conditions and no branch should be
overloaded while Transmitting the power from generation
centre to demand centre under emergency or normal modas,
The system emergency mode is due to outage of generator
unit and or Transmission Lines. 7The Transmission expansion

planning therefore seek a minimum cost plan where in

new lines or increase of existing capacities are decided
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g0 that no overloaded line@ should exist under steady

state conditions for future demands.

As the system is in continuous operation,
the energy loss in network is contimmua pheromenon
and therefore system having more losses would prove to
ke more costly in long run.. Thare are some model
consider the effect of system losses. These model
design the system efficiently and consider not only the
investment costs and the fuel and the costs of the power
plants, kut also the investment costs incurred due to
energy losses in the ne!:woi'k. Therefore lai'ge losses
dus to continuous operation in system may be avoided by

above model,.

The violation of wltage and reactive power
ganeration specification may occur under heavily loaded
or emergency . condition of operation. The model
considering the actiwe flows in formulation, may violate
" other system specifications such as magnitude of Bus
voltage and reactive power generation. Tb overcome these
proklems there are gome models, detemine the Bus voltage,
Tap setting of Trangfommer and Static épacitor allocation
in the power system for maintaining the system voltage

and reactive power output of Generator within the specified
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1imits under normal or emergency mode of péwer system,

1.1.3 Distribution .Plannirg_

The ob jective of Distribution planning(“is to
develope a distribution system which §111 provide
‘economic, reliskle and safe electric energy to end
users. This ob jectifre is usually aéproached by generatirg
alternatiwes for expansion of distribution and evaluating

these alternative for econamy, reliakility and safety.

The planner may state his problem as attempt

to minimize the cost of Sub-Trangmission, Substation,
feeders etc and the cost of losses, Planner is usually
constrained by pexmissible value of voltage, flicker,
short circuit duty and continuity of service. To meet
these objectives the distrikution planrer may have to
consider additions to the Sub«Transmission networks,
location and size of network, éewice' area of subsgtation,
location of breakers and switches, size of feeders and
laterals, location of capacitors and voltage regulators
and the loading of Transformer and feeders. There are
certain factors over which distribution planner has no
control. These include of course, vhen the customers,

demand energy, frequency and duration of outage, the cost

of equipment, lebour and money and regulation imposed by

State or Central Govermment.



LITERATURE REVIEW

Baldwinu) and other propogsed the simulation
technique for additional generator installation date.
The authors have suggested that the . utility management
not only must provide adaquate‘service to its consumer
but also must awid overinvestment in spare equipment.
To get these objectives a level of service of reliability
is specified il.e. to state numerically the acceptable
risk of shortage from inadeguate installed generation
capacity. Then overinvestiment has been avoided Lty
installing no more than enough equipment to maintain
this level.

The technique presented by authors is the
new ways to evaluate reserve adequacy and subsequently
to arrive st ingtallation date for new capacity. The
techniques are based on the use of simulated daily reserve

margin available from operational games studies.

The author has concluded that the aversge
percent margin alone should not be used a measure of
service of reliability without studying despezla‘g.gg. The
dispersion of margin, as caused by capacity and £luctuations,

is an important factor in evaluating real risk. The
second conclusion was that the required installation date
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for a new unit is really a random quantity with

certain statistical properties. If the new unit is
scheduled based on average expected risk, actual
circunstances as they develope may or may mot be required
the unit before the date schedule,

i Pitzpatric(“ has developed a series of
programs for a small scale computer such as the

IBM 650, to optimize the selection of future addition

“to geriéfé{:e caiia;:ii.:y:{ In proposed t;ec‘hnique the annual
load curve~has been adapted to propagate the series lof
new generator requirement curves. These curves giving
new gemratién needs by type for future years, are then
avallable for use in other programs mentioned which’
develope real expansion pattern and all cost assocliated
with them.

One of the Aifficulty in attempting to develope
an economical generator expansion pattern has been the
necessity of studying enormous number of plans. The
author has ‘develoxaed a series of programs for small scale
Eigital computer, such as IBM 650 to optimize the selection
of future gererating capacity additions, thereby minimising

the number of plans to be studied.
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(3) have fomulated a mathematical

Hehault
optimization problem for detemination of least costly
expans ion of power system in the preaenée of uncertalnity
about the future loads. The expansion policy has been
determined, such that the investment decision is based

on an up~to-date astimate of the gystem requirements.

e main feature of the proposed technique is,
presence of uncertainity has been formulated as mathematical
optimization problem, t’ha@ can he solved by stochastic
dyn'amic progranming. The planning decision have been
made at regular interval. 7The objective £unction of the
prokblem is,

Min.
KBT-]- i
Jt (xt' dt“‘l 't) = B {Kft [ L (IK’xK*l,K}

AN
4T (xg4q9 Oegr B+ 1 Gxgygedg K] + T (1)}

see (2.1)
Subject to

xt‘l"l ?/ dt"‘l ese (2&3)
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vhere, . = investment cost, depends upon the

investment decision ¥ &

= operating cost and is function of equipment
state x, and average demand in sub period t

W

L = penalty costy associated with constraint
violation. A function of the form IV 18
introduced to penalize the planner for
temporary lack of reliability

X, = decision variable for eonfiguration i

Xeep = decision variable for configuration J

w{iyd)
't = the value of decision variable Xy at the

time ty when the decision is to change
cnfiguration 4§ to § configuration

Xp,1 = Max. power that can be delivered by
canfiguration x, 4 with largest capaclty
of Transmission Service

dgey = demend in sub period t+l
I(xpyT) = 4investment component of terminal cost
T = terminal period

The symbol.& in eqn.(2.1) denotes the expectation taken over
the random variables, dt +2 ! dt. +? %..1 .
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‘In order to obtain the meaningful decision policy
the author have made gsome important assumptions at the

out set of program.

1.

2e

3.

L,

5,

Divide the planning period into a number of
stages at which the decision are to be made.

Organise the equipment cost and technical
data in a systematic and consistant manner to
form a basis for a computeriged data bank.

Assign discounting factors and equipment

salvage value.

Define stochastic growth modely and assign
probability distribution for the random variables
{Demand, Generation etc)

Define the Reliability Criteria rigrously.

By these systematic effort spent in prepratim

of input data, the» computer print out provides a great

deal of important information. For example the expected
total costs for any state and 'plannin_g stage are obtained
together with the optimal investment policy. The additional
cost incurred when decision maker ls Aunable to follow the

op timal policy 1s easlly calculateds The author belleve
that the problem formulation given can be generalized

and extended. The assumption which are followed by



. LT

. authors are,

i é

1. D:I.i‘ferent‘equipment addition leadtime
can be considered stochastic for each
individual equipment addition.

2. More than one load can be coﬁsldere&.
stochastic and uncertainities in other
parameter i.e. generatim cost etc. can be
taken into ascount by defining additional

variables.

3. Because the demand do not have to known in
advance at each plamning stagey can be past

records cnly.

The limitations of the spproach are the maximum
number of random variables (i.e. demands) and alternative
system gonfiguration the program can efficlently handle.

Gay(i") has | daseribed a method for determining the |
most economical generator commitment policy and loading
schedule for a days cperation of an electric utility system
while maintaining a desired level of reliabllity.
Generating units are scheduled to supply the system load
for a day. The author has used a csostralned search
technique to determine which unit should shut down or start
up in future hours to minimize the system fuel costs,
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including the start upcosts. The start up and shutdown
times of generating units have been determined to maintain
a desired system religbility. The security measure has used
been is the probadbility that the avallable capacity at any
time is greater than system load at that time.

The application of proposed technique results in
generation schedule which meets system reliability requirew
ment and ylelds minimum fuel aos‘ts.

B’ooth(5) has desoribed a procédure for deter.
mining the optimal expansion plan for the expansion of
generation facilities of a power system over a long perlod
of time. He has combined, A method of production costing
based on probabilistic gimulation methods,y with an advanced
dynamic programming formulation of the problem in order to

treat uncertainity in a systematic manner.

The planning problem has been formulated
in a manner suitable fer soluilion using conventional

dynamic programming as follows.

The objective functélm is
Min. tl}ecOstfn-
t=I-1 1. Toct ¢
Ja 5 Tt +mF 40+ 0f)

t=1
coe (2.1)



~lbw

subject to
xt"‘l = ut a0 & o= l’ seny Tl ses (205)
dt"‘l o= f(dt’wt’t) see (206)

where 4 = discount rate
total capital in service in period ¢

2]
ct
n

o
t
i

operating cost in period ¢
= anmual capital charge rate
rate of escalaticn of capital

Q o p
4

= rate of escalation of operating charges
and W, = random variable

Xy = state of system in pericd ¢

X, = set of allowable states in period t,

w, = decision made in poriod t for the configuration
in periocd t+l

U, = set of allowable decisions in period t
dt = demand in period ¢
T = planning period
and £(.) = general nmlinear function

The cost function e¢ontain the random variables.
Then cost of I is randomly distributed. Therefore for
stochastic dynamic progmmmings, the cost fn. is

5
J P! . J s e (2.
PF = W eevip 4 CF 7

where wl .?’. WT..:L denotes the expected value of J given the
probaddlity distributions Wy '-"WT.l + The author has applied
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- a simplified approasch “the open loop feed back approacl';/,
which cosists of reducing the problem to g series of
deterministic open loop optimisations, which can be solved
by elther forward or backward dynasmic programming methods.
These deterministic. optimizations are used to determine a
decision schedule u’;; Q.., u’g 1 however, only the decision
| u’f; is actually employed. |

Mathematicslly, the procedure is to define

Cs = E[ca]

c‘ss = E[ 0]

o Gy S [aCy L +1)® + 0, (1 +0)° ]

T (2.8)

vhere the expectation of Cs and O, is conditional on the
information available at time t.

- The advantage of the procedure used is the
abllity to combine the constraints of system reliabllity
with the determination of cost of production in a fast and
efficient algorithm, together with the reduced stai:e
description in a dynamic programming formulation. The use of
probabilistic s:mulatim method cambined with a dynamic
programming procedure used in an Hﬁpen loop feed back’ mode
allow a rational approach to the problem of uncertainity in
future. The approach is capable of extension to the case
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vhere both genératim and Transmission system may be

treated 48 e expansion problem.

The limitation of technique 1s that
becanse of nature of problem no one single optimum
golution can fourd.

EVANS(6) has proposed an algorithm for optimal
generation planning. Author has_ used quadratic programming
to minimize the discounted value of operating and capital
costsy subject to constraints on unit sizes, demand
requirement and send ocut requirements. The advantage of
the technique are that it is easy to use and its efﬁéiency
is not significantly affected by the problem size. The
principal application of thé proposed technique is for
financial planning beyond the hordzon, where detailed
engineering design and planning has established the schedul.
ing of generating units.

SULLIVAN 2 presented a comprehensive
generation reserve planning technique using probzbilitic
load and generator model compled with standard techniques.
The technique used 1s simple and is W% for analyzing
the reserve requirement of both isolated and interconnected
systems in vhich load forecast uncertainity, interconnection
transfer capability and unit maintenance may be easily

included.
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The author has included several simple test cases
in dbscussion to elarify the concepts as well as computa-
tional procedures. In each instance test cases appear to
1llustrate the ease and effect on system reliability of,
including forecast uncertainity, unit maintenance and
interconnection transfer capabllity in gemeration reserve
caloulation. '

OATMAN ana EAMANT®) nave developed a
approach to optimized gemeratlon planning based on the
development of large number of expansion pattern comprising
all possible canbinations of selected unit%s. Essential to
the practical utility of this approach are certaln algoria.
thms that enable large number of unit, Long rangé
expangim pattern to be gemerated automatically, utilizing
minimum of production cost, studies to hold computer core
requirénmts and gomputation time within reasonable bounds.

The objective 18 to determine the generation
expansion plan for which the following is minimum as
acmpared with other generation expansion pattem to have

a optimum expension pattern,

TAC = I.,C.+P.Co + OM | vee {249)
wvhere TAC = total annual coat

I.C. = product of initial invextment and
some fixed chawgey or capatilization,
rate

P.Ce = total system fuel cost
OM = operating and maintenance cost
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In thdsdynamic programming approach the pattern
of units having minimum total annual ¢ost 1s not always
optimum. Bocause the interdependance between fuel cost
penalties for units already installed and those to be
installed in future is neglected. The fuel cost penalty
depends upm the number of hours the unit will be required
to run. In addition, escktion factors which vary for
different type of fuel may alter the "'x'eiativ‘eveeonomics
of the operating unit.

The author has ;rasmted program for the dynamic
approabh. The program desceribed in this approach provides
easlly and efficiently, a wealth of information concerning
the interactiom of future and existing capacity, that
the number of possible expansion patterns may reach cosmic
proportions only emphasizes the futility in expecting a
gingle ganeration plan to be valid under all econdition of
planning period.

The anthor believed that more rational approach
is to measure the sensitivity of resultant pattern to the
variations in those parameter vhich most effect the future
generation mixes. These parameter include load forecasts,
system load factors fuel ;;rices and plant investment cost.
In dynamic expansion program any of these factors may be
altered by simple substitution of me or two data cards.
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Rogars(-? ) have developed a model for determining
the optimal generation installation program for an electric
power eystem. A néw type of dynamic programming is
conbined wvith widely used producticn cost medel to optimize,
in separate but related procedures, the sequence of unit
types and timidg of each installation. O(ne of the feature
of the proposed model is the separate optimizations, by
vhich an efficient procedure is designed to choose among
(various possible installation programs with different types
of plan). The optimal installation times reflect the way
the engineering and econcmic characteristic of each plant
type enhance those of the existing system to reduce the

cost of energy.

Swey and Dalezi:m(lo) have formulated the mathe.
maﬁical 1;10(13_1 for lmg range planning of Generation and
Transmission. The mathematical model (Linear Mixed
Integer Programming) deals the problem of selecting an
expansicn plan__ over a planning horizon for an electric
utility system. The cbjective function that, is chosen
is minimization of present value of cgpital investment
cost assocciated with the construction of power plant and
ﬁ'anmissi.on line plus the operating cost of the system.
The restriction associated with problem are the requirement
to satisfy the forecast demands of the system for electrical
energy plus the physical restriction that result from
having limited capital resocurce and plant site limitation.
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In general guch a mathematical model can be

represented as follows,

Minimlze
aX +v2 | ees (2,10)
Subject to‘ 4
AX +BZ & C | ene (2611)
X = 0 orl | (2.12)
20

where A and B are matrices and aybyC,;Xy2 are vectors

of eppropriate dimensions.

The model presented by author has provided
cmstruetim expanéim of the schedule for power plant,
and transmission line i.e. what capacity should build,
where the additional capacity 1s located and when it is
t0 be campleted. Additionally an a.ppropriate schedule
for plant end transmission line is provided.

The limitation of this model is that it is linear

and can not glve more accurate resultse.



FORMULATION OF THE PROBLEM

The formulation of generation planning problem
comgists of the formulation of objective function and
eonstraints. The problem formulated may linear or

nonlinear.

The planning horizon is divided into stages and it
may be assumed that the demand forecast is available for
each stage. The planning engineer has to decide the
generation level at every stage so that the demand require.-
ments are satisfied. The decision to be taken at each
stage of planning period is the cholce of plant size or
unit types to installed to what lewel of generatimn in
previcus stage. Using Quadratic Programming the cost
function which 1s function of 1nJect¥Z§§ minimized.

For minimum value of cost function the injecfed power at
each bus is determined. The injected power at each bus
determine, what level of capacityes to be added among the
capacitlies avallable for expansion into the capacities '
already working. The loss of locad probability is calculated
at each bus. If the loss of load probability is greater
than certain preselected value than add more unit to satisfy
the eligbility requirements. The cost function which to

be minimiged q&lsists! of the following terms.
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(1) Capital costs t The problem of generétim
planning is the problem of adding the number (depending
on size)and the type of units or power plants. This
requires the capital investments for 1n$tallation of the

units or power plants.

Let X represents a combination of unlt type

(or plant sigze) for installation at any stage. Let the
number of unit types or the power plants in the system
be NG. The 3.th component of 2& of x represents the :!.th
type of unit or the plant size chosen for installation

at any stage. Assotlgted with X s let the capacity of
the plant be @K .4 The capital cost assoclated with'X,
is given by,

] | .
+1 & ¢ (1 14l
cﬂ(xl) = (%——— e Y* [ (1%—1’-*-1-) ol ] (CGi) aoimcl“

. | Ceee (341)
where t = time (in years) at which investment is made
I = inflation rate |
r = interest rate
T, = 1ife span (in years) of the unit (plant)
CG1 = carrying cost

8,4 = cost (mu) per MW capacity of the unit
(plant) of type 1

Total cost associated with the vector X 1s therefore given
by

NG | o
Ce(X) = Z € (W) eee (3+2)
£ a’n X
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§
(11) Operating costs The operating cost of system

is dependent an the cutput of the individual plant or units.
As an gpproximation the operating cost may be ascumed to be
function of the expected value of plant ocutputs. The
operating cost can therefore be obtained from the solution
of the tollgwing.

Min.
C NG
F((X) = X :ti(Pi) . C&S)
- iml
subject to
NG ) |
L P, = ,
11 * * o S . (3-4)

) n - _
0L Py S Py i =1.. NG
where, 'f)m = mean Vame of demand at any stage

P o oa max. power limit to be generatelat the
gl any stage.

The present cost function considering the interest
and inflation rate is,

P = (PP - (35D

Another model for determining the operating cost
is based on plant or unit is classified as dbase loady
peak load, or midrange type. Accordingly the capacity
fastor (CF,) for the g th type unit 1s defined and the
annual operating cost is calculated according tg formula.
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Y '
e 8.76 Rl p ) 3 g
%) = 876 () Qe 1 (CFRy oy

oes (3,6)

vherey CF, = capacity factor for the unit of type 1
By = cost (mu) per Gl cutpus

le = expected value of capacity of unit of type 1

Hence total operating cost is given by,
F(%) 1;6 F, (X,) (3.7)
= see 'Y
! Xl 3.7

The above model presented are not in quadratic form.
Therefore a model gpproximating the costs, equivalent
quadratic cost function has been followed in the present

casgo.

2.2 Generation guadratic programming problem

The Beales method(l‘?')is applied to the pgeneration
planning problem. The objective functiocn 1s quadratic
cost function of injected power. The constraints are linear
function of injected power. In this method ‘quadratic
function 1s represented by an upper triangular matrix. The
econstraint matrix ;s rppz-wesentedv in the same way except that
Zeroth row of the matrix is nos Ysede Thus reducing the

computer memory.
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Statement of the problem

Minimise the cost function

NGB

- 2 .
£y = fel a +by Py +C Py vee (3.8)
subject to
‘}_@ gL (3.9)
P > P oo 3.
4s1 17 gm M |
ng.‘ - Pi ?’ 0 1= 1’ vy NGB sed (3010)

wherey P:l = 4njected power at¥ ith bus

8y = fixed part of the cost at bus 1

by = lnear part of the cost at bus 1
quadratic coefficlent of cost at bus &
NGB = number of generating buses

NL = number of load buses

P £ = maximm power limit at generating bus 1

PLJ = load at the load bus J



SOLUTION TECHNIQUB

%1 Review of techniques

The teclniques that may bs used in planning problems
are as follows: |

%.1.1 Dynamic programming: In the planning problams

the decision have to be made ssquemtially at different

points in t;-a, at different pointa in space and at different
levels. Such problems in which decisions to be made sequenti.
ally are seguential decision probleme These doo:léiom are

to be made at number of stages, are referred as multistage
decision prodblem. The dynamie programming is the mathematical
teohnique whll suited for optimigation Tor mististage

decision problem.

The multistage decision problem having H varigbles
is reprosented as s sequence of N single variable prodblem
which are solved successively. In most of cases, these N
subproblens are sasier to solve than the original prodblem.
The decomposition of N gubproblems is done in such:. a
manner that the optimal soluticn of the original N variable
gan be obtained from the optimal solutioms of the N one.
dimengional probdlams. Any of the particular ¢ptimization
tecknique ocan not bs used for optimization of N.single
variable problemss It may range from a simple enumeration
process %o a differential calculus or a nnlinear prograrming
techniques. Further, the problem has to be relatively simple
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so that the set of resultant equation can be solved either
analytically or numerically. The non.linear programming
techniques can be used to solve slightly more complicated
multistage decision problem. But theii' application requires
the varlables to be continuous and prior knowledge about the
region of global minimum or maxdmum. *In gll these cases

the introduction of stochastic variabllity makes the
problem extremely complex renders the problem unsolvable
except by using some sort of approximation like chance
congtrained optimization. Dynamic programming can also
deal with descrete variables, ;mcmcave none antinuous,

and non.differentiable {umti 8.

4e1.2 Integer Programming: In many situation the

problem variables are permitted to take any fracticnal value.
In many cases 1t is very difficult to round off salut.ioﬁ
wvithout violating any of the cwmstraints., Frequently the
rounding off certain variables regqulires substantial change
in the value of some other varlables in order to satisfy

all constraints. The round off solution may give a value of
objective function that 1s very far from original optimum
value. All these difficulties are avoided by solving
optimization problem as integer programming problem.

In optimization problem all the variables are
cstrained to take only integer value the optimization
problem is all integer progrmnming problem. Wuhen same
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varlables only are restricted to take mly integer value,
the optimigation problem i3 mixed integer progr;amm:lng
problem. Among the several techniques avallable for solving
the all integer and mixed integer linear programming
problems, the cutting plane mé‘bhod. the branch and bound
a.lgoritlm(lm can be used.

]

4,1.3 Stochastic Programmings Stmhasﬁc programming deal

with situation vhere same or all of the parameters are
dnscrib'ed by stochastic variables rather than deterministic
quantities. |

Depending upon the nature of equations involved in
problems, a stochastic optimigation problem 1s a stochastic
linear or dynamic or non.linear programming problem. The
baé:!.c idea used in solving any stochastic programming
problem ia to canvert equivalent deterministic problem.
The resulting deterministie problem is solved by familiar
techniques like linear, geometric, dynamic and non.linear
programming. |

%eled Constrained Non.linear Progpamming: The generation
planning problem are usually nom.linear constrained optie

mlzation problem, because the equaﬁion relating capital and
operating costs to system cmﬁguratimy are non.linear. The
congtraint that are imposed on planningfggwnnm in nature
usually. Such optimigzation problem which can be stated in

standard form as,



Find x such that £(x) * minimum ~ .

and gj(x) <, 0 J = 1’2’ "_‘ m

|

| There are many %echniques avallable for the solution
of a soustrained nan-linear programming problem. All
these méthods are classified into two broad categories,
namely, direct methods and indirect methods. In the direct
méthods, the constraints m handled in an explicit mnanner
where as Mnosty otf 1nd1:ect methods, the cmstraj.zied problem

is solvsd as a‘sequence of uncmstraired minimizatim problem,

bol.4.1 Direct methodse

Constraint gpproximation metheds: In these methods,
the non«linear objective function and canstraints are
linearized about gsome point and the approximating linear
programming is solved by using linear programming techniques.
The resulting optimum solution is then used to construct a
new linear gpproximation which will again be solved by
using linear programming techiiques. The procedure is
continued until specified convergence creteris are satisfied.
There are two methods namely, the cutting plane method and
the approximate programming method which work on this prineciple

Methods of feasible directions: The methods
of feasible direction are those which produce an improving
suncession of usable feasible directions. A feasible direction

is ame along which at least a small gtep can be taken withaut
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leaving the feaslble domain. A usuble feasible direction
is feasible direction along which the objective function
value can be reduced at least by small amount. Each

- itéeration consists of two important steps in the method of
:tseasib directions. The first step consists of finding a
ugable feasible direction at a specified point and second
step congist of determ_;ning a proper step length almg the
useble feasible direction found in the first step.

W.1l.4.2 Indireot Methodg

Transformation of variablest ©Some of the constrained
optimization problem have their canstraints expressed as
simple and explicit function of decision variables. In such
cases 1t may possible to make a chagge of variable such
that the constraints are automatically satisfied. In some
other cases it may be possible to know, in adwance vhich
constraint will be active at the optimum solution. In these
cases, it may use particular constraint equation gj(x) = 0,

to eliminate some of variables fram the problem.

Penalty Function methods: There are two type
of penalty function methods -~ the interior penalty function
method and the exterior penalty function method. In both
type of method the constrained problem 1is tranét’erred into
a sequence of unconstrained minimization problem such that
constrained minimum can be obtained by solving the sequence
of unconstrained minimizgation problems.
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In the interior penalty function method the sequence
of uncastirained minima lie in the feasible region aﬁd thus
it converges to the constrained minimum from interior of the
foasible region. In the exterior methods the sequence of
unconstrained minimg lie In the Infeasible region and
converges to a desired soclution from exterior of the feasible

region.

%.1.5 Quadratic programming: In the planning proﬁlan
where the objective function can be approximated in

quadratic form and the cmstraint mplaménted to the problem
are lineary then the quadratic programming can be used to
minimise the cost function. It is a special case of non-
linear programming. The quadratic progrémn;ing can be solved
by Lagrange multiplier technique. For such problems Beale's

method has also been used.

4,2 BREALE’S METHOD

The Beale method(n) balongs to the geometrically
most illustratlve methods for quadratic optimization. The
convex quadratic objective functlion has the form

Q (Xl, se0sy Xn) = Q(x)

Subject to Linear Constraints

n = a.o | asd (""‘01)

X>o0
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The Bdgle method is started with any feasible 'basic solution
of system (4.1). The system of equations in (%.1) are
solved with respect to chosen basic variables. If these are
assumed to be first m varigbles, i.e. Xy so0y Koy this

where, 5 = X +h

Iﬁe upper index refers to first approximation. Because

of the particular cholce, the basic variables assume the
value di, >0 at the initial point of approximation. The
variables on the right side of (4.2) the independent or
vanishing varicbles. ‘Those m the left side are the dependent

or basic variables.

Using equation (%.2) basic variables can be
eliminated from Q. For the sake of sgimplicity the following

notation is recommended,

Q (xl, eevey xn) = Ql '(Zl ssavey zn-m)

Cl %..m n-m n.m
o2 + 2 + 2
00 y=1 1 zi h=l 121 hi Zi 71:

=
tia ot % * wey o *Eg % B A
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‘ll ‘ 1 1‘ . ] + s'
= ((ooo +‘c°1 Zl * cvanr ""co’n_m Zh.m)ol

1,4l
o +C 2t *C ) B

L 4
L ]

1 1 1
* (cho ¥ Cbl Zl *oeen ¥ ch,n‘..m ?1n~m) Zh

1l 1l _ 1 ,
+ (cn.m,o + cn.,m,l Z) +eee cn..m,n-m Zh..m)zln-m

soe (Wa3)

In equn. (2.3) the symmetry G%h = 6111.1 holds, and further

% % e C%e _ (h !31’ sse n..m) ene (Wol4)
Clearly, the value of Q at the first approximation is equal
te G%o + If for chosen Irial Point

1

& v o

From Kuhn.Tucker conditions(u) .this point already represents
the optimal solution, since every increase of independent
variable ecould increase the value of Q]". However for
certain 4
gt
a2,
holds at brial pointe It 1s possible to improve the Q-value
by making Z (f.e. independent variable) positive.

< ©° i.00 c?l.o <0 TR <’+o5)



"361»

Suppose this happen for h = 1 l.e. for Zy v then,
if Zl Increases other basic variable of course also change.
As in case of linear optimization, the question arises how
much the variable 2 should increase. In the quadratic case
there may be following possibilities. |

Case 1. Let Zy increases until me of the baslice variable

d¢sappears

PR, | |
Case 2. g%}-: becme gero hefore me of the basic variables

does in iwhicsh case Z; 1s of course increased only
untu%% = 0 3 otherwise the value of objective

| function would increase.

In case l.the canstraint system has to solve again
for new basic varizbles. These are then substituted in the
objective function, and the second apprmd.mation is objained.

In case 2.introduce a new variable uy by

1
u = Jaa 3%32 cee (%e6)

uy i1s not sign restricted and is called the first free
variables Ag secnd approximation cheoose that point at
which the first free varlable dlsappears, together with all
independent varisbles except that one which has entered the
basis 1.a. except Zl o« Again, the constralnt system and the
objective function é.re newly rearranged whereby the free

variable u, is included ameng the independent variables



1 b 4 ; ot vee (4.7)
c + X C
= C0*X.  Cm 5Hnh = 3 -az,

For the new dependent varlable Zl

1
C n-m
0 L c
1 1™ —%h- zh
i1 C1p~ k=2 ¢i,

Nem

2 2
= dyn +4f u, ¢+ = 4
fo +df1 uy teo 4 &
Ifx this equation is used to eliminate Z; from system of
equations (4.2) 1t follows

X = da + d2 Uy + %‘m da Zh (8 = 1,2,..:.m, m+l)
| i h=2 gh.

g [:{ gl

ese (4.8)
In the same way Z) 1s also eliminated from Qy o

Wlth the secand approximation proceed once again
with the same rule as deseribed before. The Kuhn.Tucker
condition for the free variable has the form
1
If the derivative with respect to a free variable is
not zero then Q can be lowered by varying u; positively or
negatively. More precisely, if the derivative with respect to

uy is larger than gzero, Uy has to become negative or vice versa.
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Bealets Algorithm : Boeale’s method datermine:s the minimum
of a definite quadratic form subject to llnear constraints.
The determination of a feasible basic solution of cstraint
system 'has noﬁhing to do with quédratiq optimization, and is
therefore assumed here to have been accamplished bé:ore hand.
As a result, the linear 'c.mstraint w1ll have tle form

n
ago +Z a ¥ ¥ o wdtha, 20 e (h9)

These are stored row wise in the first through the m'® pov
of simplex tablea?sl%a . 416 oth
not used since syémmetric quadratic objective funct;on c

row of constraint matrix is

requires an (n+l) x (n+l) array as storage area (not just one

row).

-

Howeversy fcr reasons of storage econamy, only the
upper triangle of C is stored in the array 4 in the form of
densely packed row segments. The element ¢4, therefore
corresponds to & [ (2 x n.i+l) x 1/2 + K] . This necessitates
two prepration of two tableaus shown in Fig. (4.1).

Storage allocationt Internally the program expands tableau

A by (n+l) additional rows. Therefore this space
has to reserved when declaring A (but not for the input routine
The ddmension of storage ares of A has to be (mm+2) x (n+l).

Computational approacht Correspmding to each exchange of
variables (dependent . independent) in the comstraint tableau i
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therefore there 1s a correspommding exchange in a quadratic
objective function C . This latter exchange is handled by

means of subroutine mp9.

4.3 Reliabdlity Calculations

To determine whether a generation expansim plan
satisfies a desired level bf.‘_ reliability generahy two
reliability indicies are used, loss of load proﬁability,
(LOLP), and expected value of demand not served &(IMS).
In the present ¢ase the ioss of load probablility has been
calculated.

%.3.1 Loss of Load Probability @ Effective 10ad(33) of the

system gives the relationship between the system load- and
generaling units. The actual units may replaced by ficticous
perfectly reliable units and fictitious random load, whose
prebabilityf density functions are the cutage capacity density
function orl unitse. |

The effective load, be defined by _ , B

LQ z L +2 Loi Y'Y (l“tlo)
i .

wherey, L 13 the fictitious random load

I‘oi is random autage load of the ith unit.

When L, = C, , the net demend injeoted into the system for 1™
unit is zeroy Just as it would be 4f actual ci were forced
offline: Also the installed capacity of the system be given by

IC = f Ci o0 (L}.ll)
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In the special case where acf.uai units are 100 percént
reliabley Ly = 0y 1 =1y oo G and Le = L. Unfortunately

this case never occurs, S0 one forced to have F(Le) from
F(L) and £, (L,4)« 8Since Le is the sum of independent
random variablesy L and Ly9 1 =1 ... G whoge distribntion:
are knouh, therefore F(lLe) is obtained'»using the recursive

eonvolution equation

3 oeelel g
P (LB) = is;.l' (Lﬁ - LOi) foel. 01) dLOi XX (""012)
ol ’
where, F*(Le) }be the| effective load probability distribution
with the cutage of first 1 units, Convolved in oblously,
. F@L) for =0

F(Lg) = |
F(Le) for 1 =G

Since £, 1s the descrete density function equn. (%.12)
becones,
2 |
F (Le) = in (T-le - Lgi) tOi (L01) see 0‘{'013)
o .

L'o:l denote the descrete value L, can assume.

Because the outage capacity of unit may defined as twe

stage stochastle process.

£o3(Toy =0) = pi
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The equn. (%.13) simplifies further,
F;L(Le) = Fl-l (LO)Pi "‘Fi-l (Le - ci)q‘i 1 =211...606

The above equation gives the probabllity of existing the
108,6. Le .

%.3.2 Reliabild sis for Isolated Systems The loss

of load probability is the popular method for gemeration

system reliability analysis. It must be remember that the

goal of system planner is to select several expansion plans
from perhaps a dozen feasiblo plans that satisfy the desired
reliablllity creteria established in electric utility. Thus

the basic problem is to evaluate week by week the variation

in reliasbility, as new units are added to supply the growing
loady to determine plans that have acceptable religbility
characteristics. For each week in the study period, care

must be teken to simulate the anticipated malntenance schedules
because these aschedules drastically influence system religbilit
Carrying oaut the steps cutlined enables the system planner

to identify quickly the expansion plans that are acceptable
and ghould be evaluated and campared on an econamic basis.

In systems in which peak damand is Very praounced
and peaking unlts are used extensively during the peak
periodsy it 13 usually necessary to define two load shape
for each week or month, ocne load shape, would define peak
hours, in which peakers are needed, and other would define

4 ,
:
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‘the off peak period, in which only mid range and base load
units are required. The delineation of peak and off peak

periods usually results in a more accurate representation of

system. The reliabllity analysis procedure ls ssme for

every week.

44 Developement of plgorithm for Generation Plaonning

Using Beale’s technique an algorithm has been

developed. The steps of the algor,ithm' are as follows.

1.

2e

3.

4,

Formulate the guadratic cost function with coefficients

Choose initial fensible solutim as follows. The
injected power at each bug for the present stage 1is takén
equal to the injected power for the prgvims stage plus
increase in demand dbstributed equally at all the buses.

Find new optimized injected poar'ers by Beale?s quadratic
programing methcd. '

Add the generating units at the gemerating buses so that
the installed capaclity at these buses is sufficient to
inject this power.

Caloulate the LOLP by equn. (.14). If the LOLP < O, 00
capacity at these buses are surficlentv to take into

account uncertalnities, otherwvise add generating units so
that LOLP < 0,004,

The LOLP has been calculated manually. The steps used
in algorithm are also accompanied with Flow Chart.
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READ THE COST COBFFICIENTS, NO. OF
GEN, BUSE, LOAD BUSES xﬁns, CUTAGE
RATING AND CAPACITY e

Y.k,1 Flou Chaxt

Y

CHOOSE THE INITIAL
BASIC FEASIBLE
SOLUTI GV

Y

SOLVE THE OPTIMIZATION PROBLEM
BY BuALES ALGORITHM

w/

IS
INSTALLED CAPACITY

ADD, GEN |

UNITS > POWER TO BE
INJECTED
> CALCULATED LOLP
ADD, GEN., 18.LOLP < O, 00
UNITS

The computer progromme for the Beale’s Method 1s given
in index.
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he 5 Application

The algorithm 1s applied to the five bus system.
A fide bus system shown in Fig. 4.2 is considered for
expansion. The busy 14243 are generating buses and 445
are load buses., The existing and future demands are given
in Table 4.1 . The fixed investment and expansion costs
of the plant are given in Table 4.2 . The operating costs
are asgumed to be of the form given by

The operating sost coefficients are given in Table 4.2.
The Table 4.3 gives the existing plant output, installed and
maximum capacities.
. TABLE 4,1

BASE MVA = 200

Load Bus No. m%%mwre ) |

k 0.5 0.8 |
. 5 0.7 1.0
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TABLE 4.2
Fixed Cost Cost of | _Operating cost coefficien
Gen.Bus No. 4n money capacity °Wm
unit expansion 1
(mu) mu /MW mu (p «u.
. ' ~cutput) ,
100 1 2.4506 0. 0041
125 1 2.49218 0, 00207
3 50 1 * 2117 0. 00379
 TABLE 4.3
Existing installed Maximum site
Gen. Bus.. No. ((}}fg‘ff capacity (peu.) capacity(p.u.)
1 0;15 0.3 500
0.6 006 ’1#0

0. k5 0.6 10

The shape of load duratim curve is assumed to be as shown
in Fig. 4.3. The load probability distribution curve is
shown in Fig. 4.4, in which Fk(L) is probability of load
existing for period ky and @ is tho maxe. demand.

The number of units availgble, their probability of
outage, cost of unit, their capacities are as follows.
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TABLE W.h%

Gen.Bus No, Nwnber of units

1 | 3
2 I
3 L
TABLE 4.5
Gen. o -
Bus Gutage Cost , Carrying  Capacity in
No. rate (mu ) . cost Mw
0,02 - 60 | 0.2 25
1 0.02 60 , 0.2 25
0,02 60 0.2 25
0.02 110 Co2 50
0.02 110 C.2 50
2 .
0.02 110 0.2 50 .
0.02 60 0.2 25
C.02 60 Ce2 25
3 0,02 60 0.2 25
0,02 110 0.2 50
0,02 60 - Ge2 25

The unit available for expansion are as follows

TABLE 4.6

GepeBug No,  No, of units

1 7
2 3
3 6
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The ocutage ratey cost of unlt, carrying cost and capacity
of these units are given in Table &,.7.

Gen. Bugs Outgge Cost Carrying Capacity
No. - rate = (m) cost in MW

0.02 110 0.2 50

0,02 60 0.2 - 25

0,02 60 - 0,2 25

1 0.02 110 0.2 | 50
0.02 60 0.2 25

04 02 60 0.2 25

0,02 60 0.2 25

0,02 110 62 50

2 0,02 €0 0.2 25
0.02 110 0.2 50

0.02 60 0.2 25

0,02 60 0.2 25

0,02 60 0.2 25

3 0,02 110 0.2 50
0,02 110 0.2 50

0,02 110 0.2 50
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The results obtained where as follows. The injected power
at each buse: 1s given in Table 4.8.

Table W.B
Gen. Bus Injected Power
No. in MW .
1l 90,71617
_ 130.%0883
3 138.87500

The above values are must same as the results obtained in

reference (15).
In:i_tial cogts = _.7’411.3787 mu

The reserves depending upon loss of load probabllity are

as follows.

If the loss of load probability is greater than
0,004 the additional generation capaclty is added.
The cost of final injected power is (L.e. operating cost) is

1=l ’ 2

= 8y +bF, +eF,

2
= a3 + b3P3 + c3P3

i

1258.3486 mu.



Ihe loss of lecad probabllity at various buses are as follows:

TABLE %.9
Gen. Bus Installed Capacity LOLP
No. TR
Mw
T 125 | 0.68915 x 103
| 225 0,24693 x 1072
3 . 175 0.103930 x 102

Therefore 'che units to be added a-'c generating buses are

as follows:

TABLE 4.10
Gen.Bus No, No. of units Capacity in MW
1 1 50
2 1 ‘ 50
3 2 25

Cost of unit additions 2800 mu .

Total Final Costs 1093-3.3%8 mu

Cost of Expansion = Fingl Cost . Initial Cost
31%6,6093mu

i

il



CONCLUSIONS AND SUGGESTIONS

The quadratic programming problem formulated
cen be applied to solve generation planning problems.
The Beale’s algorithm is applied. The memory required
is less as cost function coefficients are represented by
the upper triangular matrix, as no artificlal constants
are used for optimization purpose, and the
A (Constraint matrix), C (Cost coefficient matrix) are
transferred according to method similar to simplex linear
programming algoritim. The method works faster. For the
five bus system the results are obtained in 3,02 secunds
(including compilation time) and one iteration. Loss of
load probability incorporated takes into account the unw
certainties involved due to forced outages of various
generating units. The reserves of generating cspaclties
needed are calculated on LOLP basis, which is the more
popular method of reliability analysis of generating system.

Suggestiong:

The formulation presented for genemation planning
cen be extended to the tramsmission and distribution
planning problems. The cost functlon of transmission
planning problem may capltal cost of transmission line and

cost of trensmission losses. The constraint imposed may be

176462
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security constraints 1.e. no overloading of circuitis

be permitted. In distribution planning problem may having
objective function of the cost of substations, Sub-Iransmission
lines and cost of losses. The constraints may be permissgible
value voltagey no overloading of circuits and constraint

on the number and type of cirocuit that can be added. As

the dimensionality problems are not inherent in this

technique it should be possible to analyse large systems.
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APPENDIX

C MAIN PROGRAM GENERATION SYSTEM PLANNIM QP METHOD
COMMON/ THREE/NUgNASNC oNNC QO 9 9PG»Q019P01»CCO2CCoAO9ADL 9 CCF9CFyRR
DIMENSION AC(B).BC(S)’D(3)tDM(5o2)pPOI(3),POI!(B)'P021(3)'IPRTZ(15

1)9sCA(120)9AA(120)
DIMENSION COP(3)eXTOL(3)sDIF(5)
READ(152000) NB,NGBsNLaNYsNTJ
PRINT 2000sNBsNGBsNLINYINTJ
READ(192000) (AC(I)oBC{I)sD(1)oI=1loNGB)
PRINT 2000 (AC({1)sBC{I)»D(I)aI=1sNGB)
READ(192000)RINTSRINF
PRINT 20004RINT,RINF
READ(192000) (PGIM(I)yI=14NGB)
PRINT 2000s(PGIM(I)=1919NGB)
READ{1+2000) ((DM{TaJ)»Iul sNY)sJdnlgNL)
PRINT2000s { (DM T9J) s I=LyNY) s JmlsNL)
READ(1+2000)(POI{1)sI=19NGB)
PRINT 2000,5(POI¢1)s1=19NGB)
READ(192000)(PO2I{T)eI=14NGR}
PRINT 2000,(PO21{I1)sI=1sNGB)
NGB2=2%NGB
MaNGB2+2
Mi=M+1
NaNGB2
N1=NGB+1
[ZSRaNGB2+1
IT=]
16SR=1
ITi=1T+1
ITRN=1
NBB=M+N+1
N2=N1+NGSB
NiZ=N1l+1
D0212I=1sNGB

212 POLI(1)=POI(])
RINF=1404RINF
RINT=1e0+RINT
Re(RINF/RINT)*IT
CCF=040
RI=((RINF*¥NTJ=1) /RINT*ENTJ)
DO 118 JelyNGB
NUU=NUL{J)
DO 118 I=1sNUU
ANC=NC(Js])

118 CCFwCCF+R¥R&CC( o1 ) *AQIIy [ ) #ANC

77 R2{RINF/RINT)#*IT
DO 6 I=1yNGB
AC{1)=R*AC(I)
BC(I)=R*BC(1)

6 D(I)=R*#D(])
DO 8 I=1,NGB
8 COP(IN=AC(I)+BC{II*POLICI)I+D(1)%POLII(])%%2

GCOIN"0.0



18

119

410

416

417

11

403

10

404

114

13

DO 18 I=1,NGB
GCOIN=GCOIN+COP (1)

GCOIN=CCF+GCOIN

PRINT 119»GCOIN
TYPE119sGCOIN

FORMAT (13HINITIAL COST=4E20,45)
ITRN=O

CA(1)=0.0

I1I=]ZSR*%2

DO 416 I=1s111

CA(I)=0.0

I2I=(NBB+1)%IZSR
D04171=1y121

AA(])=040

DO 11 I=1,NGB

OP(I+NGB)=0,
CA(1)=CA(L)+AC(YI)+BCIII*POLI(I)+D(I)I*POLI(T)**2
CA(1)=CA(1)+CCF

N1=NGB+1

DO 9 KH=2sN1

KHl=KH-1
CA{KH)=2BC(KH1)*0e5+D{KH1I®*PO1I(KH1)
DO 403 I=N12sN2
CAt{I)=~CA(I=-NGB)

DO 10 I=1sN

KH= (2¥NGB2~1+1)%[/2+1+1
IF{1eGToNGB)CAIKH)I=D( I~NGB)
IF(1eLE«NGB)CA(kH)=D(I1}
CONTINUE

DO 404 I=1,NGB

KHs { 2#NGB2~1+1)#]1/2+(NGB+1)+1
CA(KH)==D(1])

PRINT 5000+ (CA(1)sl=lsIll?
ITl=IT+1

D01141=1,N1

AA(I)=0.0

Ka{NGB+1)#*1ZSR+}

AALK)=040

DO131=1+NGB

KH=K+1

KH2=KH+NGB

AA(KH2)=-140

AA(KH) =140

DO 14 I=1sNGB
KHasI#]ZSR+1+1

AA(KH) s~1e0

KH2=KH+NGB

AALKHZ2 ) ==AA(KH)

KH=I#]ZSR+1
AA(KH)=PGIM(]1)=~-pO21I(1]}



14

405

16

3002

15
307

309

305

407

3001

314

315

CONTINUE
004051=19NGB

KH= [ZSR* (NGB+1+] ) +1

KH1=KH+1

KH2=KH1+NGB

AA(KH) =P021(1)=pO11(1)
AA(KH1)=1e0

AALKH2)=5=140

CONTINUE

NBBl=NBB+1

DO 16 I=1sNBB1
Kls(I=1)*IZSR+1

K2=I#1ZSR

TYPE 50009 (AA(K)9K=2K19K2)
PRINT 50005 (AA({K) sKaK1sK2)
TYPE 3002

PRINT 3002

FORMAT (8CONSTRAINT MATRIXE)
CALL BEALE (IZSRsISSRaNsMysCAsAAsIFALLIPRTZ)
IF{ITRNe oGT¢0eANDe IFALLONESO) GO TO 411
DO 15 I=1,NBB}
K1=(1~1)%12SR+1

K2=I#1ZSR

TYPE 50004 (AA(K) sK=2K1sK2)
PRINT 50005 (AA{K) »K=K1sK2)
IFCIFALL=1)307+306+307

DO 305 I=1,NBB
IF(IPRT2(1)=NGB2)309s309,305
I1=IPRT2(1) '
112 (1~0)*IZSR+1
DP{II)=AA(IL)

CONTINUE

DO 407 I=1,NGB
DIF(I1=DP(I)~DP( I+NGB)
DIF(I)=ABS(DIF([))
PO21(1)=P0O21(1)+DP{1)~DP{I+NGB)
TYPE 3001

PRINT 3001

FORMAT (RINJECTEp POWERSE)

DO 315 I=1,NB

IF(1eGTeNL) GO 7O 314
P(1)m=DM(IT1e1)}

GO TO 315

I11=1-NL

P(1)=P021(11)

PRINT 2000,P(I)

TYPE 2000,P(1)

CONTINUE

XX=DIF(1)

DO 408 I=2,NGB



408

409

411
318

418

218

84
306

4000
601

IF(XXeLTeDIF(I))XX2DIF(I)
CONTINUE

ITRN=ITRN+1

PRINT 409, ITRN

FORMAT (@ITERNO=@sl4)
IF{ITRN«EQs211G0 TO 411
IF(XXeGTes001)GO TO 410

DO 318 I=1,NGB
COP(I)=AC(I)+BC(II#PO2I(I)+D (1) *PO2I (1) %*2
GFCON=040

DO 418 I=1,NGB
GCOFN=GCOFN+COP (1)
GCOFN=CCF+GCOFN

PRINT 218sGCOFN

TYPE 218+GCOFN
FORMAT(7/11HFINAL COST=9E2045)
COSEXPaGCOFN=GCOIN

PRINT 843sCOSEXP

TYPE 84 »COSEXP
FORMAT ( 21H*%COST OF EXPANSION=+E2046)
PRINT 4000

TYPE 4000

FORMAT { 9H¥QP FAILS)

STOP ‘

END



SUBROUTINE BEALE(IZSR»ISSRaNsMsCrA»IFALLIPRTZ)
DIMENSION C(lZO)»A(lZO)vIPRTl(lS)’!PRTZ(15>.LIST(IB).ABLIST(IS),
1L1(15),L2(15)
INTEGER ABLISTsevsSeZsTeR
REAL MAX
LOGICAL Bl
DO 1K=1lsN
L1(K)=K
1 IPRT1(K)=K
DO 2I=1sM
L2(1)=1]
2 IPRT2(1)=N+1
L10=N
L20=M
DO 3 K=1l)yN
3 ABLIST(K)=0
LISTO=0
Ml=M
1000 IF(LISTOLEQeOQ)GO TO 1001}
CALL MPB8(Cs090,19LISToLISTOIKPsMAX)
IF(MAXeNE«D4)GO TC 2000
1001 CALL MP5(CsL1sL10sQ1sKPs0s0s1)
IF(Qlel.Te0e)GO TO 2000
IFALL=0
. RETURN
2000 KHaKP#* (N+1)~ ((KP‘l)*KP’/2+1
MAX=0,
IF{CIKH) oGT o0 IMAX=C{KP+1}/C(KH)
Va-1
IF(MAXeGTa04 )V
CALL MP2(AsL2+L209IP»IZSRSISSReKPsQLlsNsV)
IF(IP. NE.0.0R:MAXtNE.O.)GO TO 3000
IFALL=1
RETURN
3000 IF(1POEQ000QOR.QIOGTOABS(MAX))Go TO 4000
I=IPRT1(KP)
IPRTI(KP)=IPRT2(KP)
IPRT2(1IP)=]
CALL MP3(A»1sMeQoNsIPIKPyIZSR9ISSRe101)
Bl=4TRUE,
CALL MPO{ASCoIP,KPsNsM19IZSRy»ISSRHB1)
GO TO 6000
4000 ABLIST(KP)=ABLIST(KP)+1
T=0
R=0
4001 IF(LISTOLEQ4O0)GO TO 5000
PO 4002 I=1,LISTO
4002 IF(LIST(I)«EQeKP)IGO TO 4003
GO TO 5000
4003 Z=0



4004

4006
4005

5000

5001
5003

6000

6001

6003
6005
6004

KKP=KP+1
DO 4004 S=1,KKP

15=5~1
KHsT*IZSR+IS*I SgR+1
KH1=KP+Z+1
A(KH)=C(KH1)
ZaZ+N~15
NKP=N~KP
IF(NKP«LTel1)GO TO 4005
DO 4006 S=1,NKP
KHeT*[ZSR+(KP+S)#[SSR+1
KHi=KP#{N+1)~(Kp*(KP~1))/245+1
A(KH)=C(KHL1)
IP=T
CALL MP3{AsRoeMsQsNsIPsKPyIZSRyISSRs1s1)
BlxsFALSE. ’
CALL MPS(AsCeIP,KPsNsM1yIZSR»ISSR9B1)
GO TO 1000
LISTO=LISTO4+1
LIST(LISTO)=KP
IPRT2(M+1)=IPRT1(KP)
IPRT1(KP)=N+M1+KP
L2{M+1)=Mel
L.20=M+1
DO 5001 S=1,L10
IF(LYI(S) eEQeKP)T=S
DO 5003 S=T,L10
LIS =L1(S+])
LiG=L10-1
MaM+1
T=M
R=}
GO TO 4001
IF(IPRT2(IP)+LEN+M1IGO TO 1000
IPRTZ2(IP)=IPRT2(M)
L20=L.20~1
L10=L10+1
L1(L10)=KP
LISTO=LISTO~1
DO 6001 K=1,L1ST0
IFLLIST(K)«EQeKP)GO TO 6003
GO TO 6004
DO 6005 I=KoLISTO
LIST(I)=LIST(I+])
NN=N+1
KH1=IP#]25R+]1
KH2aM#* [ ZSR+1
DO 6002 K=1,NN
KHO=(K=1)%* ]SSR
KH3=KH1+KHO



KHG=KH2+KHO
6002 A{KH3)=A(KH4%)
MeM-1
GO TO 1000
END
SUBROUTINE MP2{AsL29L20»IP»IZSRsISSRIKPsQloNsIV)
DIMENSION A{120)sL2(15)
V=iV
IP=Q
IF(L20eLTel)RETURN
DO 1I=1sL20
KH=LL2( [ )*]ZSR+1
KH1=KH+KP#* ISSR
1 IF(V#A(KH]1) «GTe0e)GO TO 2
RETURN
2 QlaVHA(KH)/A(KH]?
IPal2(1)
IZe]+l
IF(1Z2GToL20)RETURN
DO 31=1ZsL20
KH=L2( ] ) #IZSR+1
KH1=KH+KP* ]SSR
IF(V*A{KH1) oLEeQe)GO TO 3
QeV#A(KH) /A(KH1)
IF{QeBE.QLIGO TO &4
IPp=L2(])
Ql=q
GO TO3
4 IF{QeNE«Ql)IGO TO 3
10=L2(1)
DO 2 K=1sN
KHO=P# [ ZSR+K*] §SR+1
KH2=2IP* [ZSR+KP*1SSR+1
KH=2JO# I ZSR+K*ISgR+1
QP=Y#A(KHO) FA(KH2)
QO=V#A(KH)}/A(KH]Y)
IF(Q0LTQP)GO TO 6
Ip=10
CONTINUE
RETURN
END

W N
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SUBROQUTINE MP3(A»I0sI11sKOsK1IvIPsKPIZSRISSReIPLsIPR2}
DIMENSION A(120)
KH=2IP* J ZSR+KP* [SSR+1
PIVele/A(KH)

I10=10+1
111=11+1
KKO=K0+1
KK1=Kl+1
DO 1 1I=1]J0,111
I=]]~1
IF{14LQeIP)GO T 1
KHO=I#12SR+KP*IgSR+1
IF(IP2«EQel)A(KHO)=A(KHO)®P]IY
DO 2 KKsKKOaKK1
KaKK~-1
IF(KeEQeKPIGO TO 2
KHl=1%#IZSR+K*ISSR+1
KHZ2=IP# I ZSR+K*[55R+]1
AlKH1)=A{KH1)=A{KHZ ) *A{KHO)
CONTINUE
CONTINUE
IF{IP1eNESY)GO TO &

DO 5 KK=KKQsKK1
KzKK=-1
KH22IP#[ZSR+K*# [ 55R+1

IF(KeNESKPIA(KH2 ) ==A(KH2)I#P IV
IF(IP2.EQel)A{KHI=PLIV
RETURN
END

SUBROUTINE MPS5(AsL1sL10sQ)LsKPsIZNRsIZSRs ISSR)
DIMENSION A{120y5L1(15)
KP=L1(1l)

KHs IZNR* [ZSR+1
KHO=KH+L1(1)%ISSR
Ql=A(KHO)
IF(L10sLTe2)RETYRN

00 1K=2,L10
KHO=KH+L1(K)*#ISsR
IFtA(KHO)«GE«Q1)GO TO 1
Ql=A(KHO)

KP=L1(K)

CONTINUE

RETURN

END



SUBROUTINE MPB({AsIZNRYIZSRy ISSReLISToLISTOWKP»AMAX )
DIMENSION A(120),LIST(15)
KP={IST(1)
KH21ZNR*JZSR+1
KMHOSLIST(1)#1SSR+KH
AMAX=A( KHO)
IF(LISTOLT&2IRETURN
DO 1 K=2.LIST0
KHO=KH4+LIST (K)%*1SSR |
IF(ABS { AMAX) ¢GE,ABS({A(KHO)))GO TO 1
KP=LIST(K)
AMAX=A { KHO)
1 CONTINUE
RETURN
END

SUBROUTINE MP9({A»CsIPsKPsNsM19lZSRyISSRHB1)
DIMENSION A(1203,C(120)
LOGICAL B1
IN=N+1
DO 9000 IRRslseIN
IR=IRR~1
IF(IR<EQsKPIGO TO 9000
[Z=20
IF{IReGToKP)IZ1eKP~1
IF(IReLTeKP)IZ1=IR
[221=121+1
DO 9002 18S=1s1221
I5=1SS~1
KHeiR+1Z+1
KH1=IP#] ZSR+IR#1SSR+1
KHO=KP+]1Z+1
C(KH)=C(KH}+A(KH1)*C(KHO}
9002 IZ=1Z+N~1S
IT=1Z+KP
9000 CONTINUE
9100 IKP=KP+1l
IF{IKPoGT4N}GO TO 9300
D0 9102 1S=1KPsN
DO 9103 [IR=IS»N
KH= JZ+N=KP+IR+1
KH1=IP*IZSR+IR*#1SSR+1
KHO=IT4+]S+1-KP
9103 C{KH)=C{KH)+A(KH1)*C{KHO)
9102 I1Z=IZ+N~1S
9200 DO 9201 IR=IKPsN
KH=IT+IR+1-KP
KH1=IP*ZSR+]JR*]SSR+1
9201 CIKH)=C(KH)+A(KH1)I#CIT+]1)
9300 121=0
PO 9301 IRR=]1sKp



9302
9301
9400

2402

9401
9500

9501

2503

9504
$600

9601

2603
9602

IRIRR=~1
IZ=0
KH=KP+1Z1+1
KH1=]1P#*IZ25R+IR*]SSR+1
STORE=C(KH)+A(KH1)I*C{T+1)
DO 9302 18S8=191RR
1$=185~1
KHe IP* 1 ZSR+]S5HI55R+1
KH1=IRR+IZ
CIAH1)=C{KH1)+A{KH)}*STORE
(2=21Z4+N~18
IZ1=1Z31+N~IR
IF(IKP«GTaNIGO TO 9500
DO 9401 IR=IKPenN
I2=Q
IRR=IR+]
DO 9401 I55=1sIRR
iS=]155«~1
IF{ISeNESKPIGOT 9402
1Z=12+1
GO TO 9401
KHa IRR+1Z
KH1=IP#]2SR+15%1855R+1
KHO=IT+IR+1=-KP
C{KH)=C{KH}+A(KH1}*C{KHO)
2 JZ+N—-1S
IF{ NOTBLIGO To 9600
1Z2=0
KHO=]IPX I ZSR+KP*Y SSR+1
DO 9501 ISS=1sKp
IS=[55~1
KH=IKP+IZ
KH1a]P®#] ZS5R+ISH I SSR+1
CCKHI=C{KH}+A(KHII®C(T+1)
IZ=IZ4N~IS
DD 9503 IRsKPsN
KH=IR+IT+1~KP
C(KH)=C{KH)®A{KHO)}
I1Z=Q
DO 9504 IS58=1.1kP
iSs[585~]1
KH=[KP+]12
CIKH)=C{KH) %A {KHO)
I1Z=1Z+N~]S
I12=0
DO 96011S8S5=14KP
IS=]1s85~1
KH=sKP+1Z+1
C(KH)I=0,
1ZelZ+N-]S
CiT+1)=147C(T+])
IF{IKPaGTeN)GO TO 9602
DO 9603 IR=]IKPN
KH= IR+I T+1-KP
CIKH) =0,
RETURN
END
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