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ABSTRACT

In the mass production of circuits where 100 per cent
yield is not required, but an estimate of yield based on
individual componcnt behaviour assists in production decisions
the tolerance analysls becores the final phase of circuit
design.

Practically it is very difficult to have the precise
valued elements. Forc the precision, higher is the cost, so
to reduce the overall circuit cost, the slackness in element
values is allowed. But higher the slackness, more is the
probability of circuit response to violate the specified limits
i.e., the circuit fails. So to avoid circuit failure, tolerance
analysis is required. As cost and the circuit response are the
functions of tolerance, we optimise the cost of the circuit

subject to circuit respond constraints.

In this study two itrative algorithms are presented
for the tolerance agsirnment in a given frequency domain. The
first algorithm is for continuous tolerance case and the
second is for the discrete tolerance case. The presented algo-
rithms can be used for both types of circuits whose element
values are either correlated or uncorrelated and has the
feature of allowing the designer to specify a circuit yield
of less than 100 per cent and can handle any type of probability
distribution. Two problems have bheen considered. The first
problem is of a band pass filter circuit to illustratc the



case of uncorrelated parameters for both continuous and
discrete element tolerance assignment with normal distri-
bution. And the second problem is of a three transistor

low pass amplifier used to illustrate the case of integrated

eircuits, i.e., with correlated parameters.
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INTRODUCTI ON

The final step in most circuit design is a tolerance
analysis, i.e., a study of the effect of parameter variation
on ¢ircuit behaviour. There are two distinctive applications
where such information 1s vital: (1) in the space and Military
electronics field, where it is surely worth the effort to
eliminate any possibility of failure, and (2) in the mass

production of ecireuits, where 100 per cent yield is not

r;auired; but an estimate ofvyield-based on indivi&ﬁal
component behaviour assists in production decisions. Also
when the system responsec needed is t be within some
tolerable 1limits, it becomes possible fbr the individual
elements to have its values to lie within some tolerable
limits. For mass production it is very uneconomical to
produce elements with precise values, the cost of a compo-
nent decreases with the increase of tolerance limits. So
for the economical mass production of components, tolerance

analysis is very important.

Totally unpredictable failures can be prepared
for only by redundancy in the circuit design. Therefore,
our c¢oncern in this;thesis*}is with failures that are |
predictable in some sense. Such failures tend to arise in

one of the following ways.

(1) Catastropic failure, which is abrupt and results
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from large changes in certain components due to environ-
mental stress such as radiation, shock, or temperatuie
extreme; if the change in component values is known, these
stresses can bé similated by analyzing the network with

new element values;

(2) Drift failures, which result from small gradual
chénges in component values; the component changes typl-
cally can be predicted to lie within certain tolerance
limits; such tolerance information is then used in design

to avoid failure;

(3) Random failure, occurring in manufacturing process
due 40 a circuit containing an excess of marginal components;
assoclated with each component is a nominal‘value and a
probability distribution giving the likelihood thelvalue
lies within a range near the nominal; this statistieal
information can 2lso be used in the design rhase.

When electrical circuits are designed for mass
production, it is essential that a high percentage of the
manufactured circults operate within prescribed specifi-
cations,i.e,, a high yield of manufactured circuits must
be obtained. In order to meet the yield objective and also
produce cirecuits at as low a cost as possible, it is nece-
gsary to optimize both the circult response tolerances and

the circuit cost;

Generally there are two types of tolerance assignment
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problems. The first type is where the circult elements

can only be assigned a finite number of discrete tolerance
values. Such a situation is encountered in the design of
circuits using lumped components. The second type of problem
is where the circuit element tolerance may be assigned any
value, 1l.e., it is a continuous variable. This situation

arises in the design of integrated circuits.

Various algorithms have been developed for the
assignment of elcment tolerances. Monte carjo tolerance
‘analysis has proven to be a useful tool in evaluating the
effects of component tolerances and environmental variations
on electrical circuit performance. The method involves
'econstructing' samples of the circuit inside the computer
useing element values, that obey the manufacturing stati- |
stics, analysing these samples and forming empirical distri-
butions of performance. One common outcome of the process is
the prediction of yield. lMonte carlo analysis hence forth‘
referred to as TAP, is an open loop structure. At the con-
clusion of the tap run one observes yield andig faced with

one of two:situations:

(1) the yield is too low. With this result the designer

¥nows he must change his tolerances. Unfdrtunately TAP gives
him 1ittle information as to which tolerances to c¢change and

by how much.

(2) Yield is adequate. Here the designer may be satisfied
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by the design but he obtains 1little help in determining

weather a cheaper set of tolerances might not give equally
satisfactory yield. An algorithm for the discrete case has

been proposed by Karafin[4]. This techmique forms tables of
pairs of discrete tolerance values for which circuit perfor-
mance remains acceptable. An efficient tree search procedure

is then employed to find the set of tolerance values which
satisfied the performance criterion and yields the least

cost. A worst case and a Monte Carlo analysis are used to
verify this choice of tolerances. If either of these tests
fails, the next least costly set of tolerances is tried. This
method assumes the element values are uncorrelated and that

a 100 percent yield is desired. Seth and Roe[5] describes

an algorithm for continuous tolerance case which minimizes
circuit cost. The algorithm makes use of higher order moment
equations to predict response varlatlons from element tolerances
and a final verification of the resulting design useing a
Monte-Carlo analysis. A similar approach has also been presen-
ted by Pinel and Roberts{€]. In particular, the tolerance
asslgnment problem is recast into a nonlinear programming
problem which uses the Fleteher-Powell optimization algorithm
to minimige ci:cuit cost. The algorithm yields a worst case
design as a by-product. Again, this algorithm assumes a desired
yield of 100 pereent. A.R. Therbjornsen and S.W. Director(7]
in their paper assigned two new iterative algorithms for

tolerance assignment in the frequency domain. The first
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algorithm is for the continuous tolerance case and has

the feature of allowing the designer to speclfy a circult
yield of less than 100 percent. For circuits whose element
values are uncorrelated, the algorithm can handle any type

of probability distribution. Normal distributions are assumed
for circuits having correlated elements. A Monte Carlo |
analysis|8], which take into account element value correla-
tion, is incorporated into the main iteration loop. The
frequent use of Monte Carlo analysis is made less economi-
cally objectionable by useing a variable sample size; the
sample sige remains smell until the algorithm nears convergence,
which time the sample size is increased to obtain the needed
accuracy. Use of a Monte Carlo analysis is justified by the
fact that it is the most dependable of the tolerance analysis
methods. The second tolerance assignment algorithm i1s for the
discrete tolerance case in which the circuit elements have

uncorrelated values.

Here in this present study, two more iterative algorithms
are presented for the tolerance assignment in a given frequency
domain. The first algorithm is for continuous tolerance case
and the second is for the discrete tolerance case, for both
type of circuits whose element values are either correlated
or uncorrelated and has the feature of allowing the designer
to specify a circuit yield of less than 100 per cent and can
handle any type of probability distribution.

-
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Introduction to

(1) Tolerance Analysis from the Sensitivity approach

Let a network variable f(i.e. V or I) be considered

a function of parameters Py which have nominal wvalues pit

f= f(P1'P2t00ﬂ Pn)

= £(p) (1)

For small changes 4 p;, the change in f is
S n A af
A = E ALp, ——— :

(2)
Such-derivative information is typically used in one of
three ways:
1. If the Api are known precisely, Af may be estimated
directly from equation (2)
2. If the_Api are assumed to lie within the tolerance

limits 61, i,e.,

Then the largest possible variation in f may be estimated

as
Af ' g (+ €,) -——-—af
= +
max  g4_q— i 9D,

Where the sign is chosen the same as that of the derivativej
if Afﬁax represents acceptable behaviour, the circuit is said
to be a worst-case design.

3., If Api are described by probability distributions, then
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a distribution for Af may be estimated by the method of moments,

(2) Independence and gorrelation

Two random variables X and Y and sald to independent iff

i,
1=Pr{a5x_<_b}9r{eiy_<_ﬂ>

Pr{a_(_Xf_bandcf_YS_dJ

The correlation coefficlent associated with two random

ii.
variables X and Y is defined (for unclassified data)

n - D e

Py =
Yoag o

where i, i,ﬁi and %Y are the means and standard deviations

associated with X and Y respectively.
Independent variables are uncorrelated, but uncorrelated

i11.

variables need not be independent.
2, the variance of

iv. If the variance of h(x) is o
h{ax) is 220> Where h(x) is the probability density distri-

bution function of random variable x. This property shows the

effect of scaling.

If random variables X1, X2""’Xn with variances

V.
0?2, 052, ...;cﬁa are described by the correlation matrix
— p P
1 '12 LA I '1n-’
R = ?21 LIEXY PQn




Then the variance Gia of the random variable

is given by
& -0"Ro

Where o~

i
|
(o]
-1
N
=3
L1
[ ]

IfR =‘£, g0 that the variables are uncorrelated, this equation

becomes

' 2
= 54

%

i

i=1

(3) Method of Moments

Returning to the equation

i=1 api

Suppose we are given the variances q;z of the distri-
butions associated with Api and are interested in the variance d}Q
agsociated with the variable Af. If the partial derivatives are
real numbers, they may be considered as scaling factors for the
distributions of Ap,. According to the statement (3) we may
define the scaling factor a; = 0£/9p, so that Ap! = aipi and

the standard deviation o7

' of Api is
1

0.5. =&i(f1



But now from equation (4), Af is the sum of random variables Ap] .

Therefore
3 Caf RS 7
N LB Y
o2, P, it
of
3
leen pn —nd

52 P 33

1 T105150 <eer PipSySy
o o 5 0 o .
- 015550 855 «ave £, 8,8 g_m
P P 2
'n1sns‘1”n28n82"" Sn i
-~
C ap . _ o
Where Si = ;- y the system sensitivity w.r.t Py
Py

After mltiplying the matrices we get

5 nsz 2 n n o
£S0c +23% 3 5,5,07 o3
bt 1T AT L T

L

%%



If all the variables are uncorrelated

p Y 1473
i.¢. 13" 4 izj

we get

Thus, the variance of the response may be estimated from the

variance of element variations if the sensitivities are given{
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STATEMENT OF PROBLEM

(A) Statement of the problem:

element values, denoted by Py, k = 1,2,...,n. The magnitude
of the response of this network at a set of m discrete frequency

Ag; i =1,2, ... . The get of responges {%;li = 1,2,...g{}

is called 'nominal circuit response!. Ve are intercsted in

determining the set of element toleranees{}kik=1,2,...,£]§

o

(in percent). Such that 1) A yield specification is_mét,i,e.

a given percentage of circuits have responsdgii|i=1,2,...,£1
which deviates no move than some specified amount from the
nominal response Ag[i = 1,2,...,%3> for all possible values of

the circuit elements
{:pk= (1 th/1oo)p§l0 €< 1, k=12, voeynd; and

2) A minimum cost of the eircuit is achieved.

Before coming to the actual problem we introduce some

additional notation. Let 3? and ﬁ% denotes the specified upper

and lower limits on the magnitude of the circuit response,
respectively, at the ith frequency points. Observe that

o) AU
<Ay & A

I\L
i
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(B) The Performance function:

In this method we minimize the circuit cost w.r.t.,
the element standard deviation, such that the magnitude of
the circuit response remains within the specified limit,i.e.,
we fix some constrains which keevs into account the cirecuit
response limits as well as the yield. The cost of the circuit
element is roughly inversely proportional to its tolerance,

total circuit cost, the cost function, is represented by

L ]

.
f(t) = E N .04 (1)
Je=1 Uk

Where o is the cost factor of the kth element

It is important to recognize the relation between
tolerance and standard deviation. If Gik denotes the standard
deviation associated with the kth element, then the element

tolerance and the standard deviation are related by

= By %px

Vhere Bk is a constant which depends upon the pwebability
distribution associated with the element value. For a normal
distributtion, essentially all possible velues lie with in
3 Ok points. The most extreme values the kth element can

p
assume are

Py + 3oy 1 +----)
k = P 100

So that for this case

= 300 o”k/
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Fow we turn to the yield requirement. Let o} Ai denote the
standard deviation of the magnitude of the circuit response

at the ith frequency and o3 f&i denote the desired (i. €., Maximum
allowable) value of o3 A . The desired 5* is calculated from
the specified upper and lower limits of response at the
frequency and taking yield into consideration. For a normal
distribution a curve is plotted for yield agalnst the ratio

of half the total response tolerance to the desired standard
deviation of the response. From the curve for a given yield,
corresponding ratio()) is traced out, which intern gives the

A
desired Uzi

. T4
Oy = (3)
/
Where Ti 15 half the total response tolerance and is
1 AT AL B
Ti = 2 (Ai - Ai) XXH (4)

The response standard deviations azi may be approximated
from knowledge of the element value standard deviations
with a truncated form of the propogation of the wvariance

equation(4)
2 T '
A =% [xi] D (5)

where o5 =(0§1, 052. veey Gin)m and i:x%] is a symmetric
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matrix. The element of [Xi] are

xjk 5k °3 % e ()

Where ?jk is the correlation coefficient between the Jth

and kth elements, and S; and Si are the sensitivitges w.r.t.

the Jjth and kth elcment at ith frequency

4 DA, '
Vhere Sk = —— o oo : (7
0Py Py

The partial derivatives are easlly and economically evaluated

using the modified adjoint circuit technique|?|

For the required yield specification to be met, in all

cases
2 6&2
o
Ay & A | eee (8)
Gii and f1(t), useing eq.{(2) are function of Ot

The total performance function is

X

oY

Min f1(t) = f(d‘f)) =k

noMas

Subject to

2 2
crﬂis %i §i=1’2, te oy m.



Minimization of the Performance Function

A good first estimate of the best element standard
deviations results from minimization of the cost function
subject to the given constraints. The solution of the problems
involving large systems is hampered by size; the problem is
gimply too big. In such cases, a common approach is to decompose
the original problem into subproilems, and solve these. For the
interaction between the subproblems, it proposes muliilevel
approach, For the constrained optimization, Lagrangian function

is formed, as for the problem

ninimize f(a%)

, o L
Subject to 031(0% ) < Uﬁi i=12, ...mn

Given this problem, we define a lLagrangian function

L(O“_;u) = f(d%) + “(012(65)' 5i2)

p .
b 2 = (Ta), g2 .. ;2 (oyy
wiere Ul ? = 1 dp ’ Azy see ( Am( p)),
un = (u1, 1}.2, cee um)

and a second Lagranglan problem
minimige 1(05 y )
with u 770, related to the peimal by some theorms,

For any set of values of u we minimize the Lagrangian

function and we get the optimal values of oy, as 65* Using these
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values we form a dual function

h(u) = L(oi*, u) = min L(OB , 1)

p

Ve maximize the dual function w.r.t. u, and the process
repeats until a saddle point is achieved where the Lagrangian
and the dual are equal 1.e,

min  mex  L(oz,u) _

D max. min L(di , u)
Qi uz20 u2>0 o

- P
For h(u) differentiable, a steepest ascent algorithm,
modified to handle the constrainbs u 2 0, may be used to

maximize h(u). This leads to a solution procedure

1. Choose initial values ug0,S5tep 1,i=0,1,2,..proceeds as follc
2. Solve the Lagrangian problem with u = u, obtaining a

solution o%(ui). In the seperable case, this may be
accompliched by solving the subproblems.

3.,  Fprm the dual function h(ui)_=4L(0%(ui),ui) and its

gradient Vh(u,) = of (o5 (uy ) 632
4, Define a direction of search Si by
~- 0h |

—_— it uf > 0
' ol |u. +
Sk 1 k=1,2, t.o,mo
0h k
0 IPu =6
max{ ’ auk ui} i
.

Choeose a new vector Uy 49 by

ui+1 =1, + (zis

i i
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The step size oy must be selected so that
h(v;,q ) > Rlwy)

If h is differentiable there exists ai>0 satisfying
the above unless uy maximizes h. A common procedure is

to chogse ay

g(a) = nlu, + as,)

to maximize

subject to the constraints “13 0 and.ui+1> 0
5. Return to step 2, stopping when aiz:O.

If gla) is to be maximized, it must be evaluated a -
number of times, reguiring a solution of the 1agrangion,pr9b-
lem each time. Suggested procedure for performing this one-
dimensional search are found in Fleteher and Powell[9] and
Lasden and Waren[10 ]. Although theoretical-cbnvergence-of this
algorithm is eve-dently an open question at this time, the
procedure is widely used and will generally converge to a

global solution for convex problems.

This gradient procedure may be viewed as a coordination
algorithm for a second level coordinator, whose task is to solve
the dual problem given values of h(u) and wh(u). The first level

units solve the subproblems and provide the values of h and v h.
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The Discrete Tolerance Design Alporithm

A second algorithm has becn developed to assign
tolerance values for the case, when the tolerances are A
discrete variables. The continuous tolerance design algo-
rithm is used first to find tg an approximate solution for
the element tolerances. The continuous tolerance case is the
idle case as the tolerance values may be in fractions to
strictly satisfy the given set of constraints. 5o the optimum
continuous gset given the least possible cost for the given
set of cost function and constraints so the 6ptimum descrete
tolerance set will have the cost 2; the cost obtained by

continuous tolerance set.

Also it is assumed that this locally optimum set of
tolerances(tﬁ) is close to the desired locally optimum discrete
tolerance set._So‘wc round off or truncate the optimum continuous
tolerance set in such a way so that 1t satisfies the constraints.
For this set tA, cost 1s found out. Now as the calculation of
cost for a given set of tolerances is easier than the checking
up of the constraints, We form a table of all the possible sets
of tolerances which we get with combination of tolerances having
values in neibourhood of the values the set of tolerances tA and
having cost betwecen the costs, the sets tA, tcA has . From this
table, then we,first take the set which has the least cost and

check it for the yield specifications. i1f it satisfies the yiedd
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specifications, then neglect all other sets, because they

are more costly, and we will try tc form if possible some
other sets with lesser cost. If this set violates the cons-
traints, then we check the next least costly set, this process
goes on until we get a least costly set which satisfies the
yvield requirements. This set o tolerances gives the optimal

discrete tolerance set.
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Design Examples: Continnous Case

T™vo examples are presented to illustrate the conti-
nuous tolerance design algorithm. The first circult is the
band pass fitter of Fig.1. The circuit has the nominé??%ersus
frequency response shown in Fig.2. We desire a set of element
tolerances such that 100 percent of the manufactured circuits
have responses that are within + 1.0dB of the nominal response

curve. Theother data for this example are given in the table 1.

The second circuit is the three~transister integrated
circuit amplifier of Fig 3. The nominal gain versus frequency
response curve and the allowed tolerance is shown in Fig.da.
We desire a yield of 100 per cent and assume that all elements
have normal distribﬁtion. All the resistors are ascumed to be
interdependent, with a correlation coefficient of 0.9. The
transistor 'S are also assumed to be interdependent with a
correlation coefficient of 0.8. The correlation between
registors and transistors B'S is assumed to be negligible.

Other datasfor this example are given in Table 7.

Discrete Tolerance Desism Example

Tovillustrate the discrete tolerance design algorithm,
the bemnd-pass filter of Fig 1 is used. The solution of
example 1 is used as the approximate tolerance set tA,

Other data for this third example is given in Table 1.
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EXAMPLE 4
Table 1
kX Element Nominal Upper Lower Cost
value Tolerance Tolerance - Factor

Py Isimit!rg Limitﬁ% dk
1 L1 5.0mH 50 percent 2 percent 5
2 L2 5 .OmH so " 2 v 5
3 L3 1.25mH 50 2 " o
4 04 0.25uF 50 "' 2 " 2
5 Ce. 0.250F 50 ' 2 " 2
6 C; 8.0 uF 50 % 2 2

The gain of the circuit of Fig.1 is

v R
A =—=2 2

v, {z,‘+ RZ} +(x5-x8)<[ Ry (X, )R, (K - x6)} +3 [(x3+x 4Xg%o)

+(X8;X5 A ‘R1RQ"' (x3"X6 ) (X 4" X? )]}1

s

. . The Absolute gain of the circuit(Nominal response value)

Y21, R2
TS S——
1/BRR)(XX)R(XX)R(XX)* X X, X. )
LA A RSl T 10 s S A 3"6} (Xl g Xg=Xo )
‘- (Xe;xs) RyRp(X5-Xg) (X ”zﬂir‘
{ ,l
Where
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XS = 1/WL5 Xy = w Cq

For the response to frequency curve, we congidered
ten different frequenecy points and the corresponding nominal

response values are computed taking the nominal element values.

The maximum allowable upper and lower response values
are computed from the maximum tolerance limit of + 1.0DB as
under

Let YXNominal response value Ai‘in db = 20 1og10Ai = X say -i

L]

+« « Upper response value Ai in éb = 20 lcg16Ai = x+j -ii
and Lower " n Aif " =20 log1oAi' =x -1 ~iii
From I, i1 and iii, we get
C x/20 ., (x+1)/20 N e
A, =10 J A, =10 i and 1 Al' = 10(X-1)/20
i i i
A 1/20 v /20 ‘
—_— = 10 or A,=A.x10 = 1.122 Ai
A i1
i .
A, -1/20 v o =1/20 ‘
— = 10 or Ai 2 AixlO = 0.8912 Ai
Ai .

\ . I . .
Ai’ Ai and Ai are given in the table 2,
Considering the normal distribution, the standard deviation
. 1 e
Ay ~ A
y
6




Hence the maximum allowable response variance given by 6?2 is

also tabulated in table 2.

Table 2
Res- Frequency Nominal Upper Lower Max. Allowable
ponse Response Response Response Response o
No. H, Value Value = Value Variance 5?
i Ai Al AV

i i

B . ; : '

1 1003 0.002278 0,002556 0,002030 7,689x10"2

2 2071 0.03505 0.03933 0.03124  1,8167x107°

3 3134 0,5286  0.3687  0,2929  1,5989x10 %

4 3508 0.4838  0.5428  0.4312  3,467x107%

5 4530 0.5000  0.5610  0.4456  3.7x107%

6 5446 0.4938  0.5541  0.4401  3.61z1077

7 6255  0.3814  0.4219  0.3399  2.151x107%

8 6856  0.2388  0.2679  0.2128  8.444x107°

9 9465  0.04091 0,0459  0.03646  2.474x107°
10 19080  0.002757 0.003093 0.002457 1.122%10°C

Now, we know that the total cost is

6 o

C = ———— , (i)
k=1 Uk

We have to optimise this fumction under the following

constraints.

The actual responsevariance { The max. allowable response
for frequency i variable for frequency 1i.
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(1 =1,2,...,10) . (11)

Now we have tk = °§k'ﬂk; and for Normal Distribution,

By = 300/P s N CTED

From i1 and iii we get

2 .2
g 2 Pok % Ao -
k=1 2

(300)

Multiplying both sides by (3000)2, we get

2 .2 AL2
ki1(1031kpok) t, < (3000 o3)
OI‘ z Sik tl: < O-:ﬁ‘ (i ﬁ1,2’000’10) s+ (iV)
k=1 i
Where S

1% is the sonsitrvity constant = 10 pok S1x :}

Y is the regponse variance constant = 3000 GE
i

S,y and of are computed for different values of 1
iin
and k¥ and are given/the table 3.
For the fulfilment of constraints of equations(ii)
the equations(iv) must satisfy. So we will optimise the cost

function under the constraints (iv).

From i and iv the Lagrangian function so formed is
B(t, u) = 3 u (1 82
u) = + z -
™) =2 /b 2t O "k

/75 343
T WA VRS GF AT



o2
g

ok L(tk,u) ag (al/’c + ti ;O 0,82 ) - go u 0“2'
kel E k Ky 1 1"ik {1 iAi

Tor optimal values, after differenting, andsimplification

we get
. 1/3
= ( L)
by 0
21i1uisik

Putting the va v, and > and 53
g the values of s and also SU = Sip and Si4 = SiS

we get
T s 1/3 | 1 1/3
't1 =‘b2=—-:r6-—-— . t4=t5_= 5
b3 “1311 s u g2
421 1o I
s TV - =13
z uiSi3 10 S2
| i1 z %5%6
- — {=1 .

_ o
an/du, = f 82 12 - g°
/ i ?_ Sil-: tlc %,
k=1 i
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Table 3

L °Ei S S 515 Si Sis Sig

1 0.0692 1.42r107 1.42x107% 6.09x10™# 5.75x107% 5.752107* 1.5x107®
2 16.35 8.9x107° .0x107 0,27 0.198  0.198 o.§12
3 14.39 6.56 6.56 $4.3 EBfO 28f0 19f8
4 3120 11,68 11.68 1360 28.5 8.5 5.7
5 333 12.6 12,6 49.5 12,35  12.35  50.8
6 3249 253 25.3 544 10.9 10,9 116.0
71936 344 34 31,6 9.26  9.26  117.5
8 760 15.1 5.4 T.02 2.8 2.8 3.8
9 2.1 0.8 0.28 0.02 | ofb144 | o.¢144 | 6.393

6 2.65x10~° 9.08x10~2

6

10 0.101 8.4x10~" 8.4x10”% 2.72x107%  2.65210”

Case I: Continuous tolerance assignment

Subcase I: No lower tolerance limit of 2 per cent. _
The tolerance limits are computed by taking the different values
of constants in different iterations following the algorithm

discussed earlier. The different iterations are tabulated in
table 4.
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Case II ¢ Discrete Tolerance Assiegnment

In this algorithm, discrete values of tolerances
are agsigned to the different elements. The discrete optimal
set of tolerances lies in the close neighbourhood of the
continuous optimal set of tolerances. So first, we find this
discrete set of tolerances, which satisfies the constraints
and its cost becomes the upper limit of cost and the optimal
cost obtained in the continuous tolerance case becomes the
lower 1imit of cost for discrete tolerance calculations. .
Lower 1imit on the element tolerance value is of 2 per cent,
So, we form all the possible set of tolerances, which satisfy

the cost constraints.

In this case the lower limit on the cost is 6.685 units
and the upper limit on the cost is 7.33 corresponding to the

.
set {h‘hzs?}sss-?j

As there are two set of cost coefficienté, 80, wWe
form the subsets by permutiation of three el&ment tolerances.
The subsets so formed are tabulated in table 6-A with their
costs corresponding to different cost coefficients. The subsets
go formed, having one combination are grouped fogether as these
have the same cost, and are represented by an alphabet as shown

in table 6A.

The actual sets of discrete tolerances satisfying the

cost constralnts are formed by combinationsof two subsets.
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The cost of the set is the sum of the individual costs of
two subsets. The cost of the first subset in the combination
corresponds to a,= 5, and the cost of second subset in the
combination corresponds to ak=2. The sets so obtained are

tabulated in table 6-B, with their costs.

From this table, first we take the set having the
minimum cost and check it for system constraints. If it
satisfies the constraints, then this set is the optimal set
of tolerances, if not we neglect this set and try the next
set, now having the minimum cost. Proceeding in this way we
get the optimal set of discrete tolerances.

For this problem the optimal set is {%,4,3,2,2,{}
having optimal cost = 7.17.



Table 6 — &
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Groups of subsets of tolerances having

Cost of subsets

one combination Ky =5 Ly = 2
a o (29 2, 2) . . 4 T+5 3.0
b = (272,3)’(2!3’2)’(39212) 6;67 2.67
¢ = (2,2,4),(2,4,2),(4,2,2) 6.25 2.5
a = (2,2,5),(2,5,2),(5,2,2) 6,0 2.4
(2 3 4) (2 4 3) (3 2 4) L o
f = 5,42 2.16
(334»2)a(4:2t-)):(433:2)
(2,%,5),(2,5,3),(3,2,5) C
g = 5.15 2,06
(3,5,2),(5,2,3),(5,3,2) o o
h = (2,4,4),(4,2,4),(4,4,2) 5.00 2.00
(2,4,5)2,5,4),(4,2,5) L o
1 4,75 1.9
(4,5,2),(5,2,4),(5,4,2) . .
J = (2,5,5),(5,2,5),(5,5,2) 4,5 1.8
k = (3,3,3) o 5.0 2,0
1 = (3,3,4),(3,4,3), (4 3y 3) 4.6 1.84
m = (3,3,5),(3,5,3),(5,3,3) 4,35 1.74
n = (3,4,4),(4,3,4),(4,4,3) 4,15 1.66
(3,4,5),(3,5,4),(4,3,5), o -
0 = 3,90 1.56
(4,543),(5,3,4),(5,4,3) . g
p = (3,5,5),(5,3,5),(5,5,3) 3.65 1,46
q = (4,4,4) L 3,75 1.5
r = (4,4,5),(4,5,4), (5 4, 4) 3.5 1.4
s = (4’5,5)0(5’4!5)’(5’5’4) 3025 103
t = (5,5,5) 3.0 1.2
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Table 6-B

Combination Cost Combination Cost Combination Cost

of subsets of subsets of subsets
d,s 7.3 g 6.81 k,e 7.33
a,t | 7.2 g0 6.70 K, £ 7.16
¢,a 7.33 h,e 7.33 X,a 7,06
e,r 7.23 h,f 7.16 k,h 740
e,8 ?.13.. h,g 7,06 X,1i 6.9
et 7.03 h,h 7.0 X, 6.8
£,1 7.26 h,i 6.9 k,k 7.0
f,m 7.16 h,j 6.8 X,1 6.84
f,n 7.08 h,k 7.0 k,m .74
£,0 6.98 h,1 6.84 1,b ‘7,“27
f,p 6.88 h,m 6.74 1,c 7.1
£,q 6,92 1,c 7.25 1,d 7.0
f,r 6,82 i,d T.15 l,e 6.93
£,8 6.72 1,0 7.08 1,f 6,76
gL 7.31 i,f 6.91 m,b - 7.02
818 7T.21 i,g 6.81 m,cC ‘6,._85
gsh T.15 i,h 6.75 m,d 6,75
81 7.05 i,k 6.75 m,e 1 6.68
g9 6.95 Jeb 7.17 n,a T.15
g,k 7.15 Jsc 7.0 n,b ,.6,82
g,1 6,994 J,d 6.9 0,2 }.6,9'
g,m 6.89 Jse 6.83 q.a 6.75
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EXAMPLE 2 /

Table 7

K Ele- Nominal Upper Lower Cost FElement Corre  Slope of
ment Value Toler. Toler. factor depend Ilation 1linear

Py Limit 1limitd ty on coeffi- Relationship
TU TL clent
k X )
1 R1 10.6K 50perce£%£%§§§ 1.0 32 0.9 1.0
2 R, 6X 50 " 2 1.0 - - -
3 Ry 1.9K 50 " 2 1.0 R, 0.9 1.0
4 R, 29000 50 2 1,0 R, 0.9 1.0
5 Ry 2904 50 " 2 1.0 R, 0.9 1.0
6 R, 2.5k 50 " 2 1.0 R, 0.9 1.0
7 ¢ 1.0pf 50 " 2 1.0 - - -
8 By 120 60 " 10 1.0 By 0.8 1.0
9 By 120 60 ' 10 1.0 - - -
10 Byg 120 60 " 10 1.0 By 0.8 1.0

For the response to prequency curve, we considered
eighteen different frequency points and the corresponding nominal

response values are computed taking the nominal element values.

The maximum allowable upper and lower response values
are computed from the max. tolerance 1imit of & 0.5 db for a
frequency range of 1x103 to 2x107 HZ and between 2x107 to 109.H2
the tolerance increases logrithmically from + 0.5db to + 1.0db.

From the upper and lower response limits the maximum
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allowable response variance is computed. Table 7 shows the
element values their upper and lower tolerance limits cost
factor and correlation coefficient and Table 8 shows the
nominal response values and maximum allowable response variances

at different frequency peoints.
o

Max. Allowable

Resp- Frequency Nominal Upper Lower

gxg?e o %gfggnse &g}sﬁgnse $Z§£gn8e Respo;sg varichte
1 Ay Al ] 1

1 1x10° 72,45 76.74 68,39 1,937

2 2x10° 72.57 76,91 68,55 1,941

3 4x10° 72.92 77.21  68.87 1,960

4 ex10° 73.47 77.80 69,34 1,988

5  ax10° 74,21 78,61 170,06 2,033

&  1.0x107 75.08 79,52 70.88 2,072

7 1.2x100 76.01 80.54  T1.78 2,133

8 1.4x107 76.88 81.47  72.61 2.178

9 1.6x107 77 .53 82.13 173,20 2,244

10 1.8x107 77.72 82,32 73,37 2,233
11 2.0x107 77.21 81,75 72,86 2,192 -
12 7.1568x107 8,172 8,731 7.655  3,222¢1072
13 2.263x10°8 0.3521 0.3791  0.3271  17.755x107°
14 #3.811x10%  0.08093  0.08784 0.07452  4.944x10~°
15 5.358x10°  0.03183  0.03486 0.02909 9.267x10~"
16 6.905x10%  0.01838 0.02029 0.01666  3.667x107!
17 8.435x10°  0.01361 0.01515 0.01223  2.378%107"
18 1.0x10° 0.01300  0.01266 0.01007 1.86Tx10~'
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For this problem the cost function is

10 . o
C= 2 a .
k=1 k/ k (XX (1)
Aad the constraints are

1g s2 o2 10 10 . P ‘ ¢ &
851 ok + £ I S, .8
k=1 ket joket IK013"°1x %pg pe 2 %4

2

| (1 =1,2,... ;.18) cee (2)
As in the previous example substituting tk.pok/Soo for T

in (2) we get

10 2 p2 € 10 10 Pty

3 8 kK, e s P 0i’”d Pox'x A2
1k + £ ¢ at,s .8 < o3
k=1 300 k=1 j=ke1 X 13 300 K 300 1
Multiplying both sides by (300)2, we get
10 PR 10 10 &
2.2 ' 2
z (s p.)°tc+ £ ¢ (2P D Poi) by 3¢ (300 1)
16Pok” kT 374 5ixeq 3%®13P03 S1x Pok
10 .2, 10 10 =
) 452 YT 1 2
R E S +L B ST, % < o3
ket KK glq gigey 3% t?.v Ay e (3)

(i = 1,2,'oot,18)

tthere

Si is the sensitivity constant at {th frequency =’Sikpok

1 , . rreoP
Sjk is the sensitivity constant at ith frequency~2.jksijsikpojpok

ond 0;~1s the responsc variance ' " = 300 0}
i
i2 o4 2
S » Sy and oz7 are computed for different values of 1 and k

and are glven in Table 9.
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Prom (2) and (3), we get the Lagrangian function as

10 o 10 42 , 10 10 - o,
1 u)= £ +$u(2 + % T 8%, t.t )= oo
Cs k=1 Tk it ket B KN Z S 06 9T Ty p

For optimal values, by differentiating and after some
simplifications we gets ’

- | - 1/3
. (lk ‘ ..

g +
ie —_

2S +).”.Si :

i=1 ii k j=13k yk:}

3h 10 2 -
> 1 2
ond =——— = ¥ 8i t + I g si
e e v 2 ik by Y -3
ou, ket kg 1

Initially in the first iteration, for calculating tk
we assume some ratios of tﬁ/tk’ then these values of ~tk are
reused for calculating the more accurate valuesg of tk. After
one iteration for calculating the values of tk’ use the values
of tolerances of preceeding iteration for the ratio ofﬂtj/tk.
When we reaches the optimal value to have the}mpre accurate
ansvers, reuse, values thus obtained for the »atio of tj/tk
for the same iteration. Different iterations are tabulated

in table 10.
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9 The values given in the right hand top corners are
powers of ten by which the corresponding values
to be muiltiplied.

the
are

si?

12
5%

2
S

10
11
12
13
14
15
16

17
18

1.1
1.13
1.16

1.18

1.34
2.48 .
1.31 .
2.02 .
6.76
3.71
-7
3.38 3.

1.25

1.27

s
3.122
3f13
3.16
3.21
3.28
3f35
3.40
3.52
3f58

3.59

- 3,55

3.97.

2

5

4.15
2
4.16
2
4.2
-2
4-027'
2
4.35
2
4.46
2
4.57
4.67
- N 2
4075
4.7

5 -5
7. 92 1.41

2 2
4.1 5.25
2 2
4.12 5.26
2 2
4.16 5.3
4. 22 5. 35

2
4. 3 5 42

2
4 41 5. 50

2 2
4 52 5 58-

2 2
4 62 5 64

4 7 5 65

2 2
4 72 )-59

2
4.66.5. 43
0
5.22 2. o5

-3 -4
9.7.79.09
s
5:12 1.78
| -6

-5 -7
2.64 2.85
"5 g
1.45 1.05
=5 -8
1.32 6.82

s}z.




Table 9 (contd).

1 83 S 534 535 536 S8 S510 ﬁf

1 6.21°3.38 3.9  3.88 439 9.92 8.05 174300

2 6.2 3.3 3.99 5.80 4.4 9.95 8.10 174700

3 6,24 * 5.3 3,95  3.95  4.43 1?068 8.15 176400

4 6.38 ° 3.48 4,01 3%99 4f4é 1452 efzb 1?8§b0

5 6.51 3.55 4f6§ 4.07 4,57 1,64 8.50 183000

6 6.6 3.63 419 4416 4.65  1.065 8.65 186500
7 683 372 429 4.2 474 1.9 8.90 192000

8 6.9 381 430 43T 482 112 910 196000

9 7.11°3.87 447 444 48T 1.134 9.23 202000
B
11 7f05.-O 5,88 4,83 44 475 142 5.16 197280

12 7.9 s 296 4,95 371 1.26 1.025 2900
13 174774 7.9 9.21 é,16 2.81 2.3 1.91 6.9
14 7774f6 #,22 487 4.84 9.62 1.24 1.0t 0.445
15 1.2 653 1.5 Tua0 1.6 1915 1.56  0.0834
16 3f99f7 2.8 2.51 2.5  2.59 6.4 5.8 0.053
17 2,19'.'7 149 138 3 1.6 3.5 2.5 0.0214
18 2.0 1.00  1.26 1.5  8.91 3.2 2.60 0.0168

N R L
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Table 10
Itera- I 1T IIT IV v Vi ViI
tion : :
u, 0.0 0.0 0.0 0.0 0.0 0.0 0.0
u, 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w00 00 0.0 0.0 00 00 0.0
w, 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ug 0.0 0.0 0.0 0.0 0.0 0.0 6.0
ug 0.0 0.0 0.0 0.0 0.0 0.0 0.0
g 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ug 0.0 0.0 00 00 00 00 0.0
ug 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ug . 0.0 0.0 . 0.0 0.0 00 0.0 0.0
ugy 1.0x107> 5.0x107 6 2.5x107% 2.0x107% 1.1x107® 1.05x107% 1.04x107°
u, 040 0.0 0.0 2.5x1o,§ 60x10™° 66.5x107° 66.5x10~°
wy 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wyy 0.0 0.0 0.0 0.0 0,0 0,0 0.0
wg 0.0 0.0 0.0 0.0 0.0 0.0 0.0
uyq 0.0 0.0 0.0 0.0 0.0 0.0 0.0
“7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y18 0.0 0,0 0.0 0.0 0.0 0.0 0.0
t, 14.8 16,65  23.5 25,1 . 2 27.05  27.1
t, 7.6 9,58 11,1 15,3  16.6 16,58  16.6
ty 4,98 6,28 7.9 8.27 8,97  8.95 8.96
t 4,56 5.75  7.24 7.55 8.7  8.15  8.16
t 4.58 5,78  7.28 7.57  8.21 8,17  8.20
¥ 4.36 55 6,92 7.35 8,38 8,41 8.44
t 4.53 5,72 7.2 6.3 5.62 5.47 5.475

contd A4,



Table 10(Contd.)

Itera~- I II IIY Iv \' Vi VII
ﬁtiOn

tg 36.1 45.5 57.3 60,0 60,0 60,0 60,0

g 32,1 40.5 51,0 45,5 50,3 50,2 50,2

to 39.9 50.3 60.0 60.0 60.0  60.0  60.0

c 1.406 1.115 0.8867 0.829  0.8252 0.8093 0.80723
dh/du, -120090 -88350  -37800 -28400 =9160 f114so -11180
dh/du, ~120300 -88550  -37700 -28350 -9050 =-11310  -11020
ob/du, -121800 -89900  -38900 -30900 -8750 ~10990  -10750
8h/0u, -123500 -91100  -39400 -31500 -8670 - -10530  -10330
0h/ou, -126400 -93300  -40400 -30500 -8580 ~10420  -10130
dn/du, -128300 -94200  -40000 -30400 -8220 - 8530 - 8340
ah/au7 -132000 -96950  ~41000 -30850 -7990 - 8170 - 8000
8h/dug -134200 -98000  -40200 -29900 -6210 - 6530 - 6240
ah/au.9 j-138800 -.-10170_0 -743_000 -31750 56980 -7-7560 - 7335
8»/0u,,;~136965 - 99404  -39600 29640 -2872 - 3615 = 3450
ah/6u+1-132140 - 90580 ~-33180 -24800 + 713 - 165  + 2.0
M/1p1591.6 - 825 4+ 398+ 86T +62.4 - 1.89  + 1.2
Oh/0u 5~ 4.23 - 2,62  + 0.05 ~0,012 -0,02. =~0,025  =0,02
dh/du, - 0.291 - 0.201 - 0.0555 -0.072 -0.091 =-0.103  -0.0908
oh/0u, ;~0,0587 -0.04425 - 0.02115 - 0.0265 -040309 -0,0331  -0,0301
3h/du, -0.02343 0,01783 - 0,00885 - 0,0115 -0,0143 -0,0173  -0,0154
9h/0u,,-0,01473-0.01082 - 0.00457 - 0.00716-0,0109 ~0,0135  -0,0116
dh/du,5-0.01245-0.00991 -0.00583 =-0.00673 —-0.00735-0.00805 -0.0079
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CONCLUSIOR

v a

The present study deals with the tolerance assignment
problem in the electronic circuits having discrete or continuous
componentd tolerances, In other algorithms where the tolerance
to different elements are assignmented such that the circuit
response wemains with in the specified limits, there is a
large possibility of getting tight tolerances, which 1hturn
gives higher circuit cost, In this algorithm we directly
optimise the cost w,r,t, the element tolerance suﬁject to
the circuit response constraints, therefore there is no

possibility of tight tolerances,

In the presented method, the problem is divided in
number of subproblems each having a single variable. This
reduces the comyutatioﬁai time considerably. Beside this
due to the decomponent df problemn, fhe computer memory
requirement is very 1ess.-By solving subproblems simulta;
neously on a computer or computers operating in parallel,

the computation time can further be reduced.



1.

2.

3.

4.

5.

6.

RETFERENCES

K.Geher,'Theory of Network Tolerances', McGraw-Hill

Book Company, N.Y., 1971. |

Donald A. Calahan,'Computer~Aided Network Design',
McGRaw-Hi1ll book company, N.Y. 1967.

Leon S. Lasdon,'Duality and decomposition in mathematical
programuing' ,IELE Tx_'ans. on System.Science' and Cybernetics,
July 1968, Vol., SSB-4, No.2, pp.86-99,

B.J. Karafin,'Optimum assignment of component tolerances
for electrical networl;s,' Bell syst. Tech, J., Apr.1971,
Vol.50, No.4, pp.1225-1242,

AKX, Seth and P,H, Roe,'Selection of Component toleranées
for optimum circuits reproducivility,' in Proc. 1971 IEEE
Int. Symp. Electrical Network Theory(London, England,
Sept. 1971), pp.105-106.

J.F. Pinel and K.A. Roberts, 'Tolerance assignement in
linear networks using monlinear programming,' in Proc.
1972 1EEE Int. Symp. Circuit Theory(Universal City, Calif.
Apr. 1972),pp.179-183).

AR, Thorbjornsen and S.W. Director,'Computer aided
torerance assignment for 11ne.ar circuit with correlated
elements', IEEE Trans. on Circuit Theoxry, Sept, 1973,
Vol,CT-20, No.5, pp.518-524.

D.G., Mark and L,.H. Stemper,’Variabili’cy analysis',
Electro-Technol.,N.Y. July 1965, pp.37-48.



9.

10.

11.

12,

13.

14.

47

R, Fletcher and M.J.D. Powell,'A rapidly convergent
descent method for minimization', Computer J., Vol.6,
July 1963,p.163.

L.S. Lardon and A.D. Waren,'Mathematical programming
for optimal design', Electro-Technol, Nov. 1967,pp.53=-T1.
M.G. Rezai-Falehr and G.C. Temes,'Statistical Large
tolerance anzlysis of nonlinear cirecuits in the time
domain', IEEE Trans, on Circuits and Systems, Jan.1975,
Vol,CAS-22, No.I,pp.15-21.

J.F, Pinel,'Toleranqe assignement_onlworst case basis
treated as NLP,', T-CT 72 Sep.,ppd75-479.

R.N. Gadenz,'A Method for the Computation of Large
Tolerance Effects', IEEE Trans. on Circuit theory,
Nov.1973,pp.704.

J.\Vi. Bandler and P,C. Liu,'Automated network design with
optimal tolerances', IEEE Trans. on C.S,, Vol. CAS-21,
No.2, March 1974, pp.219-222.



	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Conclusion
	References

