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ABSTRACT 

In the mass production of circuits where 100 per cent 

yield is not required, but an estimate of yield based on 

individual component behaviour assists in production decisions 

the tolerance analysis becores the final phase of circuit 

design. 

Practically it is very difficult to have the precise 

valued elements. Mora the precision, higher is the cost, so 

to reduce the overall circuit cost, the slackness in element 

values is allowed. But higher the slackness, more is the 

probability of circuit response to violate the specified limits 

i. e . , the circuit fails. So to avoid. circuit failure, tolerance 

analysis is required. Ascot and the circuit response are the 

functions of tolerance, we optimise the cost of the circuit 

subject to circuit respond constraints. 

In this study two itrative algorithms are presented 

for the tolerance assignment in a given frequency domain. The 

first algorithm is for continuous tolerance case and the 

second is for the discrete tolerance case. The presented algo-

rithms can be used for both types of circuits whose element 

values are either correlated or uncorrelated and has the 

feature of allowing the designer to specify a circuit yield 

of less than. 100 per cent and can handle any type of probability 

distribution. Two problems have been considered. The first 
problem is of a band pass filter circuit to illustrate the 



case of uncorrelated parameters for both continuous and 

discrete element tolerance assignment with normal distri-

bution. And the second problem is of a three transistor 

low pass ampl3.fier used to illustrate the case of integrated 

circuits, i.e., with correlated parameters, 
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INTRODUCTI ON 

The final step in most circuit design is a tolerance 

analysis, i.e., a study of the effect of parameter variation 

on circuit behaviour. There are two distinctive applications 

where such information is vital: (1) in the space and Military 

electronics field, where it is surely worth, the effort to 

eliminate any possibility of failure, and (2) in the mass 

production of circuits, where 100 per cent yield, is not 

required, but an estimate of yield based on individual 

component behaviour assists in production.  decisions. Also 

when, the system response needed is to be within some 

tolerable limits, it becomes possible for the individual 

elements to have its values to lie within some tolerable 

limits. For mass production itis very uneconomical to 

produce elements with precise values, the cost of a compo--

nent decreases t'rith the increase of tolerance limits. So 

for the economical mass .  production of components, tolerance 

analysis is very important. 

Totally unpredictable failures can be prepared 

for only by redundancy in the circuit design. Therefore, 

our concern in this thesis~ is with failures that are 

predictable in some sense. Such failures tend to arise in 

one of the following ways. 

(i) Catastropic failure, which is abrupt and results 

1 
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from large changes in certain components due to environ-

mental stress such as radiation, shock, or temperature 

extreme; if the change in component values is known, these 

stresses can be simulated by analyzing the network with 

new element values; 

(2) Drift failures, which result from small gradual 

changes in component values; the component changes typi-

cally can be predicted to lie within certain tolerance 

limits; such tolerance information is then used in design 

to avoid failure; 

(3) Random failure, occurring in m ufacturing process 

due to a circuit containing an excess of marginal components; 

associated with each component is a nominal value and a 

probability distribution giving the likelihood the value 

lies within a range near the nominal; this statistical 

information can also be used in the design phase. 

When electrical circuits are designed for mass 

production, it is essential that a high percentage of the 

manufactured circuits operate within prescribed specifi-

cations,i.e., a high yield of manufactured circuits must 

be obtained. In order to meet the yield objective and also 

produce circuits at as low a cost as possible, it is nece-

ssary to optimize both the circuit response tolerances and 

the circuit cost. 

r) 
4d 

Generally there are two types of tolerance assignment 
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problems. The first type is where the circuit elements 

can only be assigned a finite number of discrete tolerance 

values. Such a situation is encountered in the design of 

circuits using lumped components. The second type of problem 

is where the circuit element tolerance may be assigned any 

value, i.e., it is a continuous variable. This situation 

arises in the design of integrated circuits. 

Various algorithms have been developed for the 

assignment of element tolerances. Monte carlo tolerance 

analysis has proven to be a useful tool in evaluating the 

effects of component tolerances and environmental variations 

on electrical circuit performance. The method involves 

constructing' samples of the circuit inside the computer 

useing element values, that obey the manufacturing stati-

sties, analysing these . samples and forming empirical distri-

butions of performance. One common outcome of the process is 

the prediction of yield. Monte carlo analysis hence forth 

referred to as TAP, is an open loop structure. At the con-

elusion of the tap run one observes yield and faced with 

one of two: situations : 

(1) the yield is too low. With this result the designer 

knows be must change his tolerances. Unfortunately TAP gives 

him little information as to which tolerances to change and 

by how much. 

(2) Yield is adequate. Here the designer may be satisfied 
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by the design but he obtains little help in determining 

weather a cheaper set of tolerances might not give equally 

satisfactory yield. An algorithm for the discrete case has 

been proposed by Karafint4j. This technique forms tables of 

pairs of discrete tolerance values for which circuit perfor-

mance remains acceptable. An efficient tree search procedure 

is then employed to find the set of tolerance values which 

satisfied the performance criterion and yields the least 

cost. A worst case and a Monte Carlo analysis are used to 

verify, this choice of tolerances. If either of these tests 

fails, the next least costly set of tolerances is tried. This 

method assumes the element values are uncorrelated and that 

a 100 percent yield is desired. Seth and Roer5] describes 

an algorithm for continuous tolerance case which minimizes 

circuit cost. The algorithm makes use of higher order moment 

equations to predict response variations from element tolerances 

and a final verification of the resulting design useing a 

Monte-Carlo analysis. A similar approach has also been presen-

ted by Pinel and Roberts1C~I . In particular, the tolerance 

assignment problem is recast into a nonlinear programming 

problem which uses the Fleteher-Powell optimization algorithm 

to minimize circuit cost. The algorithm yields a worst case 

design as a byproduct., Again, this algorithm assumes a desired 

yield of 100 percent. A.R. Therrjornsen,and S.W. Director[71 

in their paper assigned two new iterative algorithms for 

tolerance assignment in the frequency domain. The first 
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algorithm is for the continuous tolerance case and has 

the feature of allowing the designer to specify a circuit 

yield of less than 100 percent. Por circuits whose element 

values are uncorrelated, the algorithm can handle any type 

of probability distribution. Normal distributions are assumed 

for circuits having correlated elements. A Monte Carlo 

analysis 181,  which take into account element value correla-

tion,is incorporated into the main iteration loop. The 

frequent use of Monte Carlo analysis is made less,economi-

cally objectionable by useing a variable sample size, the 

sample size remains small until the algorithm nears, convergence, 

which time the sample size is increased to obtain the needed 

accuracy. Use of a Monte Carlo analysis is justified by the 

fact that it is the most dependable of the tolerance analysis 

methods. The second tolerance assignment algorithm is for the 

discrete tolerance case in which the circuit elements have 

uncorrelated values. 

Here in this present study, two more iterative algorithms 

are presented for the tolerance assignment in a . given frequency 

domain. The first algorithm is for continuous tolerance case 

and the second is for the discrete tolerance case, for both 

type of circuits whose element values are either correlated 

or uncorrelated and has the feature of allowing the designer 

to specify a circuit yield of less than 100 per cent and can 

handle any type of probability distribution. 
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Introduction to 

(i) Tolerance Analysio from the Sensitivity aitroach 

Let a network variable f(i.e. V or I) be considered 

a function of parameters p which have nominal values 

f = f(P1,P2, • • •, Pn) 

f(p) 
	

(1) 

Por small changes A Pi, the change in f is 

n 
Af _ E lupi ~---- 	fl 	 (2 ) 

i=1 	raps p1= pi 

Such •derivative information is typically used in one of 

three ways: 

1. If the 1pi are kmown precisely, df may be estimated 
directly from equation (2) 

2. If the Api are assumed to lie within the tolerance 
limits Ei, i.e., 

ei < apt i Ci 

Then the largest possible variation in f may be estimated 

m 
n 	of 

max 3~1 i cpi 

Where the sign is chosen the same as that of the derivative; 
if df 	represents acceptable behaviour, the circuit is said 

to be a worst-case design. 

3. If Api are described by probability distributions, then 
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a distribution for &f may be estimated by the method of moments. 

(2) Independence and correlation 

i, Two random variables X and Y and said to independent iff 

a<X<b and <Y< d3=Prfa<X<b,9Pr c<Y< d - ~ 

ii. The correlation coefficient associated with two random 
variables X and Y is defined (for unclassified data) 

n  
E (Xi- X)( L- Y) 

P ~i 1̀ 
•XY 

where X, Y,0 and ° Y are the means and standard deviations 

associated with X and Y respectively. 

iii. Independent variables are uncorrelated, but uncorrelated 

variables need not be independent. 

iv. If the variance of h(x) is a-2 , the variance of 

h(ax) is U-'Z. Miere h(x) is the probability density distri-
bution function of random variable x. This property shows the 

effect of scaling. 

v. If random variables X1 , X2 , ...,Xn with variances  
2, v 2, ... , c2 are described by the correlation matrix 

R12
••• In  

R 	p21 1 

Pmt Fn2 . . • 
I 	j 



LJ 

Then the variance crx̀  of the random variable 

n 
E X 

i=1. 

is given by 

T 
Where a- = 1o1 , ' ... ni 

If R = I so that the variables are uncorrelated, this equation 

becomes 

2 	fl 	2 

(3) Method of Moments 

Returning to the equation 

n 	ca f A f = E 'pi  _._... 
1=1 	Bpi 

(4) 

Suppose we are given the variances ~2 of the distri- 
butions associated with ,dpi and are interested in the variance d'f2 

associated with the. variable L\f. If the partial derivatives are 

real numbers, they may be considered as scaling factors for the 

distributions of Api. According to the statement (3) we may 

define the scaling factor ai = 8f/ap1, so that tp1 aipi and 
the standard deviation cry' of lip is 
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But now from equation (4), Lf is the sum of random variables lupi. 

Therefore 

of 	~f 	cif 
o- 2 - ~--r-- 	... --- cs- 	R 	---- oM- f 	apt 	a pn xx .  

Ii 	I 

L pn 

S19 , S2t3~, ... Sn n R S101 
X20, 

S,no- 

2 
S1' '12.1 2' .... P1nS1Sn ~ 

a., 	p21 2S'1' S2' .... p2n"25n 	a-T 

2 nl3n51,?n2SnS29... Sn 

Where Si 	- , the system sensitivity w.r.t pi. 
api 

After multiplying the matrices we get 

n 2 2 	n n 
o ,2 = E Siic + 2 E 	E 	f i~ SiS Jcrj- a~ 

i~'I 	i=fi j=i+1 
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If all the variables are uncorrelated 

we get 
2 
	u 22  

i 

Thus, the variance of the response may be estimated from the 

variance of element variations if the sensitivities are given. 
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STATE I- 'T OF PROBLEM 

(A) Statement of the problem: 

Assume we are given a circuit _ard.a_ set of n nominal 

element values, denoted by p°k, k = 1, 2, ... ,n. The magnitude 

of the response of this network at a set of m discrete frequency 

points within some frequency range of interest is denoted by 

Ao  ; i ==1, 2, ... ,m. The set of responses IA.01i =i   
is called 'nominal circuit response'. We are interested in 

determining the set of element tolerances tklk=1,2,...,n 

(in percent). Such that 1) A yield specification is.met,i.e. 

a given percentage of circuits have respons i e A ii=1,2,...,ml 

which deviates no move than some specified amount from the 

nominal response 	 ti = 1,2,...,m,  for all possible values of 
the circuit elements 

pk= (1± fit, /1aa)pko: IO < C 	1, k 	1,2, ...,n ; and 

2) A minimum cost of the circuit is achieved. 

Before cording to the actual problem we introduce some 

additional notation. Let Aj and  ' denotes the specified upper 

and lower limits on the magnitude of the circuit response, 

respectively, at the ith frequency points. Observe that 

Al 

 

<A< < i 
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(B) The Performance function: 

In this method we minimize the circuit cost w.r. t., 
the element standard deviation, such that the magnitude of 

the circuit response remains within the specified limit,i.e., 

we fix some constrains which keeps into account the circuit 

response limits as well as the yield. The cost of the circuit 
element is roughly inversely proportional to its tolerance, 

total circuit cost, the cost function, is represented by 

fl 
(t) = E 	ak 	 ... 	(1) k=1 'k 

Where ak is the cost factor of the kth element 

It is important to recognize the relation between 
tolerance and standard deviation. If o7pk denotes the standard 

deviation associated with the kth element, then the element 

tolerance and the standard deviation are related by 

tk = '3k  plc 

Where pk is a constant which depends upon the poebability 

distribution associated with the element value. For a normal 

distributtion, essentially all possible values lie with in ' 

3 

 

°k points. The most extreme values the kth element can 

assume are 

t 
Pk ± 3o k = X(1 + -k ) 

100 
So that for this case 

t~ = 300 crpk/pk 
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Now we turn to the yield requirement. Let dAi denote the 

standard deviation of the magnitude of the circuit response 
n 

at the ith frequency and cri denote the desired (i.e., maximum 

allowable) value of A . The desired cs' . Is calculated from 
i 

the specified upper and lower limits of response at the 

frequency and taking yield into consideration. For a normal 

distribution a curve is plotted for yield against the ratio 

of half the total response tolerance to the desired standard 

deviation of the response. From the curve for a given. yield, 

corresponding ratio() is traced out, which intern gives the 

desired Ai 

Ti 
. . . 

	 (3) 
Y 

Where T i is half the total response tolerance and is 

,A 	A 

Ti = 2 (A. - Ai) 

The response standard deviations oji may be approximated 

from knowledge of the element value standard deviations 
with a truncated farm of the propagation of the variance 

equation(4) 

(5) 

where o-- =' p2 .. , (c~" 	cs" , 	. cs" T p 	p ~ 	 Pn) and [xl] is a symmetric 

. . . 

	

(4) 
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matrix. The element of P
I 

are 

xjk gjk ~  ...  
(6) 

Where P Jk is the correlation coefficient between the ith . 

and kth elements, and Si and Si are the sensitivities w.r.t. 

the jth and kth element at ith frequency 

Where ~~ = 	. 1a 
a pk pk 

The partial derivatives are easily and economically evaluated 

using the modified adjoint circuit techn queI2l 

For the required yield specification to be met, in all 

cases 

Ai - Ai 

aAi and fI(t), useing eq.(2) are function of pk. 

The total performance function is 

Mi f1(t) = f( p) = E ak E c  
k=1 tk 

Subject to 

Ai < 	Ai I i = 1,2, ..., m. 
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Minimization of the Performance Function 

A good first estimate of the best element standard 

deviations results from minimization of the cost :function 

subject to the given constraints. The solution of the problems 

involving large systems is hampered by size; the problem is 

simply too big. In such cases, a common approach is to decompose 
the original problem into subproblems, and solve these. For the 

interaction between the subproblems, it proposes multilevel 

approach. For the constrained optimization, Lagran ;ian function 
is formed, as for the problem 

minimize f(ap) 

Subject to 	c 	 ) < °Ai 	i = 1,2, ... in 

Given this problem, we define a Lagrangian function 

I►(p qu) = f( P) + u( 2( )- r !2 ) 

where dr 2( rp 	(ç,~ (c3`P) , d ~ ~ .. ,  2 	 m 

11 	(u1, u2, ... 

and a second Lagrangian problem 

minimize b (crp , u) 

with u 'O, related to the primal by some theorms. 

For any set of values of u we minimize the Lagrangian 

function and we get the optimal values of crp as P* Using these 
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values we form a dual function 

h(u) - L( p* , u) - nun L(op , u) 
p 

We  maximize the dual function w.r.t, u, and the process 

repeats until a saddle point is achieved where the Lagrax tan 

and the dual are equal i . 0, 

min max L(cp ,u) _ 	max. min L(cr'p 	, 	u) 
Tp u>C u>O p 

For h(u) differentiable, a steepest ascent algorithm, 
modified to handle the constrains u, > 0, may be used to 
maximize h(u). This leads to a solution procedure-- 

1 . 	Choose initial values uo>o,Step i,i=O,1, 2, ..proceeds as folk 
Solve the L a!rangian problem with u = ui, obtaining a 
solution p (ui) . lithe seperable case,-this may be 
accomplished by solving the subproblemo. 

3. Form the dual function h(u) =.L(crp(ui),ui) and its 
gradient v h(u) = o f ( -(ui ))- A. 2 

4. 	Define a direction of search Si by 
ah 

ifu~>0 
8~i ui 

Si 
~3h 

max C ' ukz 

Choose a new vector ui+l by 

ui+1 = Ui + ciSi 

k = 1,2, ..•,m. 

IUi 
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The step size a must be selected so that 

h(ui+1 ) > h(u) 

If h is differentiable there exists a1>0 satisfying 

the above unless ui  maximize$ h. A common procedure is 

to choose ai  to maximize 

g(a) = h(ui  + aSi) 

subject to the constraints a 0 and ui+1> 0  
5. 	Return to step 2, stopping when 

If g(a) is to be maximized,_ it must be evaluated a 

number of times, requiring a solution of the la,;rangion prob-

lem each time. Suggested procedure for performing this one-

dimensional search are found in Fletcher and Powell [91  and 

Lasden and Waren[O J . Although theoretical convergence- of this 

algorithm is eve-dently an open question at this time, 'the 

procedure is widely used and will generally converge to a 

global solution for convex problems. 

This gradient procedure may be viewed as a coordination 

algorithm for a second level coordinator, whose task is to solve 

the dual problem given values of h(u) and vh(u). The first level 

units solve the subproblems and provide the values of h and V h. 



The Discrete Tolerance Desi A torithm 

A second algorithm has been developed to assign 

tolerance values for the case, when the tolerances are 

discrete variables. The continuous tolerance design algo-

rithm is used first to find t an approximate solution for 

the element tolerances. The continuous tolerance case is the 

idle case as the tolerance values may be in fractions to 

strictly satisfy the given set of constraints. So the optimum 

continuous set given the least possible cost for the given 

set of cost function and constraints so the optimum descrete 

tolerance set will have the cost, the cost obtained by 

continuous tolerance set. 

Also it is assumed that this locally optimum set of 

tolerances(t) is close to the desired locally optimum discrete 

tolerance set. So we round off or truncate the optimum continuous 

tolerance set in such a way so that it satisfies the constraints. 

For this set tA, cost is found out.' INow as the calculation of 

cost for a given set of tolerances is easier than the checking 

up of the constraints, We form a table of all. the possible sets 

of tolerances which we get with combination of tolerances having 

values in neibourhood of the values the set of tolerances to  and 
A 

having cost between the costs, the sets t , to has . From this 

table, then we, first take the set which has the least cost and 

check it for the yield specifications, if it satisfies the yield 

FI 
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specifications, then neglect all other sets, because they 

are more costly, and we will try to form if possible some 

other sets with lesser cost. If this set violates the cons-

traints, then we check the next least costly set, this process 

goes on until we get a least costly set which satisfies the 

yield requirements. This set oc tolerances gives the optimal 

discrete tolerance set. 
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Design Examples: Continuous Case 

Two examples are presented to illustrate the conti-

nuous tolerance design algorithm. The first circuit is the 

band pass fitter of Fig.1. The circuit has the nominal/versus 

frequency response shown in Fig.2. We desire a set of element 

tolerances such that 100 percent of the manufactured circuits 

have responses that are within + 1.0dB of the nominal response 

curve. Theother data for this example are given in the table 1. 

The second circuit is the three-transister integrated 

circuit amplifier of Fig 3. The nominal gain versus frequency 

response curve and the allowed tolerance is shorn in Pi,g.4a. 

We desire a yield of 100.  per cent and assume that all elements 

have normal distribution. All the resistors are assumed to be 

interdependent, with a correlation coefficient of 0.9. The 

transistor fl  'S are also assumed to be interdependent with a 

correlation coefficient of 0.8. The correlation between 

resistors and transistors P'S is assumed to be negligible. 

Other data9 for this example are given in Table 7. 

Discrete Tolerance Desii n Exa pie 

To illustrate the discrete tolerance design algorithm, 

the baund-pass filter of Fig 1 is used. The solution.  of 

example I is used as the approximate tolerance set tA. 

Other data for this third example is given in Table 1. 
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EXAMPLE I 

Table I 

k Element Nominal. Upper Lower Coet 
value Tolerance Tolerance Factor 
Ph Limit Limit a Tk Tk 

I LI 5.OmH 50 percent 2 percent 5 

2 L2 5.OiH 50 	" 2 	It 5 

3 L3 1 , 25mH 50 	" 2 	„ 5 

4 G4 0.25pF 50 	rf 2 	" 2 

5 Cg Q.254F 50 	" 2 2 

6 0 ~6 	'0p.F 50 	' 2 	" 2 

The gain of the circuit of Eig.1 is 

A ~-   
V1 	R1+ R2 +(X5-X8)T 1(X4_X7 )+R 2(X3-- x6)1>+i [3 3+X4-X6-X7 ) 

L  
+(x8 X5 ).. RIR2-(X3-X6) (X4" X7 ) 1>T  

The Absolute gain of the eireuit(Nominal response value) 

V2 	 R2 

F +(X
5 

-X8) R1(X X
7

)+R2( X6 ) 	(X3 +X
4 -XA-X. ) 

~(x X5) R1R2(x3-x6)(X471T)l 

Where 
X = WLR 	X6 = 1/1106 
X 4 ,JL4 	x7 = 1 /wC7 
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= 1/wL5 	x8  = C8  

For the response to frequency curve, we considered 

ten different frequency points and the corresponding nominal 

response values are computed taking the nominal element values. 

The maximum allowable upper and lower response values 

are computed from the maximum tolerance limit of + 1.0DB as 

under 

Let Nominal response value Al  in db 20 log10A1  = x say -i 

• Upper response value At in db 20 logA 	x+1 	-ii 
and Lower 	it 	11 	A' ' 	20 1ogAj' = x -1 	-iii 

From 1, ii and iii, we get 

x/20 	(x+l)/20 
Al  = 10 	, Ai  = 10 	i and I Ail' 	10(x-i)/20 

Al 	1/20 	, 	1/20 

	

10 	or A1=A1x 10 	1.122 Al  
I 

A 	-1/20  

	

-4 = 10 	or Ai  = A1 10 	0.8912 A1  
I 

A, A and A '  are given in the table 2. 

Considering the normal distribution, the standard deviation 

A 4_ 4' 
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Hence the maximum allowable response variance given by 2 is 

also tabulated in table 2. 

Table 2 

Res- Frequency Nominal Upper Lower Max. Allowable 
ponse 
No, Hz 

Response 
Value 

Response 
Value 

Response 
Value 

Response 	2 
Variance 

i Ai A Ai 

1 1003 0.002278 0.002556 0.002030 7.689x10 9 

2 2071 0.03505 0.03933 0.03124 1.8167x10 

3 3134 0.3286 0:3687 0.2929 1.5989x10 4 

4 3598 0.4838 0.5428 0.4312 3,467x10-4 

5 4530 0.5000 0.5610 0.4456 3.7x10'4 

6 5446 0.4938 05541 ©4401 3.61x10 4 

7 6253 0.3814 0.4279 0.3399 2.151x10 4 

8 6856 0.2388 0.2679 0.2128 8.444x10 5 

9 9465 0.04091 0.0459 0.03646 2.474x10_6 

10 19080 0.002757 0.003093 0.002457 1.122z10 8 

Now, we know that the total cost is 

6 ok C =E --~----- 	 ... 	t ) 
k=1 tk 

We have to optimise this function under the following 

constraints. 

The actual responsevariance < The max. allowable response 
for frequency i 	variable for frequency I. 
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6 	 42 i,e. E sf k pkv o 	(3 	1,2,.,.,70) 	.. 	(ii) 
k-i 

Now we have tk = 0pk .Pk; and for Normal Distribution, 

Pk = 300/pok 

From ii and iii we get 
2 

6 
	2 	Pok. tk 4 F2 
i k`1 	(340)2 

Multiplying both sides by (3000)2, we get 

 k`1 	ik'ok~2  < (3000  )2 

... 	(iii) 

6 2 2 2 or k=1 31k 	I Obi 	(1 =i,2,...,10) 

Where Sik is the sensitivity constant = 10 pok'sik 

a-. is the response variance constant = 3000 6 
i 

S and of are computed for different values of i ik 	Ai in 
and k and are givenfthe table 3. 

For the fulfilment of constraints of equations(ii) 

the equations(ty) must satisfy. So we will optimise the cost 

function under the constraints (iv). 

From i and iv the Lagrangian function so formed is 

	

6 	 10 	6 

	

L (tk'u) - > 	t'k + 	Eu( (Y' 82 tk` .2 ) 
k=1 	~,=.1 	k~.'1 	i 

/7.S 3tr. 
ITO ti"I S; "v uc1!vr7S!iV 'iF ,,1  
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Z (tk,u) 	E (a t1C + tk E uisilc) ~` E uidA 
2' 

k=1 	i=1 

For optimal values, after differenting, and simplification 

we get 

c ar 	1/3 

	

tk { 10 	} 

21E1uiS .k 

Putting the values of ak, and also S = Si and S 4 = Si5 

we get 

	

1 /3 	 1/3 

 

2.5  1 
t1 = =hio 2 I 	= t5= T 	2 f.u1311 	 Liiuj S14 

1/3 
2.5 

t3  10 
E u S 9 

i=1 

t =  1 

6 1  10 

L
2 

E u1. S16 
i=1 

6 

	

3h/cru. = s2 2 	2 
t 

	

k=1 ik k 	~A 



Table 3 

S  
2 2 

Sit 
2 

Sit 
2 2 2 2 

TAi  53 S34 S15 516 

1 0.0692 1.42 10-6  1.42x10 6  6.09. 10-4  5.75x10-4- 5.75710-4  1.5x10 6  

2 16.30 8«9x10' 3  8.9x10-3  0.27 0.198 0.198 0.012 

3 14.39 6.56 6.56 $4.3 28.0 28.0 19.8 

4 3120 11,68 11.68 136.0 28.5 28.5 55.7 
5 3330 12.6 12.6 49.5 12.35 12.35 50.8 

6 3249 23.3 23.3 54.4 10.9 10.9 116.0 

7 1936 34.4 34.4 31.6 9.26 9.26 117.5 

8 760 15.1 15.1 7.02 2.8 2.8 37.8 

9 22.27 0.28 0.28 0.02 0.0144 0.0144 0.393 

10 0.101 8,4x10 4  8.4x10 4   2.7 2x 10-6 	2,65x10 6  2.65x10-6  908X10 4  

Case I; Continuous tolerance assignment 

Subease I: No lower 	tolerance limit of 2 per cent. 

The tolerance limits are computed by taking the different values 

of constants in different iterations following the algorithm 

discussed earlier. The different iterations are tabulated in 

table 4. 
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Case II : Discrete Tol ranee. Assam nt 

In this algorithm, discrete values of tolerances 

are assigned to the different elements. The discrete optimal 

set of tolerances lies in the close neighbourhood of the 

continuous optimal set of tolerances. So first, we find this 

discrete set of tolerances, which satisfies the constraints 

and its cost becomes the upper limit of cost and the optimal 

cost obtained In the continuous tolerance case becomes the 

lower limit of cost for discrete tolerance calculations.. 

Lower limit on the element tolerance value is of 2 per cent. 

So, we form all the possible set of tolerances, which satisfy 

the cost constraints. 

In this case the lower limit on the cost is 6.685 units 

and the upper limit on the cost is 7.33 corresponding to the 

set 4,4j2:3~3f21 

As there are two set of cost coefficients, so, we 

form the subsets by permutation of three element tolerances. 

The subsets so formed are tabulated in table 6-A with their 

costs corresponding to different cost coefficients, The subsets 

so formed, having one combination are grouped together as these 

have the same cost, and are represented by an alphabet as shown 

in table 6A. 

The actual sets of discrete tolerances satisfying the 

cost constraints are formed by combinationsof two subsets. 



The cost of the set is the sum of the individual costs of 

two subsets. The cost of the first subset in the combination 

corresponds to ak= 5, and the cost of second subset in the 

combination corresponds to mk=2. The sets so obtained are 

tabulated in table 6-B, with their costs. 

Prom this table, first we take the set having the 

minimum cost and check it for system constraints. If it 

satisfies the constraints, then this set is the optimal set 

of tolerances, if not we neglect this set and try the natt 

set, now having the minimum cost. Proceeding in this way we 

get the optimal set of discrete tolerances. 

For this problem the optimal set is  

having optimal cost = 7.17. 

34 



35 

Table 6_A 
Groups of subsets of tolerances having Cost of subsets 
one combination (l;.=5 C k . a 2 

am(2, 2, 	2) 7.5 3.0 

b (2,2,3),(2,3!2)!(3,2,2) 6.67 2.67 

o = (2,2,4),(2,4,2),(4,2,2) 6.25 2.5 

d a (2,2,5),(2,5,2),(5,2,2) 6.0 2.4 

e (2,3,3),(3,2,3),(3,3,2) 5.83 2.33 
(2,3P4)t(2►4,3),(3a2,4) 

f 5.42 2.16 
(3 ,4,2),(4,2,3),(4,3,2) 

(2,315),(2,5,3),(3,2,5) 
g 

(3,5,2),(5,2,3),(5,3,2) 
5.15 2.06 

h = (2,4,4),,(4,2,4),(4,4,2) 5.00 2.00 

i  T  (2,4,5),L2,5,4),(4,2,5) 
4.75 1.9 

(4,5,2),(5,2,4),(5,4,2) 

J 	__ (2,5,5),(5,2,5),(5,5,2) 4.5 1.8 

k = (3,3,3) . 5.0 2.0 

1 = (3,3,4),(3,4,3),(4,3,3) 4.6 1.84 

m = (3,3,5),(3,5,3),(5,3,3). 4.35 1.74 

n (3,4,4),(4,3,4),(4,4,3) 4.15 11.66 

(3,4,5),(3,5,4),(4,3,5), 
0= 3.90 1.56 

(4,5,3),(5,3,4),(5,4,3) .. 

p = (3,5,5),(5,3,5),(5,5,3) 3.65 1.46 

q = (4,4,4) 3.75 1..5 

r = (4,4,5),(4,5,4),(5,4,4) 3.5 1.4 

S (4,5,5),(5,4,5),(5,5,41 3.25 1.3 

t = (5,5,5) 	 3.0 	1.2 
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Table 6-B 
Combination Cost Combination Coat Combination Cost 
of subsets of subsets of subsets 

d, s 7.3 g,n 6.81 k,e 7.33 
d,t 7.2 g,0 6.70 k,f 7.16 

e,q 7.33 h,e 7.33 k,g 7.06 

e,r 7.23 h, f 7.16 k,h 7,0 
e, s 7.13 h,g 7.06 k,i 6.9 
e,t 7.03 h,h 7.0 k,j 6.8 
f,1 7.26 h,1 6.9 k,k 7.0 
f,m 7.16 h, j 6.8 k,l 6.84 
f,n 7..08 h,k 7.0 k,m S,74 
f,0 6.98 h,l 6.84 I,b 7,27 
f,p 6.88 h,m 6.74 1,c 7.1 
f,q 6.92 i,c 7.25 1,d 7.0 
f,r 6.82 i,d 7.15 1,e 6.93 

f:$ 6.72 i,e 7.08 l,f 6.76 

g,f. 7.31 ilf 6.91 m,b 7.02 
g,g 7.21 i,g 6.81 m,c 6,85 
S9h 7.15 i,h 6.75 m od 6.75 
g,i 7.05 i,k 6.75 m,e 6.68 
g t j 6.95 J,b 7.17 ny,a 7.15 

g,k 7.15 j,c 7.0 n,b 6.82 
g,l 6.99 j,d 6.9 o,a 6.9 
g,m 6.89 j ye 6.83 q.a 6.75 
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EXAMPLE2 

Table 7 

K Ele- Nominal Upper lower Cost Element Corre Slope of 
ment Value Toler. Toler. factor depend lation linear 

pk 	Limit limit ak 	on 	coeffi- Relationship 

	

TU 	TL 	cient 

	

k 	1E 	 o 

I R1 10.6K 50percent 2 1.0 R2 0.9 1.0 

2 R~ 6K 50 " 2 1.0 -- - 
3 R 1.9K 50 " 2 1.0 R2 0.9 1.0 

4 R~ 290-Cl 50 " 2 1.0 R2 0.9 1.0 
5 R~ 290-x- 50 " 2 1.0 R2 0.9 1.0 
6 R6 2.5 K 50 " 2 1.0 R2 0.9 1.0 
7 C7 1.Opf 50 " 2 1.0 - - - 

8 P$ 120 60 's 10 1.0 p9 0.8 1.0 

9 P9 120 60 " 10 1.0 - - 
10 P10 120 60 " 10 1.0 39 0.8 1.0 

For the response to prequency curve, we considered 

eighteen different frequency points and the corresponding nominal 

response values are computed taking the nominal element values. 

The maximum allowable upper and lower response values 
are computed from the max. tolerance limit of ± 0.5 db for a 
frequency range of 1x103 to 2x107 Hz and between 2x107 to 10 Ii2 
the tolerance increases logrithmically from + 0.5db to ± 1.0db. 

From the upper and lower response limits the mcimum 



allowable response variance is computed. Table 7 shows the 
element values their upper and lower tolerance limits cost 
factor and correlation coefficient and Table 8 shows the 
nominal response values and maximum allowable response variances 

at different frequency points. 
-F 

Resp- Frequency Nominal Upper Lower f 	c. Allowable 
onse Response Response Response Response variabe 
no. 
i 

Hz Value Value Value ~„ 2 
Aj Ai A'I i 

1 1x103 72,45 76,74 68.39 1.937 
2 2x106 72.57 76.91 68.55 1.941 

3 4x 106 72.92 77.27 68.87 1.960 
4 6x106 73.47 77,80 69.34 1.988 
5 8x106 74-21 78.61 70.06 2.033 
6 i ,0x107 75.08 79.52 70,88 2.072 
7 1.2007 76.01 80.54 71,78 2.133 
8 1.4x107 76.88 81.47 72.61 2.178 

9 1.6x107 77.53 82.13 73,20 2.24 
10 1.8x107 77.72 82,32 73,37 2.233 
11 2.0x107 77.21 . 81.75. 72.86 2.192 
12 7.1568x107 8.172. 8.731. 7.655. 3.222x10. 2 
13 2.2631108 0.3521 0.3791 0.3271 7.755x10 

14 *3.811x108 0.08093 0.08784 0.07452 4.944x10 6 
15 5.3581108 0.03183 0.03486 0.02909 9.267x10-7 

16 6.905x108 0.01838 0.02029 0.01666 3.66710'"7 

17 8.4351108 0.01361 0.01515 0.01223 2.37810"7 
18 1.0x109 0.01300 0.01266 0.01007 1.86710-7 
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For this problem the cost function is 

10 1 
C a E ak/tk 

k=1 

Aid the constraints are 

0*a 	(1) 

10 2 2 10 10 
k=1 8ik 0pk + E z 2 Q jksi j . sik 	< i 

k=1 j~k+1 

{i 	1,,... ;.18) 	... 	(2) 

As in the previous example substituting tk .pok/300 for Pk 

in (2) we get 

10 2 
 

pok t2 
+ 

10 10 
2 . 

? 	PO 	Poktk 	A 2 --- 	t F, 	s 	. s -------- < d" k=1 	300 	k-1 j=k+1 	~k 3J 300 	~'k 300 

Multiplying both sides by (300)2 , we get 
10 	p 	t

2 + k=1 
1010  

k_1 ik ok 	
( 2 

P ks °~ 

	

p 	sikc~k)tkt.< (300 	)2 k 	j=k+1  

10 	12 2 10 10 	i 	2 
c~ E Sk ti + E 	F, 	Sjk t j tk 	`A 	... 	(3) k=1 	k=1 j =k+1 	 i 

(i = 1, 2,  ...,ie) 
Where 
Sk is the sensitivity constant at ith frequency = sikpok 

S~k is the sensitivity constant at ith frequency=2'jl sijsikp
0j
Pok 

^indo-Ais the response variance " 	" 	=3000, 
i 

S12 , S k and o 2 are computed for different values of i and k 
and are given in Table 9. 



From (2) and (3) , we get the La grangiaii function as 

10 	c 	18 	10 	2 	10 10 
,(tk,u)a E 	+ Eu 4( Z Sk tk+ E : 	Sjk t jt)- ci > 

k=1 tk i=1 k-1 	k=1 j=k+1 

For optimal values, by differentiating and after some 

simplifications we get4 

a 	1/3 
tk 

=

k 

[:1u2 S+ 
 

jAk 

cO h 	10 	2• 
and -~—~-- = E S t1 + 10 E Sik t j tk _ 

k 	
a-A2 

aui 	=1 	k=1 j ~Ir+1 	 i 

Initially in the first . iteration, for calculating tk 
we assume some ratios of tj/tk, then these values of tk are 

reused for calculating. the more accurate values of tk. After 

one iteration for calculating the values of tk, use the values 

of tolerances of preceeding iteration for the ratio of t jf tk. 
When we reaches the optimal value to have the more accurate 
answers, reuse, values thus obtained for the tatio of tj/tk 

for the same iteration. Different iterations are tabulated 

in table 10. 
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Table 9 	The values given in the right hand top corners are 
the powers of ten by which the corresponding values 
are to be multiplied. 

i S~ 2 	S22 	Si2 	s 	
s 2 	s 	592. 	s1

2 

	

x10 	1 	2 	2 	2 	2 	-6 	-1 	-1 	-1 
1 1.05 1.13 3.122 4.15 4.1 5.25 1.3 4.4. 8.72. 2.92. 

	

1 	1 	2 	2 	2 	2 	0 	-1 	-1 	-1 

	

2 1.05 	1.14 	3.13 	4.16 4.12 5.26 	5.19 	4.43 	8.75 	2.93. 

	

1 	1 	22 	2 	2 	' ' .1 	-1 	• 	-1 	'-1 

	

3 1.06 	1.15 	3.16 	4.2 	4.16 5.3 	2.09 	4.47 	8.84 	2.96 

	

1 	1 	2 	- 	2 	-' 2 	- 	2 	- 	1 	- - -1 	. 	-1 

	

4 1.08 	1.16 	3.21 	4.27 4.22 5.35 	4.75 • ' 4.54 	8,97 , 	3.00. 

	

1 	1 	• 	22 	' 2 	' '2 	1 	' -1 	- 	-1 	' 	-1 

 

5 1.1  1.19 3.28 4.35 4.3 5.42 8.56 4.63 9.15. 3.06. 
• 1 	1 	2 

	22 	2 	2 	-1 	-1 	' -1 

	

6 1.13 	1.21 	3.35 	4.46 4.41 5.50 	1.36- 4.73 	9.37.' 3.13. 
• 

1 	1 	2 '2'2 	2 	2-1 ''-1 '-1 

 

7 1.16  1.25  3.44  4.57 4.52 5.58"  1.98  4.85  9.6 .  3.21. 

	

1' 1 	2 2 . 2 ''2 	2 	-1 	-1 	--1 

	

8 1.18 	1.27 	3.52 	4.67 4.62 5,64- 	2.73 	4.97 	9.82. 	3.29. 

	

1 	1 	2 	2 
	2:2 	2 	..1 	-1 	-1 

	

9 1.2 	1.3 	3.58 4.75- 4.7 5.65" 3.57 5.05 9.99. 3.34. 
• 1 	1 	2 	2 	2 	' 2 	2 	-1 	 1 	-1 

	

10 1.21 	1.3 	3.59 	4.77 4.72 5.59 	4.47, 	5.08 10.04. 	3.36. 
1 ' 	1 	1 	2 	' 	2 	2 ' 	2 	2 	- -1 	' ' ' -1 	-1 11 1.19. 1.28. 3.55 . 4.71. 4.66.5.43. 5.36 	5.0. 	9.9. 	3.31. -1 -1 0 

0 0 0 1 -3 -2 -3 

	

12 1.34. 1.44. 3.97. 	5.28 5.22 -2.95 	3.73 	5,62 	1.11 	3.71. 

	

 
-.3' '-4 	--1 	-5 	'-5 	' -6 

 

13 2.48 . 2.67. 7.37. 9.8. 9.7. 9.09  1.15: 1.05  2.06  6.89. 

	

-5 	-5 	~4 ' -4 	-4 	-5 	..3 	~-7 	-6•-7• 
14 1.31 . 1.41. 3.9 	5.18 5.12 1.78 	6.37 	.5.52 	1.09 	3.64. 

	

-6 ' -6 ' -5 ''-5 	--5 . -6 	' . -3 	' -8 	-7 	-8 

	

15 2.02 . 2.18. 	6.03. 8.01 7.92 1.41 	1.0. 	8.52 	1.68 	5.63 

	

-7 	-7 	-5 ' . -5 . -5 ' -7 	.-4 . -8 	-8 	-8 

	

16 6.76 . 7.28. 2.01. 2.67 2.64 2.85 	3.35 	2.85 	5.61 	1.88 

	

-7 	-7 	--5 '5 	-5 	-7 	-4 	'-8 	'-8 	• - 8 

	

17 3.71 . 3.99. 	1.1 . 	1.46 1.45 1.05 	1.84 	1.56 	3.08 	1.03 

	

-7 	-7 	-5 	-5 	-5 -8 	' -4 	-8 	• -8 	' -9 

 

18 3.38 ' 3.64  1.0  1.34 1.32 6.82  1.68  1.42  2.81  9.4 

Co. 42. 
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Table 9 (contd). 

1 	821 823 824 825 S26 	" 98 8910 	d.2 
i 

1 	6.21 0 3.38 3.9 3.88 4.39 	9.92 8.05 	174300- 
4 

2 	6.22 3.39 3.91 3.89 4.4 	9.95 8.10 	174700 
0 

3 	6.24 3.43 3.95 3.93 4.43 1.008 8.15 176400 
0 

4 	6.38 3.48 4.©1 3,99 4.49 1.02 8.20 178900 
0 

5 	6.51 3.55 4.09 4.Y7 4.57 1.04 8.50 183000 
0 

6 	6.66 3.63 4.19 4.16 4.65 1.065 8.65 186500 
• 0 
7 6.83 3.72 4.29 4.27 4.74 1.09 8.90 192000 

0 
8 6.99 3 .81 4.39 4.37 4.82 1.12 9.10 196000 

9 7.11 © 3.87 4.47 4.44 4.87 1.134 9.23 202000 
0 

10 7.14 3.89 4.49 4.46 4.86 1.14 9.29 201000 

11 7.05. 3.84 4.43 4.4 4.75 1.125 9.16 197280 -2  
12 7.9 	. 4.3 4.96 4,93 3.71 1.26 1.025 2900 -4  
13 1.47. 7.99 9.21 9.16 2.81 2.36 1.91 6.98 

-6 
14 7.74. 4.22 4.87 4.84 9.02 1.24 1.01• 0.445 _6  
15 1.2 6.53 7.53 7.49 1.0 1.915 1.56 0.0834 -7  
16 3.99. 2.18 2.51 2.5 2.59 6.4 5.18 0.033 -7  
17 2.19. 1.19 1.38 1.37 1.16 3.5 2.85 0.0214 "7  
18 2.0 1.09 1.26 1.25 8.97 3.2 2.60 0.0168 

ir 
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Table 10 

Iter.- I II III IV V VI VII 
tion 
U1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

u2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

u3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

U4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

U5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

u6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

U7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

U8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

u~ 0.0 0.0 0.0 0.0 0.0 0.0 .  0.0 

u10 0.0 0.0 0.4 0.0 0.0 • 0.0 0.0. 

u11 1.0x10-5 5.0x10-6 2.5x10'6 2.0x10-6 1.1x10-6 1.05x10-6 1.04x10-6 
u12 0.0 0.0 0.0 2.5x10 6 60x10-6 66.5x10-6 66.5x106 

u,~ 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

u14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

u16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

u17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
U18 0.0 .0.0 0.0 0,0 0.0 0.0 0.0 

t1 14.8 16.65 23.5 25.1 2 27.05 27.1 

t2 7.6 9.58 11.1 15.3 16.6 16.58 16.6 

t3 4.98 6.28 7.9 8.27 8.97 8.95 8.96 
t4 4.56 5.75 7.24 7.53 8.17 8.15 8.16 
t5 4.58 5.78 7.28 7.57 8.21 8.17 8.20 

t6 4.36 5.5 6.92 7.35 8.38 8.41 8.44 
t7 4.53 5.72 7.2 6.3 5.62 5.47 5.475 

C ontd 44 
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Table 10(Contd.) 

Itera- 	I 	II 	III 	IV 	V 	VI 	VII 
tion 

t8 	36.1 	45.5 	57.3 	60.0 	60.0 	60.0 	60.0 
t9 	32.1 	40.5 

	
51.0 	45.5 	50.3 	50.2 	50.2 

t10 	39.9 	50.3 
	

60.0 	60.0 	60.0 
	

60.0 	60.0 

C 1.406 1.115 

ah,/au1  -120090 -88350 

ah/au2  -120300 -88550 -37700 

8hW8u3  -121800 -89900 -38900 

cah/au4  -123500 -91100 -39400 

ah/au5  -126400 -93300 -40400 

ah/au6  -128300 -94200 -40000 
ah/au7  -132000 -96950 -41000 

ah/au8  -134200 -98000 -40200 

ah/8u9  -138800 -101700 -43000 

a,/au10-136965 - 99404 -39600 

ah/au11-132144 - 90580 -33180 

8h/au12-1591.6 	- 	825 + 	395 

ah/au13- 4.23 	- 2.62 + 0.05 
ah/au14- 0.291 	- 0.201 -,0.0555 

Oh/8u15-0.0587 -0.04425 - 0.02115 

ah/Ou16-0.02343 0.0178 3 - 0.00885 

ah/au17-0.01473-0.01082 - 0.00457 

ah/au18-0.01245-0.00991 -0.00583 

0.8252 0.8093 0.80723 

-0.072 -0.091 -0.103 

- 0.0265 -0rt0309 -0.0331.  

-- 0.0115 -0.0143 -0.0173 

-0.00716-0.0109 -0.0135 

-0.00673 -0.00735-0.00805 

-24800 + 713 

+ .867 +62.4 

-0,012 -0.02 

-11450 

-11310 

-10990 

-10530 

-10420 

8530 

8170 

- 6530 

-7560 

- 3615 

165 

- 1.89 

-0.025 

-11180 

-11020 

-10750 

-10330 

-10130 

•:- 8340 

- 8000 

- 6240 

- 7335 

- 3450 

+ 2.0 

+ 1.2 

-0.02 

-0.0908 

-0.0301 

-0,0154 

-0.0116 

-0.0079 

0.8867 0.829 

-37800 	- 28 400 -9160 

-28350 -9050 

-30900 -8750 

-31500 -8670 

-30500 -8580 

-30400 -8220 

-30850 -7990 

-29900 -6210 

-31750 -6980 

29640 -2872 
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C 0 N 0 L U$ I 0:N 

The present study deals with the tolerance assignment 

problem in the electronic circuits having discrete or continuous 

eomponentb tolerances. In other algorithms where the tolerance 

to different elements are assignmented such that the circuit 

response remains with in the specified limits, there is a 

large possibility of getting tight tolerances, which inturn 

gives higher circuit cost,. In this algorithm we directly 

optimise the cost w,r,t..the element tolerance subject to 

the circuit response constraints, therefore there is no 

possibility of tight tolerances. 

In the presented method, the problem is divided in 
number of subproblems.  each having a single variable. This 
reduces the computational time considerably, Beside this 

due to the decomponent of problem, the computer memory 

requirement is very less. By solving subproblems simulta-

neously on a computer or computers operating in parallel, 
the computation time can further be reduced. 
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