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ABSTRACT 

Phylogenetics deals with evolutionary relatedness between various species. Origin of 

species can be established by studying this relationship. The central task in phylogenetics 

is to infer this relationship among a given set of species. These relationships are usually 

represented by a phylogenetic tree with the species of interest at the leaves and where the 

internal vertices of the tree represent ancestral species. The amount of available 

molecular data is increasing exponentially and, given the continual advances in 

sequencing techniques and throughput, this explosive growth will likely to continue 

Biologists assemble large multi-gene data set from available vast amount of data for use 

in phylogenetic analyses which imposes distinct computational challenges. As this 

biological data is vast it is infeasible to construct a large tree for analysis. As a result, 

supertree methods have been the focus of much research. Supertree methods comprise 

one approach to reconstructing large phylogenies, given estimated trees for overlapping 

subsets of the entire set of taxa, using various algorithmic techniques. 

Several supertree methods have previously been developed. In this report implementation 

of Triplet Inference and Local Inconsistency (TILI) and Triplet Supertree Heuristic 

algorithms has been done. Comparative study is carried out on the basis of execution time 

and Accuracy measurement. The obtained results infer that Triplet Supertree Heuristic 

algorithm is faster and accurate than the TILI. 
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Chapter 1 

Introduction 

1.1 Introduction of Phylogenetics 

A fundamental concept of the theory of evolution, independently developed by Charles Robert 

Darwin and Alfred Russel Wallace is that species share a common origin and have subsequently 

diverged through time. Interestingly, both men came to use the metaphor of a great tree to 

illustrate this notion of descent with modification; ever since, biologists have been using treelike 

diagrams to describe the pattern and timing of events that gave rise to the earth's biodiversity. 

According to Pennisi today biologists have catalogued about 1.7 million of species and they 

estimates of the total number of species ranges from 4 to 100 million [1]. With this explosion in 

the amount of data in taxonomy it is no longer possible to analyze and build trees by hand. The 

fact that all life on Earth is genetically related is one of the most profound scientific observations 

of all time. 

Scientists have observed that genealogical relationships amongliving things can (generally) be 

represented by a vast evolutionary tree. Constructing this tree of all life is a fundamental 

scientific problem facing human kind today. Tree Of Life (TOL) is a project (refer 

http://www.tolweb.org/tree) todiscover the relationships among all the species on Earth. This 

project presents oneof the greatest challenges of science in reconstructing the evolutionary 

history ofevery living organism on the earth. 

Under TOL many smaller projects such as"The Green Tree of Life", and "Assembling the 

Fungal Tree of Life (AFTOL)"are also proposed. Huge support is also provided from different 

funding agenciesand countries to the development of computational methods to reconstruct 

thetree of life (refer http://www.phylo.org).The fieldresponsible for this undertaking is 

phylogenetics.Trees that depictevolutionary relationships between species, or other entities, are 

called phylogenetic trees orphylogenies. 

In earlier days,phylogenies were built using morphological data i.e. for classifying seabirds 

mightinvolve comparison of beak shapes or other distinct physical attributes.Withthe discovery 
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of DNA and the design of sequencingtechniques, a new kind of information became available: 

molecular data.The increase in the availability ofDNA and protein sequence data has increased 

interest in molecular phylogeneticsand classification. Molecular phylogenetics overcomes 

limitations of morphological' phylogenetics such as, convergent evolution, finding the 

relationship amongbacteria and the comparison of distinctly related organisms [2]. 

The successes of molecular biology and genetics have yielded large amounts of datathat are 

increasingly quantitative in nature, both in number oftaxa as well as sequence length, available 

for phylogeneticconstruction. Most of the inferences in comparative biology dependon accurate 

estimates of evolutionary relationships [3, 4].Consequently there is a growing need for new 

techniques to speed up this process accurately. 

Reconstruction of ancestral relationships from contemporary data is widely used to provide 

evolutionary and functional insights into biological system. These insights are largely 

responsible for the development of new crops in agriculture, drug design and in understanding 

the ancestors of different species. 

The other applications of phylogenetics include: 

• In tracking the origins and development of humans over time [5] 

• Understanding of the process of evolution of different species, constraints,behavior and 

evolutionary time [6, 7]. 

• Performing functional prediction of genes. Most of the similarly looking genes show the 

similar functionality, looking at the evolutionary history of the newly sequenced gene 

will help in predicting its functionality [8]. 

• Development of vaccines, antimicrobial and herbicides [9, 10]. 

• Forensics studies [11]. 

In a typical molecular phylogenetic analysis, a tree on aparticular set of species is constructed by 

first collecting the DNA or protein sequences for. a homologous gene in each species, and then 

using those sequences toconstruct a tree on that set of species. (Homology is shared evolutionary 

history,and genes are called homologous if they descended from a common ancestor gene.)Using 

this sort of process to construct the Tree of Life is not feasible. 
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There are two main approaches for analyzing large number of gene datasets: constructing a tree 

by analyzing the entire dataset as a whole, or constructing a tree on each gene dataset separately 

and then combining those trees intoa single tree on the entire set of species. The first one is 

called the combined analysis, "total evidence" approach, and the second one is called the 

supertreeapproach, and a method that combines trees with overlapping leaf sets into a singletree 

is called a supertree method. 

Supertrees are meant to contain the relations between all species in aset of smaller trees, which 

are combined using a supertree method. Thereare several advantages to supertree methods. The 

first is that whenever summarizing the results of available studies on (subsetsof) a particular 

group of interest when access to the sequences is not possible. Second, producing a tree from 

disparate data-types, such as molecular, morphological, andgene-order data, that requires 

independent types of analysis (and therefore prohibits acombined analysis). Butsupertrees can be 
created from those small trees using any one of the supertree method. Since how the input trees 

have been made isnot important to a supertree method. Third is that if it is infeasible toinfer a 
tree for a large set of species in one go, it might be possible to infertrees for subsets of the 

species.These can then be combined in a supertreein manageable time. 

The use of supertree methodsto solve above such problems has received much criticism [12]. For 

example, many supertreemethods have been shown to have a size bias, favoring the relationships 
supportedby larger input trees over smaller ones. some have also beenshown to have a shape 

bias, producing either balanced or unbalanced trees moreo$en [13], and the input trees on which 

supertrees are constructed may not be completely independent (some primary data may have 

beenused in the inference of more than one input tree). However, given the limitations of current 

sequence-based phylogenetic reconstructionmethods, supertrees are presently a necessary tool 

for many phylogenetic problems [14]. In fact, most, if not all, detailed estimates of the Tree of 

Life to date has been constructed using a supertree approach: using informal supertreemethods, 

splicing together various phylogenetic trees and tree representations oftaxonomies, to achieve a 

single tree on all currently known species. 
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1.2 Motivation 
The central task in phylogenetics is to infer the evolutionary relationshipsamong a given set of 

species. These relationships are usually represented by aphylogenetic tree with the species of 

interest at the leaves and where the internalvertices of the tree represent ancestral species. 

The large applications and huge available sequence data, reflect the need fordeveloping fast and 

accurate methods for constructing the phylogenies. Mostof the existing methods accept 

molecular sequence data or distance data forthe construction of the phylogenetic history. 

Advances in molecular biology and genomic lead to the large amounts of data,both in number of 

taxa as well as sequence length, available for phylogeneticconstruction. Moreover, most of the 

inferences in comparative biology dependon accurate estimates of evolutionary relationships. In 

this scenariomethods, such as maximum likelihood, parsimony search, orquartet puzzling, play 

an important role. But they are very slow and cannot scale up to the size of the genetic data 

available. These methods compare treesaccording to a specific criterion. Ideally, all possible 

trees should be compared. But they are very slow and cannotscale up to the size of the genetic 

data available. 

After generating the genomic data of thousands of living organisms, nowcomes the task of 

classifying them and making a single tree of life. This is achallenging task and till date no 

algorithm exists that can compute most accuratetree of life. The existing phylogenetic 

reconstruction algorithms cannot be usedfor this task as they suffer with poor efficiency and 

computational hardnessproblems. 

The problem with the phylogenetic tree construction approach is thatthey cannot.be used for the 

classification of 1.7 million described species on theearth. The existing methods cannot be used 

for constructing the tree of life dueto aforementioned shortcomings. However, given the 

limitations of current phylogenetic reconstructions methods, supertrees are presently a necessary 

tool for such phylogenetic problems.In fact, most, if not all, detailed estimates of the Treeof Life 

can only be done using phylogenetic supertree methods. 
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1.3 Problem statement 

The aim of this thesis is to implement the construction of phylogenetic tree using triplet tree 

algorithms. 

1. Implementation of Phylogenetic Supertree using Triplet (Inference and) Local 

Inconsistency. 

2. Implementation of phylogenetic supertree using Triplet supertree heuristics. 

1.4 Organization of the Report 

The report comprises of five chapters including this chapter introduces the topic and states the 

problem. The rest of the dissertation report organised as follows 

Chapter 2 gives an overview of basic trees, phylogenetic trees and supertrees and the process of 

phylogenetic study. Finally it gives a brief literature review of the related wok 

Chapter 3 gives details about terminology of the triplets. It discusses about brief overview and 

implementation of the triplet inference and local inconsistency algorithm. 

Chapter 4 gives details about hill climbing heuristics, operations that can be done on the trees. 

It discusses about approach and implementation ofAlgorithm. 

Chapter 5 concludes the dissertation work and gives suggestions for future work. 
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Chapter 2 

Background and Literature Review 

The biological discipline dedicated to reconstructing organismal phylogenies is called 

phylogenetics. The term phylogenetics derives from the Greek, phylon means race or old family, 

and genos means birth or origin, gennetikos means related to generation or the genesis of 

something.The branching pattern of the tree represents the splitting of biological lineages, and 

the lengths of the branches can be used to signify the age of those events. Today, biologists call 

these treelike diagrams phylogenies. Reconstruction of these phylogenies can provide an 

evolutionary framework for studying a variety of problems led to their application in almost 

every other sub discipline of biology. Since evolutionary and this thesis is about phylogenetic 

trees, it is therefore appropriate to start by defining from a tree. 

2.1 Basic Definitions 

2.1.1 Trees 

A treeconsists of internal nodes and leaf nodes, and they are connected by edgeswhich can have 

edge lengths. A tree can be a binary or non-binary tree. One node may be designated as a root 

node, inwhich case the tree is rooted otherwise it is unrooted. 

A binary rooted tree can be treated asdirected acyclic connected graph having exactly one 

internal vertex of degree two and remaining internal vertices are having degree more than two. 

The leaves are vertices of degree one. In rooted trees there are directed edges which are directed 

away from the root.All nodes except the root have a parent, and all nodes except the leaf 

nodeshave a number of child nodes. The nodes on the path from a node x to the root are called 

ancestors of x. A descendant of x is any node which has x as an ancestor. 

A binary unrooted tree is a tree with no special node with degree two and it can be treated as an 

acyclic connected graph having no internal vertices of degree two and leaves are vertices of 

degree one. An unrooted tree may be rooted by selecting any node as the root. The setof nodes 

directly connected to a node x by edges in any direction is calledthe adjacent of x. 
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Figure 2.1: An example of rooted and unrooted trees 

In Figure 2.1, Ti and 12 areunrooted, T3, T4, and T5 are rooted, Ti, T3, and 14 are binary, and 

T2 and 15 arenon-binary. Notice that Ti can be obtained from T3 or T4 by suppressing the 

rootvertex of either of these rooted trees. Equivalently, T3 and T4 can be obtained fromT1 by 

subdividing an edge in Ti with a root vertex. For tree 13 internal nodes are {r, u, v}, leaves are 

{ a, b, c, d, e, f} , and adjacent nodes of v are {r, c, d, e, f} . 

In a fully resolved binary tree with n leaf nodes there are n-1 internal nodes. In Figure 2.1, T3 

and T4 are fully resolved binary trees. The topology of a tree is the arrangement of the nodes and 

edges, ignoringedge lengths and symmetrical differences (i.e. it is arbitrary in which orderthe 

children of a node appear). If all leaf nodes are connected to a singleinternal node, then the tree is 

called a star tree because of its shape. 

2.1.2 Subtrees 

Let T be a rooted tree and choose a vertex v in T. If we remove the edge between v and the 

parent of v, say p, we get two connected subgraphs. Then let v be the root of the subgraphs 

containing v, then this is called the subtree of T rooted at v. Briefly a subtree T' is a tree whose 
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vertices and edges form the subsets of the vertices and edges of a given tree T. An example of a 

subtree is shown in Figure 2.3 in which tree Ti is a subtree of tree T. 

a 	b 	c 

Ti 

d 	a e f 	b e 	g 

T 

Figure 2.2: An Example of a subtree 

2.1.3Clusters and Bipartitions 

Each vertex in a rooted tree defines a group of taxa that are more closely relatedto each other 

than they are to any other taxon in the tree; such a group is called aclade. The Glade defined by a 

vertex v is the set C(v) containing all the taxa thatcan be reached from the root via a path 

containing the vertex v. 

In phylogeny, such a group is often called a cluster. The set of all clusters definedby some vertex 

in a tree T is denoted H(T); i.e, H(T) = {C(v) : v E V (T)}.Notice that H(T) is a hierarchy, which 

means that for every two members C1,C2of H(T), either Cl S C2, C2 S Cl, or Cl fl C2 = 0. 

The trivial clusters, thosecontained in every tree with leaf set X, are X (the leaf set itself) and the 

singletonsets {x} where x E X. The vertex v in T3 of Figure 2.1, for example, defines thecluster 

{c, d, e, f}, and the set of non-trivial clusters defined by the vertices of T3is { {a, b}, {e, f}, {d, e, 

f}, {c, d, e, f}}. We say that the rooted tree T'refines T ifH(T) C H(T'); this is denoted T < T'. 

The analogous relationships in unrooted trees are bipartitions of the taxonset, and are defined by 

edges rather than vertices. Each edge e in a phylogenetictree T, when deleted from T, creates two 

new subtrees Ti and T2. We say that theedge e induces the bipartition L(Tl)IL(T2), equivalently 

k 
F 



L(T2)IL(Tl), of L(T); thisbipartition is denoted ae. The full set of induced bipartitions of a tree T 

is denotedE(T), i.e. E(T) _ {6e  : e E E(T)}. . 

The trivial bipartitions, those contained inevery unrooted tree with leaf set X, are those involving 

a single taxon on one sideof the bipartition {x} IX — {x} where x E X. We often abuse notation, 

droppingthe brackets and commas when writing the sets on either side of the split. Thus, wesay 

that in Figure 2.1, the edge (u, v) in Ti induces the bipartition abjcdef, and theset of non-trivial 

bipartitions of Ti is {abIcdef, abcIdef, abcdIef}. Naturally, we saythat an unrooted tree T'refines 

T if E(T) S E(T'); again, this is denoted T _< T'.Note that the definition of E(T) does not require 

that T is unrooted, thus E(T)is still defined for rooted trees. H(T), on the other hand, does not 

automaticallyextend to unrooted trees. 

Bipartitions can be used to construct a single tree that summarizes the relationships in a 

collection of trees with identical leaf sets. The methods used to construct such summary trees are 

called consensus methods, and the trees producedconsensus trees; the most commonly used 

consensus methods are the strict consensus and majority consensus. 

The strict consensus tree of a set of trees is thetree whose set of bipartitions are those that are 

present in all the trees in thegiven set. For a given set of trees {T1, T2, ..., Tk}, the strict 

consensus tree [15] Tis such that 

E(T) = [a : u E E(Ti ) for all 1 <_ i <_ k} = nl, 1  E(T1 ) 	 (2.1) 

The majority consensus tree of a set of trees is the tree whose bipartition set containsthose 

bipartitions present in more than half of the trees in the given set. For agiven set of trees {T1, T2, 

..., Tk}, the majority consensus tree [16,17] T is such that 

E(T) _ { u : the number of treesTTsuch that a e E(T L ) > 2 	 (2.2) 
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2.1.4 Triplet and Quartet trees 

For every three leaves, a, b, c, there are four possible rooted treeswith leaf set {a, b, c}, see 

Figure 2.3. A rooted binary tree on three leaves is called atriplet. A triplet with leaf set {a, b, c} 

that contains the cluster {a, b} isdenoted abIc (equivalently, ba1c). The set of triplets displayed by 

a rooted treeT is denoted r(T); formally, r(T) = {abIc : a, b, CE L(T) and {a, b} E H(TI {a,b,c})}. 

b c a c b h c a a h c 

Figure 2.3: The four rooted trees with three leaves. 

For every four leaves, a, b, c, d, there are four possible unrooted trees with leaf set {a, b, c, d}, 

Figure 2.4. An unrooted binary tree with four leavesis called a quartet tree. 

Figure 2.4: The four unrooted trees with four leaves. 

A quartet tree with leaf set {a, b, c, d} and non-trivialbipartition abIcd is denoted by that 

bipartition (equivalently, balcd, abldc, baldc, orcdIab, etc.). The set of quartet trees displayed by 

an unrooted tree T is denotedq(T); formally, q(T) = {abjcd : a, b, c, d E L(T) and abIcd 

Tj {a,b,c,d} }. 
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2.2 Phylogenetic Trees 
In studying evolutionary histories, we will refer to particular entities of interest, bethey species, 

genes, molecular sequences, or languages, as taxa (singular taxon).This is a generalization of the 

use of the term taxa in biology where a taxon isany of the taxonomic categories such as phylum, 

order, or species in the Linnean system. 

In general, the taxa have evolved via a process that can be represented by a rooted tree, a directed 

acyclic graph, in the graph theoretic sensewhose root represents the most recent common 

ancestor of all the taxa representedin the tree. At the leaves of the tree are extant taxa (or 

possibly extinct taxa forwhich we have fossil records), the internal vertices are ancestral taxa, 

and each edgerepresents an ancestor-descendant relationship with the ancestor being the 

taxonrepresented by the vertex closer to the root of the tree. 

supposed common ancestor 

f"1 1 1 

Orangutan Gorilla Human Chimpanzee 

taxon 

Figure 2.5: Rooted Phylogenetic Tree 

Naturally there are times when the assumptions do not hold or are not used,but those are the 

exceptions. For instance, it might be possible to extractDNA from a specimen that has been 

preserved somehow, so that some ofthe taxa might be extinct.Let us take a rooted tree, as like 

one in Figure 2.5, as an example, systematically giving meaning to the various parts of it. 

Hopefully it willbe clear why rooted trees are ideal for displaying phylogenies, instead 

ofunrooted trees. 

• Root:The root may be thought of as the (hypothetical) common ancestor of all the taxa. 
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Cynoceph Pongo 
Tarsius Pan 
Otolemur Homo 
Lemur Gorilla 
Tupaia Papio 
Callimic Chloroce 
Ateles Macaca 
Nomascus Pithecia 
Macaca Callimic 
Pan Callithr 
Homo Saguinus 
Mus Atous 
Rattus Saimiri 

Tarsius 
Oto lemur 
Lemur 
Callimic 
Ateles 
Macaca 
Nomascus 
Pan 
Homo 
Mus 
Rattus 

• Edges:An edge. corresponds to an ancestor/descendant relationship between the 

connected nodes: If a node d is a descendant of a, then dhas evolved from a somewhere 

along the line. The length of the edge can be made proportional to the time it has taken to 

evolve the child from the parent, or some other measure of evolutionary distance. 

Alternatively, if time is not important, all the edges can have the same length. Edges are 

directed from ancestor to descendant in a rooted tree, so they can be thought of as time 

lines. 

• Leaf Nodes:Leaf nodes represent the existing taxa from which data is available. 

• Internal Nodes:Each internal node i corresponds to a supposed evolutionary common 

ancestor of the taxa (leaf nodes) in the subtree rooted by i. Another way to look at it is 

that i represent a point where a population split up, creating new taxa, which in the tree 

are represented by the children of i. In any case, the internal nodes are almost always 

inferred from the biological data of the existing taxa, so we have no real guarantee that 

such common ancestors ever actually existed in the past. 

2.3 Phylogenetic supertrees 

When researchers publish phylogenetic trees, they are usually the result ofa narrowly focused 

study of some limited taxonomic group. For instance,in several studies of the mammalian order 

Carnivora, the published phylogenies were rarely larger than 30 taxa. It is simply not viable for a 

single research team to create large trees.This creates a demand forsupertree methods which 

make it possible to combine the efforts of differentteams to create larger phylogenetic trees. 

Figure 2.6: An example of input source trees. 
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There is no need for the teams to use the same methodologies whencreating their trees, just as 

there is no need for them to work on them at thesame time. In fact, phylogenetic trees that were 

published a long time ago,before current supertree methods were invented, can still be used as if 

theyhad been published for that very purpose today. Supertrees independenceof the method used 

to create any given phylogenetic tree is a great strength. 

Supertrees are themselves phylogenetic trees, but they are built by combining a set of smaller 

phylogenetic trees. Such a set is referred to as a forest(see Figure 2.6), and the trees in the forest 

are called source trees. 

Regularphylogenetic trees are based on biological data, and this result in the needfor a distinction 

between primary data, which comes directly from the taxa,and secondary data, which is derived 

from primary data. The source treesmust have partially overlapping taxa, or it makes no sense to 

combine themin a non-trivial fashion. If the source trees are the set T = {Tl, ... , Tk} thenthe 

leaf set of the supertree S is union of all leafs. 

Rattus 
Mus 
Cynoceph 
Tupaia 
Tarsius 
Lemur 
Otolemur 
Ateles 
Callimic 
Saguinus 
Pithecia 
Callithr 
Aotus 
Saimiri 
Nomascus 
Pan 
Homo 
Gorilla 
Pongo 
Papio 
Chloroce 
Macaca 

Figure 2.7: A possible supertree for the set of input trees in Figure 2.6. 
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2.4The Process of a Phylogenetic Study 

When conducting a molecular phylogenetic analysis, biologist's first determine thescope of their 

study, choosing which phylogenetic group they will study, which particular taxa they will 

include in the study, and what genetic marker or markers theywill sequence to conduct their 

study. (Some studies may, instead, use morphologicalcharacters of the taxa, such as physical 

characteristics or biological functions, but wewill focus on studies that use molecular data.) The 

limitations that govern whichtaxa are included in the study include availability of tissue, location 

of specimens,time, funding, etc., and the ability to amplify and sequence. 

Phase 1: Data collection 

Biologists go out into the field and collect specimens (organisms or tissues) of thetaxa they have 

decided to study and make use of museum and herbarium specimens.The goal of the data 

collection phase is to assemble, for each taxon, a homologoussequence or sequences of 

characters that will be used to construct a phylogenetic treeon the set of taxa they have chosen to 

study. For studies using molecular characters,these data are molecular sequences for the 

particular marker they have decided touse in the study. To obtain these sequences, they extract 

DNA (or RNA) from theirspecimens and sequence the desired genetic marker. Following 

sequence assembly,the remainder of the phylogenetic analysis is primarily computational. 

Phase 2: Sequence Alignment 

An alignment is constructed taking the putatively homologous sequences and puttingthem in a 

matrix such that the sequence from each individual taxon occupies itsown row, and each column 

of nucleotides have ideally evolved from a common ancestral nucleotide. This object property of 

the columns is called positional homology.Positional homology is estimated by inserting gaps 

into each sequence in the appropriate places, and padding the beginning and end of each 

sequence with placeholders that represent unknown nucleotides, so as to obtain sequences having 

the same length. For most phylogenetic reconstruction methods, positional homology isof critical 

importance because each column of the alignment is assumed to representthe independent 

evolutionary history of the site. An incorrect alignment will havetwo or more sites that do not 

reflect positional homology. Therefore, at least some ofthe data used to reconstruct the 

phylogeny will suggest a false evolutionary historyof the sequences. To obtain an alignment, 
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most researchers use some software, suchas ClustaiW [18], but then often adjust that alignment 

by eyeto create the final alignment. 

Phase 3:TreeInference 

A phylogenetic reconstruction method, such as maximum parsimony, maximum likelihood, 

Bayesian analysis, or a distance-based method [19], is applied to the aligned sequences. Here we 

briefly describe maximumparsimony and maximum likelihood: 

Maximum Parsimony is an optimization problem based on the minimum evolution principal. A 

maximum parsimony tree is one that minimizesthe number of changes over the edges of the tree 

needed to "explain" thesequences at its leaves. We formalize this goal here by first defining the 

parsimony score of a tree. 

Given a tree T that is leaf-labeled by a set of sequences S each of length 1, anextension f of S on 

T is a labeling of all vertices of T by sequences of lengthl that maintains the original leaf-

labeling by S. For two sequences x and y, letH(x, y) be the Hamming distance between x and y. 

(For two sequences x =x1x2...x1 and y = y1y2...yl, H(x, y) = ~{i : xi = y;}1.) Then the 

parsimonyscore of an extension f, denoted score(f, T), is E(,,,,)EE(T)H(f(u), f(v)). Aminimal 

extension is one that minimizes the parsimony score, and the parsimony score of a minimal 

extension is the parsimony length of the tree T.Computing the parsimony length of a fixed leaf-

labeled tree is O(nrl), wheren is the number of sequences, 1 is the length of the sequences in S, 

and r isthe number of states observed in S. In the caseof DNA, r = 4. 

A maximum parsimony tree for a given set of sequences S is a tree that has thesmallest possible 

parsimony length of any tree leaf labeled by S. While computing the score of a single tree can be 

done in linear time, finding a minimumparsimony tree is equivalent to the Hamming-distance 

Steiner tree problemwhich is known to be NP-hard [20]. An exhaustivesearch for a maximum 

parsimony tree on n sequences would require lookingat all (2n — 5) (2n — 7) ... 1 possible 

topologies of trees with the given leaf-labeling. Branch-and-bound algorithms can reduce the 

search space, but donot reduce the asymptotic running time. Using branch-and-bound 

algorithmsresearchers can compute all maximum parsimony trees for datasets of up tol7about 25 

taxa before the running time becomes prohibitive. Thus, for largerdatasets, heuristic searches are 

performed whereby the tree-space is exploreduntil a local optimum is found. 
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Maximum Likelihoodis also an optimization problem, and seeks themost probable tree according 

to some specified model of evolution. Given amodel of sequence evolution, a maximum 

likelihood tree is a tree topology,along with a set of branch lengths and parameters for the given 

model of evolution, that maximize the conditional probability of observing the sequencesat the 

leaves given the assumed model. Again let S be a set of sequencesof equal length. The maximum 

likelihood solution for the set S is an edge-weighted tree (T,w), together with a set of model 

parameters M, that minimizes Pr(SIT,w,M). As with MP, ML is NP-hard [21],and heuristic 

searches are used to compute ML trees. 

Phase 4: Post-processing 

In the post-processing stage, scientists summarize the results obtained in the treeinference stage. 

This typically involves computing a consensus tree for tree inferencemethods, such as MP, that 

return multiple trees, and assessing the supportfor branches in the inferred tree(s). 

2.5 Literature Review 

UPGMA is asequential clustering algorithm, and perhaps the simplest method oftree 

construction. It constructs a rooted tree from a distance matrix M. First it creates a pool of 

clusters, each containing a singletaxon. Then it combines the two closest clusters in a new cluster 

C.M is updated so that the distance from C to another cluster X is thearithmetic mean of the 

distances from the taxa in C to X. This isrepeated until there is only one cluster left, at which 

point the treecan be constructed: Each cluster C corresponds to a node n, and thetwo clusters 

which comprise C correspond to the children of n. Thealgorithm is criticized for only 

constructing trees correctly if certainproperties are true for M, namely that M is ultra-metric. 

Neighbour Joining method [22] addresses the main shortcoming of UPGMA by relaxing the 

requirements for the distance matrix, but it is a linear factorslower and produces unrooted tries. 

It starts by placing all taxa in astar tree. A modified distance matrix is maintained in which the 

distance between each pair of nodes is adjusted according to the averagedistance from all other 

nodes. In each iteration, the two least distantnodes are linked and removed from the tree, while 

their common ancestor is added to the tree. The tree is reduced in this way until onlytwo nodes 

remain, connected by an edge. All the taxa are at this pointlinked under those nodes, and the tree 

has been built. 
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Maximum Parsimony works on the principle that simpler solutions arepreferred over more 

complex ones. For a phylogeny, this means thata tree which can explain the input character data 

with fewer evolutionary events is preferable over a tree which contains more events.By 

minimizing the number of character state changes along all pathsin the tree, the most 

parsimonious tree is obtained. Different matrixencoding schemes exist. The original, due to [23, 

24], uses 1 to indicate that the trait is present and 0 to indicatethat it is not. One of the 

disadvantages of the method, apart fromits NP-hard time complexity, is that no branch lengths 

are computed: Only the order in which the evolutionary splits occur. 

Maximum Likelihood takes as input a model of sequence evolution, atree providing a topology 

and branch lengths, and a data matrix. Itthen computes the likelihood of the tree giving rise to the 

data matrix,given the specified model of sequence evolution. By searching throughthe tree space, 

the trees with the maximum likelihood of being correctcan be found. The result depends on the 

model, but the method isstatistically well founded and robust to violations of the rules presentin 

the evolutionary model. 

The above methods are used to create phylogenetic trees from primary data, which comes 

directly from the taxa whereas the following section is about supertree methods which will base 

on secondary data discussed in section 2.3. Supertree methods summarize the collection of trees 

without losing branch information.There are different approaches to solve this problem. Some 

methods solve it using graph theoretic, others are subtree based and yet others are recoding based 

approach. 

Thus supertree methods need to solve the compatibility problem that is to decide if theinput trees 

are compatible. While the compatibility problem can be solved for rooted inputtrees in 

polynomial time using the Build algorithm from Aho et al. [25], the problem isNP-complete for 

unrooted input trees. Thus, the time complexity of supertreeproblems for rooted and unrooted 

trees are clearly different. An even stronger separationbetween supertree methods for rooted and 

unrooted input trees was made by Steel etal. [26]. Steel et al. showed that in contrast to supertree 

methods for rooted input trees, nosupertree method for unrooted input trees exists that satisfies a 

subset of the fundamentalsupertree properties. From this result Semple and Steel [26] conclude 

that there exists no'reasonable' supertree method for unrooted input trees. 
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For any compatible set of triplets and the set of leaf nodes Build algorithm [25] can be used to 

find the local consensus tree. A fundamental question in biological classification is how a 

supertree method should as semple input trees to optimally represent their branching 

information. Probably the oldestsupertree algorithm for rooted input trees is the Build algorithm, 

introduced by Aho etal. [25], and that can be used to solve the compatibility problem in 

polynomial time.While other supertree problems are typically NP-complete, there are several 

modificationsof the Build algorithm that still run in polynomial time. Semple and Steel [26] 

introduceda modified version of the Build algorithm, the MinCut Supertree algorithm. 

The Build algorithm constructs a rooted tree that is consistent with a given set of 

lineageconstrains. If no such tree exists the empty tree is returned. Given nlineage constrains the 

Build algorithm runs in O(n2) time[25].Toconstructaparenttreefor a given profile, the Build 

algorithm is executed on the set of all lineage constrains thatare consistent with a tree in the 

profile. 

Mincut Algorithmis a subtree based algorithm and has all the advantages of using triplets and 

quartets. Mincut [26] method is one of the very few methods that satisfyall the desirable 

properties of supertree. This method is an extension of the Build. Build method reports an error 

when the input trees are incompatible. Semple modified the Bduild algorithm in such a way that 

if theinput trees are incompatible then the some of the edges are removed from thetrees based on 

the minimum loss criteria. The minimum cost is identified usingthe edges which have minimum 

weights and when removed will result in a disconnected modified graphs. Therefore the 

algorithm results in a single tree evenif the input trees are not compatible. 

The mincut algorithm of [26] was the first to cope withthis problem of inconsistent input triplets. 

Their algorithmhandles rooted subtrees of arbitrary size, however, it alsospecializes in rooted 

triplets. Page [27] extended this idea tomaintain all subtrees that are not in disagreement with 

anyinput subtree. The algorithm, denoted modified min cut, applies the min cut criterion but on a 

somewhatdifferent graph than that of [26]. 

Modified Mincut method is is also a subtree based method. Mincut method results in highly 

unresolved trees when applied to the input tree representing polytomy. Page [27] modified the 

Mincut algorithm to work for a general case. The basic idea wasto divide the edges of the 
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modified graph into three categories: unanimous, uncontradicted and contradicted. Whenever the 

modified graph is fully connected, instead of removing the edges from the minimal cut set of the 

graph, the contradicted edges are removed. As it is an extension of the Mincut method, it 

alsosatisfies the properties that Mincut satisfies. 

Indirect supertree construction uses some form of matrix representation(Ponstein 1966, Ragan 

1992) to encode individual source tree topologies as matrices that are then combined and 

analyzed using an optimization criterion. This is the most widely used phylogenetic supertree 

method defined by Baum[23] and Ragan [24] independently. MRP represented a universally 

applicablemethod- that could combine the even incompatible set of input trees. In thismethod 

binary coding of the components of each input tree is used to generatea pseudo character matrix 

representation of the trees.The character matrices of all the trees are combined, the leaves that 

arenot present in a given tree are marked as '?', i.e, missing. The final matrix is then analyzed 

with parsimony procedure [28] to produce one or moreparsimonious trees. 

Supertree methods developed by Chen et al. [29] and Eulenstein [30] aremotivated by the notion 

of error correction. In MRP taxa present in the samecluster are scored as 1, those are absent are 

scored as 0, and those which arenot sampled are marked '?'. One notion of error in suchcluster 

system is the presence of an incorrect label in a cluster or the absence ofone that should be 

present. This type of errors is called flips 0 —~ 1 or I — O.This leads to the optimization problem 

of finding the minimum number of flipsthat converts the matrix into a matrix which is consistent 

with a phylogenetictree. This is an NP-hard problem and [29, 30] gave approximation algorithm 

forit.Another approach to the matrix representation is to employ the distancesbetween the taxa of 

each tree and finally combine them into a single averagematrix, called as average consensus 

method [29]. Any distance based tree construction method can then be used construct the 

supertree. 
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Chapter 3 

Phylogenetic Supertree Construction using Triplet (Inference and) 

Local Inconsistency 

3.1 Triplet Terminology 
For every three leaves let us name, a, b, c, there are four possible rooted phylogenetic treeswith 

leaf set {a, b, c}, see Figure 3.1. A rooted binary tree on three leaves is called arooted triple. A 

rooted triple with leaf set {a, b, c} that contains the cluster {a, b} isdenoted abIc (equivalently, 

ba1c). The set of rooted triples displayed by a rooted tree T is denoted r(T). 

Formally,r(T) = {abjc : a, b, c E L(T) and {a, b} E H(Tj{a,b,c})}. 

a Ia c a c h h c a a b c 

Figure 3.1: Triplet with four non trivial topologies. 

In Figure 3.1 for the triplet {a, b, c}, and such a tree is called a triplet tree.A triplet tree is defined 
uniquely by its ancestral relationships, giving thenotation albs, blac, and clab for the triplet trees 
displayed in Figure 3.1 fromleft to right (we ignore the non-binary trifork tree which is 
unresolved). The lowest common ancestor oftwo leaf nodes a and b is the node c for which c is 
an ancestor of a and b,and where no other node with that property is a descendant of c. We 
writes = lca(a, b), and for a triplet tree albc we have that lca(b, c) is a descendantof lca(a, b) and 
lca(a, c). 

Triplet tree space is defines as 

(L) = U M~L,~MI=3 {t: t is a triplet tree on M}on a leaf set L. 
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The weighting function w: T*(L) 	R+,and werefer to the triplet trees on a tripletM as t1 M, t2M , 
and t3M  such thatw(t1M  ) C w(t2M ) <_ W(t3M  ) 

3.2 Triplet (Inference and )Local Inconsistency Algorithm[ 31] 

The algorithm generates a supertree from input forest of trees by using three steps. In the first 

step it will decompose the given forest input into set of triplets, second step is an optional one 

which will be used to infer the missed triplets from the existing triplets and, third will generate a 

supertree by adding one leaf at a time to the final tree. 

Algorithm: Decompose [ 31] 
Input: forest with leaf set L 
Output: a weighting function w: T * (L) --> R+ 
Foreach tree in forest do 

root — root(tree); 
DecorateDown(root); 
DecorateUp(root); 
CountTriplets(root); 

end 
foreach triplet tree t E T* (L) do 
if frequency(t) > 0 then 
set w(t) = —log frequency(t); 
else 
set w(t) = oo; 

end 

Figure 3.2 Algorithm for Decomposing Forest into Triplets 

As said earlier the tree isn't actually reduced to a set of triplet trees, rather it constructs a 

weighting function w: T*(L) - R+ for all the triplet trees in the triplet tree space of the leaves 

of the inputforest. We have to count the occurrences of each triplet tree in all the input trees 

inorder to determine their frequencies and thus their weights, which will beused to create the 

weighting function. The decompose algorithm iterates throughthe trees of the forest, first 

decorating them, and then counting the triplet treesin the decorated trees. The algorithms used for 

each task are all recursive,and their starting point is always the root of the current tree. Once all 

thetrees have had their displayed triplet trees counted, the weighting function isconstructed in the 

above algorithm. 
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DecorateDown is a recursive algorithm which the first decoration step and it must be carried out 

before proceeding, since its results are required for the next decoration step. Each internal node 

is decorated with a set D which is to contain the leaf set ofthe subtree rooted by the node. We 

shall let Dx denote the D set belongingto the node x. For the input node, first D is initialized with 

the empty set.Then all children that are leaf nodes are added to D, and the D sets of allthe other 

children, which are internal nodes, are computed recursively andadded. Thus, D contains the leaf 

nodes directly under the input node, aswell as the leaf nodes of the subtrees rooted by its 

children. 

For a nodeit simply subtracts the leaf nodes in Dnode from the leaf set of the entiretree, and 

assigns the result to the set Unode. Then it recuses on those ofthe children that are internal nodes. 

The purpose of Unode is to contain allthe leaf nodes which can be reached from the node by 

traveling at least oneedge up, and then an arbitrary path down. 

It is possible to create a mapping from the triplets that are resolved ina tree to the tree's internal 

nodes: 

ill: {M: M 9 leaves (tree), I Ml = 3, tree I M resolved) -+ internals (tree) (4.1) 

The mapping is defined as follows: For the triplet {a, b, c}, find the lowestcommon ancestors 

lca(a, b), lca(a, c), and lca(b, c), which are all internal nodes. Triplet {a, b, c} is mapped to the 

node which is thedescendant of the others. The node exists because the triplet is resolved 

otherwise all the lowest common ancestors would be the same. 

The mapping tells us that we can count all triplets resolved in a treeby counting the triplets 

mapped to each internal node, and adding up theresults. Since every triplet is mapped to one 

node, and one node only, notriplet is counted twice, but all triplets are counted. 

CountTriplet algorithm receives as input a node. The tree containing node is repeatedly divided 

into three zones with node in the center.One division corresponds to one pair of node's children 

(so if the tree is binary, there is only one possible division). The zones correspond to the partsof 

the tree that contain Dx, Dy, and Unode for the pair x, y E children(node).Unode contains the 
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candidate nodes for the ancestor leaf nodes in the associated triplet trees, while Dx and Dy 

contain the candidate nodes for theother two leaf nodes. 

By picking three leaf nodes, one from each zone, we obtain a triplet.We decide which triplet tree 

is displayed for the triplet and increment itscount. This is repeated for every combination of leaf 

nodes from the threezones. When all triplet trees have been counted, the algorithm recurses onthe 

children of node that are internal nodes, and thus the whole trees iscovered eventually. The time 

complexity for the above entire procedure is 0 (n3). 

Algorithm : Inference [31] 
Input: a weighting function w: (L) -~ R+ for a leaf set L 
Output: a modified weighting function w: T*(L) -* R+ 
Data: sets S, R with supported and rejected triplet trees 
(S,R) E- SortTriplets(w); 
Foreach triplet M S L do 
Foreach triplet tree t ET*(M) do 
Foreach quartet tree q that displays t do 
For each triplet tree p = t displayed in q do 

ifpERthen 
demerit t; 
end 

if d E S for some d ET*(leaves(p)) \ {p} then 
demerit t; 
end 

end 

end 
end 

if a triplet tree t E T*(M) has fewer demerits than the othersthen 
S 4- S \ T * (M); 

S<—SU {t}; 
end 

end 

w AdjustWeights(S,R); 

Figure 3.3 Algorithm for inferring missed triplets 

SortTriplets function will sort the triplet trees in T*(L) into a set of supported and rejected triplet 

trees called S and R, respectively.Once the triplet trees are sorted, the inference algorithm First, 

each triplet tree is assigneda demerit counter, which is initially set to zero. Then, the outermost 

loop iterates through all the triplets M L. In the loop, each triplet tree t for M is examined in 
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turn to determine its demerits. We can expand t to a quartet tree by adding a leaf node fromL \M. 

When expanding a triplet tree,we have four edges where an expansion can take place shown in 

figure 3.4. A resulting quartet tree displays in 4 Triplets shown in figure 3.5. 

~  4 

1 2 a 
b  c 

split edge 

a 	 a x a 	x a 

b x c 	b x ~c 	b 	c 	b 	c 

Figure 3.4: An extension of Triplet to a quartet by adding a leaf 

In this case the leaf x is added in each possiblelocation so there are four possible quartets 

possible. 

a 

b  x 

/\ 
a ~} > a 	 a 

b 	C 	 b x c 	 x 	c 

b 

x  c 

Figure 3.5: A triplet that has been expanded displays three other triplets. 
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Here albc has been expandedby splitting the edge leading to c, and the resulting triplet tree 

displays theadditional triplet trees ajbx, alxc, and blxc.The time complexity of the inference step 

for triplets is O(n4). 

Algorithm: Compose [31 ] 
Input: a weighting function w: T*(L) —* R+ on the leaf set L 
Output: a supertree 
T E— t1 M  such that t1M  maximizes w(t2M ) — w(t1M ) over all M S L; 
L <— L \ leaves(T); 
while L = 0 do 
foreach leaf E L do 
foreach tree expanded from T by adding leaf do 
if LI,,(tree, leaf) is the lowest so far then 
T2leaf ,__ Tl leaf 
Tl  leaf *— tree; ' 

end 
end 

end 
choose leaf s.t. LIw(T21eaf , leaf) — LIw(T l leaf , leaf) is maximized 

and secondarily s.t. LIµ,(Tlleaf , leaf) is minimized; 
T 	Tiled'; 

LPL\{leaf}; 
end 

Figure 3.6Algorithm for composing triplets to a supertree 

To determine topology we can use two different approaches, one using properties of lowest 

common ancestors, and oneusing a distance matrix. The difference is in their complexities. 

Lowest Common Ancestor (LCA) 

Attempt at an algorithm for triplets used the property shown in above, namely that the 

topologycan be detected by comparing lowest common ancestors shown in figure 3.6. First, 

lca(a, b),lca(a, c), and lca(b, c) are computed. Then we have 

albc 	if lca(a, b) = lca(a, c) 
blac 	if(lca(a,b) = lca(b,c) 

T{a, b, c} = 	clab 	if lca(a, c) = lca(b, c) 
abc 	lca(a, b) = lca(a, c) = lca(b, c) 

h 
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r 

Figure 3.7 the connecting paths between the leaf nodes of a resolved triplet in a tree. 

Distance Matrix (DM) 

Distance matrix was based on the idea thatthe root r could be added to a triplet as a fourth leaf 

node. Calculate the path lengths Dalbc = oral+Ibcl,Dblac = IrbI+jacI,and Dcjab = Ircl + Iabi for each 
possible topology, and pick the topologywhich has the shortest one. 

we must define excess, inconsistency, andlocal inconsistency in the following way for a tree T; a 
triplet M, and aweighting function w: T*(L)  —+ R+: 

f
w(TIM)excess(T,M) = 

 —w(t2) if TAM = tM 	
(4.2) 

 w(TIM) — w(t') otherwise 

I(T) = max [ excess (T, M) : M c leaves(T), (MI = 3} 

LI,,,,(T, x) = max {excess(T,M) : M c leaves(T), IMI = 3, x E M}. 
The time complexity for the above algorithm is O(n5). 

4.3 Implementation Implementation and Results 

The algorithm Triplet Inference and Inconsistency is implemented in java using MyEclispse 
IDE. All executions done on a computer with the following specifications 

Hardware specifications: 



4 GB RAM 

Core2Duo processor 

Software specifications: 

MyEclipse software. 

Results: 
The running times are shown in Table 3.1 for TLI using LCA and DM topology detection and 
TILI using DM topology detection. The executions are on a different forest of the same size. 

There is an entry for each forest size from 20 to 60 taxa, in increments of ten. 

Taxa TLI DM TLI LCA TILI 
20 0.48 0.49 0.78 
30 1.79 2.10 3.39 
40 6.87 8.50 12.34 
50 22.56 29.82 36.62 
60 56.27 77.90 85.72 

I1 

Table 3.1 Time in seconds required to build supertrees from forests of varying sizes. 
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Figure 3.3 Runtime comparison between TLI using both DM and LCA and TILL 
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From the above we can understand that TLI using DM outperforms the executions times than 

TLI and TILI. If we use the LCA for computing topology the triplet is taking more time in the 

excess calculation shown in eq.4.2. Since using LCA for topology detection adds some more 

time computation for the excess calculation. But the time complexity for computing the topology 

of a triplet is constant using DM therefore the excess calculation can be done in constant 

time.For the TILI even using DM it take more time since it involves in computation of the 

inferring the missing triplets. 
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Chapter 4 

Heuristic approach for Phylogenetic Supertree 

Hill-climbing heuristics have been successfully applied to several intrinsically complex supertree 

problems [23,32, 33]. They search the space of all possiblesupertrees guided by a series of exact 

solutions toinstances of a local search problem. The local search problem is to find an optimal 

phylogenetic tree that attains the optimal criteria in the neighborhood of a given tree. The 

neighborhood is the set of allphylogenetic trees into which the given tree can be transformed by 

applying a tree edit operation explained in section 4.2. 

In these heuristics a tree graph is definedfor the given set of input trees and some, typically 

symmetric, tree-edit operation. The nodes in the tree graph arethe phylogenetic trees over the 

overall taxon set of theinput trees. An edge adjoins two nodes exactly if the corresponding trees 

can be transformed into each other bythe tree edit operation. The cost of a node in the graph isthe 

measurement from the input trees to the tree represented by the node under the particular 

supertree problems optimization measurement. For the triplet supertreeproblem defined in later 

paragraph, the cost of a node in the graph is the triplet-similarity from the input trees to the tree 

represented by thenode. Given a starting node in the tree graph, the heuristic's task is to find a 

maximal-length path of steepestascent in the cost of its nodes and to return the last nodeon such a 

path. This path is found by solving the localsearch problem for every node along the path. The 

localsearch problem is to find a node with the maximum costin the neighborhood (all adjacent 

nodes) of a given node. 

Every rooted tree can be equivalently represented by a set of triplet trees [34]. By using this fact 

we can solve triplet supertree problem i.e. finding a supertree for a given an input profile of n 

species trees (T1,..., Tn) such that it maximizes the triplet-similarity score which is defined in 

eq.4.1. 

A triplet-similarity measure can be defined between two rooted trees that is the cardinality of the 

intersection of their triplet presentations. This measure can be extended to measure the similarity 

from a collection of rooted input trees to a rooted supertree, by summing up the triplet 



similarities for each input tree and the supertree.Triplet similarity score between a given profile 

of trees P = (T1,...,Tn) and a supertree T* of P can be defined as 

S(P, 7'* ) _ 1=1 IS(Ti, T*) I 	 (4.1) 

The triplet supertree problem is that for a given profile P, find a supertree T* that maximizes 

S(P, T*). We call any such T* a triplet supertree. 

4.1 Preliminaries 

Let T be a rooted tree. We define <T to be the partial order on V(T) where x <T y if y is a node 

on the path between Ro(T) and x. If x <T y we call x a descendant of y, and y an ancestor of x. 

We also define x <T y if x <T y and x ~ y, in this case we call x a proper descendant of y, and y 

is a proper ancestor of x. 

The set of minima under <T is denoted by Le(T) and its elements are called leaves. If {x, y} E 

E(T) and x <T y then we call y the parent of x denoted by PaT(x) and we call x a child of y. The 

set of all children of y is denoted by ChT(y). If two nodes in T have the same parent, they are 

called siblings. The least common ancestor of a non-empty subset L 9 V(T), denoted as lcaT(L), 

is the unique smallest upper bound of L under T. 

If e E E(T), we define T/e to be the tree obtained from T by identifying the ends of e and then 

deleting e. T/e is said to be obtained from T by contracting e. If v is a vertex of T with degree 

one or two, and e is an edge incident with v, the tree T/e is said to be obtained from T by 

suppressing v. The restricted subtree of T induced by a non-empty subset L S V(T), denoted as 

TEL, is the tree induced by L where all internal nodes with degree two are suppressed, with the 

exception of the root node. The subtree of T rooted at node y E V(T), denoted as Ty, is the 

restricted subtree induced by {x E V(T): x <T y}. 

Let T be a tree and v E V(T), an immediate triplet induced by v, denoted as yz ► <v, is a triplet 

yz I v where there exists nodes a, b E V(T) such that PaT(y) = PaT(z) = b and PaT(b) = PaT(v) = a. 
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4.2 Tree Edit Operations 

A variety of different tree edit operations have been proposed [35],and two of them, rooted 

Subtree Pruning and Regrafting (SPR) and Tree Bisection and Reconnection (TBR), have shown 

much promise for phylogenetic studies. 

4.2.1 ReRoot operation 

Let T be a tree and x E V (T). RRT(x) is defined to be the tree T if x = Ro(T). Otherwise, 

RRT(x) is the tree that is obtained from T by (i) suppressing Ro(T), and (ii) subdividing the edge 

{PaT(x), x} by a new root node. 

b d g h i b d g h 1 d b g h i 

(a) 	 (b) 	 (c) 
Figure 4.1 Reroot operation 

The original tree T is shown in (a). In (b), we first suppress the root node, and then introduce the 

new root node r above d. Finally we rearrange the tree so that r is at root, as in (c). 

The extension for the RR operation can be defined as RRT = UxEV(T) {RRT(x)}. 

Let x <_T v, we also define a partial RR operation RRT(v, x) by replacing Tv with (x). RRTv 

4.2.2 Tree Bisection and Reconnection 

The planted tree for a tree T is denoted by P1(T) and obtained by adding an additional edge, 

called root edge, {r, Ro(T)} to E(T). 

Let T be a tree, e = (u, v) E E(T), and X, Y be the connected components that are obtained by 

removing edge e from T where v E X and u E Y. We define TBRT(v, x, y) for x E X and y E Y 
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to be the tree that is obtained from P1(T) by first removing edge e, then replacing the component 

X by RRx(x), and then adjoining a new edge f between x' = Ro(RRx(x)) and Y as follows: 

1. Create a new node y' that subdivides the edge (PaT(y), y). 

2. Adjoin the edge f between nodes x' and y'. 

3. Suppress the node u, and rename x' as v and y' as u. 

4. Contract the root edge. 

We say that the tree TBRT(V, x, y) is obtained from T by a tree bisection and reconnection (TBR) 

operation that bisects the tree T into the components X, Y and reconnects them above the nodes 

x, y. 

-' a 	 a 	 -- a 

cc 

f 
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(a) 	 (b) 	 (c) 
Figure 4.2 Tree Bisection and Reconnect operation. 

The original tree T is shown in (a). In (b), we first remove the edge above e, that is we prune the 

subtree Te. Then we introduce a new node above h which will be the new root of the pruned 

subtree. We also introduce a new node above b this is where we will reconnect the subtree back 

to T. Finally we rearrange the tree and obtain the resulting tree T' as in (c). 

We define the following extensions for the TBR operation: 

1. TBRT(v, x) = UyEY TBRT(v, x, y) 

2. TBRT(v) = UxEX TBRT(v, x) 

0 

3. TBRT = U(u, v)EE(T) TBRT(v) 
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4.1.3 Subtree Pruning and Regrafting operation 

An SPR operation for a tree T can be briefly described through the following steps: (i) prune 

some subtree S from T, (ii) add a root edge to the remaining tree T', (iii) regraft S into an edge of 

the remaining tree T', (iv) contract the root edge. 

Let T be a tree, e = (u, v) E E(T), and X, Y be the connected components that are obtained by 

removing edge e from T where v E X and u E Y. We -define SPRT (V, y) for y E Y to be TBRT (V, 

v, y). We say that the tree SPRT (v, y) is obtained from T by a subtree prune and regraft (SPR) 

operation that prunes subtree Tv and regrafts it above node y. 

We define the following extensions of the SPR operation: 

1. SPRT(v) = UyEY SPRT(v, y) 

2. SPRT  = U(u, v)EE(T) SPRT(v) 

4.2 Triplet Supertree Heuristic Algorithm 1361 

SPR Scoring (SPR-S) for a given a profile P is, a supertree T of P, find a tree T* E SPRT  such 

that 

S(P, T*) = maxT'ESPRS(P ,  T') 	 (4.2) 

SPR-Restricted Scoring (SPR-RS) for a given a profile P is , a supertree T of P, and (u, v) E 

E(T), find a tree T* E SPRT(v) such that 

S(P, T*) = maxTI ESPRTS (P, T') 	 (4.3) 

Algorithm SRR-S problem (P,T) [36] 
Input: A profile P = (Ti,..., Tn), a supertree T of P 

Output: T* E SPRT, and p(T, T*) 
for all (u, v) E E(T) do 

Store the value of SPR-RS(P, T, (u, v)) 
end for 

(T*, d) <— the stored value of SPR-RS calls that has the maximum 
score increase by traversing the tree T in post order 
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return (T*, d) 
end procedure 

Algorithm for the SPR-RS problem 
Input: A profile P = (T1,...,Tn), a supertree T of P, and (u, v) E E(T) 
Output: T* E SPRT(v), and A (T, T*) 

r — Ro(T) 
T<— SPRT(v, r) 

Call MovedownAndCompute(P, T, v) 
Traverse the tree Tr in pre-order to compute Ap(T, T') for each 
T' E SPRT(v) using the values computed by MovedownAndCompute 
T* ~— T' E SPRT(v) such that A p (T,T')= maxr"SPRTAp(T, T*) 
d — AP(T, T*) - AP(T, T) 
return (T*, d) 

end procedure 

procedure MovedownAndCompute(P, T, v) 
Input: A profile P, a tree T, and v E V(T) 
yz ► <v E— The immediate triplet induced by v in T 
for all t E {y, z} do 

T' — SPRT(v, t) 
Compute and store Ap(T, T') 
Call MovedownAndCompute(P, T', v) 

end for 
end procedure 

Figure 4.3 Algorithm for SPR-S problem 

Above algorithm is solving the SPR-S problem by using sub algorithm SPR-RS. The SPR-RS 

algorithm is solving for a given a profile P, a supertree T of P, and (u, v) EE(T), we compute 

Ap(T, T') for each T' E SPRT(v) by first pruning and regrafting Tv to Ro(T) and compute the 

score differences for each "move-down" operation, then traverse T in preorder to obtain the tree 

that gives the maximum score difference. 
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procedure PreprocessTripletSum(P) [ 36] 
Input: A profile P = (Ti,..., Tn) 
Initialize all values of 6p to 0 
for i= 1 tondo 

for all u E V(Ti) in post-order, u tt Le(Ti) do 
{v, w} <-- ChT(u) 
for all {x, y} E Le(Tv), z E Le(Tw) do 

Increment 6p(xylz) 
end for 
for all {x, y} E Le(Tw), z E Le(Tv) do 

Increment aP(xylz) 
end for 

end for 
end for 

procedure PreprocessExtendedTripletSum(P, T) 
Input: A profile P = (Ti,..., Tn), a supertree T of P 
for all u E V(T) in post-order do 

for all v E V(T) in post-order after u, lcaT({u, v}) E {u, v} do 
for all w E V(T) in post-order after v, lcaT({u, v, w})V_ {u, v, w} do 

if w E Le(T) then 
if v E Le(T) then 
if u E Le(T) then 

UP,T(UVIW) 4— c p(uvlw) 
6P, T(UW1V) ~- 6P(uwIv) 
6P, T(VWIU) <— 6p(Vwlu) 

else {u1, u2} E— ChT(u) 
6P, T(UV IW) 	UP, T(u1V IW) + UP, T(U2VIW) 
UP,T(UWIV) — UP,T(U1WIV) + 6P,T(U2WIV) 
UP, T(VWIU) 4 UP, T(VwIul) + GP, T(VWIU2) 

end if 
else {v1, v2} F— ChT(v) 

GP,T(UVIW) E— UP,T(UVIIW) + UP,T(UV2IW) 
UP, T(UW V) *` UP, T(UW I V 1) + UP, 1(UwIV2) 

T(VWIU) 4— UP, T(V 1 WIU) + UP, T(V2WIU) 
end if 
else {wl, w2} E— ChT(w) 

UP, T(UV W) E— 6p, T(UV I W 1) + 6p, T(UV I W2) 
6P, T(UWIV) f— UP, T(UW1IV) + 6P, T(UW2IV) 
UP, T(VWI1) 	UP, T(VW1IU) + UP, T(VW2IU) 

end if 
end for 

end for 
end for 

Figure 4.4 Algorithms for Preprocess TripletSum and Extended TripletSum 
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Above two algorithms are used to preprocess tripletsums. In the preprocess tripletsum the value 
is assigned to each triplet by the total number of times it present in each tree. For each SPR-S 
problem Preprocess Extend Tripletsum is called once. The overall time complexity is O(n3).With 
an expense of initial preprocessing of o(kn3), where k is number of input trees, and n is number 
of taxa in the input trees. 

4.2 Implementation and Results 

The algorithm Triplet Heuristics is implemented in java using MyEclispse IDE. All executions 
done on a computer with the following specifications 

Hardware specifications: 

4 GB RAM 

Core2Duo processor 

Software specifications: 

MyEclipse software. 

Results 

The running times are shown in Table 4.1 for TILI using DM topology detection and TH . The 

executions are on a different forest of the same size. There is an entry for each forest size from 

20 to 60 taxa, in increments of ten. 

Taxa TILI TH 
20 0.78 0.52 
30 3.39 2.18 
40 12.34 8.89 
50 36.62 20.28 
60 85.72 60.25 

Table 4.1 Time in seconds required by TILL and THfor constructing supertree. 
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Figure 4.3 Runtime comparisons between TILL and TH 

The metric we measure for these two algorithms is run time. From the above we can understand 

that the running time for construction of supertree for the algorithm TH has less executiontime 

than the algorithm using TILI for the same input set. TILI is involving in inferring missing 

triplets which results in requiring more execution time. 

The other metric we measure is triplet similarity score which is the number of triplets present for 

the given input profile of trees and the constructed supertree. 

Dataset (No of Taxa) Method Triplet similarity  
20 TILI 78.12 

TH 97.15 
30 TILI 79.24 

TH 97.15 
40 TILI 72.15 

TH 98.10 
50 TILI 72.15 

TH 98.10 
60 TILI 70.17 

TH 98.20 

Table 4.2 Triplet Similarity Score between TILL and TH 

37 



From the table we can understand that TH algorithm is having more triplet similarity score than 

TILI algorithm. The triplet similarity for TILI algorithm is reducing as the number of taxa is 

increasing in the input data set since for each time as the number of taxa increases the input 

profile of trees is also increases which results in decrease of the triplet similarity for the TILT 

algorithm. But the TH algorithm is always calculates the similarity score in every step of 

supertree construction so it is almost constant for it even though the input size increases. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

The objective of this thesis is implementation of triplet supertree algorithms for construction 

ofphylogenetic supertrees. The following sections describe what has been done: 

In this thesis, the requirements for the supertree algorithms are explained. Then the process of 

phylogenetic study is presented. In chapter 2 the various supertree construction algorithms like 

Mincut supertree, Modified Mincut algorithm, Matrix Representation with Parsimony are 

studied. In Matrix Representation with parsimony method, though the solution is guaranteed, the 

time taken to execute these algorithms will be more compared to both Triplet Inference and 

Local Inconsistency algorithm (TILI) and Triplet supertree heuristic algorithm (TH). 

Later TILI algorithm is implemented in Java +6 SDK and results are obtained under various 

input data of having different number of taxa. Likewise, TH algorithm is also implemented and 

executed under same input data. Comparative study based on execution time and accuracy 

measurement has been done for both the algorithms. The study shows execution time of TH 

algorithm is less compared to the other one, and is more accurate. From this it can be concluded 

that TH algorithm is superior to TILL 

5.2 Future Work 
Drawing inference is the vital phase in TILI algorithm which in turnaffects the accuracy. This 

can be improved by considering missing triplets through new approaches. This can be further 

improved by following better weight model. 
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