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ABSTRACT 

A nunber of mathematical programming methods 

have been applied for the generation expansion planning 

problems by various authors (as described the review work). 

The -cost of operation of energy produced depends upon the 

following factors. A part of the cost is directly 

proportional to the power injected at the generating Buses. 

A part is proportional to square of the power at these buses 

and there is fixed cost. Considering the above the generation 

planning problem shall be formulated as quadratic 

programming problem. The constraints are that the sum of 

the generated powers at these Buses is greater than or 

equal to the total demand at the load buses. At each Bus 

the power that can be injected is limited by maximun value. 

The Be ales algo rth im is applied to the 

generation planning problem for which the results are 

available by other method. In this method the quadratic 

cost function is represented by an upper Triangular matrix. 

This results in saving of Computer spacej compare to other 

type of programming. Therefore the memory is comparatively 



not more as the constraint matrix is represented in 

the same way except that Zeroth row of _4 (Constraint) 

matrix is not used. In this method these are no 

artificial constants used for  optimization  purpose. 

A feasible basic solution has to be chosen in this 

problem for choosing initial values of injected power 
are taken equal to the original injected power (for the 

previous stage) plus additional demand distributed 

equally among generating buses. It is found that for 
the five Bus system to which this algorithm is applied 

the optimal solution is obtained in one iteration only. 

The uncertainity of generation is taken into 

account in the following way. The loss of load 

probability at each generating bus is calculated using 

the recurssive convolution Integral equation. The 

injected power at each bus is consider as equivalent load. 

The probability of this load exceeding the installed 

capacity gives the LOW., 
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INTRODUCTION 

3.1 Ppwer System Planning' 
lI~I~III^I 

Power system planning may be defined as the 

optimal expansion behedule of facilities in an electric 
,,.utility system to meet future requirements. The planner 
has to decide to what capacity the facilities to be 
expanded, where to be located and when the expansion to be 

completed. "the study generally includes the expansion of 
existing facilities and in stallation of new facilities 
such as installation of new power plants, Transmission 

lines, Sub--ansmission fines, Substation and feeders etc. 

The estimation of future expansion is very complex. 
In planning studies one has to consider the electrical 

and econcmic relationship in the system and adjacent area, 

character of growth demand, the ton-1 inearity of 
relationship between characteristics, rating and operating 
conditions of the plants and network and probabilistic 

nature of data. 

The power system expansion and installation 

involves huge investments. Therefore the alternative 

expansion policies available for meeting system 
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requirements should be selected very carefully. 
Additionally, the expansion of facilities should be 

within the budgetary limitations. The selected 
expansion policy should provide cheap and reliable 

supply of power to consumers. 1ie constraints that 
may be Imposed on planning e e following: 

i) Security of systems Security of system 
means that no overloading of circuits is 

permitted under steady state operating 
~ 	'Jb 

s r~ 	1• 	conditions'. 

ii) capacity tlar traints s The are due to the 
physical ' limits on the maz mixn capacity 
available for expansion at the power plant 

sites or the number and type of circuits 

that can be added in the right of ways in 
the system. 

} 	t- 

 

Power output constraints: Tie maximun power 
output of any plant can not be exceeded the 

' installed capacity. 

iv) Choice of variables: 'the variables in the 
planning problem represent the expansion of 

generation facilities, Transmission facilities, 
distribution facilities and the power flow 



through the circuits. These variables 

may be discrete or continuous. For example, 

the capacity expansion of power plants may be 
selected from descrete unit sizes or it can be 
continuously varied. The type of cost function 

which represents the generation expansion 
capital costs may require the use of mixed 
variables for its formulation. The representation 
of Transmission network expansion in the problem 
formulation requires generally de Crete variables. 
The variables associated with the output of 
gr arators are represented by continuous variables. 

ese variables are ncn.negative since in the 
formulation, it is' assumed that no retirement of 
existing facilities occurs during the planning 

horizon. The power system planning may be 

divided into the followings 

1. Generation planning 
2. Transmission planning 
3. Distribution planning 

1.I4  Gemeration p1annim 

The general object of power system planning 

r 	r 
	 problem is to ensure the provision of reliable supply of 
rr, 	power to consumer at the lowest possible cost. As the 



part of this generating plant expansion must be 

determined which will ensure that given standard of 
reliability can be met, and which promises the lowest 
cost of solution available, 	planning engineer 

has to consider a number of uncertainities while 
designing the system. Ttv uncertain factor have a 
great influence on the planning decisions. These 

uncertainities arise from different sources, among them 

are the random nature of .forecast, money values and the 
availability of capital. 	aim of planning engineer 
is to design a system that provides a reliable power 

	

supply at the lowest possible cost to consumer. 	a 

Under uncertain conditions, it is 

customary to provide adequate reserve capacity i.e. 

generation level in excess of the expected demand 

requirements to meet the fluctuation in demands. 
In a practical Generation System Planning the •number of 
variables is very large. Further more the capacity can 

increments 
be added in deecrete only. The planner is confronted 

with multitude of technical and economical constraints 
(such as system reliability requirements. Geographical 7 
and budgetary limitation). The equation relating 



capital and operating costs to the system ponfeguration 

are usually non-linear. Therefore the planning problem 

is very► complex even without co ns ide ri rig the difficulty 
posed by uncertainities about future events. The  
planner needs to have access to an appropriate 	

a 

computational technique. This would give him a unified 

approach to many different system -expansion problems 
and would enable him to arrive at optimal long-term 
plan directly without usual trial and error method. 
In other words long-term system planning problem should 

be formulated as a problem of mathematical optimization 
which could be pr gra v d and executed on a digital 
computer. 

The selection of a suitable computational 
technique for an outlined problem poses sere 
difficulties. The presence of uncertainities*  descrete 
nature of problem and large rnxnber of constraints seem 
to rule out all known optimization methods such as 
gradient procedures. linear prooramning and branch and 
bound algorithms. But the dynamic programming is the 
exception. But for the large number variables would 

make the dynamic programming approach cc mputationally 

infeasible since more than few variables, both the 



computer storage requirements and computation time 
become excessive. 

The objective of the generation planning in 
power system, is to what generating is to built, where 
the additional capacity is to be located and when it is 
to be completed in power system for a given future 
demand forecast considering the uncertainities in the 
demand and unit outage. 

1.3.2 Transmission Planning 

Historically*  transmission planning has followed 
gneration system planning because the construction time 
of Transmission facilities is much shorter than for 
generation facilities and transmission planning depends 
upon knowledge of the location and capacity of both 
generation and demand centres. The main aim of generation 
planning is to develops a Transmission network in an 
electric . utility system capable of meeting future 
generation and load conditions and no branch should be 
overloaded while Transmitting the paver from generation 
centre to demand centre under emergency or normal modes. 
The system emergency mode is due to outage of generator 
unit and or Transmission Lines. The Transmission expansion 
planning therefore seek a minimum cost plan where in 
new lines or increase of existing capacities are decided 



so that no overloaded lines should exist under steady 
state conditions for future demands. 

As the system Is in continuous operation, 
the energy loss In network is continuous phenomenon 
and therefore system having more losses would prove to 
be more costly in long run.'ihere are some model 
consider the effect of system losses. These model 
design the system eff1tently and consider not only the 

investment costs and the fuel and the costs of the power 
plants, but also the investment costs incurred due to 
energy losses in the network. Therefore large losses 
due to continuous operation in system may be avoided by 
above model. 

The violation of voltage and reactive power 
generation specification may occur under heavily loaded 
or emergency _ condition of ope rat ion. The model 

considering the active flows in formulations  may violate 
other system specifications such as magnitude of sus 
voltage and reactive power generation. 'fib overcome these 
problems there are some models, detezmine the Hine voltage, 
Tap setting of Transfo r and static t' pacitor allocation 

in the power system for maintaining the system voltage 
and reactive power output of Generator within the specified 



limits under normal or emergency mode of power system. 

1.1.3 Distribution Planning 

`ire ob jective of Distribution planning (14I to 

develops a distribution system which will provide 
economic, reliable and safe electric energy to end 
users. This objective is usually approached by generating 
alternatives for expansion of distribution and evaluating 

these alternative for econany, reliability and safety. 

The planner may state his problem as attempt 
to minimize the cost of Sub.4 ansmissio i. Substation, 
feeders etc and the cost of losses. ?fanner is usually 
constrained by permissible value of voltage. flicker, 
short circuit duty and continuity of service. To meet 
these objectives the distribution planner may have to 
consider additions to the Sub..Transmission networks, 
location en.d size of network, service area of substation, 
location of breakers and switches, size of feeders and 
laterals, location of capacitors and voltage regulators 
and the loading of Transformer and feeders. There are 
certain factors over which distribution planner has no 

co nt rol . These final ude of course., when the customers 
demand energy, frequency and duration of outage, the cost 

of equipment, labour and mory and regulation Imposed by 

State or central Government. 



LITERATURE REVIEW 

Baldwin(1  ? and other proposed the simulation 

technique for additional generator installation date. 
The authors have suggested that the . utility management 
not only must provide adequate service to its consumer 
but also must avoid overinveatment in spare equipment. 
To get these objectives a level of service of reliability 
is specified i.e. to state numerically the acceptable 
risk of shortage from inadequate installed generation 
capacity. Then cverinvestment has been avoided by 
installing no more than enough equipment to maintain. 
this level. 

The technique presented by authors is the 
new ways to evaluate reserve adequacy and subsequently 
to arrive at installation date for new capacity. The 
techniques are based on the use of simulated daily reserve 
margin available from operational games studies. 

The author has concluded that the average 

percent margin alone should not be used a measure of 

service of reliability without studying despe rs ion. The 
Load 

dispersion of margin. as caused by capacity anc ,fluntuations. 

is an important factor in evaluating real risk. The 
second conclusion was that the required installation date 



for a new unit is really a random quantity with 
certain statistical properties. If the new unit is 
scheduled based on average expected risk, actual 
cirevmntancea as they develope may or may rot be required 
the unit before the date schedule. 

Pitapat ric C  2)  has developed a series of 
programss for a small scale co puter such as the 
IBM bS0, to optimize the selection of future addition 
to generate capacity. In proposed technique the annual 
load curve has been adopted to propagate the series i of 
new generator requirement curves. 'these curves giving 
new generation needs by type for future years, are then 
available for use in other programs mentioned which 
develope real expansion pattern and all cost associated 
with them. 

One of the difficulty in attempting to develope 

an economical generator expansion pattern has been the 
necessity of studying enormous number of plans. The 
author has developed a series of programs for small scale 
digital computer, such as lEN 650 to optimize the selection 
of future gemratirr* capacity additions, thereby minimising 

the number of plans to be studied. 



iienauit (3) have formulated a mathematical 
optimization problem for determination of least costly 
expansionn of power system in the presence of uncertainity 
about the future loads. The expansion policy has been 
determined, such that the investment decision is based 
on an up-to-date estimate of the system requirements. 

'fa main feature of the proposed techniques is, 
presence of uncertainity has been £omu1ated as mathematical 
optimization problem, that can be solved by stochastic 
dynamic programming. The planning decision have been 
made at regular interval. The objective function of the 
problem is. 

Min. 
lc T..l 	, 

it (xt, dt+j, •t) = LI Z 	( L (ZK,xK~1,K) 

+ £' (XL+2 * d ç+1 o K) t L } (xl +lid +l; ) + I ( ,T) 3 

... (2.1) 

Subject to 

I-tt. '= Xt +u.t(113) 	 •.. (2.2) 

Xt+1 ✓  dt+l 	 •e.  (2.3 ) 



were, L = investment costs depends upon the 
investaent decisiont'a .t  

L = operating cost and is function of' equipment 
state xt  and .average demand in sub period t 

L = penalty cost$ associated with constraint 
violation, A function of the form L"  is 
introduced to penalize the planner for 
temporary lack of reliability 

at  = decision variable for contiguraticn i 

art+l  = decision variable for configuration j 

uU.,j ) 
't 	= the value of decision variable xt  at the 

time t, wbea the decision is to change 
configuration  I to j configuration 

Max. power that can be delivered by 
configuration Xt+l  with largest capacity 
of Transmission Service 

dt+l = demand in sub period t+l 

I (xT,T) * Investment component of term .na . cost 

T = terminal period 

The symbolZ in eqn. (2.1) denotes the expectation taken over 
the random variables, dt+2 f dt+3,  ..i 



In order to obtain the meaningful decision policy 
the author have made se important assumptions at the 
out set of program. 

1. Divide the planning period into a number of 
stages at which the decision are to be made. 

2. Organise the equipment cost and technical 
data in a systematic and aciisistant manner to 
form a basis for a computerised data bank. 

3. Assign discounting factors and equipment 
salvage value. 

4. Define stochastic growth model# and assign 
probability distribution for the random variables 
(Demand r Generation etc) 

5. Define the Reliability Criteria rigrously. 

By these systematic effort spent in prepraticn 
of input data, the computer pr=int out provides a great 
deal. of important information. For example the expected 
total costs for any state and planning stage are obtained 
together with the optimal Investment policy. The additional 
cost incurred when decision maker is unable to follow the 
optimal policy is easily calculated. The author believe 
that the problem formulation given can be generalized 
and extended. The as sump ti ou w iieb are followed by 



authors are, 

1. Different equipment addition leadtime 
can be considered stochastic for each 
individual equipment addition. 

2. More than one load can be cons .dered, 

stochastic and uncertainities in other 
parameter i.e. generation cost etc. can be 
taken into account by defining additional 

Variables. 

3. Because the demo do not have to knova in 

advance at each planning stage# can be past 

records only. 

The limitations of the approach are the maximum 
number of random variables (i.e. demands) and alternative 
system configuration the program can efficiently handle. 

t (41) has described a method for determining the 
most economical generator commitment policy and loading 
schedule for a days operation of an electric utility system 
while maintaining a desired level of re ,iabili . 
Generating units are scheduled to supply the system load 
for a day. The author has used, a constrained search 
technique to determine which unit should shut down or start 
up in future hours to minimize the system fuel costs, 



including the start upcosts. The start up and shutdown 
times of generating units have been determined to maintain 
a desired system reliabi]ity. The security measure has used 
been is the probability that the available capacity at any 
time Is greater than system load at that time. 

The application of proposed technique results in 
generation schedule which meets system reliability require• 
meat and yields minimum fuel costs. 

3octh (5)  has described a procedure for deter.. 
mining the optimal expansion plan for the expansion of 
generation facilities of a power system over a long period 
of time. Re has aambl.nedy A method of production costing 
based on probabilistic simulation methods, with an advanced 
dynamic programming formulation of the problem in order to 
treat uncertainity in a systematic manner. 

The planning problem has been formulated 
in a manner suitable fr soluYtirn using conventional 
dynamic programming as follows. 

u 

The obaeative funct4ton is 

Min. the.cost - fn.. 
{ 

a t%t-1  ' 	) + J a( t(l + b)t  + flt t . + C)t ) 
tom. 

... (2.)+) 



subject to 

►̀t+1 = ut 'x . t t = 1, •.., T 	 ... (2.5) 

dt+1 12 
1(dt$Wt,t) 	 ... (2.6) 

Where I = discount rate 

Ct = total capital in service in period t 

= ©t operating a os t in period t 

a annual capital charge rate 
b a rate of escalation of capital  
C. = rate of escalation of operating charges 

and 	Wt a random variable 

xt a state of system in period t 

X = set of allowable states In period t, 
Ut a decision made in period t for the configuration 

In period t+l 
fiat = set of allowable decisions in period t 

cat = demand 

 

in period t 
T = planning period 

and f (.) = general nonlinear function 

The cost function contain the imam. variables. 
Then cost of 1 is randcoly distributed. Therefore for 
stochastic dynamic prograwmin,gl, the cost fn. is 

E 
JFF =  

where W1 .~. WT»1 denotes the expected Value of J giv on the 
probability distributions W1 a .WT_1 • The author has applied 



', 

a simplified approach `~ the open loop feed back approach I 
which consists of reducing the problem to a series of 
deterministic open loop optimisations f which can be solved 
by either forward or backward dynamic programming methods. 
These deterministic, optimizations are used to determine a 
decision on schedule t  ... uT , however, only the decision 
t is actually employed. 

Mathematically , the procedure is to define 

Cg = (Cs j 

08 zs 	t Os 

and 

t d) S tang (1 + b)s + ~a (1 + C)8 3 

... (2.8) 

where the expectation of Cs and as is conditional on the 

information available at time to 

The advantage of the procedure used Is the 
abil t r to combine the constraints of system reliability 

with the determination of cost of production in a fast and 
efficient algorithm# together with the reduced state 

description ma dynamic programming formulation. The use of 

probabili io simulation method combined with a dynamic 
programming procedure used In an "Open loop feed back" mode 

allow a rational approach to the problem of uncertainity in 
future. The approach is capable of extension to the case 
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where both generation and Transmission system may be 
treated is one expansion probleim. 

The limitation of technique is that 
because of nature of problem no one single optimum 
solution can founds 

B ANS(6)  has proposed an algorithm for optimal 
generation planning. Author has used quadratic programing 
to minimize the discounted value of operating and capital 
costs, subject to constraints on unit sizes ! demand 
requirement and send out requirements. The advantage of 
the technique are that it is easy to use and its efficiency 
is not significantly affected by the problem size. The 
principal application of the proposed technique is for 
financial planning beyond the horizon, .where detailed 
engineering design and planning has established the schedul. 
ing of generating units. 

J'LLIVAN O )  presented a comprehensive 
generation reserve planning technique using probabilities 
load and generator model ecepled with standard techniques. 

CO%NVCru*4 t 
The technique used Is simple and is eta for analyzing 
the reserve requirement of both isolated and interconnected 
systems in which load forecast uucertainity, interconnection 
transfer capability and unit maintenance may be easily 
included. 



The author has included several simple test cases 

in dbscussion to clarify the o cnc ep is as well as ec puta~ 

tional procedures. In each instance test cases appear to 

illustrate the ease and effect on system reliability of, 

Including forecast uxiaertainity, unit maintenance and 

intercc neotion transfer capability .n generation reserve 

calculation. 

QA /N and HAMAXT(8) have developed a 
approach to optimized generation planning based on the 

development of large number of expansion pattern ocipri.sing 

all possible combinations of selected units. Essential to 

the practical utility of this approach are certain algori. 

thins that enable large number of unit, Long range 
expansion pattern to be generated automatically, utilizing 

minimum of production cost, studies to hold computer core 
requirements and computation time within reasonable bounds. 

The obi ectivo Is to determine the generation 

expansion► plan for which the following is minimum as 
compared with other generation expansion pattern to have 

a optimum expansion pattern,: 

TAC = I.C.+ P.C. + C/N  

where TAC = total annual cost 
product of initial invewnent and 
some fixed chalcge, or capatilization, 
rate 

P.C. = total system fuel cost 

0 	= operating and maintenance cost 



In thi dynamic programming approach the pattern 
of units having minimum total annual cost Is not always 
optimum. Because the interdependence bet Teen fuel cost 
penalties for units already installed and those to be 
Installed in future is neglected. The fuel cost penalty 
depends upon the number of hours the unit will be recuired 
to run. In addition, esc'btion factors which vary for 
different type of fuel may alter the relative economics 
of the operating unit. 

R ' 

The author has presented program for the dynamic 
approach. The program described in this approach provides 
easily and efficiently, a wealth of information concerning 
the innteractian of future and existing csiacity, that 

the number of possible expansion patterns may reach cosmic 
proportions ally emphasizes the futility In expecting a 
single generation plan to be valid under all condition of 
planning period. 

The author believed that more rational approach 
is to measure the sensitivity of resultant pattern to the 
variations in those parameter which most effect the future 
generation mixes. These parameter include load forecasts, 
system load factors fuel prices and plant investment cost. 
In dynamic expansion program any of these factors may be 
altered by simple substitution of one or two data cards. 



4.21.0 

Rcrgers(y)  have developed a model for determining 
the optimal generation installation program for an electric 
power aystan. A new type of dynamic programming is 
combined 4th widely used production cost model to optimize, 
in separate but related procedures, the sequence of unit 
types and tiiniig of each installation. Cie of the feature 
of the proposed model is the separate opti.mizaticns, by 
which an efficient procedure is designed to choose among 
(various possible installation programs with different types 
of plan). The optimal installation tames reflect the way 
the engineering and ecoaanic characteristic of each plant 
type enhance those of the existing system to reduce the 
cost of energy. 

Sway and Dalezinn 0  have formulated the mathe.. 
matical model for long range planning of Generation and 
Transmission. The mathematical model (Linear Mixed 
Integer Programming) deals the problem of selecting an 
expansion plan over a planning horizon for an electric 
Utility system. The objective function that, is chosen 
Is minimization of present value of capital investment 
cost associated with the construction of power plant and 
transmission line plus the operating cost of the system. 
The restriction associated with problem are the requirement 
to satisfy the forecast demands of the system for electrical 
energy plus the physical restriction that result from 
having limited capital resource and plant site limitation. 



In general such a mathematical model ca c be 
represented as follows, 

minimize 

aX + b Z 	 ... (2.10) 

Subject t to 

X 	0 or 1 	 ... (2.12) 

z>/ 0  

where A and B are matrices and atb,C,X,Z are vectors 
Of appropriate dimensions. 

The model presented by author has provided 
ccastructictl expansion of the schedule for power, plant, 
and transmission line i.e. , what capacity should build i  
where the additional capacity is located and when it is 
to be completed. Additional ,y an appropriate  schedule 
for plant and transmission line is provided. 

The limitation of this model is that it is linear 
and can not give more accurate results. 



Ft iMULATIE 1 OF THE PRIBL4 

The formulation of generation planning problem 
consists of the formulation of objective function and 

constraints. The problem formulated may linear or 

nonlinear• 

 + y~~ 	e~ •~ 	• 	.:E 	•~ 	~ 	e 	• 	. • 	aid 

The planning horizon is divided into stages and it 

may be assumed that the demand forecast is available for 

each stage. The planning engineer has to decide the 

generation level at every stage so that the demand require. 

ments are satisfied. The decision to be taken at each 

stage of planning period Is the choice of plant size or 

unit types to installed to what level of generation in 
previous stage. Using Quadratic Progra=ing the cost 

power 
function which Is function of Injected/.is minimized. 

For minimum value of cost function the injected power at 

each bus is determined. The injected power at each bus 

determine, what level of capacit yea to be added among the 

capacities available for expansion into the capacities 

already working. The loss of load probability is calculated 

at each bus. If the loss of load probability is greater 
than certain preselected value than add more unit to satisfy 
the tehiability`,requirements. The cost function which to 
be minimized c nsistsl of the following terms. 



(i) Capital costs t The problem of generati cu 

planning is the problem of adding the number (depeading 

on size) and the type of units or power plants. This 

requires the capital investments for installation of the 

units or power plants. 

Let % represents a combination of unit type 

(or plant size) for installation at any stage. , Let the 

number of unit types or the power plants in the system. 
be NG. The . component of 	of x represents the Ith 

type of unit or the plant size chosen for installation 
at any stage. Associated with ' , let the capacity of 

the plant be (ZK . The capital cost associated w .th'7Ci 

is given by g 

Ott 	
+I 	

CC ( ) 	(Mr)t C I+~' 3 ( i) aoi 

... (3.1) 
where t = time (in years) at which investment is made 

I = inflation rate 
r = interest rate 

Ti = life span (in years) of the unit (plant) 

CO a carrying cost 
a 	cost (mu) per MW capacity of the unit of 	(plant) of type 1 

Total cost associated with the vector I is therefore given 

by C(X) = z C ( ) 	 ... (3.2) 



I 

(ii) Operating costs The operating cost of system 
is dependent on the output of the individual, plant or units. 
As an approximation the operating cost may be assured to be 
function of the expected value of plant outputs. The 
operating cost can therefore be obtained from the solution 
of the toll9ving. 

Na 

	

F (X) 	z tl  (P4 ) 	 .. - - 	 C 
i rl 

subject to 
NG 

	

p 	Dm 	 (3' LI) 

	

fl< 	Pl  < F 	,i = l .. N G 

where I = mean value of demand at aP7 stage 

p M  = max. power limit to be generatetat the 
9 any stage. 

The pre°sent cost function considering the Interest 
and inflatiorO{  rate is, 

Mother model for determining the operating cost 
is based an plant or unit is classified as base load,, 
peak load p or nidrange type. Accordingly the capacity 

factor (C ' ) for the i.th  type unit Is defined and the 
annual operating cost is calculated according to formula. 



0.21 

ti+x 	 s 
F(x) 	8.76 ( 	)t C 	r ,  

t3. 	
J ()~ 

+r~ f~ 
	3 i 

.,. (3,6) 

where, CIi a capacity factor for the unit of type I 

Pi = Cost (Mu) per Gt I c*ztput 

Qr$i = expected value of capacity of unit of type i 

Hence total operating cost is given by,# 

`4 FtF (x1 ) 	... (3.7) 

The above model presented are not in quadratic form. 
Therefore a model approximating the costs, equivalent 
quadratic cost tuncti.ou has been followed In the present 
cases 

2.2 Generation ciaaratjc progranining problan 

The Beales meta od{ `2)is applied to the generation 

planning problem. The objective function is quadratic 

cost function of injected power. The constraints are linear 
function of infected power. In this method ►quadratic 
function is represented by an upper triangular matrix. The 
constraint matrix is represented In the same way except that 

Zeroth row of the matrix is no tjsed. Thus reducing the 
computer memory. 
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I4inimise the cost function 

NGB 
t (P) 	2+ bi  P4  + Ci  P 2 	... (3.8) i 	 i 

subject to 

N (B 	NL 
X Pi  >, 4 PL  

P 	.M Pi  > 0 	i = It ...t NO$. 	►w6 (3.10) 

where # P = injected power at i bus 
ai  = fixed part of the cost at bus i 
bi  = linear part ©f the cost at bus I 
C1  = quadratic coefficient of cost at bus l 

KQB 	number of generating buses 
NL = number of load buses 

P M a maximum power limit at generating bus i 

PLJ 	load at the load bus 3 
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4* 1 Rel owr of tsabXat Uoa 

The techniques that may be used In planning problsss 
are as fojlovs i 

4.1.1  Pna a irogrsamixg  In the planning problems 

the decision have to be *ads► sequentially at different 
points In bass  at different points in space s:d at different 
lsvo2svo ich problems in rich decisions to be made sequenti.. 
ally are sequential decision prof w* These dooisicm are 
to be *ad r at number of stages, are referred as mu .tistags 
decision problem. The dim programing is the mathematical 
technique  viii suited for optimatic* for mustistage 
decision problem. 

The multistage decision problem having N varigb3es 
is represented as a sequence of N single variable problem 
which are so3ved successively. In most of cases* these N 
subprobiems are easier to solve then the original problem. 
The decomposition of N subproblem is deans In such., a 
manner that the optimal solution of the original N variable 
can be obtained fras the optimal solutions of the N on*,. 
dim sional problems. Any of the particular optimization 
technique can not be used for opti*isation of ILsingle 
variable problems. It may range from a simple enumeration 
process to a differential calculus or a near progrrmipg 
techniques. Further , the problem has to be relatively simples 



so that the set of resultant equation can be solved either 
analTtically or numerically. The norl.linear programming 
techniques can be used to solve slightly more complicated 
multistage decision problem• But their application requires 
the Variables to be continuous and prior knowledge about the 
region of global minimum or ma um. In all these cases 
the Introduction of stochastic variability makes the 
problem extremely complex renders the problem unsolvable 
except by using some sort of approximation like chance 
constrained optimization. Dypsmic programming can also 
deal with descrete varitblesv ,n oneoncave nbcontinuous 
and non differentiable tuncti e. 

F.l.2  Integer PEogj mmingv  In many situation the 
problem variables are permitted to take any fractional  value. 
In many cases it Is very difficult to round off solution 
without violating any of the constraints. Frequ+ tly the 
rounding off certain variables requires substantial change 
in the value of some other variables in order to sat#afy 
all constraints. The round off solution may give a value of 
objective function that is very far from original optimum 
value. All these difficulties are avoided by solving 
optimization problem as integer programming prob1 . 

In optimisation problem all the variables are 
constrained to take only integer value the optimization 
problem is all integer programming problem. When sane 



variables only are restricted to take only integer value, 
the optimization problem Is mixed integer programming 
problem.. Among the several techniques available for solving 
the all Integer and mixed integer linear programming 
problEms, the cutting plane method#  the branch and bound 
igorittia(i6)  can be used. 

i+.l.3  Stochastic Programming  Stochastic programming deal 

.with situation where some or all of the parameters are 
described by stochastic variables rather than deterministic 
quantitias. 

Depending upon the nature of equations involved in 
problems, a stochastic optimization problem is a stochas tic 
linear or dynamic or uon..linear programing problem. The 
basic idea used in solving any stochastic programming 
problem is to covert equivalent deterministic problem. 
The resulting aeterminis tic problem is solved by familiar 
techniques like linear r geoametri.c, dynamic and nonlinear 
programming. 

Cons trained Non44near Proraininingt  The generation 

planning problem are usually non-linear constrained opts. 

mization problem, because the equation relating capital and 
operating costs to system configuration are ncn..l near. The 
constraint that are imposed on planningare linear in nature 

4 

usually. Such optimization problem which can be stated in 
standard form as 
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Find x such that f (x) 0" minimum 

and g j  (x) <,O j = i,2, ... m 

Thera,  are .many techniques available 'for the solution 
of a constrained nc ..linear programming problem. AU 
these methods are classified into two broad categor. ies f 
namely, direct  methods and Indirect methods. In the direct 

methods, the constraints are handled in an explicit r .anner 

where as most of indirect methods, the constrained problem 
is solved as a sequence of unconstrained minimization problem. 

4.1.4.x.  Direot_metaodat  

Constraint approxiinatici methods: In those methods, 

the non-linear objective function afld constraints are 
linearized about sane point and the approximating linear 
programming is solved by using linear programming techniques. 
The resulting optimum solution is then used to construct a 
new linear approximation which will again be solved by 
using linear programming techn1i ues. The procedure is 
continued until specified convergence creteria are satisfied. 
There are two methods namel r3 the cutting plane method and 

the approximate programming method which work on this principle 

Methods of feasible directions The methods 
of feasible direction are those aicb produce an Improving 
succession of usable feasible directions. A feasible direction 
is one along which at least a mil step can be taken with out 
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leaving the feasible domain. A usable feasible direction 
is feasible direction along which the objective function 

value can be reduced at least by small amcant. Each 
iteration consists of two important steps in the method of 
feasible directions. The first stop consists of finding a 
usable feasible direction at a specified point and second 
step consist of determining a proper step length along the 
usable feasible direction found in the first step. 

IdegtM2 ods 

Transformation of variables: Some of the constrained 

optixdzation problem have their constraints expressed as 
simple and explicit function of decision variables. In such 
cases it may possible to make a chef ge of variable such 

that the constraints are automatically satisfied. In some 
other cases it may be possible to know, in advance which 
constraint will be active at the optimum solution. In these 
cases$  it may use particular constraint equation gj  (x) of  
to eliminate some of variables f ram the problem. 

Penalty Function methods: There are two type 
of penalty function methods .. the interior penalty function 
method and the exterior penalty function method. In both 
type of method the constrained problem is transferred into 
a sequence of unconstrained minimization problem such that 

constrained minimum can be obtained by solving the sequence 
of unconstrained minimization problems. 
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In the interior penalty function method the sequence 
of uneaastrained minima lie in the feasible region and thus 
i t converges to the cons trained minimum from interior of the 
feasible region. In the exterior methods the sequence of 
unconstrained minima lie in the infeasible region and 
converges to a desired solution from exterior of the feasible 
region. 

4.1.5  t uadratic pro rsmmin  t In the planning problen 
where the objective function can be approximated in 
quadratic form and the constraint Implemented to the problem 
are linear, then the quadratic programming can be used to 
minimise the cost function. It is a special case of non. 
linear programming. The quadratic programming can be solved 
by Lagrange multiplier technique. For such problems Beale's 
method bas also been used. 

4.2 MALE3S METHOD 

The Beale met ed 	belongs to the geometrically 
most Illustrative methods for quadratic optimization. The 
convex quadratic objective function has the form 

Q (xlf  ...., 	= Q(x) 

3ubj act to Linear Constraints 

AZ 	a,0 	 . i ... `1.  
: > o 



The ,Beale method is started with any feasible basic solution 
of system (4.1) . The system of equations in (+.1) are 
solved with respect to chosen basic variables. If these are 
asz=ed to be first m variables, i.e. x1, ... x, this, 
leads to 

Xg = dgo + X dg h 2h ha.  
(g a 1, ... t m) 	., (~+.2) 

There, 7h 

The upper index refers to first approximation. Because 
of the particular choice, the basic Variables assume the 
value dgo > o at the initial point of approximation. The 
variables cn the right side of (4.2) the independent or 
vanishing variables. Those cn the left side are the dependent 
or basic variables. 

Using equation (4.2) basic variables can be 

eliminated from Q. For the sake of simplicity the following 

notation is recoamendedt 

Q (x1! ••ee$ X„) = Q1 Zl M*..•9 	..1) 

ne" 1 	Hell n. m 
Coio+2 1Ciozi + hmil. i Chi Z. 

n.m 1 	n.m 	1 
00 + X c oi z. + X (Ch + E 	tai Zj) Zh i =l 	h= 1 	° i=1  



+ (G1© + C 1  Z1  + ... + c1,4 Z ..M)  Zl 

+ (c 0  + Ohl z1 .+ ... + pna 	,4fl )  Zh 

+ Cn. #0 + Ca ,l 	... +  

... (F.3) 

in egcn. () .3) the symmetry C h = Chi  holds# and further 

(h = 1 # ... n.m) 	... 

Clearly# the value of Q at the first approximation is equal 
to Cao  . If for chosen Trial Point 

a  3 0 

Frm Kulm .Tucker Conditions (11) . this point already represents 
the optimal solution, since every increase of Independent 
variable could Increase the value of c ". However for 
certain 7b 

< o 
a 

holds at Irian. point. It is possible to improve the Q_value 
by making Zh  (i.e. Independent Variable) positive. 



Suppose this happen for b = l i.e.  for Z1 , then } 
if Zl Increases other basic variable of coursro also change. 
As in case of linear optimization, the question arises how 
much the variable Zip should increase. In the quadratic case 
there may be following possibilities. 

Case 1. Let Zl increases until *a.e of the basic variable 

dtsapp ears 

Case of ~l become zero before one of the basic variables 

does in which case 	Is of course Increased only 
l 

Until 	= v , otherwise the value of objective 
function would increase. 

In case lithe constraint system has to solve again 

for new basic variables. These are then substituted in the 
objective functions and the second appro4maticn is obtained. 

In case 2 •introduce a now variable ul by 
1 

ul 	 ... (+.6) 

ul is not sign restricted cad is called the first free 

variable. As second .approbation choose that point at 

which the first free variable disappears, together with all 

Independent variables except that one which has entered the 
basis i.e. except Z1 . Again t the constraint system and the 

objective function are newly rearranged whereby the free 
variable u1 is included anu ng the independent variables 
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1nwm 1 u1 = C10 + h=1 C Zh = 2 -@Z1 
• . •  

For the new dependent variable Zl 

Z3 = 	+ 1 u1 - Z 
C11 C11 h=2 X11 

Zh 

= n. 
d 0 + di1 U1 + =2 Z dIh 7b h 

If! this equation is used to eliminate Zl ,from system of 
equations (4.2) it follows 

 
Xg = dg0 + dg1 Ul + Z dg T.~ (g = 1! 2, ...m, m+1) 

h=2 
... (4.8) 

In the same way Zl is also eliminated from Ql 

.th the secciad approximation proceed once again 

with the same rule as described before. The Zu3 n,.Tucker 

condition for the free variable has the form 

It the derivative with respect to a free variable is 
not zero then Q can be lowered by varying ul positively or 
negative:1y. More precisely, if the derivative with respect to 
U1 is larger than zero, ul has to became negative or vice versa. 
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Bealets Algorithm : Bealets method determines the minimum 

of a definite quadratic form subject to linear constraints. 
The determination of a feasible basic solution of constraint 

system has nothing to do with quadratic optimization, and is 

therefore assumed here to have been accomplished before hand. 

As a result, the linear constraint 411 hate tie form 

n 
'lo 

 

+a x~ >, c 	.th ejo 3,, o 	••' 
k=a. 

These are stoned row wise in the first through the mth rorw 

of simplex tableau d . 4ie 0t'h row of constraint matrix is 

not used since eymetrio quadratic objective function C 

requires an (n+l) x (n+l) array as storage area (not just one 

row) . 

However,) for reasons of storage economy$ only the 

upper triangle of C Is stored in the array ty in the form of 

densely packed row segments. The element ci, ?therefore 

corresponds to C ( (2 x n4+l) x i/2 + K] . This necessitates 

two prepration 'of two tableaus ebo*n in Fig. (i.l). 

Storage allocationt Internally the program expands tableau 

A by (n+l) additional rows. Therefore this space 

has to reserved when declaring A (but not for the input routinE 

The dimension of storage area of A has to be (m+n+2) x (n+l) 

Computational approach: Corresponding to each exchange of 
variables (dependent .. independent) In the constraint tableau A 
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therefore there is a ccrrespcnding exchange in a quadratic 

objective function C . This latter exchange is handled by 

means of subroutine mpg. 

4*3 .Uatlpulati1a~ 

To determine whether a generation expansi an plan 

satisfies a desired level of re lability generally two 

reliability indicies are used,, loss of load protrability, 

(LCLP), and expected value of demand not served,E(1 fS). 

In the present Case the loss of load probability has been 

calculated. 

4.301 Loss of +caad Prabab .0 	13sffective load(13) ©f the 

system gives the relationship between the system load, and 

generating units. The actual units may replaced by ficticous 

perfeot1 r reliable units and fictitious random load, whose 

probability density functions are the outage capacity density 

function of units. 

The effective load, be defined by  

Le  L + £ Loi  ...  t4.lO) 
i 

where$ L Is the fictitious random load 
Lol Is random outage load of the 1th unit. 

When Lci W Ci 9 the net demand Injected into the system for Ith 

unit is zero$ just as it world be If actual Ci were forced 

offline. Also the installed capacity of the system be given by 

IC s ~ Ci 	•0• 	 ('Till) 
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In the special case where actual units are 100 percent 
reliable, Loi  = 0, 1 19  ... G and Le L. Unfortunately 
this case never occurs $ SO cne forced to have F (Le) from 

F(L) and foi  (Loi). Since Le is the sum of independent 
random variables, L and La  , I = .l ... G whose distributions 
are known! therefore F(Le) ie obtained using the recursive 
convolution equation 

Ft(Le) = $ ?it l  (Le _ Loi) fo( 'o± )  dLoi 	... ('.1a) 
Lei  

where, F3'(Le) be thel effective load probability distribution 
with the outage of first I units, Convolved in . obious ly, 

F(L) 	for i = o 
F4(Le) 

F(Le) 	for i = G 

Since 'ei  is the descrete density function equn. ti.12) 
becomes, 

F4(Le) 	Z (Le .. Lo j ) f ©i  (Loi ) 	 ... ()+.13) 
L4i  

Loi  denote the descrete Value Lo  can assume. 

Because the outage capacity of unit may defined as two 
stage stochastic process. 

foi  (Loi  = 0) = pi 

fol (LO1  : Oi ) = qi 



The equn. (4.13) siffiplifies furthers 

D` (Le) = 1 '~. (Le)P1 + 	"1 (Le .. 0i) qi 	1. = 1 ... G 

The above equation gives the probability of existing the 

load Le. 

1-.3.2 Reliability Analysis ZOr lsl 4ated S stmt Thee loss 

of load probability Is the popular method for generation 

system reliability analysis. It must be r~aember that the 

goal of system plarmer Is to select several expansion plans 

frcn perhaps a dozen feasiblo plans that satisfy the desired 

reliability creteria established in electric utility. Thus 

the basic problem is to evaluate week by week the variation 

In reliability, as new units are added to supply the growing 
loads to determine plans that have acceptable reliability 
characteristics. For each week in the study periods care 
must be taken to simulate the anticipated maintenance schedules 

because these schedules drastically influence system reliabilit 
Carrying out the steps outlined enables the system planner 
to identify quickly the expansion plans that are acceptable 

and should be evaluated and compared on an economic basis. 

In systems in which peak demand is very pronounced 

and peaking un1 is are used extensively during the peak 

periods, it is usually necessary to define two load shape 

for each week or month, one load shape, would define peak 

hours, in which peckers are needed,, and other would define 



the off peak periods in which only mid range and base,  load 
units are required. The delineation of peak and off peak 
periods usually results in a more accurate representation of 
systen. The reliability analysis procedure Is some for 
every week. 

4.4 pev9 ement of - ori. t2 for Generation P lanai 

Using 3eale's teohnique an algorithm has been 
developed. The steps of the algorithm are as follows. 

1. Formulate the quadratic cost function with coefficients 
ai ,bi 9ei  as in 4.2 . 

2. Choose initial feasible solutic7n as follows. The 
injected power at each bus for the present stage is taken 
equal to the injected power for the previous stage plus 
increase in demand distributed equally at all the buses. 

3. land now optimized Injected powers by Beal©'s quadratic 
programming method. 

4. Add the generating units at the generating buses so that 
the installed capacity at these buses is sufficient to 
Inject this. power. 

5. Calculate the LOW by equn. (4.l) . If the LOLI < o, C)0)+ 
capacity at these buses are sufficient to take into 
account uncertainities, otherwise add generating units so 
that LO.P < ©.OLd4. 

The LOLP has been calculated manually. The steps used 
in algorithm are also accompanied with. Flow Chart. 
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4.4.1.  1ithat  

STAR 

READ THE COS C COEFFICIENTS NO OF 
GEN. ELISE, LOAD BUSES, DEI JDS, OUTAGE 
RATING AND CAPACITY 	NITS 

CHOOSE THE INITIAL 
BASIC FEASIBLE 
S©LUTI t 

SOLVE THE ©PTIMIZATIC 1 PROBLEM 
BY BALES ALGORITHM M 

ADD. 6@J. 
UNITS 

NO 
TS 

INSTALLED CAPACI 
> POWER TO BE 
INJECTED 	/ 

YES 

ADD. GEN. 
UNITS 

CALCULATED  1 QLP- 

IS• LCIP < O.00 

YES 

ST G' 

The computer programme for the Beale's Method is given 
In index. 
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Apps cation 

The algorithm is applied to the five bus system. 
A fife bus system showin In Fig. 4.2 is considered for 
expaflsi(Xk. The bus, .1,2f3 are generating buses and 1+95 
are load buses. The existing and future demands are given 
in Table +.1 . The fixed investment and expa si ca costs 
of the plant are given in Table 4.2 . The operating costs 

are as sumed to be of the form given by 

f1(p01) = biP1  + c1P2 	i = 1,2,3, ... 

The operating cost coefficients are given in Table 4.2. 
The Table 4.3 gives the existing plant output$ installed and 

ma um capacities. 

TABLE -)+.1 

BASE 1'WA = 200 

Load This No.  
If 	- ©.5 	0.8 
5 	0.7 	.1•a 



r 

TABLE 4.2 

Fixed Cost Cost of 	stating cost coefficiev 

	

Gen.Bus No. in money 	capacity b ~... 	o m 
unit 	expansic 	i 	 P 	~x pu •u.o 
(mu) 	mu/14W 	gnu (p.u. 

tutL 

1 	100 	1 	2.f506 	0.Oik+2 
2 	125 	1 	2.49218 	0.00207 

3 	50 	1 	20117 	0.00379 

TABLE 1.3 

	

Gene Bus, No, O~,ut 	fisting iris tailed Mezlinu ~u site 

	

. .t 	capacity (p.u.) 	capacity(p.u.) 

1 0.15 0,3. 5,0 

2 0.6 0.6 =1« 0 

3 0.)+5 0.6 10 

The shape of load duration curve is assumed to be as shown 
In Fig. +.3. The load probability distribution curve is 
shown in Fig. 4.49 in which Fk(L) Is probability of load 
existing for period ks. and Q is the sax. ds nand. 

The number of units available, their probability of 
outage, cost of unite their capacities are as follows. 
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TABLE )4 14 

Gen.Th s No. 	Number of units 

I 	 3 

2 	 14 

3 	 14. 

TAME 4.5 

Gen. 
Bins 	(i tage Cost Carrying Capacity in 
No. 	rate (mu) cost MW 

0,02 60 0.2 25 
1 	0.02 60 0,2 25 

0.02 60 0.2 25 

0.02 110 0.2 50 

0.02 110 0.2 50 
2 

0.02 110 0.2 50, 
0.02 60 0.2 25 

0.02 60 0.2 25
.  

	

0.02 	60 	0.2 	25 

	

0.02 	110 	0.2 	50 

	

0.02 	60 	0.2 	25 

The unit available for expansicn are as follows 
TI BLS 4.6 

• No. 	No.  
1 	 7 
2 	 3 
3 	 6 



The outage rate, cost of unit, carrying cost and capacity 
of these units are given. in Table +.7. 

• TABLE tf.7 

Gen. Bus 	(itage 
no. 	rate 

Cost 
tmu) 

Carrying 
cost 

Capacity 
in MW 

0.02 110 062 50 
0.02 60 0.2 .25 
0.02 60 0.2 25 

1 	0.02 110 0.2 50 

0.02 60 0.2 25 

0.02 60 0.2 25 

002 60 0,2 25 

0.02 110 0.2 50 

2 	0.02 60 0.2 25 
0,.02 110 0.2 50 

0.02 60 0.2 25 
0.02 60 0.2 25 
0.02 60 0.2 25 

3 	0.02 110 0.2 50 
0.02 110 0.2 50 
0,02 110 0.2 50 



The results obtained wwero as follows. The injected power 
at each base, is given in Table 4.8. 

Table 4.8 

Gen. Bus 	 Injected Power 
No. 	 in MW 

1 	90.71617 

2 	130.2+0883 

3 V 	138.87500 

The above Values are must same as the results obtained in 

reference (3.5) • 

Initial costs = ..71+11.3787 mu 

The reserves depending upan loss of load probability are 
as follows.. 

If the loss of load probability is greater than 
0.004 the additional generation capacity is added. 
The cost of final injected power Is (i.e. operating cost) is 

N G e
i 

+ biP1 + (iP 	al + b1Pl + t~l112 

VL2 + 	2 +X2'2 

a3 + b3P3 + c3F 

= 1258.31+86 mu. 



The loss of load probability at various buses are as follows z 

TABLE 4.9 

Gen.NBus 	Installed Capacity 	LOLP 
M" \W 

1 	 125 	 0.68915 x 10" 3̀  

2 	 225 	 0.24693 x 30 2̀  

3 	 175 	 0.103930  x 30"2  

Therefore the units to be added at generating buses are 
as f o.lows s 

ThBL1 4.10 

aen.Bus No. 	No. of units 	Capacity in 14W 

1 	 1 	 50 
2 	 1 	 50 

3 	 2 	 25 

Cost of unit additions = 2800 mu 
Total Final Costs 	w 10? 5348 mu 
Cost of Expansion 	Final Cost •. Initial Cost 

33.i6.6093mu 



CCWCLUSIOl4S AND SUGC STI S 

The quadratic programming problem formulated 
can be applied to solve generation planning problems. 
The Beale's algorithm is applied. The memory required 
is less as cost function coefficients are represented by 
the upper triangular matrix, as no artificial constants 
are used for optimization purpose, and the 
A (Constraint matrix), C (Cost coefficient matrix) are 
transferred according to method similar to simplex linear 
programming algorithm. The method works faster. For the 
five bus system the results are obtained in 3.02 seconds 
(including compilation time) and one iteration. Loss of 
load probability incorporated takes Into account the un. 
certainties Involved due to forced outages of various 
generating units. The reserves of generating capacities 
needed are calculated on LOLF basis, which is the more 
popular method of reliability analysis of generating system. 

The formulation presented for genexration planning 
can be extended to the transmission and distribution 
planning problems. The cost function of transmission 
planning problem may capital cost of transmission line and 
cost of transmission losses. The constraint imposed may be 



security constraints i.e. no overloading of circuits 
be pex .tted. In distribution planning problem may having 
objective function of the cost of substations, Sub-Transmission 
lines and cost of losses. The constraints may be permissible 
value voltage p no overloading of circuits and cct straint 
on the number and type of circuit that can be added. As 
the dimensionality problems are not inherent in this 
technique it should be possible to analyse large systems. 
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APPENDIX 

C 	MAIN PROGRAM GENERATION SYSTEM PLANNIM QP METHOD 
CGMMON/THREE/NU,NAfNC,NNCrQO,,PO,QO1,PO1►CCO*CC.AO,AO1,CCF,CF,RR 
DIMENSION AC(3),BC(3):D(3)#DM(5t2),P0Il3),P01I(3I.P02I(3),IPRT2(15 

1),CA(120)+  AA( 120) 
DIMENSION COP(3).XTOL(3),DIF(5) 
READ(1, 2000) NB,NGB,NL,NY,NTJ 
PRINT 2000,NBsNGB,NL,NY,NTJ 
READ( 1,2000l(AC(I)sBC(I),D(I),I=1.NGB) 
PRINT 2000.(AC(I),8C(I)wD(I),I*1.NGB) 
READ(192000)RINT►RINF 
PRINT 2000,RINT,RINF 
READ( 1,2O00)(PGIM(I),Iw1,NGB) 
PRINT 2000,(PGIM(I)rI,1,NGB) 
READ(1,2000)((DM(I,J),Iil,NY).J*1,NL) 
PRINT2000.((DM(I.J),I=1,NY),Ju1,NL) 
RFAD(1,2000)(POI(I)►I=1,NGB) 
PRINT 2O00,(AOI(I)►Ia1,NGB) 
RFAD(1,2000)(P021(I),I*1,NGB) 
PRINT 2000,(P021(I),Ic1,NGB) 
NGB2=2*NGB 
MuNG82+2 
M1=M+i 
N=NGB2 
N1=NGB+1 
IZSR*NG82+1 
IT=l 
ISSR=1 
Ii1uIT+1 
ITRNs1 
NBBUM+N+l 
N2=Nl+N GB 
N12=N1+1 
D02121*1,NGB 

212 PO1i(I)mP0i(1) 
RINF=1.0+RINF 
RINTat1.0+RINT 
Rs(RINF/RINT)*IT 
CCF*0.0 
Rl*t(RINF**NTJ—I)/RINT**NTJ) 
DO 11.8 J 1, NGB 
NUU*NU(J) 
00 118 I=l,NUU 
ANCzNC(J,I) 

118 CCF%CCF +R*R*CC(jrI)+SAO(J,I)*ANC 
77 R:(RINF/RINT)*IT 

DO 6 I*1.NGB 
AC( 1)=R*AC(I) 
BC(Y)wR*BC(I) 

6 D(I)=R*D(I) 
DO 8 I=1,NGB 

8 COP( I)IAC(I)+BC(I)*PO1I(I)+D(I)*PO1I(I)**Z 
GCO IN 0,0 



DO 18 I=1,NGB 
18 GCOINrGCOIN+COP(I) 

GCOINRCCF+GCOIN 
PRINT 1199GC©IN 
TYPE119,GCOIN 

119 FORMAT(13HINITIAL COSTZ,E20.5) 
ITRN=O 

410 CA(1)=O.0 
I1I=IZSR**2 
DO 416 I=li111 

416 CA(I)*0.0 
I2Ia(NBB+1)*IZSR 
D0417I=1•I2I 

417 AA(T) 00.0 
DO 11 I*1,NGB 
DP(I+NGB)*0. 

11 CA(1)*CA(1)+AC(I)+BC(I)*PO1I(i)+D(I)*PO1,(I)**2 
CA(1)=CA(1)+CCF 
N1*NGB+1 
DQ 9 KHz2sNl 
KH1=KH-1 

9 CA(KH)tBC(KH1)*0.5+D(KH1)*PO1I(KH1) 
DO 403 I=N12sN2 

403 CA(I)a^~CA(I—NGB) 
DO 10 I*~l,N 
KH*(2*NGB2-I+1)*1/.2+I+1 
IF( I.GT.NGB)CA(KH)=D(I—NGB) 
IF( I.LE.NGB)CA(KH)=D(I) 

10 CONTINUE 
DO 404 I=l.NGB 
KH*(2*NGB2-I+1)*I/2+(NGB+I)+I 

404 CA(KH)= D(I) 
PRINT 5O00,(CAZX),IalsllI) 
IT1zIT+1 
001141 1:N1 

1114 AA(I)z0.0 
K5( NGB+1)*IZSR+1 
AA(K)*0.0 
DO13I=19NGB 
KH*K+I 
KH2*KH+NGB 
AA(KH2)=-1.0 

13 AA(KH) 1.0 
DO 14 1 19NGB 
KH=I*IZSR+I+1 
AA (KH Y =-1. 0 
KH2*KH+NGB 
AA(KH2)=—AA(KH) 
KH= I* I ZSR+l 
AA(KH) mPGIM(I )—PO2I (I ) 



14 CONTINUE 
D0405I=1,NG8 
KH=IZSR*(NGB+1+I3+l 
KH1*KH+I 
KH2*KH1+NGB 
AA(KH)*PO2I(I)-P01It1) 
AA(KH1)'1.0 
AA(KH2)*-1.0 

405 CONTINUE 
NBB1ffiNBB+1 
DO 16 I-1,NBE31 
K1 (I-1)*IZSR+l 
K2*I*IZSR 
TYPE 5000,(AA(K),K=Kl,K2) 

1b PRINT 5000,(AA(K)#K=K1,K2) 
TYPE 3002 
PRINT 3002 

3002 FORMAT(OGONSTRAINT MATRIX4) 
CALL BEALE (XZSR,IS$R,N,M,CA,AA,IFALL,IPRT2) 
IF(ITRN..GT.O.AND.IFALL.NE.0) GO TO 411 
DO 15 Iu1,NBB1 
K1=(I-1)*IZSR+l 
K2*1*IZSR 
TYPE 5000,(AA(K)#K*Kl,K2) 

15 PRINT 50009(AA(K),K=K1,K2) 
IFt IFALL.-1)307,306,307 

307 DO 305 I*l,NBB 
IF( IPRT2(I)-NGB2)309+3139,305 

309 II*IPRT2(l) 
I1a(I-0)*IZSR+1 
DP(II)*AA(I1) 

305 CONTINUE 
DO 407 I=1,NGB 
DIF(I)-DP(I).-DP(I+NGB) 
DIF(I)*ABS(DIF(j3) 

407 P02Itt)-P021(I)+DP(i)--DP(I+NGB) 
TYPE 3001 
PRINT 3001 

3001 FORMAT (~ I NJECTED POWERS) 
DO 315 I*I,NB 
IF(I.GT.NL) GO TO 314 
PCI)ffi-DM(IT1,I3 
GO TO 315 

314 I1-1-NL 
P(I)=P021(11) 
PRINT 2000,P(I) 
TYPE 2000,P(I) 

315 CONTINUE 
XX*DIF(1) 
DO 408 I=2,NGB 



IF(XX.LT.DIF(I))XXUDIF(I) 
408 CONTINUE 

ITRN=ITRN+1 
PRINT 409PITRN 

409 FORMAT(@ITERN©=@,I4) 
IF(ITRN.EQ.21)GO TO 411 
IF(XX.GT..001)GO TO 410 

411 DO 318 I=1,NG8 
318 COP(I) AC(I)+BC(I)*P021(I)+D(-I)*P02I(I)**2 

GFCON=0.0 
DO 418 Ia1,NGB 

418 GCOFN=GCOFN+COP(I) 
GCOFNwCCF+GCOFN 
PRINT 218,GCOFN 
TYPE 218,GC©FN 

218 FORMAT(//IIHFINAL C©ST='£20.50 
COSEXP=GCOFN—GCOIN 
PRINT 84,COSEXP 
TYPE 84,COSEXP 

84 FORMAT(21H**CQST OF EXPANSION=.E20.6) 
306 PRINT 4000 

TYPE 4000 
4000 FORMAT(9H*Q.P FAILS) 
601 STOP 

END 



SUBROUTINE BEALE(IZSR,ISSR,N,M,C,A,IFALL,IPRT2) 
DIMENSION C(120)>A(120),IPRT1(15),IPRT2(15),LIST(15),ABLIST(15) 

1L],(15),L2(15) 
INTEGER ABLIST,V,S,Z,T,R 
REAL MAX 
LOGICAL 61 
DO 1K=1,N 
L1(K)cK 

1 IPRT1(KI=K 
DO 2I=1+M 
L2(I)=I 

2 IPRT2(I)=N+I 
L10=N 
L20 =M 
DO 3 K=1,N 

3 ABLIST(K)UO 
LISTO=0 
M1=M 

1000 IFfLISTO.EQ.0)GD TO 1001 
CALL MPS(Ci0,0,1,LIST.LISTU,KP,MAX) 
IF(MAX.NE.O.)GQ TO 2000 

1001 CALL MP5(CsLi,LiO,Q1.KP,0s0,1) 
IF (Q1.LT.0. )GO TO 2000 

IFALL=0 
RETURN 

2000 KH=KP*(N+1) ((KP-1)*KP)/2+1 
MAX=0. 
IF(C(KH).GT.0.)MAX=C(KP+I)/C(KH) 
V=-1 

IF(MAX.GT•0.)V=1 
CALL MP2(A,L2,L20,IP,IZSRsISSR,KP.Q1,N,V) 
IF(IP.NE.O.OR.MAX.NE.O.)G© TO 3000 
IFALL=1 
RETURN 

3000 IF(IP•EQ•O•.OR*01*GT.AES(MAX))GO TO 4000 
I=IPRT1(KP) 
IPRT1(KP)=IPRT2(KP) 
IPRT2(IP)=I 
CALL MP 3(A,1,M,O,NsIP,KP,IZSRsISSR,1+1) 
B1=.TRUE. 
CALL MP9(A,C,IP,KP,N,MI,IZSR,ISSR*81) 
GO TO 6000 

4000 ABLIST(KP)=ABLI5T(KP)+1 
T=0 

R=0 
4001 IF(LISTO.EQ.0)G© TO 5000 

DO 4002 I=1,LISTO 
4002 IF(LIST(I).EQ.KP)G© TO 4003 

GO TO 5000 
4003 ZO0 



KKP=KP+1 
DO 4004 S=1,KKP 
ISmS-1 
KH=T*IZSR+IS*ISSR+1 
KH1aKP+Z+1 
A(KH)=C(KH1) 

4004 ZaZ+N--I S 
NKP=N--KP 
IF(NKP.LT.1)G0 TO 4005 
DO 4006 S=1,NKP 
KH=T*IZSR+(KP+S)*ISSR+1 
KH:=KP*(N+1)—(Kp*(KP-1))/2+S+1 

4006 A(KH)=C(KH1) 
4005 IPaT 

CALL MP3(A,R,M,OsN,IP,KP,IZSR,ISSRr1l1) 
f8 La. FALSE. 
CALL MP5(A#C,IP,KP,N,M1,IZSR,ISSR,81) 
GO TO 1000 

5000 LISTO=LIST0+1 
LIST(LIST©)=KP 
IPRT2(M+1)=IPRT1(KP) 
IPRT1 C KP ) =N+M1+KP 
L2(M+1)=M+1 
L20 =M+ 1 
DO 5001 Sa1,L10 

5001 IF(L1(S).EQ.KP)T=S 
DO 5003 S=T,L10 

5003 L1(S) LI(S+1) 
LIG=L10-1 
MiM+1 
T=M 
Ral 
GO TO 4001 

6000 IF(IPRT2(IP).LE.N+Ml)G0 TO 1000 
IPRT2(IP)=IPRT2(M) 
L20=L20--1 
L10zL10+1 
L1(L10)*KP 
LISTO=LISTO-1 
DO 6001 K*1,LISTO 

6001 IF(LIST(K).EQ.KP)GO 10 6003 
GO TO 6004 

6003 DO 6005 I=K,LISTO 
6005 LIST(I)=LIST(I+1) 
6004 NN=N+1 

KH1=IP*IZSR+1 
KH2=M*IZSR+1 
DO 6002 K=1,NN 
KHO*(K-1)*ISSR 
KH3=KH1+KH0 



KH4=KH2+KH0 
6002 A(KH3)=A(KH4) 

M¢M-•1 
GO TO 1000 
END 
SUBROUTINE MP2(A,L2,L20,IP,IZSR,ISSR,KP,Q1,N#IV) 
DIMENSION A(120),L2(15) 
V=IV 
IP=0 
IF(L20.LT.1)RETURN 
DO 1I=1,L20 
KH=L2(I)*IZSR+1 
KHI=KH+KP*ISSR 

1 ZF(V*A(KH1).GT.O.)GO TO 2 
RETURN 

2 QTIV*A(KH)/A(KH1) 
IP=L2 (I ) 
IZ=I+t 
IF( IZ.GT.L20)RETURN 
DO 3I-IZ,L20 
KH=L2( I )*IZSR+1 
KH1=KH+KP*ISSR 
IF( V*A(KH1).LE.p.)GO TO 3 
QtV*A(KH)/A(KH1) 
IF(Q,GE.Q1)GO TO 4 
IP=L2(I ) 
Q1*Q 
GO 103 

4 IE(Q.NE.Q1)G0 To 3 
IO*L2(I) 
DO 5 Ka 1,N 
KHO=IP*IZSR+K*ISSR+,1 
KH2=IP*IZSR+KP*ISSR+1 
KH=IO*IZSR+K*ISSR+1 
QP=V*A(KHO)/A(KH2) 
QO=V*A(KH)/A(KHj) 
IF(QP„LT.QO)GO TO 3 

5 IF(QO.LT.QP)GO TO 6 
6 IP=10 
3 CONTINUE 
RETURN 
END 

.r 



SUBROUTINE MP3( A,IO, I1,KO.K1.IP*KP#IZSR,ISSR,IP1.IP21 
DIMENSION A(120) 
KHOIP*IZSR+KP* SSR+1 
PIV*1./A(KH) 
110=10+1 
II1=11+1 
KKO*KO+1 
KKIaK1+1 
DO A II*1I0,II1 
1=11-1 
IF(I.c.Q.IP)GQ TO 1 
KHO=1*IZSR+KP*ISSR+1 
IF( IP2.EQ.1)A(KH©)iA(KHQ)*PIVi 
DO 2 KK1KK4,KK1 
K=KK-1 
I FF (K. EQ. KP) GO TO 2 
KH1=I*IZSR+K*ISSR+a. 
KH2=IP*IZSR+K*ISSR+1 
A(KH1)=A(KH1).A(KH2)*A(KHO) 

2 CONTINUE 
1 CONTINUE 
IF(IP1.NE.1)G4 TO 4 
00 5 KK=KK4sKK1 
K=KK-1 
KH2=IP*IZSR+K*I$SR+1 

5 IF(K.NE.KP)A(KH2.)z.-A(KH2)*PIV 
4 IF(IP2.EQ.UUA(KH)=PIV 
RETURN 
END 

SUBROUTINE MP5(A,L1,L10,Q ,KP,IZNR,IZSRsISSR) 
DIMENSI©N A(120),L1(15) 
KP•L1(1) 
KH= IZNR* IZSR+1 
KHO*KH+L1(1)*ISSR 
Q1=A(KHQ) 
IF(L1O.LT.2)RETURN 
DO 1K*2.L10 
KHO*KH+L1(K)*IS$R 
IF(A(KHA).GE.QI)G0 TO 1 
©1*A(KHO) 
KP*L1(K) 

1 CONTINUE 
RETURN 
END 



SUBROUTINE MP8( ArIZNRPIZSR,ISSR,LIST,LISTO,KP,AMAX 
DIMENSION A(120),LIST(15) 
KPULIST(3 ) 
KHOIZNR*IZSR+1 
KHO=L I ST( 3 )*ISSR+KH 
AMAXmA(KHO) 
IF(LISTO.LT.2)RFTURN 
DO 1 K=2,LISTO 
KHOttKH+LIST(K)*1SSR 
IF(ABS(AMAX).GE,ABS(A(KHO)))G© TO 1 
KP=LIST(K) 
AMAX=A(KHO) 

1 CONTINUE 
RETURN 
END 

SUBROUTINE MP9(A$CsIP,KP,N,M1sIZSR,ISSR*B1) 
DIMENSION A(120)#C(120) 
LOGICAL B1 
IN=N+l 
DO 9000 IRR=l, IN 
IR=IRR-1 
IF(IR.EQ.KP)GO TO 9000 
IZ=O 
IF( IR.GT.KP)IZ1zKP-1 
IF(IR.LT•KP)IZ1=IR 
Izz1=Izl+1 
DO 9002 IS5=3sIZZ1 
ISM I SS-1 
KH=IR+IZ+1 
KH1 IP*IZSR+IR*1SSR+1 
KHO*KP+I Z+1 
C(KH) C(KH)+A(KH1)*C(KHO) 

9002 IZzI2+N—IS 
IT*I2+KP 

9000 CONTINUE 
9100 IKP=KP+1 

IF(IKP.GT.N)GO TO 93.00 
00 9102 IS=IKP,N 
DO 9103 IR=IS,N 
KH=IZ+N—KP+IR+1 
KH1*IP*IZSR+IR*!SSR+1 
KHO$IT+IS+I—KP 

9103 C(KH)=C(KH)+A(KH1)*C(KHO) 
9102 IZm IZ+N-IS 
9200 DO 9201 IR*IKP,N 

KH=IT+IR+1—KP 
KH1==IP*IZSR+IR*ISSR+1 

9201 C(KH)=C(KH)+A(KH1)*C(T+1) 
9300 IZ1=0 

DO 9301 IRR-1►KP 



IR*IRR.1 
I2*O 
KH=KP+I Z 3.+1 
KH1=IP*IZSR+IR*ISSR+1 
STORE*C(KH)+A(KHI)*C(T+1) 
00 9302 ISS*1•IRR 
IS= ISS--1 
NCH= I P* I ZSR+I S* I SSR+1 
KH1=IRR+IZ 
C U(H 1) =C (KH1)+A ( KH) *STORE 

9302 I2=IZ+t4 MIS 
9301 IZ1=IZI+N—IR 
9400 IF IKP.GT.N)G0 TO 9500 

DO 9401 IR~+IKR*N 
IZ*0 
IRR*IR+1. 
DO 9401 ISS*1, IRR 
ISrISS-1 

IPtIS.NE.KP)6OTO 9402 
IZ=IZ:+1 
GO TO 9401 

9402 KH=IRR+IZ 
KH1 *I P* I ZSR+I.S* I SSR+1 
KHO I T+ I R+1-KP 
C{KH)zC(KH)+A(KH1)*C(KHO) 

9401 IZO $Z+N--I S 
9500 IFt .NOT.auGo To 9600 

IZ=U 
(HO I P* I ZSR+KP* j SSR+i 
DO 9501 ISS*1,KP 
IS= I SS--1 
KH*IKP+IZ 
KHI*IP*IZSR+XS*ISSR+1 
C(KH)*C(KH)+ACKHI)*C(T+1) 

9501 IZ*IZ+N—IS 
DO 9503 IR*KP.N 
KHz I R+I T+1*-KP 

9503 C(i(H)*C{KH)*A(KHO) 
IZ*4 
DO 9504 I SS=1 # I KP 
IS I5$_1 
KH*IKP+IZ 
C(KH}=CtKH)*A(KHO) 

9 504 I Z* I 1.+N-C I S 
9600 IZ=0 

DO 9601 I SS* 1, KP 
IS*ISS-*1 
KH*KP+IZ+1, 
C(KH)=O. 

9601 IZ*IZ+N-~IS 
C(T+1)=1.IC(T+1) 
IF(IKP.3T.N)GO TO 9602 
Q0 9603 IRwIKP,N 
KH* .I R+ I T+1-KP 

9603 C(KH)aO. 
9602 RETURN 

END 
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