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ABSTRACT 

Wireless networks are going to be pervasive, and hence it is almost impossible to keep 

ourselves away from this technology. But still wire network has its own significance, 

which can not be ignored due to its reliability. The major difference between both 

technologies is that wireless has more error prone attitude to packet transmission with 
respect to wired network. Among the available transport level protocol, TCP is the most 

prominent due to its characteristic and long term use in application. Rather than 

concentrating on new transport layer protocol, I have improved the present TCP 

congestion control mechanism so that it can be used universally on wired and wireless 
technology. One of the reasons behind the degradation of TCP congestion control 

mechanism performance is considering packet loss due to corruption in channel as 
network congestion. 

In this dissertation I have cast the idea of two windows for measuring the real congestion 

window and status of packet loss due to corruption in channel. Proposed algorithm 

changes real congestion window based on degree of packet loss due corruption in channel 

to increase in throughput of network. It has been tested on the network simulator NS3. 
results shows that congestion widow get affected only in case of packet loss due to high 

load rather than packet loss due to corruption in channel. It enhances the network 

throughput ratio significantly of such networks, which is susceptible to error, with respect 
to present TCP variant such as Tahoe, Reno and NewReno. 
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CHAPTER 1 

1 Introduction and Problem Statement 

1.1 Introduction 
One of the core protocols of the Internet Protocol Suite is the Transmission Control 

Protocol (TCP). It is one of the two original components of the suite, complementing 

the Internet Protocol (IP), that's why the entire suite is commonly referred to as TCP/IP. 

TCP provides reliable, ordered delivery of a stream of bytes from a program on one 

computer to another program on another computer. TCP suppose that the lost packet due 

to network's congestion [7], this is reasonable for wired network. But it is not suitable for 

the error-prone especially wireless network which has many characteristics like high bit 

error rate and low bandwidth etc. packet loss may happen due to weather conditions, 

obstacles, multipath interferences, mobility of wireless end-devices, signal attenuation 

and fading etc. When TCP [4] operates in wireless networks, it suffers from severe 

performance degradation because of the different characteristics of wireless networks and 

wired networks. The performance degradation is mainly caused by TCP's basic 

assumption that any packet loss is an indication of congestion. Although this assumption 

works very well in wired networks where most packets are lost due to congestion only, 
the assumption is not appropriate for wireless networks where most packet losses are 

caused by wireless transmission errors [3]. The appropriate behavior of TCP for the 

packet loss due to wireless transmission errors is just to retransmit the lost packet without 

reducing its sending rate. Unfortunately, TCP considers every packet loss as congestion 

signals, and unnecessarily decreases its sending rate by halving its congestion window 

size. To avoid such performance degradation, it is important for TCP to differentiate 

between wireless losses and congestion losses. So, many improved TCP congestion 

control mechanisms have been presented [10]. The essential of this improved scheme is 

to distinguish the lost packet due to congestion to those due to corruption. The improved 

schemes use the congestion control mechanism while the network is congestion and hold 

the packet sending rate while wireless link corruption. 
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1.2 Motivation 
Over the last decade, both the Internet and mobile telephony have become parts of daily 

life, changing the ways we communicate and search for information. These two distinct 
tools are now slowly merging, both at the surface, and in the underlying communication 

infrastructure. 

Wireless mobile Internet means that mobile gadgets are first class citizens of the Internet. 

Any communication task, e.g., email, web browsing, Internet radio, or peer-to-peer file 

sharing, that is possible with a stationary computer connected to the Internet, should be 
equally possible with a suitable mobile gadget. 

Enabling a wireless mobile Internet is a huge task. One prerequisite is that TCP/IP, the 

two most important protocols on the Internet, must work satisfactorily across a 

heterogeneous network consisting of an assortment of stationary and mobile devices, 
connected by different types of wired and wireless links. 

The focus of this dissertation is on the TCP protocol, the problems encountered when 
using TCP over error-prone network perceive packet loss due to corruption as 

overloading mistakenly. Due to this phenomenon unnecessarily tradition TCP congestion 

control mechanism reduces congestion window. So our intention has been to improve 
throughput of error-prone network by ignoring the packet loss due to corruption in 

channel. However, the key issues like Efficiency, Ability to deal with heterogeneity, 
Stability, Scalability and Simplicity need to be addressed while designing the TCP 

congestion control [23]. 

1.3 Problem Identification 
Unfortunately present TCP mechanism could not give expected result due to packet loss 

due to corruption in channel. We know internet technology is changing fast and wireless 

network is becoming pervasive all around. And packet lost in wireless network may not 

imply congestion in network because it may happen due to weather conditions, obstacles, 

and multipath interferences, mobility of wireless end-devices, signal attenuation and 

fading. So our assumption upon which network congestion window has been changing in 

TCP congestion control mechanism is not appropriate for wireless. 
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L, 

L2  

The overall goal of congestion control is to optimize the performance in a communication 
network. This optimization means, roughly, that sending rates at the data sources should 
be as high as possible, without overloading the network. The primary measure of network 
overload is packet losses; when the arrival rate at a link exceeds capacity, the 
corresponding queue starts to build up, and when the queue is full, packets must be 
discarded. The bottleneck links in the network should be fully utilized. The requirement 
of a small loss rate implies that the average arrival rate at each bottleneck link should 
either match the link capacity exactly, or be very slightly larger. 

1.3.1 Problem Statement 

100 Mbitis 

Figure 1.1 Packet is passing through bottleneck network and tends towards congestion in absence of control [21. 

In the "Fig. 1.1" Ll, L2, L3 ...... Ln sources are sending packet through available 
resources, which will leads towards congestion for deteriorating the situation in absence 
of any control. Here sources are sending at I OOMbit/s and network capacity is 1Mbit/s. 

The problem for which a control system needs to identify mechanisms which permit 
efficient dynamic sharing of the pool of resources (channels, buffers, and switching 
processors) in a packet Network can be defined mathematically [2] as follow, from "Fig. 
1.1" 
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z,=: L <= C. 	 (1.1) 
Li = sending capacity of i h̀  node in. 

C = network capacity. 

There are some issues that need to be considered for maintaining the (1), considering this 

from "Fig. 1.1" 

• Scalability: whatever be the solutions that need to be scalable for large network i.e 

for large N, it should take care of large number of source. 

• Dynamicity: here number of node and each node capacity may change, so 

accordingly we have to take care of this. 

i.e. N- varies ,Li—varies : more specifically N and Li are function of time. 

• Here resources are far from control system. 

i.e. we need to control the flow at network node, which can be manipulated at 

source node only. 

The main objective of the present research work can be described by the statement of the 

problem expressed as follows: 

"To design a TCP congestion control mechanism so that it can be used universally 

on wired/wireless network and increase the ratio of throughput, which deviated 
due to corruption in network in the presence of existing TCP congestion control ". 

To achieve the desired objective of increasing the throughput of error-prone network 

following smaller objectives can be set: 

• To identify dropped packet due to corruption in channel. 

• To measure the degree of corruption in packet. 

• Treat congestion window as normal in case of few degree of corruption. 

• To maintain two windows, one as real congestion window and other as guideline 

in case of corruption in channel 

1.4 Thesis Organization 
This dissertation report comprises of five chapters including this chapter that introduces 

the topic and states the problem. The rest of the report is organized as follows: 
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Chapter 2 details the fundamentals and provides a literature review of the various TCP 

congestion control algorithm and flavor used in networks. Research gaps and 

shortcomings are identified and described. 

Chapter 3 describes the proposed TCP congestion control algorithm which increase the 

throughput of error-prone network based on degree of corruption. 

Chapter 4 discusses the implementation details and provides the experimental results of 

the proposed algorithms. In this chapter performance of the proposed algorithm is also 

compared with the existing one. 

Chapter 5 concludes the dissertation work and gives suggestions for future work. 



CHAPTER 2 

2 Background and Literature Survey 

2.1 Transmission Control Protocol 
Above the IP layer, we have the transport layer, where the Transmission Control 

Protocol (TCP) is the protocol of primary interest. TCP is responsible for dividing a data 

stream into packets, ensure reliable delivery even when the IP layer loses, reorders, or 

duplicates packets, and at the same time it senses the state of the network to avoid 

overloading it. 

The dominating transport layer protocol is TCP. It is used for all kinds of data streams. A 

TCP connection is a bidirectional, flow controlled, and reliable stream of data between 

two endpoints, identified by IP address and port number. Our primary interest is in TCP 

connections for transfer of smaller or larger files. For this TCP usage, it is desirable to get 

as much data as possible through the network, while at the same time we must avoid 

overloading the network, and share available bandwidth in a fair way with other users. 

TCP uses a sliding window flow control. The window limits the amount of data that can 

be sent without waiting for acknowledgement (ACK) from the receiver. 

When the window is constant, this results in the so called "ACK clock"; the timing of 

each sent packet is determined by the reception of the ACK for an earlier packet. One can 

think about the sliding window and the ACK clock as a peculiar inner control loop which 

determines the sending rate; when the roundtrip time fluctuates, the sliding window gives 

an average sending rate of one full window per average roundtrip time. The window size 

is adjusted depending on received ACKs, and it is the details of this outer loop that differ 
between TCP variants. 

The objective of the TCP window control is to get a high throughput, close to the 

connection's fair share of the available bandwidth, and at the same time avoid 

overloading the network. The fair share can vary due to varying amounts of competing 
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cross traffic, and also due to network changes such as to routing updates or wireless links 
with time-varying capacity. 

2.2 Layer of congestion control mechanism 
Congestion control is one piece of the Internet machinery. But how does it fit in the 
larger picture, and how does the Internet really work. Layered design of communication 
systems is a modularization technique, where each layer at a particular node needs to 
know how to communicate with the layers directly above and below at the local node, but 

only to the same layer at remote. 

12] JLI ~;ticDp2-A. 

Ii 

I ixzk 

Ali ' aic ;1 rri~c3i. 

Figure 2.1. The layers of the TCPIJP' neiworiing model 

One of oldest engineering concept, modularity is as old as engineering itself. Modularity 

is such concept which helps us to design a system by identifying its component 

independently and then integrate it. Just following this ideology to resolve the data 

network issue, there has been designed a hierarchal modularity form, which contains 
black box at various layer are in fact distributed black boxes. The bottom layer of the 

hierarchy consists of the physical communication link. 

Flow control can be exercised at various levels in a packet network. The following levels 

are identified and discussed [1]. 
1) Hop Level: This level of flow control attempts to maintain a smooth flow of 

traffic between two neighboring nodes in a computer network, avoiding local 
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buffer congestion, throughput degradation and deadlocks. It can play the role 

of arbitrator between various classes of traffic competing fora common buffer 

pool in each node e.g. channel queue limit, buffer class, virtual circuit hop 

level. 

2) Entry-to-Exit Level: This level of flow control is generally implemented as a 

protocol between the source and destination switch, and has the purpose of 

preventing buffer congestion at the exit switch e.g. Arpanet's RFNM (ready 

for next message), SNA Virtual Route Pacing Scheme, GMD Individual Flow 

Control 

3) Network Access Level: The objective of this level is to throttle external inputs 

based on measurements of internal (as opposed to destination) network 

congestion. Congestion measures may be 

• local ( buffer occupancy in the entry mode such as Input Buffer Limit 

Scheme) 

• global (total number of buffers. available in the entire network such as 

isarithm scheme), 

• selective ( congestion of the path leading to a given destination such as 

choke packet scheme) 

4) Transport Level: This is the level of flow control associated with the transport 

protocol, i.e., the protocol which provides for the reliable delivery of packets 

on the `virtual" connection between two remote processes. Its main purpose is 

to prevent congestion of user buffers at the process level 

2.3 Classification of actual flow control 
In real life, however, some control structures defy the simple, hierarchical representation 

here proposed, and seem to combine two or more levels into hybrid solutions (Table 2.1) 
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ARPA TRANS SNA GMDNET 

PAC 

cql rfnm NCP X.25 SDL VR Session i.c SBP 

C pacing pacing 
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ENTRY- Y Y Y Y Y 

EXIT 

TRANSP. Y NOT Y N N 

DEF 
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2.4 Congestion control in TCP 
Computer networks form an essential substrate for a variety of distributed applications, 

but they are expensive to build and operate. This makes it important to optimize their 

performance so that users can derive the most benefit at the least cost. Though most 

networks perform well when lightly used, problems can appear when the network load 

increases. Loosely speaking, congestion refers to a loss of network performance when a 

network is heavily loaded. Since congestive phenomena can cause data loss, large delays 

in data transmission, and a large variance in these delays, controlling or avoiding 

congestion is a critical problem in network management and design. This dissertation 

presents some approaches for congestion control in wired/wireless computer networks 

universally. 

Historically, the first wide-area networks (WANs) were circuit-switched telephone 

networks. Since these networks carry traffic of a single type, and the traffic behavior is 

well known, it is possible to avoid congestion simply by reserving enough resources at 

the start of each call. By limiting the total number of users, each admitted call can be 
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guaranteed to have enough resources to achieve its performance target, and so there is no 

congestion. However, resources can be severely underutilized, since the resources 

blocked by a call, even if idle, are not available to other calls. 

The objective of congestion control is to keep the load of the network close to the 

available capacity. The TCP protocol was developed in the late 1970s, resulting in the 

Internet Standard RFC 793 [4]. The principles for TCP congestion control were 

developed a few years later, in response to experience of "congestion collapses" in the 

Internet [5] 

2.4.1 Window-based control 

The most important concept in TCP congestion control is that of the congestion window. 

The window is the amount of data that has been sent, but for which no acknowledgement 

has yet been received. A constant congestion window means that one new packet is 

transmitted for each ACK that is received. The sending rate is controlled indirectly by 

adjusting the congestion size. The standard way of doing this is documented in RFC 2581 

[7], usually referred to as TCP Reno. It is described in this section. Two other common 

variants are TCP NewReno [14] and TCP with selective acknowledgements (sack) [8, 9]. 

Before explaining the control mechanisms, we have to look into how TCP detects packet 

losses. 

2.4.2 Acknowledgements and loss detection 

At the receiving end, acknowledgement packets are sent in response to received data 

packets. TCP uses cumulative acknowledgements: Each acknowledgement includes a 

sequence number that says that all packets up to that one have been received. 

Equivalently, the acknowledgement identifies the next packet that the receiver expects to 

see. When packets are received out of order, each received packet results in an 

acknowledgement, but they will identify the largest sequence number such that all 

packets up to that number have been received. E.g., if packets 1, 2, 4, and 5 are received, 

four acknowledgements are generated. The first says "I got packet #1, I expect packet #2 

next", while the next three acknowledgements all say "I got packet #2, I expect packet #3 
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next". The last two acknowledgements are duplicate ACKs, since they are identical to 

some earlier ACK. On the sending side, there are several possible reasons why duplicate 

ACKs are received: Packets delivered by the network out of order, packets dropped by 

the network, and ACK packets duplicated by the network. Packet losses are detected by 

the sender in two ways: 

• Timeout. If a packet is transmitted and no ACK for that packet is received within 

the retransmission timeout interval (RTO), the packet is considered lost. 

• Fast retransmit. If three duplicate ACK are received, the "next expected packet" 

from these ACKs is considered lost. Note that this can not happen if the 

congestion window is smaller than four packets. 

Packets that are lost, as detected by either of these mechanisms, are retransmitted. The 

value for RTO is not constant, but based on measured average and variation of the RTT. 

It is also modified by the exponential back off mechanism. 

2.5 TCP congestion control state 

There are four distinctive states in the TCP congestion control, illustrated in "Figure 2.2", 

and two state variables related to congestion control: The congestion window cwnd and 

the slow start threshold ssthresh. Typical initial values when TCP leaves the idle state and 

enters the slow start state are a cwnd of 2 packets, and a ssthresh that is the maximum 

value allowed by the wire protocol and by the receiving end. 

We look at the operation of each of the four states in turn. 

12 



Exponential 
backoff 

Idle 	 Slow start 	 Congestion 
avoidance 

F~1st 
recovery 

Figure 2.2 TCP state diagram. Transitions baci.to the idle state are omitted 1211. 

2.5.1 Slow start 

The slow start state is the first state entered when a flow is created, or when a flow is 
reactivated after being idle. The slow start state can also be entered as the result of a 
timeout. In this state, cwnd is increased by one packet for each non-duplicate ack. The 
effect is that for each received ACK, two new packets are transmitted. This implies that 
the congestion window, and also the sending rate, increases exponentially, doubling once 
per RTT. It may seem strange to refer to an exponential increase of the sending rate as 
"Slow start"; the reason is that in the early days, TCP used a large window from the start, 
and the introduction of the slow start mechanism did slow down connection startup. Slow 
start continues until either 

• cwnd > ssthresh, in which case TCP enters the congestion avoidance state, or 
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• a timeout occurs, in which case TCP enters the exponential back off state, or 

• Three duplicate ACKs are received, in which case TCP enters the fast recovery 

state. 

The motivation for the slow start state is that when a new flow enters the network, and 
there is a bottleneck link along the path, then the old flows sharing that link need some 
time to react and slow down before there is room for the new flow to send at full speed. 

2.5.2 Congestion avoidance 

In congestion avoidance mode, ewnd is increased by one packet per RTT (if cwnd 
reaches the maximum value, it stays there). This corresponds to a linear increase in the 

sending rate. On timeout, TCP enters the exponential back off state, and on three 
duplicate ACKs, it enters the fast recovery state. The motivation for this congestion 
avoidance mechanism is that since TCP does not know the available capacity, it has to 
probe the network to see at how high a rate data can get through. Aggressive probing 

would make the system unstable, and a single packet increase seems to work well in 

practice. 

2.5.3 Exponential back off 

TCP enters the exponential back off mode after timeout. Several actions are taken when 

entering this state: 

• The lost packet is transmitted. 

• The state variables are updated by ssthresh <-- cwnd/2, ewnd <— 1 packet. 

• The RTO value is doubled. 

lithe retransmission timer expires again with no ACK for the retransmitted packet, the 

packet is repeatedly retransmitted, RTO is doubled, and ssthresh is set to 1 packet [24]. 
The upper bound for the RTO is on the order of one or a few minutes. Exponential back 

off continues until an acknowledgement for the packet is received, in which case TCP 
enters the slow start phase, or the TCP stack or application gives up and closes the 

connection. 
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The motivation for the exponential back off mechanism is that timeouts, in particular 

repeated timeouts, are a sign of severe network congestion. In order to avoid congestion 

collapse, the load on the network must be decreased considerably and repeatedly, until it 

reaches a level with a reasonably small packet loss probability. 

2.5.4 Fast recovery 

TCP enters the fast recovery state after it detects three duplicate ACKs. When entering 

this mode, the first actions of TCP is to retransmit the lost packet, and set ssthresh E--

cwnd/2. TCP then continues to send new data at approximately the same rate, one new 

packet of data for each received duplicate ack. In RFC 2581 [7], this is described using a 

fairly complex procedure that artificially inflates cwnd. If no ACK for the retransmitted 

packet is received within the rto interval, TCP enters the exponential back off state. 

Otherwise, when an ACK for the retransmitted packet is finally received, TCP sets cwnd 

= ssthresh, i.e., half the cwnd value at the start of the recovery procedure, and enters the 

congestion avoidance state. If more than one packet is lost within the same window, fast 

recovery is limited in that it can recover only one packet per RTT. This is the main 

problem addressed by TCP NewReno and TCP sack. 

The motivation for the fast recovery mechanism is that the reception of duplicate ACKs 

indicates that the network is able to deliver new data to the receiver. Hence, the network 

is not severely congested, and we can keep inserting new packets into the network at the 

same rate as packets are delivered, at least for a while. On the other hand, the loss of a 

packet also indicates that the network is on the border of congestion. At the end of the 

fast recovery procedure, cwnd is halved. TCP restarts the probing of the congestion 

avoidance state at a lower sending rate, at which it did not get any losses. It should also 

be noted that halving the cwnd also implies that TCP will stay silent for about half an 

RTT, waiting_ for ACKs that reduce the number of outstanding packets, until the 

outstanding packets match the new window size. 

2.6 Fundamental requirements of a congestion control scheme 
We would like a congestion control scheme to have a number of properties. These 

are: 
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• Efficiency 

• Ability to deal with heterogeneity 

• Stability 

• Scalability 

• Simplicity 

We discuss these in turn 

2.6.1 Efficiency 
There are two aspects to efficiency. First, how much overhead does the congestion 

control scheme impose upon the network? This is not necessarily a binding condition: 

with the rapid increase in communication bandwidth, the extra load may not significantly 

affect network efficiency. 

Second, does the control scheme lead to underutilization of critical resources in the 

network? Inefficient control schemes may throttle down sources even when there is no 

danger of congestion, leading to underutilization of resources. We would not like to 

operate the network suboptimal. 

2.6.2 Heterogeneity 
As networks increase in scale and coverage, they span a range of hardware and software 

architectures. A control scheme that assumes a single packet size, a single transport layer 

protocol, or a single type of service cannot be successful in such an environment. Thus, 

we want the control scheme to be implementable on a wide range of-network 

architectures. 

2.6.3 Stability 
Congestion control can be viewed as a classic negative-feedback control problem. One 

added complexity is that the control signals are delayed. That is, there is a finite delay 

between the detection of congestion and the receipt of a signal by a source. Further, the 

system is noisy, since observations of the system's parameters may be corrupted by 

transients. These complexities may introduce instabilities into the network. Thus, we 

would like the control scheme to be robust, and if possible, provably stable. 



2.6.4 Scalability 
It is the nature of a distributed system to grow with time, and we have seen an explosive 

growth in network sizes in the last decade. The key to success in such an environment is 
scalability. We would like a congestion control scheme to scale along two orthogonal 

axes: bandwidth and network size 

2.6.5 Simplicity 

Simplicity (unlike stupidity) is always an asset. Simple protocols are easier to implement, 

perhaps in hardware, and can handle increases in bandwidth. Also, simple protocols are 

more likely to be accepted as international standards. Thus, we would like an ideal 
congestion control mechanism to be simple to implement. 

In general followings are the main functions of congestion control in a packet network [1] 

• Prevention of throughput degradation and loss of efficiency due to overload 

• Deadlock avoidance 

• Fair allocation of resources among competing users 

• Speed matching between the network and its attached user 

To summarize, there are a number of issues that are affected by the choice of a 
congestion control scheme. In this thesis, we present the design of a set of congestion 

control mechanisms that substantially meet the requirements posed here. 

2.7 Variants of the TCP protocol 

The particular way the sources react to packet loss events is the main aspect that 

distinguishes the TCP flavors. The most widely used variants of the TCP protocol are 
known under the names of [20] 

• TCP-Tahoe 

• TCP-Reno 

• TCP-NewReno 

• TCP-SACK 

• TCP-Vegas 
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The TCP-Tahoe flavor is the oldest variant with a simple form of ineffective loss 

recovery algorithm. TCP-Reno has an improved loss recovery algorithm, capable of 

keeping a relatively high sending rate even in the presence of occasional packet loss. 

TCP-NewReno improves upon the TCP-Reno loss recovery algorithm to make it more 

robust in case of multiple simultaneous packet losses. TCP-SACK allows the receiver to 

send back detailed information about which packets are missing to the sender. The TCP-

SACK algorithm hence also improves the loss recovery phase in scenarios with multiple 

simultaneous losses. Finally, TCPVegas uses a method that observes changes in the 

queuing delay to discover beginning network congestion and strives to find an ideal 

sending rate without creating packet loss in the network 

2.7.1 TCP-Tahoe 

Part of the "Tahoe" release of the BSD (Berkeley Unix) distribution in 1988, this was the 

first TCP to implement congestion control. It represented the state of the art in TCP 

until TCP Reno became widely adopted [25]. During a file transfer, TCP-Tahoe moves 

between the so called slow-start phase, congestion avoidance phase and timeout loss 

recovery phase. The evolution of the sending rate, controlled via the congestion window 

size, is shown in "Fig. 2.3". 
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Figure 23. TCP Tahoe congestion window evolution 

A file transfer starts in the slow-start phase with the congestion window size, W, 
initialized to one packet. A single packet, with sequence number 1, is sent on the link 
towards the receiver. Upon receiving this data packet, the receiver acknowledges it by 
returning a small ACK packet., The ACK states that the receiver is next expecting the 
packet with sequence number 2. The returning ACK also increases the congestion 
window size at the sender from one packet to two packets. Two new packets are then sent 
onto the link, and if no packet loss occurs two ACKs will return from the receiver, each 
increasing the congestion window by one packet, resulting in a congestion Window size 
of four packets after these two rounds. During the slow-start phase the congestion 
window size is thus doubled once every RTT. This increase of the congestion window 
size continues until the maximal congestion window size has been reached, or until a 
packet loss occurs. If the maximal congestion window size is reached, consecutive loss 
free rounds will not increase the congestion window size any further. 
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The TCP-Tahoe protocol then consecutively moves between the slow-start, congestion 

avoidance and timeout phases until all packets corresponding to this flow have reached 

the receiver and been acknowledged to the sender. Also note that a TCP receiver can 

implement delayed acknowledgements. Then, instead of sending an ACK for every 

received packet, the receiver only acknowledged every second packet. Since the returning 

ACKs increase the congestion window for the sender, the usage of delayed ACKs 

impacts TCP throughput. It is however important that delayed ACKs are not allowed to 

be used when packets arrive out of order. If a packet that arrives at the receiver has 

another sequence number than what the receiver is expecting, this immediately generates 

a returning ACK. The timeout/slow-start response to congestion events taken by TCP-

Tahoe is restrictive and conservative. However, such a drastic action as decreasing the 

congestion window size to one packet at each congestion event can have significant 

negative impact on the throughput of the protocol. 

2.7.2 TCP-Reno 

TCP-Reno retains the dynamics of TCP-Tahoe in terms of operation in the congestion 

avoidance and the slow-start phase, as well as the significance of the congestion window, 

the slow-start threshold and the maximal congestion window size. The response to packet 

loss events has however been modified in order to maintain a high sending rate in a 

mildly congested network. The so called coarse-grained implementation of the TCP 

timeout in TCP-Tahoe leads to long idle periods, while waiting for the timeout timer to 

expire. During this waiting period, packet sending is discontinued which results in low 

throughput. In TCP-Reno, the lengthy loss recovery phase has been improved upon via 

the introduction of the fast retransmit loss recovery algorithm 
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Figure 2.4 TCP-Reno congestion window evolutions 

Fast retransmit is a mechanism that sometimes results in a much faster retransmission of 

a lost packet than what would have been possible if only expire of timeout timers was 
used to detect packet loss. The returning ACKs provide the sender with the information 

that the network does not appear to be significantly congested, since a large proportion of 
the sent packets are successfully received and acknowledged. Setting the congestion 
window size to one packet, as done by TCPTahoe, and restarting with slow-start might 
therefore be too conservative. This has lead to the implementation of fast retransmit in 

combination with the fast recovery algorithm. Fast recovery replaces slow-start after a 
packet loss event is discovered by triple duplicates. The effect of fast retransmit / fast 

recovery is in principle that if a packet loss is discovered via triple duplicates, the first 

lost-packet will be quickly resent and the congestion window size halved. If the resulting 

congestion window size allows it, linear increase during congestion avoidance follows 
directly. This results in a more aggressive and more effective utilization of the available 

network capacity, resulting in high throughput for the TCP-Reno sender when only a few 

packets are lost at each congestion event. 

The fast retransmit / fast recovery mechanism implemented in TCP-Reno is able to 

increase throughput significantly for a TCP source that suffers occasional packet loss. 
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The design goal of fast retransmit I fast recovery was to make TCP halve its congestion 

window size once for every congestion event. This goal is achieved if only one packet is 

lost from the source at each congestion event, where the fast retransmit / fast recovery 

instance will re-send the first lost packet and quickly resume with congestion avoidance. 

If multiple packets are lost from a single window, the TCP-Reno fast retransmit / fast 

recovery algorithm might however lead to multiple consecutive invocations, each 

invocation halving the congestion window size. In case of multiple packet losses from a 

single window, the first re-sent packet will lead to the receiver acknowledging that it 

expects the second lost packet. This ACK for a previously sent and lost packet could be 

called a partial ACK. In the TCP-Reno implementation of fast retransmit / fast recovery, 

the arrival of partial ACKs will initiate a new fast retransmit / fast recovery followed by 

window halving. These consecutive window halving will decrease the congestion 

window so much that TCP-Reno will ultimately not be able to send any new packets due 

to the congestion window size restriction on the number of packets it is allowed to have 

un-acknowledged on the link. Hence, multiple packet losses might finally lead to the 

sender having to wait for a coarse timeout timer to expire even if the re-sent packets are 

being correctly received and acknowledged. 

2.7.3 TCP-NewReno 

TCP-NewReno has refined the fast retransmit / fast recovery algorithm to make it more 

robust in response to multiple packet losses from one single window by only halving the 

congestion window once for each congestion event [26]. This is achieved by allowing the 

partial ACKs arriving during the fast retransmit phase to increase the congestion window, 

hence keeping the self-clocking in operation even during the loss recovery phase. TCP-

NewReno then allows packets to be re-sent into the network as long as previously resent 

packets are being ACKed. For TCP-NewReno, a fast retransmit/fast recovery phase is not 

considered finished, and the congestion window size effectively halved, until all packets 

lost at the congestion event have been successfully resent. Hence, if the re-sent packets 

are successfully transferred, TCP-NewReno is able to recover from multiple packet losses 

by re-sending one lost packet per RTT. Since the ACKs from the receiver only specifies 
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the sequence number of the next expected packet, TCP-NewReno is however not capable 

of resending more than one lost packet per round. 

2.7.4 TCP-SACK 

The main contribution of TCP-SACK is an improved loss recovery mechanism, effective 

in the case of multiple packet losses from a single window. The improvement is achieved 

by allowing the sender and the receiver to extend more information via the ACK packets 

than simply the packet sequence number of the next expected packet. If the sender and 

the receiver both implement the TCP-SACK algorithm and the first lost packet is 

detected via triple duplicates, the returning ACKs will include information on which 

packets are missing and which packets are stored in the receiver's packet buffer. This 

information allows the TCP sender to re-send the correct lost packets, one or more each 

round in response to ACKs for previously re-sent packets, until all lost packets have been 

re-sent. TCP-SACK has the same dynamics as TCP-Reno during loss free periods, and 

also in the case when only one .packet is lost. After the loss recovery phase, the 

congestion window is halved and congestion avoidance takes place. The TCP-SACK 

implementation is hence an alternative to TCP-NewReno, capable of coping with 

multiple lost packets from a single window. Whereas both the TCP-NewReno and the 

TCP-SACK variants are good at avoiding timeouts when multiple packets are lost from a 

window, TCP-SACK requires fewer rounds to resend the lost packets. Since the sender 

knows exactly which packets are lost, if the congestion window allows it, more than one 

lost packet can be re-sent each round. Note however that both the sender and the receiver 

need to implement the TCP-SACK protocol for this improved loss recovery algorithm to 

work. 

2.7.5 TCP-Vegas 

The TCP-Vegas protocol uses a rather different method, compared to the other TCP 

variants, to infer about and react to network congestion. TCP-Tahoe, TCP-Reno, TCP-

NewReno and TCP-SACK detect congestion by stressing the network and increasing the 
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sending rate until the network becomes congested and packets are lost. On the contrary, 

the TCP-Vegas algorithm strives to avoid congestion and packet loss by adjusting the 

congestion window size in a pro-active way. The loss recovery phase used by the other 

TCP flavors have been complemented with a modified slow-start phase and a modified 

congestion avoidance phase that monitors the changing delay in the network. An 

increasing delay is interpreted as a beginning congestion, and an RTT close to the 

(estimated) propagation delay is interpreted as an under-utilization of the network. These 

modified congestion avoidance and slow-start phases lead to a different form of 

congestion window size evolution for TCP-Vegas, as shown in "Fig. 2.4". . 

During both the congestion avoidance phase and the slow-start phase, TCP Vegas 

estimates the number, Nb, of packets that this source has back-logged in the network as 

Nb =W/RTT (RTT-RTTmin) _ (W/ RTT, „ - W/RTT) RTT 	 (2.1) 

Where W is the current congestion window size, RTT is the last observed round trip 

time, and RTTm,,, is the smallest round trip time seen since the connection was initiated. 

Then RTT— RTT,,,,,, is the total estimated queuing delay and W/RTT is the estimated 

current throughput; thus the formula for Nb gives the estimated number of packets that 

this particular source has back-logged in the queues. 

Congestion 
window 

nax I 	..— 	
TCP—Vegas 

slow— congestion 	time—  slow— congestion fr 1fr congestion 
start avoidance nut start avoidance 	avoidance 

Figure 23 TCP-Vegas congestion window evolution 
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After a successful fast retransmit, TCP-Vegas reduce the window size by one quarter, 

while TCP-Reno reduces it by one half. Because TCPVegas adjusts the window size at 

the incipient stages of congestion, it does not need to make a large window size reduction 

upon loss events. A consequence of the behavior of TCP-Vegas during congestion 

avoidance is that for long file transfers in a network that is relatively stable in terms of 

load, given that there is enough buffer space in the network's queues, the TCP-Vegas 

sources are able to find their ideal sending rates. Hence, a network with TCP-Vegas 

sources can operate without the periodic packet loss events the other TCP flavors will 

always create during their search for the maximal possible sending rate. Since each 

source tries to keep between a and . packets in the queues, the equilibrium sending rates 

for the TCP-Vegas sources will however lead to a linearly increasing queuing delay as 

the number of sources increases. TCP-Vegas also adapt a new algorithm during the slow-

start phase. For TCP-Vegas, the congestion window size is doubled only at every second 

RTT. This allows the TCP-Vegas source to estimate the induced queuing delay in the 

network for every used congestion window size. This queuing delay is then used to 

calculate the number of back-logged packets Nb and decide whether to continue in slow-

start or not. Particularly, if the delay in the network increases and the source has greater 

Na  than packets in the queues, TCP-Vegas increases the congestion window by one 

packet, exits the slow-start phase, and transitions to the congestion avoidance phase. In 

addition to the delay threshold, a maximum slow-start threshold is maintained in the same 

way as for the other TCP flavors. 

2.8 Shortcomings and Research Gaps 
Unfortunately present mechanisms do not give expected result due to packet loss due to 

corruption in channel in error prone network especially wireless. We know internet 

technology is changing fast and wireless network is becoming pervasive all around. 

Packet lost in wireless network may not imply congestion in network because it may 

happen due to weather conditions, obstacles, and multipath interferences, mobility of 

wireless end-devices, signal attenuation and fading. So our assumption upon which 

network congestion window has been changing in TCP congestion control mechanism is 

not appropriate for wireless. 
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If we summarize, how is a switch or source to detect congestion? There are several 

alternatives. 

• The most common one is to notice that the output buffers at a switch are full, and 

there is no space for incoming packets. If the switch wishes to avoid packet loss, 

congestion avoidance steps can be taken when some fraction of the buffers are 

full, such as in the Fair Queue bit scheme. A time average of buffer occupancy 

can help smooth transient spikes in queue occupancy [27]. 

• A switch may monitor output line usage. It has been found that congestion occurs 

when trunk usage goes over a threshold (typically 90%) and so this metric can be 

used as a signal of impending congestion. The problem with this metric is that 

congestion avoidance could keep the output line underutilized, leading to possible 

inefficiency. 

• A source may monitor round-trip delays. An increase in these delays signals an 

increase in queue sizes, and possible congestion [28]. 

• A source may probe the network state using some probing scheme [23] 

• A source can keep a timer that sets off an alarm when a packet is not 

acknowledged `in time'. When the alarm goes off, congestion is suspected. 

Anyone of above mechanism can be tried to implement congestion control, but last one 

is most frequently in use. And the way it perceive ACK and decide the congestion in 

network may be misinterpreted as overload rather than corruption. So there is need to 

improve TCP congestion control, so that congestion control mechanism differentiates 

between overload and corruption to act accordingly. 
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CHAPTER 3 

3 Proposed TCP Congestion Control mechanism 

To rid of the deteriorating situation of error-prone network, especially wireless network, 

different flavor of TCP congestion control have been suggested and implemented but 

there is need of such mechanism which can be ported upon wired/wireless network 

universally. To improve the situation we need to use loss discrimination mechanism i.e. 

packet loss happens due to high load or corruption in channel [29]. In this improved 

algorithm we have used two window where one window measures congestion window 

and another window measures degree of packet loss due corruption in channel. Before 

starting the algorithm, we have to define packet loss rate. 

3.1 Packet loss Rate 
One of the major characteristic, which differentiates between wired and wireless network 

is large error rates due to noise, fading, interference from other sources and mobile host 

movement. Before we go to design modified TCP, let's define Bit Error Rate (BER). 

Bit Error Rate (BER) and Packet Error Rate (PER) are important Quality of Service 

Parameters for Wireless network. Basically an error event is defined as any divergence of 

the decoded path at the receiver from the initially followed path in the encoder. For long 

codes, the error probability of block codes and convolution codes is upper-bounded in 

terms of error exponent. The error exponent E(R) is defined as 

E(R) = —1/N log Pe(N, R) 	 (3.1) 

Where Pe(N, R) is the error probability of a block code of length N and rate R 

With the classical approach where it is frequently supposed that errors are uniformly 

distributed in packets with a probability given by BER. With this hypothesis the packet 
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error rate (PER), which is the number of incorrectly received data packets divided by the 

total number of received packets. A packet is declared incorrect if at least one bit is 
erroneous. The expectation value of the PER, for which a data packet length of N bits can 

be expressed as follow [30]. 

PER=1 — (l — BER) N 	 (3.2) 

For example, normally the bit error rate of wireless BER=0.00001 and the length of data 

frame Length=1024bits, so the corruption loss rate PER=0.0101878; the 

PER=0.097336209 while BER=0.0001 and PER=0.641028521 while BER=0.001. 

It is reasonable to assume that the possibility of packet (Pe) lost by corruption can be 

obtained approximately from Pe = m/n, where n is the number of total packets and in is 

the sum of packets lost by corruption during the period of time T. 

From the simulation point of view, if the corruption loss rate Pe is higher than the certain 

lower limit "Perrin", the sending rate will be decreased. Many factors decide the value of 

corruption loss rate lower limit "Perrin", mainly include: the kind of application; the 

length of data frame; the bit error rate of wireless link layer; the bandwidth and the 

transmission delay of wireless network etc. Normally we choose Pemin =0.4. 

3.2 Modified TCP 

We deigned improved TCP congestion control mechanism by modifying the base design 

of TCP NewReno [16] and improved it by embedding additional context in TCP state 

"Fig. 2.2". This improved TCP congestion control mechanism is designed by changing 

into Slow-Start, Congestion Avoidance, and Fast Recovery part based on present 

corruption loss rate with respect to "Pemin". Similar to this dissertation approach, which 

I tried on NewReno, can be tried on other TCP variant too like Reno, Tahoe etc. 

This modified TCP congestion control mechanism has been improved for error prone 

especially wireless network by keeping unaffected wired network. It considers the 

influences to TCP sender's packet sending rate by packet loss due to overload in channel 

and the degree of packet loss due to corruption in channel. 
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During transmission of packet in network we measure the degree of loss of packet due to 

corruption in channel and accordingly keep the congestion window as normal TCP 

congestion window otherwise updated to second window, which we maintain in this 

congestion control mechanism. 

We use ewnd (error congestion window) as original congestion window (cwnd) 

multiplied by corruption loss rate and swnd(similar congestion window) as original 

congestion window subtract ewnd. It mean 

cwnd = swnd + ewnd 

We initialize swnd and cwnd equal to one and ewnd to zero. These three windows will 

change their value according to present corruption loss rate (Pe). In general if Pe is less 

than Pemin then cwnd will similar to original NewReno cwnd, ewnd is scale of 

corruption loss and swnd is deviation of ewnd from cwnd. 

3.3 Algorithm 

3.3.1. Initial Window 

The 1W, the initial value of cwnd, MUST be less than or equal to 2*SMSS bytes and 

must not be more than 2 segments. It calculated as follow [7]. 

cwnd = min (4*SMSS, max (2*SMSS, 4380 bytes)) 	 (3.3) 

3.3.2 Slow Start Algorithm 

The slow start algorithm is used to start a connection of improved TCP like another TCP, 
and the periods after the value of retransmission timer exceed the RTO (retransmission 

timeout). In the start of improved TCP, the size of cwnd will be initialized to 1.The slow 

start algorithm describes as below 

Slow start algorithm is used to start a connection and the periods after the value of 

retransmission timer exceed the RTO (retransmission timeout). When the ACK is 

received, the swnd is increased from one to two, and two segments can be sent. This 

provides an exponential growth. The slow start algorithm will be ended in two conditions. 
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First, if the congestion window size reaches the slow start threshold size (ssthresh), the 

slow start will be ended and then congestion avoidance takes over. Second, if there lose 

any packet due to congestion or high packet loss rate due to corruption, the slow start 

also will be ended and then fast recovery takes over. 

if (Receive ACKs && cwnd < ssthresh) 

{ 

cwnd++; 

swnd = cwnd; 

ewnd=0; 

3.3.3 Congestion Avoidance Algorithm 

If the congestion window size (cwnd) is less than or equal to the slow start threshold size 

(ssthresh), improved TCP is in slow start; otherwise it is performing congestion 

avoidance. The congestion avoidance algorithm describes as below 

if (Receive ACKs 11 (Receive Explicit Corruption Loss Notification && Corruption Loss 

Rate Pe<Pemin)) 

{ 

if (cwnd > ssthresh) 

cwnd = cwnd + 1 / cwnd; 

else 
cwnd-H-; 

m++; 

if (Receive Explicit Corruption Loss Notification) 

n++; 

Pe=a* Pe+(1-a)* (n/m); [17] 
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ewnd=cwnd* Pe; 

swnd=cwnd — ewnd; 

if (m>cwnd) 

m=n=0 

} 

In the algorithm, cwnd denotes the congestion window size; m denotes the total number 

of sending packets; n denotes the number of lost packets due to wireless link corruption; 

Pe denotes the corruption loss rate and use parameter "a' to add up the old values. The 

idea of "a" has been taken from Jacobson RTT calculation [17]. 

3.3.4 Fast Retransmission and Fast Recovery Algorithm 

The TCP sender should use the "fast retransmit" algorithm to detect and repair loss, based 

on incoming duplicate ACKs. The fast retransmit algorithm uses the arrival of 3 

duplicate ACKs (4 identical ACKs without the arrival of any other intervening packets) 

as an indication that a segment has been lost. After receiving 3 duplicate ACKs, TCP 

performs a retransmission of what appears to be the missing segment, without waiting for 

the retransmission timer to expire. 

"Fast Recovery procedure" begins when three duplicate ACKs are received and ends 

when either a retransmission timebut occurs or an ACK arrives that acknowledge all of 

the data up to and including the data that was outstanding when the Fast Recovery 

procedure began [16]. 

In improved TCP, the fast recovery algorithm will be taken when network congestion or 

heavy corruption occurs. If network congestion, set ssthresh to one-half the flight size or 

double of MSS (maximum segment size) window. If the network has high corruption loss 

rate, set ewnd to "c". (c < 1) times its original size [19]. 

Here the network congestion means the sender receives the same ACK 3 times or 

retransmission timer overtime. The heavy corruption means the corruption loss rate Pe 

not less than Pemin when sender receives explicit corruption loss notification. 
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if (Congestion 11 Heavy Corruption) 

{ 

if (Receive Same ACK 3 Times Retransmission Timer Overtime) /* Congestion */ 

{ 

ssthresh = cwnd / 2; 

if (Retransmission Timer Overtime) 

{ 

cwnd = 1; Exit and call slow-start; 

} 

else /* Receive Same ACK 3 Time */ 

cwnd = cwnd / 2; 

} 

else if (Receive Explicit Corruption Loss Notification && Corruption Loss Rate 

Pe>=Pemin) 

{ 

ewnd=c* ewnd; 

cwnd=swnd+ ewnd; 

m++; 

if (Receive Explicit Loss Corruption Notification) 

n++; 

Pe=a* Pe + (1-b)* (n/m); 

ewnd=cwnd* Pc; 

swnd=cwnd — ewnd; 

if(m>cwnd) 

m=n=0; 

} 
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CHAPTER 4 

4 Experimental Results and Discussions 

4.1 Performance Metrics 

• Throughput: - In communication networks, throughput or network throughput is 

the average rate of successful message delivery over a communication channel. 

This data may be delivered over a physical or logical link, or pass through a 

certain network node. The throughput is usually measured in bits per second (bit/s 

or bps), and sometimes in data packets per second or data packets per time slot. 
[31 ] 

• Delay:- sometimes we are interested in average time it takes for a block of data 

from an application on one system to another system .there are four component of 
this 

1. Transmission delay 

2. propagation delay 

3. processing delay 

4. queuing delay 

• Ratio of throughput of existing TCP with respect to improved TCP should be less 
than one. 

4.2 Implementation in NS3 
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ns3::SimpleftefCount< ns3:;Object, ns3::ObjectBase, ns3::ObjectDeleter > 

ns3::Object 

ns3::socket 

ns3%Rp5ocket 

n53::TCpSOcketBase 

Figure 4.1 class shashi univesa)TCP 

We have used the scrape of TcpNewReno class, whose inheritance is given in "Fig 4.1" 

Just following the module creation procedure in NS-3 created new class named as 
shashi universalTCP class and wrote proposed algorithm accordingly. 

File which get modified are followings 

src/internet-stack/shashi-universal.cc 

src/internet-stack/shashi-universal.h 

Methods modified: 

/** New ACK (up to seqnum seq) received. Increase cwnd and call 

TcpSocketBase::NewAckO */ 

NewAck (const SequenceNumber32& seq) 

/** Cut cwnd and enter fast recovery mode upon triple dupack */ 
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DupAck (const TcpHeader& t, uint32 t count 

/** Retransmit timeout */ 

Retransmit (void) 

We know that packet receiving and sending process pass through successive layer from 

application layer to physical layer and passes through shashi univesalTCP class object to 

rid of the congestion in network. 

To simulate the idea we have written different application on different topology in the 

presence of error module and tested the result. 

4.3 Simulation Environment 
To demonstrate effectiveness of our improved TCP congestion control mechanism, we 

use network simulator version 3.10 (NS3) to study the transport scheme, the proposed 

model has been implemented and simulated in the network simulation tool NS3. It is 

open source and is a relatively new simulator. NS3 provides great flexibility while 

simulating various scenarios [18]. Box illustrates the network topology of the simulation. 

Channel may wired or wireless with error model, which add erroneous of channel. 

The bandwidth of link is 5Gbps and delay is 20ms. 

Length of sending data frame Length=1024bits 

For corruption in channel, we are using uniform random distribution on BER 0.001, 

0.0001 and 0.00001. 

We are sending 1000 packet for this simulation. 
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node 0,1,2 	node 3,4,5 
+----------------+ +----------------+ 

ns-3 TCP I I ns-3 TCP 
+----------------+ +----------------+ 

10.1.1.1 	1 	1 	10.1.1.2 	1 
+----------------+ +----------------+ 

Point-to-point I I  point-to-point I //csma , wifi with error 
+---------------+ +----------------+ 

+---------------------+ 
5 Mbps, 2 ms 

Figure 4.2. NS3 simulation hierarchy 

4.3 Results and Discussions 
To analyze the result we use TCPTRACE tool. TCPTRACE tool can give information 

related to Throughput by analyzing the Pcap file, generated by simulation. Table 1 shows 

the throughput of network at different BER. If we compare the BER and ratio of 

throughput of NewReno and Improved TCP, it shows that less the corruption more the 

resemblance. It means if there is no corruption both protocol will show same behavior 

otherwise Improved TCP shows better performance. This is also implied through "Fig. 

4.1" and "Fig 4.2". "Fig. 4.1" is illustration of congestion window at BER 0.0001. 

Improved TCP finishes sending packet at 6 ms due to its higher throughput and "Fig. 4.2" 

shows similar congestion window initially, even afterward its congestion window 

remains higher with respect to NewReno. In "Fig. 4.2" NewReno congestion window 

graph is hidden due to overlap by Improved TCP congestion control. 

Throughput 
Protocol BER=.0010 BEBa0001 I BER=.00007 

Newreno 4629bps 17811bps 115990bps 
Improved 
TCP 20099bps 37335bps 116712bps 

Ratio 4.34 2.096 1.006 

Table 4.1 The protocol capability with different 'BER 
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CHAPTER 5 

5 Conclusions 

5.1 Conclusions 
This dissertation presents improved TCP congestion control mechanism to implement on 

wired/wireless network. It considers the corruption of channel to differentiate the wired 

and wireless network. Corruption of packet is major hurdle of traditional TCP to 

implement universally on wire and wireless. Proposed algorithm is able to shows better 

performance by identifying the packet loss due to corruption in network rather than 

overload. 

Following finding have been found out through this dissertation. 

• TCP NewReno is better among available variant of same methodology and been 

compared with our Improved TCP congestion control mechanism. 

• Result available in report shows improvement of improved TCP over NewReno 

TCP congestion control mechanism. 

• Similar to NewReno TCP tahoe, Reno TCP been tested and have positive result. 

• Whatever be the network, throughput of network goes to meet at same point in 

case of reduction in degree of corruption. 

• Because of reusing of base work of available TCP variant, it is affordable to 

follow it. 

• During the implementation I have been trying to put hand on packet pair 

mechanism has promising scope to try on. 
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5.2 Scope for Future Work 

In this dissertation we have taken consideration of packet loss due to corruption in 

channel Here real problem lies how to differentiate packet loss due to corruption or 

overload [32]. As per simulation of above proposal is concern, NS3 has its own feature 

to identify packet loss by overload or corruption. Simply corrupted packet will defiantly 

reach to end node rather than get lost in between the end nodes. 

Following consideration can be thought' as a future work. 

• Implementation of this mechanism would as future work. One needs to recognize 

the reason of packet loss. For this one can use option field of TCP packet or 

ICMP message. 

• This mechanism can be embedded in all such TCP variant, which do the 

congestion control by recognizing the packet loss 

• Here we have considered only packet loss without packet correction; it can be 

tried with packet correction overload. 
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Appendix 

NS-3 Simulator 
The NS-3 simulator is a discrete-event network simulator. Unlike to NS-2 it requires only 

one scripting language rather than two. "Fig A. 1" shows the general organization ofNS-3 

simulation software. 

High-level wrappers 
for everything. else 

Aimed at scripting, 
Node Class 
Netbeviee ABC 
Address types 
_ (lPV4.=MAC; etc.) 
Queues 
Socket ABC 
IPv4/IPv6 ABCs 
Packet sockets 

test 
helper 

routing 	lntemot-staci devices. 	applications 
node 	mobility 

common 	 simulator 
core 

Events 
Schedulers 
lithe arithmetic 

Smart pointers - 	.'Calibacks,1 acing Packets -; 
Dynamic type system. togging 	_ Packet'Tags 

"Attributes 	- 	'Random Variables : Packet Headers 
:. 	_... 	.:..: 	...... 	_.. Pcap/Ascii file writing.  

Mobility models 
(static. random- 
walk, etc) 

Figure  A-1 organization of NS-3 

Each of level is module in NS-3, whose source code is available in "sre" directory. 

To compile the source code it uses "waf' tools. It is very similar to "make" tools with 

additional simplification. 

To execute the code following command works 

./waf--run "file name" 

Modules are written in c++ object oriented programming language, which follows OOPs 

concepts and can be modified code accordingly. 

What differentiates this simulator with others is its tracing capability of required object. 

Inbuilt number of tracing source is given and new one can be built. 
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How different module participate to send a packet from one node to another. It can be 

visualize by following way. 

Appticu:an I ,:pauteOUlpUt *' 

5ocketx $end 0.. 

~ 1 tROyt n UQpSOCkesimpl 	W 	9~ 

::Send 1) 

Udpt.nrrotacoa 

[m_WawnYuryeto ca a. i 

I'VAl3Pn* ca :• 

=Send 1Y 

•:Laok5~P1 
rpipv4Inter:ac 	4. ArpL5'rotocc 

Send 0 

NetDE ke 

Figure A.2 packet sending 
process 

Each of box represent object of that class, which further can be subdivided accordingly. 

Similarly packet receiving process will follow backward at different layer. 

Tcptrace 
Tcptrace is a tool for analysis of TCP dump files. It can take as input the files produced 

by NS-3 simulator. Tcptrace can produce several different types of output containing 

information on each connection seen, such as elapsed time, bytes and segments sent and 

received, retransmissions, round trip times, window advertisements, throughput, and 

more. It can also produce a number of graphs for further analysis. As of version five, 

minimal UDP processing has been implemented in addition to the TCP capabilities. 
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