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The modal control technique has been applied to the 
►stent of equations to calculate the responses at the intermediate 

points of a long transmission line when the line is divided into 

number of equal sections. Those responses have been compared with 

to responses obtained from the RC transmission line equation of 
diffusion type. It has been assumed that a transmission line Is 

a leakage free non-inductive *able. 

The modal control theory* long transmission line, repro 
sentation cxf a transmission line in nominal T and 77 and a loss 
free line have been defined in introduction chapter. 

The review of the literature has been given in chapter ' 
two, explaining all the necessary existing tools used in the 
present problem. They are formation of state equation, feedback 
compensation technique, network synthesis (which is enough to. 
design an RC transmission line from the driving point transfer 
impedance 	ction) #. an analogy to an RC transmission line from 
heat conduction through a slab: and why at all modelling of a 
system is required. 

The mathematical methods used in the present problem 
are given in the third chapter. It comprises with the solutions  

of RC line equation 	a2 	a state equation 5c AX 8 

and state equation with feedback compensation 5 m MX + Br where 
MuiA ~► HST}. 



The transmission line, designed from the driving point 
transfer Impedance function (which has been calculated in the 
third chapter) has been represented in chapter fes* 

The results obtained for different number of orders such 

as , 5 and 6 for the state equation as well as for the RC line 
equation equatten are shown graphieaU)r and discussed in chapter 
five. 'ase graphs are compared to each other and it has been 
con eluded that the state apace technique with feedback compensation 
Is the most advantageous one. 



Page NO. 

CERTIFICATE 

ACINOWLZDG412IT 	 ii 

ABSTRACT 	 iii 

Chapter a« 

10 	INTRODUCTION* 

2. REVIEW OF THE EXISTING LITERATURE. 

.. 	Necessity of Hodelltng the System* 	7 
2.2 Modal Control Theory. 	 9 
2.3 	State Equation and State Variable 

feedback 
2.3 * 1 Form t1ation of State Equation. 	 1 
2.3, 2 Pole Shifting  r Feedback Compensation. 	1 
2*4 	Network Snthesie. 
2.5 	R C Transmission Line Equation of 

Diffusion 'tees. 	 26 
3. MATHEMATICAL METHODS USED IN PRESENT PROD L1. 

• 3* . 	One mmensional R C Transmission Line 	29 Equation. 
3*2 	Transmission Line Equations in State 	32 

Space Forms.  
REPRESENTATION OF TRAR4XSSIQN LINES* 	 1+5 

5. - RESULTS ABN DISCUSSION. 	 50 

6. CONCLUSION. 	 52 

REFERENCES. 	 53 
APPENDICES 	 56 

3.1.1 	 56 3.2.1 
3.2.2 	 5-7 
3.293 	 5a 

58 



CA UP 
PAY, ~ 

tOCTACM09M 



The modal control theory is applied to long transmission 

lines for getting the responses at the intermediate points over the 

length of the line. In a general sense the theory of modal control 

may be regarded as. being part of linear systems theory as seen 

from the state space point of view23. This state space approach 

on modern control theory is a new approach to the analysis and 

design of complex control systems. It has Its own advantages over 

the conventional control theory, applicable to multi-input and 

multi output systems which may be linear or. non-linear, time 

invariant or time varying, essentially in a time-domain approach. 

A linear dynamic system equation is written in state space form 

as X = AX + Bu(t) where X is a state vector, u is control input 

and A and B are matrices with appropriate dimensions. In order to 

gain insight into the dynamic behavior of a system, it is helpful 

to make a coordinate transformation in to a new state vector Z 

through ' as X = TZ so that the coefficient matrix of the state 

vector will be in a canonical form exhibiting directly its eigen 

values on the main diogonal. T should be a non singular constant 

square matrix and the matrix T is called the modal matrix when 

it is selected so that T-1  Ar is diogonal240 The canonical form 

used here is called Jordan canonical form. The modal control 

theory is applicable both for jumped parameter systems and distri-

buted parameter systems. 

The elgen values of the coefficient matrix 'At of the 

state equation X = AX + Bu are the roots of the characteristic 

equation 1,X I •- Aj = 0. A linear state variable feedback method 
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can be applied to the control system to change the response chara-

cteristics. 

Thus the modal control approach is employed to improve 

the response of the transmission line by shifting the eigen values 

of the uncontrolled system in to the appropriate locations. The 

ratio of the system output to input in laplace transformation of 

this state equation is called transfer function. Then the parame-

ters of the transmission line are designed from the transfer 

function by applying the network synthesys approach. 

The term transmission line refers to a system of 
conductors used to transmit electric power from a source to a load1. 

These lines are basically divided into two types, short and long 

lines, by comparing with the wave length (X) of the waves to be 
propagated over them. An electrically long line has a length of 

the order of the wave length on a reasonable fraction of it 
(at least 	), Thus a line of four cm. is electrically long 

for a wave of 3000 M Hz current (10 cm wave) and is too short for 

a 50 cls current wave (6 x 106  in wave). A line to be long at 

50 Hz must have its actual length of about 100 ICmr or more. 

In order to take account2  of the fact that the current 
and voltage vary along a line, it is assumed that each elementry 

line section, however short y  has a.  resistance, an inductance,, a shw 
capacitance and a leakage conductance between the wires, then this 

line is regarded as a network with distributed parameters as shown 

In g.(l.l). 



ftryojtages up to may 20KV that the line capacitance  
can be ignored, but as the 'Voltage and length of the lin, Increases , 
oapaoitsnce beds of gradual1 increasing imporbance, Voltages 
up to 100 X satisfactory solutio can be obtained from T and v 
representation of the transmission lines. TM capacitance I.s 
distributed over the entire length of the Unr but for a simple 
treatment its effect can be approximately taken Into account br 
assuming that it Ia lumped in the forms of condensers shunted 
aaaroes the line at one or more points. 

Thatw000nonmethodcarenominalandiir. Inthe 
nominal T method' the whole of the line capacity is assumed to be 
concentrated at the middle point of the Une, and half the line 
resist s. and reactance to be lumped on either  side as,wn in 

x.2 I 
 

In the ir Method the capacitance is split Into 
halves,, titch are situated at either end Of the line as In g.+ U.2 4' 

Deterring to nominal' 

Eb1* 	' ,, (f) 	' R + J.X 

Nbl + inZt ru (I +  + z 
in nominal v 	IO2 = 'f Eb1 

I a 

Ra * 1+IZ *NU(I. )+ ,z 

110, 	a 	NI OL  + F)  + Irz)   

Xe 
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If these ominsl T and Viral it methods are added to 

long lines there will be considerable ems. Th. line impedance 

and admittance are tberetorel, considered uniformly distributed over 

the line length. An shy in 	 .3..3) a sue. length '(Az' in 

considered on the transmission line then b r applying Rigorous 
solution method the voltage and current equations are Ott. n as 

x
* l cos 	x. + X c  Stnh X 

IaX cosh 	+ ►]$jthxx 

Dy substituting I for z vs got the equations f voltage and 
current at sending end as 

s* 	cash AA+Z 	SinhrI 

bra r is IL ± (propagation constant) 

2e is ii/ (characteristicimpedance). 

An idealization2  of a practical "line is notbing but a 

disaipationlesa line or loss free line. By making the series 
rest stance and shunt cru ands are equal to zero., we could 

obtain a disaipationlesa line In which there is no energy loss* 
At ratio frequ c tae, shy lines have the property such that It as 

0 are segligibI, r In comparison with XL  and Xc  .' sr*t► w r the two 
wire and coal transmission lines used in d o Engineering are 
often treated as lou free lis with cutricient accuracy. 

	

The propagation constant and characteristic stic 	+ acs for a loss 

lass line ams a folly. 



2 0  

However the lose may be negligible in transmission lines but it can 
not be eliminated completely* 

The response calculationss of long transmission lines at 
intermediate points is done by two different methods and then 
compared# One of those two methods Is the representation of 
transmission line by one dimensional transmission line equation of 
diffusion type and the other one 1a the approxi'v:te representation 
of state equation. 

The baste parameters of a transmission line are resistance 
CR), capacitance (C), inductance (L.) and conductance (G). The 
transmission line considered here for modelling Is leakage free 
noninductive cable where inductance (L) and conductance (0) are 
assumed to be zero. The transmission line of this type is represen- 
ted mathematically by one.dimensionsi. RC transmission line equation 
in the form 

dx(x,t) 	cz2 	(x,t) 	 (1.1) 

where a2 ~r 

By taking into account the Initial# final as well as boundary cone 
ditions the responses of the equation (1.1) has been calculated 
for a step input u(t) at different equal distances over the length 

of transmission line. These responses are compared with the 



responses obtained from an approximate representation of trans-
1 esion Uris state equation of the form 

* * £X+Bu(t) 
	

(1.2) 

for the same step input u(t) at the same points over the transmi- 
esion line. 

The modelling of transmission line has done by applying 
the modal control technique through state variable feedback# The 
effect of state variable feedback on systems of the form given in 
(1.2) is to replace u(t) by Cr 	x) where 's are feedback gain 
coefficients. The closed loop equations of the system then be 
written as 

5ca (A.BK2) X+Dec' 
X M X+Br 	 (1.3) 

cT  x 
say M = A • B XT  

By the application of this feedback technique the poles are shifted 
to the desired locations. The responses calculated from the closed 
loop system for the same step input r(t) at the same states. Those 
responses are compared both with open loop state equation and BC 
transmission line equation (1.2) and (1.1) respectively. 

The modal control approach is employed to improve the 
response of the transmission line by shiftier, the eigeu values of 
the uncontrolled system in to the desired locations. 
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.. !ecessi7 of Modelling the System3  

Modelling of any physical system is a necessary - prelimi«. 
nary to make it perfect before bringing the system in to practical 
use. The modellingof any coniples system taci .it~4tes to prepare 
all corresponding data in the laboratory itself, 

In electrical systems emulation began with the creation 
of calculating boards or network analysers later those have gradua- 
ily been perfected and by now are semi-automatic and automatic. Terse 
modelling principles which partly relate to physical mr de ling, but 
their main task is to serve as mathematical models. These models 
Will provide the solutions to the equations formed by describing 
the steady or transient states of electrical systems* These 
dynamic or physical models are found necessary In their development, 
not only as the means for solving equations but also as an 
ex erinienta], base which replaces such natural Investigations in 
actual systems. Those which can check theoretical proposittons  
by the criterion of practice or in conditions closely similar to 
actual can check, adjust and work out any forms of apparatus. 

In the process of experiments an models,, the investiga.0 
tions carried out on similar systems do not in principle ensure a 
rigorous one to on relation between results even when total simi 
].arity is realized. This is conditioned by the fact that absolute 
Identity of concrete phenomena represented in dffferent *pace-tom 
dames is a nc tbematteal abstraction and in actual problems it is 
absent. The differential equation which describes the law governing 
the flow of a multiplicity of associated phenomena is a mathematica; 
model of some averaged pbenomenon,even within the limits of one and 
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same modelling structure « Its concrete realization differ one to 
another owing to random variations in the physical reproduction of 
the coefficients of the equation. In many cases the process being 
investigated depends on the prey-history of the process at the 
moment in time taken as the initial instant. 

Another aspect of the Impossibility of producing an exact 
model is linked with the fact that actual accuracy is determined 
by the depth of cognition of the original. The errors in the 
determination of the parameters are depend on the initial eimpii«. 
tying assumpti # observational errors and so ori. The errors In 
production of the model can have a real influence on the results 
of filling. Further more.#  the ezictance of definite 4U terence 
between the model and the original is an indispensable condition 
for the realizability of those functions wbtoh are Imposed on the 
model. The problems of evaluating the accuracy of the physical 
modelling structure are connected with the fact that the reproduc.. 
tion of the process being modelled. It is accompanied by ervors 
in the determination and reproduction of the similarity criteria. 
The random variations of the parameters of the model are depending 
on the features and structure of the model. 

In correction with the development of experimental 
investigations which have regarded to they inaccuracy of the initial 
da ,# now ways of using dynamic models are intended. Here It in 
passible to regard the model itself as the object of investigation. 
Thus any investigation on a model leads to the appearance of new,, 
more precise, theoritical propositions. The complicated problems 



of modelling have required automation to be applied to the 
experimentation carried out on the mode.. Such auto cation 
enables testing to be carried out more quickly and speeds up the 
issue of results, thereby imparting qualitatively new attributes 
to the physical model. Increasingly extensive use Is being made 
of combined models which contain elements of physical modelling 
along with elements of mathematical modelling* 

The use of digital computers enables new properties 
and possibilities to be imparted to the old methods, A great 
complex problems can be solved byr using computers and also the 
systems having number of variables can be modlad easily. Tho 
role of the methods of modelling is growing with the development 
of modern methods of investigation, and with the math mahcation 
of these methods. 

Therefore mathematical modelling is a necessary pre .im a 
nary to the analysis of any physical  system. The results of the 
analysis depend entirely on how accurately the system is described 
zaathamaticaj*y. 

Rosenbrocki, LR. appears to have been the first to 
propose mods l control of a process. 

To introduce the basic principle of modal control an 
ideal case may be co siderec 2  ` where all elements of state vector 
X(s) are directly measurable (C = 1) and the control vector B uCt ) 

.2 

is produced by a nonsingular 13 from an n.vector u(t ). A control 
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linear dynaiiC s tem on the state equation is described by 

XaA 4 Bu(t) 	 (2.2.1) 
and the output equation Is Writ ton as 

(2.2.2) 

where X is a state vector, uC t) is input vector, ! to an output 
vector and A, B and C are matrices with appropriate dimensions. 
Since the state variables are not unique, the intention is to 
transform the state vector X to a new state vector Z, or into 
model modain by mums of a constant,, square$ non singular matrix To 
so the state equation (2.2,.1) above becomes as 

x a T z 
a TZ  (2,2.3) 

a T-1 TZ+T",it t 
a 1\ Z + B" U. 

whe /\a T-1 AT 
Ba T-1 B 

The eigen values are same for the original system and 
for the transformed equation+. So the elgen values are invariant 
in a linear transformation, n# 	matrix T is called a mods. , matrix 
when it in selected., so that T''"~' A ? is diagonal. For an nth 
ardor system 

~1 

0 

P 

0 

A 
a 

(2,2.'+) 



A great reduction in the elements of A is obtained whee 

A Is reduced to the Jordan canonical form A by the above coordinate 
transformation. The matrix A possesses the same Invariant 

oteristioe as A but is much easier to manupulate. Hence transform-
ing A into simplest possible form makes it possible to investigate 
Intrinsic properties of the dynamic system with the minimum of 
manupui atione. 

When all eigen values of the control objectt are real and 
disti .ot only these eigen values appear as diagonal elements of 'N 
as in (.2.j). D AzO, J.J. and C.H. Houpis have discussed 
three methods for obtaining the modal matrix T for the case of 
diet:.ct elgen values. It duplications exist in the elgen values 
then it is necessary to use the Schwartz form, The Schwartz form 
is the name for this form of the Jordan can ical na rix. xf the 
system has conjugate complex eigen values a modified oanonic form 
of transformation X = T Q W is used in 2.2.3 ire Z a Q W. 

Let X1 = T + z W 
~►zw 

be a pair of conjugate complex eigen values where ( "and r are 
both real and w> 0 . The first eigen vector V' that corresponds 
to A 1 Is also complex. Lot s and ,P be real vectors determined. 

i by 	+ ' 0 . Now the first two columns of P matrix can be 
replaced by the first two conjugate complex eigen vectors a and P 
respectively. 

' 	a i 	...... 

with the modification in the transformation the resulting A :ox 
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2#2.4 matrix will take the form 

U 0 .. 

A= 1u o" o 

M 40 0* '4R 

The modified steps of the matrix reduction just shown 
for the first two sigen values, apply to a complex pair placed at 
the itb and i. + I at location without an basic oriange in computa« 
tion. The complex eigen values are rarely occur in practice; As 
in the present problem of Interest that all eigen values of the 
control object are real and distinct then the 4A matrix is diagonal 
That is the desired or prescribed oiooed loop modal domain matrix 
of the control object with modal control#  where the diagonal 
elements are prescribed closed loop eigen values of the controlled 
system, 

The modal control of a class of distributed parameter 
systems governed by partial differential equations of the diffusion 
type have been presented by Porter 0  B and Bradshaw, A. For both 
ideal control laws and practical control laws have been derived for 
the assignment of one real time domain sigen vaiue2  and also 
arbitrary values to several of the tim«udomatn sigen values of 
distinct type260 In the ease of single eigen value suggested to 
use sensors to limit the departures introduced from the Ideal 
modal control to the practical modal control of distributed 
parameters. ' Mc G1otbi 27  used a generalized eigen function 
integration  method to develop a modal control model of a class of 



distributed parameters systems. These systems described by scalar 
parabolic partial differential equation in one space dimension with 
mixed boundary conditions., the control being exercised at the 
boundary of the system* This general method Is useful in studying 
decoupling and pole allocation in the class of distributed systems 
considered. In Or-ossa 's modal. control theory28  the loop gains 
of a single input system may be readily calculated using a simple 
formula for the case when the system matrix has a number of sets 
of confluent aigen talues. Thzt the Jordan canonical form must not 
contain  twwo or more Jordan blocks associated  .th the same eigen 
value location in the A plane* This restriction Is relaxed in 
the case of multi input systems by allocating a different control 
input to eat ► such repeated block. 

The closed loop poles of a control system having a 
single controlling input can be put in desired to ,tions providing 
all state variables are measurable and all modes are both observable 
and controllable. tbder these ideal conditions modal control will 
be satisfactory if there are necessary number of msnpuations to 
control the dominant modes. 

►3 State Equation And State riab1g Feed8a 

►3.l.Formation of state equat10 t In general, most physical systems 

are non-linear in nature and since it is true that an exact 

mathematical den cripton of any system valid under all conditions 
is too difficult, it not impossible to formulate. <ste of the most 
difficult problems tenting presently is the problem of obtaining 
an Adequate mathematical description of the physical system. 
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aay.r, for most physical systems the appxogtnta,te behavior is 
generally kno.n and on the strength of this knowledge one t make 
various simpUf7iflg assu*ptio with the result that an exact 
mathematical l model becomes quite u necessary. 

There are three yoU 1noW► methods of describing physical 
cratems mathematically9  

2) The 	 nsfer function mode « . 
2) The state variable model and 
3) The component connection tion mel. 

1) The transfer function Is defined as the ratio of the Laplace 
transform of the output to input. The transfer function may or 
may not describe the system completely. In other words only those 
modes of the system which are commanded from the Input and observed 
from the output terminals appear in the transfer functIan. 
2) The state variable description for a system is of the type 

f(x,u,,t) 
14 g(x,u,t) 

(2,3.1) 

And now consider the class of linear time inUrariant systema those 
can be described by the pair or vector equations 

*aAX +fu(t 

whore 
u is Input 
Y is output 
Z Is state vector. 

This is cors elegant and easily amenable for numerical solution  



with the help of a digital computer. A wide range of choices of 
state variables and the coefficient matrices are possible giving 
the same input. output relationship. Another advantage of this metbo 
one state variable model may be converted into another by a nom 
singular coordinate transformations 

3) Lastly the component connection model is more natural as most 
engineering systema are constructed  by the interconnection of corn. 
ponents or sub-systems. The component connection  model has never 
come into popular use because of the lack of a form which is 
general enough for most practical problems. 

The most innovative aspect of modern system theory is 
undoubtedly the prevalence of state space models for dynamical 
systems. This has provided a frame work which is at the same time 
extremely 'general, offers many advantages and yields concrete and 
specific practical results much more directly than other methods 
were able to provide. 

A dynamic system' consisting of a finite fiber of 
lumped elements may be described by ordinary differential equations 
in which time i8 the independent variable. By use of vector matrix 
notation, an nth order differential equation may be ezpros sed by a 
first-order vector-matrix differential equation. If n elements 
of the vector are a set of state variables # then the veotor.matriz 
differential equation is called a state equations This can be 
explained by taking an example of nth order system in which the 
Laing function does not involve derivative terms. 
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Consider the following nth order system 

+ may '" + a 	. * . 	 u(2.3.3)  

Noting that the knowledge of y(0 ), Sr( 0).. * y7 '~ 1(0) , together with 
the input u(t) for t > 0, determine$ completely the future 
behavior of the system, we may take VWW # 	.. rt 	as a 
set of n state variables. 

Let us define 

t 
. 
a 
S 

Then equation (2.. 3, 3) can be written as 

23 

f 

or 	A +8u 

I&Gr+e 	X* X , A * 0 0 

11 	 S 	0 	• 

• i 	I 

 

- (2.3«4) 

0 

4 	B 
M 
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The output equation becomes 

xl 
y*(j a...of 

XII  

.i a  CT  iii 

whore C ) 

0 

Therefore the first order differential equation (2.3.1) is the 
state equation. Similarly a state equation can also be developed 
to a transmission line in which only resistance in series and 

E;re 
capacitance in shunt we connected. The transrission,tis provided 
with a current source at the sending end and the receiving end is 
kept open. The states of the equation (2.3..)+) are. calculated by 
developing a computer program which Will be discussed clearly in 
the next chapter. 

.2. pole aiifting b eedback conenspOne of the most popular 
techniques for altering the response characteristics of a control 
system is the application of linear state variable feedback, There 
In considerable interest at present In the design of feedback 
controllers for multivariable systems to meet various performance 
objectives* Several techniques have been developed to evaluate 



the feedback gain matrix in time domain as well as in frequency 
domain to meet the desired system responSeS. It the system has 
a single inputs  then the feedback gain matrix is unique as in the 
present work#  where as for multi input cane, many solutions for  
the feedback gain matrix exist. 

A method has been developed%, in which the feedback 
coefficient matrix has been calculated from the transfer function 
of a closed loop system in order to shift the poles in to the pre-
assigned locations and also suggested to replace the Zeros If any 
in the closed loop transfer function by the poles at the some 
locations. This method is to determine for a pair of dominant 
complex poles which 	l result in a step response satisfactory 
for the desired use of the system* A linear state variable feed 
back method Is suggested. by . Broekett , R. W.to  to obtain any 

desired pole configuration consistant with the dimension of the 
system when the system equations are Controllable and observable, 
An expression for tha transfer function of a system described by 
a set of first order differential equations is proposed in which 
it not only relates the poles and zeros to the eigen values of 
matrices but also des it possible to compute the transfer tunctiox 
without matrix inversion. A feedback compensator is provided in 
cascade to obtain arbitrary pole placement (11,12) using state 
variable feedback tor controllable and observable system of linear 
time Invariant multi*input,multi.output plant,, In the technique 
suggested by SoThelmI3  it Is possible to designate the closed 
loop pales at preassigned arbitrary locations and at the same time 
minimise a quadratic performance index with a preassigned weighting 



matrix for the control input vector. Wonharn14  has shown that the 

controllable system can be forced to satisfy any set of eigen values 

by employing appropriate linear feed back. Hence the control 

problem becomes that of designing a feedback matrix such that the 

closed loop system satisties or approaches these eigen value 

requirements. 

. Retallack and Mac Farlane '5  gave a procedure for shifting 

a sub set of elgen values of the original system. It was pointed 

out by the same authors that their approach can not be used for 

satisfying a criterion other than a simple allocation of closed-» 

loop poles since the gain matrix has rank one. Vittal Raoi'6  

described a procedure for evaluating the state feedback matrix 

of a linear system for which only r of the n system eigen values 

need to be suitably shifted along with the minimisation of an 

appropriate quadratic performance index. The remaining n-r eigen 

values of the original system are not disturbed, and are passed on 

to the resultant feedback system. A characterization is given for 

the class of all closed loop eigen vector sets which can be obtained 

with a given set of distinct closed loop eigen valuesl7  and for 

non .distinct eigen values 18  used state feedback. Gaupe19  attemp-
ted to design an appropriate weighting matrices for the performance 

Index which provides an algorithm for deriving a diagonal state 

weighting matrix according to the eigenvalue requirements. The 

solution given employs matrix differential calculas and a. static 

gradient minimization sub-routine to minimize an eigenvaiue error 

criterion. However the choice of feed back matrix is not unique, 
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unless th. system is of single input. 

For the present work th. single input feedback,  satisfy► 
I eigenvatue requirements is considered. Th. method applied for 
finding out feedback gain matrix is as follows* 
For example eonsider a single Input third order controllable system 
as fo ,lowe19 

i s 	+ Sun 	say u in scalar 

all 	12 b 

mare A = a 	a22 	a23 ' B b2 
,  ft3 j  L bo 

with the linear feedback control policy 

uIna.'rX, -tK1X1+K2X2+~X3' 
We require the eigenva3,ues of the s rsteam in closed loop be 
11. A2 A3 consequently K, are derived such that 

dot (A «BX , Ai I) a o 
dot (M Xi 1) s o 

101,2,3 

• Y ! a (A «s K7 ) 
Y 

	

r ii 
K1b1d. 	(ai2+ Kb) 	(8,3+ K3 , ) 

( 	+ 1C2b2 » Xi) (a23' Y-3b2 ) 
	

(2.3.S) 

	

a31+ b3 ) 
	

(a 32+ b3)  (933+ K3b3.. 

Thus the characteristic equation of . ( 213.5) represents a sot of 
three Ur ar equations (for I * 1,2,3) in K1 , with three unknowns 



Cosequntl in the single Input case, a unique solution for K 
exists that brings the closed loop system to satisfy any not of 
eigenvalaas A1. A similar set of n equations exists for any nth 
order state Ctor#  giving the n components of 1 for the single 
input Case, 

The plant we consider for compensation by state variable 
feedback is in a state variable form lation as shown in ,g. (?-*3*l) 

a AXt au 	 (2.3.6) 

The plant output is assumed given by 
r cTx 

In state variable feedback we assume that the entire state vector 
X is available for feedback. The feedback stem is shown in 
Fig. (2.3,2). 

The quantity for feedback is KT  X and suhetracted from the system. 
input r, to get an input to the plant which is given by 

u a r- K X 	 (2,3,7) 

Substituting (2.3.7) in. (2.3.6) 

(A.WBKK)Z+Br 
HX+Br 	 (2,3,8) 

Sa7M.*A.BK' 

The equation (2.3.8) it the equation for the Fig. (2.3,2) i.e. 
after applying the state variable feedback, 
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A Large percentage of networks in control systems are 
to consist of only resistors and capacitors because of the la r 
frequency of interest * The vast majority of synthesis problems 
in the design of feedback control systems demand realization of 
the proscribed transfer functions by networks consisting entirely  

of resistors end capacitors. Inductors are avoided because of the 
excessive weight and size required by the low frequencies of 
interest. In this problea basically it is assumed that a leakage 
;tree non4nductive cables where the conductance (6) and inductance(L 
are equal to Zero. So here the network synthesis to mainly concerne 
with BC transmission Vie. 

In linear networks if any two of the three qu tities3° 
the network# the excitation and the response are given the third 
may be found, When the excitation and the response are given and 
it is required to determine a network the problem is defined as 
synthesis when the response is required to find out when the other 
two are given  giten is called network analysis. In analysis the solution 
is unique where as in synthesis however solutions are not unique 
and there may exist no solution at all. If there Is any solution 
to a given problem, there are an indefinite number of other solutioo 
from Bch a choice may be made. 

For one terminal pair networks, only one voltage and one 
current are identified and so only one network function can be 
defined i.e. the driving4point impedance function or simply the 
impedance of a network Z(s) The reciprocal of the impedance 



function is the driving-point admittance function or the admittance 
Y(s). For two terminal-pair network two currents and two voltages 

are identified. A large number of network f ctions are possible 

in this case, four different quantities taken two at a time gives 

six possible network funotions99. Those six transfer functions are 

the driving point Impedance (1) at input terminals (2) at output 
terminals (3) transfer admitanoe function (+) transfer impedance 

function (5) voltage ratio transfer function, These network 

functions are important in synthesis because they may be used to 

describe models which approximate actual systems. The various 

voltage and current transform i in a given network are related to 

each other by network functions which are quotients of rational 

polynomials in the complex frequency variable S. A general 

transform function of this form may be written for impedance 

any sn + al sn + ....... + an-1 s + 
by sm + bi 3m -1 + 4 , 0.0 6 0 + bm.., s + bm 

where a and b coefficients are real constants, it is the degree 

of p(s) if a0 0 0 and, in is the degree of the denominator polynomial 

q(s) If b0 0&0 . The network function Z(s) can be written after 

factorising both numerator and denominator polynomial as 

s) 	ao (s-Z,)(s _Z2)....... (s~»Z) 
Z(s ' p̀q' s'~ 	s -pl 	P2) ....... s -pn 

where the roots of p (s) .= 0, Zl, Z2 ...... Zn are the zeros of 
the transfer function and the roots of q(s) = Of pl = p2 ,..«.pm 

are the poles of the transfer function. 

0 and (6) current ratio transfer function. 



it a rational fundi .29  has si ie poles restricted to 
the finite negative real aid$ where it has positive real residues 
and if its value for 9 a Q' is non negative and finite then It 
satiefies tom necessary conditions for being the driving point 
impedance of an RC network. Sher more the poles and zeros 
alternate along the axis. The lowest critical frequency is a pole 
and the 'tirigbest critical frequency is a zero. This above discu-
ssion is concerned exclusively with the characteristics  o.f driving 
point impedance functions, Similarly for . driving point admittance 
functions can also be realised as BC not work functions but only 
cage is the roles of poles and zeros are tTaply interchanged, 
The poles and zeros still alternat, along the axis ,but for  
admittance function the lowest critical frequency is a zero, the 
heighest a pole and all residues are negative. 

Most of the techniques for the synthesis of transfer 
Miens are based at least in part on the synthesis of driving  
point impedance or admittance functions. There are four fundamental 
methods20  by which networks for RC Impedance functions can be 
synthesized. Jkch method depends on the technique of waiting the 
function in such a form that a suitable network configuration and 
element values can be determined by inspection. 

* The first Foster form is also called 
as partial-fraet .on expansion or U(s) and second foster form is par 
tiel»fraotion expansion pa on of !(a)/3 . The pales are removed  one at 
a time until the function no longer possesses singularities i.e. 
until the function is simply a constant. But each stop in the 
reduction meat meet two requirements z the removed quantity must 



be recognizable as a simple impedaaoe and the reminder must be 
an RC impedance function. 

These are called continued fraction 
expansion about tntir4ty and about zero respectively. In this 
eauer form also thenet-work is realised by removing the poles of 
the transfer f coon , but it is some what different from the 
Foster like form of removal of poles. 

The first caner form is applied for the rea cation of 
the RC transmission "mss in the present problem from the transfer 
impedance Z(a). This is also said to be the consistent removal of 
components at S = 

point impedanoe is a quotient of motored polynomials In Bch 
all powers of s are present expressed as Z(s) for a nth order systf 

Z(s) 	L 	,~ 	 ..l) b gn+b111 s 	+.,.. +b 4`bo 

This impedance Z(s) has finite non zero values at at both e = 0 
and a 	which is its most general form and all coefficients must 
be positive, For getting the ladder development of an HO network 
an initial sealer resistance having a finite non Zero positive real 
value at s s a* Is rimed from the Z(s) function. The remaining  
impedance say (a) is now zero at $ = 00 so the reciprocal 
" (e) at 	has a colo at e 99 q Removal of this pole produces 
a shtmt oapacitance* The remainder function say 7 Cs) has a poet.. 
tiv. real non zero value at s = co because this value must be larger 
than tbf non negative zero frequency value. Bence the reciprocal 

R 



Z2(s) a ~ is again like Z(s). This Z2(s) has a finite non 

se" positive real value that Can be subtracted to begin a second 
cycle in the ladder development exactly like the one just completed. 
it the process Is to be repeated until the remainder is reduced to 
a constant yields the continued fraction representation of Gauer 
first form, 

is + 
	

(2*4*2) 

n g + 

Although n+2 coefficients appear in expression (2*1+.1) 

for Z(s), only n + 1 of them are independent$, since the constant 
multiplier is the ratio of ani''bn * Hence the development procedure 

will yield n + 1 elements equal the number of finite non zero 
anttcal frequencies plus one. The reeu3Mng network for the 
sxpreaaien (2i4it) is shown in Pig.(2). It is a ladder of 
series resistors and shunt capacitors , the first element Is a 
resistor when Z(o) is non zero and is a capacitor when Z(oo) is 
aero. The last element is a resistor when z(0) is finite and is 
a Capacitor when Z(s) has a pole at the origin. Thus the elements, 
of the network from the transfer impedances are determined. 

a.5flC Transmission Line &uatton of Diffusion Te 

A transmission line equation is formed by considering 
the two basic parameters resistance and capacitance. The remaining 



two basic parameters inductance ance e i conductance are assumed to be 
air because it I considered a leakage free nonduativ. cable. 

'herefore the PLC transmission line equation Is written matheinatioa. 
Uy as 

whore a2  

This emotion can be derived by taking a staple example 
of one dimensional,'fit conduction. This illustrates 	features 
of the control of distributed parameter erstorna. 

A metal slab Is oonsideredbounded by two infinite 
parallel planes as shown in Fig. (2 5.l ), Assumed that on one side 
of the metal slab to perfectly insulated nd the temperatufe 
distribution through out the slab is controlled by applying heat 
unIformel.y over the other side of the metal slab* The behavior of 
the teaperaturo -a at distance x and time t is given by one dimen 
atonal diffusion equation when all conditions.  assumed axe uniform 
nth enpeOt to other two coordinates y and Z. 

bra c 2  is the diffusivity of the material of the slab.. The 
systems emir behaviour can r coed by taking a finite 
Umber of variables to represent the continuous terperature distni. 
button. 

By dividing the slab in to number of 8UU*.s of finite 
thickness an et.ctiea1 BC network can be derived. For example 
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the slab is divided into two slices then the electrical model is 
represented as in ?ig.(2.5.2). 

As shown In ?ig. (2.5.2) "u' represents the temperature 
applied to the heated face of the slab, and +ii, and S?  represent 
the temperatures at the centres of the two slices. 

' aen It is considered as an electrical transmission line 
the u becomes step input and 	til  and 02  become responses X1  an d 

at the intermediate points when the line is divided In to 
saber of sections. 

The initial condition 	(x,o) = 0 
L  

0 x 1 	0 t baa 	 ( Z3) 

and boundary conditions are 

(*,t) J- 	u(t) 
t 	f' x 0 

„t 3 j 	* 0 

The solution of the equation (2..5.1) will be given in the next 
Chapter (3.1) by using the boundary conditions given here. 
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This chapter presents the mathematical techniques used 
for the present problem. 

.I +ie mmensigai RC Transmission Line Equation  

Consider the transmission line +sguaticè as given in (14) 

Vx9t) a  a2 102 x,t) 	 (3.1.1) 

and also this is the equation for leakage free non4nduottve cable 
where G and L are equal to zero. 

Then U 2 * 	r 	 (3.1.2)  

X(x,t) represented as Z for simplicity 

Let w calcite the problem for unity value of + for simplicity! 
The per unit values can be extended to the actual t smis s for line. 

+3 
	Asmaed a2  *1 	 (3.1.t) 

Taking Laplace transformation on both sides of the equation with 
respect to to 

(34j) 



and 
	c3~X(7CS) / 	5-R s)  

+..x Cx„si / 	=0 
tit 	f 1 

X0(x,Q) * 0 	from :2» 5.2 

Also 	SX(x, s) a 8 S 
c~ 

Solution of (3.1.7) is thus given by 

(3.1.6 ) 

(3.1.7 ) 

A Sinh 	x+I3Cosh/ 	9 

at x0gA*.►l/s 	om (3.1.6) 

 

~ a A cosh i X. /' + B Sixth /r X.~  u(s) 

 

= Jl (A cosh  x+3  Si / x) a .. U(S) 

x a 0 	A I -u(0) 

at xisI 

cx 
Imo` (A Cash lar + B Sin)) 	) = 0 

A 	' ` a L 	Gosh i  
Sinh ,r Pi Sink ir 

The solution of (3 7) Is given as 

	

x a MW Binh 	x+ M 	h 	Cash 	~C 
/T Sixth ir 

or X = 	 " 8i tI fl X1 	u(s) 
Sixes /' 

/~3"" Sins /8 



They poles of (3.1.9) are given when denominator equated to zero 

/r"" Sind► /r 
This gives 

le ' 	; 	K = 0,, 1#, 2,, ...... 	(3.1.10) 

These are the actual eigeu values of the transmission line. The 
solution of (3.1.9) In t form may be written by writing 
(3.1.9) in the form6 

X(x,t) 	St (2 W cos Kiix e t ̀" )uC ) cE 
0 K=. 

X(x,t) 	+ 	"~$ 	 t) 	 C3.1.11) 
Ku1 

Assumed the expansion of X(x,t) in coordinates x and time t, 
In convergent series in the sense of Weinberger t . This gives the 
complete solution of the system (3.1.5 and 3.1.6). Por finding 

out the responses 'X at the intermediate points of `x' on the 
transmission line for a unit step input u(t) computer program is 
written which is given in Appendix (3.1.1.) . For convenience the 
total length Cx) of the transmission line is taken as unity and it 
is divided into equal lengths. The value of x depends upon the s 
numbers of sections made. In the present problem it is divided into 

5, 6 and 7 sections and the intermediate points or states are 
always less than one to the number of sections, The results are 
shown graphically, The responses of interest are at the intermediat 
points and are named as X ,, X2 and so on. 



2 Transmission Line Eqaations in State Space Fora 

One dimensional dif#rential equations may be written 
for the transmission line to represent in state equation form. 

from (3.l.) 	 (3.2,1) 

The differential equations can be written in Taylor Series form 
at a point on the transmission line when it Is divided in to equal 
length 'h# as- 

X (x+h,t) a Cx ,t) + r i. 
t~7C 

2 	 (3.2,2) 

x(x.h,ttaX(x,,t)- rb ++ (3.2.3) 

By adding (3.2.2) and (3, 2.3) then 

CX(x+ h, t) + C Cx ..b, tl -2 X tx, t)i 	(3..2.t) 

say x = n h where h is section length and n is number of 
sections divided. The general equation is written as 

• tx(nh + h,t) + x(nh b,t) . 2XCnb, t)) since 
h 

(3.2.5) 
substitute for n = 1, 2: 3,..s and soon in (3.2.5) 

n is always greater than one , to the intermediate points. For 4 
intermediate points n is 5 and so on. The value of h is equal to 
the length of the line divided by number of sections made. diet 
as RC transmission line equation here also the transmission mission line is 
divided as 596 and 7 and then compared. 



(X(nh + h#t) + X(nh *w hot) - 2X( , t)i 	(3,2.5) 

Substitute for n a It 2, 3 an4 t 

= tx(2h,t) x(o,t) -- 2x(b,t)3 
h 

rpt 	'VEX(3h t) + X(h,t) - 2X(2h,t)) 	 (3.2.6) 

h 

~f = 	* EX(5hot) + X(3hwt) — 2X( ,t )1 
t 

l3ay X(h,t) = 	X( ,t) = 7 	X(3h,t) = 

x('ih,t) 	a 

ox 

(2.2.3) 

ox 	U 

x(o,t)* i u(t) ` X(h,t) 	 (3.2.7) 

0 

x( 5,t) = x(4,t) 	 (3,2.8) 



By substituting (3.2.7) and ( 3.2.8) in (3.2.5) then these 
equations can be wrIt an as k to AX + Bt*( t) 
or 

X3L i25 25 0 	0 7. 1 
25 -50 25 	0 1 	+ uCt)  

0 25 40 $ X3 c 
0 0 2545 o 	! 

Uwe h a where t5 

25 25 0 0  

	

where A 	25 40 25 0 	1 B= 0 

	

0 25 ..50 25 	0 

	

L o 0 2525 	0 

t 5+X) 

 

The eigen values of this A matrix can be ca1culated7  

(3.29) 

25 0 0 

as 1A* h I I a 0 	! 	2$.(5O+ X) 25 	0 	=0 (3.440) 

	

0 	25 (5o+X) 25 

	

1 o 	0 25 	25+ ) 

The characteristic equation of IA. h 11 0 is 

A 4  + 154 x3  + 6250 > + 62500 > = 0 

A computer rogranine :.9 written for finding out eigen values of 
this A matrix. It 	,, be extended  to the any order of A Matrix 



and is given in Appendix (3.2.1) . The eigen values of 4th order 
A matrix are gist below. 

The responses at intermediate points Z1, X2#  X3  and „ are calculate 
through a computer program (Runge Etta method) which is given in 
Appendix (3.2.2) and compared with those responses from EC transmi-
esion line equation at the same points Of distances by drawing 

graphs shown in graph numbers from I to 4, 

As already explained the state feedback methods, the 
tate equation after feeding the states through feedback coefficient 

is as follows 

i r1 X+Br 	fromU•3) 
where 	a (A » B T) 

14, At  B and K are matrices with appropriate dimension. 'fie 
charaoteristie equation of M matrix may be written as 

11 All 0 
IA. B 	* A 	 (3.2.11) 

The eigen values of this M matrix and the eigen values of the 
transmission  line RO network equation are earns. The feedback 
coefficients (K's) are calculated by substituting the eigen values 
from (3.1,10) who" K a 0, 1 f  2, 3 in (3.2*11) Instead of A . The 

matrices A and B are known. 

1* B KT,  Ail * ft  XTj a 0 



it" 	0 

0 

LO 

r 23 51c 

o 0 0 0 

0 0 0 0 

Lo 0 0 0 

. (25  + 	
+ X) 2K2 

	5K3  

2 	0 
0 	 4O 4X) 

	

> 	25 
A 	0 	25 	-t25t X U 

The characteristic equation of 114 - A 11 is written as 

+ 15) ,\3 + (625 a`! +.12!E, + 62 0) > + (18750.  

+ 93? 	+ 312K3  + 62500) ) + ( + x2  + K3  + ) 73125 = 0 

Now poles are shifted to the required locations. A computer progran 
for finding out K's from the characteristic equation of M is written 
and the program Is given in Appendix (3.,2,3) 

The feedback coefficients are as follows. 

;2 =0.07 	=5.238 	,=»2.881 

Therefore the M matrix may be written as 

13.1.80 24* 965 -16, .90 i4.ko0 

M* 2.0 40.0 25.0 0.0 
0.0 2.O $$0.0 25,0  
+4.0 0.0 25.0 25,O 
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Again the responses X1 X2 X3 and X „ for this feedback matrix are  
calculated as in th. case of A matrix and compared with the previous 
respc es 

inx X+ Br(t) 
rsCT X 

For finding otit the network of the abs e equation (1rhich is to be 
discussed 	 4th Chapter) the transfer Impedance Is calculated for 
a current step input. 

Applying Laplace transformation as 
3X(s) • x(0) * MXCe) + BR(s) 

(SI . M) X(s) * (S 

Since X(o) a 0 

X(s) 	MSI M) 3- BR(s) 
Y(s) c (sz = M)'l (s) 

z(s) 	go cT (61 .~ Xrtè  B 

Z(s)=C~(SI.►M) 1 B 	 (3, 2.12) 

By know the values of C, 14 and B the transfer impedance may 
be calculated as 

+ l38.56 '+ 477+ 	+ 34613 a 

n xt 6, 5'th order. 

The game procedure is applied by taking xi a 6 for comparison 
pose. 

[X(nh + h. t) + X(nh.h,t) - 2X(nte t) ] from (3.2.5 ) 



n varies from 1 to 5 since the number of sectio are six. 
The state equation of the tors k a AX + (t) is written as In 
(3*2.6) by applying the same boundary conditions. 

bore X( h,t) a 

*C6 hot) = x(5 hot) 

r~36 36 0 0 0 

t 3672 360 0 

0 36 42 36 0 

0 0 36 42 36 

0 0 0 3636 

»,36 	36 0 	0 01 67 
36 42 36 	0 0 

Aare A 0 	36 42 	36 0 1$= a 
0 	0 36 42 36 '~ 	I 

40 	0 0 	36 -36 0. 

The characteristic equation is Obtained as 

I A,wx I a A0+ 288 h '+ 27216)?+ 9331+8 >+ 8398080. = 0 

The eigen values or roots of this equation are calculated from 
the computer program given in Appendix (3.24). 

l * 0.0 A2 * AM 13.75 .\3 a .*49.75 )' 	94.29 A5 	130,249 

As In the cane of 1tb order the responses are Calculated, at 
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X2, X3, 	and? for comparison with the responses of trans« 
mission line equation, wpbs are drawn and shown from graph 
numbers 5to 9. 

Now after app1ing feedback techniquo the state equation becomes 

C at MX + Hai from (1.3 ) 

The characteristic equation of 4 is IA - X I (a 0 

JA - B gT . I j a 0 	from (3.2*11) 	(3.2.i)+) 

	

1: 	6K 6K2  3 	6 

	

0 	 0 	0 	0 	0 	0 
0 	t 	0 	0 	0 

These Vs are calculated by substituting the transmission line 
aigon values from (3.1.10) where K a 0123 and 4 in (3.2.11f) 
instead of A. 

(36+6K) 364 6 6 ç 6 

36 36 0 0 
h 

36 (72+ )) 36 0 0  

0 0 36 .(?2+)) 36. 

0 0 0 "' w(3 +N) 



The characteristic equatton of IM . )► II is written as 

)►5 + (6KLi+288) a4 + (3512K1 + 	+ 27216) A3 + 

(u6 	1c1  + 38880 i + 7776 IC3 + 933120) 2 + 

(2799360 1C, + 1679616 K2 + 839808 K3 + 279936 K + 8398080) > 

For finding out 's a computer programme Is used which is given 
In Appendix (3,2.3) and the poles are shifted to the desired 
locations, 
The feedback coefficients for 5th order are as follows 

1.399 K3 ► 22,7725 	K5 + 	6,5389 

o. 12.3258 -- 18,3356 

Therefore the 14 matrix may be written as 

14 * (A «- B K~) in which AB and K matrices are knows. 

4'+.io 109.92 - 136.62 109# -►39.22 
36.0 »72.0 36.0 0.0 0.0 

M 0.0 36*0 -»72.0 36#0 000 
0.0 0.0 36.0 -72.0 36.0 
0.0 000 0*0 36.0 -36,0 

Now the state equation after feeding backs is 

X M Z+ B r 

The eigen values of this M matri,.x and the first five sign values 
of the transmission line equation are same. The responses of this 
state equation s :X3,X,+ and 	are calculated by the computer 
program ie given in Appendix (3.2.2). 



.049 9 0 0 0 0 X, 
1+9  .98 •.)+9 0 0 0 X2 

O 1+9 -98  49  0  

a Q 19  "98  0  

o 0 ° 4.993 19  X5 

0 0 0 0  

a 

7 
0 

+ 0 u(t) 

0 

0 

0 

The graphs are drawn for responses verses time as given 
in graph numbers from 5 to 9. The transfer impedance to calculated 
for this 5th order state equation as in (3,2.i2). 

zcs) 	0  • +175fr'+ 	+ 	s + v f6 	(3.2.x5) 
S + 296 3 + 26593 5 + 788386 22  + 6924 ► 

The transmits ion line representation will be shown in the next: 
Chapter. 

n7 Sixth Order 

The same method is extended to the next order. 
Heren=7 b 

The general equation is written from (3.2.5) as 
, ( ,t) , ,; 1X( 	+ h,t) + X(nh hot) - 2X( ,t)J 

Here n varies from I to 6 since the number of sections  
are seven. The state equation of the form * AX + (t.) is written 
as in (3.2.6) by applying the same boundary conditions* 

x(5 ho.t) a 	x(6 hot) 

and also 	X(7 hot) u X(6 hot) 

'. 	+ mz(t) 



-a 19'+9 0 0 0 0 7 

'+9 ►98 49 a 0 0 0 

where A  0 49 .«98 49 0 0  • B 0 

a 0'+9 .98 '+9. 0 0 
a 0 a x»98 '+9 	; 0 
O 0 0 0 9 a, 

The elgen values of this A matrix are obtained by writing 
characteristic equation as 4A = > I j = 0 

IA ,» All  as A ` + '490 X5 + 86445 \4 + 6589256 ~3 

. + 201801728 A2 + 16918620O A = 0 

Again the computer program given in appendix (3.2.1) is applied 
for finding out the etgen values of A matrix. 

The eigen values are as follows 

X1 = 0.0 A2 .» 13.13 	49,0 >'+ * 98.0 

14?.O ) 	l82.87 

As in the previous  is oases the responses , X2 X3, X'+, X. and 
are calculated by using the computer programme given in appendix 

(3» 2.2) and compared with the responses obtained from the t nnmi-
ssion line equation at the same points* The graphs are dawn for 
all the states shoiin in graph numbers starting from 10 to 15. 

The feedback matrix .x M Is written in state equation form as 
jaMX+Br 

where M a (A - 1 XT ) 
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The characteristic equation of M is IM - A I1 M 0 

IA •►BICT . 1\XI a0 from (3«2.1) 
	

(3.2.16 ) 

XTP (K1 	r5%3 

BI T * 

j7 	?K2 7K3 7T 7 	7 
v 	 0 0 0 0 00 

° E~X3'C5~►]~ Q 	4 	v 	0 	t Q 
0 	 0 0 0 0 00 

0 	 0 00 0 00 

04 	 Lo 0 0 0 00 

These feedback coefficients are calculated by substituting the first 
six eigen values of transmission line from (3.1.10) where 
K = 0, 19 2, 39 t and In (3.2.16) instead of A. 

?r) O % 7j' 2) «»7`g3 -7X11„ i7L 7K 

49 .(98+X) 49  

IM.0AIJ fl 49 i(93+A) 1+9 0 0 0 
0 0 1+9 .(98+X) 49 0 

0 0 0 49 »(98+%) 49 

o 0 0 0 j9 (4.9+.x ) 

The ch racteristic equation of jM X I I is Written as 

A6+ (7 + 490) A5 + (3 7 , + 343 + 86436) >)' + 

4 70596I + 3 7 9K2 + 16907K3 + ,5883 .) h 3 + 

(2982 0o0lC1 + 1235314 	+ llx??15K3 + 8235.3 1C1 + 

201768030V'2 + (605301 .00K1 + 3536077 + 2423.2164O + 

12 06082oi, + 4035'3607 + 1698 51+0) X +(i+ K2+ 13+ 1% + K5 
1977326600 * 0 



For finding out K'ø a computer programme its used which is given in 
Appendix (3.2*3) and the poles are shifted to the desired locations. 

The feedback Coefficients (Va) for 6th order are as follows. 

7.5499 	a .29.037 K3  0 39.7829 K * 2)2.)+920 

K6 	756•1 220%  

Therefore the M matrix y be written as 14 a (A - B rT ) in which 
A, B and matrices are known. 

..101.8 0 254.823 278.8o l6817.#30 . 	9986.39 3329+.95+ 

49.0 .98,0 49.0 0.0 0.0 0,0 

0.0 49*0 "98,,0 49.0 0.0 0,0 

0.0 000 49,E0 .98.0 49,.0 010 
0.0 000 0.0 49*0 -98.0 19.0 
0.0 0.0 0.0 0,0  

The state equation after feeding back is 
X MX+Dr 

The eigen values of this 14 matrix and the first sic eigen values 
of the transmission line equation are same. 

The transfer impedance is calculated for this 6th order 
state equation as in (3.2.3 2) 

T • 	•• r  1 w 	 1.1 A • 	♦• s• 	i 	s r• 	1` 

The representation of the transmission lines for all these transfer 
impedances will be discussed in the 44th Chapter. 





. general the transmtssion lines are means to transmit 
power from the generating terminals to consumer cares. The basic 
parameters of the transmission lines are Resistance CR), inductance 
CL), conduotance (G) Wt capacitance (C). In tact all these pare.►. 
meters are distributed over the length of the transmission line. 
The resistance and inductance are in series with the line and condu. 
hence and capacitance are in shunt with the Vis, 1s1wthg All 
these parameters in a single line representation of a transmission  
line was shownn in 1 «(13). Por the sake Of calculations these 
parameters are to be m*e iced as sho in Figs. (1. .2) either,  
with T or s representation respectively. Here the conductance term 
is neglected, Distributed parameters are introduced as ehown in  
Pig. (1.3)  because of inaccuracy in the calculations of long trans. 
mission linea with the lumped parameter T and w representation, 

The design of the transmission line from the transfer 
impedance function as given in the equation (3.2,12) is mainly 
concerned in this Chapter. After applying  the feedback compensation 
the transfer impedance motion Z(s) i3 written as 

zCs) a  CT($x H)' B. 

Basically the transmission line is assumed that it its a 
leakage free noninductive  cable with G a 0 and L a 0,*  So only two 

meters left are resistance In series with the line and capacitan 
across the tine. So the abs tester impedance wick has to 
satisfy the conditions,  to be as an RC network funotion in 'ladder 
fes* If it has simple poles restricted to the finite negative real 
axis where it has positive real residuss#  then this function in 



realized as an RC network function. It all these conditions are 
satisfied then the first Gauer method of continued fraction ems» 
sion about infinity will be applied as to got the network* This 
method was clearly explained In Chapter 2 under the heading of 
network z ynthesis. As given by the equation of the form In 2, .2 
the coefficient associated with the frequency term 3 is the value 
of capacitor and the constant term is resistor. A component at 
the beginning and ending of the designed transmission line can be 
seen by testing the transfer impedance function s) at & a 0 and 
S go ► rhe uez form representation of an RC transmission line 
for an nth order transfer pct ton vacs shown In ,g. (.4. i )j When 
the transmission line is divided Into number of sections 4tb equal 
distances then all resistances are equal and all capacitances are 
equal 

C2 ` 	0fA0iw0• 	"no 

In a general way a unit length of transmission line is considered 
for simplicity in calculations and later on this can be extended 
to any length of the line* Similarly the resistance and capacitance 
are also calculated for per unit moues, 

The aim of the problem is to find out the responses 
at the intermediate points of the transmission lam. So. the number 
of intermediate points are always less than one to the number of 
sections divided over the length of the line. n represents number 
of sections. The transfer impede function z(e) when the lino is 
divided into five number of equal sections is given in (3.2.13) as 



-.ti.7,s 

8 + 138.56 	+ 	+ 36613 S 

This transfer function can also be written as in (2.4*2) after app.- 
lying the first Gauer forns to got the component values in RC network  

Z(s)S+ 
.1  

 +1u 
;k3 	+ 

'► r 	r i 

where c2  a 0.2 f 
*0.109f  

C6  = 0,033 	f 
C8 a 0,0137 1 
N3  0,i37 ohm 
R5  0,,17 	.' 

The transmission line represented with the above values 
is shown in Fig(  t,1), 
When the transmission line is divided ihto six number of equal 
sections the transfer function from (3.2,l5) is as 

Z(s) 	3!+l7'3 	 2 + 598928 S 5O3's 
* 296 9 # 2693 B + 788386 e + $465924 8 

M 



- .. 

Z(a) * 0.166 $ 

0 

4~4 

C2 0.166 f 

a 0.0036 t 

6 
C8 0.01 f 

C10 0.007 f 

B3 0* 75 ohm 

1.36 ohm 

R7 * 2,28 ohm 
1 4« 098 ohm 

The transmission line represented for 5th mer feedback compensated 
transfer function is shown in Fig. (1 .2). 
The transfer impedance U(s) when the line is divided in to seven 
number of sections Is given in (3.2,17) as 

fl-  ~" ~i 1~ 1 ►"'"i~i►u .'~ 	~ie~r~'~1 «~"_R_!a. iT!{ f i 

1 

Z(s) can also be written in the form (2.'F„2), Prom that the 
component values are as follows. 
Cit = O.l 2 f 
Ch a 0.031 f 

C6 a0*04f 
C8 a 0.0006 f 

Cla* 0.013 f 

Cj 000005 f 

R3 = 0.132 ohm 

= 0.631, ohm 
R, = 6.221 ohm 

= 3*126 ohm 
R1f 5.448 ohm 



rW.rui►~`W 

The transmission line with thrse values is represented! in Wig. (k.3). 
In all three oases the first and last elements are capacitors. This 
method may be extended for any number of sections divided over the 
length of transmission line. 
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The results are shown graphically for the RC transmission 
line equation of diffusion type„ The responses shown, are at the 
intermediate points of .interest over the length of the transniission 
line. Also seen how these responses vary when the line is divided 
into more different number of equal sections. For example when 
the line Is divided into five equal sections in length, there will 
be four intermediate points by excluding the input and outputt 
terminals, These responses are called for convenience as X1  X20  
23  and X. When the line is divided into six number of equal 
lengths there are five Intermediate points called as X1, X2  X39  

and , and so on. When the response at the first state 
is compared in both the cases,the response X1  in the second set 
builds up quietly than in the first seat of X1  in the equal time 
internal probably because of less distance. The velocity of wave 
propagation is almost equal to the velocity of light* Ryan with 
this velocity of propagation the  response over the transmisston  
tine builds up at the second motion 6 X2' may after first 
junction 171 # assumed and so on* 

Br taking the response of the RC transmission line 
equation as references  another approximate model is developed by 
applying state space technique. The order of the state equation 
depends on the number of sections made. It is always less than one 
to the number of sections, Because we are not interested in the 
output state at the output terminal. The responses on the states 
of this state equation are calculated and compared with those of 
RC transmission line at the same intermediate points. From the 
graph* it Is seen that the responses from the approximate state 

I7s-d?6 
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equation are comparitively poor with the RC network responses. 
The eigen values of the state equation are more negative compared 
with the reference approach eigen values* 

Now the poles of the state equation are shifted exactly 
to the poles of RC transmission line equation by applying the 
state variable feedback compensation technique. The eigen values 
of state equation and that of RC transmtsaionLine are same. rn 
order to shift these eigen values to appropriate locations a feed 
back controller gain matrix XT  a CK.  82  .... 0) is designed. Again 
the responses of state equation after poles shifted to the desired 
locations are calculated and conpared with the two responses already 
calculated* In each graph a ,l the three responses are shown at the 
Sams intermediate point when the line is divided into equal. sections 
in length. As indicated in the graphs, '11' represents the response 
of the RC transmission line equation of diffusion type, ''At repre. 
seats the state equation response without feddbac k ant 'H' with 
feedback. It is seen from the graphs the response after feedback 
compensation improves slightly even over the diffusion type trans.. 
missionline response. It is not necessary to go for another new 
method to get the responses at the intermediate points just for 
this slight improvement. But the state space technique is a recent 
trend and it has more advantageous over the conventional type of 
approach. Thus the state space approach has at least three major 
advantages compared to stright input-'output analysis, They are 
(1) cenceptionaai clarity, (2) greater information about the system 
itself and (3) computational convenience. 
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NCLUSIO 

The results obtained from the state space technique with 
feedback and without feedback are compared with the results of a 
reference RC transmission line equation of diffusion type, 

It is clear from the graphs that the results from state 
equation without feedback are poor where as with feedback compen*» 
cation they are better comparitively with those obtained from 
RG transmission line equation. 

As the number of sections of the transmission line 
increases#  the responses with RC line equation and state equation 
with feedback are coming closer because number of eigen values 
considered are more. 

Other advantages of this modal control theory are 
(1) conceptual clarity (2) greater information about the system 
and (3) computational convenience,. 

This recent teeimique has produced good responses out 
of all. 80 In conclusion it is suggested that it may be suitably 
applied to various systems for getting better responses*. 
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3 , 1.1 

C C CALCULATION OF Y AT VARIOUS POINTS OF X BY RAVUDU 
PI 3.1416 
N*6 
PUNCH 2 

2 FORMAT(5Xs1HXf1X*1HT,15X,1HY) 
20 FORMAT (5XvElO.4i5X,E10.4*5X,E15.5) 

X=0,6664 
5 TRO,1 
6 Y=0.0 

DO 10 K*1,N 
AK*K 
PKXtAK*PI 
P2K2*PKX*PKX 
PK2X=--(P2K2)*T 
PKXuPKX*X 

10 YtY+2l4*(COSF(PKX)*(1.O_EXPF(PK2X)))/PZK2 
Y= T+Y 
PUNCH 20.X.T.Y 
Ts=T+0. 1 
IF(T-5.0)696.15 

15 X-X+0.1666 
IF(X-0.833)5,5!10 

30 STOP 
END 



3.2--1 

C C EIGEN VALUE AND EIGEN VECTOR CALCULATI©N BY RAYUDU 
DIMENSION A(1O►10)►®(18,14) 
READ 1►N 

i FORMAT(17) 
READ2s t (A( I.J) *js1►N) ►I►+1►N ) 

2 FORMAT(12F6.2) 
CALL EIGENCA►B►N►I,O) 
PUNCH 4 

4 FORMAT(2OX►13HEIGEN VALUES) 
PUNCH3!(A(I.I),I~+1,N) 
PUNCH 5 

5 FORMAT (20X r 14HE I GEN VECTORS) 
PUNCH 3,1 iBl l.J),J=1►N),I=1sN) 

3 FORMAT(2X►4E13.t) 
STOP 
END 



3.c , 3 

C C DETERMINING K By RAYUDU 
DIMENSION AUIO,11)+8(1O) 
READ 1,N 
READ 2►C1,C2rC3,C4,C5,C6fC7rC8rC9sC11,C12,C13,C14►C15#C16RC17r 
1C18,C19,C21,C22,C23 
PIa9.87 
DO 5 '*1,N 
MuI-1 
XM:M 
XMS*XM**2 
XS=XMS* (—P I ) 
A (I ,1) aC 1*X',I** (N-►1) +C2*XS** (N-2)+C3*XS** (N-3) +C4* XS** (N_4) + 

105*XS** (N-5)+C6 
A (I , 2) =C7*XS** (N-2) 4 C8*XS** (N-3)+C9*XS** (N--4) +C1 I *XS** (N-5) +C6 
Attr3)tC12*XS**IN--3)+C13*XS**(N-4)+CI4*XS *(N-5)+Cb 
A(I ,4) aC15*'(S**(N— i)+CI6*XS**(N-.5)+C6 
AtI•5)aC17*XS**(N-5)+C6 
AtIs6)=C6 

5 St I) a— (XS**I,+C1s*XS** (Pit—i.)+Cj.94XS**(44-2)+C21*XS** (N—,3 t+ 
1C22*XS**(N-4)+C23*XS**(fit-5) 

NIaN+1 
DO 6 Iml,N 

6 A(I,N1PCR(I) 
CALL SOLEQN (A, N r 1O ) 
PUNCH 3 
PUNCH 4i tA(I,tll, Ishf4) 

1 FORMAT (12) 
2 FORMAT (5F15.2)  
3 FORMAT (2X,14HDESIRED ANSWER) 
4 FORMAT (2X►6EI3,6) 

STOP 
END 
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3 ,2.2 

C' C 'SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS (X D0TNA*X+F*W)- 
C 	SOLUTION BY RUNGE—KUTTA 4TH ORDER METHOD*SUBRATO*17692*RAYUDU 
C 	ALSO DETERMINATION OF OUTPUT Yid*C*X+G*W 

DIMENSION X(6),D(6).#Z(24),V(12),U(12),Y(2),8(4),A(36),Ft12),Wt2) 
DIMENSION Y©(4)pC(24),G(8) 

~t11~.5 
B(2)*s5 
8(3)*1• 
6(4) 0. 

100 READ l00lsN,LL,*M 
NLCN*LL 
NN=N*N 
READ 1002 rS*TO$TF 
READ 1001:MM 
MNOMM*N 
MML=MM*LL 
READ 1002r(C(I)l1sj,MN) 
READ 1002,(G(I)tIa1,ML) 
READ100Zr(F(I),Iw1pNL) 
READ 10O2w(W(I),Iw1:LL) 
READ 1QO2,(U(i),Ift1,N) 
READ 1002,(A(I1,I=1,NN) 
PRINT 2001,r'►LL,M:S*T4.TF 
PRINT 2002olco 
PRINT 2003,iX(1),IwltN) 
PRINT 2004 
PRINT 2003•(AII),I#1,NN) 
PRINT 2005,cW(I),I+A,l.L) 
PRINT 2006 
PRINT 2003, F(I),Ix1,NL) 
T=TU 
EP=2.*ABS (TF—To) 
E3=EP 
DT;S 
Y(1)-T 
DO 101 I*i. rN 

101 D(I)=0 
DO 102 Ial,N 
DO 102 Jsj,N 
IJ=(I-1)*N+J 

102 D(I)'DUI)+A(IJ)*X(J) 
DO 110 Im1sN 
00 110 Jo1pLL 
IJs(1--1)*LL+J 

110 D(I)*D(I)+F(IJ)4W(J) 
DO 10: IQ1,N 
VtI)aD(I) 

103 U(I)*X(I) 
L=0 

104 K 1 —N 
DO 108 K=1,4 
KI KI+N 
DO 105 11,N 
iKmKI+I 
Z(IK)=DT*V(I1 

105 X(I)-U(I)+8(K)*Z(IK) 
T=8(K)*DT+Y(1) 
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DO 106 I=1►N 
106 D(I)=0, 

DO 107 1=1,1 
DO 107 J=1,1, 
I J= ( I.1) *N+J 

107 D(I)=D(I)+A(IJ)*X(J) 
DO 120 I=lvN 
DO 120 J=1,LL 
IJ=(I-1)*LL+J 

120 L'(I)=D(I)+F(IJ)*W(J) 
DO 108 I=1,N 

108 V(I) D(I) 
DO 109 I=1.N 
121+N 
I3=T2+N 
I4=I3+N 

109 U(I2)=U(1)+(Z(I)+2.*(Z(I2)+Z(I3))+Z(I4))/6. 
Y(2)=Y(1)+DT 
DO 111 I=2,N 
I2=I+N 

111 X(I)U(I2) 
TrY(2) 
DO 112 I=1j,N 

112 D(I)=0. 
DO 113 I=1,N 
DO 113 J=1sN 
IJ=(I-1)*N+J 

113 D(I)=0(I)+A(IJ)*X(J) 
DO 130 1=1,N 
DO 130 J=1,LL 
IJ=(I--1)*LL+J 

130 D(T)=D(I)+F(IJ)*W(J) 
DO 114 I=1:N 
I2=I+N 

114 V(12)=D(1) 
=LABS (TF—Y(1)) 

IF (E--EP) 115,115,126 
115 EP=F 

KT=1 
116 E¢ABS(TF- Y(KT) ) 

IF(F—E3) 117,123*123 
117 E3=E 

KN= (KT-1 )*N 
DO 11(' I=1,N 
KM=KN+I 

118 X(I)=U(KM) 
DO 119 I=1,N 

119 D(1)O. 
DO 121 Iv1,N 
DO 121 Jul ,N 
IJ=(I-1)*N+J 

121 D(I)=D(I)+A(IJ)*X(J) 
DO 140 I=1,44 
DO 14C. J=1,LL 
IJ=(I—i)*LL+J 

140 D(I)=D(I)+F(IJ)*W(J) 
L=L+1 
IF (L—M) 123*1229123 
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122 PRINT 2007,Y(KT) 
PRINT 2Q3►(X(I,,Ia1►N) 
Lao 	N 
DO 15C I =x ►MM 
YO(IIno. 
DO 150 Jal►N 

Ija(I-1)*N+j 
150 YOI I I VYO(I)+C( I J)*)(tJ) 

oo 160 I x1,MM 
DO 160 J 1►LL 
IJs(I-1)*LL•1J 

160 YO(I)*YO(I)+G(IJ)*W(J) 
PRINT 2O03►(YO(I),Iw1►MM) 

123 1KTvKT+1 
IF (KT-2) 116,116►1224 

124 Y(I)=Y(2) 
D0 125 I ~►1►fit 
I2=I+N 
V(I)=V(T2) 

125 U(I)OU(I2) 
GO 70 104 

126 PRINT 2008 
GO TO 100 

1001 FORMAT (3I2) 
1002 FORMAT (6F 1 O.5 ) 
2001 FORMAT t2X►2HN=►I2f3HLL=oI2►2'iM-►I2►2H5-rIrI.3o6t3HTU~►E:13.6t3HTFas 

1F13.6) 
2002 FORMAT (2X►13HSTATES AT T©+ ,E13.6) 
2003 FORMAT (2X►6F13„6) 
2004 FORMAT (2X,13H5YSTEM MATRIX) 
2005 FORMAT (2X►?2HDIST'JREANC,E QUANTITIES,2E13.6) 
2006 FORMAT ( 2X ►18HD I STURSANCE MATRIX) 
2007 FORMAT (2X ►15H5rATE$ AT T D E E13.6 ) 
2008 FORMAT (2X ►? 2HPRQGRAM E DS ) 

Et40 
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