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ABSTRACT 

This dissertation deals with application of Stepped Frequency Continuous Wave Ground 

Penetrating Radar for real time detection and classification of subsurface targets. Rohde and 

Schwarz provided FSH4 was used in Vector Network Analyzer mode and was interfaced with a 

computer to enable real time target detection and classification. A double ridged ultra wideband 

horn antenna (R&S HF 907) was used to transmit as well as receive EM waves. 

Three targets- an air cavity, a metal sheet and a water bottle were buried at various depths under 

different volumetric moisture levels of soil. By the application of preprocessing techniques like 

Hamming Window Filtering, Median Filtering on A-Scan GPR data range profile was generated. 

ICA clutter removal technique was applied on B-Scan images generated by clubbing 30 A-Scans 

to look for probable presence of targets. 

Thereafter, application of postprocessing techniques like back projection and Hough Transform 

was used to enhance target visibility andconfirm the presence of targets at various depths and 

under various moisture levels of soil. Velocity correction was also applied to locate targets at 

exact depths they were buried at. 

Once presence of targets was detected, energy density spectrum was generated for each location. 

This energy density spectrum was then used to classify the targets by the use of neural networks 

for pattern classification. Contextual masking for successive identification of targets was also 

used to bolster the classification ability of the system. 
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ACRONYMS 

10 One Dimension 

2D Two Dimensions 

DUT Device under Test 

EDS Energy Density Spectrum 

FFT Fast Fourier Transform 

IFFT Inverse Fourier Transform 

SFCW Stepped Frequency Continuous Wave 

GPR Ground Penetrating Radar 

HPBW Half power Beam Width 

RADAR Radio Detection and Ranging 

RF Radio Frequency 

S Scattering 

SAR Synthetic Aperture Radar 

SVD Singular Value Decomposition 

ICA Independent Component Analysis 

PCA Principal Component Analysis 

UWB Ultra Wide Band 

VNA Vector Network Analyzer 
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EM Electro-magnetic 

SNR Signal to Noise Ratio 



TABLE OF CONTENTS 

CANDIDATE'S DECLARATION .............................................................................................. I 
CERTIFICATE .............................................................................................................................. I 
ACKNOWLEDGEMENT......................................................................................................... III 

ABSTRACT.................................................................................................................................. V 
ACRONYMS ................................................................................................................................VI 

TABLE OF CONTENTS .......................................................................................................... VII 

LISTOF FIGURES ....................................................................................................................IX 

LISTOF TABLES ......................................................................................................................XI 

CHAPTER 1. INTRODUCTION AND MOTIVATION ...........................................................1 

1.1. 	INTRODUCTION TO GPR TECHNOLOGY ............................................................................ 1 
1.2. 	PROBLEMS IN GPR ........................................................................................................... 2 
1.3. 	MOTIVATION .................................................................................................................... 3 
1.4. 	BASIC GPR SYSTEMS ....................................................................................................... 5 

1.4.1. 	Time Domain Pulse Systems ........................................................................ 	........... 5 
1.4.2. 	Frequency Modulated Continuous Wave Radar Technology ..................................... 5 

• 1.4.3. 	Stepped Frequency Continuous Wave Radar Technology .......................................... 5 
1.5. 	CONCEPT OF SFCW RADAR ............................................................................................. 6 

1.5.1. 	System parameters for SFCW GPR .............................................................................. 7 
1.5.2. 	Signal Processing in SFCW Radar .................................................. 	........ 9 

1.6. 	OBJECTIVE 	.....................................................................................................................12 
1.7. 	DISSERTATION OVERVIEW ............................................................................................. 13 

CHAPTER 2. BRIEF REVIEW .................................................................................................15 

2.1. 	IMPROVING SFCW GPR PERFORMANCE ........................................................................15 
2.2. 	GPR IMAGING ............................................................. 	 ...........16 
2.3. 	GPR TARGET DETECTION................. .....................................................:........................ 19 
2.4. 	GPR TARGET CLASSIFICATION ...................................................................................... 20 

CHAPTER 3. METHODOLOGY .............................................................................................. 23 

3.1. 	EXPERIMENTAL SETUP ................................................................................................... 23 
• 3.1.1. 	Experimental Arrangement ....................................................................................... 24 

3.1.2. 	Targets and Soil Conditions ...................................................................................... 25 
3.1.3. 	Vector Network Analyzer (VNA) ........................ 	 ............ 27 ........................................... 
3.1.4. 	Antenna ...................................................................................................................... 28 

3.2. 	DATA COLLECTION ........................................................................................................ 30 

VII 



3.2.1. VNA Calibration . 30 
3.2.2. Time 	Gating ..................................... .......................................................................... 31 
3.2.3. A -Scan ....................................................................................................................... 32 
3.2.4. B-Scan 	....................................................................................................................... 34 

3.3. 	DATA PROCESSING ALGORITHMS FOR GPR ................................................................... 36 
3.3.1. Preprocessing Techniques ......................................................................................... 36 
3.3.2. Post processing Techniques ...................................................................................... 40 
3.3.3. Image Detection Using Hough Transform ................................................................ 43 
3.3.4. Target Classification ................................................................................................. 46 
3.3.5.. Model Development........... ........................................................................................ 51 

CHAPTER 4. IMPLEMENTATION, RESULTS AND DISCUSSIONS ...............................53 

	

4.1. 	PREPROCESSING TECHNIQUES ON A-SCAN AND B-SCAN ...............................................53 
4.1.1. Hamming Window Filtering and Median Filtering for A-Scan ................................ 53 
4.1.2. ICA Clutter Removal for B-Scan Images .............................:..................................... 58 

	

4.2. 	IMAGING AND TARGET DETECTION USING HOUGH TRANSFORM ................................... 61 

	

4.2.1. 	For targets at depth of 10 cm .................................................................................... 62 

	

4.2.2. 	For targets at 15 cm .................................................................................................. 64 

	

4.2.3. 	For Targets at 20 cm ................................................................................................. 66 

	

4.3. 	TARGET CLASSIFICATION BY TARGET SPECTRA ............................................................. 68 
4.3.1. Depth-wise comparison of spectra for pair of same targets ..................................... 68 
4.3.2. Moisture- wise comparison of spectra for pair of same target.................................. 69 

	

4.3.3. 	Target-wise comparison of spectra ........................................................................... 70 

	

4.4. 	CONTEXTUAL MASKING FOR SUCCESSIVE CLASSIFICATION OF TARGETS ...................... 72 

CHAPTER 5. CONCLUDING REMARKS AND FUTURE SCOPE .................................... 75 

	

5.1. 	CONCLUSIONS ................................................................................................................ 75 

	

5.2. 	FUTURE SCOPE ............................................................................................................... 76 

REFERENCES............................................................................................................................ 77 

APPENDIX .................................................................................................................................. 85 

VIII 



LIST OF FIGURES 

Figure 1.1: A block diagram of SFCW GPR ................................................................................... 7 
Figure 1.2: A stepped frequency waveform ................................................................................... 8 
Figure 1.3: Signal processing in SFCW radar .............................................................................10 
Figure 3.1: (a) Block diagram from data collection set up, (b) Actual image of data collection set 
up................................................................................................................................................... 24 
Figure 3.2: Targets taken for carrying out experiments ............................................................... 25 
Figure 3.3: Ground area cleared to conduct experimetnts ........................................................... 26 
Figure 3.4: HF 906 double ridged horn antenna and its VSWR from 1 GHz to 3 GHz .............. 29 
Figure 3.5: VNA Calibration and range profile of calibrated VNA with no DUT attached......... 31 
Figure 3.6: Time gating and range profile with aluminum sheet at antenna flare...... ................. 31 
Figure 3.7. Flowchart for A-Scan algorithm .......................................................... 	...... 32 ................ 
Figure 3.8: B-Scan as stacking of several A -Scans ..................................................................... 34 
Figure 3.9: Flowchart for implementation of B-Scan algorithm .................................................. 35 
Figure 3.10: Flowchart showing data processing algorithms used at each step in target detection 
andclassification ........................................................................................................................... 36 
Figure 3.11: Flowchart for implementation of ICA method of clutter removal from GPR images 
....................................................................................................................................................... 39 
Figure 3.12: Image showing back projection algorithm ............................................................... 40 
Figure 3.13: Algorithm for forming back projected image under various volumetric moisture 
levelsof soil .............. 	.......:...................................................................................................... 41 
Figure 3.14: Flowchart for implementation of Hough Transform ................................................ 45 
Figure 3.15: Flowchart for implementation of EDS method of target classification ° ................... 47 
Figure 3.16: A four layer architechture of probabilistic neural network .................................... 48 
Figure 3.17: Flowchart for contextual masking for successive identification of targets ............. 50 
Figure 3.18: Flowchart for implementation of real time target detection and classification ...... 51 
Figure 4.1: Effect of applying Hamming Window filtering on frequency domain GPR data....... 54 
Figure 4.2: (a) Raw A-Scan for location where cavity was there, (b) A-Scan after application of 
Hamming window filtering, (c) A-Scan after application of median filtering, (d) A- Scan after 
application of both- Hamming window and median filter ............:............................................... 55 
Figure 4.3: (a) Raw A-Scan for the location where metal sheet was there, (b) A-Scan after 
application of Hamming window (c) A-Scan after application of median filter, (d) A-Scan after 
application of hamming window filter and median filter both ...................................................... 56 
Figure 4.4: (a) Raw A-Scanfor location where water bottle is there (b) A-Scan after hamming 
window filtering, (c) A-Scan after median filtering, (d) A-Scan after application of hamming 
window filtering and median filtering ........................................................................................... 57 
Figure 4.5: Effect of applying ICA on range profile generated by a single A-Scan ..................... 58 

ix 



Figure 4.6: (a) Raw B-Scan image generated of 30 A-Scan when targets were. 10 cm deep and 
volumetric soil moisture was 15%, (b) Targets as detected by application of ICA at depth bin 
corresponding to 10 cm depth ....................................................................................................... 59 
Figure 4.7: (a) Raw B-Scan image generated by clubbing 30 A-Scans when targets are buried 20 
cm deep in volumetric soil moisture of 20%, (b) B-Scan generated after clutter removal using 
ICA........................................................................................................................ 	............... 60 
Figure 4.8: (a) Raw B-Scan image generated when targets are 20 cm deep and soil moisture is 
15%, (b) B-Scan image generated after ICA clutter removal ....................................................... 61 
Figure 4.9: (a) Backprojected image as obtained after clutter removed B-Scan image with 
targets buried 10 cm deep and soil moisture 15 % (b) three targets detected by the use of Hough 
transform ........................................................................ 	 ....... 63 ........................................................ 
Figure 4.10: (a) Back projected image as obtained after clutter removed B-Scan image with 
targets buried 10 cm deep and soil moisture 7 % (b) three targets detected by the use of Hough 
transform....................................................................................................................................... 64 
Figure 4.11: (a) Backprojected image as obtained after clutter removed B-Scan image with 
targets buried 10 cm deep and soil moisture 20 % (b) three targets detected by the use of Hough 
transform....................................................................................................................................... 64 
Figure 4.12: (a) Back projected image as obtained after clutter removed B-Scan image with 
targets buried 15 cm deep and soil moisture 7 % (b) three targets detected by the use of Hough 
transform....................................................................................................................................... 65 
Figure 4.13: (a) Back projected image as obtained after clutter removed B-Scan image with . 
targets buried 15 cm deep and soil moisture 15 % (b) three targets detected by the use of Hough 
transform (c) Back projected image as obtained after clutter removed B-Scan. image with targets 
buried 15 cm deep and soil moisture 20 % (d) three targets detected by the use of Hough 
transform......................................................................... 	.......................................................... 66 
Figure 4.14: (a) Backprojected image for targets 20 cm deep, soil moisture 7 % (b) Detection of 
targets using Hough Transform (c) Back projected image for targets 20 cm deep, soil moisture 
15 % (b) Detection of targets using Hough Transform (a) Back projected image for targets 20 
cm deep, soil moisture 20 % (b) Detection of targets using Hough Transform ............................ 67 
Figure 4.15: Comparison of EDS.of targets at 10 cm and 15 cm at soil moisture level 15 %for 
(a) Air Cavity, (b) Metal Sheet, (c) Water Bottle .......................................................................... 68 
Figure 4.16: Comparison of spectra of targets at 10 cm with soil moisture level 15% and 20 
for (a) Air Cavity (b) Metal Sheet (c) Water Bottle ....................................................................... 70 
Figure 4.17: Comparison of spectra of targets with each other at burial depth 10 cm and soil 
moisture15 % ................................................................................................................................ 71 
Figure 4.18: First four steps involved in contextual masking of targets. ...................................... 73 
Figure 4.19: Images showing masking of metal sheet, false target and air cavity for target 
class Vi cation ............................................................ 	 74 ......................................................................  



LIST OF TABLES 

Table 3.1: System parameters for conducting experiments .......................................................... 25 
Table 3.2: Properties of targets used for experiments .................................................................. 26 
Table 3.3: Dielectric constant of soil at d ferent volumetric measures of soil moisture ............. 27 
Table 3.4: VNA Specifications ...................................................................................................... 28 
Table 3.5: Antenna Specifications ................................................................................................. 28 
Table 4.1: Pearson's correlation coefficient values for different targets at 10 cm and 15 cm with 
soilmoisture 15 % ......................................................................................................................... 69 
Table 4.2: Pearson's correlation coefficient values for different targets at 10 cm with soil 
moisture 15 % and 20 %.............. ....................... 	 .. 70 
Table 4.3: Correlation coefficient values for different pair of targets at 10 cm with soil moisture 
15 % ...................... 	 ................................................................................... 72 ...................................... 

0 



Chapter 1. INTRODUCTION AND MOTIVATION 

X.1. Introduction to GPR Technology 

Ground-penetrating radar (GPR) is a geophysical method that uses radar pulses or waves 

to image the subsurface [1], [2]. It is the only non-invasive technique capable of 

accurately locating both metallic and non-metallic buried objects, without prior 

knowledge of their position. This non-destructive method uses electromagnetic radiation 

in the microwave band (UHF/VHF frequencies) of the radio spectrum, and detects the 

reflected signals from subsurface structures. GPR can be used in a variety of media, 

including rock, soil, ice, fresh water, pavements and structures. It can detect objects, 

changes in soil composition, and voids and cracks [2], [3]. 

However, GPR performance is sensitive to the depth of the buried targets, their dielectric 

coefficient, soil moisture etc. [4], [5]. Detectability of a target greatly depends upon its 

electric and magnetic properties contrast with respect to soil [3]. The performance of 

GPR system also depends on its parameters. For example, range of frequency of 

operation decides the resolution of the system. Transmitted power and sensitivity of the 

receiver determines the maximum penetration up to which presence of targets can be 

detected [4], [6]. And therefore, without any further research and development this 

technology will remain of little use. 

GPR uses a transmitting antenna and a receiving antenna (bistatic mode of operation) or 

only one containing both functions (monostatic mode of operation) [1], [2]. The 

transmitting antenna radiates short pulses of high-frequency (usually polarized) radio 

waves into the ground. When the electromagnetic wave hits a buried object or a boundary 

with different dielectric constant, there is a sharp change observed in the received return 

signal strength because of the reflections at the boundary [1]—[4]. GPR uses these 

concepts of electromagnetic wave propagation to image and locate changes in 

electrical and magnetic properties in the ground. Detectability of a subsurface feature 

apart from its contrast in electrical and magnetic properties with soil also depends upon 

its geometrical shape [7]—[9]. For example a cylindrical object, though may have a great 
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contrast w.r.t soil as far as its electric and magnetic properties are concerned, it may not 

get detected at all because it reflects EM waves in "different directions. 

The electrical conductivity of the ground, the transmitted central frequency, and the 

radiated power limit the depth range of GPR [ 10], [11].  As conductivity increases, more 

electromagnetic energy is dissipated into heat, and hence, the penetration depth also 

decreases. Higher frequencies do not penetrate as far as lower frequencies, but give better 

resolution [12]. Penetration depth achieved by GPR system also depends upon the 

medium. Good penetration depth is achieved in sandy soils or massive dry materials such 

as granite, limestone and concrete where the depth of penetration has been reported up to 

15 m. In moist and/or clay-laden soils and soils with high electrical conductivity such as 

sand near saline water resources penetration is only up to a few centimeters [13]. 

GPR has many applications in a number of fields [3], [4],.[6J, [10], [13]. It is used to 

study bedrock, soils, groundwater and ice in the Earth Sciences. In engineering field it is 

used for non-destructive testing of structures and pavements. It can be used to define 

landfills, contaminant plumes thereby having its application in environmental 

remediation. In archaeology it has been used for mapping archaeological features and 

cemeteries. It has military applications as well in the form of detection of landmines, 

unexploded ordnance and tunnels. 

1.2. Problems in GPR 

1. Non-linearity and unpredictability of the subsurface makes the modeling and 

computation of the subsurface parameters extremely difficult. This 

unpredictability leads to unexpected behaviour of radar response [6], [12], [13]. 

2. The subsurface keeps on changing in aspects like its dielectric constant, 

roughness, moisture content and texture. The GPR system needs to be accustomed 

to these changes [5]. 

3. Apart from the electrical and magnetic properties of a target its shape and size 

also has a great impact on GPR signal. For example a cylindrical object which 

may have a good contrast to the soil as far as its electric properties are concerned, 

2 



may not give strong reflections. The reason being that the reflected signals get 

directed in directions away from the antenna [7]—[9]. 

4. Different objects reflect the radar waves differently and these reflections also vary 

with depth. As the only information available with the receiver is the reflected 

wave, it cannot discriminate between: reflections from a good reflector at greater 

depth and a bad reflector at a shallow depth [5], [8], [9]. 

5. Resolution issues are there for detection of shallow targets. Resolution is 

inversely proportional to operating bandwidth. For example, in this work, to get a 

resolution of 7.5 cm bandwidth was 2 GHz. Purchasing antennas having a 

constant gain over such a wide range is a costly affair. And a resolution of 7.5 cm 

means that a target which is less than 7.5 cm deep from the surface of the soil 

would not give a different reflection from the reflection due to air-soil interface 

[2], [11]. 

6. Various problems like clutter effects, antenna coupling, background noise make 

the detection of objects difficult. There are various signal processing techniques 

which otherwise give very good imaging resolution for example MUSIC 

algorithm. But sometimes reflections from weak dielectric materials are confused 

with noise and they don't get detected at all [1 4]—[  17] . 

7. Also, if target identification is the problem at hand, depth-wise and soil moisture-

wise variations of the received. GPR signals hamper the algorithms used. Trained 

information is required for each object of different material at different depths and 

under different moisture level of the soil. Training GPR for all such variations is a 

very time consuming job [3], [5]. 

8. Real time data processing has limitation of computer memory and its processing 

speed. However, with the developments in VLSI this is no longer a very 

challenging problem and can be expected to be overcome soon. 

1.3. Motivation 

Ground Penetrating Radar (GPR) is an important remote sensing tool used to detect and 

localize the presence of subsurface targets. With its use in new areas, e.g. its use in 

landmine detection, it has become imperative to detect and image the buried targets in 
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real time. Real time detection is however, limited by the delay involved in data 

accumulation and data transfer and the memory limitations of processing softwares like 

MATLAB and LAB VIEW. This long data acquisition time at each scan position depends 

upon two-way travel time for the EM signal to reach targets at a chosen maximum range, 

number of frequency points at which we seek the response of the ground (in case of 

SFCW GPR system) and the time for receiver to build up sufficient SNR. However, this 

delay won't matter a lot if we can successfully detect and identify subsurface targets. 

Moreover, with the advent of technology, faster processors are now available and total 

data acquisition is getting reduced. Primary focus of a research should be to detect all 

subsurface targets and. to identify them. 

There are various hurdles which make target detection and classification of targets 

difficult. For example cable-antenna reflections, antenna-air reflections, air-surface 

reflections are not information of our concern but strongest reflections are obtained at 

these interfaces. In a normalized B-Scan image, this makes the detection of low dielectric 

materials very difficult. Internal noise gets mixed up with reflected signals from, targets 

and needs to be separated out. There are heterogeneities present in the soil itself which 

results in noise in the B-Scan images making it difficult to distinguish the presence of 

target in the soil. Solutions are required to address these problems. Therefore, study of 

imaging algorithms is required for SNR improvement of the image so that presence of 

targets can be detected. 

After presence of targets has been detected, the next task is to classify targets. If we are 

trying to find one particular type of target, the rest of them are clutters for us. Their 

detection is like false alarm to use. In real time environment, false alarm means wastage 

of time on irrelevant data. Hence, study of target/clutter discrimination is a must if we 

have to make our system reliable. 

It is these objectives which are the motivating factors for this work. Three targets were 

taken viz, an air cavity, a metal sheet and a water bottle. They were buried at different 

depths and under different moisture conditions of the soil. It was tried that GPR system 

detects the presence of all of them and classify them in real time. 
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1.4. Basic GPR Systems 

There are three types of GPR systems classified on the basis of modulation schemes they 

employ. These are pulse radar, frequency modulated continuous wave radar (FMCW 

radar) and stepped frequency continuous wave radar (SFCW radar). 

1.4.1. Time Domain Pulse Systems 

Pulse radar consists of a single pulse of single frequency. The time duration of this pulse 

is in pico-seconds and the time gap between transmitted and received signal is used for 

range profiling. Measuring this time gap requires complex circuit and errors creep in 

while measuring this. Hence, it is not possible to calibrate the system response. Apart 

from this the power peak is very large and hence there is a need of distributing the power 

in order to reduce power losses and improve penetration depths. In pulse radar systems it 

is not possible to compensate the imperfections of RF electronics, antenna and feed 

system. Transmitting such a short duration pulse requires a very high speed ADC because 

of the need of instantaneous high bandwidth [18]. 

1.4.2. Frequency Modulated Continuous Wave Radar Technology 

FMCW radar has a waveform where the frequency of the continuous wave is linearly 

changed from a minima to maxima. Typical sweep time of an FMCW radar changes from 

1 to 100 ms giving a high pulse energy using a low transmitted power. As the time 

duration of the wave is large, the receiver has to start receiving the back-scattered signals 

while the transmitter is still transmitting. This results in problem in homodyning the 

transmitted and the received waveform [ 19], [20]. 

1.4.3. Stepped Frequency Continuous Wave Radar Technology 

SFCW radar technology [2], [4], [6], [10], [1 1],. [21] is comparatively the latest advent in 

radar field. Frequency-stepping is a modulation technique used to increase the total 

bandwidth of the radar. The SFCW radar obtains the distance to. a target by measuring the 

coherent target reflections over n number of stepped frequencies within the given 

bandwidth. 'n' stepped frequencies are transmitted and the system response is noted over 

these frequencies. It is then converted into time domain by taking inverse FFT and this 
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time domain response when mapped on distance indexes gives the range profile at a 

certain point. The main advantage that SFCW offers over pulse systems are as follows: 

I. It is capable to compensate the imperfections of RF electronics, antenna, and feed 

system through post processing of the collected data. 
2. It is easier to generate a sinusoid of a given frequency than to measure the delay 

response as is done in time domain pulse systems. This delay response is in 

nanoseconds. 

3. Stepped frequency - microwave sources possess superior dynamic range and 

stability compared to pulse systems. They also permit control of frequency range, 

thus allowing an improvement in penetration performance. 

4. In SFCW we get an increased dynamic range because of extremely narrow band 

filter used for receiving tones in spite of a lower peak transmittable power when 

compared to impulse one. 

However, there are some disadvantages associated with SFCW over time domain pulse 

systems. 

1. Increased system complexity and high component cost have discouraged its use in 

the past. However, as the cost of RF technologies is decreasing considerably, this 

no longer remains a problem. 

2. Scanning a range of frequency in a stepped manner requires longer acquisition 

time. Hence, if target is moving it may become hard to detect it. Second real time 

systems won't be that fast if we go for this. However, this issue can be resolved 

by reducing the number of frequency steps. 

It is because of the considerations of these pros and cons that SFCW radar was chosen for 

carrying out this work. In section 1.5 concepts of SFCW radar will be dealt with. 

1.5. Concept of SFCW Radar 

Stepped Frequency radar is similar to CW radar with the main exception concerning the 

fact that the frequency can be changed in discrete, highly repeatable and stable, steps to 

cover the desired bandwidth [22]. The phase and amplitude of the received tone is then 



sampled and the equivalent time-domain sweep is reconstructed via Inverse Fast Fourier 

Transform. Figure 1.1 gives a block diagram of SFCW GPR. 

1.5.1. System parameters for SFCW GPR 

In SFCW radar the very first step involves choosing the frequency range of operation. If 

we go for higher frequency range we get, better resolution but higher frequencies 

attenuate faster. Hence, .a trade off has to be made. For this work frequency range of 

operation was chosen as 1 GHz to 3 GHz. Resolution also depends on bandwidth of 

operation [2], [10], [11]. However constraints are there to get a constant gain of antenna 

for the desired bandwidth. From the selected range of frequency it becomes clear that 

bandwidth was 2GHz. For the chosen bandwidth we select the number of frequency 

steps. More the number of frequency steps more would be the acquisition time. In this 

work number of frequency steps was 601. A stepped frequency waveform can be best 

approximated by Figure 1.2. 

Upidown Converter 
---------------------------  

6 	 1 
1  I 

Step 
Frequency L____J o 

Generator  ply-pol 
And 0.5-1.5 GHz 	. 	 ~ 	controle 

Homodyne 1 
Detector 1 

1 
1 
1 
1 
1-------------- ------- ---I 

PC 
.8-5.8 G a A 

GPS 
Dual polarized 
Horn antennas 

Figure 1.1: A block diagram of SFCW GPR [10] 
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- ------------------ NFf~egencle 

time 
T$ 

Figure 1.2: A stepped frequency waveform [101 

From the above figure it is clear that the frequency of n pulse can be written as [13]: 

fn =fo +nLf 

where, fo is the starting frequency and A f is the frequency step size. The frequency 

response measured by the SFCW radar is sampled in the frequency domain with a 

sampling interval if.  If the reference signal for the nth pulse is [13] 

	

A,. cos(2Tr(f0 + n Af)t) 	 (1.2) 

Then the reflected signal after a round trip delay of 2R/c can be represented as [13] 

AZ cos(2n(f, + n Af)(t — 2R/c)) 	 (1.3) 

Hence, the output of the phase detector can be modeled as the product of the received 

signal with the reference signal followed by a low pass filter. Consequently the n" phase 

difference comes out to be [13] 

~pn = 27r(f, + n A f) (t — 2R/c) 	 (1.4) 
4n oR 	D 	 R 

~P = 	 + 27t(T) (~C- C 	 ) nT 	
(1.5) 

:, 



In the above equation while the fist term is constant for a stationary target, the second 

term is depth dependent. That is, the range is converted into a frequency shift fs which is 

given as [13] 

	

fs= `2f\`c 	 (1.6) 

Now as from DFT, LX fs = 1/NT, by differentiating both sides, we get the range resolution 

of the SFCW system as [13] 

c 

	

BR = 2NAf 	 (1.7) 

Where, NL f is equal to the system bandwidth. Hence, for the system used for this 

dissertation work resolution was 7.5 cm. 

When the Nyquist sampling criterion for unambiguous reconstruction is applied 

1 
2Tmax of (1.8) 

where, zmaxis the maximum target delay in the synthesized time-domain response. If 

mixing is applied in the receiver, the baseband spectrum becomes single-sided, and the 

Nyquist sampling criterion reduces to 

1 
Qf ~zmax 	 (1.9) 

which gives the unambiguous range as [13] 

C 
Rmax = 20 f 	 (1.10) 

With bandwidth of 2 GHz and number of frequency steps 601, Lf = 3.33 MHz approx. 

Hence, unambiguous range, Rmax = 45 m. However, we will investigate till 1 m only. 

1.5.2. Signal Processing in SFCW Radar 

Figure 1.3 gives the flowchart of the signal processing in SFCW radar [2], [4], [10], [11]. 

9. 



and termed as 

The received signal s(t) is recorded and is a 
delayed version of p(t) with changed 

amplitude. 

p(t) and s(t) are mixed and low pass filtered 
to get the baseband signal sb(t) 

The signal Sb(t) is sampled and represented 
in discrete frequency domain domain 

IDFT is applied on S(fk) to generate the 
time domain response. This response gives 

information about the location of target. 

Figure 1.3: Signal processing in SFCW radar 

A detailed explanation of the steps involved in signal processing in SFCW radar is as 
follows: 

1. The SFCW signal p(t) is mathematically represented by [13]: 

Td\ 
 Nf-1 	 \t  2/ 

(2—iTd ) p(t) _ 	exp(j2ir(fo  + idf)t).rect 	T
d 	

(1.11) 
i=0 

where the dwell time Td  represents the time spent on each frequency. The 

duration of the whole waveform, the scan time TS  = Nf  Td . 

2. Assuming that the radar signal is reflected from a single scatterer having a 

frequency independent reflection coefficient F. The reflected signal s(t) can be 

written as a delayed version of the transmitted signal multiplied by the reflection 

coefficient. 



Nf -1 

	

s(t) _ 	l exp(j2ir(fo  + iiXf)(t 
i=0 

(t — ) 	 (1.12) 

— r)) . rect 
(2 — iTd  — z) 

Td  

3. After homodyning in the quadrature mixer and low-pass filtering, the received 

echo becomes a complex baseband signal [13] 

Td  

— 

	

Nf-1 	 ( (t_--,  

Sb  (t) _ 	F exp(j21r(f0  + iiX f )'r) . rect (2  T iTd) 	(1.13) 
i=0 	 d 

The baseband signal is now a staircased sine wave where each step corresponds to 

the response measured at each frequency. The amplitude and the phase is 

determined by the reflection coefficient of the target while the frequency of the 

sine wave is proportional to the delay r. 

4. If the signal is sampled in the middle of each step, we get a complex array [ 13] 

	

s[k] = 1'exp(-27r(f0  + kAf)r),k = 0,1,2 ... ,Nf  — 1 	(1.14) 

which can also be written as: 

S(f) = r exp(-2rcfkr) 	 (1.15) 

5. Taking IDFT of 1.15 can give us the synthesized time-domain response 

9(t) = IDFT[S(fk )) 
	

(1.16) 

Hence, by observing the amplitude of the reflected wave we can know the reflection 

coefficient of the target and by observing the phase delay in the reflected wave we can 

deduce the location of the target. 
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Antenna is positioned at a location and its range profile is generated by observing the 
frequency domain response of the SFCW radar at that point. Generating downrange 

profile at a particular location of our interest is called A-Scan. If antenna is moved along 
a particular direction we will get a 2-D image which can give us information about the 

depth and the length of the target in azimuth direction which is the direction along which 
antenna is moved. This scanning along a particular direction is called B-Scan. If several 

B-Scans, each parallel to each others, are done we get a C-Scan image. C-Scan is 

generated at a particular depth and gives the cross-range and azimuth-range of the target 
at that depth [22]—[24]. 

However, there is some unwanted information in this time domain response which needs 
to be eliminated by further ,pre-processing and post-processing. For example, as signal 
enters antenna from the coaxial cable there is a change of medium and the range profile 

will give reflection at that point. This information is unwanted and needs to be 
eliminated. Similarly antenna-air reflection is not of our concern and needs to be 

eliminated. How these are eliminated has been explained in Chapter 3. 

There are clutter effects from various noise and disturbance sources which interfere in the 

correct detection and location of the target in question. This noise can be taken care of by 
the use of frequency domain filtering which will also be explained later in Chapter 3. 

1.6. Objective 

Considering the motivation to this work, following objectives were set: 

1. Study and implementation of various imaging techniques so that subsurface 

targets could be detected at various depths and under various moisture levels of 
the soil in real time. In this case those subsurface targets were air cavity, metal 

sheet and water bottle. 

2. Study and implementation of various classification techniques so that these targets 
viz, air cavity, metal sheet and water bottle could be classified after their presence 

has been detected in real time. 
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1.7. Dissertation Overview 

This work is organized as follows. 

Chapter 1 deals with introduction to GPR technology and problems faced in 

implementation of GPR system for target detection or -classification. Hard terrains pose 

greatest challenge to this technology as sometimes EM waves fail to penetrate the ground 

and sometimes clutters become irresolvable. Basic types of GPR systems have been 

discussed and it has been discussed why SFCW radar system has been preferred over 

time domain pulse system and frequency modulated continuous wave radarsystems. This 

is followed by an introduction to SFCW parameters. This chapter ends with motivation 

and objectives set to carry out this work. 

Chapter 2 deals with brief review of the works done in the past in this field. How system 

performance has been improved and what are the conditions where work still needs to be 

done to enhance the system performance have been discussed in brief. Imaging methods 

adopted by various researchers have been reviewed to choose the one that suits our needs. 

This chapter also gives a brief account of various methods for target detection and target 

classification as used in the past. 

Chapter 3 deals with methodology employed to solve the problem. It starts with the 

experimental arrangement used to take readings. Then it deals with data collection 

methodology where it deals with VNA calibration, time gating, A-Scan readings and then 

B-Scan readings. Chapter 3 also deals with data processing algorithms used to identify 

and classify subsurface targets. In the end this chapter concludes with a model 

development which is a flowchart to guide how real time data collection is to be done and 

how target detection and classification is to be done using this data. 

Chapter 4 has implementation, results and discussions of the work of the experimental 

work done. It gives information about the results obtained in various conditions that were 

set for this experimental work. It also explains the reasons for results so obtained. Results 

have been given for the effect of preprocessing and post-processing techniques on the 

GPR data. Imaging results are there which show how target is detected. Target 
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classification results are there to show the effectiveness of each method so used for the 

same. 

In the end Chapter 6 gives the concluding remarks and the work that still remains to be 

done to improve the system performance. 
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Chapter 2. BRIEF REVIEW 

Considering the volume of research going on in GPR, we can say that it is a very 

dynamic field of study. Research has been going on in the fields of Improving SFCW 

GPR Performance, GPR imaging, subsurface target detection using GPR and GPR target 

classification. This chapter has been divided into four sections to enhance the 

understandability of research going on in this field. 

2.1. Improving SFCW GPR Performance 

Probably one of the landmark researches to explain the working of SFCW GPR has been 

done by Parrini et al. [1]. They have designed a GPR system for detection of buried 

objects in historical sites by the use of range profiling using A-Scans at various locations. 

They have emphasized on the need of background subtraction for successful peak 

generation. Their GPR system uses Digital Direct Synthesizer (DDS), a Phase Lock Loop 

(PLL) and a Quadrature Modulator (I/Q Modulator) and works in L-S band of frequency. 

Their system does this commendable job of explaining how SFCW GPR generates the 

signal and how signal processing is done. 

To address the large data acquisition time Gurbuz et al. [25] have proposed compressive 

sensing for data acquisition and imaging method for SFCW-GPRs. They have exploited 

the fact that the target space is sparse and it is sufficient to observe readings at a small 

number of random frequencies to construct an image of the target space. Though, this 

reduces the data acquisition time, causes higher computational costs. The imaging results 

with experimental GPR data, have exhibited less clutter than the standard migration 

methods and are robust to noise and random spatial sampling. There method has 

improved the resolution also as the closely spaced targets which cannot.be resolved by 

standard migration methods have been shown to be resolved here. 

Tremendous work has been done to improve the time domain response of the SFCW 

GPR signal. Kong et al. [14] have proposed a sidelobe suppression algorithm via the 

reiterative minimum mean-square error strategy, where a minimum mean-square error 

filter has been designed for each range cell. Their work addresses the inherent problem of 

conventional method of taking IFFT to generate range profile which is the masking of 
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small targets by large nearby targets owing to the high range sidelobes that result from 

IFFT. They have made use of Minimum Mean Square Error (MMSE) filter to produce 

refined estimates of range profile and power of each range cell. In this direction similar 

works have been done by Genderen and Nicolaescu [15] in their Imaging of Stepped 

Frequency Continuous Wave GPR data using the Yule- Walker parametric method and 

by Luo et al. [26] in their work on sidelobe suppression method based on adaptive pulse 

compression (APC) for random stepped frequency radar. Random stepped frequency 

radar chooses the transmitted frequencies randomly, which helps suppress range 

ambiguities but with increased side lobe levels of random noise. In their work Luo et al. 

have used APC to suppress these sidelobes. Muqaibel et al. [27] have made use of 

Hamming window to separate noise from signal due to target in frequency domain. Their 

results show that noise has been suppressed in the range profile after Hamming window 

has been applied in frequency domain. 

Rappaport [5] has based his study on the effect of moisture on subsurface detection. His 

studies have brought forth the fact that poor target/soil contrast makes detection of non-

metallic mines difficult. Greater soil moisture implies higher dielectric constant, which in 

turn increases contrast and scattering of radar waves. But simultaneously this also 

increases the contrast between the air and the soil, increasing clutter. And as signal 

attenuates faster in moist soil, detection of target becomes tougher. 

Langman and Inggs [4] have worked on 1-2 GHz SFCW radar for landmine detection and 

have emphasized on the issues that need to be taken care of while processing GPR data. 

They have called for the need to accustom the GPR system to changes in the dielectric 

behaviour, roughness, moisture content and texture of the medium. 

2.2. GPR Imaging 

Range profile as generated by A-Scan doesn't reliably give the exact location of 

subsurface targets. And often low dielectric materials go unnoticed in a single scan. To 

counter these imaging has to be to done. Various methods have been proposed by various 

researchers from time to time. Morrow and Genderen [7] in their work on Effective 

Imaging of Buried Dielectric Objects have proposed Synthetic Aperture Technique for 
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imaging of materials having poor target/soil contrast. They have used conventional 

preprocessing measures employed in frequency domain to expose weak scatterers and 

enhance radar image. These methods include average background removal, analytic 

window functions such as Blackman-Harris or complex cepstrum window of either 

minimum or maximum phase. They have also relied on reflected signal strength to 

calculate dielectric permittivity of the material and later on have used this to classify 

targets. Ozdemir and Ling [8] have applied a Fourier based imaging algorithm based. on 

SAR concepts to image high permittivity (bottled water) and low permittivity (plastic) 

dielectric objects. In their coherent imaging algorithm they have used many spatial points 

to provide sufficient SNR to their 3D GPR images. Panzner et al. [9] have studied radar 

signatures of complex buried objects in ground penetrating radar to produce SAR 

focussed radar scan of H-shaped, .E-shaped and complex zigzag polystyrene objects. 

They have passed the measured raw data through Gaussian Pulse Shaper followed by a 

carrier remover. After this they have passed it through SAR processor and have taken 

IFFT of the resultant data to produce those radar scans. 

To counter internal noise in GPR system Shrestha et al. [ 16] have made use of a 

combination of MUSIC (Multiple Signal Classification) and FFT (Fast Fourier 

Transform) to produce high resolution images.. But this technique requires-high precision 

in measured receiving signal level ratio and measuring device. The main disadvantage of 

using MUSIC is that often reflections from low dielectric materials, which are only a bit 

stronger than noise, may get confused with noise and hence may get eliminated. 

For clutter removal and noise suppression various researchers have done tremendous 

work. Zhao et al. [17] have applied Karhunen-Lo'eve Transform (KLT) to improve the 

signal-to-noise ratio of the GPR data. For the GPR data set they have found its covariance 

matrix and then the eigenvalue matrix of this covariance matrix. Clutter due to air-soil 

interface will be the most correlated element among traces and hence it will have 

corresponding to it the eigen-vector corresponding to highest eigenvalue. Similarly, the 

random noise is most uncorrelated from trace to trace and will be represented by lowest 

eigenvalues. Intermediate eigenvalue are of our concern and eigenvectors corresponding 

to them are used to generate B-Scan images. Liu and Leung [28] have used chaos 
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modulation to suppress clutter. A chaotic waveform generated by using Chebyshev map 

is multiplied by Gaussian pulse waveform and is transmitted. They have observed that 

this improves the range resolution and solves the problem of clutter better. In a similar 

fashion, Dobrotin and Leitas [29] have used inverse filtration. Using SVD for clutter 

removal Verma et al. [24] have found in their work that SVD-clutter removal technique 

works better when compared to ICA .or PCA to remove the clutter and detect the target 

for UWB through wall imaging. The use of Independent Component Analysis for GPR 

Signal Processing has been explored by Zhao et al.[30] Delac et al. [31] in their 

Comparative Study of PCA, ICA and LDA have pointed out that ICA minimizes both 

second-order and higher-order dependencies in the input data and attempts to find the 

basis along which the data (when projected onto them) are statistically independent. They 

have used FERET database and used various combinations of PCA, ICA and LDA for 

face recognition. They have found that ICA is a good choice to combat temporal changes 

in data. Aapo Hyvarinen [32] in his Fast and Robust Fixed-Point Algorithms for 

Independent Component Analysis has given a fixed point algorithm which is fast at 

convergence making implementation of ICA computationally fast. 

For imaging back projection has been used widely. It is based on the simple fact that 

range profile generated after an A-Scan doesn't show only those targets which lie along 

the perpendicular drawn from the ground surface and passing through the antenna. That 

range profile has reflections due to all the targets that are covered by the swath of the 

antenna. Cui et al. [33] have used back projection algorithm to SFCW through wall 

imaging by analyzing the time-domain back-projection algorithm and the stepped 

frequency imaging. Morrow and Genderen [7] have also used UWB synthetic aperture 

technique (SAT) that employs selective frequency space filtering and then back 

projection in their Effective Imaging of Buried Dielectric Objects. Zhou and Su [34] 

have proposed an algorithm called Multiply Back Projection (MBP) which is similar to 

the conventional back projection with the addition of pairing multiplication procedure. 

They have claimed that their algorithm suppresses artifacts in the imaging results, though 

at the cost of more number of computations involved. Lei et al. [35] have come with 

TAM-BP algorithm for GPR application. In this algorithm they have accounted for time 



delay occurring due to the dielectric constant of soil to improve the image quality. 

However, computational complexity remains with their method as well. 

To counter discontinuities in B-Scan images methods like column filtering and 

interpolation have been used. Zhang [36] has discussed column filtering approach in his 

paper on optimizing building detection in satellite images using texture filtering. 

Interpolation is another image processing technique to smoothen the image. Various 

interpolation techniques have been discussed by Teoh et al. in their paper [37]. To 

remove random noise in the GPR images thresholding has been applied by Chandra [23] 

in his dissertation work on study of through wall imaging in UWB range for target 

detection. Out of Otsu thresholding and mean deviation based thresholding he has 

preferred mean deviation based thresholding for its computational efficiency. 

2.3. GPR Target Detection 

A great volume of work has been done to detect targets in the images so obtained after 

GPR imaging. Yigit et al. [38] have presented an overview on the imaging aspects of 

GPR. Using standard C-Scan they have detected the presence of multiple targets buried in 

a sand pit. And then by using w-k SAR focusing technique they have bettered the image 

so obtained. Similarly they have also detected the water leakage from a pipe as leakage 

increases' the conductivity of the sand and EM wave could not penetrate into this 

saturated region due to high conductivity of the mud. Liu et al. [39] have applied 

Hyperbola Fitting after various pre-processing techniques like elimination of ground-

surface echo, normalization, background subtraction, edge-detection using Sobel operator 

and hyperbola edge thinning to detect the presence of multiple targets. In a similar 

fashion Pasolli et al. [40] have applied unsupervised Genetic Algorithm '(GA) to detect 

the presence of multiple targets by finding hyperbolas in edge-detected binary GPR 

image. They have iteratively called. GA to search best hyperbola in the binary image-  till 

all the objects have been found. In the genetic optimizer, each chromosome models the 

apex position and the curvature associated with the candidate pattern, while the fitness 

function expresses the Hamming Distance between the pattern and the binary image 

content. Having detected all the targets they have used Support Vector Machine classifier 
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to identify those targets based on the dielectric behaviour of the object. They have also 

estimated the size of the targets using Gaussian process regression approach. 

Statistical measures of noise and targets have also been used for target detection in 

Through Wall Imaging by Debes et al. [41] They have found a general probability 

density function of target and that of noise by observing pixel values corresponding to 

target and noise in B-Scan image generated for different heights of scan. Hypothesis 
i 

testing has then been used for unsupervised target detection. 

Al-Nuaimy et al. [42] have made use of neural networks and pattern classification for 

automatic detection of buried utilities and solid objects with GPR. The use of neural 

networks for pattern classification gives them a high resolution image of the shallow 

subsurface in a highly reduced computational time. The neural network in their work 

makes use of the spectral features of the data to identify areas in the radargram containing 

useful reflections. Thereafter they have applied the Hough Transform as a pattern 

recognition technique to locate and identify the hyperbolic anomalies associated with 

buried targets. Thus, they have successfully generated high resolution images suitable for 

precise location and mapping of subsurface utilities and ordnance. 

2.4. GPR Target Classification 

The most challenging aspect in GPR is to classify the targets that have been detected. 

Ability to classify targets reduces false alarms in real time environment. Ho et al. [43] 

have used spectral characteristics from GPR data to discriminate between landmine and 

clutter. They have exploited the fact that landmine targets and clutter objects often have 

different shapes and/or composition, yielding different energy density spectrum (EDS) 

that may be exploited for their discrimination. They have calculated the metric 

correlation coefficient of the frequency domain spectra for GPR data and based on the 

value so obtained have distinguished landmine from target. Gader et al. [44] have made 

use of depth wise whitening to extract features of landmines and clutters to differentiate 

them. They have computed a single depth wise Constant False Alarm Rate (CFAR) for 

anomaly detection on the depth dependent adaptively whitened data. 
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For target classification Daniels et al. [45] have relied on RMS errors of the difference of 

normalized autocorrelation coefficients and normalized FFT between. reference targets 

and test targets. They have postulated that a better way for classification would be 

multiplication of the two RMS errors. They have also made use of Pearson's Correlation 

Coefficient for target , classification. Using these they have differentiated several 

prototypes of landmines from coke can, bottle and pipe. Also, they have discouraged the 

use of correlation vectors such as 'variance, skewness and kurtosis of autocorrelation 

functions of the targets for their discrimination as these didn't yield better results. 

Santos et al.[46] have made use of neural networks for pattern classification of metallic 

and non-metallic targets using GPR reflections in a test site in Brazil. For the test targets 

they extracted three parameters. First was the normalized arithmetic mean of the 

maximum amplitude from range profiles obtained after A-Scans. The second feature was 

its respective normalized standard deviation and the third feature was the depth of the 

target in order to account for the amplitude variation due to depth. They have trained a 

three layer neural network for pattern classification to classify targets into metallic and 

non-metallic targets. 

Time frequency signatures have also been used for target classification by various 

researchers. Strifors et al. [47] have used fuzzy-cluster representation of time frequency 

signatures as a means for automatic classification of buried mine-like targets. They have 

used pseudo-Wigner distribution to extract time-frequency domain target signatures and 

later on have used fuzzy method to classify the targets. In a similar fashion Sun and Li 

[48] have also used time-frequency analysis for plastic landmine detection. They have 

compared Wigner-Ville distribution (WVD) and Choi-Williams distribution (CWD) 

methods of producing time-frequency signatures of the targets and as WVD suffers from 

cross-term interference problem they have gone for CWD. Later on they have used 

Principal Component Analysis for signature classification. In addition to the satisfactory 

results which they appeal to have arrived at, they also maintain that time-frequency 

pattern is highly non-stationary for clutters as well as landmines making the 

implementation of conventional detection designs very difficult. 
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In an attempt to classify targets, Sugak and Sugak [49] have studied the phase structure of 

signals with respect to GPR measurement and its sensitivity to the change of electrical 

properties of soil. They are hopeful that their study can be used for determination of 
physical properties of soil and of targets and hence targets can be classified using this 

phase information. They have used Chebyshev windowing DFT instead of the 
conventional method to find IDFT which gives them more informative phase. spectrum 

estimation. 

Based on the reflected signal strength of various targets Jain [22] has distinguished three 
targets — a metal sheet, a water bottle and an air cavity in sandy soil and controlled 

laboratory environment in his dissertation work. He has used contextual masking and 

successive identification of targets to classify these targets. This was preceded by his 
rigorous study of normalized reflected signal strength of these targets at different depths 

under different, moisture conditions of sand. By contextual masking he could get the 

normalized reflected signal strength of the next target and could identify it. 
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Chapter 3. METHODOLOGY 

The aim of this work was to detect and classify subsurface targets in real time. To 

achieve these four things were essential -  

• to assemble an experimental setup which is capable of data acquisition and data 

processing in real time. 

• to set parameters of this experimental setup so that target features can be extracted 

for different burial depths of targets and for different moisture levels of soil. 

• to decide how data is to be collected so that useful information can be extracted. 

• to choose data processing algorithms which can be useful to extract information 

out of GPR data so that targets can be detected and classified. 

This chapter deals with the same aspects of conducting the experiments. Section 3.1 gives 

the details of experimental setup and system parameters. Section 3.2 enunciates data 

collection methodology and section 3.3 gives an account of data processing algorithms 

used for target detection and classification. 

3.1. Experimental Setup 

With the knowledge of SFCW radar and latest researches that have been done in GPR, 

which have been dealt with in Chapter 1 and Chapter 2 respectively, experimental setup 

was designed to take GPR readings. 

Choosing system parameters was based on conditions in which experiment was carried 

out. The very first step was choosing the frequency range of operation. As it has been 

discussed before that M/W signals at higher frequencies though offer better resolution, 

attenuate faster. The antenna that was used for carrying out the work was lightweight 

double ridged ultrawideband horn antenna. The antenna used (R&S HF-906) works in the 

range of 1 GHz to 18 GHz. The VNA available (R&S FSH 4) works in the range of 100 

kHz to 3.6 GHz. Hence, keeping these in mind, the lower limit of frequency of operation 

was set as 1 GHz and the upper limit was set as 3 GHz. This 2 GHz of bandwidth offered 

a range resolution of 7.5 cm. No. of scanning points in this frequency range was set as 
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Vector Network- Analyzer (VNA) 

Antenna 

601. Also, to get maximum penetration depth, the tracking generator attenuation of the 

VNA was set at 0 dB and hence, the transmitted power by VNA was I mW. 

An indigenous system was designed to collect and process GPR readings in real time. 

Following sections explain the experimental set up and data collection methodology used 

to carry out this research work. 

3.1.1. Experimental Arrangement 

To enable real time processing of data, a vector network analyzer (R&S FSH 4) was 

connected to a PC using LAN. This offered real time target detection and identification. 

NI VISA 4.5 and VXI Plug'n'Play, provided by Rohde and Schwarz were used to 

connect the laptop with FSH4. ' The development enviroiunent was MATLAB 2009b 

provided by MATHWORKS. The Vector Network Analyzer gave reflection values at 

different frequency steps between the chosen range of frequency of operation through a 

double ridged ultrawideband horn antenna (R&S HF-906). Section 3.1.3 and section 

3.1.4 explain the details of the VNA and the antenna. Schematic of the experimental 

setup and an image of actual connection have been shown in the Figure 3.1. Experimental 

parameters have been summarized in Table 3.1. 

Peripheral Device (Laptop) 
Connected with VNA for Real Time 

Data Processing 

fir. °y..r/ 

~wr t 	
i 

Ground 1L'ith Target Buried Inside 	~i'~"- . 

Figure 3.1: (a) Block diagram from data collection set up, (b) Actual image of data collection set up 
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Table 3.1: System parameters for conducting experiments 

Antenna Double-ridged waveguide type (HF 906)  
Vector Network Analyzer R&S FSH4 
VNA Power 1 mW (at trackin ► generator attenuation=0 dB) 
Cable Loss (for 2 in length) 1-1.5 dB 
Frequency Range for Operation 1 GHz to 3 GHz 

3.33MHz 
No. of frequency points 601 
Range resolution 7.5 cm 
Unambiguous range 45 in 
Investigated range 1 in 

3.1.2. Targets and Soil Conditions 

Three targets- an air cavity, a metal sheet and a water bottle- were taken as targets for 

carrying out the experiments and were buried at different depths under different moisture 

conditions. The targets were buried in soil having lots of clutters in the form of gravels at 

different depths and under various moisture level of the soil. Several B-Scans each 

consisting of 30 A-Scans were done to detect their presence in the soil and later on to 

classify them. As it has been discussed earlier that the detectability of a subsurface 

feature depends upon the contrast in electrical and magnetic properties, and its geometric 

relationship with the antenna, the values of SI l depend on the difference of dielectric 

constant of the medium and the target. The images of the targets have been shown in 

Figure 3.2 and their properties have been summarized in Table 3.2. 

ia) A Metal Sheet 	 ib) An Air Cavity 	 ciA Water Bottle 

Figure 3.2: Targets taken for carrying out experiments 
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Table 3.2: Properties of targets used for experiments 

Target Type Target Size Dielectric Constant 
Air Cavity 30 cm b 	l 8 cm b 	18 cm I 

Metal Sheet 25 cm by 25 cm o0 

Water Bottle 30 cm, diameter 10 cm 80 

An area of 2 meters by 1.5 meters was cleared and targets were buried in it at several 

depths under different moisture conditions. Moisture content of the soil was increased by 

adding water in a controlled fashion to study the effect of moisture on GPR signals 

received. Figure 3.3 shows the picture of the ground cleared to conduct experiments. The 

antenna was mounted on a moving device so that it can slide in transverse direction 

above ground. The transmitted signal is stepped from 1 GHz to 3 GHz in 601 steps. 

Figure 3.3: Ground area cleared to conduct experimetnts 

To measure the dielectric constant of the soil at different moisture levels volumetric soil 

moisture i.e. the ratio of volume of water in soil sample to volume of soil has to be 

calculated. To measure this, soil samples were taken and weighed accurately on an 

electronic weighing machine. After noting down their weight they were heated in an oven 

for around 12 hours at around 80°C after which the samples were weighed again on the 

electronic weighing machine. This gave the weight lost due to heating and hence, the 

weight of water in the soil sample taken. Percentage of water by weight in the soil 

samples when multiplied by 1.6 gave volumetric measure of soil moisture m 

Following equation gives the method to calculate volumetric soil moisture. 
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m = 16(Wbefore_heating—Wafter_heating) 
v 	 (3.1) 

Wbe f ore_heating 

The effect of moisture on the real part of dielectric constant of soil can be computed as 
following [50]: 

= 3.03 + 9.3m„ + 146m; — 76.7mg 	 (3.2) 

At different volumetric measures of soil moisture the dielectric constants of the soil as 

obtained have been summarized in the Table 3.3. 

Table 3.3: Dielectric constant of soil at different volumetric measures of soil moisture 

Moisture Dielectric Depths of insertion of air cavity, metal sheet 
Content Constant of the and. water bottle in the soil surface Soil 

7.5 % 4.52 10 cm, 15 cm, 20 cm 
15.5 % 7.70 10 cm, 15 cm, 20 cm 
20.5 % 10.41 10 cm, 15 cm, 20 cm 

3.1.3. Vector Network Analyzer (VNA) 

A Vector Network Analyzer is used to measure the S-parameters which are the 
transmission and reflection coefficients for the device under test. These S-parameters 

contain both amplitude, and phase information about the device under test. In SFCW 
monostatic GPR mode Si 1  values at different frequency steps in given bandwidth are 
observed. The reflection coefficient (S11) is the ratio of the reflected signal voltage level 
to the incident signal voltage level. 

The vector network analyzer used for carrying out this dissertation work is Rhode and 
Schwarz VNA (R&S FSH 4 (100 kHz to 3.6 GHz)). The analyzer transmits a stimulus 
signal to the input port of the device under test (DUT) and measures the reflected wave. 
For this dissertation work VNA was used to generate frequencies in the range of 1 GHz 

to 3 GHz. This SFCW wave was divided in 601 points. VNA specifications have been 
summarized in Table 3.4. 
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Table 3.4: VNA Specifications [51] 

Data Points 601 
Output Port Power nominal 1 mW (at tracking enerator attenuation=0) to —40 

Result Formats Magnitude (dB), phase, magnitude (dB) + phase 
Connector N-Female, 50 ST 

Calibration Standard R&S 	SH-Z28 Combined O en/ShortJ50 S2 Load 
Operating Bandwidth 1 	GHz to 3 GHz 

3.1.4. Antenna 

The antenna used in this works was Rohde and - Schwarz HF 906 double ridged 

waveguide horn antenna HF 906 with linear polarization, which is a broadband compact 

transmitting and receiving antenna for the frequency range 1 GHz to 18 GHz. The RF 

connector is N Female and the nominal impedance is 50 S2. The gain of the antenna is 8 

to 10 dbi for 1 to 3 GHz operating range of frequency. For this frequency range half 

power beamwidths in E-plane and H-plane are 80" and 100°  respectively for the 

antenna. Antenna specifications have been summarized in Table 3.5. VSWR of antenna 

for frequency range 1 GHz to 3 GHz is given in Figure 3.4. 

Table 3.5: Antenna Specifications [521 

Frequency range 1 GHz to 18 GHz 
polarization Linear 
RF connector N female 
Nominal impedance 5012 
Gain (for 1 GHz to 3 GHz) 8 dBi to 10 dBi 
VSWR (for 1 GHz to 3GHz) < 2.5 
HPBW at I GHz in E-Plane 800  
HPBW at 1 GHz in H-Place 1000  
Max. RF input power 300 W CW , 500 W PEAK 
Max . height 160 mm 
Max . width 250 mm 
Max. length 290 mm 
Weight 1.5 kg  
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Figure 3.4: HF 906 double ridged horn antenna and it s VSWR from I GHz to 3 GHz 

The swath, A at the investigated depth d from the antenna is given by- 

A = rrab (3.3) 

Where a is semi-major axis and b is the semi-minor axis of the ellipse. The values of a 

and b are calculated by equations given below: 

a = d tan- 2 	 (3.4) 

	

b = d tan 	 (3.5) 
2 

Therefore, 

	

A= 7rd tan 8a 	Zb (3.6)_tan  

As 0a = 800 and 0b = 100' for HF906 antenna, at investigated depths as measured from 

antenna flare swath area are 1963.49 cm2  for d25 cm, 2827.43 cm2  for d = 30 cm and 

3848.45 cm2  for dv35 cm. 



3.2. Data Collection 

3.2.1. VNA Calibration 

Calibration is the process of eliminating systematic, reproducible errors from the 

measurement results. Calibration plays an important role in determining the accuracy of 

the measurement system. The process involves the following stages: 

1. A set of calibration standards is selected and measured over the required sweep 

range. 

2. The analyzer compares the measurement data of the standards with their known, 

ideal response. The difference is used to calculate the system errors using a 

particular error model (calibration type) and derive a set of system error 

correction data. 

3. The system error correction data is used to correct the measurement results' of a 

DUT that is measured instead of the standards. 

Since, we have to use S11 parameter only; full one port calibration of FSH4 was carried 

out by R&S®FSH-Z28 Combined Open/Short/50 SZ Load kit. The three standard 

measurements are used to derive all three reflection error terms: 

• The short and open standards are used to derive the source match and the 

reflection tracking error terms. 

• The match standard is used to derive the directivity error. 

The port 1 of the VNA was calibrated for S 11 parameter from start frequency 1 GHz to 

stop frequency 3 GHz. The number of scanning points taken in the frequency range of 

operation was set as 601. The calibrated range profile of the VNA with no DUT 

connected at the end has been shown in Figure 3.5. 	 _ 
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Figure 3.5: VNA Calibration and range profile of calibrated VNA with no DUT attached 

3.2.2. Time Gating 

Now, VNA has been calibrated till the end of the cable. When antenna is connected at the 

end of the cable as DUT, reflections are there as signal enters antenna from the cable and 

then as signal propagates from antenna to the air. As all the distances can be conveniently 

measured from the antenna flare, we apply time gating to shift the zero of the distance at 

the antenna flare and ignore the reflections at cable-antenna interface and antenna-air 

interface [53]. An aluminum metal sheet is placed just at the flare of the antenna. No 

signal will pass through the metal sheet and we will get a sharp reflection at the point 

where the flare ends. This distance will be subtracted from the distances that we get 

henceforth. It is found that this distance is 30 cm. Time gating method has been shown in 

Figure 3.6. 

rt 
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(a) Mcthixi tl.r tire, gating (h) Range profile with aluminium sheet at untenna flare 

Figure 3.6: Time gating and range profile with aluminum sheet at antenna flare 
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3.2.3. A-Scan 

A-Scan is one dimensional trace and gives range profile at a particular depth. Antenna is 

placed at any point of interest and signal is collected. As the received data is in frequency 

domain, IFFT is taken to get signal strength versus time delay. This information is 

mapped on distance indexes. In the plot so obtained peaks are looked for to locate a 

probable presence of target [22], [23]. A flowchart for A-Scan algorithm is given in 

Figure 3.7. 

Set transmission parameters (e.g. frequency 
range of operation) and Calibrate VNA 

Collect and store mean S 11_i for ground in 
frequency domain 

Collect S 1 12 for target in frequency 
domain. 

Calculate Si l net=S 11 2-S 11. 	1 

1. 
Convert S I 1_net in spatial domain using 

IFFT and d=c*t/2, t=(i-1)/BW 

1. 
Plot the Range Profile 

Figure 3.7: Flowchart for A-Scan algorithm 

The detailed algorithm can be explained as follows: 

1. We decide for the range of frequency for which observation is to be taken. A 

compromise has to be made as higher frequencies offer better resolution but 

attenuate faster. Also range resolution gets fine as operating bandwidth is 

increased. For the selected range the VNA is calibrated. If we change the range of 

frequency, VNA has to be calibrated again. 
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2. Si 1  is collected for the ground in frequency domain when no target is present. 

This contains information about the range profile of the sand. As in practical 

cases it is not feasible to take ground reading at the same location at which target 

is being investigated, an assumption is made. Several S 11 readings are taken at 

various locations where we know that no target is there and its mean is taken as 

Si 1 for ground. Let this Si 1  be represented as S 111 . 

3. Si 1  is taken at the investigated location in frequency domain. Let this S 11 be 

represented as 5112 . 

4. We calculate S11net  = S112  — S111. This implies that the background 

information about the ground has been removed and now S11net  has information 

pertaining to the target only. 

5. This frequency domain data is in 601 points. A time matrix is defined with same 

number of points to convert this frequency data into time data. 

6. The IFFT is applied on this frequency domain data of 601 points. Inverse Fourier 

Time Domain data can be represented as: 

N 

S(t) _ 	S(fn)exp (J2nfnt) 	 (3.7) 
n=1 

Where N is the maximum number of data points that is set as 601 here. S(fn ) is 

the received reflected signal in frequency domain at nth  frequency. `n' varies from 

1 to 601. And s(t)is the received reflected signal in time domain. `t' varies from 0 

to (N — 1)/BW with step interval of 1/BW. In this case BW=2 GHz. 

7. This time domain data is mapped in spatial domain to get range profile. This 

mapping is done by setting: 

z = ct/2 	 (3.8) 

where, z is the distance along the range profile. 

8. By plotting the time matrix data obtained after the IFFT against the distance z, 

location of the buried object can be located by observing the peaks in the range 

profile. 
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3.2.4. B-Scan 

Stacking A-Scans along a dimension of the soil pit results in the formation of B-Scan. A 

B-Scan gives us a 2-D image which tells us about the depth at which the target is located 

and the extent of the target in azimuth direction, i.e. along the direction in which scanning 

has been done. Concept of B-Scan is explained by Figure 3.8. 

a) 
c Co 
c 
0 
0 

11 21 314151-•I-•I. 1.. 

Data Collected along a 
particular direction at 30 
points 

Cross range 

Figure 3.8: B-Scan as stacking of several A-Scans 

B-Scan can be uniform as well as non-uniform. In uniform B-Scan, spacing between 

successive B-Scans is always the same, however, in non-uniform B-Scan it is not so. In 

this work a regular spacing could not have been maintained and hence non-uniform 

scanning has been done. For this work, targets were buried at different depths under 

different moisture conditions in a straight line. Several B-Scans of 30 A-Scans were done 

to detect and classify the targets [22], [23]. A flowchart for B-Scan algorithm is given in 

Figure 3.9. 
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Set transmission parameters (e.g. frequency 
range of operation) and Calibrate VNA. 

Set N=no. of readings required for B-Scan, 
and i=1 

Collect and store Si 1_i  for ground in 
frequency domain, _ i++ 

Convert S11_net in spatial domain using 
IFFT and d=c *t/2, t=(i- I )B W 

No 

Is i=N? 

CD 

Generate B-Scan 

Figure 3.9: Flowchart for implementation of B-Scan algorithm 

Usually a B-Scan image is visualized with the scanning direction (distance) horizontally, 
and the time vertically. B-Scan image can be represented by equation (3.9) in which 
signal intensity is varying with the distances_ 

N-1 

I (x, z) = s(x, z) _ 	S~n)exp (12nfn(2z/c)) 	 (3.9) 
n=o 

Where, x is the antenna scanning position and z is the downrange locations for all the 
antenna positions. 
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3.3. Data Processing Algorithms for GPR 

Previous section discussed how data was taken. Now the task at hand is to process this 

data so that meaningful conclusions can be drawn. This section deals with various data 

processing algorithms which have been applied on the GPR data to arrive at the results. 

Selection of these methods have been based on the brief review of previous' works done 

be various researchers in this field. The flowchart given in Figure 3.10 shows various 

data processing algorithms used for target detection and classification. 

Preprocessing Techniques 
• Hamming Window Filtering 

• Median Filtering 
• ICA Clutter Removal Technique 

Post processing Techniques 
• Back projection Algorithm 

• Column Filtering 
• Thresholding  

Techniques for Target Detection 
• Application of Hough Transform on 

back projected image 

Techniques for Target Classification 
• EDS after whole set of B-Scan has been 

done 
• Contextual masking at the end of each 

B-Scan. 

Figure 3.10: Flowchart showing data processing algorithms used at each step in target detection and 
classification 

3.3.1. Preprocessing Techniques 

Filtering- The noise and signal in frequency domain can be separated by Hamming 

Window Filtering or Median Filtering. 

Hamming window [27] is a digital manipulation of the sampled signal in an FFT analyzer 

which forces the beginning and ending samples of the time record to zero amplitude. This 
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filtering rolls of the abrupt transition in frequency domain which in time domain means 

lower side lobes. For an `N' length sample the coefficients of a Hamming window are 

computed from the equation (3.10): 

2irn 
w(n) = 0.54— 0.46 cos N  ), 	0 <_ n <N 	 (3.10) 

Median filtering [54] is another technique that is widely used to remove abrupt internal 

noise in usually a time series signal. It is a nonlinear technique that applies a sliding 

window to a sequence. With median filtering, the center value in a window is determined 

by the median of the neighborhood values. Unlike averaging which compensates a 

sudden random noise in a group of samples by replacing each value in the window by the 

mean of the signal values in that window, median filtering attempts to eliminate the 

random noise completely. 

ICA Clutter Removal Technique for B-Scan Images - When readings are taken in soil, 

reflections from clutters sometimes overshadow reflections from targets. Hence we don't 

need only removal of clutter; we need information about all the signal sources that make 

the final signal. From section 2.2 in the Chapter on brief review it was observed that 

Independent Component Analysis (ICA) [30]—[32] divides data into statistically 

independent components which gives it advantage over other clutter removal techniques 

like Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). 

SVD or PCA represent data into uncorrelated. components. Independent Component 

Analysis (ICA) minimizes both second-order and higher-order dependencies in the input 

data and attempts to find the basis along which the data (when projected onto them) are 

statistically independent. It is because of this property that ICA is widely used in many 

applications such as feature extraction and noise reduction from the images. 

ICA assumes that the observed data X has been generated from source data S through a 

linear process X = AS, where both the sources S and the mixing matrix A are unknown. 

ICA is able to estimate both the sources S and the mixing matrix A from the observed 

dataXwith very few assumptions which are: 
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a) Sources are independent and linearly mixed using a stationary and instantaneous 

mixing. 

b) There are at least as many mixtures present as the no. of sources and most sources 

have Gaussian distribution. 

Consider a B-Scan data which can be represented by a rectangular matrix X,y, whose 

dimension is M x K, (i=1,2, .....M; k=1,2, ....,K). Here ̀ i' denote the distance index and k 
denotes the antenna position index. ICA assumes that every xi is a linear combination of 

each s~ as follows: 

N 

(3.11) 

1=1 

j= 1,2, 3....., N (N=no. of independent components to be calculated). In matrix notation 

X=AS 	 (3.12) 

Here A is an M x N basis transformation or mixing matrix, and S is the matrix holding 

the N independent source signals in rows of K samples. ICA of matrix X can be found by 

finding a full rank N x M separating matrix W such that output signal Matrix can be 
defined by Y= WX and contain the components as independent as possible measured by an 

information theoretic cost function. The estimation of source signal can be done using 
equation (3.13) [32] 

M 
sj (k) _ 

	
1 x(  k) 	 (3.13) 

j=1,2,3,.....,N (independent components). In the matrix notation 

S = WX 	 (3.14) 

ICA looks for a linear transformation W to maximize the "non-Gaussianity" of sj so that 

the transformed variables si are independent and the distribution functions for s1 is least 

Gaussian. How ICA works has been summarized in the flowchart given in Figure 3.11. 

The function g(x) is given as: 

gl (x) = tanh (aly) 	 (3.15) 



w, -E{zg(wpz)-E{g (wz)}}w„ 

p-1 
Wp 4,- w - I (W' W1 )V 

j=1 

w~, 
w p 	Iw p 

Is Converged? >-Y 

No 

92 (Y) = Y exp (
Y2

-' 2 
	 (3.16) 

Center and whiten the data to get z 
from x 

Choose m, no. of independent 
components required, set p=1 

Choose a random initial value of unit 
norm for wp 

Yes 

Terminate 

Figure 3.11: Flowchart for implementation of ICA method of clutter removal from GPR images 
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3.3.2. Post-processing Techniques 

Back projection 1331-1351- Back projection imaging algorithm is widely used in GPR 

imaging for image generation because of the high quality image it generates. A range 

profile generated by an A-Scan gives the signal strength as a function of time. In a raw B-

Scan we consider that the reflected signal value is due to reflection from objects directly 

below the antenna. However, this is not true. It may be because of any object that falls in 

the swath of the antenna. The signal received at a given time can be from any of the pixel 

locations where total flight time is equal to this specific time bin. The total flight time is 

time to travel from transmitting antenna to the pixel and then back to receiver. 

Figure 3.12 shows examples of pixel location where the reflected signal can come from 

(for a set of) collocated transmitting and receiving antenna elements. The back projection 

technique consists of recording the amplitude of each time bin on a spatial grid based on 

total flight time. After that all the recorded amplitudes from each channel are added 

together on the spatial grid. At the target locations the signal amplitude will add up 

coherently. 

ADD At t Rx 
AMP1ITL'Dr. 

Figure 3.12: Image showing back projection algorithm 1551 

The back projection algorithm can be implemented as follows: 

1. Divide the whole region into small pixels. 

2. For each pixel calculate the total flight time from transmitter to pixel and pixel to 

a receiver. 
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3. Record the corresponding received time bin amplitude for each pixel from the 

corresponding range profile means take the value of signal amplitude from the 

range profile and put it in that spatial grid. 

4. Repeat step 2 and 3 for all receiver elements. 

5. Sum the recorded amplitudes on the spatial grid. 

The detailed back-projection algorithm applied for different moisture conditions of the 
soil has been given in Figure 3.13. 

Initial parameters: 
• Average antenna flare- soil surface distance = 10 cm 

• Dielectric constant (Er _Soil) of the soil is calculated for the 
volumetric measure of soil moisture 

• VeIocity of EM waves in free space, c= 3 * 10^ 10 cm/sec 

Create a grid of dimension 256 x 256 

Calculate the distance between each image pixel and antenna for each 
antenna location 

R"(ul) 	.y, + (u, — x)2 

Calculate time of flight for each image pixel for each antenna location 

time = 2R n u r) x 	s so~, 
C 

Convert antenna flare-soil distance into equivalent soil distance and find 
corrected distance 

corrected dist=hanlennasoil( 	—1) _  
sot/ 

Calculate actual distance between antenna and image pixel 
time x c dac,,iaj = 	+ corrected 	dist — 
2 	Eso,~ 

Map indexes for these distances from clutter removed image to fill the 
back projected image grid 

Figure 3.13: Algorithm for forming back-projected image under various volumetric moisture levels 
of soil 
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Mathematically in free space the back projected signal at pixel (x1, y=) in the image plane 

is given by 

1(x1.Y1) _ Y s[ti(n), n] 	 (3.17) 
n 

Where, 

ti = (Ti + R.(n))/c 	 (3.18) 

(3.19) 

R 1(n) = (xi — xr(n))I  + (1'i — Yr(n))z 	 (3.20) 

Where, c is the speed of light in free space, t. in second, x, y, T and R in meter. t1  (n) is 

the total time for the transmitted signal to travel. In monostatic mode as transmitter and 

receiver is the same, 

ti = 2(Ri(n))/c 	 (3.21) 

Column Filtering [36]- We have discussed it earlier that the swath that antenna covers at 

various depths is proportional to square of depth. In image terms it means that antenna 

covers more number of pixels in a single scan as depth of the targets is increased. As 

there is interference of the other grid, points in that particular pixel's value, filtering needs 

to be applied. to remove the impact of the overlapping data. Out of column filtering, block 

processing and sliding neighbourhood operation methods of filtering, column filtering' 

has been preferred. Block processing doesn't address overlapping efficiently and sliding 

neighbourhood is more complex when compared to column filtering. It is observed that 

neigbouring values in a raw image show sharp discontinuities. To remove these column 

filtering is done, which makes the transition from one pixel to another smooth and 

continuous. Filtering is done as shown here: 

A(x', y') = mean(A((x — 1:x + 2), (y — 1: y + 2))) 	 (3.22) 

Where A(x, y) is the original pixel where filtering has to be done and A(x', y') is the 

pixel after filtering has been applied. The colfilt function in MATLAB has been used to 

apply column filtering on B-Scan images after ICA. 
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Thresholding [231- The image so generated after Backprojection may have some pixels 

which make the image look cluttered. Therefore, thresholding is applied to this image. 

The thresholding point is a function of mean and variance of the image data. A threshold 

values is set and image pixels having values less than the threshold are considered to be 

due to background and those having values higher than the threshold are taken to be due 
to foreground. A proper tradeoff is required in setting this threshold value. If threshold 

value is too small, inclusion of noise leads to clutter effects and if it is too high important 
information such as reflections due to low dielectric material get excluded. 

There are primarily two types of thresholding: 

I. Otsu Thresholding: It is based on probability and histogram method. Image is 

divided into two segments- foreground and background. An initial threshold is 

considered and by using this threshold the probabilities of the particular being 

in the foreground or background is considered. 

2. Mean Deviation based thresholding — The function used for thresholding is 

the sum of mean and standard deviation multiplied by a weight. This method 
has been preferred over Otsu as its performance is similar to it but complexity 

and data processing time is less. 

µ N~~x`j 	 (3.23) 
J  i 

Cr = y Y(xij — y)Z 	 (3.24) 

Threshold = ci + ky 	 (3.25) 

Where, It = mean of image pixels, o= standard deviation of the image pixels, k is the 

weight of standard deviation used in the computation. 

3.3.3. Image Detection Using Hough Transform 

A backprojected image gives us hyperbolas corresponding to targets. The apexes of these 

hyperbolas give us the location of targets. Because of the different reflected strengths of 

different materials, the hyperbola because of low dielectric material may not be a 

prominent one. If most important hyperbolas can be extracted out the image our target is 
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detected irrespective of its dielectric constant. Hough transform has been used in past to 

address this problem [39], [40], [42]. Basic principle of Hough Tansform [56] is this: 

If we want to find a particular shape in usually a binary image, we find all possible 

parameters that define the shape. And then we extract a subset of parameters which 

satisfy most number of points in the image. 

It is proven that back projection gives hyperbolas in the image. After thresholding sobel 

operator is applied to get a binary image. Sobel operator is a discrete differential operator 

constituted of two templates as shown below: 

Suppose the resultant GPR image from previous steps be g(x, y). The gradient image G(x, 

y) of g(x, y) can be obtained by using the Sobel edge operator as followings [39]: 

G(x, y) = Gx + Gy  (3.26) 

Where Grand Gy  are respectively [39], 

Gx= [g(x - 1,y +1) — g(x -1,y -1)] 
+2[g(x,y+1) —g(x,y— 1)]  (3.27) 

+ [g(x + 1,y + 1)— g(x + 1,y-1)] 

-Gy = [g(x + 1,y — 1) — g(x — 1,y — 1)] 

+ 2[g(x + 1,y) — g(x — 1,y — 1)]  (3.28) 

+[g(x+1,y+1) —g(x— 1,y— 1)] 

Now, the hyperbolas in the back projected image are north-south hyperbolas and only the 

South portion of them can be seen in the image. A north-south hyperbola is given by: 

(y —.yo)2 _ ( x —x0 )2  _ 
b2 	a2 	1 (3.29) 

Some valid assumptions can be made here. As the back projected image is a matrix of 

dimension 256 x 256 , for the hyperbola, yo  = 256, which is the highest row-value of 

back projected image matrix generated in this work. `b' can be found directly from the 

binary image. So, we find all the positive possible values of 'a' for non-zero pixels (x,y) 
from the binary image by equation (3.30). 



(x — xo)z 
a 
f7(L:~b

256)2 (3.30) 

Where, 1 <_ xo <256, and a can take only positive values. Following flowchart (Figure 

3.13) explains how target detection is done using Hough Transformation. 

As this work was carried out with three targets viz, an air cavity, a metal sheet and a 
water bottle, number of peaks that was to be searched in the Hough Transform matrix 
was set as 3 (three). 

Create a 2-D parameter matrix or accumulator matrix for 
all the possible values of (x„ a) 

Look for all the non-zero points in the binary image file 
and sort `y' values , i.e. row number in descending order 

of their value 

Subtract the highest `y' value. from 256 to get the value of 
`b' for the hvnerbola eauation 

For a particular non-zero image pixel of the binary image, 
find all possible values of parameters (xo.a) of the 

hyperbola that satisfy that non-zero point and increment 
that particular cell by 1 in the accumulator matrix. 

Find the Hough Transform cell containing the highest 
value and record its location 

Suppress (set to zero) Hough transform cells in the 
immediate neighbourhood of the maximum found in the 

previous step. 

Repeat until the desired number of peaks has been found. 

Figure 3.14: Flowchart for implementation of Hough Transform 
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3.3.4. Target Classification 

Use of Neural Networks and Correlation Coefficient for Target Classification Using 

EDS- The GPR signal from various targets can act as their signatures in the sense that the 

GPR signal depends upon the target's size, shape, composition as well as its - burial depth 

and orientation. The signal received in frequency domain at a particular -location is the 

composite of signal due to target and signal due to clutters. If we are able to remove 

clutter, we will have signal only because of target. This information can be used to 

classify different targets as they vary in their composition and dielectric properties. It is 

in this view that Energy Density Spectrum has been generated for various scan points and 

neural networks has been used for pattern classification to identify given targets. As Ho 

et al. [43] have put in their paper that frequency domain signatures have more 

consistency in the region between 1 GHz to slightly above 2 GHz, the energy density 

spectrum was split in 4 frequency bands viz. 1-1.5 GHz, 1.5-2 GHz, 2-2.5 GHz and 2.5-3 

GHz. Consistency of signatures of similar targets in first three bands was investigated and 

used to classify the targets. 

Though, the signals can be classified by Pearson's Correlation Coefficient between the 

spectra of different targets in the 4 frequency bands also, Neural Networks turned out to 

be more trustworthy for target classification. Probabilistic Neural Networks [42], [46] has 

been widely used for pattern classification by different researchers. First, the network is 

trained by spectra of different targets under different moisture conditions and for different 

burial depth. It was followed by feeding test spectra to the network for their 

classification. In probabilistic neural networks when an input is presented, the first layer 

computes distances from the input vector to the training input vectors and produces a 

vector whose elements indicate how close the input is to a training input. The second 

layer sums these contributions for each class of inputs to produce as its net output a 

vector of probabilities. Finally a transfer function on the output of the second layer picks 

the maximum of these probabilities, and produces a 1 for that class and a 0 for the other 

classes. Flowchart given in Figure 3.15 explains how EDS can be generated from GPR 

signal and used for classification. 

Salient features of different steps involved in this process have been given below. 



Whitening and normalization [421- is done mainly to remove ground effects from each 

of the reading. Readings are taken for ground where it is known that there is no target. 
These readings are averaged to find the average behavior of the ground and standard 
deviation is found to calculate how much the behavior changes in these readings. If the 

mean behaviour of ground is mA(kZ ) and its standard deviation is o-A(kZ ), then the 

whitened and normalized reading at each of the scan points is: 

A(x, y, kz) - mA(kz)) 	 (3 	31) 
U(x, y, k2)  = ( 	6A(kz) 

Take IFFT of the whole B-Scan data to convert data into 
time domain 

Preprocessing- Apply range gating to estimate ground 
level, shift zero to ground level 

Nonlinear Smoothening- Apply median filtering to each 
B-Scan of the preprocessed data 

Take FFT of each data along depth. 

Whitening and Normalization- Subtract from each 
reading the mean of ground and divide them with standard 

deviation of ground reading. Call it U(x, y, k7 ) 

Spectrum Generation- Average U(x, y, k-)  over a square 
window of N-Samples in cross-track and N-samples in 

down track. 

Use neural networks for pattern classification or 
correlation coefficient to differentiate the spectrum so 

generated into different targets 

Figure 3.15: Flowchart for implementation of EDS method of target classification 



Spectrum Generation [42]- The spectrum is generated by averaging U(x, y, kz ) over a 

square window of N samples in cross track and N samples in down-track. This averaging 

is done to reduce the variance in the EDS estimate. As the average distance of antenna 

from the soil surface was 10 cm i.e. a swath of 314.15 cm2 at the surface of the soil, or 

approximately a square with its side of 17cm, averaging was done by taking N = 4, 

assuming that traverse distance between each scan points is roughly equal to 4 cm. 

xo+(N-1)/2 yo+(N-1)/2 
1 

P(xo, yo, k = N2 	 U(x, y, k z ) 	 (3.32) 

x= x0 —(N-1)/2 y=yo —(N-1)/2 

Pearson's Correlation Coefficient [42]- The spectrum so generated can be classified 

using Pearson's Correlation Coefficient. A standard library can be maintained for 

different targets at different depths under different moisture conditions. As spectral 

variation can be expected to vary rapidly at higher frequencies, correlation coefficient can 

be found separately for four different frequency bands. Pearson's Correlation Coefficient 

is given as: 

Pxy = 

JZ( X — px~~(y — py )2 
	 (3.33) 

Probabilistic Neural Network (PNN) [57]- Donald F. Specht proposed this method to 

formulate a neural network. He. called this a "Probabilistic Neural Network". Figure 3.16 

shows the architecture diagram of a PNN network. 

Input 	Hidden 	Class 
nodes 	nodes 	nodes 

Figure 3.16: A four layer architecture of probabilistic neural network [571 



• Input layer - there is one neuron in the input layer for each predictor variable. In 

case of categorical variables, N-1 neurons are used where N is the number of 

categories. The input neurons standardize the range of the values- by subtracting 

the median and dividing it by their inter quartile range. The input neurons then 

feed the values to each of the neurons in the hidden layer. 

• Hidden layer - this layer has one neuron for each case in the training data set. 

• The neuron stores the values of the predictor variables for the case along with the 

target value. When presented with the x vector of. input values from the input 

layer, a hidden neuron computes the Euclidean distance of the test case from the 

neuron's center point to decide the Kernel function. The resulting value is passed 

to the neurons in the pattern layer. 

Pattern layer / Summation layer - there is one pattern neuron for each category 

of the target variable. The actual target category of each training case is stored 

with each hidden neuron; the weighted value coming out of a hidden neuron is fed 

only to the pattern neuron that corresponds to the hidden neuron's category. The 

pattern neurons add the values for the 'class they represent. 

• Decision layer - the decision layer compares the weighted votes for each target 

category accumulated in the pattern layer and uses the largest vote to predict the 

target category. 

Contextual Masking for Successive Classification of Target [22]- Because of clutters 

present in the soil and high attenuation of signals in it, spectral features sometimes fail to 

get the target classified. It was found in experiments that the neural network sometimes 

confused air cavity with water bottle. We can use another feature of targets to classify 

them. It is that the reflected signal strength of metal sheet is strongest followed by that of 

air cavity which is then followed by water bottle. Jain has done an extensive study on the 

reflected signal strength of these targets under various moisture levels of the sand and at 

various depths in his dissertation work., After the thresholding stage, the background 

noise is removed and we are left with targets present at that depth. The pixel values 

corresponding to these targets have been ;successively used to classify them. The 

strongest reflector in the image is classified as: 
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[Ref], [x, y] = max (max (Image [1: N,  1: Nv ])) 	 (3.34) 

Where, x,y are the coordinates of the strongest pixel and Ref is the value of this particular 

pixel. N, Ny  are the size of the image in x-direction and y-direction respectively. A group 

of pixels in the neighbourhood of this pixel is masked and then the next highest value is 

looked for. This masking is necessary as sometimes in the presence of strong reflector, 

signals due to weak reflectors may not be visible at all and we may not know that there is 

another target as well. Also, the next strongest pixel in the identified object might be 

stronger than the strongest pixel in the next object to be identified and the target may get 

missed from being identified. The algorithm can be explained as given in flowchart in 

figure 3.1.6. 

Find the (x,y) coordinate of the pixel 
having maximum value 

The pixel value is compared with those 
stored in the directory, and thus first 

target is classified. 

No 
Mask a group of pixels which are in 

neighbour of the maximum value pixel. 

the maximum reflectio. 
ixel in the image zero? 

Yes 

The target has been classified. 

Figure 3.17: Flowchart for contextual masking for successive identification of targets 
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~ 	B. Generate Raw B-Scan Image 	~ 
Apply sobel 
operator 1'or 

edge detection 
on image in 

previous step 

D. Apply 
Backprojection 

and 
rhresholding to 

this B-Scan 
Image 

Compare the spectra with the stored 
directory of spectra for target 

classification 

B-Scan 

Complete? 

Yes 
Apply Hamming Window Filtering or 

Median Filtering 

C. Apply ICA at different depth bins to 
look for targets 

No 	 No. of B-Scans 
done=M? 

Yes 

F. Apply EDS on M B-Scans to generate 
spectra at various scan points 

I Classify the target 

masking to the B-Scan 
generated after ICA to 

identify tareets 

E. Apply Hough 
Transform to confirm 

detection of targets and 
set number of targets 

I Classify the target 

3.3.5. Model Development 

With this knowledge, a model was developed for real time target detection and. 

classification of the targets. Figure 3.18 gives a succinct account of the same. Target 

classification can be done in three ways. The first is after each B-Scan using contextual 

masking. However, it's probable that in that scan our scanner may miss some of the 

targets and we don't have complete information about all the targets in a single scan. 

After all the M B -Scans have been done Energy Density Spectrum for each point is 

generated and is compared with stored spectra to classify the target. It is to be noted that a 

combination of all the three ways to classify the target is required

r~C)ACC 	

RA1 & 

.......•.•~-G 
Choose number of B-Scans to be done=M 	

..... 

No. of A-Scans in a B-Scan=N 

Find the average behaviour of ground by 
taking N A-Scans 	 1 

Scan the ground to look for target 

A. Apply Hamming Window 
Filtering to frequency domain 

data or median filtering to 
time domain data 

Get range profile and keep 
an eye on presence of targets 

Date .................... 

Figure 3.18: Flowchart for implementation of real time target detection and classification 
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Chapter 4. Implementation, Results and Discussions 

As per the model developed in previous chapter, GPR data was taken and processed for 

target detection and classification. For carrying out the experiments, four to six B-Scans 

of 30 A-Scans were done with targets buried at different depths under different soil 

moisture. Before this, average behaviour of ground was estimated by taking readings of 

ground at 30 different locations at each moisture level of soil. This information was later 

on used for background subtraction for generating range profiles for individual A-Scans 

and then for generating EDS of targets. This chapter deals with results obtained on step-

by-step implementation of the model developed in section 3.5. The reasons for the 

results so obtained have also been discussed. 

4.1. Preprocessing Techniques on A-Scan and B-Scan 

Importance of A-Scan detection and how it is done has been discussed in section 3.2.3. 

Details of how B-Scan image is generated by stacking A-Scans has been given in section 

3.2.4. Preprocessing techniques like Hamming window and median filtering and ICA 

clutter removal has been discussed in section 3.3.1. Subsections of this section show the 

results obtained by the application of these preprocessing techniques on GPR data. 

4.1.1. Hamming Window Filtering and Median Filtering for A-Scan 

Hamming window filtering (equation 3.10) is applied on frequency domain data. It 

basically shapes the frequency domain data to roll off abrupt noises. Effect of applying 

this filter  on an Si 1  waveform has been shown in Figure 4.1. It can be seen in the figure 

that application of window filtering suppresses the side lobes in the frequency domain 

GPR data. Hamming window passes this waveform through a cosine shaper. This helps 

suppress the effects such as ringing. 
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Frequency domain data before and after Hamming Window Filtering 

profile before Hamming Window Filtering 
09 	 profile after Hamming Window Frflering 

04 
'V 

Z 
113  

02 

1_ 	14 	1n 	;, 	 4 	28 	3 
Frequency Indexes 

Figure 4.1: Effect of applying Hamming Window filtering on frequency domain GPR data 

Time domain effect of application of hamming window filter and median filter (step A in 

the model developed in section 3.3.5) has been shown in Figures 4.2, 4.3 and 4.4 when 

targets were buried 10 cni deep with volumetric soil moisture level 15 %. Figure 4.2 

show the effect on A-Scan (Figure 3.6) taken at the location where cavity was there. 

Figure 4.2 is for metal and Figure 4.3 is for water bottle. 

As it can be seen that Figure 4.2 (a) has clutters in it at distances even after Im and 

doesn't show the first reflection that was due to the cavity. It is to be noted that air cavity 

gives two reflections- first when EM waves enter cavity and second when EM waves exit 

cavity. Application of hamming window filter (Figure 4.2 (b)) shows both the reflections 

and also suppresses the reflections that were seen before for the distances after I m. 

Figure 4.2 (c) shows the A-Scan after application of median filtering. Considering the 

fact that range resolution is 7.5 cm for the GPR system used for carrying out the 

experiments and the median filter size is 3, it can be explained that the first reflection due 

to cavity has got eliminated as noise. Also, it can be noted that reflections after distances 

of 1 m have been suppressed more efficiently than in Figure 4.2 (a). Figure 4.2 (d) shows 

the A-Scan after application of both- Hamming window filter and median filter. Peaks 
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Figure 4.2: (a) Raw A-Scan for location where cavity was there, (b) A-Scan after application of 
Hamming window filtering, (c) A-Scan after application of median filtering, (d) A- Scan after 
application of both- Hamming window and median filter 

Effect of these filtering techniques on metal sheet has been shown in Figure 4.3. Strong 

signal reflection due to metal sheet has made it possible that reflection due to metal is 

clearly visible in raw A-Scan (Figure 4.3 (a)). However, extra reflections can be observed 

in this figure which are surely due to noise. Figure 4.3 (b) shows the effect of application 

of Hamming window filtering on raw A-Scan. The first reflection is due to air-soil 

reflection and second is due to soil-metal sheet reflection. Also, it conforms to the 

concept that signal strength as distance increases should decrease. Figure 4.3 (c) shows 
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the A-Scan after application of median filtering. Reflection due to metal sheet is visible 

and has approximately the same signal strength as the first reflection due to air-soil. 

Figure 4.3 (d) shows the A-Scan after application of hamming window filter as well as 

median filter. It can be seen that it has suppressed the reflection due to metal sheet. 

C9~ 

C ' 

E r r- 

,G5 

Oa t 
0 
i 
02 

01. 

of 
0 

Pw.ge pro5la with largns y 15 cm bebre Fiferrng 

prCCu with target 

Crcrtie without targut 

oroW age, background subtraction 

a 0 3'75 
Y 0 3577 

1 	5 	- 
tl wr'5rr a ru *.ties 

(a) 

Pang. profile with tage!<. at IS ca'. ale, ̀ 4ehan Fdtenng of Wmdov7 Sc:e 3 

05  1  _  :5 
DOW vq: ci ^:•tie : 

(C) 

Range prokle with !argots at 15 cm .Aar applratron u: H:na u:y Wmoo + Fiterrng 

prof with target 

C ? 	 r rrt a without target 
or dae after background subtraction 

CC 

L 	

' C 	x0: 
l 0575 

C - 

I 	5 	C 	25 
Cwwinrange n reties 

(b) 

°ange c•onie with IargeSs at 10 crn rile- Harnrrunq Window and Med. an 51tei-ng 

rote with target 

C "r 	 rrorre without target 
orca:e aAer background subtraction 

C8 

e G ~. 

w (i' 

o(qf 

C4r  
x[ 

L , ■ 

z°
3 

 

'- 
Dow,':ng ,- In reties 

(d) 

Figure 4.3: (a) Raw A-Scan for the location where metal sheet was there, (b) A-Scan after application 
of Hamming window (c) A-Scan after application of median filter, (d) A-Scan after application of 
hamming window filter and median filter both 

Effects of application of these filters on A-Scan at the location where water bottle was 

there has been shown in Figure 4.4. Reflection due to water bottle is expected to be the 

weakest. Dielectric constant difference for bottle and soil is more than that for cavity and 

soil but, the cylindrical shape of water bottle results in low reflected signal strength for 

water bottle. Clutters are there in all the three figures Figure 4.4 (a-c). Though median 

filter has suppressed clutters effectively, reflection due to bottle cannot be distinguished 
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in the processed A-Scan. Figure 4.4 (d) has reflection due to water bottle visible in it but 

signal strength is too less. 
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Figure 4.4: (a) Raw A-Scan for location where water bottle is there (b) A-Scan after hamming 
window filtering, (c) A-Scan after median filtering, (d) A-Scan after application of hamming window 
filtering and median filtering 

From Figure 4.2 to Figure 4.4, it can be concluded that these methods are effective in 

combating noise in GPR signal. But more difficult condition makes it difficult for low 

dielectric materials, or cylindrical materials to be detected. Also, median filter has this 

disadvantage of suppressing reflection due to target sometimes. This often happens if 

there is a single peak representing the target. Thus for next requirements of pre-

processing hamming window filter may be used. 
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4.1.2. ICA Clutter Removal for B-Scan Images 

In soil EM waves attenuate faster. This makes detection of targets very difficult. Clutter 

removal techniques have to be applied so that target can be detected. It was explained in 

Chapter 3 that ICA not only removes clutters it looks for statistically independent 

components as well. In soil, where signal value to reflections due to target may be 

considered as clutter by SVD, PCA or FA, ICA serves the purpose better. 

After completion of each B-Scan raw B-Scan images were generated (step B in the model 

developed in section 3.3.5) by following the algorithm discussed by flowchart given by 

Figure 3 and ICA clutter removal technique (refer Figure 3.9) was applied on this raw B-

Scan image (step C in the implementation model of section 3.3.5). Effect of applying 

ICA on a single A-Scan has been shown in Figure 4.5. 

1.2 
profile without clutter removal 
profile with clutter removal 
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Figure 4.5: Effect of applying ICA on range profile generated by a single A-Scan 

Results obtained after applying ICA on raw B-Scan images have been shown in Figure 

4.6 when targets were buried 10 cm deep and volumetric soil moisture was 15 %. 
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Figure 4.6: (a) Raw B-Scan image generated of 30 A-Scan when targets were 10 cm deep and 
volumetric soil moisture was 15%, (b) Targets as detected by application of ICA at depth bin 
corresponding to 10 cm depth 

As it has been mentioned before, in the pit (of dimension 2m by 1.5 m) three targets were 

buried at a depth of 10 cm and water was added in a controlled fashion so that the 

volumetric soil moisture was 15%. Four B-Scans, each consisting of 30,A-Scans were 

done. From the point of start of scanning the order of the targets was air cavity followed 

by metal sheet and then water bottle. In first 10 readings presence of air cavity was 

expected, from 10th reading to 20th reading presence of metal sheet was expected, and 

finally from 20th to 30th reading were expected to show the presence of water bottle. The 

raw B-Scan generated after clubbing 30 A-Scans has been shown in Figure 4.6 (a). A 10 

cm depth in soil having volumetric moisture 15% (dielectric constant of 7.70) means 

equivalent depth around 27 cm in air. If antenna-flare to soil-surface distance is 

considered total distance is around 37 cm. With a range resolution of 7.5 cm presence of 

targets at 5 downrange index is expected. If we consider downrange indexes in raw B-

Scan, first two indexes show strong signal values which correspond to strong reflection 

from air-soil interface. However, no strong signal is visible at downrange index 5. It 

appears that all the three targets have been missed. ICA was applied on this B-Scan for 

depth bin 5 and four different patches can be observed. Since the environment is cluttered 

one of the patches can be due to a false target. But we can see the presence of rest of the 

three targets. 
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Another example of application of ICA for clutter removal from B-Scan is given in 

Figure 4.7. 
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Figure 4.7: (a) Raw B-Scan image generated by clubbing 30 A-Scans when targets are buried 20 cm deep in 
volumetric soil moisture of 20%, (b) B-Scan generated after clutter removal using ICA 

Like in the previous case, now soil moisture was increased up to 20% and depth of 

targets was increased to 20 cm. Arrangement of the targets was same — air cavity 

followed by metal sheet followed by water bottle. Antenna to target depth in this case is 

30 cm but considering the fact that dielectric constant of soil for volumetric soil moisture 

level of 20% is around 10.12, effective distance becomes 67.5 cm. That is to say, target 

should be available at downrange index 9. Clearly, B-Scan doesn't give any trace of the 

targets. However, B-Scan generated after using ICA clutter removal technique some 

strong signal values can be seen at downrange index of 9. As antenna swath at depth of 

30 cm (10 cm + 20 cm) was 3848.5 cm2 , all the targets appear to be mixed up. That is to 

say, there is a continuous line of strong signal values at downrange index of 9. We have 

no way to determine the.location of the three targets. 

Before proceeding further, one more example of ICA is worth consideration. It is shown 

in Figure 4.8. 
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Figure 4.8:(a) Raw B-Scan image generated when targets are 20 cm deep and soil moisture is 15%, 
(b) B-Scan image generated after ICA clutter removal 

This time targets are buried at the same depth of 20 cm but in different soil moisture 

level. Now, volumetric soil moisture is 15%. Arrangement of targets is same as in 

previous case. A depth of 20 cm in 15% soil moisture is equivalent to 65 cm in air and. 

hence, targets should be expected at 9th bin. Raw B Scan (Figure 4.8 (a)) image shows a 

comparatively strong reflection value at downrange indexes 9 and 10 and crossrange 

index 16. This should be due to metal. Other targets are not visible in this image. After 

application of ICA (Figure 4.8 (b)) three different patches can be seen corresponding to 

three targets. The patches are comparatively resolvable when compared to the image in 

Figure 4.8 (b). This observation can be explained through dispersion. When soil moisture 

was 20%, there was more dispersion of EM waves. In this condition though antenna 

swath is same, dispersion is less and hence separation of targets can be done. 

4.2. Imaging and Target Detection Using Hough Transform 

A clutter removed B-Scan image gives probability of presence of targets. Figure 4.6 (b) 

showed presence of four targets when actually there were only three targets. On a moving 

vehicle, uniform scanning becomes difficult and such results are expected. The biggest 

drawback of generating such B-Scan images is that it considers that reflections are only 

due to targets just below the antenna. However, it may be because of any reflector that 

61 



comes in the swath of antenna. This may also result in a wrong estimate of target 

location. 

It was proposed in the model developed for real time target detection and classification in 

section 3.3.5 that target detection can be done by applying back projection (section 3.3.2) 

on clutter removed B-Scan image followed by application of Hough transform (section 

3.3.3) on this back projected image. For image detection, first a back projected image is 

generated (step D in the model developed) using the clutter removed B-Scan image. This 

gives hyperbolas in the image so generated. If we search for strongest hyperbolas, it may 

be possible to detect the target. By strongest hyperbola, it is implied that maximum 

number of non-zero points of an edge detected binary image obtained after applying 

Sobel operator to this back projected image pass through this hyperbola. The apex of this 

hyperbola gives location of targets. Hence, the second step for target detection includes 

applying Hough transform (step E in the model of section 3.3.5) to this back projected 

image to look for three strongest hyperbolas. 

Velocity correction has been applied to get the location of targets at the apex of 

hyperbolas. Results in this section have been discussed depth wise. 

4.2.1. For targets at depth of 10 cm 

Figure 4.10 shows the results obtained when targets were buried 10 cm deep in 

volumetric soil moisture level of 15 %. Depth of 10 cm in soil having dielectric constant 

7.70 added to 10 cm antenna-soil distance becomes equivalent to 13.6 cm. In Figure 4.9 

(b), it can be seen that the apex of targets is at 12.24 cm. However, Figure 4.9 (a) show 

lots probable candidate hyperbolas which could have been targets, but using Hough 

transform makes it possible to pick the hyperbola which is strongest. As number of 

targets was fixed to three, top three hyperbolas have been picked from the , Hough 

transform matrix. 
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Figure 4.9: (a) Back projected image as obtained after clutter removed B-Scan image with targets 
buried 10 cm deep and soil moisture 15 % (b) three targets detected by the use of Hough transform 

It has been mentioned before that for all moisture levels of soil three targets were used. 

At depth of 10 cm and 7% volumetric soil moisture, targets were buried in this order-

metal sheet followed by cavity followed by bottle. Figure 4.10 shows the location of 

targets detected. In Figure 4.10 (b), three hyperbolas can be seen. But the apexes of last 

two hyperbolas are very close and they are likely to correspond to a single target. In 

Figure 4.10 (a) there is a faint hyperbola in the back projected image. This may be due to 

false target or clutter. A depth of 10 cm in air and 10 cm in soil, with soil having 

dielectric constant 4.52 is equivalent to 14.70 cm in soil. As it can be seen Figure 4.10 (b) 

targets are found at roughly 16 cm, which is within tolerance limit. It can also be 

observed from Figure 4.10 (a) that the hyperbola with highest intensity corresponds to 

metal sheet. 

In a similar fashion, Figure 4.11 show targets detected when targets were inserted 10 cm 

deep in soil having volumetric soil moisture level of 20 %. Actual distance at which 

targets were expected to be present was 13.16 cm. Figure 4.11 (b) shows that the 

observed depth is in great confirmation with the expected depth. Figure 4.11 (a) shows 

lots of probable hyperbolas. But thresholding followed by edge detection eliminated false 

hyperbolas. A cursory view at Figure 4.11 (a) shows presence of two targets — air cavity 

and metal sheet. However application of Hough transform made it possible to search for 

the location of water bottle. 
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Figure 4.10: (a) Back projected image as obtained after clutter removed B-Scan image with targets 
buried 10 cm deep and soil moisture 7 % (b) three targets detected by the use of Hough transform 
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Figure 4.11: (a) Back projected image as obtained after clutter removed B-Scan image with targets 
buried 10 cm deep and soil moisture 20 % (b) three targets detected by the use of Hough transform 

4.2.2. For targets at 15 cm 

Figure 4.12 shows the results targets buried 15 cm deep and soil moisture 7 %. At this 

depth arrangement of targets was air cavity followed by metal sheet and in the last water 

bottle. Presence of hyperbola due to metal is conspicuous in Figure 4.12 (a). Other than 

that there are many hyperbolas, of which many are because of clutters or noise. In Figure 

4.12 (b) three hyperbolas can be observed. But the separation of apexes of last two 
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hyperbolas is too less and it can be concluded that one target has been missed out. Failure 

of Hough Transform in this case can be because of the high pixel values due to metal 

sheet. 
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Figure 4.12: (a) Back projected image as obtained after clutter removed'B-Scan image with targets 
buried 15 cm deep and soil moisture 7 % (b) three targets detected by the use of Hough transform 

Figure 4.13 shows the results of target detection when targets were buried at 15 cm and 

soil moisture level was 15 % and 20 % respectively. It can be seen that three targets have 

been detected using Hough transform in both of these cases. In Figure 4.13 (c), presence 

of metal is conspicuous by high pixel values in the image matrix. For Figure 4.13 (d) we 

can see that apexes of first two hyperbolas are too close. Hence, it can be inferred that 

both of them are due to same target and first target i.e. air cavity was not detected. 
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Figure 4.13: (a) Back projected image as obtained after clutter removed B-Scan image with targets 
buried 15 cm deep and soil moisture 15 % (b) three targets detected by the use of Hough transform 
(c) Back projected image as obtained after clutter removed B-Scan image with targets buried 15 cm 
deep and soil moisture 20 % (d) three targets detected by the use of Hough transform - 

4.2.3. For Targets at 20 cm 

Similarly target detection results were obtained for targets at 20 cm depth. Results have 

been shown in Figure 4.14 for all moisture levels of soil. 
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Figure 4.14: (a) Back projected image for targets 20 cm deep, soil moisture 7 % (b) Detection of 
targets using Hough Transform (c) Back projected image for targets 20 cm deep, soil moisture 15 % 
(b) Detection of targets using Hough Transform (a) Back projected image for targets 20 cm deep, soil 
moisture 20 % (b) Detection of targets using Hough Transform 

It can be seen that in Figure 4.14 (d) apexes of two of the hyperbolas are very close and 

they represent same target. Hence, one of the targets has been missed. The main reason of 

failure of Hough transform in some of the cases is attributed to the fact that target 

detection using Hough transform is ,unsupervised. It just looks for strong hyperbolas 
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which largely depend upon the density of non-zero pixels in edge detected binary image. 

Naturally, targets having stronger reflection values will have corresponding to them a 

number of non-zero pixels in the edge detected binary image. Also, the programme 

searches for only top three hyperbolas, so chances are there that some of the target would 

get missed. 

4.3. Target Classification by Target Spectra 

After presence of targets has been detected, task of target classification remains to be 

done. Spectra of targets were generated (step F in the model developed) at the depth they 

were expected to be by the method that has been explained in section 3.3.4. Results 

obtained have been given in this section. 

4.3.1. Depth-wise comparison of spectra for pair of same targets 

Before this classification technique is used it is important to observe the invariability of 

target spectra under various conditions. This section deals with making comparison 

between spectra of same type of targets when they are buried at different depths. Figure 

4.15 shows the spectra of different targets for soil moisture level 15 % at depths of 10 cm 

and 15 cm. 
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Figure 4.15: Comparison of EDS of targets at 10 cm and 15 cm at soil moisture level 15 % for (a) Air 
Cavity, (b) Metal Sheet, (c) Water Bottle 

The spectra of targets at different depths can be compared here. For air cavity and metal 

sheet the spectra have been almost depth invariant it has changed a lot in the case of 



water bottle. The reason can be weak reflections due to the . cylindrical shaped water 

bottle. It is possible that its spectrum is influenced by the presence of clutters as the burial 

depth increases. 

Pearson's correlation coefficient was found for these spectra to evaluate the similarity 

between them. Table 4.1 shows the values of correlation coefficient for the pair of spectra 

as shown above. Correlation coefficient has been evaluated for four bands of frequency 

by splitting the 2 GHz bandwidth into bands of 0.5 GHz. This was done so as to . 

compensate for the spectral variation at higher frequency values due to attenuation. 

Table 4.1: Pearson's correlation coefficient values for different targets at 10 cm and 15 cm with soil 
moisture 15 % 

Pearson's Correlation Coefficient Values 
1-1.5 GHz 1.5- 2.0 GHz 2.0-2.5 GHz 2.5-3.0 GHz 

Air Cavity -0.1488 -0.1535 0.9384 0.4967 
Metal Sheet 0`.8678 0.1044 0.8708 0.6803 
Water Bottle 0.2326 -0.8490 -0.4711 -0.8471 

The coloured cells show a great correlation coefficient in that particular frequency band.. 

It is observed that metal sheet shows great correlation in three our four bands, while . 

cavity shows a good correlation only in third band which is from 2.0 GHz to 2.5 GHz. 

For bottle, spectra are uncorrelated in all the frequency bands of observation. 

4.3.2. Moisture- wise comparison of spectra for pair of same target 

The-next analysis would be effect of increasing moisture on target spectra. Comparison of 

spectra was done for targets buried at same depth but under different moisture level of 

soil. Figure 4.16 shows the same. For this case also, it is observed that spectral variations 

with soil moisture level are not that much pronounced for air cavity and metal sheet. But 

the change in EDS is drastic for water bottle. Contrary to the expectation there are strong 

reflections at several points while with increase in moisture attenuation should have 

suppressed them. Table 4.2 makes the comparison between the spectra based on 

correlation coefficient values. 
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Figure 4.16: Comparison of spectra of targets at 10 cm with soil moisture level 15% and 20 % for (a) 
Air Cavity (b) Metal Sheet (c) Water Bottle 

Table 4.2: Pearson's correlation coefficient values for different targets at 10 cm with soil moisture 15 
% and 20 % 

Pearson's Correlation Coefficient Values 
1-1.5 GHz 1.5- 2.0 GHz 2.0-2.5 GHz 2.5-3.0 GHz 

Air Cavity 0.6052 -0.3860 -0.0726 0.4742 
Metal Sheet 0.6214 0.3445 -0.9232 0.7639 
Water Bottle 0.6654 -0.3860 -0.0726 0.4742 

It can be seen that first band shows great correlation for same type of targets for different 

levels of soil moisture. But, after 1.5 GHz, spectra changes considerably. 

4.3.3. Target-wise comparison of spectra 

Now comparison between spectra of different targets will be made so as to know how 

much they are capable to classify the targets. Figure 4.17 shows spectra for targets which 

are at same depth and under same moisture level of soil. For same targets, different look 

positions were used to make comparisons. As EDS is sensitive to moisture and depth, 

slight changes in the spectrum is expected. However, changes should not be drastic so 

that classification techniques can be used. As it can be seen that spectra of same targets 

specially air cavity and metal sheet have resemblance and spectra of different targets 

differ a lot. It can also be observed that spectra of bottle is a bit sensitive as it changes a 

significantly with different look positions. Values of correlation coefficient for these 

spectra in four frequency bands have been given in Table 4.3. 
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Figure 4.17: Comparison of spectra of targets with each other at burial depth 10 cm and soil 
moisture 15 % 
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Table 4.3: Correlation coefficient values for different pair of targets at 10 cm with soil moisture 15 % 

Pearson's Correlation Coefficient Values 
1-1.5 
GHz 

1.5-2.0 
GHz 

.2.0-2.5 
GHz 

2.5-3.0 
GHz 

Air Cavity- Air Cavity 0.8260 .0.9.780 0.9690 0.7820 
Air Cavity- Metal Sheet 0.6338 0.5513 0.5323 0.6693 
Air Cavity-Water Bottle 0.3311 0.0929 -0.0824 0.6069 
Metal sheet- Metal sheet 0.9888 08459 0.9963 0.7442 

Metal sheet- Water Bottle 0.3484 0.3552 0.5433 -0.8292 
Water Bottle- Water Bottle 0.6338 0.5513 0.5323 0.6693 

From correlation coefficient values so observed it can be concluded that while air cavity 

and metal sheet are recognizable through their spectra, same is not true for water bottle. 

Given the inconsistency of correlation coefficient values, neural network was opted for 

target classification. The neural network was trained with 30 spectra of targets at different 

depths and at different moisture levels of soil. For each target there were 10 spectra to 

train the neural network. Spectra for targets at 12 cm with soil moisture level 17 % were 

passed to the neural networks for target classification and satisfactory results were 

obtained. Metal was clearly classified by the network but, there were some ambiguities 

observed between cavity and water bottle. 

4.4. Contextual Masking for Successive Classification of Targets 

Reflected signal strength of targets can also be used to classify targets. In his dissertation, 

Jain found our that at all moisture levels of sand and at all depths reflected signal strength 

of metal was highest, followed by air cavity and the least reflected signal strength was 

that of water bottle. Keeping this in mind, contextual masking for successive 

classification of targets was used for detection of targets (step G in the model developed). 

Clutter removed B-Scan image was generated using ICA clutter removal technique, and 

then the image pixel values were normalized. It was assumed that highest signal value 

was due to reflection from metal sheet and pixels around the highest valued pixel were 

masked. The image was normalized again and then the highest valued pixel was found. It 

was taken to be air cavity. Pixels were masked as before and image was normalized 
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again. The image was left with pixels corresponding to water bottle. Hence, all the three 

targets were identified. Step by step treatment of B-Scan image for target classification 

has been shown by Figure 4.18 for the case when targets were buried at 10 cm depth and 

soil moisture 15 %. 
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Figure 4.18: First four steps involved in contextual masking of targets 

First, using ICA clutter removal technique, thresholding and column filtering all the 

targets were located in the B-Scan image. Figure 4.18 (d) shows presence of four targets. 

One of them has to be false target as only 3 targets were used. Results obtained after 

contextual masking have been shown in Figure 4.19. 
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Figure 4.19: Images showing masking of metal sheet, false target and air cavity for target 
classification 

Pixels around the pixel having highest intensity were masked. These masked pixels 

corresponded to metal sheet. The resultant image was normalized and the image was left 

with 3 dots showing three strong reflections. The dot at the leftmost end of the image can 

be due to clutter or some medium change. After it has been masked, the image is left with 

presence of air cavity and water bottle. Then the next pixels having higher pixel values 

are searched. This corresponds to air cavity. It is masked and the image is left with water 

bottle. Thus, we see how targets can be successively classified by contextual masking. 

Similarly, target classification was done for other B-Scans as well. 

74 



Chapter 5. Concluding Remarks and. Future Scope 

5.1. Conclusions 
Based on the work done so far- following conclusions can be drawn: 

1. In cluttered environment, target detection and target classification is a challenging 

job and this dissertation dealt with the same problems. 

2. For detection of target using A-Scan various Hamming window filtering and 

median filtering techniques were used. It was found that, though median filtering 

combats abrupt noise very well, it may sometime consider reflections due to 

target as noise and may eliminate them. In the range profile obtained after median 

filtering, locating target was difficult. Hence, Hamming window filtering was 

used. This combats noise and preserves important information as well. 

3. ICA clutter removal technique was used to locate targets. Other clutter removal 

techniques like PCA and SVD weren't used as they remove only clutters and 

reflection values due to targets, being very feeble in moist soil, may get 

eliminated as clutters. ICA finds statistically independent components and hence, 

it was possible to find targets using ICA. It was also found that dispersion played 

and important role in differentiating the location of targets e.g. targets weren't 

differentiated when targets were buried at 20 cm depth in soil moisture 20%. 

4. Back projection was applied on clutter removed image which gave hyperbolas 

corresponding to probable targets. Hough transform was used to locate targets. 

Being unsupervised, Hough transform has this drawback of giving multiple 

hyperbolas corresponding to a single target. For example, in some- cases it was 

found that there were two hyperbolas due to metal sheet. However, overall 

performance of Hough Transform in finding targets was satisfactory. 

5. Neural networks and correlation coefficient between EDS of different targets at 

different moisture level was used to classify targets. Sensitivity of EDS towards 

burial depth of target and soil moisture level was a major challenge. But use of 

neural networks made it possible to combat it and targets were classified using 

neural networks for pattern classification on Energy density Spectra of targets. 
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6. Contextual masking for successive target detection was also used successfully for 

• target classification. Results deteriorate if scanning is done in such a way that a 

strong reflector is far from the scanner and weak reflector is near to it. 

7. A real time system was developed which can be used for target detection and 

classification in real time. 

5.2. Future Scope 

Target detection and classification is a very vibrant field as far as GPR is concerned. For 

target detection statistical measure of various targets and clutters can be used. Genetic 

algorithm can also be used to find strong hyperbolas to give a more accurate location of 

targets. 

For target classification parameters which are invariant to burial depth or soil moisture 

level need to be implemented to make the system more reliable. Time frequency analysis 

can be used for this purpose. Phase information gets almost lost in the data processing 

algorithms employed in this work. Using phase information can give better results and. 

future work can make use of this. 
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a) Target detection and classification when targets were buried at 10 cm depth 
and soil moisture was 20 % 
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c) GUI developed for real time target detection and classification 

Figure 5: GUI developed for real time target detection and classification 
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