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ABSTRACT 

Cognitive radio is a technology that provides the unlicensed users access to the bands of 

spectrum that is not temporarily utilized by the licensed users. These unused bands are known 

as spectrum holes. The process of sensing the environment to identify these spectral holes is 

known as spectrum sensing. Cooperation among unlicensed users for spectral sensing can be 

used to combat the hidden terminal problem and fading. 

In this dissertation work, cooperative spectrum sensing based on energy detection and cyclic 

prefix based correlation detection is studied for an OFDM primary system. For both these 

detection methods, data fusion is used at the fusion center for cooperative spectrum sensing. 

The receiver operating characteristics is studied for fading and shadowing channels. Data 

fusion is applied by maximizing modified deflection coefficient for energy detection and by 

Neyman-Pearson likelihood ratio test for cyclic prefix based correlation detection. The 

average number of statistics required for these fixed sample size tests are compared with the 

sequential probability ratio test. 
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Chapter 1 
INTRODUCTION 

Cognitive radio is a novel technology which improves the spectrum utilization by allowing 

unlicensed networks to borrow unused radio spectrum from licensed networks or to share the 

spectrum with the licensed networks. Currently the radio spectrum is allocated statically and 

it has been found that such static allocation may result in underutilization of the spectrum [I]. 

The radio frequency spectrum is a scarce resource and cognitive radio technology can be used 

to utilize the available spectrum opportunistically. Primary users are the licensed users and 

secondary users are unlicensed users. Primary users have higher priority or legacy rights on 

the usage of a specific part of the spectrum. The secondary users exploit this spectrum in such 

a way that they do not cause interference to primary users. [2]. Cognitive radio is an 

extension of software radio paradigm. Mitola and Maguire stated that "Radio etiquette is the 

set of RF bands, air interfaces, protocols, and spatial and temporal patterns that moderate the 

use of radio spectrum. Cognitive radio extends the software radio with radio-domain model-

based reasoning about such etiquettes" [3]. Haykin [4], stated that "cognitive radio is an 

intelligent wireless communication system that is aware of its surrounding environment (i.e., 

its outside world), and uses the methodology of understanding-by-building to learn from the 

environment and adapt its internal states to statistical variations in the incoming radio 

frequency (RF) stimuli by making corresponding changes in certain operating parameters 

(e.g., transmit power, carrier frequency, and modulation strategy) in real time, with two 

primary objectives in mind: 1) Highly reliable communications whenever and wherever 

needed; and 2) Efficient utilization of the radio spectrum." 

1.1. Spectrum Sensing 
One of most critical components of cognitive radio technology is spectrum sensing. Spectrum 

sensing refers to indentifying the bands of spectrum which are not utilized by primary users. 

These unused bands are known as spectrum holes. By sensing and adapting to the 

environment, a cognitive radio is able to utilize the spectrum holes and serve its users without 

causing harmful interference to primary users. Secondary users shall vacate the spectrum as 

soon as they find that primary user is active in a particular spectral band. Various methods 

such as energy detection, matched filtering and feature detection can be used for spectrum 

sensing [2]. The spectrum sensing for the identification of the primary user has certain 
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challenges. For spectrum sensing purposes, secondary user terminals need high sampling rate, 

high resolution analog to digital converters with large dynamic range and high speed signal 

processors. The primary users may become active in a frequency band at any point of time. 

Hence the sensing methods must identify the presence of primary user in a band within a 

specified duration. The sensing frequency determines how often the environment needs to be 

sensed. It depends on the changing characteristics of primary user. For example, the presence 

of a TV channel in a particular spectral band does not change frequently. Hence the sensing 

frequency can be relaxed. The sensing frequency also depends on the interference tolerance 

of the primary user. For example, a cognitive radio network exploiting public safety bands 

needs to have higher sensing frequency [2]. 

If prior knowledge of primary user signal is available at secondary user, the optimal detector 

for spectrum sensing in stationary Gaussian noise is a matched filter [1]. This is a coherent 

detector which correlates a known signal with the received signal. However this detector 

cannot be applied for spectrum sensing if the primary signal type is unknown. Alternatively, 

an energy detector may be employed for primary user detection. This detector measures the 

energy of the received primary signal and compares it with a threshold. It does not require 

any prior knowledge of the primary user signal. However it has some drawbacks. If noise 

variance is not accurately known, the energy detector has poor performance in low SNR 

conditions. Another challenging issue is the inability to differentiate the interference from 

other secondary users sharing the same channel and primary user [1]. A cyclic prefix based 

correlation detector can be used to detect an OFDM primary signal based on correlation in a 

OFDM symbol due to the presence of cyclic prefix [5]. 

1.2. Cooperative Spectrum Sensing 
The wireless channel between primary user and the secondary users may suffer from 

multipath fading and shadowing. This can make the spectrum sensing results unreliable. 

Shadowing and fading may result in the hidden primary user problem similar to the hidden 

terminal problem in carrier sense multiple access (CSMA) [2] This is shown in figure (1.1). 

Due to this, the cognitive radio can cause interference to primary users. Cooperation of the 

secondary users can improve the spectrum sensing performance in such environments. 

Cooperation results in sensing diversity gain, provided by the multiple cognitive radios. Even 

though one cognitive radio may fail to detect the signal of the .primary user, there are chances 
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for other cognitive radios to detect it. Cooperative sensing decreases the probabilities of miss 

detection and false alarm considerably. Cooperative spectrum sensing can be implemented in 

two ways-centralized and distributed [2]. In centralized sensing, a central unit known as 

fusion center collects the sensing information from the cognitive radios and indentifies the 

spectral holes. In distributed sensing the cognitive radios share information among each other 

and each cognitive radio makes its own decision of identifying the spectral holes. The 

cooperative sensing can be applied in two approaches - decision fusion and data fusion. In 

decision fusion based approach, a binary decision is made at each of secondary users about 

the presence of primary user. The fusion center collects these binary decisions and makes a 

final decision regarding the presence of primary user signal. In data fusion approach, 

secondary users shall .send the statistics obtained based on spectrum sensing to the fusion 

center. For example in an energy detector, the energy values are the statistics obtained at 

secondary users. The fusion center shall combine these statistics received from secondary 

users to make a decision regarding the presence of primary user. 
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Figure 1.1: Illustration of Hidden Primary User Problem [2] 

1.3. Problem Statement 
The main objectives of this dissertation are 

1) To study and evaluate cooperative spectrum sensing based on energy detection for 

fading and shadowing channels with modified deflection coefficient method for 
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data fusion and to compare the average statistics required with sequential 

probability ratio test. 

2) To study and evaluate cooperative spectrum sensing based on cyclic prefix based 

correlation detection for fading and shadowing channels with Neyrnan-Pearson 

likelihood ratio test for data fusion and to compare the average statistics required 

with sequential probability ratio test. 

1.4. Organisation of the Report 

This dissertation report consists of 5 Chapters including this introductory chapter. 

Chapter 2 provides an overview of cooperative spectrum sensing approaches. The reliability 

issues and tradeoffs in cooperative spectrum sensing are discussed. It also discusses the 

cooperative spectrum sensing for multiband systems. 

In Chapter 3, cooperative spectrum sensing based on energy detection is discussed. This 

Chapter discusses about local sensing in a secondary user, modified deflection coefficient 

based data fusion and sequential detection methods applied for data fusion. The simulation 

results of the local and cooperative sensing in slow frequency selective Rayleigh fading 

channels and shadowing channels are presented. The simulation results of average of number 

of statistics of the modified deflection coefficient based data fusion are compared with the 

sequential detection methods. 

In Chapter 4, cooperative spectrum sensing based on cyclic prefix based correlation detection 

is discussed. This Chapter includes the discussion about local sensing in a secondary user and 

comparison of the data fusion based on Neyman-Pearson likelihood ratio test with the 

sequential detection method. The simulation results of local sensing and cooperative sensing 

in slow frequency selective Rayleigh fading channels and shadowing channels are shown. A 

simulation result when the cyclic prefix length and synchronization information are known is 

also shown. The cyclic prefix based correlation detection and energy detection in the 

presence of noise uncertainty is studied. 

The dissertation concludes with the Chapter 5. 

4 



Chapter 2 

OVERVIEW OF COOPERATIVE SPECTRUM 
SENSING 

Cooperative spectrum sensing improves the reliability of spectrum sensing by providing 

diversity gain. This chapter provides an overview of cooperative spectrum sensing 

approaches. Some techniques to improve the reliability of cooperative sensing and tradeoffs 

in cooperative sensing are discussed. An optimal wideband sensing framework for jointly 

detecting multiple bands both at the fusion center is also discussed. 

2.1. Hypothesis Testing 

For cooperative spectrum sensing, a binary hypothesis test needs to be performed to infer the 

presence of primary user. Let the hypothesis H1 indicate the presence of the primary user and 

HO indicate the presence of the spectrum hole. Let y = [y1 , y2 .....yN ] be the vector of N 

observations under the hypothesis HO or Hl. Let P(y I HO) indicate the probability density 

function under the hypothesis HO and P(y I Hl) indicate the probability density function 

under the hypothesis H1. The following hypothesis tests can be applied at the fusion center. 

2.1.1. Bayes Test 

The Bayes test minimizes the average cost and is given by [6] 

HI 

P(y J HI) > P(HO)(C10 — Coo ) 
L(Y)_ 

P(y I HO) < P(Hl)(Cor — C,) 	
(2.1) 

The cost value C;, represents the cost of deciding Hi is true when Hi is present. The Bayesian 

criterion requires the priori probabilities of HO and H1. These priori probabilities may not be 

available for spectrum sensing problems. 

2.1.2. Neyman-Pearson Test 

For Neyman-Pearson test, the objective is to maximize the probability of detection for a 

target probability of false alarm a. The Neyman-Pearson test can be performed with the 

following likelihood ratio test as[7] 

A 



Hl 

L(y) = P(y I Hl) > 
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	(2.2) 
P(Y I HO) H 

where y is the threshold that is set such that the probability of false alarm is a fixed value a. 

2.1.3. Generalized Likelihood Ratio Test 

A composite hypothesis test is applied when some parameters of the probability density 

functions are unknown. A generalized likelihood ratio test is a composite hypothesis test that 

does not require a prior knowledge of unknown parameters. These unknown parameters are 

estimated by maximum likelihood estimation as follows[8] 

00 =max P(yIHO,00 ) 
e° 	 (2.3) 

0, =max P(yJHl,01 ) 

where 8o and 0, are the set of unknown parameters under HO and H1 respectively. The 

generalized likelihood ratio test can be written as 

HI 

L(y) = P(y 1 01, Hl) > y 	(2.4) 
P(y~6HO)H 

where y is the threshold. The generalised likelihood ratio test may be applied for spectrum 

sensing if there are unknown parameters like noise variance. The generalised likelihood ratio  

test has been applied for spectrum sensing in [9] and [10]. 

2.1.4. Sequential Probability Ratio Test 

The likelihood ratio tests specified in (2.1) to (2.4) are fixed sample size detectors. In fixed 

sample size detectors, a fixed number of observations or samples are used. Sequential 

detection requires random number of samples depending on the observation sequence. A 

sequential test known as sequential probability ratio test (SPRT) requires lesser average 

number of samples for detection compared to fixed sample size tests. After every 

observation, SPRT may accept HO, may reject HO or may continue with the test procedure 

with the next observations. SPRT can be applied for spectrum sensing to reduce the average 

delay of detection of spectrum holes. SPRT has disadvantages compared to fixed sample size 
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tests. For SPRT, though the average number of samples required is lesser, occasionally the 

number of samples required before the final decision is made may be large. SPRT requires 

probability density functions of the observations both under HO and H 1. [1 l],[12] 

2.2. Cooperative Sensing Approaches 

In this section the two approaches of combining the sensing information at the fusion center - 

decision fusion and data fusion - are discussed. 

2.2.1 Local Sensing Framework 

Let us consider a cognitive radio network with K secondary users. Let us assume that the 

channel between the primary user and the fusion center is a Rayleigh flat fading channel. 

Secondary user i (i = 1,2,..K) formulates the following binary hypothesis test problem [7] 

HO: x;(t) = v;(t) 	 (2.5) 

H1: x;  (1) = h;s(t) + v;  (t) 

where tis the time index 

x, (t) is the received signal at ith  secondary user 

hi is the channel gain between the primary transmitter and the i h̀  secondary user 

v;  (t) — CN(0, 62) is complex circularly symmetric Gaussian noise with mean 0 and 

variance a, 

HO refers to absence of primary user signal 

H1 refers to presence of primary user signal. 

The key metrics of spectrum sensing are [I ] 

(i)Probabilities of correct detection given by P[Decision =H1 H1] and P[Decision =HOIHO], 

(ii)Probability of false alarm given by P[Decision =H 1 IHO] and 

(iii)Probability of miss detection given by P[Decision =H0(H1] 

Specifically, P(HO I HO) is the probability that the secondary users successfully identify the 

unoccupied spectral segment and is an important measure of opportunistic spectrum 

utilization. Likewise P(HO I  HI) is the probability that the secondary users cause harmful 

interference to the primary users. The objective of cooperative spectrum sensing is to 

maximize the P(HO HO) while maintaining P(HO HI) as low as possible.[7] 
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Let x, = [x, (1), x;  (1),........x;  (N)]T  where N is the number of samples used for sensing. Let 

T1(x1) represent the test statistic obtained by spectrum sensing for the i h̀  secondary user. As an 

example, let us consider energy detector for spectrum sensing at the ith  secondary user. The 

decision rule at the secondary user is given by[7] 
HI 

N 

T (x,) _ 	I x, (t) I 2  , yj 	 (2.6) . 
r-1 HO 

where 7(x1 ) is the energy at the 1t1 	user and y;  is the local threshold at the ith 

secondary user. 

2.2.2. Decision Fusion 

In decision fusion approach, each cognitive radio makes a binary decision locally on whether. 

the primary user is present or not. The fusion center combines these decisions made by 

secondary users to obtain a final decision. The optimal decision fusion rule is based on 

likelihood ratio test according to Neyman-Pearson criterion [7]. Let u; denote the individual 

decision of each cognitive radio. Let u; be `0' if HO is inferred and let u; be ` 1 ' if Hi is 

inferred. Let u = [ut , u2 , ......U. ]' denote the vector of decisions from individual secondary 

users. Let P(u I H0) and P(u I Hl) represent the probability distributions for HO and H1 

respectively. Then the likelihood ratio test is given by 
HI 

L(u) = P(u  Hl)  > y 	 (2.7) 
P(u I HO) 

HO 
 

where'y" denotes the optimal threshold at the fusion center. 

Sub optimal decision fusion rules can also be applied. Counting rule is a sub optimal rule that 

can be used. It counts the number of secondary users that infer the presence of primary user 

and compares it to a threshold. The fusion center infers that the primary user signal is 

transmitted, if n secondary users out of K secondary users infer H1 ("n out of K" rule) [1}. 

This rule is an AND rule, if the fusion center infers that the primary user signal is transmitted 

when all secondary users infer Hi (n=K). This is an OR rule if the fusion center infers that 

the primary user signal is transmitted, if any one of the secondary users infer H1 (n=1). The 

OR rule is a conservative rule as it infers HI even if one of the secondary users infer H1. The 

OR rule has the highest probability of detection compared to other rules and it is shown in 

figu re(2.1). 
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Figure 2.1: Cooperative spectrum sensing performance with decision fusion rules (n=1,6,10) 
over Rayleigh fading channels with average SNR =10dB for ten secondary users.[1] 

In [13], the problem of minimizing the total error rate of cooperative spectrum sensing under 

different conditions of "n out of K" rule is considered. Let Pf be probability of false alarm and 

the Pd be the probability of detection at the secondary users. Let us assume that secondary 

users employ energy detection. At each secondary user, let the threshold be A and let the 

average SNRs be 7. For "n out of K rule", the probability of false alarm of the cooperative 

sensing system is given by,[13] 
K 

Qf =KCl pf(1—P)K-, 	(2.8) . 
1=n 

The probability of missed detection of the cooperative sensing system is given by, 
K 

Qn, 	 ,P~ (1—Pd 	
1 	(2.9) 

1=n 

Three optimal rules for evaluating the optimal value of n, optimal energy detection threshold 

and optimal number of secondary users are presented in [13]. 

1. Optimal Voting Rule: For a fixed value of K, the optimal value of n given by n()/ , can be 

found by minimizing the total error rate Qf+ Qm with respect to n. The optimal value of n is 

given by 

n„~, = min K, K 	 (2.10) 
i+a lj  



ln(Pf /1—P) 
where a = 

ln(P,,, /1— F1 )  

• If Pj  and P,,, are of the same order i.e a 1, the optimal value of n is K/2. 

• The OR rule is optimal if a >— K-1. This means that Pf  <_ P„K -' . Hence for large K, 

P. << P,,, This can be obtained when the threshold A is large. 

• The AND rule is optimal if a -3 Q. This implies P «Pf  .This can be obtained when 

the threshold A is small. 

2. Optimal Energy Detection Threshold: For a fixed value of K, n and SNR 7,  the optimal 

value of threshold 2*  is obtained by minimizing the total error rate Qr+ Qy„ with respect to 

2.[13] 

The above results are can be explained with figure 2.2. From figure 2.2, it can be seen that the 

total error rate is dependent on the threshold. For a fixed very small threshold the optimal rule 

is an AND rule(n=K). For a fixed large threshold the optimal rule is OR rule(n=1). 

1 6a 

 

/ //' 	____ 

"_n=a 

.- ..... 	- 	n_8 

10 16 20 25 30 35 40 45 50 55 60 
Threshold 

Figure 2.2 : Total error rate of cooperative sensing in 10dB AWGN channel.( For voting rules 

n=1,2....10,K=10)[ 13] 
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3. Optimal Number of Secondary Users: If the number of secondary users in a cooperative 

spectrum sensing system is large, the transmission of decisions from secondary users may 

result in overhead in bandwidth and sensing time. If SNR 7 and threshold A, are known, the 

least number of secondary users required for cooperative sensing to achieve a target error 

bound Qf +Q„ <_ e can be found [13]. 	- 

From figure (2.3), it can be found that the total error rate depends on the number of 

cooperating secondary users given by , K. If the target error rate is restricted as 

Qf +Q„ 5 0.01, it can be found from figure (2.3) that the smallest numbers of secondary 

users to get the error rate target are 12, 17, and 32 for SNR values of 20, 15, and 10 dB 

respectively.[ 13] 
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Figure 2.3: Total error rate of cooperative spectrum sensing versus number of secondary 
users in Rayleigh fading with SNR = 5, 10, 15, 20 dB; optimal voting rule applied; detection 

threshold set fixed at ,2, = 20 [131 

A linear quadratic decision fusion method is proposed in [14] to consider the correlation 

-between secondary users in cooperative sensing. Let u = [u,, u2 .......0 ]T denote the vector of 

decisions from K secondary users. This method provides a suboptimal solution to the 

decision fusion problem by using the partial statistical knowledge given by the second-order 
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statistics of the local decisions under Hi and the fourth-order statistics under HO. This 

method uses a deflection criterion of the form [14] 

D _ [E(T(X) Hi) —E(T(X)I HO)]2 	
(2.11) 

T 	 Var(T(X) I HO) 

Here T(X) represents a linear quadratic test statistic of the form [14] 

T(X)=hT X+XT MX 	 (2.12) 

where h is a vector of length K and M is a KxK square matrix. 

Here the components of the vector X is given by 

X ; = log q~ (ui) — Eo log 	 (2.13) 
q0 (u,) 	 q0 (u1 ) 

where q1 ( ) denotes the probability distribution of u; under the hypothesis Hi and Eo 

represents the expectation operator under Ho. The objective is to find the linear quadratic 

function of the form (2.12) to maximize the deflection criterion in (2.11). Based on the 

deflection criterion, the linear quadratic detector compares a linear quadratic function of the 

local decisions with a predetermined threshold and achieves better probability of detection of 

the primary user with a higher value of deflection. The proposed scheme outperforms the 

counting rule in correlated shadowing. 

2.2.3. Data Fusion 

The data fusion approach involves the cognitive radios to send the observed test statistics to 

the fusion center [7]. The fusion center then makes the final decision based on the statistics 

collected from secondary users. The secondary users send the summary statistics 

y=[T](x,),T2(x2 ),.......TK (xK )]7' to the fusion center in which an optimal likelihood ratio test 

can be performed as [7] 
HI 

L(y)= P(.Y _ Hl) ? y 	 (2.14) 
P(y j HO) H 

where y* denotes the optimal threshold for a desired probability of false alarm. From the 

central limit theorem, it can be found that, for energy detection, y is asymptotically normally 

distributed for large N with [7] 
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y — N(M0 , E0 ) under HO 

y — N(,ul , E,) under H1 	 (2.15) 

where µn  and Z are mean vector and covariance matrix of y under HO and 

µ, and E, are mean vector and covariance matrix ofy under H1. 

A sub optimal rule based on the linear combination of the test statistics of the secondary users 

can be used. Specifically, the test statistic can be chosen to be of the form [7] 
HI 

L(y) = WT  Y y 	 (2.16) 
HO 

where w is the weight vector representing the contribution of the individual nodes to the 

global decision and y is the threshold. For example, if a secondary user has high SNR value, 

the statistics of that secondary user should be assigned a larger weighting coefficient. Since 

the linear combination of several Gaussian random variables is still Gaussian, the probability 

of detecting a spectrum hole is [7] 

P(HO HO) =1—Q  y /0T  w 	 (2.17) 
JW OW)  

The probability of miss detection is 

( 
P(HO I HI) =1—Q y —'u'Tw 	 (2.18) 

wE,w 

The weights w and the threshold y can be found by maximizing the probability of detecting 

the spectral hole subject to a constraint on the interference probability as follows[7] 

max P(H0 I HO) 	 (2.19) 
w,Y 

such that P(HO I Hl) <_ 6 

This problem can be solved using optimization methods. Other sub optimal linear fusion rules 

like maximal ratio combiner, equal gain combiner and maximum modified deflection 

coefficient based combiner can also be applied. 

A modified deflection coefficient based combiner is proposed in [15]. This involves in 

finding the weight vector w that maximizes the modified deflection coefficient given by, 
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~nax dz (w} —_ [E(L(y) I HI) — E(L(y) I HO)]2 
w 	 var(L(y) I Hl) 	 (2.20) 

such that 11w112 =1 

For a maximal ratio combiner, the weights are equal to the signal to noise ratios at the 

secondary users [16]. In [16], a softened two bit hard combination scheme for energy 

detection is considered. In one bit decision fusion schemes, the energy values are divided into 

2 regions with a single threshold. However the probability of detection of the primary user 

and probability of detecting a spectrum hole can be increased if the observed energy values 

are divided into 4 regions. This is a 2 bit hard scheme with 3 thresholds A1 , A2 and A. This is 

shown in figure (2.4). 

Region 3 (w.' = L2 ) 

Region 2 (w, = L) 

Region I 	(n, = 1) 

Region 0 (v =0) 

Energy (Y) 

A, 

A. 

2 

Figure 2.4: Principle of two-bit hard combination scheme[16] 

The primary signal is inferred to be present if one of the observed energy is in region 3, if L 

energy values are in region 2 or L2 energy values are in region 1, where L is a design 

parameter. The weights of the regions are given by wo =0, w, =1, w2 = L and w3 = L2 . The 

weighted summation is given by [16] 

3 

N=1w1N; 	 (2.21) 
=o 

where Ni denotes the number of secondary users with energy values in the region i. The 

primary signal is inferred to be present if N. >_ L2 . With an overhead of one more bit, this 2 

bit hard combination scheme has better performance compared to OR rule.[16] 
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2.3. Reliability of Sensing and Reporting Channels 

2.3.1 Reliability of Sensing Channel 

The sensing channel refers to the channel between the primary users and fusion center. The 

effects of fading and shadowing on spectrum sensing are studied in [17]. Cooperative 

spectrum sensing is used to combat these channel effects in the sensing channel. The effect of 

the correlation in shadowing is considered in [17], [18]. The closely located secondary users 

may experience sift ilar shadowing effects. The effect of correlation due to shadowing can 

reduce the diversity gain due to cooperation. It is shown that the probability of missed 

opportunity of utilizing the spectrum holes (probability of false alarm P(H1IHO)) is lower 

bounded due to the correlated shadowing effects. This lower bound on probability of missed 

opportunity due to correlated shadowing for distances D=100m and D=200m between 

secondary users is shown in figure (2.5). It is shown that having a small number of secondary 

users over a large distance may be more effective than a large number of closely located users 

in correlated shadowing scenarios. 

_ 	 - 	 ()ptin tiiiz detcti-tit~n rule 
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~ 
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Number ofeol [nbortnting secondary users. n 

Figure 2.5: Average probability of missed opportunity versus the number of collaborating 
secondary. users[ 18] 

2.3.2 Reliability of Reporting Channel 

The reporting channels between secondary users and fusion center can exhibit fading 

resulting in erroneous transmission of sensing information to fusion center [1]. This can be 
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illustrated by considering OR rule based decision fusion at fusion center. Let the number of 

secondary users be K. For the secondary user i, let Pf be the probability of false alarm and 

f be the probability of miss detection. Let Pe denote the probability of error over the 

reporting channel between secondary users and fusion center. In the presence of reporting 

channel errors, the probability of false alarm of the cooperative sensing system for OR rule 

is,[1] 
K 

Qf =1—fl[(1—Pf)(1—P')+PJP`] 	(2.22) 

The probability of miss detection of the cooperative sensing system for OR rule [1] is, 
K 

Q„ =j[]j[P(1—P')+(1—P„)P] 	 (2.23) 

.Let us assume that every secondary user has an identical probability of false alarm and 

experiences identical and independent fading in reporting channel. Then 

P' = P, Vi =1,2......K. The probability of false alarm of the cooperative sensing system is 

lower bounded by Qf as follows [I ] 

Qf >_Q f =1—(l—P)K 	 (2.24) 

(2.20) was derived from (2.18) by considering that Q1. increases with Pf and 

Q~.>minQ..= lim Qf 

For small values of P. , (2.20) becomes [1] 

QI KJ 
	

(2.25) 

This shows that the probability of false alarm has a lower bound due to reporting channel 

errors which does not depend on the sensing channel between primary user and secondary 

users. 

2.4. Robustness of Cooperative Spectrum Sensing 
The clustering approach, the censoring approach and relay assisted approach are some of the 

robust techniques that can be employed for cooperative spectrum sensing. This section 

discusses these techniques. 
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2.4.1 Clustering Approach 

In clustering approach, secondary users are configured into many clusters [1],  [ 19]. The 

channel between any two secondary users in a cluster is assumed to be perfect as` these 

secondary users are close to each other. The secondary user which has the highest SNR in the 

reporting channel is chosen as the cluster head. Secondary users report the sensing 

information to the cluster head. Cluster head makes a preliminary decision regarding the 

presence of primary user using decision fusion or data fusion methods. These preliminary 

decisions are forwarded to the fusion center which makes a final decision. This is a form of 

selection diversity as the best link(the link between cluster heads and fusion center), which 

has the highest SNR is chosen for transmission of decisions. This approach is shown in 

figure(2.6) The errors due to reporting channel between secondary user and the fusion center 

can be reduced by this approach. The bandwidth of the control channel can be reduced as the 

number of decision bits transmitted to the fusion center is reduced. 

Primary User 

 

Secondary User 

Cluster Head 

Figure 2.6: Clustering Approach [1],[l 9] 

2.4.2 Censoring Approach 

 

As the number of secondary users increase in a cognitive radio network, the number of 

decision bits sent to the fusion center increase. This increases the bandwidth of the control 

channel used for the transmission of these bits. At a secondary user, the decisions are made 

by comparing a local test statistic to a threshold y.  This test statistic is the energy value if the 

energy detector is employed in secondary users. The decisions in the vicinity of this threshold 

are not reliable. A censoring approach for transmission of decision bits is proposed in [20]. 
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The secondary users whose statistics fall in the ambiguous region [y,, yz ] around the 

threshold y are neglected. The decision bits of secondary users whose statistics are out of this 

ambiguous region are reported to the fusion center. The decision of a secondary user is I if 

the statistic is higher than y2 and the decision of a secondary user is 0 if the statistic is lower 

than y, . This censored approach reduces the average number of bits sent to the fusion center 

as the unreliable information is censored. 

An energy efficient cooperative spectrum sensing is proposed in [21]. The cognitive radio 

network shall use a combination of sleeping and censoring to reduce the energy consumption. 

In this scheme, when in sleep mode, each secondary user switches off its sensing transceiver 

and incurs no observation costs or transmission costs. It also censors the transmission of 

statistics to the fusion center, if the statistics fall within the ambiguous region [71'721. Let 

Cs; and C1, be the energy consumed by the i h̀ secondary user in sensing and transmission, 

respectively. The average energy consumed for the cooperative sensing network is given 

by,[22] 
N 

C,. _ (I —)(c1 + Cl; (I — P)) 	 (2.26) 

where p denotes the censoring rate and ,u is the sleeping rate of the secondary users. 	 1̀ 

The censoring rate p is the probability of the test statistic to fall in the ambiguous region 

given by P[y, <E <72] where E. is the test statistic of the ith secondary user. Hence the 

parameter p can be written in terms of y~ and y2 . The objective is determine the optimum 

sleeping rate 1 u and the censoring thresholds y, and 72 to minimize the average energy 

consumed CT , subject to constraints on probability of false alarm Pf <— a and probability of 

detection P. >_,Q. Here a and 6 are pre-specified design parameters. The energy 

optimization problem is given by,[22] 

min CT 
P,Yi'Y2 	 (2.27) 
such thatPf <_a,Pd >_/3 
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2.4.3 Relay Assisted Approach 

A relay assisted cooperative spectrum sensing scheme based on amplify and forward protocol 

is proposed in [22]. A cognitive radio network with two secondary users UI and U2 is 

considered as in figure (2.7). These secondary users are assumed to be operating in a fixed 

time division multiple access (TDMA) mode to send data to the fusion center. Secondary 

users shall vacate the band as soon as possible if primary user starts using that band. If a 

secondary user, say Ul, is far away from a primary user, the primary user signal power 

received by Ul will be weaker compared to the secondary user U2 which is nearby the 

primary user. The secondary user, which receives weaker primary user power levels, may 

take longer time to detect the primary signal. Cooperation among the secondary users shall 

reduce this detection time of the secondary user with weaker primary signal power levels and 

improve the agility of the network. Secondary users Ul and U2 shall transmit data in 

successive slots using amplify and forward relaying as shown in figure (2.8). 

5oundaryof 
dxodabl tyofP 

Figure 2.7: Relay assisted cooperative sensing[22] 

U1, Tx 	U2  Rd.ay U2  Tx 	U, R ;la 	... 
tie 

Figure 2.8: Relaying protocol used.[22] 
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In the first time slot T1, U1 transmits and U2 listens. At time slot T1, the signal received by 

U2 from Ul is given by, [22] 

Y2 = Ohp2  +ah12  +w2 	 (2.28) 

where hP;  denotes the instantaneous channel gain between the primary user and U;, 

h12  denotes the instantaneous channel gain between U1 and U2 

w2  denotes the additive complex Gaussian noise, 

a denotes the data sent from U 1 

B denotes the primary user indicator; 0 =1 implies the primary user presence and 

B = 0 implies the primary user absence. 

In the next time slot T2, U2 relays the message and U1 shall listen to its own message relayed 

by U2. The signal received by U 1 from U2 is [22] 

Yt = ii Y2/2 + Bh 1  + w1 	
(2.29) 

= /31 h12 (8hh2  +ah12  +w2 )+0h 1  +w1  

where ,8 represents the scaling factor used by U2 for the relayed message. Secondary user 

U l  can cancel the message part and is left with the signal [22] 

Y=OH+W 	 (2.30) 

where H = h 1  + /31  h12hp2  and W = w1  +.h12w2  . 

Hence given the observation Y, the 'detection problem at U I is to identify if 0 = 0 or 9 =1. 

This relay assisted cooperative spectrum sensing scheme shall improve the probability of 

detection of the primary user. Compared to non cooperative systems, this cooperative sensing 

scheme provides agility improvements as it reduces the detection time given by the number 

of slots for detection. 

2.5. Tradeoffs in Cooperative Spectrum Sensing 

2.5.1 Sensing-Throughput Tradeoff 

The sensing duration is an important parameter that can determine the sensing accuracy. A 

longer sensing duration can increase the probability of detection of the primary user but result 

in longer waiting time for secondary users [23]. Let the sensing duration be r and T be the 

fixed frame duration. The cognitive radio network periodically senses for every frame 
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duration T. The time available for the cognitive radio network for data transmission is T--r.  . 

Let Co be the throughput of the cognitive radio network when it operates in the absence of 

primary users and C1 be the throughput in the presence of primary users. For example, let us 

consider one point to point transmission in the secondary network and SNR of this secondary 

link is SNRS  = J. / No , where P5  is the received signal power of the secondary user and No is 

the noise power. Let P be the interference power of primary user measured at the secondary 

user receiver. Let us assume that the primary and secondary user signals are Gaussian, white 

and independent of each other. Then the throughputs Co and C, are given by [23], 

Co  = log 2(1+SNR,,) 

C, = log, 1 + 	= log2  1 + SNR
r 	 (2.31) 

PP +No 	 1+SNRP  

where SNRR  = Pp  /No . Let P(Ho) be the probability that primary user is present and P(H1) be 

the probability that primary user is absent. Let y be the detection threshold of the secondary 

user. 

The average throughput of the secondary network is given by [23] 

R(r)= T —r Co(1— Pf(Y,z))P(H0)+T T r C,(1— Pd(Y'z))P(H1) 	(2.32) 

where the probability of false alarm Pf  and the probability of detection Pd  depend on 

threshold y and sensing duration r. 

We can find that as the sensing time r increases, the throughput reduces. However, as the 

sensing time z increases, the probability of false alarm reduces for a given probability of 

detection. This improves the throughput as the probability of detecting a spectral hole 

increases. The objective of the sensing-throughput tradeoff problem is to find the optimal r 

such that the throughput is maximized with a constraint on the probability of detection of the 

primary user. It can be formulated as[23] 

max 	R(r) 

such that Pd (y,r)>_Pd  
(2.33) 

where Pa, is the minimum target probability of detection of the primary user. 

21 



The sensing-throughput tradeoff is considered for "k out of N" rule based cooperative 

spectrum sensing in [24]. For "k out of N" rule based cooperative spectrum sensing the 

average throughput of the cognitive radio network is given by 

R(r, k, Y) = T r  Co  (1— Q1  (r, k, Y))P(H0) + T  r C1 (1 — Qd (z, k, Y))P(H,) (2.34) 

where Q f  refers to the probability of false alarm of the cooperative spectrum sensing system 

and Qd  refers to the probability of detection of the cooperative spectrum sensing system. 

These probabilities are functions of sensing duration z threshold y and the value of k 

chosen for "k out of N" rule. The sensing throughput tradeoff optimization for "k out of N" 

rule is formulated as 

max 	R(z, k, y) 
r,k,y 	 _ 	 ( 2.35) 
such that Q. (r, k, y) >_ Qd  

where Q. is the minimum probability of detection that the fusion center needs to achieve to 

protect the primary user. 

2.5.2 Cooperation-Processing Tradeoff 

Cooperative sensing improves the probability of detection of the primary user by providing 

diversity gain. The sensing time of individual secondary users can be reduced as the number 

of cooperating secondary users increase. However, as the number of cooperating secondary 

users increase, the transmission time of the local sensing statistics or decisions to fusion 

center results in overhead. There exists a tradeoff between local processing time and time for 

sending the sensing results to the fusion center.[25] 

This tradeoff can be formulated as the following optimization problem[25] 

min 	Ts  =z+nTc  
r,n 

such that Qd  (z, n) I SNR=SNR.n  1— 	 (2.36) 
Q j (r,n)=E 

n >_ 1, n integer 
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where Ts  is the total time consumed for cooperative sensing 

r is the sensing duration, 

T,_ is the time consumed for polling the secondary user by the fusion center 

Qd  is the probability of detection of cooperative sensing system 

Qf is the probability of false alarm of cooperative sensing system 

n is the number of secondary users 

,Q and a determine the constraints on probability of detection and probability of false 

alarm respectively 

SNRm;,, is the minimum SNR at which the cognitive radio network has to detect 

the primary user. 

2.6. Multiband Joint Detection 

Wideband sensing refers to identifying spectral holes over multiple frequency bands over a 

wide range of frequency. Multiband joint detection refers to jointly detecting multiple 

spectral holes of wideband spectrum. A spatial-spectral joint detection method is proposed in 

[7],[26]. This is a cooperative wideband sensing scheme which jointly detects multiple bands 

by exploiting the spatial diversity provided by multiple secondary users. This is a scheme 

based on the linear combination of statistics received from secondary users for each of the K 

subbands. Let us consider M secondary users. sensing K subbands. Let Tk  ; be the statistics for 

the kth  subband obtained by the i'h  secondary user. Each secondary user sends the statistics to 

the fusion center. For the subband k, the sensing results of M secondary users can be 

represented by the vector Yk  = [Tk ,,Tk2 ,.....Tk,,51 ]T  At the fusion center, for each subband, the 

sensing results are linearly combined through a weight vector wk =[wk,l ,Wk,2......wk,M]̀   as[7] 

` 
_ 

Zk Wyk = 	Wk,iYk,i 
i=1 

(2.37) 

23 



The test statistic Zk is compared to a threshold Yk for each subband as[7] 

H1 ,k 

Zk 	Y k 	k =1, 2, ....K 
	

(2.38) 

HO,k 

An optimal spatial-spectral joint optimization problem can be formulated as the problem of 

maximizing the aggregate throughput R(y,W) of the cognitive radio network subject to the 

constraints on aggregate interference IQ', W) , maximum interference in each subband and 

minimum opportunistic utilization in each subband. This optimization problem is given by[7] 

K 

max 	R(7, W) =Irk P(HQ.k I H0,k , Yk' wk ) 
7,W 	 k=1 

K 

such that I(y,W) = I ck P(Ho ,k H,,k , Yk' Wk) ~ 	 (2.39) 
k=1 

P( HO,k I H1, Yk' wk) ~ ak , k =1,2,....K 

P(HOk I HO,k,Yk,wk)?Qk, k=1,2,....K 

where y ={Y1'72 ......YK ]T is the threshold vector 

W = [w1 , w2 , ....WK ] is the matrix of weights for K subbands and M secondary users 

ak is the maximum allowable interference in the subband k and 

/3k is the minimum opportunistic utilization in the subband k. 
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Chapter 3 
COOPERATIVE SPECTRUM SENSING BASED ON 
ENERGY DETECTION 

Energy detector based approach is a common way of spectrum sensing because of its low 

computational and implementation complexities [2]. The energy detector is optimal if the 

secondary users have limited knowledge about primary user signal [29]. The energy of the 

band pass filtered signal is compared to a threshold to determine whether the primary -signal 

is present. The challenges with energy detector based sensing are selection of the threshold 

for detecting primary users, inability to differentiate interference from primary users and 

noise, and poor performance under low signal-to-noise ratio (SNR) values. The noise power 

uncertainty that exists due the difference between actual and the estimated noise powers also 

degrade the probability of detection of the energy detector [27]. This chapter describes the 

cooperative spectrum sensing of single band of Orthogonal Frequency Division Multiplexing 

(OFDM) primary signals using energy detection. A sub optimal method based on modified 

deflection coefficient [15] is applied for data fusion and the performance is studied for 

various channels. The average number of statistics required for the modified deflection 

coefficient based method is compared to sequential probability rtest (SPRT) [11], [12] 

based data fusion and detection. 	 TRAL L f ,. 

ACC No .................~~~ 

3.1. Local Sensing 	 Dare .................... 

The primary system is assumed to be an OFDM system cons' ' 	wband subcarriers 

each modulated by quadrature amplitude modulation (QAM). An OFDM signal is 

constructed by feeding symbols to an Inverse Fast Fourier Transform (IFFT) through serial to 

parallel conversion [28]. If C(0),C(1),...,C(Td-1) are Td complex QAM symbols, then the 

output of the IFFT is 

j 2rr ft 

c(t) = 	f Y_ C(f)e Td Zd 1=0 
(3.1) 

where t is a discrete time index , f is a discrete frequency index and Td represents number of 

useful symbols. Tc symbols are added in front of the block as the cyclic prefix to form an 
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OFDM block [C(Td —T).......C(T, —1), C(0)......., C(Td —1)] which is of size TS = Td + T. A 

transmitted frame may contain several such blocks. Let us denote the symbols of the 

transmitted OFDM frame by s(t). Let Ho be the null hypothesis indicating that the primary 

signal is absent and Hj be the alternate hypothesis that the primary signal is present. Then the 

hypothesis testing problem is written as 

HO: x; (t) = w, (t) 

HI: x;(t) _ Y- h (l)s(t—l)+w,(t) 
t=o 

(3.2) 

where h1(1) with 1=0,1,....P-1 represents the channel taps. The fading channel is assumed to 

be slow with hi(l) constant during the interval of observation. By the Central Limit Theorem, 

c(t) is approximately Gaussian, since it is a linear combination of Td signals [10]. Also 

E[C(f)] =0 and E[s(t)]=0. If the channel gains are random and uncorrelated then for different 

hypothesis the probability distribution [28] shall be 

	

HO: x, (t) 	CN(0, a-,z , ) 
(3.3) 

	

Hl: x1 (t) 	CN(0,o ; +v,o ) 

Y-1  2 
where o is primary signal power, 6W is the noise power and v, _ I I h; (1) J is the total 

gain at each secondary user. The energy of the received signal x1(t) of M samples is computed 

as [28] 

	

1Nr-1 	2 
(3.4) 

M r=o 

Using central limit theorem for correlated variables [28], it can be shown that 

4 

N cr ~W j 	 HO 
W 'M 

Y,. 	 (3.5) 
(Q2 +V,6 2 )2 N (aW , + vl cr./ ' 	W,~ 	~ 	Hl 

M 
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Based on Neyman-Pearson criterion, the decision rule of each secondary user is given by [28] 

HI 

HO 

(3.6) 

where y, is the decision threshold for each secondary user. The probability of false alarm and 

probability of detection at each secondary user is [15] 

P .—P> 	— Y ; — E(Y,.I HO) 

	

 
= (Y , Y; HO 

 ) — Q Var(Y,. I HO) 	
(3.7) 

	

P(Y,. > Y, I Hl) = Q r,  — E(  I Hl) 	
(3.8) 

Yar(Y,. HI) 

3.2. Global Data Fusion 

3.2.1 Modified Deflection Coefficient Based Data Fusion 
To allow multiple secondary users to collaborate, the test statistics are transmitted to the 

fusion center via a dedicated error free control channel. The global statistics can be computed 

as linear combination of Y; [15] as follows 

M 
Yc _ 	w,.Y,.=wTY 

j] 

 
(3.9) 

where w =[w1 ,w2 ,....W K ], wi>O is the weight vector to control the global spectrum detector. 

The combining weight for the signal from a particular user represents its contribution to the 

global decision [15]. For example, if a cognitive radio generates a high-SNR signal that may 

lead to correct detection on its own, it should be assigned a larger weighting coefficient. For 

those secondary users experiencing deep fading or shadowing, their weights are decreased in 

order to reduce their negative contribution to the decision fusion. Since Yi are normal random 

variables, their linear combination is also normal. Y, has mean [15] 

IcT w 	HO 
Y =. (Y)_ 	T 	

HI 	
(3.10) 

(Q+rr s.g) w  
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where g = [v,, v2, ......vK ]'' represents the channel gains for each of the secondary users and 

 
072,2' 	

T 
"""'07H~,x represents the vector of noise variances of the secondary users. 

Yc has the variance [ 15] 

	

Var(Y) = E(Y Y)2 = wT E[(Y-Y)(Y-Y)T ] w 	 (3.11) 

For the different hypotheses the variances are 

Var(YY I HO) = wT E[(Y-YHo )(Y-YHO )' I H0] w 
K  4 

)M 2  

= WTYHO W 
(3.12) 

a 	a 	 4 

with E HO = diag(_,v,i 	 ,v,2 	6w,K 

M , M . ****, M 

Var(Y. I HI) = wT E[(Y-Y f„)(Y-YH , )T I H1] w 

K (o,, + V16.,2)2 ) 2 
A,~ 	W 

r=1 	 Lvl 

= WTzH,w 	 (3.13) 

(6a v,.2 + V16s2 )2 (a 2 2 + V2Qx2 )2 	law K 2 +VK6s2 )2 
with E H , = diag( 	

M 	 M 	I...... 	M 

Since EH, is positive semi-definite and diagonal, its square root can be written as 

1/2 	(U”".2 +V1a 2)2 

/(a .

22 V26~2)2 	(o I K2 -{-vK6ti2)2 

(3.14) 

The weight vector can be obtained by maximizing the modified deflection coefficient [15] 

d2 _ [E(), I H1) — E(Y (HO)]2 _ (6,?gT w)2 	 (3.15) 
m 	 var(Y.I Hl) 	wTYHIW 
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The modified deflection coefficient is maximized under the unit-norm constraint on the 

weight vector [15], 

maxdm (w) 
W . 	 (3.16) 

under the constraint IIw112 =1 

This problem is solved as follows. Applying the linear transformation w = 	w we 

get,[15] 

2 	~4w rTz-TJ2ggTz-1/2w 9 
HI d(w)= S w FT w r 

mss „ 	 (3.17) 
cr II > _T/2g II2 

where the inequality follows from Rayleigh Ritz inequality and the equality is achieved if 

w' = EHT/2,g 	 (3.18) 

T/2 T-T/2 
which is the eigen vector of the positive semi-definite matrix ZHI gg Z- corresponding to 

the maximum eigen value. The optimum solution for w [15] is 

-v2w 
HI 

~'- 	 H I 

(3.19) 

which maximises d,,'`. To enforce E(Y~IHI)> .E(Y,{H0) the weight vector is considered as 

w° = sign(gT w)w 	 (3.20) 

Considering the linear rule at the fusion center with a threshold Yc, we have the global 

decision rule 

HI 

Y — yc  
(3.21) 

HO 
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The probability of false alarm and probability of detection with the global decision rule is 

given by 

P f _ Q  YcTT T  W 	 (3.22) 
w Y-H0W 

'd 
_ Q  YC  (a  + T g)T  W 	 (3.23) 

WT Y-HI  W 
J 

3.2.2 Sequential Detection 
In sequential detection the fusion center receives the log likelihood ratio (LLR) from each 

secondary user sequentially. A sequential detection scheme known as sequential probability  

ratio test (SPRT) is utilized. After receiving each statistics Y; from the i"' secondary user, the 

log likelihood ratio (LLR) Li is calculated and a sequential hypothesis test is performed. If 

sufficient evidence is available to conclusively decide either of the hypotheses, the test 

procedure is terminated. Otherwise the hypothesis test is continued. The test procedure after 

receiving `k' statistics [11],[12] is 
k 

L, <_ log B Decide HO 

k E L;  ? log A Decide Hl 	 (3.24) 

Otherwise, take the next user statistics 

where, 

A= 1-/3 
P f  

B= 13  
I — P f  

L  —_ In  P(1; I  HI)  _ In var(Y  l HO)  + — (V,—E(    V I Hl))2  + (Y, — E(Y  j  HQ))2  
' 	P(Y I HO) 	var(Y,. Hl) 	(2 * var(k I Hl)) (2 * var(Y,. I HO)) 

Here /? =1—P, The mean and variances of Y; under the two hypothesis is found from (3.5). 

The number of log likelihood ratios used to form the decision, k=Ks  is a random variable. 

Performance of a sequential detector can be expressed in terms of the average sample 
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number. The average sample number for the sequential probability ratio test is defined as the 

number of samples (statistics) required on average for arriving at a decision under either 

hypotheses. Under the two hypotheses assuming that the signal and noise powers are same in 

each secondary user, the average numbers of samples for the SPRT [11], [12] are, 

P  logA+(1—Pf )logB 
. E[K H0J = f  

E[L;  HO] 
(3.25) 

E[K I HlJ— (1—/3)log A+ /3  log B 
E[L, H1] 

The average sample number for the sequential probability ratio test is given by 

K. = max{E[K,. I HO], E[K1  I Hl]} 	 (3.26) 

By simulations, we obtain the average sample number required for sequential probability 

ratio test and for modified deflection coefficient based data fusion and compare them. 

3.3. Results and Discussion 
The performance results for a spectrum sensing are described in terms of the receiver 

operating characteristics plot for various channels. The parameters used for the simulation for 

local sensing are given in the table 3.1. These parameters are same as that used in [5]. 

Table 3.1: Simulation parameters for the local sensing with energy detection 

Number of OFDM blocks 100 

OFDM symbol type 16 QAM 

Size of IFFT (Td) 32 

Cyclic prefix length (Ta) 8 

Number of OFDM samples 10O(Td+Tc)=4000 

3.3.1. Local sensing 

The receiver operating characteristics of the energy detector for a single cognitive radio for 

AWGN, slow frequency selective Rayleigh fading, shadowing, correlated shadowing and 

slow frequency selective Rayleigh fading with shadowing channels is simulated. The slow 

frequency selective Rayleigh fading channel of channel order 6 is simulated by complex 

Gaussian coefficients with exponential power delay profile. For simulating shadowing 
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M 
= 0. 0 y 

0_ 

o 0. 

0. 

effects, the SNR of the user is selected randomly from a Gaussian distribution with mean 

SNR=-17 dB and standard deviation of 5 dB for each realization. 

It can be seen from figure (3.1) that the slow fading channel degrades the performance 

compared to AWGN. For shadowing channel, the energy detector has lower probability of 

detection for higher probabilities of false alarm compared to AWGN channel. For 

AWGN+Shadowing+Fading channels the energy detector has lower probability of detection 

compared to AWGN+Shadowing due to the Rayleigh fading effects. 

ROC plot for SNR=-17db 

• ^^ Rayleigh fading 
AWGN 

I— Shadowing 

Rayleigh fading and shadowing 

a0 

0. 

H 

0.1 	0.2 	0.3 	0.4 	0.5 	06 	0.7 	0.8 	0.9 
Probability of false alarm 

Fig 3.1 Energy Detection-Receiver Operating Characteristics Plot for Local Sensing 

3.3.2. Cooperative sensing 

From figure (3.2) we find that cooperative sensing through the modified deflection 
coefficient method can improve the sensing performance for various channels. 5 secondary 

users are used for the simulations. 

In figure (3.3) we compare the average number of secondary user statistics of the sequential 

detection based data fusion to that of the modified deflection coefficient based data fusion (a 

fixed sample size based method) for AWGN channels. For the sequential detection the limit 

for false alarm rate is set to 0.05 and the limit for the probability of miss detection is set to be 
0.05. The sequential detection is truncated at a maximum number of user statistics of 100. It 
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can found from figure (3.3) that the average number of secondary user statistics-required is 

lesser for sequential detection. 

ROC plot for SNR = -17db 
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Figure 3.2 Receiver Operating Characteristics Plot for Cooperative Sensing based on 
Modified Deflection Coefficient ( 5 secondary users ) 
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Fig 3.3 Comparison of Sequential Detection with the Fixed Sample Size Modified Deflection 
Coefficient Method 
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In figure (3.4) the performance of cooperative sensing in the presence of correlated 

shadowing is plotted for 2 users. This study of correlated shadowing is also reported in 

[17],[181. The shadowing correlation would degrade performance of collaborative sensing 

when collaborating users are close. This is because the closely located users are likely to 

experience similar shadowing effects. The correlation function due to shadowing is p (d) _ 

exp(-ad) where `a' is a constant depending upon the environment [17]. The value of `a' used 

for simulation is 0.1204 considering urban environment. The correlated shadowing is 

simulated by considering SNR of the users given by a correlated normal distribution with 

mean -17 dB, standard deviation cr =5dB and covariance matrix of a 
1

2 	p  
[ P 1  

ROC plot for SNR = -17dB 
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Fig 3.4 Energy Detection-Receiver Operating Characteristics Plot for the Correlated 
Shadowing Channels (for 2 secondary users for various distances). 

0.9 

0.8 

34 



Chapter 4 

COOPERATIVE SPECTRUM SENSING BASED ON 

CYCLIC PREFIX BASED CORRELATION 

DETECTION 

Orthogonal Frequency Division Multiplexing (OFDM) is used in various applications such as 

digital television, audio broadcasting, wireless networking and broadband internet access. 

Hence the problem of sensing the OFDM primary signals is important. The presence of cyclic 

prefix in the OFDM primary signal can be exploited for spectrum sensing [5]. For OFDM 

symbols the autocorrelation coefficient is non zero at a lag of ±Td samples, where Td is the 

number of samples of useful symbol duration in the OFDM block. A study of this cyclic 

prefix based autocorrelation detector proposed in [5] is done for fading and shadowing 

channels. For global fusion of the test statistics a fixed sample size based likelihood ratio test 

is applied. This is compared with sequential detection based data fusion. 

4.1. Local Sensing 

The primary user is assumed to transmit an OFDM signal same as that defined in section 3.1. 

Let HO be the null hypothesis indicating that the primary signal is absent and HI be the 

alternate hypothesis that the primary signal is present. First an AWGN channel is considered. 

The hypothesis testing problem is written as [5] 

HO: x(t) = w(t) 
Hl: x(t) = s(t) + w(t) 

(4.1) 

where x(t) is the received signal in a secondary user and w(t) is the complex circular additive 

white Gaussian noise. By Central limit theorem if the IFFT size is large s(t) will complex 

Gaussian distributed. 

HO: x(t)~CN(0, 0.2 ) 

H1:x(t)-CN(0,o- ±o) 
(4.2) 
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Since x(t) = xr (t) + jx, (t) is a circularly symmetric Gaussian random variable, real and 

imaginary parts of x(t) are distributed as, [5] 

x,(t)—N(0,o /2) 
(4.3) 

x, (t) — N(0, oX / 2) 

For a cyclic prefix decoder, the value of the autocorrelation coefficient 

p(z) = E(x(t)x(t +T)] / E[x(t)x * (t)] for lags of r =±Td under the two hypotheses is [5] 

HO: p(±TT )=0 
4.4) 

H 1: p(+Ta) = p, 	
(  

Tc o 	Tc SNR 
where 	= 

2 

Here SNR = 6.2 (4.5) 

For a real valued coefficient p(z) = p(—r) .Hence only p(T~,) is considered. The observation 

is considered over several OFDM samples i.e., x(0),x(1),....x(M+Td —1) where M>>Td. Two 

real random vectors zI and Z2 are formed given by 

z, =[x,(0) x1 (0) xr (1) x; (1) ......xr (M-1) x,,(M-1)] 	 (4.6) 

z Z =[x,.(Td )x,(TJ )x,.(TJ +1)x,(TJ +1) ......xr(M+TJ -1)x;(M+Td -1)] 

Here Xr(t) and x1(t) are the real and imaginary parts of x(t). Due to the circular symmetry 

assumption, the zero mean random variables xr(t) and x1(t) and are independent and 

identically distributed. The random variables zi(t) and z2(t) which are tth component of the 

vectors zl and z2 respectively, are jointly Gaussian under both the hypotheses with probability 

densities given by [5] 

.f(zj(t),zz(t)1 H0)= 2 62 exp —~
[Z,2(1)+

z~~(t (4.7) 

f(Zi(t),Z2(t)1 HI) — 21r6Z 1]— 
z exp —2(1 1pIZ)[z,z(t)-2p,zi(~t2zz(t)+Z22(t)] 

where a1 = (6? + o ) / 2 and 60 = w /2.  The likelihood ratio test for the hypothesis test is 

given as [5] 
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2M-1 ,/ ( ZI ( t ), Z2(t ) I HI) A=fl 
 

r_o .f (z1(t), z2 (t) j HO) 	
(4.8) 

2M-I 

62M 	 1 	1 	1 )2A4-1(Zjj(t) 	 P1 ~, zl (t)z2(t) 

6iM (l o Pi )M eXp - 2 (1_Pi)61 
60 	+ z22 (t)) + 

(l  ,2 ) 2 

Since zi(t) and z2(t) are identically distributed random variables, E[z12(t)]=E[z22(t)]. The 

likelihood estimate of E[zi2(t)] based on zl and z2 is given by [5] 

2M-1 

6z = 4M Y (z l 2 (t) + z22 (t)) 
	

(4.9) 

But c9-2 can be written in terms of the observations [xr (1) x, (1) x, (2) x,(2) ......xr (M) x; (M)] 

as [5] 

	

M+T 	

1

-1 	 M+Td-1 

2(M+T 6z = 	1 	(x 2 (t) + x 2 (t)) = 2(M+Td) I I x(t) I2 	(4.10) 
z 	11 ) t _o 	 r=o 

The maximum likelihood estimate p,,, of the autocorrelation coefficient p from vectors zl 

and z2 is [5] 
2M-1 
I xr (t)X (t+Td )+x;(t)x;(t+Td ) 

PML = 2M r=p 	^ 2 

6Z 	 (4.11) 
1 M-1 

—I R{x(t)x* (t+7 )} 
M r=o 

_  ^2 
6Z 

where R{} denotes real part of complex number. Using approximation & a & 6o for low 

SNR case we get, [5] 

exp –2M P,2 2 + 2M p, PMT 

A= 
1–p, 	1–p, 
(1 -- p2 )M 

The log likelihood ratio (LLR) is given as [5] 

L= ln(A) =–M In(1–p; )+2M P,(PM' ZP, ) 
1–p, 

(4.12) 

(4.13) 
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Therefore, when using the LLRT, the alternative hypothesis for the present hypothesis test is 

decided if L > q, where r~~ is the threshold of the detector. Equivalently, H1 is decided if 

z 
PMT > (1-P)( +Mln(1-p12 ))+P1 = 77, 	 (4.14) 

2Mp, 

Thus pmL is the required test statistic for the hypothesis test. If 5,, is the symbol correlation 

coefficient for 2M symbols, from a real valued Gaussian distribution with correlation p , 

2M 

 

'J (/ ML - P) -  then  
I-P

z 	is asymptotically distributed according to N(O, 1). [5] This can be 

applied to the two hypotheses as follows [5] 
d 

HO: lim 2MPML -> N(0,1) 
"'-'°° 	 (4.15) 

Hi: lim 2MPML -~ N( 2M p„ (1- Pi )2 ) 

where p, = Tc 	Z6S 	and `-+' denotes the convergence in distribution. Using these 

distributions, we can approximate the distribution of the test statistic for sufficiently large M 

as[5] 

1 
HO: PMJ - N(0,-2M ) 

(
1- Z )2 

H1:bvL-N(pl, 2M  ' ) 
(4.16) 

This can be considered as Neyman-Pearson detection problem to satisfy a constant false 

alarm constraint. The probability of false alarm is given by [5] 

Pr = P(PM, > 77, 1 HO) = Q ( 2Mr7,) 	 (4.17) 

For a false alarm rate of Pf, the threshold of the detector can be evaluated as 

77 
	 (4.18) 
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The probability of detection [5] is given by 

Pd =P("Mc > Ali JH1)=Q 	rlr–Pi 	 (4.19) P (l _Pi )2 

2M 

4.1.1 Knowledge of Cyclic Prefix 
If the length of the cyclic prefix (Tc) and the synchronization information (position of the 

cyclic prefix in an OFDM block) is known, the performance of the detector can be improved. 

The maximum likelihood of the autocorrelation coefficient can be rewritten as[5] 

1 M-[ 
— j R{x(t)x`(t+Td )} 

	

PneL — 	" z 
6Z 

N,-1 7I 	 (4.20) 

jR{x(nT +t)x* (nT +t+.Td )} 
M n=O t=O 

	

- 	 e2 

where NS =M/TS is the number of OFDM blocks over which autocorrelation coefficient is 

estimated and T,=T,+Td is the number of symbols in an OFDM block. In absence of 

information related to the cyclic prefix, the numerator is obtained by summing the product 

over a sliding window of length TS for an OFDM block and again adding these sums for NS 

blocks. If length of the cyclic prefix and the position of the cyclic prefix in an OFDM block is 

known then the sliding window can be reduced to Tc symbols for each block as follows [5] 

— I I R{x(nT,. +t)x* (nTT +1 +T)} 
P _ 	n=o leCJ 	 (4.21) 

M, 6Z 

where CP denotes the cyclic prefix samples and M1= T,NS. The distributions under different 

hypotheses are given by [5] 

HO:p~•~Nr(0,
1 )

2M 

HL j' p~ ~ N. (P~, (1– P, )2 ) 2M, 

(4.22) 
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where p, = SNR / (1+ SNR) .The Neyman-Pearson detection can be applied for the given 

probability of false alarm. The probability of detection is found to be higher if the cyclic 

prefix length and synchronization is known. 

4.1.2 Local Sensing for Multipath Channels 
Under HO and H1 the received signal x(t) can be written as[5] 

HO: x(t) = w(t) 
P-1 

HI: x(t) _ Eh(1)s(t-1)+w(t) 
1=o 

(4.23) 

where h(l) with l=0,l,....P-1 represents the channel taps. Channel taps are assumed to be 

independent of each other, of the transmitted data s(t) and of the noise w(t). The 

autocorrelation coefficient for two hypotheses is [5] 

HO: p=0 
(4.24) 

Hi: P=pz 

where p = E(x(t)x(t + Td )] / E[x(t)x * (t)] 

p2 = E(x(t)x(t +Td ) I HI] / E[x(t)x * (t) I Hi] 

	

Tc 	6o 	 (4.25) 

	

with 8 = 	ELI h(1 ) I z ] 
r=o 

If s(t), h(t) and w(t) are circularly symmetric and Gaussian, x(t) is circularly symmetric and 

Gaussian. Similar to the AWGN case, p,, can be calculated by (4.11). The asymptotic 

distributions for 3M, under the two hypotheses are [5] 

1 ~ 

z)2  (4.26) 

(1— p22)2  HI: pML N,(p2, 2M 
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Using these distributions the Neyman-Pearson detector can be designed as in (4.17) and 

(4.18) with p, replaced by p2 . The SNR for multipath channels is given by 	.[5] 
&7 +a 

4.2. Global Data Fusion 

4.2.1 Neyman-Pearson Likelihood Ratio Test 

If Kf is the number of samples required for the fixed sample size test, the likelihood ratio test 

based on Neyman-Pearson criterion can be written as [5] 
Kf 

ZL„< ri3, Decide HO 
n=l 	 (4.27) 
Kf 

j`L">r73 , Decide H1 
n=i 

K1 

where 7h is the threshold of the detector. Equivalently the test statistic T f = 2MI p" p2 can 
n=1 1— P" 

be used. This statistic T~. contains only the variable terms of L. . The fixed sample size test 

can be [5] written as 

Tf< i7 f , Decide HO 
Tf>_ r~ f , Decide Hl 	

(4.28) 

K 	 K 

f  f P„ where f = 773 + MI log(l — p„) — 2M 	Z 
n=, (l —Pn) 

Since p" is Gaussian distributed, Tf which is a sum of Gaussian distributed random variable 

will have the distributions,[5] 

HO:Ty N(0,6rp ) 
(4.29) 

Hl : T f N(m f , 6~, ) 

where 
K f pZ 

n 
	 (4.30) 
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Kf 	Z 

cr = 2MI P" 22 	 (4.31) 
n=1 (l — Pn ) 

xj 

c? = 2MI P„ 	 (4.32) 
n=1 

4.2.2 Sequential Detection 

For sequential detection the fusion center receives the log likelihood ratios from each 

secondary user sequentially. After receiving each log likelihood ratio from a secondary user, 

a sequential probability ratio test (SPRT) is performed. The channel is assumed to an AWGN 

channel. If sufficient evidence is available to conclusively decide either of the hypotheses, the 

test procedure is terminated. Otherwise the hypothesis test is continued. The number of 

samples required for sequential probability ratio test can be compared with the Neyman-

Pearson fixed sample size test. The test procedure after receiving `k' statistics is [5],[11] 
k 

L„ <_ log B Decide HO 
n=~ 
k 

>_ logA Decide H1 	 (4.33) 
n=J 
Otherwise, take the next user statistics 

where, 

A- 1—/3 
P1 

(4.34) 
B= /3 

1—Pf 

and L„  
1— Pn 

Here ,3 =1— Pd and p„ is the autocorrelation coefficient of the nth user. The number of log 

likelihood ratios used to form the decision, k=Ks is a random variable. Performance of a 

sequential detector can be expressed in terms of the average sample number. The average 

sample number for the sequential probability ratio test is defined as the number of samples 

(statistics) required on average for arriving at a decision under either hypotheses. Under the 



two hypotheses, the average numbers of samples for sequential probability ratio test when 

p„ = p1Vnare, [5],[11] 

Pf logA+(1—Pf )logB 
E[K,. HO] _ 

E[L,, I HO] 
(4.35) 

E[K,, J Hi] = (1—,6) log A + flog B 
E[L„ I H1] 

The mean values of the LLRs under the different hypothesis is given by [9] 

E[L„ HO] = —M log(1— pn) — 2M  P" 
1— p 	 (4.36) 

E[Ln  I Hl]=—Mlog(1—p,2 ) 

The Average sample number for the SPRT is given by[9] 

K. = max{E[K,. I HO], E[K I HI]) 	 (4.37) 

4.3. Results and Discussion 

The parameters of OFDM primary signal used for simulation are same as that used in chapter 

3 for energy detection. They are repeated here in table (4.1) for convenience. 

Table (4.1) Parameters for local sensing with cyclic prefix based correlation detection 

Number of OFDM blocks 100 

OFDM symbol type 16 QAM 

Size of IFFT (Td) 32 

Cyclic prefix length (Ta ) 8 

Number of OFDM samples 100(Td+Tc )=4000 

4.3.1. Local sensing 

The cyclic prefix correlation detector is simulated for AWGN, slow frequency selective 

Rayleigh fading, shadowing, correlated shadowing and slow frequency selective Rayleigh 

fading with shadowing channels. The slow frequency selective Rayleigh channel of channel 

order 6 is simulated by complex Gaussian coefficients with exponential power delay profile 

with the normalisation 6= 	E[I h(Z)12 ] =1. For simulating shadowing effects, the SNR of 
r=o 
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the user is selected randomly from a Gaussian distribution with mean SNR=-10 dB and 

standard deviation of 5 dB for each realization. 

It can be seen from figure (4.1) that the slow frequency selective Rayleigh fading channel 

degrades the performance compared to AWGN. It can be seen that for higher probability of 

false alarm, the detection probability in shadowing channel is lower than that of AWGN 

channel due to the shodowing effects. For AWGN+Shadowing+Fading channels the cyclic 

prefix based correlation detection has lower probability of detection compared to 

AWGN+Shadowing due to the Rayleigh fading effects. These results are similar to that in [5] 

for shadowing channels and. AWGN channels. 

Figure (4.2) shows the effects of exploiting information regarding the cyclic prefix length and 

its position on the detector performance. The results confirm to that in [5].In presence of this 

additional information, the performance of the scheme improves considerably. This is the 

best performance we can get from the cyclic prefix based autocorrelation detection and it 

serves as an upper bound on the performance of the practical detectors where only partial or 

no information about the cyclic prefix is available. 

ROC plot for SNR = -10db 
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Figure 4.1 Cyclic Prefix Correlation Detection- Receiver Operating Characteristics Plot for 
Local Sensing 
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Figure 4.2 Effect of Knowledge of Cyclic Prefix-Plot for the probability of detection (as 

function of SNR for a probability of false alarm Pf =0.05.) 

4.3.2. Cooperative sensing 

From figure (4.3) and figure (4.4) it can be found that the cooperative sensing through the 

cyclic prefix based autocorrelation detector can improve the sensing performance for various 

channels. 5 secondary users are used for the simulations. 
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Figure 4.3 Cyclic Prefix Correlation Detection-Receiver Operating Characteristics Plot for 
cooperative sensing 



In figure (4.5) the average number of secondary user statistics of the sequential detection 

based data fusion is compared to that of the fixed sample size detection. For sequential 

detection, the limit for false alarm rate is set to 0.05 and the limit for the probability of miss 

detection is set to be 0.05. The sequential detection is truncated at a maximum number of user 

statistics of 1000. It is assumed that each user transmits a single log likelihood ratio per 

detection period to the fusion center. It can found from figure (4.5) that the average number 

of secondary user statistics is lesser for sequential detection compared to fixed sample size 

detectors. 
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Figure 4.4 Receiver Operating Characteristics Plot for cooperative sensing (Zoomed for low 
probability of false alarm values) 

In figure (4.6) the performance of cooperative sensing in the presence of correlated 

shadowing is studied for 2 users. The shadowing correlation would degrade performance of 

collaborative sensing when collaborating users are close. This is because the closely located 

users are likely to experience similar shadowing effects. The correlation function due to 

shadowing is p (d) = exp(-ad) where `a' is a constant depending upon the environment 
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[17],[18]. The value of used for simulation is 0.1204 considering urban environment. The 

correlated shadowing is simulated by considering SNR of the users given by a correlated 

normal distribution with mean -10 dB and standard deviation ci =5dB and covariance matrix 

of c 211 1 
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Figure 4.6 Receiver Operating Characteristics Plot for the Correlated Shadowing Channels 
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4.3.3. Comparison of Energy Detector and Cyclic Prefix based Correlation 
Detector 

In practical systems the exact value of the noise variance is unknown, due to temperature 

variations, calibration errors, etc. The performance of the energy detector degrades in the 

presence of noise uncertainty [27]. The actual noise power could be in the range 

[ow / p, o p] , where p denotes the uncertainty level and cr is the nominal noise power. 

The noise uncertainty expressed in dB considered for simulation is 10 log p =0.5dB. The 

actual noise variance deviates .5 dB from the true noise variance. Figure (4.7) provides a 

comparison of the energy detection and the cyclic prefix based correlation detection as a 

function of SNR. It can be seen that the energy detector has higher probability of detection 
than the cyclic prefix based correlation detector when there is no noise uncertainty and the 

performance of the energy detector degrades for a noise uncertainty of 0.5 dB. The cyclic 

prefix based correlation detector however is unaffected by the noise uncertainty. This 

comparison of energy detection and the cyclic prefix based correlation detection in the 
presence of noise uncertainty was also done in [9], [101. 

Energy Detection 
Noise Uncertainty 0.5 dB 
Cyclic prefix 
correlation detection 
Energy Detection 
No Noise Uncertainty 
Cyclic prefix 
correlation detection 
Noise Uncertainty 0.5 dB 

6  0.5 
Z' 

$ 0.4 
a 

0.3 

0.2 

0.1 

0 

SNR 

Figure 4.7 Comparison of the cyclic prefix based correlation detection and the energy 
detection for a single cognitive radio in the presence of noise uncertainty. 
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Chapter 5 
CONCLUSIONS 

Cognitive radio is a novel solution that reduces the spectrum scarcity by allowing secondary 

users to utilize the unused bands of spectrum without interfering with primary users. 

Spectrum sensing is a critical component of cognitive radio technology to identify the 

spectrum holes. Secondary users should reduce the interference to primary users and 

simultaneously improve, the spectrum utilization. Cooperative spectrum sensing can be used 

to provide diversity to the detection of primary users and reduce the effects of fading and 

shadowing. 

In this dissertation, cooperative spectrum sensing based on energy detection and cyclic prefix 

based correlation detection was studied for fading and shadowing channels. The data fusion 

was employed at the fusion center to combine the statistics from the secondary users. It was 

verified by simulation that data fusion based on sequential method required lesser number of 

average statistics. The energy detector and the cyclic prefix based correlation detection were 

compared for AWGN channels. The energy detector is affected by the noise power 

uncertainty and the cyclic prefix based correlation detection is unaffected by the noise power 

uncertainty. Hence the cyclic prefix based correlation detection can be employed for 

identifying the OFDM based primary users. 

Future Work 

Cooperative spectrum sensing was studied for single band systems. For wideband systems, as 

the number of bands is large, the control channel bandwidth for transmitting the statistics 

may increase. Future work may be done for wideband systems. Future work may also be 

done by considering the throughput, sensing duration, the bandwidth for control channel for 

these detectors. Research may also be done considering the errors in the reporting channel 

between the cognitive radios and the fusion center. 
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