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ABSTRACT 

Denoising plays an important role in image processing which is used to recover a 

signal/image that has been corrupted by noise. In this Thesis we have shown various 

denoising algorithms based on spatial and frequency domain filtering, Discrete 

Wavelet Transform, Dual Tree Complex Wavelet Transform (DTCWT) and 

Fractional Fourier Transform (FrFT). Based on the study of various algorithms a new 

hybrid FrFT and DTCWT algorithm has been proposed. 

After a thorough study of various denoising techniques, these techniques are then 

implemented in MATLAB for different types of noises such as Gaussian, Salt and 

Pepper and Speckle Noise at various noise levels and there simulation results are 

compared based on Mean Square Error (MSE) criteria and visual interpretation and it 

has been shown that denoising algorithms depends on the type of noise present in 

image, hence it is necessary to have prior knowledge about the type of noise present 

in image so as to select the appropriate denoising algorithm. 

Combining the advantages of DTCWT and FrFT, a new hybrid algorithm has been 

proposed and it proves to be best when noise is of Gaussian or Speckle type whereas 

Median filter proves to be best when noise is of Salt and Pepper type. 
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Chapter 1 Introduction 

1.1 Need for denoising 

Digital images are essential part of contemporary life. Some of the most frequently used 

images types are binary (takes only two discrete values `0' for black and '1' for white), gray 

scale images (monochrome or one color image) and color images (three band monochrome 

images). However, due to natural phenomenon such as transmission errors or imperfect 

acquisition tend to distort the images. This distortion includes blurring of image or adding 

additive or multiplicative noise as discussed in subsection 1.2. Thus arises the need for image 
denoising in order to suppress or completely remove the noise from the degraded image. 

Image denoising is mostly used in field of photography in which an image somehow gets 

degraded and needs to be denoised before it can be printed. In order to apply different 

denoising techniques (mentioned in subsection 1.3 and discussed in detail in Chapter 2, 3 and 

4) we need to know the degradation process to develop a model for it. Image denoising finds 

application in fields such as astronomy, medical imaging, forensic science and many other 

fields of contemporary life. 

1.2 Types of Noises 

In this subsection we discuss noise commonly present in an image. Noise is undesired 

information that contaminates the image. Noise is present in an image either in an additive or 

multiplicative form [1] 

An additive noise follows the rule 

w(i, j) = s(i, j) + n(i, j) 	 (1.1) 

while the multiplicative noise satisfies 

w(i, j) = s(i, j) x n(i, j) 	 (1.2) 

where s(i, j) is the original signal, n(i, j) denotes the noise introduced into the signal to 

produce the corrupted image w(i, j), and (i, j) represents the pixel location. 
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1.2.1 Gaussian Noise 

Gaussian noise is normally distributed over the signal/image i.e each pixel in the noisy image 

is the sum of the true pixel value and a random Gaussian distributed noise value. As the name 

indicates, this type of noise has a Gaussian distribution, whose probability distribution 
function given by: 

F(g) =  1 	 Z 	 (1. 3) 

where g represents the gray level, m is the mean or average of the function, and o is the 

standard deviation of the noise. When introduced into an image (peppers), Gaussian noise 
with zero mean and variance as 400 would look as in Figure 1-2. 

Figure 1-1 Clean Image Figure 1-2 Corrupted Image with 
Gaussian Noise (Mean, 

Variance=400) 

1.2.2 Salt and Pepper Noise 

Salt and pepper noise is an impulse type of noise, also referred to as intensity spikes. This is 

caused generally due to errors in data transmission. The corrupted pixels are set alternatively 
to the minimum or to the maximum value ('0' or '255'in case of gray scale images), giving 
the image a "salt and pepper" like appearance. Unaffected pixels remain unchanged. It has 

only two possible values `a' and `b', both with probability less than 0.1. 
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For an 8-bit image gray scale image, the typical value for pepper noise is 0 and for salt noise 

255. 

When introduced in an image (peppers), Salt and Pepper noise with noise density, D = 0.2 

would look as shown in Figure 1-4. It will affect D x N pixels where N is the number of 
pixels in image. 

 

Figure 1-3 Clean Image Figure 1-4 Corrupted Image with 
Salt & Pepper Noise (D=O.2) 

1.2.3 Speckle Noise 

Another common form of noise is speckle noise. This noise is, in fact, caused by errors in 

data transmission. The corrupted pixels are either set to the maximum value, which is 

something like a snow in image or have single bits flipped over. This kind of noise affects 

the ultrasound images/SAR images. Speckle noise has the characteristic of multiplicative 

noise. Speckle noise follows a gamma distribution and is given as: 

ga-i 	
9i F(9) = 	e —  a 	 (1.4) (a-1)!aa 

Where variance is a2a and g is the gray scale. 

It adds multiplicative noise to the image s, using the equation w = s + (n)x(s), where n is 

uniformly distributed random noise with mean 0 and variance V. When introduced in an 

image (peppers), Speckle noise with variance V = 25 would look as shown in Figure 1-6 
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Figure 1-5 Clean Image Figure 1-6 Corrupted Image with 
Speckle Noise (V25) 

1.3 Various Image Denoising Techniques 

Over the years several denoising techniques have been implemented. These includes applying 

filters in spatial domain such as Mean, Median, Wiener and Non Local means filter [2], filters 

in frequency domain like Wiener filter [3,4] which acts as a low pass filter and remove the 

high frequency components present as noise, filtering in Wavelet domain [5] using several 

threshold and shrinkage techniques [4,6,7] on discrete wavelet and complex wavelet 

transform[8,9-11] and applying filters in Fractional domain such as in Fractional Fourier 

Transform [ 12]. All these techniques have been discussed in detail in the following chapters. 

There are few other techniques which have not been discussed in this thesis. 

1.4. Statement of Problem 

The basic idea behind this thesis is to propose a new denoising algorithm after a thorough 

study of various conventional denoising algorithms. 

There are various denoising techniques to reconstruct a noise free image from noise present 

in a clean image. Selecting the appropriate method plays a major role in getting the desired 

denoised image. The denoising methods depends on the problem i.e.. type of noise. For 

example, a method that is used to denoise images corrupted with Gaussian noise may not be 

suitable for denoising images corrupted with Salt & Pepper noise. In this thesis, a study is 

made on the various denoising algorithms and each is implemented in MATLAB. In order to 

quantify the performance of the various denoising algorithms, several high quality images are 

taken and some known noise is added to it. Then denoising algorithms are applied to these 

noisy images, which produces an image close to the original high quality image. The 
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performance of each algorithm is compared by computing Mean Square Error (MSE) and 

Peak Signal to Noise Ratio (PSNR) besides the visual interpretation. 

At the end after comparing various techniques and noticing the advantages and disadvantages 

of various denoising algorithms a new algorithm has been proposed which gives better 

performance over the other denoising algorithms both visually and in terms of MSE and 

PSNR. In this new algorithm we combined the benefits of Fractional Fourier Transform and 

Dual Tree Complex Wavelet Transform and tried to remove their drawbacks. 

1.5 Thesis Organization 

In Chapter 2 we have discussed several spatial domain filters such as Mean, Median, Non-

Local Means and Wiener Filter and a frequency domain wiener filter, these filters can again 

be regrouped as Linear, Non-Linear and Adaptive filters. We have shown how these filters 

can be implemented and the results of their implementation are then shown in chapter 5. 

In Chapter 3 we introduced the concept of Image denoising using Discrete Wavelet 

Transform. We thoroughly discussed what is meant by DWT, how DWT can be implemented 

for Image denoising and the various thresholding and shrinkage method that plays an 

important role in denoising of an image. 

In Chapter 4 we define Fractional Fourier Transform and Dual Tree Complex Wavelet 

Transform and their implementation and algorithms for image denoising, their superiority 

over other conventional methods and then on the basis of this discussion we proposed a new 

hybrid algorithm combining advantages of both FrFT and DT CWT, thereby removing their 

shortcomings. 

In Chapter 5 implementation of all the denoising techniques discussed in earlier chapters is 

done in MATLAB and the simulation results are presented along with the discussion of the 

results obtained for various denoising techniques. The algorithms are applied on four 

different Images with all 3 types of noises i.e. Gaussian, Salt & Pepper and Speckle Noise. 

Finally In Chapter 6 we have concluded our thesis based on the results obtained and the scope 

for future work followed by references. 
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Chapter 2 Image denoising with Filters in Spatial & Frequency Domain 

The need to remove noise without degrading the edges and other high frequency components 

of the image significantly has motivated the development of efficient edge-preserving noise 

smoothing techniques. Over the years significant progress and development has been made in 

developing several image denoising techniques. In this chapter we have discussed Mean, 

Median, Non-Local Means (NLM) and Wiener filters applied in spatial domain, and 

implementation of Wiener filter in frequency domain. The results of all these filters are later 

discussed in Chapter 5 when applied on noisy images. 

2.1 Background 

Filters play an important role in image denoising process. The basic concept behind image 

denoising using linear filters is digital convolution and moving window principle. Let w(x) be 

the input noisy signal which is to be filtered, and z(x) be the filtered output. Thus filtered 

output can be expressed mathematically in simple form as: 

z(x) = f w(t)h(x — t)dt 	 (2.1) 

Where h(t) represents the impulse response of the filter and integral is the convolution of 

input noisy signal with filter. 

For discrete case: 

z(i) = 	_~ w(t)h(i — t) 	 (2.2) 

as seen the limits is oo but the weights h(t) are zero outside some range (-k,+k), thus above 

equation can be written as: 

z(t) = zc= k w(t)h(i — t) 	 (2.3) 

that is output z(i) at point i is given by a weighted sum of neighborhood pixels of i where the 
weights are given by filter response h(t). To find the output at the next pixel i+l, the function 

h(t) is shifted by one and the weighted sum is recalculated. The total output is created by a 

series of shift-multiply-sum operations, and this forms a discrete convolution. For the 2-

dimensional case, h(t) is h(t, u), and output in discrete form is given as: 
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z(i,I) = Zt±k k ~u°j-k w(t' u)h'(i - t,) — u) 	 (2.4) 

In DIP the weight, h(t, u) may be defined arbitrarily thus different types of filters such as 
Mean, Median, Wiener and NLM filters can be implemented. 

2.2 Spatial Domain Filters 

2.2.1 Mean Filter 

A mean filter reduces the noise in the noisy image by taking the mean of the adjacent 

neighboring pixels i.e. it's a simple sliding window spatial filter that replaces the centre pixel 

of the window by taking the average mean of all the pixels in the window being considered. 

Generally a 3x3 or 5 x 5 "sliding window is used. This filter works on the shift multiply sum 

principle. 

The local mean filter uses equal weights, h(t, u) to yield a smoothed estimate: 

Z(t, I) = NM ~t±k k Zu=j-k W (t, u) 	 (2.5) 

where NM is the number of pixels in the window and w(t, u) is the noisy image. It can be 
easily shown that in the case of AWGN with zero mean and variance of ? the noise power in 

the filtered output is reduced by number of pixels in the window i.e. NM, thereby resulting in 

improvement of output SNR by a factor of NM. This implies that for better SNR larger 

window mask should be selected however if we take large window size it introduces 

denoising artifact of image blurring. 

Mean filtering is more effective when the noise present in an image is of impulsive type. The 

mean filter works like a low pass filter (LPF), and it does not allow the high frequency 

components present in the noise to pass through. It is to be noted that larger windows of size 

5x 5 or 7x7 produces more denoising but make the image more blurred. A trade-off is to be 

made between the kernel size and the amount of denoising. 

2.2.2 Median Filter 

A median filter is a type of nonlinear filters unlike the mean filter and the wiener filter 

(described in section 2.2.4). Median filter also follows the moving window principle similar 

to the mean filter. A n x n (where n is odd) kernel of pixels is scanned over pixel matrix of 
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the entire image. The median of all the pixels in the window is calculated and the centre pixel 

value of the window is replaced with the calculated median. Median filtering is done by, first 

sorting all the pixel values from the surrounding neighbourhood in either ascending or 

descending order and then replacing the centre pixel which is being considered with the 

median value of the neighborhood window. 

The median is more robust compared to the mean. Thus, a single very unrepresentative pixel 

in a neighborhood will not affect the median value. Since the median value is the value of one 

of the pixels in the neighbourhood (window), the median filter does not create new pixel 

values. For this reason the median filter is much better at preserving sharp edges than the 

mean filter. These advantages led median filters in denoising uniform noise along with sharp 

impulse type of noise as well from an image. 

2.2.3 Non-Local Means 

NLM denoising method is based on the self-similarity of images in spatial domain [2]. The 

non-local means algorithm assumes that the image contains an extensive amount of 

redundancy. These redundancies can then be exploited to remove the noise in the image. 

An example of such a type of self-similarity is displayed in Figure 2-1 below. The figure 

shows three pixels p, ql, and q2 and their respective neighborhoods. The neighborhoods of 

pixels p and ql are similar, but the neighborhoods of pixels p and q2 are not similar. 

Adjacent pixels tend to have similar neighborhoods, but non-adjacent pixels can also have 

similar neighborhoods only in some of the particular cases as for example, in Figure 2-1 

most of the pixels in the same column as p will have similar neighborhoods to p's 
neighborhood. The self-similarity assumption can be exploited to denoise an image. Pixels 

with similar neighborhoods can be used to determine the denoised value of a pixel. 

Figure 2-lExample of self-similarity 
in an image 



Implementation: 

Given a discrete gray noisy image w, the estimated value NL[w](i) , for each pixel i, is 

computed as a weighted average of all the pixels in the image: 

NL[w](i) = J j, j h(i,j)w(j) 	 (2.6) 

where the weights {h(i,j)} depends on the similarity between the pixels i and j, and satisfies 

0<_ h(ij) <_l and E, h(i, j) = 1 . Each pixel is a weighted average of all the pixels in the 

image. The weights are based on the similarity between the neighborhoods of pixels i and j. 

To compute similarity - between the pixels, a square neighborhood N with radius Rsj,n  is 

defined centered about a pixel i. This similarity is measured as a decreasing function of the 

weighted Euclidean distance, Il y(Ni) — y(Nj) I!? Q  where a>O is the standard deviation of the 

Gaussian kernel. These weights are defined as: 

h(i•l) = Zvi)  exp (IIY(Ni) — y(NI)II2 a /k2 ) 	 (2.7) 

where Z(i) is the normalizing constant given as: 

E, exp (IIy(Ni) — y(N1)II2 a/k2) 	 (2.8) 

and k is the weight-decay control parameter and k ' 106„ ,which controls the decay of the 

exponential function and therefore the decay of the weights as a function of the Euclidean 

distances. Sr 

The parameter a is the neighborhood filter with radius Rim. The weights of a are computed 

by the following formula: 

stm 1 	 2.9 
Rim 	m  (2i+1)2 	 ( ) 

where m is the distance of the weight which is from the center of the filter. 

Implementing NLM basically has three parameters. 

• The first parameter, k, is the weight-decay control parameter which controls where the 

weights lay on the decaying, exponential curve. If k is set too low, not much of the 

noise will be removed. Setting k too high results in blurring of the image. When 
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an image contains white noise with a standard deviation of or,,, k should be set between 

10 Q„ and 15o. 

• The second parameter, Rum, is the radius of the neighborhoods used to find the 

similarity between two pixels. If Rs,m  is too large, no similar neighborhoods will be 

found, but if it is too small there will be too many similar neighborhoods. Common 

values for Rs,n, are 3 and 4 to give neighborhoods of size 7x7 and 9x9, respectively. 

• The third parameter, RwI,,, is the radius of a search window. Because of the 

involvement of lot computation of taking the weighted average of every pixel for 

every pixel, it will be reduced to a weighted average of all pixels in a window. The 

window is centered at the current pixel being computed. Common values for R,N!„ are 
7 and 9 to give windows of size 15x15 and 19x19, respectively. With this change the 

algorithm will take a weighted average of 152  pixels rather than a weighted average of 
N2  pixels for a NxN image. 

2.2.4 Wiener Filter (Adaptive Filter) 

Wiener filter is a type of adaptive filter[13] which is an improvement over the mean filter. 
The main difference between the mean filter and the adaptive filter is that the weight matrix 

of the filter varies after each iteration in the adaptive filter while it remains constant 

throughout the iterations in the mean filter. Adaptive filters are capable of denoising non-

stationary images, that is, images that have abrupt changes in intensity. 

Implementation: 

Let s(i,j) be the original image and n(i,j) is the noise and w(i,j) is the noisy image which need 
to be filtered i.e 

w(i, j) = s(i,j) + n(i, j) 	 (2.10) 

Let the filtered image be z(i,j) which should be equal to s(i,j) ideally. 

z(i, j) = 'EN
m=-N Lin=-N h(m, n)w(i + m, j + n) 	(2.11) 

The weights of the Wiener filter, h(mn), can be found by minimizing: 

J = E[fs(i,j) _ z(i, j) }21 	 (2.12) 
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where E denotes expectation. The solution for h(m, n) is obtained in a vector form as: 

h = R-1p 	 (2.13) 

R(m, n) and p(m, n) correspond to the auto correlation function of w(i, j) and cross-correlation 
function of s(i, j) and w(i, j), respectively, which are given by: 

	

R(m,n)=E[w(i,j)w(i—m,j—n)) 	 (2.14) 

	

p(m, n) = E[s(i,j)w(i — in,] — n)} 	 (2.15) 

respectively. In practice, the following criterion 

	

1  = 1  ZM p1  GM p1{S(i j) - Z(i ,])}2 	 (2.16) 

is often defined due to its easy computation, and the solution for filter weights (h) as defined 

in equation (2.13) is obtained. In this case, R(m, n) and p(m, n) are calculated as 

	

R(m,n) = -! Ei"_-o EMo (w(i,j)w(i -m,j 	- n)) 	 (2.17) 

p(m, n) = Mz  GM (s(i ])w(i j)w(i — m, j - n)) 	 (2.18) 

respectively, from M x M images of s(i, j) and w(i, j). 

2.3 Frequency Domain Wiener Filter 

One of the main difficulties associated with spatial domain filters is their computational 

complexity required to perform the convolution. Frequency domain filters overcome this 

problem as in Fourier domain convolution is transformed into multiplication. Most of the 

information in an image is mainly present in low frequencies, and the the noise is generally 

located in high frequencies or spread across all frequencies (white noise), thus frequency 

domain filters in order to perform denoising represents some form of low pass filters to 

reduce most of the high-frequency components in order to denoise the image. However, it has 

a drawback as along with noise it also removes some information of an image that are 

contained in high frequency. Thus, it becomes difficult to suppress the noise without 

degradation of some of the significant features of the image like edges and textures. 

Therefore, most of the general frequency-based image denoising methods results in overly 

11 



smoothed denoised images where the noise has been reduced but also edges and other high-

frequency features of the image have been blurred. 

Implementation [13]: 

Let Z(u, v),H(u, v),S(u,v) and W(u,v) represent the discrete Fourier transforms (DFTs) of z(i, j) 

(filtered output), h(i, j) wiener filter weights, s(i,j) (clean image) and w(i, j) (noisy image), 

respectively. 

In frequency domain the output of wiener filter is given as: 

z (u, v) = H (u, v)W (u, v) 	 (2.19) 

(As convolution in spatial domain is multiplication in frequency domain) 

by  minimizing  the wiener cost function by partial differentiating it w.r.t H(u,v) and equating 
to zero: 

J = E[{S(u, v) — Z(u, v)}z ] = E[[S(u, v) — H(u, v)W (u, v))2 ] 	( 2.20) 

we -get: 

H (u, v) —  E[W(u,v)S*(u,v)l 	 (2.21) -  E[JW(u.v)12 ] 

where * denotes complex conjugate. When noise is white noise, the numerator reduces to 

E[W(u,v)S*(u,v)] =E[(S(u,v)+ N(u, v))X S*(u,  v)] = E[IS(u,v)12] = PS(u,v) 	(2.22) 

and the denominator reduces to 

E[IW(u, v)I Z] = PS(u,v)+ PN (u,v) 	 (2.23) 

where PS(u,v) and Ppj(u,v) correspond to the power spectra of s(i,j) and n(i,j), respectively. 

Therefore: 

_ 	'S(u,v)  H(u, v) 	PS(u,v)+PN(U,v) 	 (2.24) 

The output of the Wiener filter is given by: 
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Chapter 3 Image denoising using Discrete Wavelet Transform 

3.1 Background 

The limitations of Fourier transform make the use .of Wavelet Transform important. Fourier 

transform is unable to provide information in time and frequency domain simultaneously. 

This means that Fourier transform provides us with the frequency components, but it does not 

tell when and where the impulse occurred. However, in Image processing, we require time 

and frequency information of the signal simultaneously. To overcome this problem, we 

divide the signal into different parts and analyze frequency components of these parts 

separately. One of the solutions to this problem was Short Term Fourier Transform (STFT). 

In STFT we move a window across the signal to analyze the frequency domain of the signal 

for each part. The problem still remains since STFT has a fixed resolution. Thus measuring 

frequency and time cannot be done simultaneously at a desired resolution. A wide window 

gives better frequency resolution but poor time resolution. A narrower window, on the other 

hand, gives good time resolution but poor frequency resolution. 

f f 

time 

Figure 3-1 STFT windows, narrow in time domain means wide in frequency domain and vice-versa. 

The solution to this problem was provided in terms of Wavelet Transform. Wavelet transform 

uses a scalable modulated window to move across the signal. Using a small scale for high 

frequency parts and a big scale for low frequency parts enables wavelet transform to provide 

a good time and frequency resolution [14]. 
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time 

Figure 3-2 Time Frequency occupation by wavelet transform 

3.2 Continuous Wavelet Transform (CWT) 

CWT is defined basis functions which are very short (high frequency) and long (low 

frequency) depending on the resolution of the frequency analysis, where the basis functions 

are obtained from a single prototype wavelet also known as Mother wavelet 

Wa,6  (t) 
_ 
— Ja W 

 ( 
a J 
	 (3.1) 

where a E R+, b E R. For large a, the basis function becomes a stretched version of the 

prototype wavelet which is a low frequency function, while for small a the basis function 

becomes a contracted wavelet which is a high frequency function. The continuous wavelet 

transform (CWT) is then defined as the convolution of x(t) with a wavelet function, W(t), 

shifted in time by a translation parameter b and a dilation parameter a. 

Xw(a', b) =-'-f °  W (tab) x(t) dt 	 (3.2) 

At high frequencies the CWT is sharper in time while at low frequencies the CWT is sharper 

in frequency. W(t) denotes the mother wavelet. The parameter a represents the scale index 

that is the reciprocal of the frequency. The parameter b indicates the time, shifting (or 

translation). 
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3.3 Discrete Wavelet transform (DWT) 

CWT is redundant since the parameters (a, b) are continuous thus we need to discretize the 

grid on the time-scale plane corresponding to a discrete set of continuous basis functions to 

get DWT. 

W,k(t) = ./i7W(r abk) 	 (3.3) 

The above equation can be written as: 

Wk(t) = ao Zw(aoi t — kbo ) 	 (3.4) 

Where a3 = ao and bk = kboa' and j, k E Z, ao > 1 and bo ~ 0 and in the discrete form of 

the wavelet as shown in equation (3.4), j controls the dilation and k controls the translation. 

Two popular choices for the discrete wavelet parameters ao and b0 are 2 andl respectively, a 

configuration that is known as the dyadic grid arrangement 

Wavelet analysis decomposes a signal into time shifted and scaled versions of a mother 

wavelet, W,k(t). Wavelet analysis results in perfect reconstruction, in which a decomposed 

signal or image is reassembled into its original form without loss of information. We 

normally use two types of basis functions for decomposition and reconstruction. These 

functions are: 

• Scaling Function: 

I 
Oj,k (t) = 2 2cP0 (2-3 t — k) 
	

(3.5) 

• Wavelet: 

W,k(t) = 2-j12W0(2-it — k) 	 (3.6) 

An example of a simple wavelet function is called the Haar wavelet. The Haar transform 

stands for the simplest algorithm enabling signal or image denoising. In Haar's case it is a 

square wave. The Haar mother wavelet W(t) and scaling function 1(t) are defined as follows 

[15]: 



0<t<1 

otherwise 

0<t<_1/2 
1/2<t_<1 
otherwise 

(3.7) 

Every basis function W is orthogonal to every basis function 0. Wavelets are functions 

defined over a finite interval and have an average value of zero. 

The discrete wavelet transform (DWT) is commonly implemented with sets of filters that 

divide a signal frequency band into sub bands. At. each scale in DWT, the approximation 

coefficients are generated from a low pass filter and are associated with the low frequency 

part of the signal while the detail coefficients are output from a high-pass filter and capture 

the high frequency components of the signal. 

The 1-D forward wavelet transform of a discrete-time signal x(n) (n = 0, 1, ... , N) is 

performed by convolving signal x(n) with both a half-band low-pass filter L and high-pass 
filter H and down sampling by two as shown below Figure 3-3. This provides the coefficients 

cc(k) and dj(k) for the decomposition of the signal into its scaling function and wavelet 

function components. 	 . 

L 	 DownSampling (D) 

0 
Si 

Approximation 
Coefficients 

Detail 
Coefficients 

Convolution 
and 
DownSampling 

Figure 3-3 1D signal decomposition 

c(n) = Zn-o ho(k)x(n — k) and d(n) = Zn=o hi(k)x(n — k) 
	

(3.8) 
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where c(n) represent the approximation coefficients for n =0, 1, 2. . . , N — 1 and d(n) are the 

detail coefficients, ho  and h1  , are coefficients of the discrete-time filters L (Low Pass filter) 

and H (high pass filter). 

{ h0  (n); = (ho (0), ho  (1), ...... , ho  (L — 1)) 

{ h(); = (h1(0 ), h1(1), ......, hi(L — 1)) 

The high pass filter leads to W(t) and the low pass filter leads to a scaling function t(t). A 
filter bank is a set of filters in which the analysis bank often has two filters, low pass Ho and 

high pass Hl. They split the input signal into frequency bands. The filtered outputs from both 

filters give a double signal length. To overcome this we have to down sample or decimate the 

signal by 2. 

In multilevel decomposition, this process is repeated, with successive approximations(the 

output of the low-pass filter in the first bank) being decomposed in turn i.e. approximate 

coefficients that are obtained from LPF are decomposed again, so that one signal is broken 

down into a number of components. This is called the Mallat algorithm or Mallat-tree 

decomposition. A three-level decomposition is shown in Figure 3-4. In this illustration, a3 

represents the approximation coefficients, while d3, d2 and dl represent the detail coefficients 

resulting from the three-level decomposition. 

H 	D 
J 

ori; 
Sig 

Figure 3-41D Multilevel decomposition 

2-D signals such as digital images require a two-dimensional wavelet transform. The 2-D 

DWT analyzes an image across rows and columns in order to separate horizontal, vertical and 

diagonal details. In the first stage the rows of 2D (NXN) signal are filtered using a high pass 
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and low pass filters. In the second stage 1-D convolution of the filters with the columns of the 

filtered image is applied. Each of the branches in the tree is shown in the Figure 3-5 therefore 

produces an (N2) x (Na) sub image. This leads at each level to 4 different sub bands HH, 

HL, LH and LL. 

L 	 D 

Or 
Sign 

LL 

LH 

HL 

Column Convolution 	 Row Convolution and Down Sampling 	 and Down Sampling 

Figure 3-5A one level 2-Dimensional DWT 

To reconstruct the image from its 2-D DWT sub images (LH, HL, f" the detail coefficients 

are recombined with the low pass approximation using up sampling and convolution as 

shown in Figure 3-6. In the first stage the columns of the up sampled sub images are 

convolved with the impulse responses ho (k) and h1(k) and in the second stage the rows of the 

up sampled sums are convolved with the same impulse responses. 



	

Decomposition Stage 
	 Reconstruction Stage 

	

L 	D 	U 	Lr 

Orig 
Sigp [age 

'All' V U  Ut IVII 

and 
downsampling 

Di 

Row 
Convolition 
and 
downsampling 

Row 
Convolution 
and 
upsampling 

Column 
Convolution 
and 
upsampling 

Figure 3-6 One level 2D DWT Reconstruction 

3.4 Denoising Algorithm: 

• Choice of a wavelet (e.g. Haar, symmlet, etc) and number of levels for the decomposition. 

• Estimation of a threshold 

• Choice of a shrinkage rule (VisuShrink, BayesShrink etc) and application of the threshold 

(hard and soft threshold) to the detail coefficients. 

• Application of the inverse DWT using the thresholded coefficients. 

3.5 Thresholding 

Donoho and Johnstone [16] worked on filtering of additive AWGN using wavelet 

thresholding. The term wavelet thresholding means comparing the detail coefficients with a 

given threshold value, and shrinking these coefficients close to zero to take away the effect of 

noise in the data. The image is reconstructed from the modified coefficients. This process is 

also known as the inverse discrete wavelet transform. During thresholding, a wavelet 

coefficient is compared with a given threshold and is set to zero if its magnitude is less than 

the threshold; otherwise, it is retained or modified depending on the threshold rule. Some 
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typically used methods for image noise removal include VisuShrink and'RayesSbrl1 ( \~& 

18]. 

Prior to the discussion of these methods, it is necessary to know about the two general 

categories of thresholding. They are hard- thresholding and soft-thresholdingtypes. 

Hard Thresholding 

Hard thresholding (Figure 3-7(b)) deletes all coefficients that are smaller than the threshold A 

and keeps the others unchanged. The hard thresholding is defined as follows: 

signc(k) (Ic(k)I) 	if I c(k) > I 
Ch(k) = 	 (3.9) 

0 	 ifI c(k)SX I 

where A is the threshold and the coefficients that are above the threshold are theones 

thatretained. The coefficients whose absolute values are lower thanthe threshold are set to 

zero. 

Soft Thresholding 

Soft thresholding (Figure 3-7(c), for 2=0.5) deletes the coefficients under the threshold, but 

modifies the ones that are left. The general soft shrinkage rule is defined by: 

sign c(k) (I c{k)- Al) if I c(k) > A 
c5(k) = 	 (3.10) 

0 
	

iflc(k)<_Al 

Figure 3-7 An example of (a) linear signal thresholded using, (b) hard-thresholding, and (c) soft-thresholding. 
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In practice, it can be seen that the soft method is much better and yields more visually 

pleasant images. This is because the hard method is discontinuous and yields abrupt artifacts 

in the recovered images. 

Now let us discuss the thresholding methods i.e. VisuShrink and BayesShrink in detail. For 

all these methods the image is first subjected to a discrete wavelet transform, which 

decomposes the image into various sub-bands. Graphically it can be represented as shown in 

Figure 3-8. 

LL3 HL 
HL2 

L3 1ffi3 

HH; 

LHt HHl 

Figure 3-8 DWT of 2D data 

The sub-bands HHk, HLk, LHk, k = 1, 2, ..., j are called the detail sub bands, where k is the 

scale andj denotes the largest level of decomposition. LLk is the low resolution component 

that gives the approximate coefficients. Thresholding is now applied to the detail components 

of these sub bands to remove the unwanted coefficients, which contribute to noise. And as a 

final step in the denoising algorithm, the inverse discrete wavelet transform is applied to 

build back the modified image from its coefficients. 

3.5.1 VisuShrink [5] 

It uses a threshold value t that is proportional to the standard deviation of the noise. It follows 

the hard thresholding rule. It is also referred to as universal threshold and is defined as: 

A= o( 2log(n)) 
	

(3.11) 
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o2  is the noise variance present in the signal and n represents the signal size or number of 

samples. An estimate of the noise level a was defined based on the median absolute deviation 

[8,10] given by: 

median ({ Igj_1  kl:k=0,1,...,21-1-1)) 
6  = 	0.6745 

	
(3.12) 

VisuShrink does not deal with minimizing the mean squared error [17]. VisuShrink is known 

to yield recovered images that are overly smoothed. This is because VisuShrink removes too 

many coefficients. VisuShrink follows the global thresholding scheme where there is a single 

value of threshold applied globally to all the wavelet coefficients. 

3.5.2 BayesShrink[5] 

BayesShrink was proposed by Chang, Yu and Vetterli [17]. The goal of this method is to 

minimize the Bayesian risk, and hence its name, BayesShrink. It uses soft thresholding and is 

subband-dependent, which means that thresholding is done at each band of resolution in the 

wavelet decomposition. It is a smoothness adaptive shrinkage method. The Bayes threshold, 

tB, is defined as: 

tB = a 
S 

(3.13) 

where oz  is the noise variance and o is the signal variance without noise. The noise variance 

is estimated from the subband HHl  in Figure 3-9 by the median estimator shown in 

Equation (3.12). From the definition of additive noise we have 

w(x y) = s(x y) + n(x y) 	 (3.14) 

Since the noise and the signal are independent of each other, it can be stated that: 

crw = Qs + Q2 
	

(3.15) 

a-W can be computed as shown below: 

c , = n Zx,y=1 W 2  (x,  Y) 	 (3.16) 

The variance of the signal, cr is computed as: 
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us  = Af(max(Qw — U2, 0)) 	 (3.17) 

With QZ  and a, the Bayes threshold is computed from Equation (3.13). Using this threshold, 

the wavelet coefficients are thresholded at each band shown in Figure 3-8. 
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Chapter 4 Hybrid Fractional Fourier and Dual Tree Complex Wavelet 

Transform for Image Denoising. 

In order to understand the hybrid technique for Image denoising we first need to understand 

both the techniques separately. In this chapter we will first describe how FrFT and DTCWT 

can be used for Image denoising and then we will proceed to describe the new proposed 

Hybrid method. 

4.1 Fractional Fourier Transform 

The fractional Fourier transform is a generalization of the Fourier transform, which is 

introduced by Namias [ 19] at first and has many applications in signal and image processing 

spatially in the area of denoising using Low Pass Filter such as an optimal Wiener filter.The 

fractional Fourier transform can be viewed as the chirp-basis from its definition, but it can 

also be interpreted as a rotation in the time-frequency plane for better understanding. With 

the order from 0 increasing to 1, the fractional Fourier transform shows the characteristics of 

the signal changing from the time domain to the frequency domain. 

It has many advantages over conventional Fourier Transform. As in Fourier transform we 

cannot obtain the local Time Frequency character while FrFT can give information about 

signal in a domain between time and frequency. 	 O,I,RAL LI 

Let us first explain what is meant by Fractional Transform. 	:
o

i 	.......... . ....S 

................ 
Consider a transform T on a function f(x) as 	 i~ 	F 

ROOR'~~ 
T(f(x)}=F(u) 	 (4.1) 

where F(u) is the T transform of f(x). Now let us define a new transform: 

T If (x)} = Fa(u) 	 (4.2) 

We call here the "a-order Fractional T transform" and the parameter a is called the 

"fractional order". This kind of transform is called "fractional transform". It is basically 

operating Transform T onf(x) `a' number of times where `a' can be a fraction as well. This 

type of Fractional Transform satisfies following constraints: 
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T °{f (x)} = f (x) 	 (4.3) 

T 1{ f (x)} = F(u) 	 (4.4) 

It also satisfies the additive property: 

T/3{T a{ f (x)}} = TR+a 
(f  (x)) = FR+a (u) 	 (4.5) 

4.1.1 Definition of Fractional Fourier Transform[20,21] 

The ath  order FrFT of a function denoted by (Fa[f(x)])(x) is defined for a C [-2,2] 

{Fa [ f (x)] (x) _ f Ba  (x, x') f (x') dx' 	 (4.6) 

where the kernel Ba(x,x) is given by: 

B.(x,Xr)  _   
1 	X exp[arc( zcot4 - 2xx'cosec + x'zcotdp)] 	(4.7) 

Isin4Iz 

where qi = arc/2 and = sgn(sinç/i). We see that for a=0 and a=2 kernel reduces to 

Bo(x,x) = S(x x) and B2(x,x) = 

Some of the essential properties of FrFT are: 

• FrFT operation is linear 

• First order FrFT FI  corresponds to conventional FT and F°  means no transform is 

performed. FZ  gives f(-x) and F;gives Inverse Fourier Transform and Fd  performs no 

transform. 

• FrFT is periodic with aranging from [-2,2] or [0,4] 

• FrFT is additive. 

• Inverse FrFT of order a is given by F-a 

4.1.2 Denoising using FrFT [22] 

In many Image processing applications, signals which we wish to recover are degraded by a 

noise. We may design some digital filter (explained in Chapter 2 and 3) in Spatial, Frequency 
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or Wavelet Domain for noise removal. Another approach to denoise an image is designing a 

filter in Fractional Fourier domain. 

The conventional filter in time domain can be written as: 

x0(t) = f h(t — t')x1  (t')dt' 	 (4.8) 

wherexo(t), x,(t) and h(t) output signal, input signal and impulse response of the filter 

respectively. This can also be written in frequency domain as 

	

x0  (t) =- IFT (FT (x1  (t) ). H (w)) 	 (4.9) 

Where H(w) is the FT of h(t) 

Fractional filter is the generalization of conventional filter and is defined as: 

	

x0 (t) = F-'{F"{xj(t)).Ha(u)} 	 _ (4.10) 

Where Ha(u) = 

We can perform the a'h  order Fractional Fourier Transform operation that corresponds to 
rotation of the Wigner Distribution by an angle ci=awr/2 in the clockwise direction, we can 
find the fractional domain in which signal and noise do not have overlap: Then we can rotate 

the Wigner Distribution, that is, do the Fractional Fourier Transform in that domain, then 

filtering out the undesired noise using the LPF. This is shown in Figure 4-1. 

In Figure 4-1, we see that on performing filtering operation in spatial or frequency domain 

the noise cannot be removed completely as noise overlaps with the signal both in frequency 

and spatial domain. 

In Figure 4.1 we can see that if we rotate the Wigner Distribution (WD) in 0.5th  domain i.e. 
a=0.5 noise and signal wont overlap and thus a LPF can be applied to get the noise free 

signal and then inverse FrFT is applied to get the signal in spatial domain. 
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tr  = f 
tQ  

to =t 

Figure 4-1 Noise Separation in the ath  domain [20[ " 

4.2 Dual Tree Complex Wavelet Transform 

The 1-D dual-tree wavelet transform is implemented using a pair of filter banks operating on 

the same image data simultaneously. The filter bank upper one in Figure 4-2 ('tree a') 

represents the real part of a complex wavelet transform.. The lower one in Figure 4-2 

represents the imaginary part (`tree b'). The transform is an expansive (or oversampled) 

transform. The transform is two times expansive because for an N-point signal it gives 2N 

DWT coefficients. 

Original 
Signal x(c zl 

Put 

Figure 4-2 One level Complex dual tree. 

The approximation and detail coefficients for the two trees are denoted respectively (aA, dA) 

and (aB, dB). The detailed coefficients dA and dB can be interpreted as the real and imaginary 

parts of a complex process z = dA + idB. DT CWT is not really a complex wavelet transform; 
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since it does not use any complex wavelet instead it is implemented with real wavelet filters 

applied in two trees separately. The reconstruction is done in each tree independently, by 

using the dual filters, the results are averaged to obtain x(n) . The algorithm for DTCWT is 

same as for DWT as discussed in Chapter 3. In the implementation of DT CWT in this thesis 

we use a filter of length 10, the table of coefficients of the analyzing filters in the first stage 

(Table 4.1) and the remaining levels (Table 4.2) are shown [23]. The coefficients of the 

synthesis filters are the transposes of the analysis filters (orthogonal filters). 

Table 4-1 First level Coefficints of the analysis filter 

Hd  H„ H. Hly 

0 0 0.01122678 0 

-0.08838834 -0.01122679 0.01122679 0 

0.08838834 0.01122679 -0.08838834 -0,08838834 

0.69587998 0.08838834 0.08838834 
i 

-0.08838834 

0.69587998 0.08838834 0.69587998 0.69587998 

0.08838834 -0.69587998 0.69587998 -0.69587998 

-0.08838834 0.69587998 0.08838834 0.08838834 

0.01122679 -0.08836834 -0.08838834 0.08838834 

0.01122679 -0.08838834 0 0.01122679 

0 0 0 -0.01122679 

Table 4-2 Remaining Levels Coefficients of the Analysis Filters 

H00a H01a H00b H01b 

0.03516384 0 0 -0.03516384 

0 0 0 0 

-0.08832942 -0.11430184 -0.11430184 0.08832942 

0.23389032 0 0 0.23389032 

0.76027237 0.58751830 0.58751830 -0.76027237 

0.58751830 -0.76027237 0.76027237 0.58751830 

0 0.23389032 0.23389032 0 

-0.11430184 0.08832942 -0.08832942 -0.11430184 

0 0 0 0 

0 -0.03516384 0.03516384 0 
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Despite the fact that DT CWT is expensive it has many benefits over DWT such as it 

provides a high degree of shift-invariance and better directionality compared to the real 

DWT. 

4.3 Denoising using Hybrid FrFT and DT CWT 

As seen in the -preceding subsections about the benefits of using FrFT and DT CWT over 

conventional methods of Image denoising. There may be . a noise model which has both 

overlapping as well as non overlapping content of noise thus using hybrid model in which 

filtering in FrFT domain removes overlapping noise while filtering in Wavelet domain 

removes non overlapping noise can be very effective. 

We now propose a new hybrid model which can be implemented via the following steps: 

Step!. Take the FrFT of the noisy image. 

Step2. Filter out the noise using LPF. 

Step3. Take the Inverse FrFT to, get the denoised image back in spatial domain. 

Step4. Now apply the DTCWT to get detailed and approximate coefficients. 

Steps. Choose proper threshold and apply soft thresholding on detail coefficients. 

Step6. Now reconstruct the Image using Inverse DTCWT with the modified wavelet 

coefficients to give the final denoised Image. 
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Chapter 6 Conclusion 

In this thesis a new hybrid FrFT-DTCWT technique has been proposed for image denoising. 

On implementation of various denoising algorithms on several images degraded with 

different types of noise we conclude that the proposed method gives better result as compared 

to the earlier denoised algorithms for Gaussian and speckle noise whereas for Salt and Pepper 

noise median filter remains the best algorithm for denoising. Another conclusion is made that 

for denoising we need to know the degradation model in order to apply an appropriate 

algorithm for denoising. 

Future work includes to see variation in MSE for different number of levels and to implement 

various thresholding schemes in DTCWT and to research for modification of the proposed 

method to denoise SAR images as well. 
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5.2 Discussion 

In presence of Gaussian noise we can see that the trend of denoising algorithms remains 

approximately the - same even with the variation of noise present in an image. Out of the 

various earlier defined algorithms DTCWT and NLM are the best algorithms which give 

approximately the same result in terms of MSE. However, NLM involves a lot of 

mathematical computation and is therefore time consuming. Therefore we prefer DTCWT. 

Also we can see that 'db4' and `sym4'wavelets gives the best result in VisuShrink and 

BayesShrink shrinkage methods and BayesShrink outperforms VisuShrink. In VisuShrink we 

notice that MSE is minimum for Level2, MSE first decreases from levell to level2 and then 

keeps on increasing with the increase in number of level of decomposition whereas in 

BayesShrink method MSE decrease up to a certain value and then become approximately 

constant with the increase in number of level of decomposition. However denoised images 

obtained after BayesShrink and VisuShrink are blurry compared to DTCWT and NLM. The 

new proposed hybrid scheme outperforms all the other algorithms both in terms of MSE as 

well as visual comparison. We notice that the proposed technique preserves texture and edges 

of the image which is not the case in DTCWT and NLM where the image becomes smooth 

and also the MSE calculated with proposed method is quite low. 

In presence of Salt and Pepper noise, Median filter provides the best result, however 

proposed method also provides good results when compared to the rest of the other denoising 

techniques (other than median filter). 

In presence of Speckle noise proposed algorithm proves to be the best technique. DTCWT 

and NLM techniques also give good results. VisuShrink technique follows the same trend as 

in case of Gaussian noise whereas BayesShrink method is unable to give any satisfactory 

results. 

In comparison to DTCWT the proposed algorithmic gives an improvement of `0.5-0.8 db' in 

presence of Gaussian noise, about `1.5-2.5 db' in presence of Salt and Pepper noise and about 

`2-3 db' in presence of Speckle noise. 
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(a) 

(c) 
	

(d) 
Figure 5-7 Lena and Peppers Image to compare denoising by DTCWT and Hybrid 
FrFT-DTCWT when corrupted with Speckle Noise with Variance =12 (a) Original 

Image (b) Noisy Image (c) Denoised by DTWCT (d) Denoised by Hybrid 
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(a) 
	

(b) 

(c) 
	

(d) 

(a) 
	

(b) 

(c) 
	

(d) 

Figure 5-5 Lena and Peppers Image to compare denoising by DTCWT and Hybrid . 
FrFT-DTCWT when corrupted with Salt & Pepper Noise with D=.03 (a) Original Image 

(b) Noisy Image (c) Denoised by DTWCT (d) Denoised by Hybrid 
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(a) 
	

(b) 

(c) 
	

(d) 

(c) 

Figure 5-3 Lena and Peppers Image to compare denoising by DTCWT and Hybrid 
FrFT-DTCWT when corrupted with Gaussian Noise with Variance = 252  (a) Original 

Image (b) Noisy Image (c) Denoised by DTWCT (d) Denoised by Hybrid 
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(a) 
	

(b) 

(c) 
	

(d) 

(a) 	 (b) 

(c) 
	

(d) 
Figure 5-1 Lena and Peppers Images to compare denoising by DTCWT and Hybrid 

FrFT-DTCWT when corrupted with Gaussian Noise with Variance = 202  (a) Original 
Image (b) Noisy Image (c) Denoised by DTWCT (d) Denoised by Hybrid 
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Chapter 5 Simulation Results and Discussion 

5.1 Simulation Results 

In this chapter we have taken four different images which are corrupted with Gaussian, Salt 

& Pepper and Speckle noise separately at different noise levels and then image denoising and 

restoration algorithms are applied. The simulation results are then being compared on the 

basis of Mean Square Error (MSE). 

MSE = Em,-o En=o (y(m, n) — z(m, n))Z 	 (5.1) 

where y(m, n) and z(m, n) represent the original image and the de-noised image respectively. 

M and N are the number of rows and columns in image and in our simulation we have used a 

square image of size 512X512 i.e. M=N=512. PSNR is then given by: 

PSNR = 10log10 MSE 	 (5.2) 

where Imax is the maximum intensity value of image which is 255 in case of 8 bit gray scale 

inmage. 

We have compared different image denoising techniques by applying them to four different 

images (Lina, Peppers, an Ultrasound Image and a Satellite Image) in presence of Gaussian 

noise at two different noise variances (2(? and 252 ), Salt and Pepper Noise at a noise density 

of 0.03 and Speckle noise at a noise variance of 1. The results are compared on basis of MSE 

and are tabulated in Table 5.1, Table 5.2, Table 5.3 and Table 5.4. The visual comparison is 

done only for DTCWT and Proposed Hybrid method for all four images. 

The discussion on the results obtained is done in the next subsection. 
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