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ABSTRACT

The modal control technique has been applied to the
system of equations to calculate the responses at the intermediate
points of a long transmission line vhen the line is divided into
number of equal sections. Those responses have been compared with
the responses obtained from the RC transmission line equation of
diffusion type. It has been assumed that a transmission line 1is
a leakage froe non-inductive cable.

The modal control theory, long transmission line, repre-
sentation of a transmission line in nominal T and 7 and a loss
free 1line have been defined in introduction chapter.

The review of the literature has bsen given in ahapte: '
two, explaining all the necessary existing tools used in the
present problem. They are formation of state equation, feedback
compensation technique, network synthesis (which is enough to
design an RC transmission line from the driving point transfer -
impedance funection), an analogy to an RC transmission line from
heat conduction through a slab  and why at all modelling of a

system is required.

The mathematical methods used in the present problem
are given in the third ehaptaré It comprises with the solutions
of RC line equation 3§ = o g-j , a state equation X = AX + Bu

and state equation with feedback compensation X = MX + Br where
M=(A = BKL).
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The transmission line, designed from the driving point
transfer impedance function (which has been caloulated in the
third chapter) has been reprosented in chapter four,

The results obtained for different number of orders such
as %, 5 and 6 for the state equation as well as for the RC line
equation equadiom are shown graphically and discussed in chapter
five. These graphs are compared to each other and it has been
concluded that the state space technique with feedback compensation
is the most advantageous one.
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The modal control theory is applied to long transmission
lines for getting the responses at the intermediate points over the
length of the line. In & general sense the theory of modal control
may be regarded as being part of linear systems theory as seen
from the state space point of view23. This state space approach
on modern control theory is a new approach to the analysis and
design of complex control systems, It has 1ts own advantages over
the conventional control theory, applicable to multi~input and
multi output systems which may be linear or. non-linear, time
invariant or time varying, essentially in a time-domain approach.
A linear dynamic system equation is written in state space form
as X = AX + Bu(t) where X is a state vector, u is control input
and A and B are matrices with appropriate dimensions. In order to
gain insight into the dynamic behavior of a system, 1t is helpful
to make a ccordinate transformation in to a new state wvector 2
through T as X = 72 so that the coefficient matrix of the state
vector will be in a canonicpl form exhibiting directly its eigen
values on the main dlogonal. T should be a non singular constant
square matrix and the matrix T is called the modal matrix when
1t 1s selected so that T°% AT 1s diogonalahq The canoniczl form
used here is called Jordan canonical form. The modal c¢ontrol
theory is applicable both for lumped parameter systems and distrie

buted parameter systems.

The eigen values of the coefficient matrix ‘A? of the
state equation i = AX + Bu are the roots of the characteristic
equation |AI « A] = 0. A 1linear state variable feedback method
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can be applied to the control system to change the response chara=-

cteristics.

Thus the modai control approach is employed to improve
the response of the transmission line by shifting the eigen values
of the uncontrolled system in to the appropriate locations. The
ratio of the system output to input in laplace transformation of
this state equation is called transfer function. Then the parame-
ters of the transmission line are designed from the transfer

function by applying the network synthesys approach.

The term transmission line refers to a system of
conductors used to transmit electrle power from a sourée to a 1oad1.
These lines are basically divided into two types, short and long
lines. by.comparing with the wave length (N\) of the waves to be
propagated over them. An electrically long line has a length of
the order of the wave length on a reasonable fraction of it |

(at least 4%13- Thus a line of four cm. is electrically long
5 |

for a wave of 3000 M Hz current (10 cm wave) and is too short for
a 50 ¢/s current wave (6 x 10° m vave). A line to be long at
50 Hz must have its actual length of about 100 Kmr or more.

Iﬁ order to take aceountz of the fact that the current
and voltage vary along a line, it 1s assumed that each elementry
line section, however short, has a reslistance, an lnductance, a shw
capacitance and a leakage conductance between the wires, then this
line is regarded as a network with distributed parameters as shown
in Fig.(1l.1).
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For woltages up to say 20 KV, that ths line capacitance
can be ignored, but as the voltage and length of the line increases,
capacitance becomes of gradually increasing importance. Voltages
up to 100 KV satisfactory solutions can be obtained from T and »
represantation of the tmumigsim lines., 7The capacitance 1s
distributed over the entires length of ths line but for a simple
treatnent its effect can be approximately taken into account by
assuning that it 1s lumped in the forms of condensers shunted
acoross the line at one or more points.

The two common methods are nominal T and m. In the
nominal T method® the whole of the line capacity 18 assumed to be
concentrated at the middle point of the line, and half the line
resistance and reactance to be lumped on either side as ghown 4in
P1g.(1.2.1). 1In the w mothod the capacitange is split into e,
halves, which are situated at either end of the line as in Fig.(l.é’;;

Referring to nominal 7

By ™ &hz*x,@)mﬂ Z= R+ JX

® YRy = Xhy, + I, 2/2)

L+ Iy = I, (1 + §8) +Tmy
= zn*z,z/zunbzu*F)*:,(z*%aJ
in nominal w Icz'égu

I = 1;-”«2“:"5%1

R SRR SRS SR
Icl'gsa'imblu*g)*lrz’
I, =T+ =By Y1 +88)+ 1 (1+4)
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iIf these nominal T and nominal ¥ methods are adopted to
long lines there will be consideradble error, The line impedance
and admittance are therefore, comsidered uniformly distributed over
the 1ine length, As shown in Mg.(1.3) a small length ‘dx’ 1a
considered on the transmission line then by applying Rigorous
solution method the voltage and current equations are written as

nuEblﬁoahrx*x*zcﬂinhrx

I =X, coshyx+ gﬂ%m:m:rx
0

By subatituting 1 for x we get the squations for voltage and
current at sending end as

E‘asblcoshﬁ*-tnz‘,ﬁnhrl

I,ﬂtzawhrl* <a§.nh'r1

s
vhere r is /ZY (propagation constont)

Zy 18 /272 (oharacteristic impedsnce),

An idealization® of a practical line is nothing but @
dissipationless line or loss free line. By making the series
resistance and shunt conductance are equal to zero, we could
obtain a dissipationless 1line in vhich there is no enorgy loss,.

At radio frequencies, short lines have the property such that R ard
G are megligidle in comparison with X; and X, « Therafore the two-
vire and co-axial transmission lines used in radio Engineering An
often treated as loss free lines with sufficient accuracy.

The propagation constant and characteristic impedance for a loss
less line are as follows,



r=w /LT

zy = /7T
Howavér the loss may be negligible in transmission lines but it can
" not be eliminated completely. )

The response calculations of long transmission lines at
intermediate points iz done by two different methods and then
compared. One of those two methods is the representation of
transmission line by one dimensional tms@ission line equation of
diffusion type and the other ¢ne is the approximate representation
of state equation.

The basic paramcters of a transmission line are resistance
(R), capacitance (C), inductance (L) and conductance (G). ~The
transmission line considered here for modelling is leakage free
noninductive cable where inductance (L) and conductance (G) are
assumed to be gero., The transmission line of this type is repi:esen-
ted mathematically by one-dimensional RC transmission line equation
in the form |

0x{x,t) 2 9°x(x,t) (1.1)
a-i',-’ x’ e g %x-g x’

vhere u2 = 'ﬁlﬁ

By taking into account the initilal, final as well as boundary cone
aitions the reaponses of the equation (1.1) has been calculated
for a step input u(t) at different equal distances over the length
of transmission line, These responses are compared with the
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responses obtained from an approximate representation of trans~
Amission line state equation of the form

X = AX+ Bul(t) (1.2)
Y = GT X

for the same step input u{t) at the same points over the transmi- |
ssion line.

The modelling of transmission line has done by applying
the modal control technique through state variable feedbaeck. The
effect of atate variable feedback cn systems of the form given in
(1.2) 48 to repl&ce u(t) by {r =~ KX X) where K’s are feedback gain
coefficients. The closed loop equations of the system then be
written as

X= (A-BEK)X+Br
X= MX+Br (1,3)
I = GT X

Sey M= AeBK

By the application of this fesdback technique the poles are shifted
to the desired locations. The responses calculated from the closed
loop system for the same step input r(t) at the same states. Those
responses are compared both with open loop state equation and RC
transmission line equation (1.2} and (1.1) respectively.

The modal control approach 18 employed to improve the
response of the transmission line by shifting the sigen values of
the uncontrolled system in to the desired locations.
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2.1 Necessity of Modelling the SystomS

Modelling of any physical system is a necessary prelimi
nary to make it perfect before bringing the system in to practical
use. The modelling of any complex system facilitdtes to prepare
all corresponding data in the laboratory itself,

In electricsl systems similation began with the creation
of caloulating boards or network analysers later those have gradua
11y been perfocted and by now are semi-sutomatic and automatic,These
modelling principles which partly relate to physical modelling, but

 their main task is to serve as mathematical models. These models
will provide the solutions to the equations formed by describing
}the steady or transient atates of electrical aystems, These
dynamic or physical models are found necessary in their development,
not only as the means for solving equationa but also as an
experimental base which replaces such natural investigations in
actual systems. Those which can check theoretical propositions

by the criterion of practice or in conditions closely similar to
actual can check, adjust and work out any forms of apparatus.

In the process of experiments on models, the investigse
tions carried out on similar systems 40 not in principle ensure g
rigorous one to one relation between results eveon wvhen tota) simiw
larity is realized. This is conditioned by the faect that absolute
1dentity of concrete phenomena represented in dffferent space-time
domains 45 a mathematical abstraction and in actual problems it is
absent. The differential equation which describes the law governing
the flow of a multiplicity of associated phenomena is a mathematica
model of some averaged phenomenon,even ﬁth!.n the limits of one and



w8

same modelling structure. Its concrete realization differ one to
another owing to random wvariations in the physieal yeproduction of
the coefficients of the equation. In many cases the process being
investigated depends on the pre~history of the process at the
moment in time taken as the initial instant.

Another aspect of the Aimpossidility of produocing an exact
model is linked with the fact that aoctual accuracy is determined
by the depth of cognition of the original. The errors in the
determination of the parameters are depend on the initial simplie
fying assumptions, observational errors and so on. The erpors in
production of the model ¢an have a real influence on the results
of modelling. Further more, the existante of definite difference
between the model and the original is an indiapemsable condition
for the realizability of those functions whioch are imposed on the
model. The problems of evaluating the accuracy of the physical
modelling structure are connected with the fact that the reproduc
tion of the process being modelled. It is accompanied by erpors
in the determination and reproduction of the similarity criteria.
The random variations of the parameters of the model are depending
on the features and structure of the model.

In connaction with the development of experimental
investigations whieh have regarded to the inaccuracy of the initial
data, new ways of using dynamic models are intonded. Hore 4t is
possible to regard the model itself as the object of investigation.
Thus any investigation on a model leads to the appearance of new,
more precise, theoritical propositions. The complicated problems
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of modelling have required automation to be applied to the
experimentation carried out on the model. Such automisation
enables testing to be carried out more quickly and speeds up the

| issue of results, theredby imparting qualitatively new attridutes

to the physical model. Increasingly extensive use 1s being made
of combined models which contain elements of physical modelling
along with eloments of mathematical modelling.

The use of digital computers enadles new properties
and possibilities to be imparted to the old methods, A great
complex problems can be solved by using computers and also the
gystems having number of variables can be handled easily. The
role of the methods of modelling is growing with the development
of modern methods of investigation and with the mathematisation
of these mathods.

Therefore mathematical modelling is a necessary prelimie
nary to the analysis of any physical system. The results of the
amlysis depend éntimly on how accurately the system 18 described
mathematical¥y.

Modal Control Theory Applied To Lumped And Distributed Parameter

Rosenbrock, H.H. appears to hawve been the first to
propose modal  c¢control of a process.

To introduce the basic prineiple of modal control an
1deal case may be considered?’ where all elements of state vestor
X(s) ars directly meassurable (C = I) and the control vector B u(t)
18 produced by a non-singular B from an n.vector u{t). A control
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linear dynamic System on the state equation is descridbed by

X= A X+ Bult) (2.2.1)
and the output equation is written as |

yacl x (2.2.2)

where X 15 a state vector; u(t) is input vector, Y is an output
vector and A, B and C are matrices with appropriate dimensions.
Since the state variables are not unique, the intention is to
transform the state vector X to a new state wector Z, or into
model modain by means of a constant, square, non singula:? matrix T,
80 the state equation (2.2.1) above becomes as

= T2 .

= T% : {(2.2.3)
e ™l Aarzer By

= N2z + By,

Mo N

D Dae

vhere, = 7" AT
B = Tt p

The é:l.gen values are same for the original system and
for the transformed equations. 80 the eigen walues are invariant
in a iinear transformation. The matrix T is called a modsl matrix
when 1t is selected, so that 71 A T 1s dlagonsl. For an nth -
order system

15\-1 0*
™ AT = A = A (2.2.14)
. M .A
J..O n_l
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A great reduction in the elements of A is obtained when
A 1s reduced to the Jordan canonical form /\ by the above coordinate
transformation. The matrix /\ possesses the same invariant charae
cteristics as A but is much easier to manupulate. Hence transforme
ing A into simplest pomsible form makes it possible to investigate
intrinsic properties of the dynamic system with the minimum of
mamipulations.

When all eigen values of the control object are real and
‘distihet only these eigen values appear as dlagonal elements of A
- as in (2.2.4). D Azz0, J.J. end C.H. Houpis?? have discussed
three methods for obtaining the modal matrix T for the c¢ase of
distivet eigen values. If duplications exist in the eigen values
then it is necessary to use the Schwartz form. The Schwartz fornm
15 the name for this form of the Jordan canmmical matrix. If the
system has conjugate complex elgen values a modifled canonic form
of transformation X =T QW 15 used In 2.2.3 whore Z = Q W,

Let Xy =0 +JW
Apg 20 =T W
be a8 pair of conjugate complex eigen values vhere and v are
both real and w > 0 , The ﬁrat eigen vactor v' that corresponds
to ’\1 is also c¢omplex. Let o and P be real vectors determined
by V' sq+JIp ., Nowthe first two colums of T matrix can be
replaced by the first two conjugate complex elgen vectors a and P
respectively. |

Tﬁ'[(!,p ’ oe@;qo)

with the medification in the transformation the resulting A or
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2,2.% matrix will take the form

iy

_'5' w 0 san
/\a -y U. 0 xe

3 LA B J

dae L X2 X sen

The modified steps of the matrix reduction just shown
for the first two eigen walues, apply to a complex pair placed at
the 4th and 1 + 1 st 1oca£1ﬁn Qithout any basic change in computa-
tion. The complex eigen values are rarely oceur in practice. As
in the present problem of interest that all éigen values of the
control object are real and distinct then the ‘\? matrix is diagonal
That is the desined or prescribed closed loop modal domain matrix
of the control object with modal control, where the diagonal
elements are prescribed closed loop elgen values of the controlled

systen,

The modal sontrol of a ¢lass of distributed paraneter
systems governed by partial differential equations of the diffusion
type have been presented by Borter , B and Bradshaw, A. For both
ideal control laws and practical control laws have been derived for
the assignment of one real time domain eigen valuea5 and also
arbitrary values to several of the timeedomaln eigen values of
distinet typsaé. In the case of single eigen value suggested to
use sensors to limit the departures introduced from the ideal
modal control to bhe practiecal modal control of distributed
paranetars. ‘.McGlothan?7 used a generalized eigen function
integration method to develop a modal control model of a Qlass of
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distributed parameterm systems. These systems desoribed by scalar
parabolic partial differential equation in one space dimension with
mixed boundary conditions, the control beihg exercised at the
boundary of the system. This general method is useful in studying
decoupling and pole allocation in the class of distributed systems
considered. In Crossely’s modal control tbsoryza the loop gains
of a single input system may be readily calculated using a simple
formula for the case when the system matrix‘has a number of sets
of confluent eigen wvalues. But the Jordan canonical form muat not
c¢ontain two or more Jordan blocks assogiated with the same eigen'
valus location in the ) plane. This restriction is relaxed in
the case of multi input systems by allocating a different control

input to each such repeated bloeck.

The closed loop poles of a control system having &
single controlling input cam be put in desired locations providing
all state variables are measurable and all modes are both observable
and controllable. Under these ideal conditions modal control will
be satisfactory if there are necessary number of manupulations to
control the dominant modes.

| State Wariadble Fo

+3s1.Formulation of state equation ¢ In general, most physical systems

are non-linear in nature and since it is true that an exact
mathematical description of any system valid under all conditions
is too difficult, 4f not impossible to formulate. One of the most
difficult problems confronting presently is the problem of obtainin
an adequate mathematical description of the physical system,
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Howeveyr, for most physical systems the approgtmate behavior 1s
generally known and on the strength of this knowledge one ean make
various simplifying assumptions with the result that an exact
mathematical model becomes qu:lte UNNecessary.
There are three¢ well kmown methods of describing physieal

syatems mathematically’

1) The transfor function model.

2) The state variable model and

3) The component connection model).

1) The transfer function is defined as the ratio of the Laplace
transfornm of the output to input. The transfer function may or
may not deseribe the system completely. In other words only those
modes of the system which are commanded from the input and observed
from the output terminals, appear in the transfer function.

2) The state variable deseription for a system is of the type

X = fix,u,t)
y = glx,u,t)

(2.3.1)

And now consider the class of linear time Iinvariant systems those
can be deseribed by the pair of vector sguations

Y= A X+ 3Bult) ~
T {2.342)
¥T=0° X
vhere
u is input
Y is output
X 1s state vector.

This 1s more alegant and easily amenadle for numerical solution
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with the help of a digital computer. A wide range of cholces of
state variables and the coefficient matrices are possible giving
the same input-output relationship, Another advantage of this metho
one state variable model may deo converted into another by a none
singular coordinate transformation.

3) Lastly the component connection model is more natural as most
engineoring systems are constructed dy the interconnection of com-
ponents or subesystems. The component connection model has never
¢come into popular use decause of the lack of a form which 1s
general enough for most practical problems,

The most innovative aspect of modern system theory is
undoubtedly the prevalence of state space models for dynamieal
s;rstems. This has provided a frame work which is at the same time
extremely general, offers many advantages and yields concrete and
specific practical results much mors directly than other methods
vere able to provids.

A dynamic syatam7 consisting of a finite number of
Iumped e;emants nay bs descrided by ordinary differential equations
in which time 1s the independent wvariable. By use of vector matrix
notation, an nth order dlfferentisl equation may be expressed by a
first-order vector-matrix differential equation, If n elements
of the vestor are a set of state variables, then the vector-matrix
differential equation is called s state equation. This can be
explained by taking an example of nth order system in which the
foreing function does not involve derivative ternms.
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Consider the following nth order system

yn 3 alynﬁl + aﬁnﬁa * seee * an,.li’ + a_n_y = u <2'3‘3)

Noting that the knowledge of y(0), $(0)s+.¥*"1(0), together with
the input u{t) for t > 0, determines completely the future
behavior of the system, we may take y(i), i(t),.u‘»y"”}'(t) as a
set of n state varlables.

Let us define
L=y
X ¥

-8

s X 2 ]

%=

Then equation (2.3.3) can be written as
%
L=

fﬂtocu

1° % |
%*'-anxl-»‘.“. "“115-1"“
or %5 AX+Bu " (2e30)

L R
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The output equation bhecomes

%
Ya[l O env 0] xz
%

y=clx

where C =

o R L

Therefore the first order differential equation (2.3.4) 1s the
state equation. &8imilarly a staﬁe eqnation can also be doveloped
to a transmission line in vhich only resistance in series and
capacitance in shunt are connected. The.transmissiuniig provided
with a current source at the sending end and the receiving end is
kXept open. The states of the equation (2.3.4) are calculated by
developing a computer program which will be discussed clearly in
the next chapter.

Je2s Pole shifting by feodback compensation t One of the most popular
techniques for altering the response characteristics of a control

system is the application of linear state variable feedback, There
is considerable interest at present in the design of feedback
controllers for multivariable systems to meet varicus performance
objectives. Several techniques have been developed to svaluate
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' the feedback gain matrix in time domain as well as in frequengy
domain to meet the desired system responses. If the system has
a single input, then the feedbaqk gain matrix 1s unique as in the
present work, where as for multl input case, many solutions for

the feedback gain matrix oxist.

A method has been developed, in which the feedback

cosfficient matrix has been caloulated from the transfer function
of a closed loop system in order to shift the poles in to the pre-
assigned locations and also suggested to replace the Zoros if any
in the closed loop transfer function by the poles at the some
locations. This method i3 to determine for a pair of dominant
complex poles vhich will result in a step response satisfactory
for the Qesired use of the system. A linear state variable foed
back method 1s suggested. by Brockett, R.W. " to obtain any
desiped pole configuration consistant with the dimension of the
system when the system equations are controllable and observable.

~ An expression for the transfer function of a system described by

a set of first order differential equations is proposed in vwhich
it not only relates the poles and zeros to the eigen values of
matrices but also makes it possible to compute the transfer functio:
without matrix inversion. A feedback compensator is provided in
cascade to obtain arbitrary pole placement [11,12] using state
variable feodback for controllable and observable system of linear
time invariant multi-input,milti-output plant, In the technique
suggested by Solheim'> it is possible to designate the closed
loop poles at preassigned arbitrary locations and at the same time
minimise a quadratic performance index with a preassigned weighting



matrix for the control input vector. anham14 has shown that the
controllable system can be forced to satisfy any set of eigen values
by employing appropriate linear feed back. Hence the control
problem becomes that of designing a feedback matrix such that the
closed loop system satistlies or approaches these elgen value

requirements,

. Retallack and Mac Fhrlanels gave a procedure :or shifting
a sub set of eigen values of the original system. It was pointed
out by the same authors that thelr approach c¢an not be used for
satisfying*a criterion other than a simple allocation of closed=
loop poles since the gain matrix has rank one. Vittal‘Raol6
described a procedure for evaluating the state feedback matrix
of a linear system for which only r of the n system elgen values
need to be suitably shifted along with the minimisation of an
appropriate quadratic performance index. The remaining ner eigen
values of the original system are not disturbed, and are passed on
to the resultant feedback system. A characterization is glven for
the class of all closed loop eigen vector sets which can be obtalinec
with a given set of distinet closed loop eigen valuesl7 and for
non=-distinet elgen values18 used state feedback. Graupelg attemp~
ted to design an appropriate weighting matrices for the performance
index which provides an algorithm for deriving a diagonal state
weighting matrix according to the eigenvalue requirements. The
solution given employs matrix differential calculas and a static
gradient minimization suberoutine to minimize an elgenvalue error

criterion. However the choice of feed back matrix is not unique,
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unless the systenm is of single input.

FYor the present vork the single input feeddack, satisfy-
ing eigenvalue requirements is considered. The method applied for
finding out feedback gailn matrix is as follows.

Por example consider a singls input third order controllabls system
as roum""

X = AX + Bu say u is scalar

%1 M2 %13 b
whered= { 859 835 8pq3iy BT b,

L

%1 %32 %33 Rl
with the linear feedback control policy
Ve E X R ¢ T ¢ K]

We require ths eigenvalues of the system in closed loop be
A1 Az A3 consequently K, are derived such that

det (A = BK® <)y I) w0
det (M - A, I) =0
1=1,2,3

o M= (a«BKD)

Tayy* Kyby= Ag) (agp* Koby)  (ay5* Kgby)
Hence det: (321" "1”2—), (aaa+ Kaby = )\1) (3'23* x3b2) (2.3-9)
L8yt Kyb3) (ago+ Koby)  (agqa+ Kybae Ny )

Thus the characteristic equation of (2.3.5) represents a set of
three linsar equations (for 1 = 1,2,3) in Kys with three unimowns.

g
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Consequently in the single input case, a unique solution for K
exists that brings the closed loop system to satisfy any set of
eigenvalues A+ A similar set of n equations exists for any nth
order state vector, giving the n components of X for the single
input cage. |

The plant we consider for compensation by stete variable
foodback 12 4n a state variable formulation as shown in Fig.(2.3.1)

k "'"Ax"B“ (2‘306)

The plant output is assumed given dy

Y = ¢T x
In state variable feedback we assume that the entire stats veotor
X 1s available for feesdback. The feedback system is shown in
Pig. (20302}0

The quantity for feodback is K X and substracted from the systen
input r, to get an input to the plant which is given by

R 5 Pw KT X (20-367)

= A X+ B =K X)
= (A=-BEDX+Br
=M X+By - (2.3.8)
SayM = A - B KT

The equation (2.3.8) is the equation for the Fig.(2.3.2) t.e.
after applying the state variable feedback.
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Ret Work Synthesis

A large percentage of networks in contyrol systems are
to consist of only resistors and capacitors because of the low
fraquency of interest, The vast majority of synthesis problems
in the design of feedback control systems demand realization of
the prescribed transfor functicns by networks consisting entirely
of resistors and capacitors. Inductors are avoided because of the
excessive weight and size required by the low fyrequencies of
interest. In this problem basically it 1is assumed that a leakage
free non-inductive cable, where the conductance (G) and inductance(L)
are squal to Zero. So here the network synthesis is mainly concern
with RC transmission line.

In linear natworks if any two'or the three qnantitias3°
the network, the excitation and the response are given the third
may ba found. When the exoltation and the response are given and
it is required to determine a network the problen is defined as
synthesis when the response is required to find out when the other
two are given is called network analysis. In analysis the solution
is unique where as in synthesis however solutions are not unique
and there may exist no solution at all. If there is any solution
to a given problem, there are an indefinite rmumber of other solutio
from vwhich a choice may be made.

For one terminal pair networks,only one voltage and one
current ars identifled and so only one network function ¢an de
defined 1.e. the drivingipoint impedance function or simply the
impedance of a network 2(s). The reciprocal of the impedance
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function is the driving-point admittance function or the admittance
Y(s). For two terminal-pair network two currents and two voltages
are identified. A large number of network functions are possible
in this ecase, four different quantities taken two at a time gives
six possible network functions??, Those six transfer functions are
the driving point impedance (1) at input terminals (2) at output
terminals (3) transfer admitance function {(4) transfer impedance
funetion (5) voltage ratlo transfer function,’ These network
functions are important in synthesis because they may be used to
describe models which approximate actual systems. The various
voltage and current transforme ¢ in a given network are related to
each other by network functions which are quotients of rational
polynomials in the complex frequency varlable S, A general
transform function of this form may be written for impedance

n n-1
. _ (s) ag s + ay s +
Z(s) 3(95 = m “f

. 2 bl Sm * snesnves P

evesses F an_,l 8 + E.n

bm-l s+ bm

bg s

where a and b coefficlents are real constants, n is the degree
of p(s) if ay # 0 and m 1s the degree of the denominator polynomial
q(s) 1f by 70 . The network function Z(s) can be written after
factorising both numerator and denominator polynomial as

“ o P S) -ao E~Z1)(szz) sevnoey ._(s “Zfl)
Z(S) = q(s) - g; (S - pl)(s o pa) seesves (S L pn7

where the roots of p(a).5 0, Zy, 2o sessrs 4, are the zeros of
the transfer funetion and the roots of gq(s) = 0O, Py 9 Pp geeesPy
are the poles of the transfer function.

A and (6) current ratio transfer function.
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If a rational functian?9 has sigple poles restricted to
the finite negative ranl\axis vhere 1t has positive real residues
and 1f its value for s o @ %3 non negative and fintte then it
satisfies the necessary conditions for being the driving point
impedsnos of an RC network. Further more the poles and zeros
alternate along the axis. The lowest oritical frequeney is a pole
and the heighest critical frequency is a zero. This above discu-
ssion is concerned exclusively with the characteristics of driving
point impedance functions, Similarxly for driving point admittance
functions can also be realized as RC net work functions but only
change is the roles of poles and Zeros are Bimply interchanged.
The poles and zeros still alternate along the axis,but for an
admittance function the lowest critical frequency is a zero, the
heighest a pole and all residues are negative.

Most of the téahniqnsa for the synthesis of transfer
functions are based at least in part on the synthesis of driving
point impedance or admittance functions. There are four fundamental
methndszo by vhich networks for RC impedance functions ¢an be
synthesized. FREach method depends on the tecimique of writing the
function 4in such a form that a sultable network configuration and
element values can be determined by inspection. |

Fixst and Second of Fogter + The first Foster form is also called

as partial-fraction expansion of Z(s) and second foster form 1s par.
tisl-fraction expansion of ¥(s)/S8 . The poles are removed one at

a time until the function no longer possesses singularities {.e.
until the function is simply & constant. But each step in the
reduction must meet two requirements t the removed quantity must
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be recognizable as a simple impedance and the remaindor must be
an RC impadance funotion.

y yeond Forma & These are oalled continued fraction
expansion about infinity and about gerc respectively. In this
cauer form also the net-work is realised by removing the poles of
the transfer funotion, but it is some vhat different from the
Foster like form of removal of poles. |

The first cauer form is applied for the realisation of
the RC transmission Xine in the pregsent problem from the transfer

impedance Z{s). This i1s also said to be the consistent removal of
components at s =<0, "

7 33> 16 3f _RC XNe k Realization t The RC driving
point impedance is a quotient of unfactored polynomiasls in which
all powers of 3 are rreuent expressed as Z(s) for an nth order syst

3 + 3 * seae By 8+
%s) = Dol ﬂ . (2.4.1)
b 3 n“l & * cese * bn + bo

This J.mpedanca Z{s) has finite non zero values mf at both s = 0
and 8 = oo which ic 1its nmost general form and all coefficients must
be positive. For getting the ladder development of am RC network
an initial sorles resistance having a finite non zero positive real
value at s = oo 1s romoved from the Z(s) function. The remaining
impedance say Zl(a) 418 now gero at s = o0 go the reciprocal

Yl(a) = %‘GT has a pole at s = @4 Removal of this pole produces
a shunt capacitance. The remainder function say ¥,(s) has a posi.
tive real non zerc value at & = o0 because this valus must be larger
than the non negative zero frequency value. Hence the reciprocal

L3
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b
Zo(s) ='§§—r§7 is again like Z(s), This Z,(s) has a finite non

gero positive real value that can be subtracted to begin & second
eyocle in the ladder development exactly like the one just completed.
If the process is to be repeated until the remainder is reduced to
a constant ylelds the continued fraction representation of cauer

£irgt form.
Z{s) = +1
1 v
Ryl
8 ¥+ .
(2.%.2)
" gE‘m—l +1
2

Although n#+2 coeffioients appear in expression (2.4.1)
for Z(s),only n + 1 of them are independent, since the constant
multiplier is the ratio of an/bn + Hence the development procedure
will yield n + 1 elements equal the mumber of finite non zero
eritical frequencies plus oﬁé. The resulting network for the
oxpression (27w2) %5 shown in Big.(&=I). It is a ladder of
series resistors and shunt capacitors, the first element is a

‘resistor vhen Z(0) is non zero and 1s a capacitor when 2(x) is

zerc. The last olement is a resistor when 2(0) is finite and is
a e¢apacitor when Z(s) has a pole at the origin. Thus the ¢lements,
of the network from the transfer impedances are determined.

RC Transmission Line Equation of Diffusion Type

A transmission line equation is formed by considering

the two basis parameters resistance and capacitance. The remaining



2]

two basic paramsters inductance and conductance are assumed to be.
zZesro because it is considered a leakage free nonduative cable.
Therefore the RC tyansmission line equation is written mathematicae

11y as
AX(x\t) o o2 %,_u (2.5.1)

vhere uz - ﬁ"& *

This esquation ¢an be derived by %taking a simple example
of one dimensional heat conduction. This illustrates many featurss
of the control of distriduted parameter systems,

A metal slab 15 considered bounded by two infinite
parallel planes as shown in Pig.(2.5.1), Assumed that on one side
of the metal slab is perfeotly insulated and the temperatude
distribution through out the slabd is controlled by applying heat
uniformely over the other side of the netal slab, The bhshavior of
the temperature @ at distanco x and time ¢ 1s given by one dimen-
sional diffusion equation whon all aconditions assumed are uniform
¥ith respoct to other two coordinates y and z.

e 23

where aa 1s the diffusivity of the material of the slad. The
systems dynamic dshaviour ¢an ba computed by taking a finite
nusber of wariables to represent the contimous terperature distrie
butiion.

By dividing tho slsd in to mumbey of slices of finite
thickness an electrical RC network can be dsrived. For example
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the slad 1s divided into two slices then the electrical model is
represented as in Fig.(2.5.2).
As shown in Fig.(2.5.2) 'u represents the temperature
applied to the heated face of the slab, and @ and 8, represent

the temperatures at the centres of the two sllces.

‘When it is considered as an electrical transmission line
the u becomes step input and 91 and 02 become responses Xl and
X, at the intermediate points when the line 1s divided in to

number of sections.

The initial condition X (x,0) = o
ogxg1l oLt g™ (2.5.2)

and boundary conditions are

§§A (X,t)/x e 0 = - u(t)

gg(x’t)/x =1

The solution of the squation (2.5.1) will be given in the next
Chapter {3.1) by using the boundary conditions given here,
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This chapter presents the mathematical teohniques used
for the present problenm.

Ons Diménsional RC Transmission Line Equation
L

Consider the trancmission line equation’ as given in (1,1)

2
g%(x,t) - ag %.ﬁ‘x’t) (3:1.1)

and also this is the equation for leskage free non-inductive cable
wvhere G and L are esqual to zero.

Then o = 'ﬁLE . (3.1.2)
X(x,t) represented as X for simplicity

gé ® ﬂJ'F. g% | (3.1.3)

Let us caloulste the problem for unity valus of a? for simplicity.

The per unit values can be extended to the actual transmission line.
5’-3 Assumed o> = 1 (31o0)

Taking Laplace transformation on both sides of the equation with
respect to £.

8 X(xy8) « X,(x,0) = g% (xy8) | (3.1.5)
, ox'



and dx(x,a) /x . ou - uls) = «1/8

g'g (x'n/xalg 0 (3+1e6)

X(xy0) = 0 from 2,5.2

2 .
Also SX(X,S) = 9—";-‘5"” (30107)

x
Solution of (3.1.7) is thus given by

X= A S5inh /& x + B Cosh /8 x (3.1.8)

at x= 0 gﬁ = w1l/8 from (3.1.6)

géﬂAmsh/?' x. /8 +B 8inh /8 2. /8 = - uls)

= /8 (Acosh /8 x+B Sinh /8 =) = « uls)

x=20 /EA = «u(s)

A = »u(s)/% "‘73?)-

at =m =1
-0

= /8 (Acosh /3 +Bsinh /B )=0

B - A .&..._.E_Sh uls) Cosh /5~
/8 simh /&

The solution of (347) 1s given as

uls)

(3.1.9)
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The poles of (3.1.9) are given when denominator equated to sero
/s~ sinh /S =0
This gives -
S2aKe 1 § Km0, 1,2 eocens (3+1.10)

These are the actual elgen values of the transmission line. The

solution of (3.1.9) 4n t form may dbe written by writing

(3.1.9) in the form®

. | |
X(x,t) = é (2}?1 cos Kmx e“'xa"aw" Eu(¢) o¢

o0 -~ B |
Xx,t) =  + 2 5 oos Krrxﬂﬁ—fg—;é——l ute) (3.1.11)

Assumed the expansion of X(x,t) in coordinates x and time ¢,

in convergent series in the sense of weinbergerk. This gives the
complete solution of the system (3.1.5 and 3.1.6). For finding

out the responses ‘X’ at the intermediate points of ‘x’ on the
transmission line for a unit step input u(t) computer progranm is
written which is given in Appendix (3.1l.l.). For convenience the
total length (x) of the transmission line is taken a3 unity and it
is divided into equal lengths. The value of x depends upon the m
numbers of sections made. In the prosent problem it i1s divided intc
5y 6 and 7 sections and the intermediate points or states are
always less than one to the number of sections. The results are
shown graphically. The responses of interest are at the intermediat
points and‘are named as X, , X, and so on.
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2 Transmission Line Equations in State Space Form

Fourth Order
One dimensional diférential equations may be written

for the transmission line to represent in state equation form.

g% = gé from (3!]-»"") (3*2:1)

The difforential equations can be written in Taylor Series form
at a point on the transmission line when it 1s divided in to equal

length *n? as
2
| 2
X (x+hyt) = X(xyt) + $En + %g;-g N (3.2.2)
. |
X (x<h,t) = X(x,t) = 3F n + ég-ﬁ n? (3.2.3)

By adding (3.2.2) and (3.2.3) then

2
%ﬁ ze ig [X(x. + hy $) + X (x «h, t) « 2 X (x, t)] (3.2.1)

say x 3 n h vwhere h 1s section length and n 1s rmmber of
‘sections divided. The general equation is written as

= & [X(ph + h,t) + X(nh « h,t) « 2X{nh, t)] since 2 =
h 4 : 73

(342.5)
substitute for n = 1, 2, 3,.4c and soon in (3.2.5)

n 13 always greater than one , to the intermediate points. For U4
intermediate points n 18 5 and s0 on. The value of h is equal to
the length of the line divided by number of sections made. Just
as RC transmission line tqnatibn here also the transmission line is
divided as 5,6 and 7 and then compared.
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Qzéen.ﬂ a %F {(X(uh + h,t) + X(nh « hyt) = 2X(nh, t)]

Substitute forn =1, 2, 3and &

% = tﬂx(eh,t) + X(0,&) - 2x(h,t)]

S%}m,};? = iglx(sh,t) + X(h,t) -~ 2X(2h,t)]
FonY - Lox(im,e) + X(2n,t) - 2%(3n,0)]

3%9"253) = #[X(Shgt) + X{3h,t) - 2X(4h,t)]

Say X(hyt) = X,  X(2h,t) = X, X(3hyt) = X,
X(4h,t) = X,

B
g_g_’: /nﬂﬂg wM(t)

8 , 2" from (2.2.3)

Where %5 - g&,g% - X({x,t)

g‘:%/xao“ x{h,;:)h- X0u8) | e)

X(0,6)= h ult) + X(h,t)

sx 2/ o X1 + h,t) = X(1.8) .o
X(5h,t) = x(hn,t)

(3+2.5)

(3!0206)

(3.2.7)

(3.2.8)
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By substituting (3.2.7) and (3.2.8) in (3.2.6) then these
oquations can be written as X = AX + Bu(t)

or
'”.v k nad i, - r l“ P L
xﬂt 25 25 o o fxy] s
g'a 25 50 25 0 :"z +| 0 ul®)
ky 0 25 -50 25| X, 0
g Lo 0 &350 %] [°)

Sincehﬂ% vhere n = 5

[25 25 o o [97
vhere A= 25 50 25 0f §B=| 0O N
s 1 o {3+2.9)
i 0 25 50 25 0
L o o 25 25 | o
The eigen values of this A matrix can be caleulated’
Te(25¢%) 25 o o |
as |A=AXI| =0 3 25  «(50+ \) 25 ) =0 {3.2,10)
0 25  «(50+7) 25
[ o 0o 25 -(25%)-‘_

The characteristic equation of |A=AI] = 0 1s
A+ 150 23 + 6250 22 + 62500 X = 0

A computer programme is weitten for finding out eigen values of
this A matrix. It can bo extonded to the any order of A matrix
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and iz given in Appendix {3.2.1). The eigen values of 4th order
A matrix are given below.

)\1 B 0,00 A, = - 164 >~3 % = 50,00 >\,+ 2 - 85,35

The responses ot intermediate points ch_, Xz, x3 at;d x,, are ¢aloulate
through & computer program (Runge Kutta method) which is given in
Appendix (3.2,2) and compared with those responses from RC transmi-
gaion line equation at the same points of distances by drawing
graphs shown in graph mumbers from 1 to k.

As already oxplained the state feedback method, the
state equation after feeding the states through feedback coefficient
ta as follows
XaMxX+B2 from (1.3)
wheye M = (A = B KT)
M, A, B and K are matrices vith appropriate dimension. The
characteristic equation of M matrix may be written as

¥ «AI] =0
[A~BRT wAX] =0 f (3.2.11)

The eigen values of this M matrix and the eigen values of the
transmission line RC network squation are same. The foedback
coefricients (K's) are ealculated by substituting the eigen values
from (3.1.10) where K = 0, 1, 2, 3 in (3.2.11) instead of A\ . The
matrices A and B are lmown.

A «BE o« AX| % M arI] =0
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5 A
BK = |0 Ry K, Ky KBl= | 0o 0o o0 o
0 o 0 0 o
Lo Lo 0 0 0
[25 + 5% + %) 25 25K, =58,  =5m,
M- AT} = 25 ~(50 +2) 25 0
25 ~(50+ \) 25
L 0 0 25 {25+ M)

The characteristic equation of M - X\ I} 43 written as

A%+ (5, + 150) A3 + (625 &y +125 K, + 6250) AP + (187508,
+ 93758, + 3125K5 + 62500) Av (K) * Ky * Ky + K) 78125 = 0
Now poles are shifted to the required focations, A computer progran

for finding out K's from the characteristic equation of M is writter
and the program 1s given in Appendix (3.2.3)

The foedback coofficlents are as follows.

K, = - 2,364 K, = 0,007 x3 2 5.238 K, = - 2,801

Therefors the M matrix nay be written as

(- 13,180 24,965 26,190 14,400 |
M= 25.0 ~50,0 25.0 0.0
0.0 25,0 -50,0 25,0

0.0 0.0 25.0 25,0
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Agein the responses X, X, X, and X, for this feedback matrix are
calculated as in the case of A matrix and compared with the previous
Tesponses, |
X=uXx+ B r(t)
YT=clx
Por finding out the network of the above equation (which 1s to be

discussed in Y4th Chapter) the transfer impedance is calculated for
a current step input.

Applying laplace transformation as
8X(8) » X(0) = MX(s) + BR(s)
(8I « M) X(s) = BR(s)
8ince X{0) = 0
¥(s) = ¢T x(s)
X(s) = (5T - )"} BR(s)
Y(s) = ¢T(81 = M)"L BR(s)

2(s) = 84 = cT (s1 - )1 B

2(s) = cT(s1 = M) B (3.2.12)

By knowing the values of C1, M and B the transfer impedance may
be calculated as

3 §3'+7za§w‘ 03+
° S' + 138,565 + 4774 8% + 3613 B 3 3

n = 6, 5th order.

The same procedure is applied by taking n = 6 for comparison
purpose, '

g.gum.n = 31.2 [X(nn + h,t) + X(nheh,t) = 2X(nh,t)] from (3.2.5)
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n varies from 1 to 5 since the mmber of sections are six.
The state equation of the form X a AX + Bu(t) 4s written as in
(3+2.6) by applying the same houndary conditions.

here X (5 h,t) = X5
X(6 hyt) = X(5 h,t)

% = ax + Bu(t) | | hn% n=6
T % o0 oy e
1 36 «72 36 O o |lx, 1 .
- 0 36 72 36 0o x, ¢ : ol ucey
0 0 36 72 36 || % : o
J Lo ©o o 36 -3 || x| |0

T

36 3% 0 0 o [e]

36 <72 3 0 0 0 i
vher¢ A=} O 36 «72 36 0 |34B=| 0 |
0 0 36 «72 36 0 |
0 0 0 36 -36 0

L Y]

The characteristic equation is obtained as
|AwxT] = A9+ 288 %+ 2721653+ 93314852+ 8398080 )= 0

The eigen values or roots of this equation are caleulated from
the computer program given in Appendix (3.2.1).

)\1 = 0,0 )\2 = - 13.75 AS ® 49,75 )\1* = » 94,249 )\5 B o- 130':21"9

As in the case of th order the responses are calculated at
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X}_, xz. 13,. Xu and xs,rox* comparison with the responses of transe
mission line equation, graphs are drawn and shown from graph
mmbers 5 to 9.

Now after applying feodback technique the state equation becomas

X=MX+Br from (1.3)
Ma[ABK)

The characteristic equation of M is [M «XI| = 0'
[A=BE  « NI] =0  from {3.2.11) o (3.20)

K'= (K K Ky K, Kg]

oot r -

6%, 6K, 6% 6K 6K |

o

BET =

% K Xy K, B5) =

!

© o © c &
© © © ©

o 0o © ©

©O © © ©

o o o

©o ©o © ©

H
{

a‘- ool :Ll‘m ~ov
These K?s are calculated by substituting the transmission 1ins

eigen values from (3.1.10) where K = 0,1,2,3 and Y in (3.2.14)
instead of X .

(36%6E$N) 3665, - 6Ky =6 -6K |
36 «(72+)) 36 0 0
M - A1] = 0 36 -(72¢N) 36 o |=0
0 0 36 -72¢N) 36
| o 0 3% (30 |
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The characteristic equation of M - )I| is written as

> + (6K, + 288) A+ (1512K) + 216K, + 27216) A3 +

(126640 K, + 38880 K, + 7776 Ky + 933220) A2 +

(2799360 K, + 1679616 K, + 839808 K3 + 279936 K, + 8398080) A

+ (K, + K, + Ky + K, +Kg) 10077696 = 0

For finding out K¥s a computer programme is used which is given
in Appendix (3.2.3) and the poles are shifted to the desired

logations. |
The fecdback coefficients for 5th order are as follows

K, = 1.3499 Ky 22,7725 Kg = 645389
Ky = 12.3258 Kg, = « 18,3356
Therofore the M matrix may be written as

M = (A ~ BK') in vhich A,B and K matrices are lnown.

[- 4410 10992 - 136,62 109,98 =39.24]
36,0 72,0  36.0 0.0 0.0
M= 0.0 36.0 «72.0 36,0 0.0
0.0 0.0 3640 72,0 3640

| o0 00 0.0 360 <360 |

Now the state equation after feeding back, is

X=Mx+Br
The eigen values of this M matrix and the first five eigen values
of the transmission line equation are same, The responses of this

state equation X4 X5, Xy, %, and Xy are calculated by the computer
programae given in Appendix (3.2.2).
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The graphs are drawn for responses verses time as gilven

in graph numbers from 5 to 9. The transfer impedance is calculated
~ for this Sth order state equation as in (3.242),

4 3 2 ‘ .
7(s) = W%&&W (3.2.15)
S7 + 296 87 + 26593 8° + 788386 8° + 546592k 8 3 d

The transmission line representation will be shown in the next:
Chapter.

n=7 Sixth Opder

The same method is extended to the next order.
Here n = 7 h = % .

Tho general equation is written from (3.,2.5) as

3%(1111,1:) a ;1? [X(nh + nyt) + X(nh = Byt) = ax(zih,t)]

Here n varies from 1 to 6 since the number of sections
are seven. The state equation of the form X = AX + Bult) is written
as in (3.2.6) by applying the same boundary conditions.

X(5 hyt) = Xg X(6 hyt) = X,
and also X(7 h,t) = X(6 h,t)

e %= ax + Bult)

o o - ‘1 1:""" - f B
L] (% % o o o ollx| |’
. 0
o | 0 a(t)
23 = 0 k9 "(98 49 0 0 x3 * N
kl', 0 | o 9 -98 49 0 &“ 0
Lol L | CTLd L]
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T % o o o o T

9 -98 % 0o 0 0 0
wharoAla: 0 % 98 %9 0 0 3;B=| O
0 0 % «98 %9 0 | 0

0 0 0 W -98 W9 : 0

0 0 0o o W «1»9_.3 Lo

The eigen values of thig A matrix are obtained by writing
characteristiec aquation as [A = 2I] = 0

o - AZ] =26 « 490 37 + 86u45 Nt + 6589256 53
+ 201801728 A2 + 1695188200 A = ©
Again the computer program given in appendix (3.2.1) is applied

for finding out the eigen wvalues of A matrix.
The eligen walues aye as followa

Xy 0.0 ./\2 = w1313 A

)\5 = - 147,0 )6 = «182,87

3 2 - ,"9.0 )“" 2 - 9800

A8 1in the previous two cases the responses X, X, 13, Xy Xz and
X, are calculated by using the computer programme given in appendix
(3.2.2) and compared with the responses obtained from the transmi-
ssion line equation at the same points. The graphs ars drawn for
all the states shown in graph numbers starting from 10 to 15,

The feedback matrix M 1s written in state equation form an
X =MX + By
where M = (A « B K3)



A3
The characteristic equation of M is M = AI] = 0

jA-BXT « ANI| =0 from (3.2.11) (342.16)

K" a (K K, Ky K, Ky K]

P~ - - -~ -

? 7K 7K, 7Ky 7R 7EsTRg|

0 o o © 0 0 o
BK: = |0 5 Ky Ky Kz Klsj 0 0 0 0 o0 o

0 o o o0 0 0 o

) ©o © 0 o0 o0 o©

Lo Le o o o o o |

These feedback coefficients are calculated by substituting the first
six eigen values of transmission line from (3.1.10) vhere
K=0,1, 2, 3, ¥and § in (3.2.16) instead of A,

CTE ) (49.TRy) TRy TR, <THg  <TRg |
%9 (9B+X) %9 0 0 0
M- A1) = 0 49 «(98¢N) 49 0 o |=o0
| 0 0 49  «(98+1) 49 0
0 0 0 43 «(98+7) U9
_ 0 0 0 0 &9 -(1;9%)‘_

The chgracteristic equation of M «AI| is written as

Ao (7B, + 1490) A% + (3087K, + 343K, + B6H3E) X" +
(470596K, + 1L7649K, + 16807K, + 65883u4) X3 +
(288240007K, + 12353145K, + M17715K, + 823543 K, +

201763030))% + (6053041L00K, + 403536070K, + 242121640K, +

1210608208, + 40353607Kg + 1694851540) A+(K;+ Ky Ko+ Xy + Kg ")
1977326600 = 0



8) =

T'=101.850 25%.828 -278.480 16817.430 «49936.895 33294.954 )
49,0  ~98,0 49,0 0.0 0.0 0.0
0.0 49,0 «98.0 49,0 0.0 0.0
0.0 0.0 49,0 «98.0 49,0 0.0
040 0.0 0.0 49,0 ~98.0 49.0

L 0.0 0,0 0.0 0.0 49,0 «49,0

wlplpe

For finding out K's a computer programme is used which 1s given in

Appendix (3.,2.3) and the poles are shifted to the desired locations,
The foedback coefficients (K*a) for 6th order are as follows.

Ky = 7.5%99 K, = «29.4037 Ky = 39,7829 K, = «2402.4920

K6v 8 - !*7560!’220‘ 85- = ?1“#985

Therefore the M matrix may be written as M = (A = B KX) in which
A, B and K matrices are known.

The state equation after feeding back is
X=MX+Br
The eigen values of this M matrix and the first six aigen values.

of the transmission line equation are same.

The transfer impedance is calculated for this 6th order
state equation as in (3.2.12)
R os'ts 0528-+ %61189738° + 1k 008 _+ b 20 (3.2.1
§°+ 54387+ 9965058+ 735004887+ 19999231ks%+ 13486622003
The representation of the transmission lines for all these transfer

impedances will be discussed in the Wth Chapter.
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In general the transmission lines are means to transmit
pover from the generating terminals to oonsumer centres, The basie
paramoters of the transmission lines are Resistance (R), inductance
(L), eonductance (3) and capacitance (C), In fact all these para-
meters are distribdbuted over the length of the transmission iine.
The resistance and inductance are in series with the line and condu
ctance and capagitancs are in shunt with the lines, Rexahowing 211
these parameteras in a single line reprosaentation of a transmission
line was shown in Mg.(1l.1)s For the sake of ¢alculations these
parameters are to be mafle lumped as shown in Figs.(1.2.2) either
with T or 7 representation respectively. Here the conductancs tern
is neglected, Mstributed parameters ars introduced as shown in
Pig.(1.3) because of inaccuracy in the caloulations of long transe
mission lines with the lumped parameter T and » vepresentation.

The design of the transmission line from the transfer
impedanoe funotion ss given in the squation (3.2.12) 1s mainly
concerned in this Chapters After applying the fesdback cmemauon
the transfer impedance function Z(s) is written as

z(s) = cT(a1 - ¥)™ B,

Basically the transmission line is sssumed that it is a
;‘.aaknge free noninductive cable with G = Oand L = 0, So only two
parcmeters left are resistance in seriles with the lins and capacitan
across the 1ine., So the above transfer impedance function has to
satisfy the conditions, to be as an RC network funotion in ladder
form. If it has simple poles restricted to the finite negative real
axis vhere it has positive real residues, then this fumction is
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realized as an RC network function. If all these conditions are
satisfied then the first cauer method of continued fraction expane
sion about infinity will be applied as to get the network. This
method was clearly explained in Chapter 2 under the heading of
network synthesis. As given by the equation of the form in 2.h4.2
the coefficiaut assoclated with the frequency term S is the walue
of capacitor and the constant term 1s resistor. A component at

the beginning and ending of the designed transmission line can be
seen by testing the transfer impedance function Z{s) at S = 0 and

S = 03 [The cauer form representation of an RC transmission line
for an nth order transfer functionwwas shown in Fig.(2.%.1)] When
the transmission line is divided iInto number of sections with equal
distances then all resistances are equal and all capacitances are
equal.

Ri o H3 % sevvsnse = %_',1

Cz = ci* B Lenrnnpe = Gn.

In a general way a unit length of transmission line is considered
for simplicity in calculations and later on this can be extended

to any length of the line. Similarly the resistance and capacitanoce
are also c¢alculated for per unit values,

The aim of the problem is to find out the responses
at the intermediate points of the transmission line. B8So the number
of intermediate points are always less than one to the number of
gections divided over the length of the line. n represents number
of seotions. The transfer impedansce function Z(s) when the line is
divided into five number of equal sections is given in (3.2.13) as



47w

zcs)nir-—ﬁ—-%—ili—grﬂlﬁ———-"z* 0.2 » 31200 5% 312700
8% + 138,56 5% + 4774 6° + 36613 6

This transfer function can also be written as in (2,4.2) after app-
lying the first cauer form to get the component values in RC network

Z(g):zé&i- .
;%*;
R

gu.__

where C, = 0.2 ¢

G, = 0.109 ¢

Cg = 0.0335 ¢

Cg = 0.0037 £

Ry = 0,437 ohm

Rg = 0.174 4

%aman

The transmission line represented with the above values

15 shown in Fig.(4,1), o
vhen the transmission 1line is divided ihto six number of egual
seotions the transfer funetion from (3.2.15) is as
7(s) = st 28 &2+ + 28 8 + 503846k
| 87 + 296 87 *+ 26593 8 + 738386 5% + 5465924 &
or |



8) =

Z(s) = 0.166 8 +

ca = 0,166 ¢

C, = 0,0036 £ Ry = 0,75 ohm
06 = Q0,044 ¢ 35 = 1.36 ohm
Cg = D.01 £ R,’ = 2,428 ohm

The transmission line represented for Sth order feoedback ¢ompensated
transfer function is shown in Fig. (4.2).

The transfer impedance Z{s) when the line is divided in to seven
number of sections is given in (3.2.17) as

DO+ 42,857+ 9965051+ 735004855+ 1999923145° + 13436622008
Z(s) can also be written in the form (2.%.2), I'rom that the
component values sre as follows.

Cy = 0142 £

(.'.h = 0,031 ¢ R3 = 0,132 om

36 = 0,042 £ RS = 0,63% olm

CB = 00,0006 4 37 L) 60221 ohm

Cyo* 0.013 £ By = 3.126 ohn

012'3 0.000% ¢ lel 5.448 ohm



e

The transmission line with these values is represented in Fig.(W.3).
In all three cases the ﬂrst; and laat elements are capacitors. This
method may be extended for any number of sections divided over the
length of transmission line.
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CHAPTER = 3
RESULTS AND DISCUSSION
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The results are shown graphically for the RC transmission
line equation of diffusion type. The responses shown, are at the
fnternmediate points of interest over the length of the transmission
1ine. Also sgen how these responses vary when the line is divided
into more different number of equal sections, For example when
the line is divided into five equal seotions in length, thers will
be four intermediate points by excluding the input and ocutput
terminalS. These responses are called for convenience as 11’ x2,
X3 and X,* When the line is divided into six number of equal
longths there are five intermediate points called as Xy Xy x3,

x.* and x5 and so on. When the response at the first state x1'
is compared in both the cases,the response X in the second set
builds up quickly than in the first set of X, in the equal time
internal probably because of less distance. The velocity of wave
propagation is almost equal to the velocity of light. Even with
this veloecity of propagation the response over the transmission
1ine builds up at the second Tunction ‘X, only after first

Tunotion ‘Il" assumed and so on.

By taking the response of the RC transmission line
equation as reference, another approximate model 1s developed by
applying state space technique. The order of the state equation
depends on the number of sections made. It is always less than one
to the number of sections. Because we are not interested in the
output state at the output terminal., The responses on the states
of this state equation are calculated and compared with those of
RC transmission line at the same intermediste points. From the
graphs it is seen that the responses from the approximate state

175~ 896

Y LIRRIRY UITRIITY OF ROORXER
KLOORKK:’
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equation are comparitively poor with the RC notwork responses.
- The eigen wvalues of the state equation are more negative compared
with the reference approach eigen values,

Now the poles of the state esquation are shifted exactly
to the poles of RC transmission line equation by applying the
stats vartiable feedback compensation technique, The eigen values
of state squation and that of RC transmissiomiine are same. In
order to shift these eigen values to appropriate locations a feed
back eontrollor gain matrix KX = [, K, «ssns)] 15 dosigned, Again
the responses of state equation after poles shifted to the desired
locations are calaulaekd and conpared with the two responses already
ealeulated. In each graph all the three responses are showp at the
same intermediate point when the line is divided'into equal sections
in length. As indicated in the graphs, ‘D' represents the response
of the RC transmission line equation of diffusion type, ‘A’ repre-
sents the state equation response without feddback and ‘M? with
feedback, It is scen from the graphs the response after feedback
compensation improves slightly even over the diffusion type trans-
mission line response. It is not necessary $o0 go for another new
method to get the responses at the intermediate points just for
this slight improvemecnt. But the state space technique is a recent
trend and it has more advantageous over the conventional type of
approach. Thus the state space approach has at least three major
advantages ¢ompared to stright Ainput-output analysis, Thoy are
(1) cenceptional clarity, (2) greater information about the system
itself and (3) computational convenienca,
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CONCLUSION

The results obtained from the state space technique with
feedback and without feedback are compared with the results of a
reforence RC transmission line equation of diffusion type.

It is clear from the graphs that the results from state
equation without feedback are poor where as with feedback compene
sation they are better comparitively with those obtained from
RC transmission line equation.

As the number of sections of the transmission line
increases, the responses with RC line equation and state equation
with feedback are coming closer because mumber of eigen values

considered are more.

Other advantages of this modal control theory are
(1) conceptual clarity (2) greater information about the system

and (3) computational convenience.

This recent technique has produced good responses out
of all. So in conclusion it 4is suggested that it may be sultadbly
applied to various systemsfor getting better responses.
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CALCULATION OF ¥y AT VARIOUS POINTS OF X BY RAYUDU
PI=341416

Ns=b

PUNCH 2

FORMAT(5Xs1HX9e15Xs1HT 915X s1HY)

FORMAT (5XsE10e445X9E10e495X3E1565)

X20,6664

Tﬂcvl

Y=0Q 0

DO 10 KuleN
AK=K '
PKX=AK*P1
P2K2mPKX#PKX
PK2X==(P2K2)*T
PKXsPKX#X
YeY42 0% (COSFIPKX)*{140-EXPF{PK2X)))/P2K2
Y=T4+Y

PUNCH 209X9TsY

T=T+0e1

IF(T-540)696015

X=X+(04 1666

IF{X-0e833)545920

STOP

END

o
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EIGEN VALUE AND EIGEN VECTOR CALCULATION BY RAYUDUY
DIMENSTION A(10910)28(10¢10)
READ 1N

FORMAT(17)

READ2s {(Al(IoJ) s JuleN) slualsN)
FORMAT(12F6.2)

CALL EIGEN(A»BIN»10)

PUNCH 4

FORMAT(20X»13HETIGEN VALUES)
PUNCH3 s (A(Is1)s1®1sN)

PUNCH 5

FORMAT (20Xs14HEIGEN VECTORS)
PUNCH 3 ({B(IsJ)eJ=1oN)sI=1aN)
FORMAT{2X+4E13e8)

STOR

END
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DETERMINING K By RAYUDU

DIMENSION A{10,11)+8(10)

READ 1N ‘

READ 29C19C29C3,C09C50C69CToCBCT9C119C124C134C149C15+C169C1 Ty
1C18!C199C21¢C22 c23

P1aSe87

DO 5 T=1l,uN

Mx]~}

XM=M

XMSeXMit#®2

XS=XMS*(-PI)

A(Tol)=ClaX o (N=~1)4C2UXSHR{NwD ) +CIRXEHR(N~T ) +CHRXSH* (N4 )4+
1CSAXSH%(N-5)+C6
A{]92)2CTRXSHH(N=2)4CBPXSH#H{N~3 JCORXESHE(N~L ) +CLIHXSHR (NeB)+(E
AT 93)ECl2RXSER (N~ ) +CLIBNUSH® (Nl ) +CLARXSH# (N-K )+
AlT24)aCLIOW (SR (N~ ) +CI1E#XSH¥(N=5)+(6

A{l95)=ClTHXSR# (N~5)4+(6

Al{lys6)=Cé

BOT)s={ XSH%] 4C1atXS*# (N=l ) +CiLOtXS# (Nm2 ) LC 21 ¥ X% # {N~3 )+
ICZZ*XS**(N*4)+C?3*XS**(N~5)!

Ni=N+1

DG 6 I=leN

A{1sN1)=B(])

CALL SOLEQN (AsN»10)

PUNCH 3

PUNCH &4 lAlTsN1yeIsleN)

FORMAT (12)

FORMAT (5F15,.2)

FORMAY (2Xs14HDESIRED ANSNKR’

FORMAY (2X96C13,6)

STOP

END
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3.2.2

SIMULTANEQUS LINEAR DIFFERENTIAL EQUATIONS (X DOTmA%X+F¥#W)«
SOLUTION BY RUNGE~KUTTA 4TH ORDER METHOD*SUBRATO#17692#RAYUDU
ALSO DETERMINATION OF QUTPUT YOmC#X+GHW
DIMENSION X(6)sDI6)sZ(24)sVI12)19U(12)9Y(2)eB(G12A(36)sF(12)sW(2)
DIMENSION YO(4),C(24)9G1(8)
B{l)=e5

B{Z)®e5

B(3)=1,

B{4)=0.

READ LO001lsNsLLaM

NLeN#*LL

NNaN#*N

READ 1002 sSsTO,TF

READ 1001sMM

MN=AM*N

ML=MM*LL

READ 1002+(Cl1),Im1yMN)
READ 10025(G(I)yoInlieML)
READIOOZ9(F{1)al=1yNL)
READ 10020tW(I),Imlall)
READ 10020 (%(1)yI=]l4N)
READ 1002»(At1),I=1yNN)
PRINT 20019F oLLyMsSeTOWTF
PRINT 2002,%0

PRINT 20035¢X(I)slm1leN)
PRINT 204

PRINT 20039 (A(Ijel=lyNN)
PRINT 20055 (W(ljelmloll)
PRINT 2006

PRINT 20035 (F(lysI=1sNL}
Tal0

EP=2,%ABS {TF-To)

E3=EP

DT=S

Y(l)=T7

DO 101 Is2yN

D(I)=0,

DC 102 I=1N

DO 102 J=s]sN

FJe (J=1) %N+
DULY=D(IY4ALTS}nX{J)

DO 110 I=lsN

DO 110 J=l,LL

IS EBESRE IREN)
D(1)=DLII4F(1J)aWld)

DO 10% I=1sN

Vii)=D(1}

Ull)=X(])

L=0

Klz=-N

DO 108 K=alyé

KisKI+N

DO 105 [=l1,N

iKsKI+]

ZUIKY=DTRV(])
RLi=U(I)+BIKI®Z(IK)
TaB(K)#DT+Y (1)
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DO 106 I=1sN
106 D(I)=0.
DO 107 1I=1,!
DO 107 J=1,1;
Id={1~1)#N+J
107 D(IN=D(I)}+A(TIJI)%X{J)
DO 120 I=1sN
DO 120 J=1.LL
I1Jd=(1-1)%LLuJ
120 D(I)=D(IY+F(IJI%W(J)
DO 108 I=1lyN
108 V(1I)=D(1}
DO 109 I=1,N
I12=1+N
I3=212+N
14=13+N
100 ULI2)=UlI I+ (Z{I)+2%(2Z(I2)+Z(I3))+2(1t))/6e
Y{2)=Y{1)+DT
DO 111 I=1,.N
I2=1+N
111 X(I)=su(l2)
TeY(2)
DO 112 I=1lsN
112 D(1)=0.
DO 113 I=1,.N
DO 113 J=1lsN
IJs(I=~1)%N+J
113 DUIY=D(II+A(1I)8X{J)
DO 130 I=1sN
DO 130 J=1l,iL
IJ=(I=1)%*LL+J
130 DUIY=D(I)+F(IJ)*W(D)
DO 114 1I=1,N
I12= 14N
114 V(I2)=DI(1}
E=ABS (TF=Y{1l})
IF (E~EP) 11591159126
115 EP=sE
KT=1
116 E=ABS{TF=Y(KT))
IF(E=~E3) 117,123+123
117 E3=E
KN (KT=1)%N
DO 118 I=1.N
KM=KN+1
118 X(I)=U(KM)
DO 119 I=1,N
119 D(I)=0,
DO 121 I=1eN
DO 121 J=1 N
1J=(1~=1)%N+J
121 DI =D )+A(TJINX1I)
DO 140 I=l,y
DO 14C J=1,iLL
ITJ={(1-1)*LL4J
140 D(I)=2D(I)+F (IJ)#W(J)
L=L+1
IF (L-M) 123,122:123
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INT 2097.Y
122 ggINT 2%)3: lI-I’N)
L=l
Do 150 i=1:MM
yo(11=0e N
po 150 J=lyN
[Je (1<) *N+J
150 volil=YOLL1+C{I N#X{J)
DO 160 I=1l,MM
DO 160 J=1l,LL
Ids{I=-1)8LLeJ
160 YOUI)=YOUI)+G{Ig)*W(J)
PRINT 20039(YO(i)rlzleMM)
129 KT=KT+1
[F (KT=2) 116¢1169124
124 Y{I)=Y(2) ¢
DO 125 I=1,N
[2=]+N
Vii)avV{I2)
125 Utli=u(l2)
GO TC 104
126 PRINT 2008
G0 TO 100
1001 FORMAT (3]2)
1002 FORMAT (8F1045)
2001 FORMAT (2X+s2HN=,1293HLL=12+2HM=1292H5=9E13e693HTORIE134603HTF By
1F13,4,6)
2002 FORMAT (2X413HSTATES AT TOt4E13.46)
2003 FORMAT (2X+6E13,6)
2004 FORMAT {2Xs13HSYSTEM MATRIX)
2005 FORMAT (2Xy12HDISTURBANCE GUANTITIESe2E13e6)
2006 FORMAT (2Xs18HDISTURBANCE MATRIX)
2007 FORMAT (2X415HSTATES AT TIME=sE1346)
2008 FORMAT (2X4]2HPROGRAM ENDS)
END
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