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ABSTRACT 

Frequently there are instances where speech is corrupted by the surrounding noises. This puts a 

limitation on the efficiency of an audio-only speech recognition system. This drives us to think 

of alternative sources of information from the speaker. Lip movements satisfy the condition of 

being a source of what the speaker said as well as inertness from the environmental noises. Also, 

visual information extraction for visual speech recognition would be required in case the user is 
unable to speak. 

This thesis attempts to achieve the task of visual speech recognition. First motivation came from 

making the process of lip reading completely automatic. As a result, there comes a need to first 

of all identify the skin region of the person in the video. Once we are able to accomplish that, we 

get the face boundary from where we attempt to obtain the location of eyes of the speaker. The 

coordinates of eyes leads us to a region between the nose and the upper lip. This leads us to the 

implementation of the process called lip-tracking, giving us the lip shapes in all the frames that 

comprise a video. Once we are at the stage of comparing videos, we attempt to extract key 

frames from a video since that helps in reducing the amount of calculations which would have to 

be accomplished otherwise when comparing all the frames of the videos. After extracting the key 

frames, we compare the set of key frames of different videos using a modified form of Hausdorff 
distance. 

iv 



Table of Contents 

	

Chapter1 	Introduction ..................................................................................................... 1 

	

1.1 	Speech Recognition ................................................................................................ 1 

	

1.2 	The Visual Component in Speech Recognition ........................................................ 2 

	

1.3 	Motivation .............................................................................................................. 3 

	

1.4 	Thesis Organization ................................................................................................ 3 

	

Chapter 2 	Face Detection and Eve localization ................................................................. 5 

	

2.1 	Face Detection ..................................................... 	 5 

	

2.2 	Choosing a Color Space for Face Detection ............................................................ 6 

	

2.3 	Implementation of Face Detection ...............................................................................6 

	

2.3.1 	The Nonlinear Transformation ......................................................................... 7 

	

2.4 	Eye Localization .........................................................................................................10 

	

Chapter3 	Lip Tracking ..................................................................................................13 

	

3.1 	Skin and Lip Color Analysis ................................................................................. 14 

	

3.2 	The Jumping Snake Algorithm .............................................................................. 16 

	

3.3 	Upper and Lower Key Points Detection ....................................................................21 

	

3.4 	Contour Extraction .................................................................................................... 23 

	

3.4.1 	Mouth Corners and Model Fitting .................................................................. 24 

	

3.5 	Keypoints Tracking ...................................................................................................26 

	

Chapter 4 	Key Frames Extraction and Dissimilarity Measure ......................................... 30 

	

4.1 	Cumulative Directed Divergence .......................................................................... 30 

	

4.2 	Modified Hausdorf Distance ................................................................................ 31 

	

4.2.1 	Hausdorf Distance ........................................................................................ 31 

	

4.2.2 	Video Sequence Matching Using the Modified Hausdorff Distance ............... 32 

	

Chapter 5 	Conclusions and Future Work ........................................................................ 33 

V 



List of Figures 

Figure2-1 (a) A frame from a video ................................................................................................................. 8 
Figure2-1 (b) Result of face detection for figure (a) ........................................................................................ 8 
Figure 2-2 (a) A frame from a video ................................................................................................................. 9 
Figure 2-2 (b) Result of face detection for figure (a) ........................................................................................ 9 
Figure2-3 (a) A frame from a video ................................................................................................................. 9 
Figure 2-3 (b) Result of face detection for figure (a) ....................................................................:.................10 
Figure2-4 Selected Eye candidates ...............................................................................................................11 
Figure 3-1 Mouth region characteristics ........................................................................................................15 
Figure3-2 Initial seed S 	................................................................................................................................16 
Figure 3-3 Growth phase of jumping snake algorithm .....................................:.............................................17 
Figure3-4 End of first iteration .....................................................................................................................18 
Figure 3-5 End of second iteration .................................................................................................................19 
Figure3-6 End of sixth iteration .................................................................................................................... 20 
Figure 3-7 Cubic model and six key points ..................................................................................................... 21 
Figure3-8 Locating P6  .................................................................................................................................... 21 
Figure3-9 Initial seed for lower lip ................................................................................................................ 22 
Figure3-10 Lower coordinates after first iteration ......................................................................................... 22 
Figure 3-11 Lower coordinates after fifth iteration ........................................................................................ 23 
Figure3-12 Different models ......................................................................................................................... 23 
Figure3-13 Contour candidates ..................................................................................................................... 26 
Figure3-14 Chosen corner point ................................................................................................................... 26 
Figure 3-15 Keypoints tracking: 1st frame ................................................................................... 	........... 28 
Figure3-16 Keypoints tracking: 30th frame .................................................................................................. 28 
Figure3-17 Keypoints tracking : 80th frame .................................................................................................. 29 
Figure 3-18 Keypoints tracking: last frame ................................................................................................... 29 
Figure4-1 Key frame extraction .................................................................................................................... 31 

VII 



Chapter 1 Introduction 

1.1 Speech Recognition 

Automatic recognition of speech by machine has been a goal of research for more than four 
decades. However, in spite of the glamour of designing an intelligent machine that can recognize 
the spoken word and comprehend its meaning, and in spite of the enormous research efforts 
spent in trying to create such a machine, we are far from achieving the desired goal of a machine 
that can understand spoken discourse on any subject by all speakers in all environments[19]. 

The earliest attempts to devise systems for automatic speech recognition by machine were made 
in 1950s, when various researchers tried to exploit the fundamental ideas of acoustic-phonetics. 
In the 1960s, several fundamental ideas in speech recognition surfaced and were published. 
However, the decade started with several Japanese laboratories entering the recognition arena 
and building special-purpose hardware as part of their systems. In the 1970s, speech-recognition 
research achieved a number of significant milestones. The area of isolated word or discrete 
utterance recognition became a viable and usable technology. Another milestone of the 1970s 
was the beginning of a longstanding, highly successful group effort in large vocabulary speech 
recognition at IBM in which researchers studied three distinct tasks over a period of almost two 
decades. 

Just as isolated word recognition was a key focus of research in the 1970s, the problem of 
connected word recognition was a focus of research in the 1980s. Here the goal was to create a 
robust system capable of recognizing a fluently spoken string of words based on matching a 
concatenated pattern of individual words. 

Speech research in the 1980s was characterized by a shift in technology from template based 
approaches to statistical modelling methods — especially the hidden Markov model approach. 
Although the methodology of hidden Markov modelling (}{MM) was well known and 
understood in a -few laboratories, it was not until wide spread publication of the methods and 
theory of HMMs, in the mid- 198 Os, that the technique became widely applied in virtually every 
speech-recognition research laboratory in the world. 

Another "new" technology that was reintroduced in the late 1980s was the idea of applying 
neural networks to problems in speech recognition. Neural networks were first introduced in the 
1950s, but they did not prove useful initially because they had many practical problems. In the 
1980s, however, a deeper understanding of the strengths and limitations of the technology was 
obtained, as well as the relationships of the technology to classical signal classification methods. 

Finally, the 1980s was a decade in which a major impetus was given to large vocabulary, 
continuous-speech—recognition systems. 
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1.2 The Visual Component in Speech Recognition 

There are cases where the environment in which a speaker says something in noisy or there is 
hearing impairment and, in such conditions, the audio speech recognition system would not 
perform as expected. Knowing that face movements also provide cues, precisely visemes, 
extracting such information from the speaker can improve the recognition efficiency of the 
system. 

According to [16], the benefit gained from the visual, facial cues has been quantitatively 
estimated to be equivalent to an increase of 8-10 dB in the signal-to-noise ratio when speech 
sentences are presented in a noise background [17]. This observation suggests that, if the 
acoustic inputs to conventional speech recognition systems could be augmented by data about 
the visible speech gestures, an enhanced-performance, audio-visual recognition system should be 
possible. Indeed, one of the challenges of speech technology is to be able to provide robust and 
accurate. automatic systems capable of operating successfully in a wide range of environments, 
including those where high levels of noise and vibration may be encountered. Aircraft cockpits 
are one example of a demanding environment in which reliable automatic speech recognition is 
becoming an important requirement. 

Thus, incorporating visual information provides a solution to improving the recognition 
procedure. 

But accomplishing such a task would involve many difficulties. As according to [18], there are 
however many hurdles that must be overcome before commercial audio-visual speech 
recognition systems will become a reality. Such systems must be capable of tracking the lips 
(inner or outer contour, or both) and reasoning about the presence/absence and position of the 
teeth and tongue on unconstrained speakers who may be moving around and nodding or rotating 
their heads. Such systems should also be robust to variations in lighting and shadowing. 
Furthermore, in order to provide accurate recognition, they must yield visual features capable of 
discriminating among the various recognition Units (words, phonemes, tri phones). The 
extracted visual features must also be intelligently integrated with the acoustic features, 
presumably in proportion to the information content of each channel. And of course, all of this 
should be accomplished in real-time or near real-time in order that the users of such systems are 
not unduly put off. 

First of all, it is the face of the speaker which needs to be extracted before we could go for 
extracting visual cues from the video. 

Two traditional ways for face detection are the geometric, feature-based and the template 
matching. These techniques are computationally very demanding and cannot handle large 
variations in face images [1]. 
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The technique which has been used here does not have such computational demands. It focuses 
on extracting the skin pixels of a frame in a video. For accomplishing this, we first need to 
choose a color space in which we would be doing all our processing. Details of choosing a color 
space has been discussed in the 2nd  Chapter of this thesis. 

Once we know the boundaries of the speaker's face, we attempt lip tracking of the video after 
locating the mouth region. The contours of the lip shape for each frame form the representations 
of different visemes. For the recognition part, key frames extracted from these contours are used 
for calculating a similarity measure called Hausdorff distance. 

1.3 Motivation 

In acoustically noisy environments, it would be relatively very difficult for the audio-only speech 
recognition system to perform at par with the efficiency for which it was designed. This leads us 
to think of other alternatives which could serve as information source while the speaker speaks 
together with the condition that the information source to be relied on should not get affected 
with acoustic noise. 

One of the candidates that satisfy these conditions is the lip movement. Moreover, in situations 
where the person has a disability of not being able to speak, lip movements provide the basis of 
extracting information from the speaker. This served as the motivation for the work presented in 
this thesis. 

1.4 Thesis Organization 

First part of Chapter 2 deals with the task of face detection/location of the speaker. Not knowing 
where the speaker might be in the video which we need to analyze, there arise a need to get the 
boundaries of the speaker's face which precedes all other processing required for lip extraction. 
The task is accomplished by differentiating the skin-tone pixels from the non-skin-tone pixels. 
This requires choosing a color space out of the number of color spaces in which we could 
operate. Appropriate color transformation is applied as explained[ 1 ]. 

Once we have accomplished the task of face detection, we concentrate on narrowing down to the 
mouth region of the speaker using an eye location algorithm. The location of eyes help us 
narrowing down to the mouth region[14]. 

In Chapter 3, the, algorithm applied for lip tracking has been discussed. The region narrowed 
down to in the previous chapter (the mouth region) serves as the starting point for the process of 
lip tracking in this algorithm. A new form of active contour is the feature here[2]. It is known as 
the ̀ jumping snake" since it jumps after each iteration to a new position. Once it rests on the lip 



contour (for the first frame of the video), we proceed towards the process of comers detection 
and model fitting (cubic curves here) [2]. After that, key points representing the lip are tracked in 
the subsequent frames which gives us the representation of the viseme thatthe video represents. 

Chapter 4 discusses the algorithms[3] applied for getting the key frames of a video (so that to 
reduce the computational complexity of comparing videos for recognition) and a modified form 
of Hausdorff distance which is a measure of similarity (or dissimilarity) between- to-be-compared 
shapes and thus helps in determining which reference video is closest to the test video. 
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Chapter 2 Face Detection and Eye Localization 

2.1 Face Detection 

There are two traditional classes of techniques applied to the recognition of digital images of 
frontal views of faces under roughly constant illumination [10]. The first technique is based on 
the computation of a set of geometrical features from the picture of a face. This was the first 
approach toward an automated recognition of faces. The second class of techniques is based on 
template matching. 

Geometric, Feature-Based Matching: A face can be recognized even when the details of the 
individual features (such as eyes, nose, and mouth) are no longer resolved. The remaining 
information is, in a sense, purely geometrical and represents what is left at a very coarse 
resolution. The idea is to extract relative position and other parameters of distinctive features 
such as eyes, mouth, nose, and chin. 

Template Matching: In the simplest version of template matching, the image, which is 
represented as a bi dimensional array of intensity values, is compared using a suitable metric 
(typically the euclidean distance) with a single template representing the whole face. There are, 
of course, several, more sophisticated ways of performing template matching. For instance, the 
array of grey levels may be suitably preprocessed before matching. Several full templates per 
each face maybe used to account for the recognition from different viewpoints. Still another 
important variation is to use, even for a single viewpoint, multiple templates. 

A rather different and more complex approach is to use a single template together with a 
qualitative prior model of how a generic face transforms under a change of viewpoint. The 
deformation model is then heuristically built into the metric used by the matching measure. 

But the above techniques ate computationally very demanding and cannot handle large variations 
in face images[1]. 

Categorizing face detection methods based on the representation used reveals that detection 
algorithms using holistic representations have the advantage of finding small faces or faces in 
poor-quality images, while those using geometrical facial features provide a good solution for 
detecting faces in different poses. A combination to holistic and feature-based approaches is a 
promising approach to face detection as well as face recognition[l]. Motion and skin-tone color 
are useful cues for face detection[l]. 
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2.2 Choosing a Color Space for Face Detection 

According to [11], research has been performed on the detection of human skin pixels in color 
images and on the discrimination between skin pixels and "non-skin" pixels by use of various 
statistical color models. As an example, ad hoc skin color models have been used as a 
preprocessor in analyzing large image databases; other researchers have used skin color models 
such as the single Gaussian model, a Gaussian mixture density model or histograms. 

Recently, a comprehensive and detailed analysis of skin and non-skin color models was 
implemented by use of a very large database of skin and non-skin pixels manually extracted from. 
the WorldWideWeb : the comparative performance of histogram models and of Gaussian 
mixture density models with the EM algorithm was analyzed for the standard 24-bit RGB color 
space, and histogram models were found to be slightly superior to Gaussian mixture models in 
terms of skin pixel classification performance for that color space. 

In most experiments, skin pixels are acquired from a limited number of people under a limited 
range of illumination conditions. A relative robustness to changes in illumination conditions is 
achieved if a color space efficiently separating the chrominance from the luminance in the 
original color image is used. This implies a dimensionality reduction. 

Normalized r-g chrominance space has often been used for face detection specifically because it 
reduces the sensitivity of the segmentation to changes in illumination. Other chrominance-
luminance spaces that have been commonly used are the perceptually plausible HSV (or HSI) 
space or the hardware-oriented YIQ or YES spaces. The selection of a suitable chrominance 
space is an important task, because the shape of the skin and nonskin distributions depends on 
the chrominance space. Two important criteria are : 1) how well a given chrominance model can 
describe complex-shaped distributions in a given space, and 2) the amount of overlap between 
the skin and non-skin distributions in that space. 

2.3 Implementation of Face Detection 

Modeling skin color requires choosing an appropriate color space and identifying a cluster 
associated with skin color in this space. It has been observed that the normalized red-green (rg) 
space[5-1] is not the best choice for face detection [20], [21]. Based on Terrillon et al.'s [20] 
comparison of nine different color spaces for face detection, the tint-saturation luma(TSL) space 
provides the best results for two kinds of Gaussian density models (unimodal and a mixture of 
Gaussians). We adopt the YCbCr  space since it is perceptually uniform [22], is widely used in 
video compression standards (e.g., MPEG and JPEG) [23], and it is similar to the TSL space in 
terms of the separation of luminance and chrominance as well as the compactness of the skin 
cluster. Many research studies assume that the chrominance components of the skin-tone color 
are independent of the luminance component [24], [25], [26], [27]. However, in practice, the 

0 



skin-tone color is nonlinearly dependent on luminance. Detecting skin tone based on the cluster 
of training samples in the CbCr subspace results in many false positives[l ]. And the case for the 
subspace of (Cb/Y) — (Cr/Y) results in many false negatives[1]. Thus, the YCbCr color space is 
nonlinearly transformed[1] to make the skin cluster luma-independent. Piecewise linear 
boundaries are fitted to the skin cluster. The transformed space enables a robust detection of dark 
andlight skin tone colors. In such a case, more skin-tone pixels with low and high luma are 
detected in the transformed subspace than in the CbCr subspace[1 ]. 

2.3.1 The Nonlinear Transformation: 

In the YCbCr color space, we can regard the chroma (Cb and Cr) as functions of the luma(Y) : 
Cb(Y) and Cr(Y). Let the transformed chroma be Cb'(Y) and Cr (Y). The skin color model is 
specified by the centers (denoted as C,(Y) and C (Y) ) and spread of the cluster (denoted as 
WCb(Y) and WCr(Y)) and is used for computing the transformed chroma[l]. 

(Ci(Y) — Ci(Y)) * 
Wci + Cj(Kh) , Y <K1 or Kh <y 	(2 .1 ) 

Wci(Y) 

C1 (Y) 	 , KZ < Y < Kh 

WLci + (Y — Ym.in) * 
Wci —WGc ,Y < K1 	(2.2) 

WeiO —_ 
	 K1— Ymin 

WHC1 + ('max — Y) * 
Wc;,—WHci , Kh < Y' 
Ymax— Kh 

108+(K1 — Y)* 10 ,Y<K1 	(2.3) 
KZ— Ymin 

C(')= 
108+ (Y—Kh ) *Ym0 Kh

ax 

10 154 — (Kl — Y) * 	,.Y < Ki 	(2.4) 
C+ (y) = 	 Ki— Ymin 

~1 	154+(Y—Kh ) * 
zz ,Kh <Y 

Ymax — Kh 
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where C; in (1) and (2) is either Cb or Cr, Wcb=46.97, WLcb=23, WHcb=14, Wcr=38.76, 
WLcr=20, WHcr=10, K1=125 and Kh=188. These parameter values have been estimated [1] from 
training samples of skin patches. Ymin and Ymax are the minimum and the maximum values of the 
luminance in all of the training samples. 

The elliptical model for the skin tones in the transformed Cb'Cr' space is described by the below 
two equations 

(x-e2 x)2 + (Y-e2 y)2 = 1 	 (2.5) 

a 	b 

 __ ( cose sine 1 ,~ Cb— Cx 	 (2.6) (x)
y ".—sine cose J (C" Y — C / r  

where C,=109.38, C, 152.02, 0 = 2.53(in radian), eCY 1.6, eC, 2.41, a=25.39, b=14.03 have 
been computed as given in [I] from the skin cluster in Cb'Cr ' space. 

Figure 2-1 (a) : A frame 	 Figure 2-1 (b) : Result of 
from a video 	 face detection for figure (a) 
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2.4 Eye localization 

In the previous sections, we have been able to accomplish getting the skin pixels of the speaker 
in the video. Now our purpose in this chapter would be to extract the location of eyes of the 
speaker from where we could get the region between the nose and the upper lip. This is so 
because the distance of mouth to the two eyes center is about 1.2 times of the distance between 
two eyes center[14]. 

According to [15], human faces have a special pattern that is usually different from the patterns 
of background objects in face images. The grayscales of the pupil and the iris of an eye are 
usually lower than those of the skin near the eye and those of the white of the eye; therefore, if 
we can find an appropriate threshold value to segment a face image, the eyes can be separated 
from other facial features and background objects in the segmented face image (i.e., the binary 
image, where, if the grayscale of a pixel is more than or equal to the threshold value, the 
grayscale of the pixel will be set to be I (white pixel); otherwise, it will be set to be 0 (black 
pixel). 

The connected components (black pixels) in the segmented face image are called a block. To 
locate eyes from an appropriately segmented face image, a determination criterion of eye 
location, established in [15] by the priori knowledge of geometrical facial features, has been 
followed. The following[15] are the conditions which should be satisfied for the block to be 
selected as an eye block : 
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• The distance between the geometrical centers of the two eye blocks should be within a certain 
range of pixel number such as from 15 pixels to 45 pixels in a face image with size 120X l 60. 

• There are no other blocks in a certain area under each eye. 

• The vertical distance difference between the geometrical centers of the two eye blocks is not 
more than a certain number of pixels. 

• The size (the pixel number) in each eye block is limited in a certain range. 

• There is no other block between the two eye blocks. 

• The proportion of height to length in the rectangular bounding box around each eye block is 
limited in a certain range. 

• Any block connected with or very close to the four edges of face images is not an eye block. 

As an example, the following is the result of applying the above procedure (in the next figure, 
only the centre of each eye block selected has been displayed) : 

are the centre points of the blocks that were selected as eye candidates. 

Now since we have got the eye centres, we can easily narrow down to the region between the 
nose and the upper lip using the distance between the two points shown in the above figure. A 
point that would be this distance below the center of the line joining these two points would fall 
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in the region between the nose and the upper lip of the speaker. This point serves as the starting 
point of the algorithm implemented in the next chapter to achieve lip tracking. 
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Chapter 3 LIP TRACKING 

During the last few years, many techniques have been proposed to achieve lip segmentation. 
Some of them use only low-level spatial cues such as color and edges. Zhang [12] uses hue and 
edge information to achieve mouth localization and segmentation There is no shape or 
smoothness constraint, so the segmentation is often very rough, which makes this method 
unsuitable for applications that require a high level of accuracy, such as lip reading or clone 
synthesis. In [13], a linear discriminant analysis (LDA) is used to separate the lip pixels from the 
skin pixels and thus to extract the lip contour. Even if the LDA is followed by a smoothing 
operation, the resulting segmentation is often noisy. Because of their ability to take smoothing 
and elasticity constraints into account, the "snakes" [28] have been widely applied to lip 
segmentation [29]—[31 ]. They can give quite good results, but most of the time the tuning of 
parameters is very difficult to achieve, and the snakes often converge to wrong results when the 
initial position is far from the lip edges. Moreover, the mouth corners' detection is generally 
difficult because they are located in low gradient areas, which leads to rough final contours. 
Some authors propose to detect the mouth corners by a specific algorithm [30] and to keep them 
still during the snake convergence. This improves accuracy, but it does not address the problem 
of parameters adjustment. 

To make segmentation more robust and realistic, a priori shape knowledge has to be used. By 
designing a global shape model, boundary gaps are easily bridged and overall consistency is 
more likely to be achieved. This supplementary constraint ensures that the detected boundary 
belongs to possible lip shape space. For example, active shapes models (ASMs) can be used [32], 
but they need a large training set to cover a high variability range of lip shapes. Moreover, the 
images of this training set have to be cautiously calibrated. The face orientation and the lighting 
conditions have to be constant, otherwise the ASM method leads to unreliable results. To avoid a 
restricting training step, a parametric description can be used to design models. As introduced by 
Yuille [33], a parametric deformable template is a parameterized mathematical model used to 
track the movement of a given object. In our case, the lip shape is approximated by a set of 
curves which is uniquely described by some parameters. Several parametric models have already 
been proposed. Tian [34] uses a simple three-states geometric model made of parabola. The color 
and shape information is used to know which model to use: mouth tightly closed, closed, or 
open. Then, four keypoints are used to draw the model. The position of the model is generally 
good, but it does not fit the boundary with accuracy because only symmetrical parabolic shapes 
can be generated. To make the model more flexible, other authors propose to use two parabola 
instead of one for the upper boundary [35] or to use quartics instead of parabola [36]. This 
improves accuracy, but the models are still limited by their rigidity, particularly in the case of an 
-asymmetric mouth. 

In the model discussed in [2], which has been implemented, there is more flexibility as cubic 
curves have been used. The model is positioned by several keypoints located on the mouth 
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boundary, and it is fitted by using edge information. Interframe tracking has been used to 
enhance the speed and the robustness of the segmentation. 

In [2], the keypoints are detected in the first frame itself. The model is a quasi-automatic method 
that only requires the manual selection of a single point located above the mouth. This point is 
used as a seed for a new kind of active contour: the ̀ jumping snake." Unlike classic snakes, its 
parameters are easy to choose, and its convergence is ensured even if the initial seed is far away 
from the mouth. The model is flexible enough to reproduce the specificities of very different lip 
shapes. This enables accurate segmentations, even in the challenging case of an asymmetric 
mouth. 

3.1 SKIN AND LIP COLOR ANALYSIS 

In RGB space, skin and lip pixels have quite different components. For both, red is prevalent. 
Moreover there is more green than blue in the skin color mixture and for lips these two 
components are almost the same. Skin appears more yellow than lips because the difference 
between red and green is greater for lips than for skin[37]. Hulbert and Poggio [6] proposes a 
pseudo hue definition that exhibits this difference. It is computed as follows: 

h (x y) = 
	R(x,y) 	 (3.1) 
R(x,y)+ G(x,y) 

where R(x,y) and G(x,y) are respectively the red and the green components of the pixel (x,y). 
Unlike usual hue, pseudo hue is bijective. It is higher for lips than fir skin[7] (next figure). 
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Intensity is also a good cue to be taken into account. In general, light comes from above the 
speaker. Then the top frontier of the upper lip is very well illuminated while the upper lip itself is 
in the shadow. At the opposite, the bottommost lip is in the light while its central lower boundary 
is in the shadow. very well illuminated while the upper lip itself is in the shadow. At the 
opposite, the bottommost lip is in the light while its central lower boundary is in the shadow. To 
combine color and luminance information, [37] introduces the "hybrid edges" R(x,y) and 
R,(x,y), computed as follows(vectors are written in bold) : 

R5„p(x.3) _- V f h j,(z,Y) Lr(x,Y)] 	 (3.2) 

R1,/x,y,,) _ Vet/ ht.'(x,Y) + Lv(x,Y)] 	 (3.3) 

where LN(x,y) and hN(x,y) are respectively the pseudo hue and the luminance of pixel (x,y), 
normalized between 0 and I on the mouth region. V["] is the gradient operator, and 0v[.] is its 
vertical component. R;,,f is a scalar which is very negative for the lower central boundary of the 
mouth. RS„P is a vector whose norm has a high value on the upper lip boundary. 
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3.2 The Jumping Snake Algorithm 

Active contours, or snakes, have proved their efficiency in many segmentation problems. Since 
their introduction by Kaas el al. [28], many improvements have been proposed in the literature. 
But none of them has totally removed the two major weak points of the snakes: the choice of 
parameters and the high dependence on the initial position. The method presented in [2] helps to 
address these problems. 

To find the upper mouth boundary, [2] introduces a new kind of active contour that is called 
"jumping snake" because its convergence is a succession of jumps and growth phases [38]. It is 
initialized with a seed S° that can be located quite far away from the final edge. The seed is, as in 
[2], put manually above the mouth but since we have been able to reach the region between the 
nose and the upper lip of the speaker, we can get this seed as explained in chapter 2 (figure 
below) : 

!T!. 
Figure 3- : 	;~ 	, ~~,ar KCu NnUi iJIUL +..L lLU[. 

The snake grows from this seed until it reaches a predetermined number of points. This growth 
phase is quite similar to the growing snake proposed by Berger and Mohr [39], in the sense that 
the snake is initialized with a single point and is progressively extended to its endpoints. Then, 
the seed "jumps" to a new position that is closer to the final edge. The process stops when the 
size of the jump is smaller than a threshold. 

In [37], "hybrid edge" has been introduced that combines color and luminance information. It is 
computed as follows (vectors and matrixes are written in bold): 

Rt.p(x,y) - [h:v(x,y) — L.v(x,Y)] 	 (3.4) 
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where hN(x,y) and LN(x,y) are respectively the pseudo hue and the luminance of the pixel at the 
location (x,y), normalized between 0 and 1. V is the gradient operator. The pseudo hue, 
introduced by Hulbert and Poggio [40], is less noisy than the usual hue and is higher for lips than 
for skin, as shown in [16-2]. It is computed as follows: 

h(xy) = 	
R(x,y) 	 (3.5) 

R(x,y)+ G(x,y) 

where R(x,y) and G(x,y) are the red and green components of the pixel located at (x,y). The 
hybrid edge Rt°p exhibits the top frontier of the mouth much better than the classic gradients of 
luminance or pseudo-hue do. It is used to guide the jumping snake toward the upper lip edge. 

During the growth phase, left and right endpoints are added to the snake. They are located at a 
constant horizontal distance, denoted A , from the previous point. Moreover, the search area is 
restricted to the angular sector [e f, 6s„P]. 

P 	 1 1 	..~.. 	e . 	 sup 

inf 	 inf 

Figure 3-3 : From seed S° (0), the snake is extended by adding left and right endpoints(.). 
The Rt°P mean flows 0, through each segment have to be maximized. 
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The best left and right endpoints, denoted M _(1+1) and M,+1 , are found in this area by maximizing 
the R,or  mean flow through the end segments M (,+»M _i and M;  M;+, (see figure above ). These 
two mean flows can be written as follows: fM i+1 Rtop•dn 	 (3.6) 

 
IM i Mi+1 

fM_ i Rtop•dn 	 (3.7) 
-_ 	L 1  

r 1 	IM —i-1 M —il 

where do is the vector orthogonal to the segment. The maximizations of Dj+i  and D. j+1  are 
achieved by a systematic computation over a small set of candidates located in the search area. 

When the snake reaches a predetermined number of points=2n+1, the growth stops and the 
position of the new seed S' is computed. This is the jump phase of the jumping snake algorithm. 

Figure 3-4 : Here,  
(=2n+1). This is the end of the first iteration. 

Let {M _N.....,M _1 ,S°,MI ,...,MN } be the points of the snake and let {IN,...,  cD _,,(D ,..., ON) be 
the mean flows through the segments. The new seed S' has to get closer to high gradient regions, 
i.e., high mean flow segments. We consider S' is the barycentre of S°  and the points which are in 
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the highest gradient regions. If {i1,...,iN; are the indices associated with the N highest mean 
flows, then the vertical position of S' can be written as follows : 

1 	Y.k=1 Oik •Y(ik) 	 (3.8) 

Nk_1 2 	~ (Pik 

where y(ik) is the vertical position of the point M. The horizontal position Xi of the seed is 
kept constant. 

Then, a new snake grows from this new seed until it reaches the predetermined length and 
"jumps" again. This growth jump process is repeated until the jump's amplitude becomes 
smaller than one pixel. Typically, four or five jumps are needed to achieve the convergence of 
the snake. In its final position, it lies on the upper lips boundary(as shown in the figures below) : , •1 ¶''" 

4kj1 
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Unlike classic snakes, the choice of the jumping snake parameters (A, em , O, N) is easy and 
intuitive. If there is no strong edge in the neighborhood of the snake, the overall directions of its 
left and right parts are dependent on the choice of O, and , the angular limits of the search area. 
When Oi  = Os„p, the snake tends to be horizontal. If 	< 1O,j, then the two branches tend to 
go upwards. At the opposite, they tend to go downwards when lOmtt > IO,,,pl . Here, the initial 
seed S°  is above the mouth and the snake has to fall down to get closer to the upper mouth 
boundary. Then we choose 16,n,i > 16S,pl. 

The horizontal distance A has a direct influence on the accuracy of the snake final position. For a 
small value of A, the detected upper edge is very detailed. However, for a given length of the 
snake, the computational cost is higher because more points have to be computed. On the other 
hand, a high value of A leads a rough estimation, but the convergence is achieved quicker. So, 
the choice of A is a compromise between speed and accuracy. The last parameter N gives the 
number of points of the snake. For a given A, a high value N of leads to a long snake. 

3.3 Upper and lower key points detection 

The keypoints give important cues about the lip shape. They are used as fulcra for the 
computation of the model. We use six principal key points(figure below from [2]) : 
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the right and left mouth corners (PI  and P5), the lower central point (P6) and the three points of 
the Cupid's bow (P2,P3, and P4). The three upper points are located on the estimated upper lip 
boundary resulting from the jumping snake algorithm. P2  and P4  are the highest points on the left 
and right of the seed. P3  is the lowest point of the boundary between P2  and P4. 

According to [2], the point P6  is found by analyzing Vy[h], the one-dimensional gradient of the 
pseudo hue along the vertical axis passing by P3(figure below from [2]) : 

Vihi 

Figure 3-8 : Way of finding P6  as described in [2j. 
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As this was attempted, the results didn't come as expected. So, an attempt was made to get the 
lower lip using Rt0  . Similar to locating the seed for the upper lip, we can located the seed here 
for the lower lip. The results are as shown : 

f"'i yui t' .) - J . 	 ui, lfit:  

As for the upper lip, mean flows are maximized. 
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Figure  

3.4 Contour Extraction 

Several parametric models for the lip boundary have been proposed. Tian [34] uses a model 
made of two parabolas. It is very easy to compute, but it is too simple to fit the edges with 
accuracy(figure (a)) : 

Figure 3-12 (a,b,c) : Models, respectively, with two parabolas, three parabolas, and quartics. 

Other authors propose to use two parabolas instead of one for the upper boundary [35] or to use 
quartics instead of parabolas [36]. This improves accuracy, but the model is still limited by its 
rigidity, particularly in the case of asymmetric mouth shape(figures (b) and (c)). 
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The model used in [2] is flexible enough to reproduce the specificities of very different lip 
shapes and is composed of five independent curves. Each one of them describes a part of the lip 
boundary. In [2], each cubic has a null derivative at key points P2,P4  or P6. As an example, y l  has 
a null derivative on P2 . 

3.4.1 Mouth corners and model fitting: 

The model fitting and the mouth corners detection are linked[2] . A cubic curve is uniquely 
defined if its four parameters are known. Here, each curve passes by, and has a null derivative on 
points P2,P4 or P6. These considerations bring two constraint equations that decrease the number 
of parameters to be estimated from four to two for each cubic. So, only two more points of each 
curve are needed to achieve the fitting. These missing points are chosen in the most reliable parts 
of the boundary, i.e., near P2. P4  or P6  . Now it should be possible to compute the curves y;  
passing by them and to find the mouth corners where these curves intersect. However, this direct 
and intuitive method provides not very accurate results. The reliable points used to compute the 
model are much too close to each other. A very small displacement of one of them leads to a 
completely different curve. 

The method which has been proposed in [2] is that certain number of candidate points for Pl  and 
PS  are chosen along the curve of minimum luminance(L,) points, one each for a column of 
pixels between the upper and lower lip boundaries. It has been supposed in [2] that the comer 
points lie on this line. So, the fitting is achieved by finding the corners that give the best couple 
of curves. 

To know if a curve fits well to the lip boundary, an edge criterion is used in [2]. If the upper 
curves y l  and 72  fit perfectly to the edge, they are orthogonal to the Rtop  gradient field. On the 
other hand, the curves y3  and y4  have to be orthogonal to the V[hN] gradient field. atop ,, and 
, the mean flows through the upper and lower curves, are calculated as follows : 

For i={1,2} : 

f  Rtop•dn 	 (3.8) 
top,' 

= 
	f ds 

both the integrals are over the curve (bk. 
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For i={3,4} : 

j V[hN ]•dn 	 (3.9) 
low,i — 	

f ds 

both the integrals are over the curve b; . 

Here, do and ds are the vector orthogonal to the segment and the curvilinear abscissa, 
respectively. In the implementation, p = 5 possible positions along L,,,;,, were considered for each 
point P1 and P5. The best position gives a high (D ,; and a very negative c',ow,i. The expression is 

k 	 k 	 k 	 3.10 total 
_ 
— ~top,normalized — ~low,normalized ' 	( 	) 

kc(1,2,...,p} 

where 

k 	 _ 
'*'top,normalized — 

C14' o p — minj E {i,...,n}(cPt p))/(maxj E {t,...,n}(top) - 	
(3.11) 

mi113 E {1....,n)(Ot p)) 

4,k and (Diow'` are associated with the tested corner number k. (D~p norntalizedk and 4)low,normalizedk are 
their normalized values over the whole tested set. 110 1k is high, the corner position is reliable 
because the corresponding curves fit well to the lip boundaries. Thus, the boundaries and the 
corners are found in a single operation. The maximum of btoalk gives the position of the corner 
along L. 

As an example, the following three contours were estimated (i.e their respective b i were 
estimated) in an attempt to correctly identify the corner point Pt (next figure) : 
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Figure 3-13 : Wtotai assoc.  

green = -0.1991, blue = -0.0279. 

As we can see from the above figure, we get the location of P1  as shown next : 

3' 

Figure 3-14 : Point urarkeu rcu is chosen as the corner point Pi 
(from the candidate contours shown before). 

3.5 Keypoints Tracking 

To increase the robustness and the speed of the segmentation,the keypoints are tracked from one 
image to the other. Their positions have been obtained in [2] using a variant of the Kanade-Lucas 
algorithm[42] adapted to the particular geometry of the mouth. 

The neighborhoods of the points being tracked are assumed to have only translation movements 
from image Ito next image J as follows[2] : 
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J(x,y) = I(x-a, y /3) + n(x,y) 
	

(3.12) 

where (a, (3)T  are the components of the displacement vector d and n(x,y) is the noise level for 
the pixel (x,y). I(x,y) and J(x,y) are scalars, for example, the luminance value of the pixel (x,y). 

The vector d is chosen to minimize the residue factor s, computed on the neighborhood window 
W, around the pixel (x,y), as follows : 

c = f f [I (x — d) — J (x)] 2  to(x)dx 
	(3.13) 

the integral being evaluated over the window W. Here, x = (x,y)T  and w(x) is a weighting 
function usually constant and equal to 1 [2] . 

The resolution of above equation[41] leads to the following 2x2 linear system of equations : 

Gd =e 	 (3.14) 

where 

G = ff 9 (x)9T  (x) a) (x) dx 	 (3.15) 

e = f f (1(x) — J (x))g (x) w (x) dx 	 .(3.16) 

gT _ ( al (x) 	al (x)) 	 (3.17) 
ax 	ay 

where the integrals involved in G and e are computed over the window W. 

Some of the results are shown below: 
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Figure 3-lb : Iieffl 
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Figure 3-17 : treIIc1'k, 
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Chapter 4 Key Frames Extraction and Dissimilarity measure 

4.1 Cumulative Directed Divergence 

For comparing videos in visual speech recognition, [3] suggests that, rather than comparing all of 
the frames of the videos to be compared, key frames could be extracted from each frame and 
compare the set of key frames using the modified Hausdorff distance. The technique used in [3] 
to extract key frames from each video is cumulative directed divergence. 

Let p and q be probability density functions. In the terminology of S. Kullback[8], the directed 
divergences of p and q are the two integrals in 

) 	 pCx)  B f q(x) log (i(—x )p(x)  dx + Cf p(x) log ( 9(x) )  dx 	(4.1) 

the sum, with B = C= 1, is the divergnce. 

The commonly used video indexing methods utilize histogram comparisons, because extraction 
of histograms is computationally efficient compared with the motion based methods[43]. Most 
common algorithms using histogram comparison include histogram difference[44], Euclidean 
metric[45] and directed divergence[3]. 

The divergence measure is defined by the sum of directed divergences[47]. The directed 
divergences ofhistograms are expressed as[4] : 

Ht+1(j)log ( Ht+1(J )) 
H tV) Ht (1)log (  Ht(1)) 	(4.2) 

H I 	t+1V ) 

where Ht(j) signifies the histogram in the j th bin(0<_j<_255), with the subscript t denoting the t th 
frame and bin signifying the gray level range of the histogram representation[4]. 

The key frames are detected if the directed divergence value between the current frame and the 
previous key frame is larger than the given threshold[3]. The extracted key frames can be used 
for matching video sequences with a very low computational load[48]. 
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Following four keyframes were extracted out of a video of 120 frames : 

Figure 4-1: 	 i i luuc, 3 	i i aiiir', itfi 	11 a1iIC, / i 	ii'aun. 

4.2 Modified Hausdorff distance 

4.2.1 Hausdorff distance 

A central problem in pattern recognition and computer vision is determining the extent to which 
one shape differs from another. Pattern recognition operations such as correlation and template 
matching and model-based vision methods can all be viewed as techniques for determining the 
difference between shapes. It is important for shape comparison functions to obey metric 
properties. 
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Given two finite point sets A = {al,...,ap} and B = { b1,...,bp}, the Hausdorff distance is defined 
as[9]: 

H(A,B) = max(h(A,B),h(B,A)) 	 (4.3) 

Where the directed measure h(A,B) = maxa  e Amine Bjla — bII with  • denoting the norm on the 
points of A and B [49]. 

The function h(A,B) is -called the directed Hausdorff distance from A to B. It identifies the point 
a c A that is farthes from any point of B and measures the distance from a to its nearest neighbor 
in B (using the given norm 1.11), that is, h(A,B) in effect ranks each point of A based on its 
distance to the nearest point of B and then uses the largest ranked such point as the distance(the 
most mismatched point of A). Intuitively, if h(A,B) =. d, then each point of A must be within 
distance of d of some point of B, and there also is some point of A that is exactly distance d from 
the nearest point of B(the most mismatched point). 

The Hausdorff distance H(A,B) is the maximum of h(A,B) and h(B,A). Thus it measures the 
degree of mismatch between two sets by measuring the distance of the point of A that is farthest 
from any point of B and vice versa. Intuitively, if the Hausdorff distance is d, then every point of 
A must be withing a distance d of some point of B and vice versa. Thus, the notion of 
resemblance encoded by this distance is that each member of A be near some member of B and 
vice versa. Unlike most methods of comparing shapes, there is no explicit pairing of points of A 
with points ofB (for example, many points ofA may be close to the same point of B). 

4.2.2 Video sequence matching using the modified Hausdorff distance: 

For matching between video sequences, [3] employs the modified Hausdorff distance measure. 

In [3], the modified Hausdorff distance D(S,R) is given by 

D(S,R) = max[minr e  R{d(s],r)], min, e R{d(s2,r)}, ..., min,,R(d(sn,r)}] 	(4.4) 

Where S={sl,...,sn} represents the set of key frames for the query sequence and R={rl,...,rm} 
signifies the set of key frames for matching sequences, with n and m denoting the total numbers 
of elements in sets S and R respectively[50]. 

Using the above form of modified Hausdorff distance, we compare a test video with the 
reference database of the visemes and results show that the Hausdorff distance is least for that 
stored viseme which represents the test viseme. 
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Chapter 5 Conclusions and Future Work 

This thesis being aimed at extracting visual information for aiding speech recognition, we have 
been able to, first of all, extract the location of the speaker via face detection algorithm. The 
algorithm uses skin-tone color. The difficulty of detecting the low-luma and high-luma skin 
tones have been circumvented using a nonlinear transform to the YCbCr  color space. Skin 
regions are detected over the entire image. 

After achieving this task we aimed to reach the mouth region of the speaker since that serves as 
the starting point to the algorithm of lip tracking (Chapter 3) implemented. For doing so, we 
aimed at extracting the location of both eyes of the speaker, which lead us to the mouth region. 

The previous result led us to the implementation of the lip tracking algortithm. The algorithm 
employs a new kind of active contour: the ̀ jumping snake". It can be initialized relatively far 
away from the final contour when compared with classic snakes. Using an "hybrid edge", 
accurate lip boundary localization in the first image of a video sequence is ensured [2]. Then a 
cubic-curves model is used to fit the outer lips boundary. It's high flexibility enables very 
realistic results [2]. To achieve segmentation in the following images, an interframe tracking of 
keypoints is used. 

For comparing videos, firstly, key frames have been extracted using directed divergence [3]. This 
reduces the complexity related to the comparison of different video sequences. A modified form 
of Hausdorff distance is finally used to measure the dissimilarity between video sequences. 

As an extension to the work presented in this thesis, we can implement an algorithm which could 
detect phoneme boundaries in the audio. This would give us the intra-word and inter-word 
viseme boundaries. These visemes could be recognized using the algorithms discussed in this 
thesis and as a result, we could develop a visual speech recognition system which could detect 
not only what is stored in it's database but any possible combination of the visemes stored. 
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