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ABSTRACT

This dissertation deals with application of Stepped Frequency Continuous Wave Ground
Penetrating Radar for real time detebtion and classification of subsurface targets. Rohde and
Schwarz provided FSH4 was used in Vector Network Analyzer mode and was interfaced with a
computer to enable real time target detection and classification. A double ridged ultra wideband

hom antenna (R&S HF 907) was used to transmit as well as receive EM waves.

Three targets- an air cavity, a metal sheet and a water bottle were buried at various depths under
different volumetric moisture levels of soil. By the application of preprocessing techniques like
Hamming Window Filtering, Median Filtering on A-Scan GPR data range profile was generated.
ICA clutter removal technique was applied on B-Scan images generated by clubbing 30 A-Scans

to look for probable presence of targets.

Thereafter, application of postprocessing techniques like back projection and Hough Transform
was used to enhance target visibility and confirm the presence of targets at various depths and
under various moisture levels of soil. Velocity correction was also applied to locate targets at

exact depths they'were buried at.

Once presence of targets was detected, energy density spectrum was generated for each location. -
This energy density spectrum was then used to classify the targets by the use of neural netWorks
for pattern classification. Contextual masking for successive identification of targets was also

used to bolster the classification ability of the system.
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Chapter 1. INTRODUCTION AND MOTIVATION

1.1. Introduction to GPR Technology

Ground-penetrating radar (GPR) is a geophysical method that uses radar pulses or waves
to image the subsurface [1], [2]. It is the only non-invasive techniqﬁe capable of
accurately locating both metallic and non-metallic buried objects, without prior
kunowledge of their position. This non-destructive method uses electromagnetic radiation
in the microwave band (UHF/V HF frequencies) of the radio spectrum, and detects the
reflected signals from subsurface structures. GPR éan be used in a variety of media,
including rock, soil, ice, fresh water, pavements and structures. It can detect objects,

changes in soil composition, and voids and cracks [2], [3].

However, GPR performance is sensitive to the depth of the buried targets, their dielectric
coefficient, soil moisture etc. [4], [5]. Detectability of a target greatly depends upon its
electric and magnetic properties contrast with respect fo soil [3]. The performance of
GPR system also depends on its parameters. For example; range of frequency of
operation decides the resolution of the system. Transmitted power and sensitivity of the
receiver determines the maximum penétration up to which presence of targets can be
detected [4], [6]. And therefore, without any further research and de\}elopment this

technology will remain of little use.

GPR uses a transmitting antenna and a receiving antenna (bistatic mode (;f operation) or
only one containing both functions (monostatic mode of operation) [1], [2]. The
transmitting antenna radiates short pulses of high-frequency (usually polarized) radio
waves into the ground. When the electromagnetic wave hits a buried object or a boundary
with different dielectric constant, there is a sharp change observed in the received return
signal strength because of the reflections at the boundary [1]-[4]. GPR uses these
concepts of electromagnetic wave propagation to image and locate changes in
. electrical and magnetic properties in the ground. Detectability of a subsurface feature
apart from its contrast in electrical and magnetic properties with soil also depends upon

its geometrical shape [7]-[9]. For example a cylindrical object, though may have a great



contrast w.r.t soil as far as its electric and magnetic properties are concerned, it may not

get detected at all because it reflects EM waves in different directions.

The electrical conductivity of the ground, the transmitted central frequency, and the
radiated power limit the depth range of GPR [10], [11]. As conductivity increases, more
electromagnetic energy is dissipated into heat, and hence, the penetration depth also
decreases. Higher frequencies do not penetrate as far as lower frequencies, but give better
resolution [12]. Penetration depth achieved by GPR system also depends upon the
medium. Good penetration depth is achieved in sandy soils or massive dry materials such
as granite, limestone and concrete where the depth of penetration has been reported up to
15 m. In moist and/or clay-laden soils and soils with high electrical conductivity such as

sand near saline water resources penetration is only up to a few centimeters [13].

GPR has many applications in a number of fields [3], [4], [6], [10], [13]. 1t is used to
study bedrock, soils, groundwater and ice in the Earth Sciences. In engineering field it is
used for non-destructive testing of structures and pavements. It can be used to define
landfills, contaminant plumes thereby having its application in environmental
remediation. In archaeology it has been used for mapping archaeological features and
cemeteries. It has military applications as well in the form of detection of landmines,

unexploded ordnance and tunnels.

1.2. Problems in GPR

1. Non-linearity and unpredictability of the subsurface makes the modeling and
computation of the subsurface parameters extremely difficult. This
unﬁredictability leads to unexpected behaviour of radar response [6], [12], [13].

2. The subsurface keeps on changing in aspects like its dielectric constant,
roughness, moisture content and texture. The GPR system needs to be accustomed
to these changes [5].

3. Apart from the electrical and magnetic properties of a target its shape and size
also has a great impact on GPR signal. For example a cylindrical object which

may have a good contrast to the soil as far as its electric properties are concerned,



may not give strong reflections. The reason being that the reflected signals get
directed in directions away from the antenna [7]-{9].

4. Different objects reflect the radar waves differently and these reflections also vary
with depth. As the only information available with the receiver is the reflected
wave, it cannot discriminate between: reflections from a good reflector at greater
depth and a bad reflector at a shallow depth [5], {8], [9]. |

5. Resolution issues are there for detection of shallow targets. Resolution is
inversely proportional to operating bandwidth. For example, in thié work, to get a
resolution of 7.5 cm bandwidth was 2 GHz. Purchasing antennas having a
constant gain over such a wide range is a costly affair. And a resolution of 7.5 cm
means that a target which is less than 7.5 cm deep from the surface of the soil
would not give a different reflection from the reflection due to air-soil interface
[2], [11].

6. Various problems like clutter effécts, antenna coupling, background noise make
the detection of dbjects difficult. There are various signal processing techniques
which otherwise give very good imaging resolution for example MUSIC
algorithm. But sometimes reflections from weak dielectric materials are confused
with noise and they don’t get detected at all [14]-[17].

7. Also, if target identification is the problem at hand, depth-wise and soil moisture-
wise variations of the received GPR signals hamper the algorithms used. Trained
information is required for each object of different material at different depths and
under different moisture level of the soil. Training GPR for all such variations is a
very time consuming job [3], [5]. _

8. Real time data processing has limitation of computer memory and its processing
speed. However, with the developments in VLSI this is no -longer a very

challenging problem and can be expected to be overcome soon.

1.3. Motivation

Ground Penetrating Radar (GPR) is an important remote sensing tool used to detect and
localize the presence of subsurface targets. With its use in new areas, e.g. its use in

landmine detection, it has become imperative to detect and image the buried targéts in



real time. Real time detection is however, limited by the delay involved in data
accumulation and data transfer and the memory limitations of processing softwares like
MATLAB and LABVIEW. This long data acquisition time at each scan position depends
upon two-way travel time for the EM signal to reach targets at a chosen maximum range,
number of frequency points at which we seek the response of the ground (in case of
SFCW GPR system) and the time for receiver to build up sufficient SNR. However, this
delay won’t matter a lot if we can successfully detect and identify subsurface targets.
Moreover, with the advent of technology, faster processors are now available and total
data acquisition is getting reduced. Primary focus of a research should be to detect all

subsurface targets and to identify them.

There are various hurdles which make target detection and classification of targets
difficult. For example cable-antenna reflections, antenna-air reflections, air-surface
reflections are not information of our concern but strongest reflections are obtained at
these interfaces. In a normalized B-Scan image, this makes the detection of low dielectric
materials \}ery difficult. Internal noisé gets mixed up with reflected signals from targets
and needs to be separated out. There are heterogeneities present in the soil itself which
results in noise in the B-Scan images making it difficult to distinguiéh the presence of
target in the soil. Solutions are required to address these problems. Therefore, study of
imaging algorithms is required for SNR improvement of the image so that presence of

targets can be detected.

After presence of targets has been detected, the next task is to classify targets. If we arle
trying to find one particular type of target, the rest of them are clutters for us. Their
detection is like false alarm to use. In real time environment, false alarm means wastage
of time on irrelevant data. Hence, study of target/clutter discrimination is a must if we

have to make our system reliable.

It is these objectives which are the motivating factors for this work. Three targets were
taken viz. an air cavity, a metal sheet and a water bottle. They were buried at different
depths and under different moisture conditions of the soil. It was tried that GPR system

detects the presence of all of them and classify them in real time.



1.4. Basic GPR Systems

There are three types of GPR systems classified on the basis of modulation schemes they
employ. These are pulse radar, frequency modulated continuous wave radar (FMCW

radar) and stepped frequency continuous wave radar (SFCW radar).
1.4.1. Time Domain Pulse Systems

Pulse radar consists of a single pulse of single frequency. The time duration of this pulse
is in pico-seconds and the time gap between transmitted and received signal is used for
range profiling. Measuring this time gap requires complex circuit and errors creep in
while measuring this. Hence, it is not possible to calibrate the system response. Apart
- from this the power peak is very large and hence there is a need of distributing the power
in order to reduce power losses and improve penetration depths. In pulse radar systems it
is not possible to compensate the imperfections of RF electronics, antenna and feed
system. Transmitting such a short duration pulse requires a very high speed ADC because

of the need of instantaneous high bandwidth [18].

1.4.2, Frequency Modulated Continuous Wave Radar Technology

FMCW radar has a waveform where the frequency of the continuous wave is linearly
changed from a minima to maxima. Typical sweep time of an FMCW radar changes from
1 to 100 ms giving a high pulse energy using a low transmitted power. As the time
duration of thé wave is large, the receiver has to start receiving the back-scattered signals
while the transmitter is still transmitting. This results in problem in homodyning the

transmitted and the received waveform [19], [20].‘

1.4.3. Stepped Frequency Continuous Wave Radar Technology

SFCW radar technology [2], [4], [6], [10], [11], [21] is comparatively the latest advent in
radar field. Frequency-stepping is a modulation technique used to increase the total
bandwidth of the radar. The SFCW radar obtains the distance to a target by measuring the
coherent target reflections over n number of stepped frequencies within the given
bandwidth. ‘n’ stepped frequencies are transmitted and the system response is noted over

these frequencies. It is then converted into time domain by taking inverse FFT and this



time domain response when mapped on distance indexes gives the range profile at a

certain point. The main advantage that SFCW offers over pulse systems are as follows:

1. 1t is capable to compensate the imperfections of RF electronics, antenna, and feed
system through post processing of the collected data. |

2. It is easier to generate a sinusoid of a given frequency than to measure the delay
response as is done in time domain pulse systems. This delay response is in
nanoseconds. |

3. Stepped frequency ‘microwave sources possess superior dynamic range and
stab'ility compared to pulse systems. They also permit control of frequency range,
thus allowing an improvement in penetration performance.

4. In SFCW we get an increased dynamic range because of extremely narrow band
filter used for receiving tones in spite of a lower peak transmittable power when

compared to impulse one.

However, there are some disadvantages associated with SFCW over time domain pulse

systems.

1. Increased system complexity and high component cost have discouraged ité; use in
the past. However, as the cost of RF technblogies is decreasing considerably, this
no longer remains a problem.

2. Scanning a range of frequency in a stepped manner requires longer acquisition
time. Hence, if target is moving it may become hard to detect it. Second real time
systems won’t be that fast if we go for this. However, this issue can be resolved

by reducing the number of frequency steps.

It 1s because of the considerations of these pros and cons that SFCW radar was chosen for

carrying out this work. In section 1.5 concepts of SFCW radar will be dealt with.
1.5. Concept of SFCW Radar

Stepped Frequency radar is similar to CW radar with the main exception concemiﬁg thé
fact that the frequency can be changed in discrete, highly repeatable and stable, steps to
cover the desired bandwidth [22]. The phase and amplitude of the received tone is then
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sampled and the equivalent time-domain sweep is reconstructed via Inverse Fast Fourier

Transform. Figure 1.1 gives a block diagram of SFCW GPR.

1.5.1. System parameters for SFCW GPR

In SFCW radar the very first step involves choosing the frequency range of operation. If
we go for higher frequency range we get _better resolution but higher frequencies
attenuate faster. Hence, a trade off has to be made. For this work frequency range of
operation was chosen as 1 GHz to 3 GHz. Resolution also depends on bandwidth of
operation [2], [10], [11]. However constraints are there to get a constant gain of antenna
for the desired bandwidth. Fromi the selected range of frequency it'becomes clear that
bandwidth was 2GHz. For the chosen bandwidth we select the number of frequency
steps. More the number of frequency steps more would be the acquisition time. In this
work number of frequency steps was 601. A stepped frequency waveform can be best

approximated by Figure 1.2.
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Figure 1.1: A block diagram of SFCW GPR [10]
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Figure 1.2: A stepped frequency waveform [10]

From the above figure it is clear that the freqﬁency of n™ pulse can be written as [13]:

fn=fo +nAf (1.1)

where, f, is the starting frequency and Af is the frequency step size. The frequency
response measured by the SFCW radar is sampled in the frequency domain with a

sampling interval Af. If the reference signal for the n™ pulse is [13]
A cos(Cr(f, + nAf)L) (1.2)
Then the reflected signal after a round trip delay of 2R /c can be represented as [13]
Ay cos(2re(f, + nAf)(t — 2R./c)) | (13)

Hence, the output of the phase detector can be modeled as the product of the received
signal with the reference signal followed by a low pass filter. Consequently the ™ phase

difference comes out to be [13]

on = 2n(f, + nAf)(t — 2R /c) (1.4)
_4nfyR Af\ /2R
Pn = - + 2m (?) (—C—) nT - (1.5)



In the above equation while the fist term is constant for a stationary target, the second
term is-depth dependent. That is, the range is converted into a frequency shift f; which is

given as [13]

Af\ (2R
=[—=}{— 1.6
~EE .9
Now as from DFT, Af; = 1/NT, by differentiating both sides, we get the range resolution

of the SFCW system as [13]

c -
INAT (1.7)

AR =

Where, NAf is equal to the system bandwidth. Hence, for the system used for this

dissertation work resolution was 7.5 cm.

When the Nyquist sampling criterion for unambiguous reconstruction is applied
1 :
Kf > 2Tmax : (1.8)

where, Tp,q,1s the maximum target delay in the synthesized time-domain response. If
mixing is applied in the receiver, the baseband spectrum becomes single-sided, and the

Nyquist sampling criterion reduces to

1
Ec' = Tnax (1.9)
which gives the unambiguous range as [13]
"
Rpyax = EA_f (1.10)

With bandwidth of 2 GHz and number of frequency steps 601, Af = 3.33 MHz approx.

Hence, unambiguous range, Ry,.x = 45 m. However, we will investigate il 1m only.

1.5.2. Signal Processing in SFCW Radar
Figure 1.3 gives the flowchart of the signal processing in SFCW radar [2], [4], [10], [11].

9.



The transmitfed signal is in SFCW form
and termed as p(1).

The received signal s(7) is recorded and is a
delayed version of p(¥) with changed
amplitude.

p(t) and s(?) are mixed and low pass filtered
to get the baseband signal s,(%)

The signal s,(7) is sampled and represented
in discrete frequency domain domain
format, S(/x)

h 4
IDFT is applied on S(f;) to generate the
time domain response. This response gives
information about the location of target.

Figure 1.3: Signal processing in SFCW radar

A detailed explanation of the steps involved in sigﬁal processing in SFCW radar is as
follows:

1. The SFCW signal p(t) is mathematically represented by [13]:

T,
Ne—1 » (t__Td)
| p(t) = ; exp(j2r(fy + iAf)t) .rect ‘(2—;,;71‘2 , (1.11)

where the dwell time T, represents the time spent on each frequency. The

duration of the  whole Wavefonn, the scan time Tg = NfTy.

2. Assuming that the radar signal is reflected from a single scatterer having a
frequency independent reflection coefficient I". The reflected signal s(t) can be
written as a delayed version of the transmitted signal multiplied by the reflection

coefficient.
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Ng-1

s(t) = Z I'exp(j2r(fy + iAf)(t
i=0

(¢ _%) ‘ (1.12)
R-iT;—-1) ‘
Ty

—1)).rect

3. After homodyning in the quadrature mixer and low-pass filtering, the received

echo becomes a complex baseband signal [13]

Ne—-1 (t —%)

sp(t) = Z T exp(j2n(fy + iAf)T) .Tect (i——l@ (1.13)
i=0

The baseband signal is now a staircased sine wave where each step corresponds to
the response measured at each frequency. The amplitude and the phase is

determined by the reflection coefficient of the target while the frequency of the

sine wave is proportional to the delay 7.
4. If the signal is sampled in the middle of each step, we get a complex array [13]
s[k} = Iexp(=2n(f, + kAf)1),k=012..,Np—1 (1.14)
which'can also be written as: | |
S(fy) = I'exp(—2nf;t) | (1.15)
5. | Taking IDFT of 1.15 can give us the synthesized time-ddrnain response
§(t) = IDFT{S(fy)} (1.16)

Hence, by observing the amplitude of the reflected wave we can know the reflection
coefficient of the target and by observing the phase delay in the reflected wave we can

deduce the location of the target.
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Antenna is positioned at a location and its range profile is generated by observing the
frequency domain response of the SFCW radar at that point. Generating downrange
profile at a particular location of 6ur interest is called A-Scan. If antenna is moved along
a particular direction we will get a 2-D image which can give us information about the
depth and the length of the target in azimuth direction which is the direction along which
antenna is moved. This scanning along a particular direction is called B-Scan. If several
B-Scans, each parallel to each others, are done we get a C-Scan imagé. C-Scan is
generated at a particular depth and gives the cross-range and azimuth-range of the target

at that depth [22]-[24].

However, there is some unwanted information in this time domain response which needs
to be eliminated by further pre-processing and post-processing. For example, as signal
enters antenna from the coaxial cable there is a change of medium and the fange profile
will give reflection at that point. This information is unwanted and needs to be
eliminated. Similarly antenna-air reflection is not of our concern and needs to be

eliminated. How these are eliminated has been explained in Chapter 3.

There are chutter effects from various noise and disturbance sources which interfere in the
correct detection and location of the target in question. This noise can be taken care of by

the use of frequency domain filtering which will also be explained later in Chapter 3.

1.6. Objective
Considering the motivation to this work, following objectives were set:

1. Study and implementation of various imaging techniques so that subsurface

. targets could be detected at various depths and under various moisture levels of

the soil in real time. In this case those subsurface targets were air cavity, metal
sheet and water bottle.

2. Study and implementation of various classification techniques so that these targets

viz. air cavity, metal sheet and water bottle could be classified after their presence

has been detected in real time.
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1.7. Dissertation Overview
This work is organized as follows.

Chapter 1 deals with introduction to GPR technology and problems faced in
implementation of GPR system for target detection or ’classiﬁcation-. Hard terrains pose
greatest challenge to this technology as sometimes EM waves fail to penetrate the ground
and sometimes clutters become irresolvable. Basic types of GPR systems have been
discussed and it has been discussed why SFCW radar system has been preferred over
time domain pulse system and frequency modulated continuous wave radar systems. This
is followed by an introduction to SFCW parameters. This chapter ends with motivation

and objectives set to carry out this work.

Chapter 2 deals with brief review of the works done in the past in this field. How system
performance has been improved and what are the conditions where work still needs to be
done to enhance the system performance have been discussed in brief. Imaging methods
adopted by various researchers have been reviewed to choose the one that suits our needs.
This chapter also gives a brief account of various methods for target detection and target

classification as used in the past.

Chapter 3 deals with methodology employed to solve the problem. It starts with the
experimental arrangement used to take readings. Then it deals with data collection
methodology where it deals with VNA calibration, time gating, A-Scan readings and then
B-Scan readings. Chapter 3 also deals with data processing algorithms used to identify
and classify subsurface targets. In the end this chapter concludes with a model
development which is a flowchart to guide how real time data éollection_ is to be done and

how target detection and classification is to be done using this data.

* Chapter 4 has implementation, results and discussions of the work of the experimental
work done. It gives information about the results obtained in various conditions that were
set for this experimental work. It also explains the reasons for results so obtained. Results
have been given for the effect of preprocessing and post-processing techniques on the

GPR data. Tmaging results are there which show how target is detected. T arget
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classification results are there to show the effectiveness of each method so used for. the

same.

In the end Chapter 6 gives the concluding remarks and the work that still remains to be

done to improve the system performance.
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Chapter 2. BRIEF REVIEW

Considering the volume of research going on in GPR, we can say that it is a very
dynamic field of study. Research has been going on in the fields of Improving SFCW
GPR Performance, GPR imaging, subsﬁrface target detection using GPR and GPR target
classification. This chapter has been divided into four sections to enhance the

understandability of research going on in this field.

2.1. Improving SFCW GPR Performance

Probably one of the landmark researches to explain the workiﬁg of SFCW GPR has been
done by Parrini et al. [1]. They have designed a GPR system for detection of buried
objects in historical sites by th.e use of range profiling using A-Scans at various locations.
They have emphasized on the need of background subtraction for successful peak
generation. Their GPR system uses Digital Direct Synthesizer (DDS), a Phase Lock Loop
(PLL) and a Quadfature Modulator (I/Q Modulator) and works in L-S band of frequency.
Their system does this commendable job of explaining how SFCW GPR generates the

signal and how signal processing is done.

To address the large data acquisition time Gurbuz et al. [25] have proposed compressive
sensing for data acquisition and imaging method for SFCW-GPRs. They have exploited
the fact that the target space is sparse and it is sufficient to observe readings at a small
number of random frequencies to construct an image of the target space. Though, this
reduces the data acquisition time, causes higher computational costs. The imaging results
with experimental GPR data have exhibited less clutter than the standard migration
methods and are robust to noise and random spatial sampling. There method has
impfoved the resolution also as the closely spaced targets which cannot be resolved by

standard migration methods have been shown to be resolved here.

Tremendous work has been done to improve the time domain response of the SFCW
GPR signal. Kong et al. [14] have proposed a sidelobe suppression algorithm via the
reiterative minimum mean-square error strategy, where a minimum mean-square error
filter has been designed for each range cell. Their work addresses the inherent problem of

conventional method of taking IFFT to generate range profile which is the masking of
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small targets by large nearby targets owing to the high range sidelobes that result from
IFFT. They have made use of Minimum Mean Square Error (MMSE) filter to produce
refined estimates of range profile and power of each range cell. In this directién similar
works have been done by Genderen and Nicolaescu [15] in their Imaging of Stepped
Frequency Continuous Wave GPR data using the Yule- Walker parametric method and
by Luo et al.[26] in their work on sidelobe suppression method based on adaptive pulse
compression (APC) for random stepped frequency radar. Random stepped frequency
radar chooses the transmitted frequeﬁcies randomly, which helps suppress range
ambiguities but with increased side lobe levels of random noise. In their work Luo et al.
have used APC to suppress these sidelobes. Mugqaibel et al. [27] have made use of
Hamming window to separate noise from signal due to target in frequency domain. Their
results show that noise has been suppressed in the range profile after Hamming window

has been applied in frequency domain.

Rappaport [5] has based his study on the effect of moisture on subsurface detection. His
studies have brought forth the fact that poor target/soil contrast makes detection of non-
metallic mines difficult. Greater soil moisture implies higher dielectric cdnstzint, which in
turn increases contrast and scattering of radar waves. But simultaneously this also
increases the contrast between the air and the soil, increasing clutter. And as signal

attenuates faster in moist soil, detection of target becomes tougher.

Langman and Inggs [4] have worked on 1-2 GHz SFCW radar for landmine detection and
have emphasized on the issues that need to be taken care of while processixig GPR data.
They have called for the need to accustom the GPR ‘system to changes in the dielectric

behaviour, roughness, moisture content and texture of the medium.

2.2. GPR Imaging

Range profile as generated by A-Scan doesn’t reliably give the exact location of
subsurface targets. And often low dielectric materials go unnoticed in a single scan. To
counter these imaging has to be to done. Various methods have been proposed by various
researchers from time to time. Morrow and Genderen [7] in their work on Effective

Imaging of Buried Dielectric Objects have proposed Synthetic Aperture Technique for
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imaging of materials having- poor target/soil contrast. They have used conventional
preprocessing measures employed in frequency domain to expose weak scatterers and -
enhance radar image. These methods include average background removal, analytic
window functions such as Blackman-Harris or complex cepstrum window of either
minimum or maximum phase. They have also relied on reflected signal strength to
calculate dielectric permittivity of the mate_riai and later on have used this to classify
targets. Ozdemir and Ling [8] have applied a Fourier based imaging algorithm based on
SAR concepts to image high permittivity (bottled water) and low permittivity (plastic)
dielectric objects. In their coherent imaging algorithm they have used many spatial points
to provide sufficient SNR to their 3D GPR images. Panzner et al. [9] have studied radar
signatures of complex buried objects in ground penetrating radar to produce SAR
focussed - radar scan of H-shaped, E-shaped and complex zigzag polystyrene objects.
They have passed the measured raw data through Gaussian Pulse Shaper followed by a
carrier remover. After this they have passed it through SAR processor and have taken

IFFT of the resultant data to produce those radar scans.

To counter internal noise in kGPR system Shrestha et al. [16] have made use of a
" combination of MUSIC (Mulﬁple Signal Classification) and FFT (Fast Fourier
Transform) to produce high resolution images. But this technique requires.high precision
in measured receiving signal level ratio and measuring device. The main (iisadvantage of
using MUSIC is that often reflections from low dielectric materials, which are only a bit

stronger than noise, may get confused with noise and hence may get eliminated.

For clutter removal and noise suppression various researchers have done tremendous
work. Zhao et al. [17] have applied Karhunen-Lo eve Transform (KLT) to improve the
signal—to-iloise ratio of the GPR data. For the GPR data set they have found its covariance
matrix and thén the eigenw;/alue matrix of this covariance matrix. Clutter due to air-soil
interface will be the most correlated element among traces and hence it will have
corresponding to it the eigen-vector corresponding to highest eigenvalue. Similarly, the
random noise is most uncorrelated from trace to trace and will be represeﬁted by lowest
eigenvalues. Intermediate eigenvalue are of our concern and eigenvectors corresponding

to them are used to generate B-Scan images. Liu and Leung [28] have used chaos
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modulation to suppress clutter. A chéotic waveform generated by using Chebyshev map
is multiplied by Gaussian pulse waveform and is transmitted. They have observed that
this improves the range resolution and solves the problem of clutter better. In a similar
fashion, Dobrotin and Leitas [29] have used inverse filtration. Using SVD for clutter
removal Verma et al. [24] have found in their work that SVD-clutter removal technique
works better when compared to ICA .or PCA to remove the clutter and detect the target
for UWB through wall imaging. The use of Independent Component Analysis for GPR
Signal Processing has been explored by Zhao et al.[30] Delac et al. [31] in their
Comparative Study of PCA, ICA and LDA have pointed out that ICA minimizes both
second-order and higher-ordef dependencies in the input data and attempts to find the
basis along which the data (when projected onto them) are statistically independent. They
have used FERET database and used various combinations of PCA, ICA and LDA for
face recognition. T ﬁey have found that ICA is a good choice to combat temporal changes
in data. Aapo Hyvirinen [32] in his Fast and Robust Fixed-Point Algorithms for
Independent Component Analysis haé given a fixed point algoﬁthm which is fast at

convergence making implementation of ICA computationally fast.

For imaging back projection has been used widely. It is based on the simple fact that
range profile generated after an A-Scan doesn’t show only those targets which lie along
the perpendicular drawn from the ground surface and passing through the antenna. That
range profile has reflections due to all the targets that are covered by the swath of the
antenna, Cui et al. [33] have used back projection algorithm to SFCW through wall
'imaging by analyzing the time-domain back-projection algorithm and the stepped
frequency imaging. Morrow and Gehderen [7] have also used UWB synthetic aperture
technique (SAT) that employs selective frequency space filtering and then back
projection in their Effective Imaging of Buried Dielectric Objects. Zhou and Su [34]
have proposed an algorithm called Multiply Back Projection (MBP) which is similar. to
' the conventional back projection with the addition of pairing multiplication procedure.
They have claimed that their algorithm suppresses artifacts in the imaging results, though
at the cost of more number of computations involved. Lei et al. [35] have come with

TAM-BP algorithm for GPR application. In this algorithm they have accounted for time
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delay occurring due to the dielectric constant of soil to improve the image quality.

However, computational complexity remains with their method as well.

To counter discontinuities in B-Scan images methods like cbiumn filtering and
interpolation have been used. Zhang [36] has discussed column filtering approach in his
paper on optimizing building detection In satellite images using texture filtering.
Interpolatioﬁ is another image processing technique to smoothen the image. Various -
interpolation techniques have been discussed by Teoh et al. in their paper [37]. To
remove random noise in the GPR images thresholding has been applied by Chandra {23]
in his dissertation work on study of through wall imaging in UWB réinge for target
detection. Out of Otsu thresholding and mean deviation based thresholding he has

preferred mean deviation based thresholding for its computational efficiency.

2.3. GPR Target Detection

A great volume of work has been done to detect targets in the images so obtained afier
GPR imaging. Yigit et al. [38] have presented an overview on the imaging aspects of
GPR. Using standard C-Scan they have detected the presence of multiple targets buried in
a sand pit‘. And then by using o-k SAR focusing technique they have bettered the image
so obtained. Similarly they have also detected the water leakage from a pipe as leakage
increases ' the conductivity of the sand and EM wave could not penetrate into this
saturated region due to high conductivity of the mud. Liu et al. [39] have applied
Hyperbola Fitting after various pre-processing techniques like elimination of ground-
surface echo, normalization, background subtraction, edge-detection using Sobel operator
and hyperbola edge thinning to detect the presence of multiple targets. In a similar
fashion Pasolli et al. [40] have applied unsupervised Genetic Algorithm (GA) to detect
the presence of multiple targets by ﬁnding hyperbolas in edge-detected binary GPR
image. They have fteratively called GA to search best hyperbola in the binary image till
all the objects have been found. In the genetic optimizer, each chromosome models the
apex position and the curvature associated with the candidate pattern, while the fitness
function expresses the Hamming Distance between the pattern and the binary image

content. Having detected all the targets they have used Support Vector Machine classifier
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to identify those targets based on the dielectric behaviour of the object. They have also

estimated the size of the targets using Gaussian process regression approach.

Statistical measures of noise and targets have also been used for target detection in
Through Wall Imaging by Debes et al. [41] They have found a general probability
density function of target and that of noise by observing pixel values corresﬁonding to
target and noise in B-Scan image' generated for different heights of scan. Hypothesis

testing has then been used for unsupervised target detection.

Al-Nuaimy et al. [42] have made use of neural networks and pattern classification for
automatic detection of buried utilities and solid objects with GPR. The use of neural
networks for pattern classification gives them a high resolution image of the shallow
subsurface in a highly reduced computational time. The neural network in their work
makes use of the spectral features of the data to identify areas in the radargram containing
useful reflections. Thereafter they have applied the Hough Transform as a pattern
recognition technique to locate and identify the hyperbolic anomalies associated with
buried targets. Thus, they have successfully generated high resolution images suitable for

precise location and mapping of subsurface utilities and ordnance.

2.4. GPR Target Classification

The most challenging aspect in GPR is to classify the targets that have been detected.
Ability to classify targets reduces false alarms in real time environment. Ho et al. [43]
have used spectral characteristics from GPR data to discriminate between landmine and
clutter. They have exploited the fact that landmine targets and clutter ij ects often have
different shapes and/or composition, yielding different energy density spectrum (EDS)
that may be exploited for their discrimination. They have calculated the metric
correlation coefficient of the frequency domain spectra for GPR data and based on the
value so obtained have distinguished landmine from target. Gader et al. [44] have made
use of depth wise whitening to extract features of landmines and clutters to differentiate
- them. They have computed a single depth wise Constant False Alarm Rate (CFAR) for

anomaly detection on the depth dependent adaptively whitened data.
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For target classification Daniels et al. [45] have relied on RMS errors of the difference of
normalized autocorrelation coefficients and nqrmalized FFT between reference targets
and test targets. They have postulated that a better wéy for claséiﬁcation would be
multiplication of the tWol RMS errors. They hﬁve also made use of Pearsoﬁ’s Correlation
Coefficient for target. classification. Using these they have diﬁ‘efer;tiated several
prototypes of landmines from coke can, bottle and pipe. Also, théy have discoufaged the
use of correlation vectors such as ‘variance, skewness and kurtosis of autocorrelation

functions of the targets for their discrimination as these didn’t yield better results.

~ Santos et al.[46] have made use of neural networks for pattern classification of metallic
and non-metallic targets using GPR reflections in a test site in Brazil. For the test targets
they extracted three parameters. First was the normalized arithmetic mean of the
maximum amplitude from range profiles obtained after A-Scans. The second feature was
its respective normalized standard deviation and the third feature was the depth of the
target in order to account for the amplitude variation due to depth. They have trained a
three layer neural network for pattern classification to classify targets into metallic and

non-metallic targets.

Time frequency signatures have also been."used for target classification by various
researchers. Strifors et al. [47] have used fuzzy-cluster representation of time frequency
signatures as a means for automatic classification of buried mine-like targ'ets. They have
used pseudo-Wigner distribution to extract time-frequency domain target signatures and
later on have used fuzzy method to classify the targets. In a similar fashion Sun and Li
[48] have also used time-frequency analysis for plastic landmine detection. They have
compared Wigner-Ville distribution (WVD) and Choi-Williams distribution (CWD)
methods of producing time-frequency signatures of the targets and as WVD suffers from
cross-term interference problem they have gone for CWD. Later on they have used
Principal Component Analysis for signafure classification. In addition to the satisfactory
results which they appeal to have arrived ‘at, they also maintain that time-frequency
pattern 1s highly non-stationary for clutters as well as landmines making the

implementation of conventional detection designs very difficult.
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In an attempt to classify targets, Sugak and Sugak [49] have studied the phase structure of
- signals with respect to GPR measurement and its sensitivity to the change of electrical
properties of soil. They are hopeful that their study can be used for determination of
physical properties of soil and of targets and hence targets can be classified using this |
phase information. They have used Chebyshev windowing DFT instead of the
conventional method to find IDFT which gives them more informative phase.speétrum

estimation.

Based on the reflected signél strength of various targets Jain [22] has distinguished three
targets — a metal sheet, a water bottle and an air cavity in sandy soil and controlled
laboratory environment in his dissertation work. He has used contextual masking and
successive identification of targets to classify these targets. This was preceded by his
rigorous study of normalized reflected signal sirength of these targets at different depths
under different moisture conditions of sand. By contextual masking he could get the

normalized reflected signal strength of the next target and could identify it.
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Chapter 3. METHODOLOGY

‘The aim of this work was to detect and classify subsurface targets in real time. To
achieve these four things were essential - '
e to assemble an experimental setup which is capable of data acquisition and data
processing in real timeT
e to set parameters of this experimental setup so that target features can be extracted
for different burial depths of targets and for different moisture levels of soil.
e todecide how data is to be collected so that useful information can be extracted.
e to choose data processing algorithms which can be useful to extract information

out of GPR data so that targets can be detected and classified.

This chapter deals with the same aspects of conducting the experiments. Section 3.1 gives:
the details of experimental setup and system parameters. Section 3.2 enunciates data
collection methodology and section 3.3 gives an account of data processing algorithms

used for target detection and classification.

3.1. Experimental Setup

With the knowledge of SFCW radar and latest researches that have been done in GPR,
which have been dealt with in Chapter 1 and Chapter 2 respectively, experimental setup
was des_igned to take GPR readings.

Choosing 'system parameters was based on conditions in which experiment was catried
out. The very first step was choosing the frequency range of operation. As it has been
d.is;:ussed before that M/W signals at higher frequencies though offer better resolution,
attenuate faster. The antenna that was used for carrying out the work wasllightv'veight
double ridged ultrawideband horn antenna. The antenna used (R&S HF-906) works in the
range of 1 GHz to 18 GHz. The VNA available (R&S FSH 4) works in the range of 100
kHz to 3.6 GHz. Hence, keeping these in mind, the lower limit of frequency of operation
was set as 1 GHz and the upper limit was set as 3 GHz. This 2 GHz of bandwidth offered

a range resolution of 7.5 cm. No. of scanning points in this frequency range was set as
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601. Also, to get maximum penetration depth, the tracking generator attenuation of the

VNA was set at 0 dB and hence, the transmitted power by VNA was | mW.

An indigenous system was designed to collect and process GPR readings in real time.
Following sections explain the experimental set up and data collection methodology used

to carry out this research work.

3.1.1. Experimental Arrangement

To enable real time processing of data, a vector network analyzer (R&S FSH 4) was
connected to a PC using LAN. This offered real time target detection and identification.
NI VISA 4.5 and VXI Plug'n'Play, provided by Rohde and Schwarz were used to
connect the laptop with FSH4. The development environment was MATLAB 2009b
provided by MATHWORKS. The Vector Network Analyzer gave reflection values at
different frequency steps between the chosen range of frequency of operation through a
double ridged ultrawideband horn antenna (R&S HF-906). Section 3.1.3 and section
3.1.4 explain the details of the VNA and the antenna. Schematic of the experimental
setup and an image of actual connection have been shown in the Figure 3.1. Experimental

parameters have been summarized in Table 3.1.

Penpheral Device (Laptop)
Connected with VN A for Real Time

Data Processing

g I
Vector Network Analyzer (VNA) ( Coatial Cable >

Antenna

Ground With Target Buried Inside

Figure 3.1: (a) Block diagram from data collection set up, (b) Actual image of data collection set up
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Table 3.1: System parameters for conducting experiments

Antenna Double-ridged waveguide type (HF 906)
Vector Network Analyzer R&S FSH4

VNA Power 1 mW (at tracking generator attenuation=0 dB)
Cable Loss (for 2 m length) 1-1.5 dB

Frequency Range for Operation 1 GHz to 3 GHz

Af, 3.33 MHz

No. of frequency points 601

Range resolution 7.5 cm

Unambiguous range 45 m

Investigated range I m

3.1.2. Targets and Soil Conditions

Three targets- an air cavity, a metal sheet and a water bottle- were taken as targets for
carrying out the experiments and were buried at different depths under different moisture
conditions. The targets were buried in soil having lots of clutters in the form of gravels at
different depths and under various moisture level of the soil. Several B-Scans each
consisting of 30 A-Scans were done to detect their presence in the soil and later on to
classify them. As it has been discussed earlier that the detectability of a subsurface
feature depends upon the contrast in electrical and magnetic properties, and its geometric
relationship with the antenna, the values of S11 depend on the difference of dielectric
constant of the medium and the target. The images of the targets have been shown in

Figure 3.2 and their properties have been summarized in Table 3.2.

{a) A Metal Sheet {b) An Air Cavity ) (c)A Water Bottle

Figure 3.2: Targets taken for carrying out experiments
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Table 3.2: Properties of targets used for experiments

Target Type Target Size Dielectric Constant
Air Cavity 30 cm by 18 cm by 18 cm 1

Metal Sheet 25 cm by 25 cm 00

Water Bottle 30 cm, diameter 10 cm 80

An area of 2 meters by 1.5 meters was cleared and targets were buried in it at several
depths under different moisture conditions. Moisture content of the soil was increased by
adding water in a controlled fashion to study the effect of moisture on GPR signals
received. Figure 3.3 shows the picture of the ground cleared to conduct experiments. The
antenna was mounted on a moving device so that it can slide in transverse direction

above ground. The transmitted signal is stepped from 1 GHz to 3 GHz in 601 steps.

Figure 3.3: Ground area cleared to conduct experimetnts

To measure the dielectric constant of the soil at different moisture levels volumetric soil
moisture 1.e. the ratio of volume of water in soil sample to volume of soil has to be
calculated. To measure this, soil samples were taken and weighed accurately on an
electronic weighing machine. After noting down their weight they were heated in an oven
for around 12 hours at around 80°C after which the samples were weighed again on the
electronic weighing machine. This gave the weight lost due to heating and hence, the
weight of water in the soil sample taken. Percentage of water by weight in the soil
samples when multiplied by 1.6 gave volumetric measure of soil moisture m,,.

Following equation gives the method to calculate volumetric soil moisture.
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Whefore_heating — Waf ter_heatin,g)

m, = 1.6( 3.1

Whefore_heating

The effect of moisture on the real part of dielectric constant of soil can be computed as

following [50]:
& = 3.03 + 9.3m,, + 146m2 — 76.7m3 ' (G.2)

At different volumeiric measures of soil moisture the dielectric constants of the soil as

obtained have been summarized in the Table 3.3.

Table 3.3: Dielectric constant of sdil ai different volumetric measures of soil moisture

Moisture Conlelflct’t(I)'lfcthe Depths of insertion of air cavity, metal sheet
Content . ‘s goil and water bottle in the soil surface

7.5 % 4.52 10cm, 15 cm, 20 cm

15.5% 7.70 10 cm, 15 cm, 20 cm

20.5% 1041 - 10cm, 15¢cm, 20 cm

3.1.3. Vector Network Analyzer (VNA)

A Vector Network Analyzer is used to measure the S-parameters which are the
transmission and reflection coefficients for the device under test. These S-parameters
‘contain both amplitude and phase information about the device under test. In SFCW
monostatic GPR mode S11 values at different frequency steps in given bandwidth are
observed. The reflection coefficient (S11) is the ratio of the reflected signal voltage level

to the incident signal voltage level.

The vector network analyzer used for carrying out this dissertation work is Rhode and
Schwarz VNA (R&S FSH 4 (100 kHz to 3__6 GHz)). The analyzer transipits a stimulus
signal to the input port of the device under test (DUT) and measures the reflected wave.
For this dissertation work VNA was used to generate frequencies in the range of 1 GHz
to 3 GHz. This SFCW wave was divided in 601 points. VNA specifications have been

summarized in Table 3 .4.
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Table 3.4: VNA Specifications [S1]

Data Points ' 601
Output Port Power nominal 1 mW (at tracking generator attenuation=0) to —40
Result Formats Magnitude (dB), phase, magnitude (dB) + phase
Connector N-Female, 50 O '
Calibration Standard R&S®FSH-Z28 Combined Open/Short/50 Q Load
Operating Bandwidth 1 GHzto3 GHz

3.1.4. Antenna

The antenna used in this works was Rohde and -Schwarz HF 906 double ridged
waveguide horn antenna HF 906 with linear polarization, which is a broadband compact
transmitting and receiving antenna for the frequency range 1GHz to 18 GHz. The RF
connector is N Female and the nominal impedance is 50 Q. The gain of the antenna is 8
to 10 dbi for 1 to 3 GHz operating range of frequency. For this fréquency range half
power beamwidths in E-plane and H-plane are 80° and 100" respectively for the
antenna. Antenna specifications have been summarized in Table 3.5. VSWR of antenna

for frequency range 1 GHz to 3 GHz is given in Figure 3.4.

Table 3.5: Antenna Specifications [52]

Frequency range 1 GHz to 18 GHz
polarization Linear

RF connector _ N female
Nominal impedance 50 02

Gain (for 1 GHz to 3 GHz) ' 8 dBi to 10 dBi
VSWR (for 1 GHz to 3GHz) <25
HPBW at 1 GHz in E-Plane 80"
HPBW at | GHz in H-Place 100°

Max. RF input power 300 W CW, 500 W PEAK
Max . height 160 mm |
Max . width 250 mm
Max . length ' 290 mm
Weight ' 1.5kg
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VEWR of RnS Antenna

a 100 200 300 an 500 600
ndices comesponding to frequencies between | GHz to 3 GHz

(a) R&S HF 906,Double Ridged Horm (b) VSWR of HF-906 between | GHz to 3 GHz
Antenna

Figure 3.4: HF 906 double ridged horn antenna and it s VSWR from 1 GHz to 3 GHz

The swath, A at the investigated depth d from the antenna is given by:
A= mab (3.9)

Where a is semi-major axis and b is the semi-minor axis of the ellipse. The values of a

and b are calculated by equations given below:

a=d tan—

2 (3.4)
g,
b=d tan— (3.5)
2
Therefore,
7] 6 .
A= nd? tan-—za—tan?b (3.6)

As 6, = 80" and 8, = 100" for HF906 antenna, at investigated depths as measured from
antenna flare swath area are 1963.49 cm? for d=25 cm, 2827.43 c¢m? for d = 30 ¢cm and

3848.45 cm? for d=35 cm.
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3.2.Data Collection

3.2.1. VNA Calibration

Calibration is the process of eliminating systematic, reproducible errors from the
measurement results. Calibration plays an important role in determining the accuracy of -

the measurement system. The processA involves the following stages:

1. A set of calibration standards is selected and measured-over the required sweep

range.

2. The analyzer compares the measurement data of the standards with their known,
ideal response. The difference is used to calculate the system errors using a
particular error model (calibration type) and derive a set of system error

correction data.

3. The system error- correction data is used to correct the measurement results of a

DUT that is measured instead of the standards.

Since, we have to use S11 parameter'oniy; full one port calibration of FSH4 was carried
out by R&S®FSH-Z28 Combined Open/Short/50 Q Load kit. The three standard

measurements are used to derive all three reflection error terms:

‘o The short and open standards are used to derive the source match and the

reflection tracking error terms.
¢ The match standard is used to derive the directivity error.

The port 1 of the VNA was calibrated for S11 parameter from start frequency 1GHz to
stop frequency 3 GHz. The number of scannin‘g points taken in the frequency range of
operation was set as 601. The calibrated range profile of the VNA with no DUT

connected at the end has been shown in Figure 3.5. -
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Range profile

[ =4 —Range Profile of VNA Calibrated & the End of Cable

1 3

15 2 25
Downrange in metres

(a) VNA being calibrated for | GHz to 3 GHz (b) Calibrated range profile of VNA with no DUT connected

Figure 3.5: VNA Calibration and range profile of calibrated VNA with no DUT attached

3.2.2. Time Gating

Now, VNA has been calibrated till the end of the cable. When antenna is connected at the
end of the cable as DUT, reflections are there as signal enters antenna from the cable and
then as signal propagates from antenna to the air. As all the distances can be conveniently
measured from the antenna flare, we apply time gating to shift the zero of the distance at
the antenna flare and ignore the reflections at cable-antenna interface and antenna-air
interface [53]. An aluminum metal sheet is placed just at the flare of the antenna. No
signal will pass through the metal sheet and we will get a sharp reflection at the point
where the flare ends. This distance will be subtracted from the distances that we get
henceforth. It is found that this distance is 30 cm. Time gating method has been shown in

Figure 3.6.

Signal amplttude

o 05 1 15 ]

Dowrvange n metras

(a) Mecthod for time gating (b) Range profile with aluminium sheet at antenna flare

Figure 3.6: Time gating and range profile with aluminum sheet at antenna flare
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3.2.3. A-Scan

A-Scan is one dimensional trace and gives range profile at a particular depth. Antenna is
placed at any point of interest and signal is collected. As the received data is in frequency
domain, IFFT is taken to get signal strength versus time delay. This mformation is
mapped on distance indexes. In the plot so obtained peaks are looked for to locate a
probable presence of target [22], [23]. A flowchart for A-Scan algorithm is given in
Figure 3.7.

Set transmission parameters (e.g. frequency
range of operation) and Calibrate VNA

Y.
Collect and store mean S11__1 for ground in
frequency domain

A
Collect S11_2 for target in frequency
-domain

Calculate S11_net=S11_2-S11_1

Convert S11_net in spatial domain using
IFFT and d=c*t/2, t=(i-1)/BW

Plot the Range Profile

Figure 3.7: Flowchart for A-Scan algorithm

The detailed algorithm can be explained as follows:

. 1. We decide for the range of frequency for which observation is to be taken. A
compromise has to be made as higher frequencies offer better resolution but
attenuate faster. Also range resolution gets fine as operating bandwidth is
increased. For the selected range the VNA is calibrated. If we change the range of

frequency, VNA has to be calibrated again.
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S11 is collected for fhe ground in frequency domain when no target is present.
This contains information about the range profile of the sand. As in practical
cases it is not feasible to take ground reading at the same location at which target
is being investi’gated, an aésumptioﬁ is made. Several S11 readings are taken at
various locations where we know that no target is there and its mean is taken as
S11 for ground. Let this S11 be represented as S11;.

S11 is taken at the investigated location in frequency domain. Let this S11 be
representéd as S11,. |

We calculate S11,, = S11, —S11,. .This implies that the background
inforination about the ground has been remove_d and now S11,,.; has information
pertaining to the target only.

This frequency domain data is in 601 points. A time matrix. is defined with same
number of points to convert this frequency data into time data.

The IFFT is applied on this frequency domain data of 601 points. Inverse Fourier

‘Time Domain data can be represented as:
4 N ‘
s@ = ) SUnexp (2nfu) )
n=1 ;

Where N is the maximum number of data points that is set as 601 here. S(f;,) is

* frequency. ‘n’ varies from

. the received reflected signal in frequency domain at #
1 to 601. And s(t)is the received reflected signal in time domain. ‘z’ varies from 0
to (N — 1)/BW with step interval of 1/BW.. In this case BW=2 GHz.

This time domain data is mapped in spatial domain to get range profile. This

mapping is done by setting:

z=ct/2 , (3.8)
where, z is the distahce aldng the range profile.
By plotting the time matrix data obtained after the IFFT against the distance z,
location of the buried object can be located by observing the peaks in the range

profile.
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3.2.4. B-Scan

Stacking A-Scans along a dimension of the soil pit results in the formation of B-Scan. A
B-Scan gives us a 2-D image which tells us about the depth at which the target is located
and the extent of the target in azimuth direction, 1.e. along the direction in which scanning

has been done. Concept of B-Scan is explained by Figure 3.8.

A

0

g —

c 112] 314]15]-- 1130

3

o]

o
Data Collected along a
particular direction at 30
points

Cross range

Figure 3.8: B-Scan as stacking of several A-Scans

B-Scan can be uniform as well as non-uniform. In uniform B-Scan, spacing between
successive B-Scans is always the same, however, in non-uniform B-Scan it is not so. In
this work a regular spacing could not have been maintained and hence non-uniform
scanning has been done. For this work, targets were buried at different depths under
different moisture conditions in a straight line. Several B-Scans of 30 A-Scans were done
to detect and classify the targets [22], [23]. A flowchart for B-Scan algorithm is given in
Figure 3.9.
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Set transmission parameters (e.g. frequency
range of operation) and Calibrate VNA.

Set N=no. of readings required for B-Scan,
and i=1

A
Collect and store S11_1 for ground in
frequency domain, i++

y

Convert S11_net in spatial domain using
IFFT and d=c*t/2, t=(i-1)/BW

Generate B-Scan

Figure 3.9: Flowchart for implementation of B-Scan algorithm

Usually a B-Scan image is visualized with _thé scanning direction (distance) horizontally,
and the time vertically. B-Scén image can be represented by equation (3.9) in which
signal intensity is varying with the distances.

N-1

I(x,z) = s(x,2z) = Z S(fa)exp (j2rf,(2z/c)) o 3.9

n=0

Where, x is the antenna scanning posiiion and z is the downrange locatioﬁs for all the

antenna positions.
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. 3.3. Data Processing Algorifhm’s for GPR

Previous section discussed how data was taken. Now the task at hand is to process this
data so that meaningful conclusions can be drawn. This section deals with various data
processing algorithms which have been applied on the GPR data to arrive at the results.
Selection of these methods have been based on the brief review of previous'works_done
be various researchers in this field. The flowchart given in Figure 3.10 shows various

~ data processing algorithms used for target detection and classification.

Preprocessing Techniques
¢ Hamming Window Filtering
* Median Filtering
e JCA Clutter Removal Technique

Post processing Techniques
e Back projection Algorithm
e Column Filtering
® Thresholding

- Techniques for Target Detection
e Application of Hough Transform on
back projected image

Techniques for Target Classification
e EDS after whole set of B-Scan has been
done
e Contextual masking at the end of each
B-Scan

Figure 3.10: Flowchart showing data processing algorithms used at each step in target detection and

classification

3.3.1. Preprocessing Techniques

Filtering- The noise and signal in frequency domain can be separated by Hamming

Window Filtering or Median Filtering.

Hamming window [27] is a digital manipulation of the sampled signal in an FFT analyzer

which forces the beginning and ending samples of the time record to zero amplitude. This
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filtering rolls of the abrupt transition in frequency domain which in time domain means
lower side lobes. For an ‘N’ length sample the coefficients of a Hamming window are

computed from the equation (3.10):
2mn
w(n) = 0.54 — 0.46 cos (—N—), 0<n<N (3.10)

Median filtering [54] is another technique that is widely used to remove abrupt internal
noise in usually a time series signal. It is a nonlinear technique that applies a sliding
~ window fo a sequence. With median filtering, the center value in a window is determined
by the median of the neighborhood values. Unlike averaging which compensates a
sudden random noise in a group of samples by replacing each value in the window by‘ the
mean of .the signal values in that window, median filtering attempts to eliminate the

random noise completely.

ICA Clutter Removal Technique for B-Scan Images - When readings are taken in soil,
reflections from clutters sometimes overshadow reflections from targets. Hence we don’t
need only removal _of clutter; we need information about all the signal sources that make
the final signal. From section 2.2 in the Chapter on brief review it was observed that
Independenf Component Analysis (ICA) [30]-{32] divides data into statistically
independent components which gives 1t advantage over other clutter removal techniques
like Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). .
SVD or PCA represent data into uncorrelated components. Independent Component
Analysis (ICA) minimizes both second-order and higher-order dependencies in the input -
data and attempts to find the basis along which the data (when projected onto them) are
statistically independent. It is.because of this property that ICA is widely used in many

applications such as feature extraction and noise reduction from the images.

ICA assumes that the observed data X has been generated from source data S through a
linear process X = AS, where both the sources S and the mixing matrix 4 are unknown.
ICA is able to estimate both the sources S and the mixing matrix 4 from the observed

data X with very few assumptions which are:
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a) Sources are independent and linearly mixed using a stationary and instantaneous
mixing.
b) There are at least as many mixtures present as the no. of sources and most sources

have Gaussian distribution.

Consider a B-Scan data which can be represented by a rectangular matrix Xj, whose
dimension is M X K, (i=1,2,....M; k=1,2,.....K). Here ‘i’ denote the distance index and k£
denotes the antenna position index. ICA assumes that every x; is a linear combination of

each s; as follows:

X =Zaijsj (31[)

=1 |
Jj=12,3,...., N (N=no. of independent components to be calculated). In matrix notation

X=4S (3.12)
Here A 1s an M x N basis transformation or mixing matrix, and S is the matrix holding
the N independent source signals in rows of K samples. ICA of matrix X can be found by
finding a full rank N x M separating matrix # such that output signal Matrix can be
defined by Y=W.X and contain the components as independent as poséible measured by an
information theoretic cost function. The estimation of source signal can be done using

equation (3.13) [32]
M . . .
500 = > wik(k) (3.13)
=1

j=1,2,3,....,N (independent components). In the matrix notation
S=wx (3.14)

ICA looks for a linear transformation W to maximize the “non-Gaussianity” of s; so that
the transformed variables §; are independent and the distribution functions for s; is least

Gaussian. How ICA works has been summarized in the flowchart given in Figure 3.11.

The function g(x) is given as:

91(x) = tanh(a,y) (315
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y? |
gz(y)=yeXP(—7) ' (3.16)

Center and whiten the data to get z
from x

A
Choose m, no. of independent
components required, set p=1

v

Choose a random initial value of unit |
norm for w,

A

< g~ Flg ]I, o

p-1
T
W, W, —-Z;(wpwj)wj
J=

p=p+1

Yes
R 4

Terminate

Figure 3.11: Flowchart for implementation of ICA method of clutter removal from GPR images
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3.3.2. Post-processing Techniques

Back projection [33]-[35]- Back projection imaging algorithm is widely used in GPR
imaging for image generation because of the high quality image it generates. A range
profile generated by an A-Scan gives the signal strength as a function of time. In a raw B-
Scan we consider that the reflected signal value is due to reflection from objects directly
below the antenna. However, this is not true. It may be because of any object that falls in
the swath of the antenna. The signal received at a given time can be from any of the pixel
locations where total flight time is equal to this specific time bin. The total flight time is

time to travel from transmitting antenna to the pixel and then back to receiver.

Figure 3.12 shows examples of pixel location where the reflected signal can come from
(for a set of) collocated transmitting and receiving antenna elements. The back projection
technique consists of recording the amplitude of each time bin on a spatial grid based on
total flight time. After that all the recorded amplitudes from each channel are added
together on the spatial grid. At the target locations the signal amplitude will add up

coherently.

ADD ALL R=x
AMPLITUDE

Figure 3.12: Image showing back projection algorithm [55]

The back projection algorithm can be implemented as follows:

1. Divide the whole region into small pixels.
2. For each pixel calculate the total flight time from transmitter to pixel and pixel to

a receiver.
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3. Record the corresponding received time bin amplitude for each pixel from the
corresponding range profile means take the value of signal amplitude from the
range profile and put it in that spatial grid.

4. Repeat step 2 and 3 for all receiver elements.

5. Sum the recorded amplitudes on tﬁe spatial grnid.

The detailed back-projection algorithm applied for different moisture conditions of the
soil has been given in Figure 3.13.

Initial parameters:
e Average antenna flare- soil surface distance = 10 cm
¢ Dielectric constant (Er_Soil) of the soil is calculated for the
volumetric measure of soil moisture
* Velocity of EM waves in free space, ¢= 3*10"10 cm/se

I '

Create a grid of dimension 256 x 256

v

Calculate the distance between each image pixel and antenna for each
. antenna location

R, (u) =¥+, —x,)°

Calculate time of flight for each image pixel for each antenna location

tjme — M % /g oil

c

Convert antenna flare-soil distance into equivalent soil distance and find
corrected distance :

] CorreCfed_ dl-Sf: hanrenna soil( - 1)
V soil

y
Calculate actual distance between antenna and image pixel
: timexc
d

actual —
2 V gsail

+ corrected _ dist

Map indexes for these distances from clutter removed image to fill the
back projected image grid

Figure 3.13: Algorithm for forming back-projected image under various volumetric moisture levels
of soil
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Mathematically in free space the back projected signal at pixel (x;, y;) in the _image plane

is given by
I(xy,y:) = Z s[t;(n), n] | (3.17)
Where,
ti=T; +Ri(n))/c (3.18)
T; = V(i — %)% + i — yr)? , (3.19)
Ri(n) = v (x; — % (m))? + (0 — yr(n))? - B20

Where, c is the speed of light in free space, ¢ in second, x, y, 7 and R in meter. t;(n) is
the total time for the transmitted signal to travel. In monostatic mode as transmitter and

receiver is the same,
ti = Z(Rl(n))/c ) (321)

Column Filtering [36]- We have discﬁssed it earlier that the swath that antenna covers at
various depths is proportional to square of depth. In image terms it means that antenna
covers more number of pixels in a single'scan as depth of the targets is increased. As -
there is interference of the other grid points in that particular pixel’s value, filtering needs
to be applied to remove the impact of the overlapping data. Out of column filtering, block
processing and sliding Aneighbourh'oo.d operation methods of filtering, column filtering’
has been preferred. Block processing doesn’t address overlapping efficiently and sliding
neighbourhood is more complex when compared to column filtering. It is observed that
neigbouring values in a raw image show sharp discontinuities. To remove these columnA
filtering is done, which makes the transition from one pixel to another smooth and

continuous. Filtering is done as shown here:

-

Alx',y") =mean(A((x — Lix + 2),(y — L:y + 2))) (3.22) |

Where A(x,y) is the original pixel where filtering has to be done and A(x’',y’) is the
pixel after filtering has been applied. The colfilt function in MATLAB has been used to

A}

apply column filtering on B-Scan images after ICA.
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Threshelding [23]- The image so generated after Backprojection may have some pixels
which make the image look cluttered. Therefore, thresholding is applied to this image.
The threé’holding point is a function of mean and variance of the image data. A threshold
values is set and image pixels having values less than the threshold are considered to be
due to background and those having values higher than the threshold are taken to be due
to foreground. A proper tradeoff is required in setting this threshold value. If threshold
value is too small, inclusion of noise leads to clutter effects and if it is tob high important

information such as reflections due to low dielectric material get excluded.
There are primarily two types of thresholding:

1. Otsu Thresholding: It is based on probability and histogram method. Image is
divided into two segments- foreground and background. An initial threshold is
considered and by using this threshold the probabilities of the particular being
in the foreground or background is considered.

2. Mean Deyviation bésed thresholding — The function used for fhresholciing is
the sum of mean and standard deviation multiplied by a weight. This method
has been preferred over Otsu as its performance is similar to it but complexity

and data processing time is less.

p= %ZZ xij a3
(2.4
g = Jz Z(xij — u)? , ' (3.24)

J
Threshold = o + ku (3.25)
Where, p = mean of image pixels, = standard deviation of the image pixels, k is the

weight of standard deviation used in the computation.

3.3.3. Image Detection Using Hough Transform

A backprojected image gives us hyperbolas corresponding to targets. The apexes of these
hyperbolas give us the location of targets. Because of the different reflected strengths of
different materials, the hyperbola because of low dielectric material may not be a

prominent one. If most important hyperbolas can be extracted out the image our target is

43



detected irrespective of its dielectric constant. Hough transform has been used in past to

_address this problem [39], [40], [42]. Basic principle of Hough Tansform [56] is this:

If we want to find a particular shape in usually a binary image, we find all possible
parameters that define the shape. And then we extract a subset of parameters which

satisfy most number of points in the image.-

It is proven that back projection gives hyperbolas in the image. After thresholding sobel
operator is applied to get a binary image. Sobel operator is a discrete differential operator

constituted of two templates as shown below:

Suppose the resultant GPR image from previdus steps be g(x, y). The gradient image G(x,
y) of g(x, y) can be obtained by using the Sobel edge operator as followings [39]:

G(x,y) = /G,% + GZ (3.26)

Where Gyand G,, are respectively [39],

Gx=[glx-1Ly+1)—gkx-1y—-1)] |
+2[g(x,y +1) —g(x,y — 1)] - (3.27)
+[gx+1L,y+1) —gx+1,y—1)]
Gy=[glx+Ly—-1)—gx—1y—1)] ,
+2[glx+1,y) —g(x—1,y—1)] (3.28)
+[gx+1,y+1) —gx— Ly —1)]
Now, the hyperbolas in the back projected image are north-south hyperbolas and only the

South portion of them can be seen in the image. A north-south hyperbola is given by:

@-¥)  x-x) (3.29)

b? a?
Some valid assumptions can be made here. As the back projected image is a matrix of
dimension 256 X 256 , for the hyperbola, y, = 256, which is the highest row-value of
- back projected image matrix generated in this work. ‘4’ can be found directly from the
binary image. So, we find all the positive possible values of ‘@’ for non-zero pixels (x, y)‘

from the binary image by equation (3.30).
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(x B xo)z

— 256
-1

a= (3.30)

Where, 1 < x, < 256, and a can take only positive values. Following flowchart (Figure

3.13) explains how target detection is done using Hough Transformation.

As this work was carried out with three targets viz. an air cavity, a metal sheet and a
water bottle, number of peaks that was to be searched in the Hough Transform matrix

was set as 3 (three).

Create a 2-D 'parameter matrix or accumulator matrix for
all the possible values of (x,a)

A
Look for all the non-zero points in the binary image file
and sort ‘y’ values , i.e. row number in descending order
of their value

y..
Subtract the highest ‘y’ value from 256 to get the value of
‘b’ for the hyperbola equation

For a particular non-zero image pixel of the binary image,
find all possible values of parameters (x,a) of the
hyperbola that satisfy that non-zero point and increment
that particular cell by 1in the accumulator matrix.

Find the Hough Transform cell containing the highest -
value and record its location

y
Suppress (set to zero) Hough transform cells in the
immediate neighbourhood of the maximum found in the
previous step.

Repeat until the desired mimber of peaks has been found.

Figure 3.14: Flowchart for implementation of Hough Transform
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3.3.4. Target Classification

Use of Neural Networks and Correlation Coefficient for Target Classification Using
EDS- The GPR signal from various targets can act as their signatures in the sense that the
GPR signal depends upon the target’s size, shape, composition as well as its burial depth
and orientation. The signal received in frequency domain at a particular location is the
composite of signal due to target and signal due to clutters. If we are able to remove
clutter, we will have signal only because of target. This information can be used to
classify different targets as they vary in their composition and dielectric properties. It is
in this view that Energy Density Spectrum has been generated for various scan points and
neural networks has been used for pattern classification to identify given tafgets. As Ho
et al. [43] have put in their paper that frequency domain signatures have more
consistency in the region between 1 GHz to slightly above 2 GHz, the energy density
spectrum was split in 4 frequency bands viz. 1-1.5 GHz, 1.5-2 GHz, 2-2.5 GHz and 2.5-3
GHz. Consistency of signatures of similar targets in first three bands was investigated and

used to classify the targets.

Though, the éignals can be classified by Pearson’s Correlation Coefficient between the
spectra of different targets in the 4 frequency bands also, Neural Networks turned out to
be more trustworthy for target classification. Probabilistic Neural Networks [42], [46] has
been widely used for pattern classification by different researchers. First, the network i1s
trained by spectra of different targets under different moisture conditions and_for different
burial depth. It was followed by. feeding test spectra to the network for their
classification. In probabilistic neural networks when an input is presented, the first layer
computes distances from the input vector to the training input vectors and produces a
vector whose elements indicate how close the input is to a training input. The second
layer sums these contributions for each class of inputs to produce as its net output a
vector of probabilities. Finally a transfer function on the output of the second layer picks
the maximum of these probabilities, and produces a 1 for that class and a 0 for the other
classes. Flowchart given in Figure 3.15 explains how EDS cah be generated from GPR

signal and used for classification.

Salient features of different steps involved in this process have been given below.
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Whitening and normalization [42]- is done mainly to remove ground effects from each
of the reading. Readings are taken for ground where it is known that there is no target.
These readings are averaged to find the average behavior of the ground and standard
deviation is found to calculate how much the behavior changes in these readings. If the
mean behaviour of ground is m,(k,) and its standard deviation is og4(k;), then the

whitened and normalized reading at each of the scan points is:

Ax,y,ky) —my (k»)’

Ulx,y,k;) = ( 22000 (3.31)

Take IFFT of the whole B-Scan data to convert data into
: time domain

v

Preprocessing- Apply range gating to estimate ground
level, shift zero to ground level

y

Nonlinear Smoothening- Apply median filtering to each
B-Scan of the preprocessed data

v

Take FFT of each data along depth.

'

Whitening and Normalization- Subtract from each
reading the mean of ground and divide them with standard
deviation of ground reading. Call it Ufx, k)

Spectrum Generation- Average U(x,y,k.) over a square
window of N-Samples in cross-track and N-samples in
down track.

Use neural networks for pattern classification or
correlation coefficient to differentiate the spectrum so
generated into different targets

Figure 3.15: Flowchart for implementation of EDS method of target classification
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Spectrum Generation [42]- The spectrum is generated by averaging U(x,y,k,) over a
square window of N samples in cross track and & samples in down-track. This averaging
is done to reduce the variance in the EDS estimate. As the average distance of antenna
from the soil surface was 10 cm i.e. a swath of 314.15 cm? at the surface of the soil, or
approximately a square with its side of 17cm, averaging was done by taking N = 4,
assuming that traverée distance between each scan points is roughly equal to 4 cm.

Xot(N—1)/2  yp+(N—-1)/2

1
P(xo::)’mkz)z‘ﬁ Z Z U(x,y, kz) (3.32)
x=xo~(N-1)/2 y=y,—~(N—-1)/2

Pearson’s Correlation Coefficient [42]- The spectrum so generated can be classified
using Pearson’s Correlation Coefficient. A standard library can be maintained for
different targets at different depths under different moisture conditions. As spectral
variation can be expected to vary rapidly at higher frequencies, correlation coefficient can
be found separately for four different frequency- bands. Pearson’s Correlation Coefficient

1S given as:

x(x _'qu)(y - luy)
Pxy =
(2P

(3.33)

Probabilistic Neural Network (PNN) [57]- Donald F. Specht proposed this method te
formulate a neural network. He called this a “Probabilistic Neural Network”. Figure 3.16
shows the architecture diagram of a PNN network.

Input Hidden Class
nodes ‘nodes nodes

Decision
node

Figure 3.16: A four layer architecture of probabilistic neural network [57]

48



Input layer - there is one neuron in the input layer for each predictor variable. In
case of categorical variables, N-1 neurons are used where N is the number of
categories. The input neurons standardize the range of the values-by subtracting
the median and dividing it by their inter quartile range. The input neurons then
feed the values to each of the neurons in the hidden layer.

Hidden layer - this layer has one neuron for each case in the training data set.

- The neuron stores the values of the predictor variables for the case along with the

target value. When presented with the x vector of.input values from the input
layer, a hidden neuron computes the Euclidean distance of the test case from the
neuron’s center point to decide the Kernel function. The resulting value is passed
to the neurons in the pattern layer.

Pattern layer / Summation layer - there is one pattern neuron for each category
of the target variable. The actual target category of each training case is stored
with each hidden neuron; the weighted value coming out of a hidden neuron is fed
only to the pattern neuron that corresponds to the hidden neuron’s category. The
pattern neurons add the values fbr the ¢lass they represent. -

Decision layer - the decision layer compares the weighted votes for each target
category accumulated in the pattern layer and uses the largest vote to predict the

target category.

Contextual Masking for Successive Classification of Target [22]- Because of clutters
present in the soil and high attenuation of signals 1n it, spectral features sometimes fail to
get the target classified. It was found in experiments that the neural network sometimes
confused air cavity with water bottle. We can use another feature of targets to classify
them. It is that the reflected signal strength of metal sheet is strongest followed by that of
air cavity which is then followed by water bottle. Jain has done an extensive study on the
reflected signal strength of these targets under various moisture levels of the sand and at
various depths in his dissertation work. After the thresholding stage, the background
noise is removed and we are left with targets present at that depth. The pixel values
corresponding to these targets have been ;successively used to classify them. The

strongest reflector in the image is classified as:
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[Ref], [x,y] = max (max (Image[1: Ny, 1: N, ])) (3.34)

Where, x,y are the coordinates of the strongest pixel and Ref is the value of this particular
pixel. Ny, Ny, are the size of the image. in x-direction and y-direction respectively. A group
of pixels in the neighbourhood of this pixel is masked and then the next highest value is
looked for. This masking is necessary as sometimes in the presence of strong reflector,
signals due to weak reflectors may not be visible at all and we may not know that there is
another target as well. Also, the next strongest pixel in the identified object might' be
stronger than the strongest pixei in the next object to be identified and the target may get
missed from being identified. The algorithm can be explained as given in flowchart in

figure 3.16.

Find the (x,y) coordinate of the pixel -
having maximum value

i
The pixel value is compared with those

stored in the directory, and thus first
target is classified.

Mask a group of pixels which are in
neighbour of the maximum value pixel.

s the maximum reflection
ixel in the image zero?

The target has been classified.

Figure 3.17: Flowchart for contextual masking for successive identification of targets
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3.3.5. Model Development

With this knowledge, a model was developed for real time target detection and
classification of the targets. Figure 3.18 gives a succinct account of the same. Target
classification can be done in three ways. The first is after each B-Scan using contextual
masking. However, it’s probable that in that scan our scanner may miss some of the
targets and we don’t have complete information about all the targets in a single scan.
After all the M B-Scans have been done Energy Density Spectrum for each point is

generated and is compared with stored spectra to classify the target. It is to be noted that a

combination of all the three ways to classify the target is required.

Choose number of B-Scans to be done=M
No. of A-Scans in 8 B-Scan=N

}

Find the average behaviour of ground by
taking N A-Scans

Dme..t....aallnotalaicl

<
LT, rooR¥S

l A. Apply Hamming Window
Filtering to frequency domain
data or median filtering to
time domain data

Get range profile and keep
an cye on presence of targets

— Scan the ground to look for target

Classify the target
~ G. Apply contextual
Apply Hamming Window Filtering or masking to the B-Scan
Median Filtering generated after ICA to
v identify targets
B. Generate Raw B-Scan Image
D. Appl 7
! Backpropjzc}t’ion Apply sol?el E. Apply Hough
C. Apply ICA at different depth bins to and operator l(?r Trans_form to confirm
look for targets Thresholding to edge detect}on detection of targets and
this B-Scan on image in set number of targets
Image previous step present=K
No. of B-Scans
done=M? B
Yes
— Compare the spectra with the stored
F. Apply EDS on M B-Scans to generate . A ' .
spectra at various scan points directory of spectra for target Classify the target
classification
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Chapter 4. Implementation, Results and Discussions

As per the model developed in previous chapter, GPR data was taken and processed for
target detection and classification. For carrying out the experiments, four to six B-Scans
of 30 A-Scans were done with targets buried at different depths under different soil
moisture. Before this, average behaviour of ground was estimated by taking readings of
ground at 30 different locations at each moisture level of soil. This information was later
on used for background subtraction for generating range proﬁlés for individual A-Scans
and then for generating EDS of targets. This chapter deals with results obtained on step-
by-step implementation of the model developed in section 3.5. The reasons for the

results so obtained have also been discussed.

4.1. Preprocessing Techniques on A-Scan and B-Scan

Importance of A-Scan detection and how it is done has been discussed in section 3.2.3.
Details of how B-Scan image is generated by stacking A-Scans has been given in section
3.2.4. Preprocessing techniques like Hamming window and media_h filtering and ICA
clutter removal has been discussed in section 3.3.1. Subsections of this section show the

results obtained by the application of these preprocessing techniques on GPR data.

4.1.1. Hamming Window Filtering and Median Filtering for A-Scan

Hamming window filtering (equation 3.10) is applied on frequency domain data. It
basically shapes the frequency domain data to roll off abrupt noises. Effeét of applying
this filter on an S11 waveform has been shown in Figure 4.1. It can be seen in the figure
that applicati(_m of windbw filtering suppresses the side lobes in the frequency domain
GPR data. Hamming window passes this waveform through a cosine shaper. This helps

suppress the effects such as ringing.
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Frequency domain data before and after Hamming Window Filtening
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Frequency Indexes

Figure 4.1: Effect of applying Hamming Window filtering on frequency domain GPR data

Time domain effect of application of hamming window filter and median filter (step A in
the model developed in section 3.3.5) has been shown in Figures 4.2, 4.3 and 4.4 when
targets were buried 10 cm deep with volumetric soil moisture level 15 %. Figure 4.2
show the effect on A-Scan (Figure 3.6) taken at the location where cavity was there.

Figure 4.2 is for metal and Figure 4.3 is for water bottle.

As 1t can be seen that Figure 4.2 (a) has clutters in it at distances even after lm and
doesn’t show the first reflection that was due to the cavity. It is to be noted that air cavity
gives two reflections- first when EM waves enter cavity and second when EM waves exit
cavity. Application of hamming window filter (Figure 4.2 (b)) shows both the reflections
and also suppresses the reflections that were seen before for the distances after 1 m.
Figure 4.2 (c) shows the A-Scan after application of median filtering. Considering the
fact that range resolution is 7.5 cm for the GPR system used for carrying out the
experiments and the median filter size is 3, it can be explained that the first reflection due
to cavity has got eliminated as noise. Also, it can be noted that reflections after distances
of 1 m have been suppressed more efficiently than in Figure 4.2 (a). Figure 4.2 (d) shows

the A-Scan after application of both- Hamming window filter and median filter. Peaks
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due targets are more prominent in this case than in the previous one. And it suppresses

unwanted reflections as well.
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Figure 4.2: (a) Raw A-Scan for location where cavity was there, (b) A-Scan after application of
Hamming window filtering, (¢) A-Scan after application of median filtering, (d) A- Scan after
application of both- Hamming window and median filter

Effect of these filtering techniques on metal sheet has been shown in Figure 4.3. Strong
signal reflection due to metal sheet has made it possible that reflection due to metal is
clearly visible in raw A-Scan (Figure 4.3 (a)). However, extra reflections can be observed
in this figure which are surely due to noise. Figure 4.3 (b) shows the effect of application
of Hamming window filtering on raw A-Scan. The first reflection is due to air-soil
reflection and second is due to soil-metal sheet reflection. Also, it conforms to the

concept that signal strength as distance increases should decrease. Figure 4.3 (c) shows
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the A-Scan after application of median filtering. Reflection due to metal sheet is visible
and has approximately the same signal strength as the first reflection due to air-soil.
Figure 4.3 (d) shows the A-Scan after application of hamming window filter as well as

median filter. It can be seen that it has suppressed the reflection due to metal sheet.
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Figure 4.3: (a) Raw A-Scan for the location where metal sheet was there, (b) A-Scan after application
of Hamming window (c¢) A-Scan after application of median filter, (d) A-Scan after application of
hamming window filter and median filter both

Effects of application of these filters on A-Scan at the location where water bottle was
there has been shown in Figure 4.4. Reflection due to water bottle is expected to be the
weakest. Dielectric constant difference for bottle and soil is more than that for cavity and
soil but, the cylindrical shape of water bottle results in low reflected signal strength for
water bottle. Clutters are there in all the three figures Figure 4.4 (a-c). Though median

filter has suppressed clutters effectively, reflection due to bottle cannot be distinguished
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in the processed A-Scan. Figure 4.4 (d) has reflection due to water bottle visible in it but
signal strength is too less.
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Figure 4.4: (a) Raw A-Scan for location where water bottle is there (b) A-Scan after hamming
window filtering, (c) A-Scan after median filtering, (d) A-Scan after application of hamming window
filtering and median filtering

From Figure 4.2 to Figure 4.4, it can be concluded that these methods are effective in
combating noise in GPR signal. But more difficult condition makes it difficult for low
dielectric materials, or cylindrical materials to be detected. Also, median filter has this
disadvantage of suppressing reflection due to target sometimes. This often happens if
there is a single peak representing the target. Thus for next requirements of pre-

processing hamming window filter may be used.
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4.1.2. ICA Clutter Removal for B-Scan Images

In soil EM waves attenuate faster. This makes detection of targets very difficult. Clutter
removal techniques have to be applied so that target can be detected. It was explained in
Chapter 3 that ICA not only removes clutters it looks for statistically independent
components as well. In soil, where signal value to reflections due to target may be

considered as clutter by SVD, PCA or FA, ICA serves the purpose better.

After completion of each B-Scan raw B-Scan images were generated (step B in the model
developed in section 3.3.5) by following the algorithm discussed by flowchart given by
Figure 3 and ICA clutter removal technique (refer Figure 3.9) was applied on this raw B-
Scan image (step C in the implementation model of section 3.3.5). Effect of applying
ICA on a single A-Scan has been shown in Figure 4.5.
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Figure 4.5: Effect of applying ICA on range profile generated by a single A-Scan

Results obtained after applying ICA on raw B-Scan images have been shown in Figure

4.6 when targets were buried 10 cm deep and volumetric soil moisture was 15 %.
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Figure 4.6: (a) Raw B-Scan image generated of 30 A-Scan when targets were 10 cm deep and
volumetric soil moisture was 15%, (b) Targets as detected by application of ICA at depth bin
corresponding to 10 cm depth

As it has been mentioned before, in the pit (of dimension 2m by 1.5 m) three targets were
buried at a depth of 10 cm and water was added in a controlled fashion so that the
volumetric soil moisture was 15%. Four B-Scans, each consisting of 30 A-Scans were
done. From the point of start of scanning the order of the targets was air cavity followed
by metal sheet and then water bottle. In first 10 readings presence of air cavity was
expected, from 10™ reading to 20™ reading presence of metal sheet was expected, and
finally from 20™ to 30™ reading were expected to show the presence of water bottle. The
raw B—Scaﬁ generated after clubbing 30 A-Scans has been shown in Figure 4.6 (a). A 10
cm depth in soil having volumetric moisture 15% (dielectric constant of 7.70) means
equivalent depth around 27 cm in air. If antenna-flare to soil-surface distance is
considered total distance is around 37 cm. With a range resolution of 7.5 cm presence of
targets at 5 downrange index is expected. If we consider downrange indexes in raw B-
Scan, first two indexes show strong signal values which corréspond to strong reflection
from air-soil interface. However, no strong signal is visible at downrange inde:;c 5.1t
appears that all the three targets have been missed. ICA was applied on this B-Scan for
depth bin 5 and four different patches can be observed. Since the environment ié cluttered
one of the patches can be due to a false target. But we can see the presence of rest of the

-three targets.

59



Another example of application of ICA for clutter removal from B-Scan is given in

Figure 4.7.
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Figure 4.7: (a) Raw B-Scan image generated by clﬁbbing 30 A-Scans when targets are buried 20 cm deep in
volumetric soil moisture of 20%, (b) B-Scan generated after clutter removal using ICA

Like in the previous case, now soil moisture was increased up to 20% and depth of
targets was increased to 20 cm. Arrangement of the targets was same — air cavity
followed by metal sheet followed by water bottle. Antenna to target depth in this case is
30 cm but considering the fact that dielectric constant of soil for volumetric soil moisture
level of 20% is around 10.12, effective distance becomes 67.5 cm. That is to sa;r, target
should be available at downrange index 9. Clearly, B-Scan doesn’t give any trace of the
targets. However, B-Scan generated after using ICA clutter removal technique some
strong signal valﬁes can be seen at downrange index of 9. As antenna swath at depth of
30 cm (10 cm + 20 cm) was 3848.5 cm? , all the targets appear to be mixed up. That is to
say, there is a continuous line of strohg signal values at downrange index of 9. We have

no way to determine the location of the three targets.

Before proceeding further, one more example of ICA is worth consideration. It is shown

in Figure 4.8.
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Figure 4.8:(a) Raw B-Scan image generated when targets are 20 cm deep and soil moisture is 15%,
(b) B-Scan image generated after ICA clutter removal

This time targets are buried at the same depth of 20 cm but in different soil moisture
level. Now, volumetric soil moisture is 15%. Arrangement of targets is same as in
previous case. A depth of 20 ¢cm in 15% soil moisture is equivalent to 65 cm in air and
hence, targets should be expécted at 9" bin. Raw B Scan (Figure 4.8 (a)) image shows a
comparatively strong reflection value at downrange indexes 9 and 10 and crossrange
index 16. This should be due to metal. Other targets are not visible in this image. After
application of ICA (Figure 4.8 (b)) three different patches can be seen cc;rresponding to
three targets. The patches are comparatively resolvable when compzired to the image in
Figure 4.8 (b). This observation can be explained through dispersion. When soil moisture
was 20%, there was more dispersion of EM waves. In this condition though antenna

swath is same, dispersion is less and hence separation of targets can be done.

4.2. Imaging and Target Detection Using Hough Transform

A clutter removed B-Scan imﬁge gives probability of presence of targets. Figure 4.6 (b)
showed presence of four targets when actually there were only three targets. On a moving
vehicle, uniform scanning becomes difficult and su.ch results are expected. The biggest
drawback of generating such B-Scan images is that it considers that reflections are only

- due to targets just below the antenna. However, it may be because of any reflector that

3
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comes in the swath of antenna. This may also result in a wrong estimate of target

location.

It was proposed in the model developed for real time target detection and classiﬁc:ation in

section 3.3.5 that target detection can be done by applying back projection (section 3.3.2) .
on clutter removed B-Scan image followed by application of Hough transform (section

3.3.3) on this back projected image. For image detection, first a back projected image 1s
generated (step D in the model developed) using the clutter removed B-Scan'image. This
gives hyperbolas in the image so generated. If we search for strongest hyperbolas, it may
be possible to detect the target. By strongest hyperbola, it is implied that maximum
nurﬂber of non-‘zero points of an edge detected binary image obtained after applying
Sobel operator to this back projected image pass through this hyperbola. The apei of this
hyperbola gives location of targets. Hence, the second step for target detection includes
applying Hough‘transform (step E in the model of section 3.3.5) to this back projected

image to look for three strongest hyperbolas.

Velocity correction has been applied to get the location of targets at the apex of

hyperbolas. Results in this section have been discussed depth wise.

4.2,1. For targets at depth of 10 cm

Figure 4.10 shows the results obtained when targets were buried 10 cm deep in
volumetric soil moisture level of 15 %. Depth of 10 cm in soil having dieleétri‘c constant
7.70 added to 10 cm antenna-soil distance becomes equivalent to 13.6 cm. In Figure 4.9
(b), it can be seen that the apex of targets is at 12.24 cm. However, Figure 4.9 (z;) show
lots probable candidate hyperbolas which could have been targets, but using Hough
transform makes it possible to pick the hyperbola which is strongest. As number of
targets was fixed to three, top three hyperbolas have been picked from the Hough

transform matrix.
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Figure 4.9: (a) Back projected image as obtained after clutter removed B-Scan image with targets
buried 10 cm deep and soil moisture 15 % (b) three targets detected by the use of Hough transform

It has been mentioned before that for all moisture levels of soil three targets were used.
At depth of 10 cm and 7% volumetric soil moisture, targets were buried in this order-
metal sheet followed by cavity followed by bottle. Figure 4.10 shows the location of
targets detected. In Figure 4.10 (b), three hyperbolas can be seen. But the apexes of last
two hyperbolas are very close and they are likely to correspond to a single target. In
Figure 4.10 (a) there is a faint hyperbola in the back projected image. This may be due to
false target or clutter. A depth of 10 cm in air and 10 cm in soil, with soil having
dielectric constant 4.52 is equivalent to 14.70 cm in soil. As it can be seen Figure 4.10 (b)
targets are found at roughly 16 cm, which is within tolerance limit. It can also be
observed from Figure 4.10 (a) that the hyperbola with highest intensity corresponds to

metal sheet.

In a similar fashion, Figure 4.11 show targets detected when targets were inserted 10 cm
deep in soil having volumetric soil moisture level of 20 %. Actual disil:ance at which
targets were expected to be present was 13.16 cm. Figure 4.11 (b) shows that the
observed depth is in great confirmation with the expected depth. Figure 4.11 (a) shows
lots of probable hyperbolas. But thresholding followed by edge detection éliminated false
hyperbolas. A cursory view at Figure 4.11 (a) shows presence of two targets — air cavity
and metal sheet. However application of Hough transform made it possible to search for

the location of water bottle.
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Figure 4.10: (a) Back projected image as obtained after clutter removed B-Scan image with targets
buried 10 cm deep and soil moisture 7 % (b) three targets detected by the use of Hough transform
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Figure 4.11: (a) Back projected image as obtained after clutter removed B-Scan image with targets
buried 10 cm deep and soil moisture 20 % (b) three targets detected by the use of Hough transform

4.2.2, For targets at 15 cm

Figure 4.12 shows the results targets buried 15 cm deep and soil moisture 7 %. At this
depth arrangement of targets was air cavity‘ followed by metal sheet and in the last water
bottle. Presence of hyperbéla due to metal is conspicuous in Figure 4.12 (a). Other than
that there are many hyperbolas, of which many are because of clutters or noise. In Figure

4.12 (b) three hyperbolas can be observed. But the separation of apexes of last two
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hyperbolas is too less and it can be concluﬂed that one target has been missed out. Failure
of Hough Transform in this case can be because of the high pixel values due to metal

sheet.
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Figure 4.12: (a) Back projected image as obtained after clutter removed B-Scan image with targets
buried 15 cm deep and soil moisture 7 % (b) three targets detected by the use of Hough transform

Figure 4.13 shows the results of target detection when targets were buried at 15 cm and
soil moisture level was 15 % and 20 % respectively. It can be seen that thfee targets have
been detected using Hough transform in both of these cases. In Figure 4.13 (c), presence
of metal i$ conspicuous by high pixel values in the image matrix. For Figure 4.13 (d) we
can see that apexes of first two hyperbolas are too close. Hence, it can be inferred that

both of them are due to same target and first target i.e. air cavity was not detected.
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Figure 4.13: (a) Back projected image as obtained after clutter removed B-Scan image with targets
buried 15 cm deep and soil moisture 15 % (b) three targets detected by the use of Hough transform
(¢) Back projected image as obtained after clutter removed B-Scan image with targets buried 15 cm
deep and seil moisture 20 % (d) three targets detected by the use of Hough transform

4.2.3. For Targets at 20 cm

Similarly target detection results were obtained for targets at 20 cm depth. Results have

been shown in Figure 4.14 for all moisture levels of soil.
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Figure 4.14: (a) Back projected image for targets 20 cm deep, soil moisture 7 % (b) Detection of
targets using Hough Transform (c¢) Back projected image for targets 20 cm deep, sofl moisture 15 %
(b) Detection of fargets using Hough Transform (a) Back projected image for targets 20 cm deep, soil
moisture 20 % (b) Detection of targets using Hough Transform

It can be seen that in Figure 4.14 (d) apexes of two of the hyperbolas are very close and

they represent same target. Hence, one of the targets has been missed. The main reason of

failure of Hough transform in some of the cases is attributed to the fact that target

detection using Hough transform is unsupervised. It just looks for strong hyperbolas



which largely depend upon the density of non-zero pixels in edge detected binary image.
Naturally, targets having stronger reflection values will have corresponding to them a
number of non-zero pixels in the edge detected binary image. Also, the programme
searches for only top three hyperbolas, so chances are there that some of the target would

get missed.

4.3. Target Classification by Target Spectra

After presence of targets has been detected, task of target classification remains to be
done. Spectra of targets were generated (step F in the model developed) at the depth they
were expected to be by the method that has been explained in section 3.3.4. Results

obtained have been given in this section.

4.3.1. Depth-wise comparison of spectra for pair of same targets

Before this classification technique is used it is important to observe the invariability of
target spectra under various conditions. This section deals with making comparison
between spectra of same type of targets when they are buried at different depths. Figure
4.15 shows the spectra of different targets for soil moisture level 15 % at depths of 10 cm

and 15 cm.
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Figure 4.15: Comparison of EDS of targets at 10 cm and 15 c¢m at soil moisture level 15 % for (a) Air
Cavity, (b) Metal Sheet, (c) Water Bottle

The spectra of targets at different depths can be compared here. For air cavity and metal

sheet the spectra have been almost depth invariant it has changed a lot in the case of
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water bottle. The reason can be weak reflections due to the cylindrical shaped water
bottle. It is possible that its spectrum is influenced by the presence of clutters as the burial

depth increases.

Pearson’s correlation coefficient was found for these spectra to evaluate the similarity
between them. Table 4.1 shows the values of correlation coefficient for the pair of spectra
as shown above. Correlation coefficient has been evaluated for four bands of frequency
by splitting the 2 GHz bandwidth into bands of 0.5 GHz. This was done so as to

compensate for the spectral variation at higher frequency values due to attenuation.

Table 4.1: Pearson's correlation coefficient values for different targets at 10 cm and 15 cm with soil
moisture 15 % '

Pearson’s Correlation Coefficient Values
1-1.5 GHz 1.5- 2.0 GHz 2.0-2.5 GHz 2.5-3.0 GHz
Air Cavity -0.1488 -0.1535 ~'0.9384 0.4967
Metal Sheet 0:8678 0.1044 0.8708 -~ | 0.6803
Water Bottle 0.2326 -0.8490 -0.4711 -0.8471

The coloured cells show a great correlation coefficient in that particuiar frequency band.
It is observed that metal sheet shows great correlation in three our four bands, while.
cavity shows a good correlation only in third band which is from 2.0 GHz to 2.5 GHz.

For bottle, spectra are uncorrelated in all the frequency bands of observation.

4.3.2. Moisture- wise comparison of spectra for pair of same ta‘rge,t

The -next analysis would be effect of increasing moisture on target spectra. Comparison of !
spectra was done for targets buried at same depth but under different moisture level of
soil. Figure 4.16 shows the same. For this case also, it is observed that spectral variations
with soil moisture level. are not that much pronounced for air cavity and metal sheet. But
the change in EDS is drastic for water bottle. Contrary to the expectation there are strong
reflections at several points while with increase in moisture attenuation should have
suppressed them. Table 4.2 makes the comparison between the spectra based on

correlation coefficient values.

69



EOS of Tasgets & 10 cm for sol marsture 15%, 0%

=
(

—— e —— —— ——
| === protic wath Canly al 15 % sof marstwre |
| === profile with canty &t 20 % sod morsture |

g

DENSITY SPECTRUM

ENERG Y

>

04

MY

ECS of Tangets 10 cm for sod moistwre 15%, 0%

ECS of Targets of 10 om for 50 movstuse 15%, 0%

jom— profie weh metal &t 20 % 08 marstuse |

w—— profie with melal &t "-'Lv"vuﬂwg

o =
I

ENERGY DENSITY SPECTRUM
o

™

Il

1

e ol with bottle 2 15 % sod messture |

1 i z : L 2 | PV M VDRI YO {DRGUt (ARG 000! VAT LSS v SR P SR SR N S e stofie with bottle & 20 % $od morsture |
{ 12 14 16 18 2 22 24 26 28 3 T 12 14 16 18 2 22 4 26 28 3 12 14 18 18 2 22 U 2% 28 3
ndices comesponding 10 req tange 1 GHz 1o 3 GHz ndices conesponding to feq tange | GHz to 3 GHz ndees canes panding 1o req tange § GHz te 3 Gz

(a) (b) (©)
Figure 4.16: Comparison of spectra of targets at 10 cm with soil moisture level 15% and 20 % for (a)
Air Cavity (b) Metal Sheet (¢) Water Bottle

Table 4.2: Pearson's correlation coefficient values for different targets at 10 cm with soil moisture 15

% and 20 %

Pearson’s Correlation Coefficient Values
1-1.5 GHz 1.5- 2.0 GHz 2.0-2.5 GHz 2.5-3.0 GHz
Air Cavity 0.6052 -0.3860 -0.0726 0.4742
Metal Sheet 0.6214 0.3445 -0.9232 0.7639
Water Bottle 0.6654 -0.3860 -0.0726 0.4742

It can be seen that first band shows great correlation for same type of targets for different

levels of soil moisture. But, after 1.5 GHz, spectra changes considerably.
4.3.3. Target-wise comparison of spectra

Now comparison between spectra of different targets will be made so as to know how
much they are capable to classify the targets. Figure 4.17 shows spectra for targets which
are at same depth and under same moisture level of soil. For same targets, different look
positions were used to make comparisons. As EDS is sensitive to moisture and depth,
slight changes in the spectrum is expected. However, changes should not be drastic so
that classification techniques can be used. As it can be seen that spectra of same targets
specially air cavity and metal sheet have resemblance and spectra of different targets
differ a lot. It can also be observed that spectra of bottle is a bit sensitive as it changes a
significantly with different look positions. Values of correlation coefficient for these

spectra in four frequency bands have been given in Table 4.3.
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Table 4.3: Correlation coefficient values for different bair of targets at 10 cm with soil moisture 15 %

Pearson’s Correlation Coefficient Values

1-1.5 1.5-2.0 2,025 | 2.5-3.0

GHz GHz GHz GHz

Air Cavity- Air Cavity " 08260 .| ..0.9780 | 09690 < | 0.7820

Air Cavity- Metal Sheet 0.6338 0.5513 0.5323 0.6693
Air Cavity-Water Bottle 03311 0.0929 -0.0824 0.6069
Metal sheet- Metal sheet 209888 [ 0:8459 |- 0.9963 | 0.7442
Metal sheet- Water Bottle 0.3484 0.3552 0.5433 -0.8292
Water Bottle- Water Bottle 0.6338 0.5513 0.5323 0.6693

From correlation coefficient values so obsefved it can be concluded that while air cavity
and metal sheet are recognizable through their spectra, same is not true for water bottle.
Given the inconsistency of correlation coefficient values, neural network was opted for
target classification. The neural network was trained with 30 spectra of targets at different
depths and at different moisture levels of soil. For each target there were 10 spectra to
train the neural network. Spectra for targets at 12 cm with soil moisture level 17 % were
passed to the neural networks for target classification and satisfactory results were
obtained. Metal was clearly classified by the network but, there were some ambiguities

observed between cavity and water bottle.

4.4, Contextual Masking for Successive Classification of Tafgets

Reflected signal strength of targets can also be used to classify targets. In his .dissertation,
Jain found our that at all moisture levels of sand and at all depths reflected signal strength
of metal was highest, followed by air cavity and the least reflected signal strength was
that of water bottle. Keeping this in mind, contextual masking for successive

classification of targets was used for detection of targets (step G in the model developed).

Clutter removed B-Scan image was generated using ICA clutter removal technique, and
then the image pixel values were normalized. It was assumed that highest signal value
was due to reflection from metal sheet and pixels around the highest valued pixel were
masked. The image was normalized again and then the highest valued pixel was found. It

was taken to be air cavity. Pixels were masked as before and image was normalized
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again. The image was left with pixels corresponding to water bottle. Hence, all the three
targets were identified. Step by step treatment of B-Scan image for target classification
has been shown by Figure 4.18 for the case when targets were buried at 10 cm depth and

soil moisture 15 %.

Raw B-Scan mage B-scan image after clutter removal using ICA

ange indexes
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(a) Raw B-Scan (b) Clutter removed B-Scan Image
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wnrange indexes
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(c)Thresholded clutter removed image (d) Column filtered image with all three targets

Figure 4.18: First four steps involved in contextual masking of targets

First, using ICA clutter removal technique, thresholding and column filtering all the
targets were located in the B-Scan image. Figure 4.18 (d) shows presence of four targets.
One of them has to be false target as only 3 targets were used. Results obtained after

contextual masking have been shown in Figure 4.19.
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Figure 4.19: Images showing masking of metal sheet, false target and air cavity for target
classification

Pixels around the pixel having highest intensity were masked. These masked pixels
corresponded to metal sheet. The resultant image was normalized and the image was left
with 3 dots showing three strong reflections. The dot at the leftmost end of the image can
be due to clutter or some medium change. After it has been masked, the image is left with
presence of air cavity and water bottle. Then the next pixels having higher pixel values
are searched. This corresponds to air cavity. It is masked and the image is left with water
bottle. Thus, we see how targets can be successively classified by contextual masking.

Similarly, target classification was done for other B-Scans as well.
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Chapter S. Concluding Remarks and Future Scope

5.1. Conclusions
Based on the work done so far following conclusions can be drawn:

1.

In cluttered environment, target detection and target classification is a challenging
job and this dissertation dealt with the same problems.

For detection of target using A-Scan various Hamming window filtering and

‘median filtering techniques were used. It was found that, though median filtering

combats abrupt noise very well, it may sometime consider reflections due to
target as noise and ﬁ;'ay eliminate them. In the range profile obtained after median
filtering, locating targetwails difficult. Hence, Hamming window filtering was
used. This combats noise and preserves important information as well.

ICA clutter removal technique was used to locate targets. Other clutter removal
techniques like PCA and SVD weren’t used as they remove only clutters and
reflection values due to targets, being very feeble in moist soil, may get
eliminated as clutters. ICA finds statistically independent components and hence,
it was possible to find targets using ICA. It was also found that dispersion played
and important role in differentiating the location of targets e.g. targets weren’t
differentiated when targets were buried at 20 cm depth in soil moisture 20%.

Back projection was applied on clutter removed image which gave hyperbolas
corresponding to probable targets. Hough transform was used to locate targets.
Being unsupervised, Hough transform has this drawback of giving multiple
hyperbolas corresponding to a single target. For example, in some- cases it was
found that there were two hyperbolas due to metal sheet. However, overall
performance of Hough Transform in finding targets was satisfactory.

Neural networks and correlation coefficient between EDS of different targets at
different moisture level was used to classify targets. Sensitivity of EDS towards
burial depth of target and soil moisture level was a major challenge. But use of |

neural networks made it possible to combat it and targets were classified using

neural networks for pattern classification on Energy density Spectra of targets.
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6. Contextual masking for successive target detection was also used successfully for

- target classification. Results deteriorate if scanning is done in such a way that a
strong reflector is far from the scanner and weak reflector is near to it.

7. A real time system was developed which can be used for target detection and

classification in real time.

5.2. Future Scope

Target detection and classification is a very vibrant field as far as GPR is concerned. For
target detection statistical measure of various targets and clutters can be used. Genetic
algorithm can also be used to find strong hyperbolas to give a more accurate location of

targets.

For target classification parameters which are invariant to burial depth or soil moisture
level need to be implemented to make the system more reliable. Time frequency analysis
can be used for this purpose. Phase information gets almost lost in the data processing
algorithms employed in this work. Using phase information can give better results and

future work can make use of this.
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APPENDIX
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a) Target detection and classification when targets were buried at 10 cm depth
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b) Steps involved in target identification and classification with targets at 20 cm

and soil moisture level 20%
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¢) GUI developed for real time target detection and classification
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