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(i) 

ABSTRAoi' 

The present work deals with the optimal. design of 

a system from the reliability point of view. Due to 

increased complexity and sophistication in the modern 

systems, the system reliability always tends to decrease, 

Therefore, some means must be provided for enhancing the 

system reliability. System reliability can be improved by 

employing structural redundancy at the subsystem level, 

and/or by practising. planned maintenance and repair 
by QVYS 

schedules. This ,however. is oonetrained,jwhiOb are limited. 

and pose a problem to the design and maintenance engineer. 

Consequently# the problem of optima,; allocation of redun-

dancies and of the optimal , nu}nber of repair-Crews arises. 

The constraints on the system are the overall cost, weight, 

availability of the system and, power consumption, etc 

An attempt has been made to _find the optimal allocation 
of redundancies and the optimal number of repair crews, 

for maximizing the system reliability or the system 

availability.  

In chapter I, . up-to-date, literature about the 

aspects of reliability optimization has been surveyed 

and is reviewed in brief. 

The availability models of the maintained systems 

with •  different repair facilities are discussed in chapter II. 

A problem of finding the optimal number of repair-crews is 



solved by. assuming the necessary data. The problem of 

finding the optimal maintenance interval is also discussed 

in brief. 

The mathematical modelling of, the optimal design 
of a system having active redundancy is presented in seat-

ion 2.5. The problem of redundancy allocation to the 

series and bridge systems has been discussed. The computer 

programs for these problems are developed in FORTRAN-1I 
and a number of problems have been salved on IBM 1620 and 

TDC-31 2 computers. 

Chapter III deals with the optimization techniques 

for maximization of the system reliability subject to the 

given constraints*  The techniques discussed in this chap.. 

ter are Variat ona . method,, Penalty function method-;  

i agrange' s Multiplier Method, and Lawler and Bell's opti-

mization. method. The constrained reliability problem is 

converted into unconstrained problem by the use of penalty 

function and is solved by the steepest ascent method. ,lawler 

and Bel.'s method is.made.use of in solving the constrained 
redundancy problem by transforming. the problem into binary 

variables. At the end, various methods discussed have been 

compared so as to help, the system designer to apply the 

appropriate techniques. Future avenues of research are 

also discussed, in short. 
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_ flODU0TIQN ,rte REVIBW.  OP 	LI RATJ 

The reliable performance of a system for a mission 

under various conditions is of utmost importance .n many 

industrial, military and el ery'day life situations. Although, 

the qualitative concepts of reliability are not new, its 

quantitative aspects have been developed over the past two 

decades. Such development has resulted from the increasing 

needs for highly reliable systems and safer, cheaper 
Components, 

Reliability is a serious concern to the systems e 

engineer. In the S rst plane,,he must be concerned with the 

Consequenese of system failure. Irequent failures or 

extended periods of dm n t .me may, result in a complete lack 

of syptemcapability. Secondly,. there are high maintenance 

costs. It is. reported that in U.S.A ', it costs the Army 
services about two dollars per year to maintain every dollar 

spent on electronic equipment« A third aspect of reliability 

problem is safety. 'This problem is extremely important in 

the design of aircrafts and systems for manned apace flight. 

The increased complexity#  sophistication and auto- 

r 	mation in modern systems has made the reliability problem 

more acute#  because as the Systems become increasingly complex, 

the reliability also tends to decrease.. Therefore, some 
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means must be employed to increase system reliability. This 

can be done by the following methods 

to By reducing the complexity of the system 

2. By increasing the reliability of components through a 

product improvement program 

3. By using structural redundancy 
4. By practising planned maintenance and repair schedules 

Reducing the complexity of the system may yield poor 

steady state and transient response of the system and reduced 

accuracy. The product tmprovemnt program demands the use of 

improved package and shielding teehnigies derating etc. 

Although these techniques result Ln reduced failure rate of 

the component;  but require . more time for design and special 

state of ar* of production Thie .makes . the cost of part 

improvement program higher as compared to a redundant component. 
By employing structural redundancy, at the subsystem level, 

keeping specific system topology# one Can provide theoretically 

unity system reliability. Structural redundancy may involve 

the use of two or more identical components*  so that when one 

fails, others are available in such a way that the system is 

able to perform the specified task in the presence of Some faults 

in the components./Por example# the aeroplanes usually employ 

two to four engines in redundancy/ 

Redundancy may be classified under three broad oatago 

ries : Active redundancy, standby redundancy and voting 

redundancy. In active redundancy, all the redundant paths 
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(units) are continuously energised while the system operates. 

If the redundant unit does not perform any function and comes 

into operation only when the primary unit fails# this type of 
redundancy is called standby redundancy. In the third type of 

redundancy, three or more units operate in conjunction with a 

switch which selects the unit with agreeing outputs if they 

constitute a majority. This type of redundancy is commonly 

used in computer applications 

When the cost of repair in money as well as in time is 

less in comparison with the cost of equipment, it is economical 

to consider system.  repair. It may be possible that at a time, 

more than one. component fall simultaneously. This requires more 

than one Crew, in. order to crease the operating. time of the 
equipment. Por optimal design, _ a mathematical model is developed 

using Markov chains and the optimal repair crew are found out. 

Several authors have considered the optimal redundancy 

allocation problem using various formulations and computational 

techniques, Moecowitz and, McLean, 181 considered the problem of 

maxim .zing reliability with one constraint_ i.e.. cost using a 

variational method. Gorden $91 also considered the problem of 

single constraint. Ketteile 1 14.1 provided a computational 

approach for maximizing reliability subject to a cost constraint. 

However, Prosohan and Bray 1111 extended Xettelle's method to 

include more than one constraint vie. coat, weight, etc. Bellman 

and Dreyfus 1121 sketched a dynamic programming method for 

maximizing system reliability, given specific constraint values. 

Pan et al. 1131 used the discrete maximum. principle for 

N 
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maximizing reliability. .ty. Federowie z and Mazumdar 1 141 form►u].-

ated the redundancy allocation problem in the form of Geometric 

programming problem to obtain approximate solutions. Tillman 

and .L tteohwager 1151 developed a method for maximizing relia-w 

biltty or minimizing cost subject to several constraints by 

using an Integer programming formulation, 4hare and Taylor 1161 

maximized the reliability of parallel redundant systems by a 

Branch and Bound procedure, Lawler and Bell 1171 'described a 

simple#  easily programmed method for solving discrete optimiza-

tion problems with monotone objective function and completely 

arbitrary constraints. Misra 1181 applied the method of 1171 

to optimize system reliability or cost subject to multiple C 

oonstrints. .Misra, 119.1 later on used least square formulation 

for maximizing system reliability. Banerjee and Rajamani . 1201 

used the parametric approach. to solve reliability problem. 

Miers and Sharma 1211.applied Geometric programming technique 

to the reliability problem. Sharma and Venkateawaran .1221 

presented a simpler method with no assurance of obtaining the 

true optimum. Luis 1231 presented a prooedure.of solving non-

linear programming , problems which first finds, a pseudo- 

solution to the _ problem and then uses direct search in the 

neighbourhoo& of pseudo solution to find the optimum point. 

Nakagawa and Nakashima I241 determined the optimal redundancy 

allocation by using a more reliable candidate at the stage that 

has the greatest value of the weighted sensitivity function. 

Tillman et al 1251 applied Hooke and Jeeves pattern search 



technique in combination with the heuristic approach by 

Aggarwal 1261 to solve the mixed integer nonlinear program-

ming problem in which the system reliability is to be maximi-

zed as a function of component reliability level and the 

number of components used at each Stage. 

The introduction of maintenance is one of the major 

options for increasing SyBtelfl effectiVeneas. Morse ,141 
considered a , - unit system with repair and preventive 
maintenanoe (pm) and derived the. optimum pm policy .maximi. 

zing the steady-state availability of the system. Graver .1.27., 

and Srinivasan 128 I _ obtained the Laplace-stielt. es transform 
of the time distribution to the first system failure, for a 

2 -unit standby redundant eya tern. T. Nakagava and. Sic Baaki 
1291 considered the two unit otandby system wits repair 

and pm. Balagxrusamy, and riara 1301 used the concepts of, 

minimal out sets and minimal tie gets to assess the availabi-
lity and other.. parameters such as failure frequency*  mean 

down time, etc of, a repairable rn--order system comprising  
units with unequal failure and repair _ .,rates. ° 

J 
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PRQB 	FORMULA" ION 

2,1 	NQ E 1aLA 	Unless otherwise ' stated, the following 

symbols are used in this dissertation report — 

k = Number of stages or subsystems in a system 
m * Number of standby components 
ni  = Number of redundant components in, the j " th stage 
r ss' Reliability of the j th type component, 0 < .r 	<1 

q3  = Unreliabioity of the j th type component 0 < qj < '# 

R ° Reliability of the . j th stage, 0 < R 	< I 

Re  = System Th liability, 0 < Re  <I 

Qs  System unreliability, 0 <% <_ 1 

ail  Resources requirement associated with each component 
of j tb stage. 	 . 

bi  Tc tal' amount of resources available for the 3 th 
type of .  constraint. 

s Number of constraints on the system 

t Mission time 

Failure rate of the j th type component 
US 	= Repair rate of the j.th. type component 
r 	= Number of repairmen . available 
Ro 	Minimum .reliability of each. stage 
pi(t) * Probabiiity, of being in i th stage 
Ass 	system inherent availability (steady state)$  

0 < A8  <. 



2 * 2 	SYSTIC M© ,S 

Any system can be classified in the following categories -- 

1. N-.stage series system ( 1 -- out of NP), showin in pig.I . 

The functional operation depends upon the proper 
operation of all system components. Such systems are also 

referred to as chain models or weakest link models, since the 

system fails as soon as the weakest component fails. 

R5(t) ' 	Ri(t) 
	

(2.1) 

2. N-stage parallel system ( 1 out of NG ) , -showt in Pig.2 . 

Theme are N paths connecting the input to the output 

and all components must fail for the.  system to fail. Such 
systems are also known ae rope models, since the system fails 

when all the components fail and . its behaviour is thus akin 
to that of a rope, which breaks when all the fibers break. 

Rs(t) a I - M [1-n1(t) 
A=1 

(2 2) 

3. Mixed series parallel system shown in Pig. 3, N components 

are connected in series and N such aeries connections are 

conn.eoted in parallel to form the 'System,. The  reliability 
of this type of system can be found by decomposing into series 
and parallel subsystems-. 

4• Mixed parallel-series system, . shown in Fig. 4, N stages 
are connected in series, and components are connoted in 
parallel at each stage. The reliability of this type of 
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system can be found out by decomposing into series and 

Parallel subsystems. 

5. Element standby system, shown in Fig .5 . It has the same 
form as a mixed parallel series system. However, the para-
llel components are not all active at the same time. 

6. Standby system, shown in Pig .6 . It has the same form 
as a mixed series-parallel system. However, the parallel 
N series subsystems are not all active at the same time. 

7. Non-series-parallel system, shown in Fig. 7. The 
reliability can be evaluated by using conditional proba-
bilities or other approaches 

8, Complex bridge network system, shown in Pig.8. It is 
one of the complex reliability systems in the form of the 
bridge ne twork w - 

The reliability of such a system can be found by 
different methods viz. star delta transformation, factoring 
theorem method and by, the method of inspection. By applying 
the method of inspection., the reliability is found below :- 

Forward Paths 1-2,4-5, 1-3-5,2-3-4. 
Paths with one loop : 1--2-3-4, 1-2-4-5, 2-3-4-5. 1-2-35, 

1-3.4-5. 

Paths with two loops : 1-2.3-4-5 
( two paths -) 

Re a r.1  r2+r4r5+r1 r95#r2r3r4-r1 r2r3r4-r1r2r4r5-r2r3r4r5 
-*r1  r2  r3r5  -r1  r3r4r5  +2 r1  r2  r 3r4r5  

(2.3) 



Rs  = ri 2  +r4r5+r1 r3r5+r2r3r4 rI r2 (r3r4+r4r5  ) 

-r2r3 (r4r5+r1r3 ) d.r3r4(r1r5 )+2r3(r1r2 ) Nr4r5  
- 	 _ 	(2,4) 

2 ,. 3 	SYSTEM NAXNAZNABILITY PROBLEM 

In this topic, the problem of developing mathematical 
models for the reliability of systems that can be maintained 
while in use # Is considered, A Markovian approach is emplo-

yed for describing the stochastic behaviour under a variety 
of failure ams repair conditions. 

Since- failed equipments are restored to operation 
in a finite time, the. figure-of-merit of the system's relic 
bility is called availability. It is employed to determine 
the probability that the system is in an acceptable state, 
at any time t, given that it was fully operating at t = 0. 

Availability is •oalass.ified into three categories - 

I , Point availability sr It is defined to , be the probability 
that the System is An an up state U » *e either operating 
or operable) at a specified time. 

2. Internal availability 	lt,ia the expected fractionall 
amount of an Interval of : specified length that the 
system is in an up state • 

3, Inherent or Steady State Availability_ **- _ It is defined 
to be the expected fractional amount of time in a cont- 
inuum of operating time that the. system is in an upstate. 



Inherent availability is commonly referred to as the 
uptime ratio or limiting availability. 

Systems in which allowaPle repair could be advantageous 
include simple parallel and standby systems. Series systems 
with repair offer no Increase in reliability since as ,soon 
as a component fails, the system has failed,  however # if 
the object ive is to keep the system operating as much as 
possible during a specified period of time, , then repair would 
be a valuable aid in meeting this objective. 

2.3.1 Availability Model of Single Sgaipment Systems s 

This model can be designated. by two states OW State Q, 
the system is operating and state ' 1, the system is, failed and 
under repair.  Since the conditional probability of f a ,ure 
in t, t+dt is edt, and the conditional probability of comp•' 
feting a repair in t, t+dt is adt, the following transition 
matrix can be made 

States 
P 	at 

t. 

(states at 
t+dt ) 

0 

I 	 H_j 

The probability of being in state 0 at time t+dt is 

20(t+dt) = P0(t)(1- dt)*P1(t)adt 	 (2.5) 
The probability of being in state I at time t+dt is 

P1 (t.dt) a P0(i) dt+P1(t) (1 adt) 	 (2.6) 
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Prom aC~aation8 (2.5) and (2.6) 

PO() '" " 0 PO (t) + ©±1(t) 	 (2.7) 

R 
'1(t) 	P P0(t) - aP1(t) 	 (2.8) 

Por the steady state behaviour 

Pi as 	,m  

This means that the steady-'state behaviour oan be 
found by setting the derivatives P I (t) equal to zero. 

From (2,7) and (2.8) 

(2.9) 

P pQ - P1 	 (2.10) 

	

Also 1 a 'O + P1 	[ ' .' 	z P 	I ] 	 (2,11) 

Solving (2.9) (2.10) and (2.11)., the solutions are 

• .,.•: 	 (2.12) 
P+a 

P+a (2.13) 

2.3.2 Availability model of (k n.) Systems with parallel 
repairs 

Having described the single equipment model, the 
generalized availability of model of system with (k,n) pompe- 
nente, in which at least k components should operate for 



r 
w-12- 

for the operation of system,, is given: 

The following assumptions are used in developing the model: 

1. Component failures are statistically independent. 
2. The components have only two states., either operating 

or non operating. 
3. Failure and repair times have exponential distribution. 

Failure detect on and switching devices are perfect 
4. Multiple repair facility exists. 
5. Repairs begin immediately on first-come first-served 

basis. 
6. ̀ The probability of more than one failure in the interval 

to  t+dt is of order O(dt).  

If at any time to  the system is in state i, . then the 
probability .  that during (t,t t) the transit on i - 1+1 # for 
0 < i < n-k, occurs equals 3idt + O(dt) and the probability 
of i i-1, for 	L, n k 1, equals ad's + d(dt). Since the 
total. system failure occurs when the system is in state n 'k+1 
the onl.y transitions of interest, are . -* i+1 for i a 0,1,..., 
n-k 1, and j-' 1-1  for i = 1 2, .. „ ... , n-m  • 

2r  {j .* +M in (t.t+dtYi 	( U'i  

+ 0(dt) 	(2.14) 

(n-i) dt + o(dt) 	 (2.15) 

Singe (i- Pdt) '"I  a 1-(n--i) Pdt + 0(dt), 



1 

• (2  a L 	;16 ) 
C? 	otherwise 

	

Similarly, 	is 	if i I 1 4 r 
a 	if r+1 	i. n-k+i 	 (2.17) 

0 	otherwise 

Tien, the transition probability e 

pi {t+dt)  

+ p 	(t)ai+j dt(Ir+pi+jdt) + o(dt) 	(2.1$) 

p ;(t)(1 (Pi• a )dt) + pj.,.~(t)p1_ jat + 

+ p M ( )A~+.'1 dt 	 (2.19) 

or 

";(p +a )P (t) + o  j .~ (t) + dt 	1 

(2.20) 

• letting dt o 

	

p(t) a 	-( + ) 	t) + Pi..IP , .l (t)  
(2.21 )  

tora<ijflk+l 

Using equation (2.17) , we obtain 

8O , a - nnpp(t) + apl (t) 	 (2.22) 



* ((n-- ,)P + ia) P(t) + (n-i+1)p Pi_1(t) + 

(j+1)a P 1(t) 	 (2.23) 

for I S *i r 

p (t) 	'( (n-t)p +ra) p (t) 	n_i+' P a..(t) + 

P +t (t) 	 (2.24) 

for rink 

pn ►k+l ''ra Pn k+i (t) + i p_(t) 	 (2.25) 

The steady state solution Is found by, deflning  

tom► + for 1 	 (2 + 26) 

2~ icing the limit of both sides of (2.21) as t - +°, we 
obtain, 

Q 	(~ j 	j) j + P.~Pi., + U j. 	P~+1 (2.21) 

• for 1 V# 	i !♦ • * u-k+l 

Solving equations (2.22) to (2.25), 

0 	. app® - ap1 (2.28) 

0 	- [ (n 1) p + a 	BI + .n 3P0 + 2up2 • (2.29) 

0 	IT (n-2)t3 + 2u 	P2 + (n-i) Pp1 +3U93 (2.30) 

From (2,28), (2.29) aand (2.30) 

P1 	* Iw©. 



0 

2 

P3 = 	(n,2)+2 	n n"" 	,  , 	n 

u (n-2) (u- I) { 	2 2   

n(n-1)(n-2) (• )3 
f. 	•cc 	P® 

11! 
3! (n-3)! 

In general, 
• max. 

' 	a 	PO 

'(fl ) ( 	) ' p 	 (2.31) 

Farr < i . S (n "k) 

• P 	'(n ) ( 	)2 '1 0 	 (2.32) 

Pr 	( 	) ( 	) r F~ 	 (2.33) 

0 = 4 	- (n-r) + r prtxapr+1 • (n-r+1) P P ,.,, I 	(2.34) 
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pr+'fi ` `e [(U-r-1)p+raj pr 1 *rapt+2 4 (n-r)pr 	(2.35) 

From equation (2.34) 

pr+~ = 	[ (n-r)1 + ra ( 	) ( )r 

n (n-1) .. .... (nr ) (n-r+ 	r+1 p 
ri • ar (ra)i 	 0 

Similarly volving equation (2,635) 

n(n.i) ...... (n-r+ 1) r+2 

	

pr+Z 	 PQ 

In general, 

t(n-1)...,....(n- ,+'1) 

	

p 	 r 	i-r 	pO 	 (2,36) 
st a (ra) 

n-k+1 
Since

i 	
p 	1 , we have 

PO [ i+ 	
n_ +'! 	fin-'' 	 ...Vin" 1 	i 	.1 

a 	j mr+1 .. 	2 	j -r rl a bra) 

(2,37) 

For parallel redundant system 

k=' , 
and for series redundant system, 

k a n 
Equations for these systems can be had from equations 

(2.31), (2.36) and (2.37) 
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2 4 	OPTIMAL M&INNA1Q POLI IES ~~+Www..wwrr~r+r.w~w~twr+y.+r+rr~+ ■ 	~ 	r i~ 

Failure of a system during actual . operation is some-
times oost3.y and/or dangerous. Therefore, it Is important 
to maintain the operating system preventively before failure 

(e.g. nspect on, overhaul. or repair if needed) . 

In this topic an attempt is made to find or character .ze 

optimum maintenance ,ce policies z that is to seek the number of 
a specific class of maintenance policies that minizes total 
cost, maximizes availability, or in general attains the best 

value of the prescribed objective function. 

Barlow, end .praseban 111 considered the maintenance 

policies by governing the scheduling of replacement of 

equipment so as to forestall failure during operation. They 
aimed at achieving maximum - operational readiness by inspection 

policies . through the model where failure is known only through 
checking. izrtber, they considered more complicated formula-
tions in which decisions ocncerning replacement, repair and 
inspection are made . at each successive, step. The Markovian 

model is considered., and the . decision depends only on the 
information concerning the pre sent state of the system and 
not on its past history: 

In all the replacement. models to be considered, a 
cost c Is suffered for each failed item which is replaced ; 

this includes all oosts„resulting from . 'ailure and its 
replacement. It is assumed that failures are instantly 
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detected and replaced. A cost 02 < c1 is suffered for each 
nonfailed item which is exchanged. Let N'1 (t) denote the 
number of failures during [ O., t ] and N2 (t) denote the number 

of exchanges of nonfailed items during [ O, t ] , we may express 
theexpected cost during [ Q t ,3 As  

0(t) 	e1E.IHI (t)1 + o22tN2(t)i 

If we interpret e, as the mean time to replace a 
failed component . and *2 as the mean time to repla.Ce a non-
failed component. Then 0(t) becomes the expected down time 

in f 0,t]. The replacement policy minimizing G(t) will then 

maximize limiting , availability. 

2.4,1 OPTIMAL M INTENAN! INT RVAL 

• 3ptimu a maintenanoe interval can minimise total Cost 

of maintenance and repair 131, 	The  reliability can be set 
at the level acceptable to a part#cular for of operation by 

adjusting the maintenance, interval. If no hazard is involved, 
and failure can be tolerated, then the Corrective maintenance 
interval is that which produces the minimum operational cost, 

if maintenance_ labour costs are of paramount import-

ance, then the possibility of achieving 100 percent reliability 
by means of standby redundancy may become an attractive -~ 
financial propo .tion. This .s equally true where the cost 

of having plant out of commission is very high, and. a small 
amount of down-time would cost more than the time cost of 
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tither keeping passive redundant standby equipment idle for 
much of the time or running votive redundant equipment at 
part load for much of the time. 

T„ eor; iea , rglati nchipe between E. and M 

Failure rate '1 m P(t) 
where t = time since new 

Failure rate 2 = P(t-ntm) 

where tm = interval during maintenance 

n No . of maintenance operations carried 
out. 

This assumes that maintenance Is carried out which 
restore the equipment to the aenew condition. 

Reliability = R 1- unreliability, and for equipment 
being maintained at intervals 

T 
R i ~- of 2 dt 	 0 

a 1 . i f F (t-nt )  
NO 	11 

where ' 	total time of separation of each unit • 
and N = No. of unite. 

Consider now a linear relationship between failure 
rate and time since last overhaul 

F(t) P kt 

P(t-ntn) a k(t-ntm) Fig, 7 
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T 
Reliabioity 	1 — 	~I k(4-n tm)dt 

where = .tm 

Z— k  n tf2 

which shows that aS . maintenance interval tm tends to ©, 
reliability tends to I , andas tm tends to o, reliability 
tends to 0. Similarly# expressions can be derived for other 

relationships between failure rate and time. 

2.4.2 OPTIMAL MPAIR SEW FRU G 

In many Situations,, it is not always economically 
feasible or desirable sirabla to . repair equipments as they fail. 
Rather, one may decide , to wait until nl out of n equipments 
have reached a failed state. The optimum policy frequently 

depends upon the cost of the maintenance policy determatives 

and their effects on system reliability. Por example, in 
the Case of a two a gLdpment redundant system, the following 
pollicies can be considered 

1. Have two repair crews and repair each equipment as it 

fails. 
2. Have one repair crew and repair each equipment as It 

fails. 
3. Have one repair crew and repair the equipments when 

the system fails. 

Associated with each policy is a different availability 
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and maintenance Ooet. These will be the cost of the repair 

Crews and the cost of replacement for failed equipments. The 

repair crew Cost of policy I will be about twice as high as 

the other alternatives, The replacement cost of policy 3 

will be less than the other alternatives since repairs will 

be made less frequently. The availability of each of the 

alternate policies 1281 is 

Policy 	System Availability 

a2 +2a 
,r~i~Ir~ri ,uwrr~~rr[.rwwr...w~r 

a2 ,M 213u + P2 

a2 + 20a 	. 

a2 + 2 a+ 

3a 2 + 23a 

3a2 +3pa+P
2 

Suppose . ..005 per hour and a = 1.0 Per hour. 

Then. under. each policy respectively, . owaul.ative _ down-time . in 

a90,000 hour.. period will be ,248 hour, 0.496 hour and. 16.667 
hour respectively If the. penalty Coat per unit down-time is 

Re. 10,000, the 4o et oi'..a single repair Crew is Rs, 5 per 
unit time and the repair, action, is to, replace a failed equip-

ment with a new one costing Rs.2,000 d scarding the failed 

one. 

The .cot of single repair crew for 10#000 hour period 

will be Re .50,000. 



-22 

For policy 1, we would expect to be replacing an equipment 
every 100 hours, since each equipment has an MTBF of 200 hours. 
Therefore#  over a 10,000 hour period#  we would expect to make 
100 replacements#  at a cost of Rs,2,000,00 . For policy 2, 
the rlta arokapProximately the same.: F®r the third policy, 

replacements would be made on an average of every 75 hours. 

Therefore, in a 10,000 hour period„ we shall replace both 
equipments at a cost of Rs.3,000,00. The expected costs 

for the various policies are given In the Table 1. 

' able I 

Policy ixpected Repair crew Expeoted Repla- expected 
penalty cost in his. cement cost in Total cost 
cost(Rs) Rs. in Re. 

1 2,480 100,000 200,000 302,480 

.2 4,960 50,000 200,000 254,960 

3 166,667 50,000 300,000 516,667 

Prom the table, we find that policy 2 is the least expensive. 

Therefore, for this problem„ It is advisable to have one 

repair crew .and repair each equipment ae it fails. 

2.4.2.1 Ecample 

Consider another problem of finding the optimal repair 

crew policy. Consider three equipment parallel redundant 
k 



system which can be in. states 0,1,2 or 3 as defined in 

section 2.3.1. Let us assume that there is no lose when 

the system is in state 0, a lose of Rs.500 Per unit time 

when the system is in state 1, a loss of Rs .2 , 000 per unit 

time when the system is in state 2 and a lose of Rs.5,000 

per unit time when the system is in state 3. Let us assume 

the case of independent servicing, Then, the three policies 

can be Considered 

Policy 1 - Assign one repair crew 

Policy 2 - Assign two repair crews 

Policy 3 4i Assign three repair crews. 

.'Let the cost of repair. Crew be Rs.5 per hour and 
the failure and  repair rates of each equipment be .005 and 
and 1.0. per hour respectively. Then from section 2.3.1 .2 , 

the amount of time, the system spends ii, each state for 

the three polis ie s . s given in Table , 2.2, and the numerical 

values are calculated in Table 2.3 for a period of 10#000 

hours duration. The expected penalty cats and repair' costs 
for three policies are given in Table 2.4. From Table 2,4v 

we find that the best policy is to employ © -ie repair crew;.. 

Therefore the optimal : n tuber of repair crew for this problem 
is only one. 



p 

+ 

pk 
N Q1 

0 

i-J 

C1] 

cD 	M a 

P1 

A ~  I 

t7~ 

+ A p R 

va p Q 
sus i3> 

W p~ 
~ 

W 

II ~ 

11A 

i N W 

W ~ 

Ui 



r x.,25.. 

Table 2.3 

olioy 	XpeOteI time in $0,0) hours 

State 0 	State I 	State 2 	State 3 

,e repair 
lew 	9850.76 	147.7614 	1.4776 	0.0059 

ro repair 9851.48 	147.7722 	0.73881 	0.00098 
hews 

.re e . repair 
'ews 	9851.49 	147.7723 	0.73886 	0.00098 

Table 2. 
-~~fr rr,ril~rrP~ 

Policy xpeeted 
Penalty 

Expected 
Maintenance 

Zxpeoted 
Total cost 

cost In Re. coat in Re in Rs 

One repair 76,865 50,000 126,565 
Crew 

Two repair 
crews 

75,448 100,000 175.448 

Three repair 
Crews 

75,370 150,000 225,370 
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25 	OPTIMAL 1 D' 1DAZ 0! ALLO CAT ION PROBLEM 

Malfunctioning of any constituent part of a system 

causes loss of money and time due to system interruption. 

Therefore the system mast have high reliability. Since the 
individual components can not be made . 100 percent reliable, 

the use of redundancies is often restorted to. The use of 

redundancies, however, is constrained by the resources 

available to the design engineer. 

Several authors , (Ballow, Bellman and Dreyfus, 

Pederowicz and Maxc mdar, (}hare. and Taylor, Jensen, Messinger 
and Shooman, Misra, Sharma, Mizukami IKoichi, Moskowitz and 

Mc Lean, Myers, and Enriek, Tillman, Tiliman and Littis.-chwager ) 

have considered the above problem using various formulations 

and computational techniques, The methods available are 

gradient methods, -  variational methods, dynamic programming, 

integer programming branch and bound methods geometric 

programming, etc. The redundancy allocation is an integer 

programming problem, when the allocations are allowed to take 

only integer values. The system reliability function is a 
non-linear funation. Ther constraints can be normally linear 

or nonlinear. 

The variational method and the discrete maximum 

principle, although being versatile, offer only an approximate 

solution. Geometric programming also provides an approximate 

solution after many simplifying asemptions. In most of the 
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approximate methods, 'the deoision variables are treated as 
being continuous and the final integer solution is obtained 
by rounding orf the real solution to the nearest integers. 

2 ,5i, SIU $ SYSTEM 1MJNDANOY ALLOCATION 

The various assumptions to be made for the analysis 
are  :- 

• The failure of. eny Subsystem or module results in the 

system failure. 
2. The failures of the subsystems are statistically inde-

pendent 

3. The failure distribution of the component is exponential 
with failure , rate 

2,5.1,1  Statement of the Problem 

Assuming that there are k subsystems or stages ( in 
Series) in a system. Then the system reliability is 

'k  
R5(n) it 1t3 (n3 ) 	 ( 2.38) 

where, R
3 (n3 ) Reliability of 3 th stage 

ri 	Number of redundant components in 3 th 
stage. 

Since the use of redundancy is • limited by the avail-
ability of resources, the optimal design problem can be stated 
as, 



e 

..28 

Maximize system reliability 

k 
R (n) = at  JPO 

Subject to the constraints 

k 
E G (n3) 	b  . 

(2.39) 

(2.4) 

n > I and integers • 

where' G (n j ) is the i tb type resources requirement for 
3 t'h stage and bl  is the total -  amount of resources available 
for the i th type of, constraint. 

It is nonlinear integer programming problem. For 
solving this problem , . the expression for reliability of the 

th stage is required. The reliability lity at the 3 th Stege 
can be increased by _ putting the components in parallel, Let 
stage . have, a set of n components - connected in parallel, 
each having the probability of failure as q3  • Then the 
expression for reliability .s 

k 
Rata) = 'i R4  (a4 ) 	 (2.41 

where, 	 n 

• k n 
• ' - 	(n) # 	it 	00-q 3 3 	 (2.42) 

A parallel redundant system is shown in Pig. 11. 
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Fig. 12 shows how the reliability of the system increases 
with the number of redundant components having exponential 

failure distribution. 

2.5.1.2 general solution of r --dundanc . allocation robs. m 

Assuming linear constraints on n in equation (2.40) , 

if the constraint is on cost, equation (2.40) becomes 

k 
E Ci, nn < (2.41 ) 

i 	1,2,.....,s 

where C.i3 > 0 and each Ci shows the allowable limit of cost, 

weight or volume, etc up to s constraints:. The problem can 
therefore be stated as the selection of n such that R(n) is 
maximum subject to the constraints given in equation (2.41). 

An approximate solution of problem (2.39) can be 
rapidly and easily obtaikied by . generating an incomplete 
family of undominated allocations. 

To . describe the concept of undominated redundancy 

allocation, we say no is undominated if R(n) > R(n°) implies 
Ci(n) > Gi(no) for same i t whereas R(n) .= R(n°) implies 
either 0(n) >, o (u°) for same i or 01(n)' 01(n°) for all 1, 

k 
where ai(n) = Y oi4nJ 

j1 

Taking logarithm on both sides of equation (2.39), 
k 

Log Rs (n) *~ E Log R4 (n4) 	 (2.42) 
J°J 
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Since Log X is a monotone - increasing function of 
X, the problem of maximizing Rs(n) is equivalent to maximi-
zing log R(n). 

The procedure for generating an incomplete family of 

undominated allocation can be summarised as follows Z 

Starting with redundancy allocation of (1,1  , ... ,1) , 
one adds a new component to that stage which yields greatest 
improvement in system reliability for tae cost incurred in 
placing it. This continues till any one constraint is 
violated.. 'If log R(n)  is concave each redundancy allocation 
generated by above procedure is undom .nested j 1 . To prove 
that log ( fl) .,s a Concave f1nOtion of no one can show that 

62 log R (n) * 62 log (1 -q ' 

~4n+2)i, g n) 

log 	 (2.43) 
n+1 ) 2 

where S log R3 (n) log R (n#i) -• log R (n) 

The denominator is large than numerator as 

(j_q n.+i )2 , (1„q n*2 ) (1q n) = q n(q -.1)2 

>0 

Therefore o2 log R(n) < 0, so also log Rs(n), as the sum 
of concave functions is again a concave functionl 



k 
Hence log Re (n) * 

Z' log R (n4 ) 
is 0Onoave 

2.5,1.3 	cple 

S le Coot Pastor 

Assuming that there is only one Constraint in (2.42) i 
L.e, Cost of the item, the procedure for' generating allocat-
ions will be to calculate desirability factor Fi for each 

.stage given by 

6 log .. (U.)
__ 	I P 	....a.4 ~ , ._,~ 	 log P.i (ni *1) - log R(  n )]  

3 	 - 
(?.44) 

Retaining the indexJ4 for which F JO is maximum amongst 

the S,$gea;, a component Is added _ to that. stage to find new 

a location. If maz3 mum occurs for more than one index, the 

lowest has been Chosen for allocation. 

Taking numerical example 1101 in which data runs asp 

Stage 	s 1 2 3 4 

Reliability 0.8 0,7 0.75 0.85 

cost 1.2 2.3 3,4 4.5 

Table 2.5 gives the Complete information 'about the undom3.nated 
allocations. It may r be noted that allocations are given for 

the system an actual redundancy allocation can be found by 
eubstracting (1, 1, 1, 1) from the system allocations. 
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Table 2.5 - Single Cost Allocation 

stem System System Deeiability 	Pastors 
Lo- Reliability Ooet P, '2 P3 P4 
tion 

I 	1 	1 0.3570 11.4 0#15194 0..11407 0.06563 0.03106 

1 	1 	1 0.4284 12.6 0,02732 O.1147 0.06563 0.03106 

? 	1 	1 0,5569 14.9 0,02732 0.02910 0.06363 0.03106 

2 1 0.6961 18.3 0.02732 0.02910 0.01435 0.03106 
? 2 2 0.8005 22.8 0.02732 0,02910 0.01435 0.00431 
3 2 2 0.8560 25.1 0.02732 0.00836 0.01435 0.00431 

5 2 2, 0.8845 26*3 0.00336 0#00836 0.01435 0.00431 

5 3 2 0.9287 .29.' 0.00536 0.00836 0.00348 0.00431 

~ 3 2 0.9468 32.0 0.00536 0.00248 0.00348 0.00431 

w 3 2 0.9529 33.2 0.00107 0.00248 0*00348 0.00431 

3 3 0.9715 37.7 0o00107 0,00248 0.00348 0.00064 

4 3 0.9831. 41.1 0.00107 0.00248 0.00086 0400064 

i 4 3 0.9887 43.4 0.00107 0.00074 0.00086 0.00064 

i 4 3 0,9900 44.6 0.00021 0.00014 0.00086 0.00064 

0.9929 48!0 i 5 3 0.00021 0.00074 0.00022 0.00064 

5 3 4.9946 50.3 0.00021 0..00022 0,00022 0.00064 

5 4 0.9974 54.3 0.00021 0.00022 0.00022 0.00010 

5. 4 0.9979 57.1 n 4 00021 0.00007 0.00022 0.00010 

6 4 0.9987 60.5 0.00021 0.00007 0.00005 0.00010 

6 4 0.9989 61.7 0.00004. 0,.00007 0.00063 0.00010 

65 0.9994 66.2 - 
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2.5.1 .$ Minimum number of glom onemte at each stage for 
de8ired reliabilit,i 
ay 	r ~1r r.ni.i~. rrarr 

Consider the problem of redundancy al ocation to 

each stage for getting a reliability of at least Ro at minimum 

system Cost. It is assumed that the redundant equipments will 
be in parallel arrangement. It is not difficult to see that 

the reliability of each stage must be greater than R0. Therefore, 

the minimum number of eàiipinents required in each stage can 
be found by solving 

k 
1 	(2,645) 

or 	
r ) J 	I- E 	 (2.46) 

• Tseng logarithm on both sides of equation (2.46) 

k3 log(1-r) = log (I-Rç1 

or 

icj 
log( -IO) 
,log (i r (2.47) 

If a linear cost relationship is assumed, where the 

cost of the th stege . is ° j I,k. 	0 k • then the minimum 

relative increase in cost per stage to reach reliability 

R s 

' 	a 
 

log(I-r) 
log (i -a0) 	

(2.48) 

'Thus the relative increase in. Dost is proportional 

to the ratio of logarithms of the desired unreliability and 

the unreliability. with no redundancy. 
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Moskowitz and MO Lean 181 have given a variational 
solution to the allocation problem for linear cost functions 
The solutions are 

a 

(2.49) 
log(1r3 ) 

There 	a 	o flog("-rj) 	
(2.50) 

k 	0 

log(1-~r) 

2.5.1.5 Example 

Supp r e.. the required level of system reliability 
R0 Is . 0.99 and the stage rel ab .lit .es without redundancy 
are 0.80 , . 0.70, .0.80 and 0.70, respectively. Assuming that 
the cost of a single equipment. in each stage is Re.2000, 
Rs.3000, and Ra.1000 respectively... The data is given in 
Table 2.5 and the minimum number of redundant equipments 
per stage . to meet system reliability is ealoulated in 
column no.5. 

Table 2.6 Basic Data For l .location Problem 

Stage, post per Eq i- Equipment quipineflt Un- Min,no .of 
pment in Rs. 	Rely abilit reliability redundant 

equp•per stage 
ro meet system 
r iz ol..L3. 

1 2000 0680 0;20 3 
2 3000' 0.70 0.30 4 
3 1500 0.80 . 0.20 3 
4 1000 0.70 0.30: .. 	4 



2.5.2 Bide 5v~stem Redu ndq o ll anon 

Making the same assumptions as in section 2.3.2.1, 

the optimal redundancy is found by the heuristic algorithm. 
A computer program of the algorithm is written FORTRAN -II 
and a number of problems are. solved on XBM 1620 computer. 

The reliability of the . system with initial  allooation(l ,1 ,1 ,1  ,1) 
is calculated in section 2.2, liquation (2.4) can be ,mp-
lemented for . Oaloulat1. g the initial . reliability of the 
system. A component is to. be added _to. the stage where its 

addition produces the . greatest ratio of increase in reliability 
to the increase in cost,. The desirability factors P j' s are 
calculated for each stage, as 

6R 
Pi =a0 	 (251) 

Then_ a component is added to the stage that gives 

the maximum of the P's. Again, the r reliabil .ty is computed 
for the new configuration and the . procedure  is  repeated till 
the desired constraint on the cost is violated. 

From equation (2.4) 

its = r1 r2+r4r5 rr9 rrr4 rr2 rr r4 -r2r rr+rr 

_r3r4 (r1 r5 ) +2r3 (r1 r2 ) (r4r5 ) 

and the system cost 

Try redundancy at stage 1, and calculate new system 
reliability expression,,. Rt $. 
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Then increase in reliability per unit system 

reliability 	Rg  g 	 (2.52) 
Re 

Increase in system cost per unit System Cost 

Cs  

Calculate '2'  '3: P4  and , '5 . Find maximum of 'these 

Let it be ' P • Then put one . redundant component in 

stage j and compute the reliability. Again find the best 

-allocation and repeat the procedure till the constraint is 

violated. Then the proceedinng allocation gives the optimal 

number of components in each stage. 
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The reliability optimization problem is a nonlinear 

integer programming problem. The methods forsolving this 

problem a.-6e classified into two groups, one which includes 

methods that require simple formulation and geld approximate 

results and the other which includes methods that ate oemp-

licated but yield an oxact integer solution to the problem 

1211. The procedure to be used for the solution of the 

reliability problem depends ©n the accuracy of the results 
and the coat of obtaining them . because the system designer 

has to solve several alternatives and alteration in the 

design pareJneter from other technical. considerations. The 

redundancy allocation problem does not require an exact 

eo1Ut1On as the ob. ective emotion of the system reliability 
is a well behaved nonlinear function anti the linear cone's 

its need not be considered ' too tight a to relax at the 

design stage.. 

3.1 Y A' IO t.AL METHOD 

In section. 2.5.1, from equation (2.38) , 
k 

Re ~*~ R 

and the basic system cost 
Ic 

Cb ~. 
jail ~~ 

(3.1) 

(3.2) 
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The problem is to find redundancy allocation which gives 

minimum cost for the specified system reliability of R$. 

Denoting the number of elements in stage j by mj the reliab- 

ility of stege i can be written as 

R aiiiiq 	 t3.3) 

where q j a '~~-r .f rr is the reliability of each element in j th 

stage and A j is the reliability of m3 such elements in para- 

llel. 
Introducing another variable aj defined by 

a 
R 	Rs 	 (3.4) 

It can be shown that a real positive. number aj between ,0 and 

i, on always be found to satisfy (3.4) . `hen from (3.3) and 

(3,4) each m j can be written as 

log(1-R) 	log(1.R8 ) 
- 
	 (3.5) 
 log 	logq 

 the system coat and reliability can be given by 
a 

k 	 k clog(1R )J 
Cs 	m c 	~E 	og q jH 	 (3,6) 

k. 

k 	k a 	3 
R 	J.1 R 	3 31 8 	,s 

	 (3.7) 

For (3.7) to be valid, 

k 
a a

I 
a, 	1 	 (3.8) 
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It is possible to optimise cost with reliability. This 
occurs for distribution of a j 1'.9 which gives stationary vale 
for the ratio 08/RS . The distribution of a,' a is to be 
found which satisfies 

0 	60 	SR 6 ( * - 	0 	or .,fir- a-► '"' 	-- 	D 
Q 	 n 	S 	(3.9) 

k 
subject to the constraint that .. a = 	6 a =. 0 	(3.10) 

If 	is a real constant then.. simultaneous solution of 
(3.6), (3.7) aid (3.8) and 

(3.11) 
0. R 

will provide the distribut .on of ai t s for stationary value 
of 0JR5. Now 

OR8 = R8(a+6a) - R8(a) 

k 	 k 

10 R
e 	

- Ri `~ 	I a R, 
e

(R . [ 	1 ..`1) 
e 	e 

sjrLce 6a-E oa 	0 

therefore 6R8 / Re 	0 
	

(3.12) 

Similarly the variation of 00 with a is given by. 

60e w ae (a+6a) - C (a) 



0 	3 	'~ 	R ~a~ 

+ 

	--  
k 

	

zs ].0,.~ g
..~.. 	-  

e 	1 	qj 	
0g 

k o  

	

Ic 	....~..~...,. 	. log(' —Re3 SMIlog q  

E. o 4 log 
j 

+ 6 aj 
e 	

_ 

 R (3.13) 

where c j o /loggq 

If it is assumed that R8 isquite highs i.e. very close to unity 

and Q8 is very small 

6 as 	o .og 
1(U (j-'Q )a

:

ôa 
I s 

6a 
E O log `{ 1+s I 
a 	 3 

theil to the first approximation
ôa 

 £ o 

i . 

Substituting (3.12) and (3.14) in (3,.11) Yields 
I 

E 	8a m. E 6a 'a O 
i Qa 

For (3.15) to hold good 	a j = -M- 

(3.14) 

(3,45) 

(3,616) 



Solving for 	, from E a 
3 

0  

• 
a 

0e 
	 (3.17) 

Substituting (3 ,..17) in (3. 6.). 

$ 	 c ./log q 

0 	Ze4/ogg1  
i 

(3.e) 

Therefore minimum cost can be , obtained for the distribution 

a, given by +( 	.) and substitution of (3.18.) in (3-.5) yields 

the values of rn 	1 , • • .,k) 1 the elements in each stage 
with the total cost as 

a 
k 	1c 	log(1—Re  ,)  

3.1.1 Procedure Lor Calculating 0 t3.m sera a looatiq s 

. The general - procedure for determining the optimum  
allocation can be outlined as follows 

1. Using the cost and reliabilitydata about each element 

type a j's using equation (3.18)-  are calculated and the 
calculated values oan be checked by . finding their sum 

which should be equal to unity, i.e. 

Ic 
a 
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2. Por the given system reliability Rg  and unrel abilities 
of each element type _ one *an Calculate the values of m j  t o 
the probable number of elements in eaoh stage,, using 
equation (3.5), 

3. Usuall7 the values so calculated for m's will not be 
integers and as the . m j' s can only have integer values, so 
the values of mj's obtained in step 2 are rounded off to 
the lower integer values. 

4,,  Now as the reliability of the system will fall, short of 
the given .system reliability due to truncation of the 
values of 1113  * s the farther improvement.  In system reliability 
Can be obtained by adding suaoesslvely the element types 
that yield minimum increase in Cost for a certain increase 
in reliability.  

5. Therefore the ' desirsb .lity factors F £ for each stage are 
Calculated as defined by 

bR . /Rs  

where, ' 	the_ desirability factor for adding a unit or 
element to the 4 th group . . 

System reliability and octet before adding the 
unit to 3 th group 

01  • cost of adding a unit to J th ttage 

However it can be shown that 6RJR6  * 6R3/R3 	(3.20) 

Here Ri  is the reliability of j th group before the 



addition of new unit to that stage and BR j is the increase 

in reliability of that stage after new unit has been added. 
Therefore (3.19) can be written as 

(3,21) 

To show (3.~2O) holds good one Can write that 

k 
S 

and the reliability of the system R.B T , after a unit to 

j th stage has been added will be 

k 	 R + SRS ) 
its 	 R~ ( +&X ) 

also 6R5 RO - It ;, therefore, 
i 

bit 
&Re f e 

or 6R3 6R9 
acs .....~.. 

Rs 

6 Once all P3' s have been calculated in step. 5 p a new 
element is added, to the stage 3 for which the P calou- 

fated is maximum. 

7. New reliability and cost of Che. s tstem_ io oalcuCated. If 
the reliability of the system is now, more than or equal 
to the given reliability, the allocation obtained so far 
is the optimum- value, otherwise the steps 5 and 7 are 
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repeated till the system reliability is at least equal 
to Eg or greater than this. 

3.2 	PFNIff FUN OTION MR HOD 

in this method, the constrained problem is converted 

into an unconstrained problem by the use of a penalty function, 
which is added to the constrained problem. 

The reliability problem is 
k 

-log R5(n) - E log Ra(n) 	 (3.~2) 
31 

subject to the constraints 
k 

~1 	1i1 (nj) £ b 	...... 	 (3,23) 

n~ > 0 and integer 

The equivalent unconstrained problem can be written as 
I inimize 

P(n, r)  log R5(n) + r  E' b {  (n } 
~ 

(3.24) 
where rp is a_parameter called as penalty factor. A 
sequence of Positive values of rp which are strictly deore- 
acing to zero, are used for minimizing (3.2$) It results 
in a sequence of m 	points which converges to the 
constrained min . .. of the log n R®(n) . If the optimal 
solution is integral, then problem is solved. Otherwise,, a 
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non-1ntegrel variable, -say n, v is chosen which has highest 

fractional part . dn3 . ,, new constraint is incor orated in 
in the original problem which can be written as 

n ? Inj I+I 	 (3.25) 

where In i s the integral portion of the n • The 
new problem is again solved in the similar way as original 
unconstrained problem,. If new problem converges, n is set aas 
In3 I + 1 	otherwise, as ini. The. . same procedure is 
repeated for other varr ables. 

3.2.1 Algorithm of the Method 
~ 	r~~~ ~i i YIY~IiAI~ M~IiYiYir1~ it 

1. Select an initial value of rp > 0 and an interior point 
no.. Set t' 0 

2. If n1 nearly minimizes p<n:app), go to step 6, otherwise 

calculate direction vectors d 

OP(n,rp) 

3. Choose Bt0pøIze 	 that min •.m.. 'ze s F1 (n + t d1 ' r) 

4 • Calculate new trial point 

n1+1 	nn + t d~` 

5. Set 1 1+1 and go to step 2. 

6 • Check convergence. If solution is optimal go to step 7 
else replace rp by . strp , where 0 < .et G I and go to 

step 2 with 1=0. 
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7 « 'Choose that arable which has greatest do and add the 
following constraint in the problem 

n3 . In,I +1 

S. Repeat step 2  - 5. If problem converges set n i n j  1 +1 ; 
otherwise, n Se in I and remove j th stage from oalcala— 

' tion. 

9.. I ' all variables are tried., stop , else, go to step 7. 
The initialvalue of r should be such that 

-lognR's (n) 
P 	 (3.26) 

(ri  1 
where Fe  is 0.01 < p'0  < i 

3.3 k1' RA1{ F 1 GT'InI t IET OD 

Consider a simple n unit series, struatuxe , let the 
reliability of individual units be x1 ,ar2  .9  ... ; z and that of 
the struo tune be Ice+ 

Then unreliability of components will be y1'y2 ' 
where, 

2  1—'X2 

Y 

De tine parameter Ø  as 
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Os. 2 	 (3.27) 

Then 
xi 	 (3.28) 

1. 

For the given series system 

xa  *0  Xi wx2, 04 r•a,Xn 	 '(3.29) 

{1+ e) a (i+f 1 )(1+02 ).....(i+Ø) 	 3.30) 

r a a 2 
0$  gs 01  +02  + 

Once Oe  is known from (3.30) the system reliability Is 
obtained from 

Xs  a 	 (3-31) 

	

• • 	0e 

In most reliability etudes, the components have a rela-
tively high value of 'x' i.e.  0 << 1  

. l9quation (3,30) can be approximated by 
n  

#E 0 (3.32 ) Jul  

Similarly for n unit paralle structure 

n 

	

f p 	0, 	 (3.33) 

Now consider the redundancy problem in which, at the 



j th stage n is the total number of components in parallel. 

. System parametric equation becomes 

E  (3634) 

The problem is to minimise Oe ( i.e. to maximize 
system reliability R) subject to the linear constraint 

introduce the Lagrang an Multiplier to give the. 
unconstrained promulation as 

	

i► *Z 0 + T C E o3n3 a] 	 (3.35) 

The conditic ni of optimality are 

O 	0 	 (3.36) 
3 

and 

Differentiating (3.35) w.r.'t. y and T 

n 
OL 
On 	Ln 01. 01 + e 	0 	(3.3$) 

~L ~E 0 n - a-0 	 (3.39) 
From (3.38) 

f, aj Ln ? + b 	 (3.40) 
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where  
L  

b _ t nlc3 

k * 
LnO3 

From (3.39) and (3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

where 	Q = E 0 b 

Oaf , 

Once a is obtaine4, n j  oau be Galoulated from 
equation (3.40) . u eo obtained by treating as a continumie 
variable, is approximated to the nearest integer to get a 
nearoptimum solution. The algorithm of the method is given 
in reference 1201 

3.3.1.  

. 	Consider the . Problem, of:' maximizing the reliability 
of the Lollowing 4 -stage system 

Stage j Cost a Rel ability 	R 

4.0 019© 
2 3:0 0.85 
3 2.0 01.80 

.4 . 	1.0 0.70 
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Cost constraint .s 30 unite. 

Poilowing the Procedure of section 3.3 

01 	0.1 a 0.111 	Lit 0, 	. 2.19 
0.9 

02 	0.1'76 	 Ln 02I 1 1737 

03 0.250 	I 	 I 	.Ln 03 a - 1.386 

04 = 0.428 	 Ln 04 a - 0.849 

,s 	...; 	a 1.826 v.~o2 

	

-2.19 	~ 	~m ~~ ~  

	

k2 * 1.72:7 	 Xn 	= 0.546 

	

Ic3 =1.443 	 Ln Ic3 a 0.367 

	

k4 a 1,178 	 Ln k4 * 0.164 

*00.457 	 a -0.275 
a2 a -0`576 	b2 = -0.314 

a*-»0.721 	 ba a-0.265 
a4 a -1 .178 	 b4 a -Q • 193 

S Is calculated as 

30-.-1.1-0.942-0.53-0.193) 
8 k 

-1(1.828+1 .728+1 .442+1.178) 
17532 
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• 32.65  5.305 
6.i:76 

.~ e-'5.305 

0.00496 

i 	a,, 	+ b 

2.425 + (-x0.275) 

to 2.15 — 2 

p 2̀ ' 3.056 - .0.314 
2.742 ~,. 3 

73 *3.826-0:265 
3!6_.4 

Y4=6.25,-0:1.95 

6.57 6 

T tol system Cost * 2(4) + 3(3) + 4(2) + '6 (1 
8 ,+9+8+6 

31 

• ̀. The Coat Bone` ra,int is violated. 

The .Lagrangian Multiplieris, decremented by 0.001 
and the procedure is: • repeated. 

New 	0.00396 
• .The optimal -allocation is Zound to be (2,34.5) and 

the optimal system reliability is 0.98269. 
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3.4 	I,AWL R Aar 	►' s DI3cRE oPTar! z AflON roman 

Lawler and Bell 1171 described a simple, easily 
programmed method for solving discrete optimization problems 

with monotone objective functions and arbitrary (possibly 

nor-convex) constraint.. The problem can be stated as 

Minimise Z '" go (x) 

subject to 

'911x'912() 0 

g21(x - 922 (x) ? a 

S 

gn1 (x) -~  

(3.46) 

In general, the type of problems that can be solved 
by this method should be put in the form 

Minimize ze g0 (x) subject to the constraint of the form 

g 1(x) . €€2 (x ) 1 0, 

where 
x a (x1, x2,...., x) . 	. 

and 	.meq +~► 0 or 1 , 	( j -1,2,..,,,u) 

with the restrictions . that a acb . of the functions g0, g11 •'• 
.. 2 • • • '2 .s . monotone non-decreasing . i n each of the 
variables (x1 X2 i ... , Xn) . 

Here it is possible to transform non-negative integers 

into binary variables also and if necessary, an arbitrary 



W053 U 

objective function of the form 

minimize g0  (x) 
can be replaced by a monotone non-increasing objective 
function by the formulation as 

minimi7* 
subject to 

z— g0(x))0 	 (3.47 )  

Vector xis 'binary' in the sense that each xj  
is either . 0 . or 1. x < y if add .only if x 1Y  for 

1 .. * ,n. - .Thi is the vector partial ordering. There 
is also the lexicographic or numerical ordering of these 
vectors obtained by identifying with each x the integer 
value 

N(x) 	x1(2n) .x2 (2 2) +....+xn(20) 	(3.48) 

Numerical ordering ie a refinement of the vector partial 
ordering i.e. x < y implies N(a) , N(y) ; however$  B(x) 

1(y) does not imply x y. 

The method La , basically ' is a _'arch method, which 
starts with x a . (0,.0:  + + .i , 0)  and examine the 2 solution 
vectors lxi the numerical ordering described above, Further 
the labor of examination, is cons derably out down by folio-
wing certain rules. As the examination proceeds one can 
retain the least costly up-todate solution. if is the 
solution having I. cost' _ g0() and x is the vector beipg 
examined then the following steps indicate the conditions 

under which certain vectors may be skipped. 



1. Test if g0(x) 	0p(x). If YES# akp to x and repeat 
the operation, otherwise proceed to step 2. 

2. Examine whether gil(x 1) - g 2(x) a for I = 1,.. .,r. 
If YES, proceed to step 3 ; otherwise. skip to : *and go to 
step 1. 

3.. Furthers if g it -*~:c 	= ., . • . ,r) , replace x by x 
and skip to x * $ otherwise change x to xfl, In 'either oaSe 
further execution is transferred to step 1. Lawler and Bell 

(171 Gall the above steps of the algorithm skipping rules 
1,3:2 , rospectively, Following the above rules, all the 
vectors are examined and scanning continues until a vector 
having maxirnum numerical orders viz. (1,l, ..,, ,l ), is found.. 
In case one has skipped to a vector having numerical order 
higher than l► ..,, » 	designate this state by 'o re f ,o-w 
and terminate the procedure. The least 'costly vector 
recorded provides the optimum solution, 

t+e should not be overwhelmed by the number of 
trials. In practice the number of vectors to be examined 
may be idte small. Por example, in an 11 -variable problem 
with a total of 2 " ' solution vectors, only 42 vectors were 
examined. 

* is the first vector following x in the numerical 
order that has the property x x • For any X,, x * is calculated 
on a computer by treating x as a binary number and then subs- 
tracting I from it. Logically OR x and x-1 to obtain 
Finally add 1 to obtain x . 



1. 



X* Can also be found. out by the following method 
1311. 

Let the right most position of one in x be u and 
the position of rightmost zero to the left of u be v. Then 

vector can be +calculated from x by 

I - putting 4 a I 

	

'2- putting 	4 for v+1 < i t u 

	

. putting 	xi  for < i < v-1 

where us is the total length of vector.x,. 
rememberia that x is written as  

it is found that . the second procedure is a 'flcient 
with respect to the computer time. 

3-4,1 	 DVA , T  G 	OP  ^rirlIEirsr  

This algorithm has been fe qd. of ,great -interest in 
solving variety of problems arising in the reliability . area 
and those that defy solution by any standard procedure. This 
is due to the following reasons 

1. The algorithm provides and exact integer solution. 
2. The procedure is Very simple and involves only the 

functional evaluations. No partial derivatives or 
positivity tests are required. 

3. There exists a possibility of reducing the number of 
searches and the search does not so greatly increase 
with the number of variables. 

4. The memory requirements are extremely smaller thanas 



with other methods., 

5.. A very large problem Can also be solved in various 

passes as the search can be broken up in the range of 
binary variables. 

3,4.2 	I  A OCATION plOBIE.I 

Considering a eerie s-panei system with etati:+i- 
tidally Independent componets and aesuming that - 

The system has n stage a in series, i.e. ,# the system 
fails if any stage fails. 

2. Each stage has several identical components in parallel 
to provide the _ redundancy,. The reliability of each 
Oomponea is known. 

3. Per the th stage, if I rid components .(each with 
'reliability p) are used, the stage reliability is 

I 
(m z I-C1-p~ 	 (3.49) 

The overall . reliability of the system is 

R 	n R (m) = i 1.W(i- ) 	(3.50 )  

or 	fl 
£ Ø4(m) 	 (3,51) 

where 
(m 	Xn R3 (m) and Z m Ln Re 

This form is more convenient to use singe each term of the 

sum depends on a single variable* Moreover# since ø(m) is 



N 

a monotone increasing concave function of m j  r maximizing 
Rs  is( equivalent to maximizing Ln Rs  ,a X. Two Situations 
will be considered here. 

1. minimizing the cost of a system, given that the 

system reliability is not less .  than a preassigned 

value; the cost function and constraints may be any 
arbitrary funotons. 

2. maximizirig the system reliability subject to given 

constants * the constraints need not be linear. 

In the following sectons, we will sh©w low different 
redundancy eptim .zation problems Can be formulated as an 

integer programming problem .with zeros-one type variables, 

so that it is easier and more economical to solve them using 

the Lawler-Be.11 algorithm than by any other method 

3.4.2.3  EXM4PIaE 

Consider a system consistingof two stages. The 
reliabil .ty*  Cost and weight parameters cif the components are 

given below. It is required to find the optimal number . of 

parallel components to _be employed in each stage to increase 

the system reliability. The total cost and weight of . the 

system should not exceed 40 and 30 units respectively. 

Stage 	 7 	2 

Component Reliability 0.91 	0.96 
Cost 	 9 	6 
Weight 	 5 	8 



The problem can be written as 

Maximize Ln R5(n) 

LMR (0) Lu(1-.o9 +~ )+Ln(1--.04 t1 ) 
or Minimize 	 m +1 	m +1 

go (m) 	-Ln(i-..Q9 I ) -~ Ln(1-.04 2 	(3.52) 
subject to the constraints 

g1(m) = 25-9m1 --6m2 > 0 	(3.53) 
92(m) a 17-5m1-8m > 0 	 (3.54) 

Since the objective function is non-increasing, 
the following situations - will be made by once more replacing 
usual binary variables_ Xi, with (1 -xi ) . Subscript i and 

refer- to the constraint and stage reppeot .vely. 

Before 1L and in2,, the non-negative integer variables, 
can be transformed to the variables of zero- one type, it is 
necessary to estimate their maz arum values. From (3.53) and 
(3.54), we find that m1. . 3 and m2 < 3 • Therefore, 'we make 
the following substitution, 

I 

rn1 X1I +2x12 

(x11) + 2(1-x12)  

	

3-x11 - 2x12 	 (3.55) 

m2 a x21 +2z22 

a (1-x) + 20_X22) 

ffi 3-'x21 	2 22  -  (3.56) 
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Where xii  is either 0 or I 

Substituting these values of m1  and n2 , 

-2x 
g0(x) = .- n(1-'0.094

-x11-*2x12) 	
Ln(1....04 	22) 

811(x) 9xl  , +18X12  x21  +l 2x22--20 

'912  (x) * 921(X) 0 

822(x) 5X11+10x1246 1+16x22-22 

Following the rules of Lawler-Bell algorithm, the 
solution se quenoe is given in Table 3.1.  

Table 3.1 

Test Vector 	 Comments 

0 a 0 0 Skip to 	through step 
9" 0 0 1 Skip to x* through step 2 
0 t 0 'Skip to 	through step 2 
0 I 0 . 0. Change x to x+i through 

step 3. 
0 0 1 Skip to x" through step 
0 1 0 Change x 	z+1 through 

step . 3 
0 1 1 1 g0 0409437, skip to 

through step 3 

Table aontd.. 



Table 3.1 oontd. 

Test Vectors 	 Comments 
'22 
	

x12 	X71 
	

x2` 

1 0 0 0 Change x-+ xi through 
step 3. 

1 0 0 1 Change x-v x*1 through 
step 3. 

1 . 0 1 0 Change x -* xi i through 
step 3.... 

1 0 1 1 g0  * 0.04155, skip to M* 
0 0 g0  0-0.00973$  skip to 

The optimal solution obtained is 

x22 x12 	1 and, 	2l  °` xI1 " 0 

From equation uation (3.5 5) and (3.56) 

m2 =3-21 

Therefore; the optimum nuiber of parallel components 
to be added to the existt±lg—ones, are one in each stage, 

with maximum reliability as 0.9903. 



The basic consideration in the design of a complex 
system is that its reliability should be high. The relia-
bility of modern system, being sophio aced needs special 
consideration. The reliability of the constituent components 
is insuffiotent to meet the system reliability goal. Therefore, 
some.  neans must be provided for increasing the system relia-
bi lity. One taxa obtain high reliability for the system 
by providing as ma*y° redundancies as possible,, but to 
ensure that this does not become too costly, heavy or bulky 
system. Therefore, the question of optimization of system 
reliability with respect to Cost, , weight or volume arises. 
The other problem is to minimize the system down-time by 
resorting to planned maintenance of the equipments. !here-
fore, the question of optimum maintenance policies arises. 
Both of these aspects are covered in this dissertation work, 
through the mathematical models. 

The reliability problem has form of nonlinear 
integer- programming problem having integer variables # A 
ew methods of. optimization of such problems are presented 

in chapter Ill The methods discussed are the variational 
method, the penalty function method.# I.agr e!  s Multiplier 
Method and the Lawler and Bell's optimization method. Other 
methods of optimization are also available. Variational 
method is easier to obtain for single constraint problems, 
and it provides near optimum or optimum solution oonvenie-. 

ntly, fast and without much complexity. When the reliability 



problem has a number of constraints and approximate solution 
is required, the use of penalty function approach can be 
made as explained in section 3.2. This method provides 
continuous solution and has fast convergence # For obtain-
Ing the solution by Lagrangian Multplier method*  one has 

to try several values of the Lagrangian Multipliers before 
arriving at a Correct value. 'The exaot integer solution 
of the reliability proviem is obtained from Lawler and 
Bell's algorithm. The nonlinear integer problem is conver-
ted into zero-one nonlinear; p rogramming problem. This 
method is easily programmable and the memory requirements 
are extremely smaller as with the other methods. There 
exists a possibility of reducing the number of searches and 
the search does not so greatly increase with . the number of 
variables, , , Therefore, a very large problem oan also be 
solved in various passes as the, search can be broken up in 
the range of binary variables. The method to ' be used for 
the solution of reliability problem depends on the accuracy 
of the results and the cost of obtaining them. 

In future., due to.  the advent of 'apace age' the 
system will demand more dophistioated equipments for vomm 
uniaatione, command and control, missile and satellite 
launching and navigation. Many,new techniques will be needed 
to cope with these new problems. A continuing growth in 
the problems of system maintenance is anticipated. Therefore, 
the problems of systems planning may be expected to become 
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more important in the future and to require the develops- 
ment of advanced technic ues for decis on-making. It is 
hoped that the present work mad lielp in the design of 
tomorrow's systems. 
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APPENDIX —A 

C RELIABILITY OPTIMIZATION N SERIES SYSTEM BY REDUNDANCYsG L MADAAN 
DIMENSION R(3)sFt5)sC(5)sM(5),R5(5),RSl(5)sQ(5) 
READ 10,CSG 
PUNCH 10 s CSG 
DO9ITER=1s3 
READ10s CR( I)sI=ls5) 
PUNCHIU, (R (I) f l= l s5 ) 

10 FORMAT (5F 10 5 ) 
READ 10,(C(_I,l.si=is5) 
PUNCH1Of(C(I)*I=1s5) 
DO 1I-1s 
MCI )1 

y ©CI)=i.—R(I) 
K=O 
DO 7J=1►5 

7 RS1(J)=0• 
CS=O• 
DO 5J:1,5 
AMJ =M (J ) 

5 CSftCS+C (J) *AMJ 
8 DO 2I=1s5 
3 RS(I,)=RS1(I) 

RSIr-RS(I) 
RS1(I)=R11)*R(2)*R(3)*R(4)*R(5) 
RSi1=RS1(I) 
MCI )=M(I)+1 
K=K+1 
IF(K-2)12,13,13 

12 RI==R(I ) 
13 R(I):t1.—Q(I)  M(I) 

GO TO(3s4) s►K 
4 K=O 

MCI )ZM(I)-2 
R(I)=RI 
FI=(RSI1—RSI)/RSI 

2 F(I)=FI*CS/C(I) 
PUNCH 2OsIF(I)vI=.1>5) 

20 FORMAT (4E16.8) 
FM=F(1) 
IM=1 
DO 6J=2,5 
IF (F(J)—F'Mj6s6,l1 

CONTINUED ON THE NEXT PAGE 
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11 

L 

30 

40 

50 

500 

FM=F(J) 
IMaJ 
CONTINUE 
M(IM) M(IM)+1 
RI IM) 1.—(Q(IM)**M{ IM) ) 
CS=C S+C (IM)  
RST-RS1(IM) 
PUNCH 30,(M(J)'J=1s5) 
FORMAT(13H ALLOCATIONft s5I5) 
PUNCH40sCS,RST 
FORMAT(26H COST AND RELIABILITY 
PUNCH50 
FORMAT(26H COST AND RELIABILITY 
PUNCH500,(R(J)*J=195) 
FORMAT 14(2X,E16.8))  
IF(CS—CSG)8,9,9 
CONTINUE 
STOP 

END 

ARE v2(2X*E15.8)) 

ARE s2(2X,E15.8)) 
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APPENDIX 8 

C RELIABILITY OPTIMIZATION N SERIES SYSTEM BY REDUNDANCYsG L MADAAN 
PROGRAM ACCEPTEDZ 	36930 42280 	59339 59999 

60.00000 
.65000 	.65000 	.65000 	.65000 	.65000 

3,50000 3.20000 4.00000 5.00000 6.50000 
0.,22199993E+01 0.24281242E+01 0.1 424994E+01 0.15539995E+01 
0.11953845E+01 

4LLOCAT I ON O 	1 	2 	1 	1 	1 
:OST AND RELIABILITY ARE 	0.25400000E+02 	0.15663922 
:OST AND RELIABILITY ARE 

0.65000000 	0.87750000 	0.65000000 	0.65000000 
0.65000000 

	

0.25400000E+01 0.72025515 	0.22225000E+01 0.27780004E+01 
0.1.3676923E+01 
►LLOCAT I ONS 	2 	2 	1 	1 	1 
:OST AND RELIABILITY ARE 	0.28900000E+02 	0.21146295 
:OST AND RELIABILITY ARE 

	

0.87750000 	0.87750000 
0.65000000 

0,74925945 	0.81950253 
0,1,5561538E+01 
LLOCATION= 	2 	2 	2 	1 
OST AND RELIABILITY ARE 	0.32 
051 AND RELIABILITY ARE 

	

0.87750000 	0.87750000 
0.65000000 

0.85296285 	0.93292812 
0, 1,7715384E+01 

	

0.65000000 	0.65000000 

0.25287505E+p1 0,20230004E+01 

1 
00000E+02 0.28547500 

	

0.87750000 
	0.65000000 

OC74634250 
	

0•e 3030000E+01 

LLOCAT I ON * 	2 	2 	2 	2 	1 
DST AND RELIABILITY ARE 	0.37900000E+02 	0*58539125 
DST AND RELIABILITY ARE 

	

0.87750000 	0.87750000 	0.87750000 	0.87750000 
0.65000000 

).98259237 	0.10747104E+01 0.85976857 	0.68781466 
3.20407692E+01 
,LOCATION* 	2 	2 	2 	2 	2 
)ST AND RELIABILITY ARE  0.44400000E+02  0.52021819 
)ST AND RELIABILITY ARE 

	

0.87750000 	0.87750000 	0.87750000 	0.87750000 

CONTINUED ON THE NEXT PAGE 
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0.87750000 
0•11511108E+01 0.12590277 5E+01 0.10072222E+01 0.80577762 
0.61982906 

4LLOCATION= 	2 	3 	2 	2 	2 
:OST AND RELIABILITY ARE 	0.47600000E+02 	0.56748861 
:OST AND RELIABILITY ARE 

	

0.877 0000 	0.95712500 	0.87750000 	0.87750000 
0,87750000 

	

0.12340738E+01 0.43311809 	0.10798146E#01 0.86385172 
0.66450146   

{LLOCATi0N= 	3 	3 	2 	2 	2 
:OST AND RELIABILITY ARE 	0,51100000E+02 	0.61898294 
:OST AND RBL+ABILITY ARE 

	

0.95712500 	0,95712500 	0.87750000 	0.87750000 
0.87750000 

0.42511134 	0.46496553 	0.11.592131E+01 0.927.37052 
01336180 
►LLOC+T I 0N- 	3 	3 	3 	2 	2 	- 
:05T AND RELIABILITY ARE 	0,55100000E+02 	0..67514992 
;05T AND RELIABILITY ARE 

	

0.95712500 	0,95712500 	0,95712500 	0.87750000 
0.87750000 

0.45838802 	0.50136190 	0.40108930 	0.99996286 
0.76920,221 
LLOCATION- 	3 	3 	3 	3 	2 
051 AND RELIABILITY ARE 	0.60100000E+02 	0.73641352 
OST AND RELIABILITY ARE 

	

0.95712500 	0.95712500 	0.95712,500 	0.95712500 
0.87750000 

+RROR LC-2 tN STATEMENT 0000 + 05 L. L. 

0 



APPENDIX -B 

95 0  
,85 	.85 	.85 	.85 	.85 

3. 	4. 	5. 	6, 	7. 

C RELIABILITY OPTIMIZATION N SERIES SYSTEM BY REDUNDANCY,G L MADAAN 
PROGRAM ACCEPTEDZ 	36930 42280 	59339 59999 

95.00000  
,85000 	.85000 	.85000 	.85000 	*85000 

3.00000 4.00000 5.00000 6.00000 7.00000 
0.1.2499998E+01 0.93749987 	0+74999990 	0.62499991 
0.53571421 
►LL0CATI©N4 	2 	1 	1. 	1 	1 
:OST AND RELIABILITY ARE 	0.28000000E+0.2 	0.51026110 
:OST AND RELIABILITY ARE 

0.97750000 	0.85000000 	0.85000000 	0• 5000000 
0.85000000 

0.18260870 . 	0.10500000€+01 0.84060000 	0.70000000 
0,59999995 
,LLOCAT I ON= 	2 	2 	1 	1 	1 
051 AND -ELIABIL1TY ARE 	0.32000000E+02 	0.58680027 
05T AND RELIABILITY ARE 

0.97750000 	0.97750000 	0.85000000 	0.85000000 
0.85000000 

0.20869556 	0.15652167 	0.95999986 	0.79999993 
0,68571422 
LLOCAT I ON= 	2 	2 	2 	1. 	1 
OST AND RELIABILITY ARE 	0.37000000E+02 	0.67482030 
OST AND RELIABILITY A-E 

0.97750000 	0197750000 	0.97750000 	0.85000000 
0.85000000 

0.24130443 	0.18097831 	0.14478265 	0.92500000 
0,79285708 
LLOCATXON= 	2 	2 	2 	2 	1 
DST AND RELIABILITY ARE 	0.43000000E+02 	0.77604335 
DST AND RELIABILITY ARE 

0.97750000 	0.97750000 	0.97750000 	0.977500.00 
0.65000000 

D.28043464 	0.210.32598 	0,16826078 	0.14021732 
192142850 
-LOCATION= 	2 	2 	2 	2 	2 
)ST AND RELIABILITY ARE 	0.500000100E+02 	0*89244985 

CONTINUED ON THE NEXT PAGE, 
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:QST AND RELIABILITY A t 	 a  , 

	

0.97750000 	0.97750000 	0,97750000 	0.97750000 
0.97750000 

0*32608685 	0.24456513 	0.19565222 	0,16304351, 
0.13975158 

1LLOCAT 10N= 	3 	2 	2 	2 	2 
:OST AND RELIABILITY ARE 	0.53000000E+02 	0.90991082 
:057 AND RELIABILITY ARE 

	

0.99662500 	097750000 	0.97750000 	0.97750000 
0.97750000 

0.50853920E-01 0.25923922 	0.20739138 	0..17282615 
0,14813661 
,LLOCATION= 	3 	3 	2 	.2 	2 
;OST AND RELIABILITY ARE 	0.57000000E+02 	0.92771343 
:OST AND RELIABILITY ARE 

	

0.99662500 	0,99662500 	0,97750000 	0.97750000 
0.97750000  

0.546916 OE-01 0.41018730E-01 0.22304352 	0.185 6950 
0.15931671 
LLOCAT I ON= 	3 	3 	3 	2 	2 
OST AND REL+ABILITY ARE 	0.62000000E+ 2 0. 4586435  
057 AND RELIABILITY ARE 

	

0.996 2500 	0.99662500 	0.99662500 	0.97750000 
0.97750000 

0.59489206E-01 0.44616905E-01 0.35693654E=01 0.20217388 
0.17329190 
LLOCATIONa 	3 	3' 	3 	3 	2 
OST AND RELIABILITY ARE 	0.68000000E+02 	0.96437039 
OST AND RELIABILITY AR+ 

	

0.99662500 	0.99662500 	0.99662500 	0.99662500 
0.97750000 

3 s65245993E--01 0.48934495E-01 0,3 1471 736E-01 0.,3262311.3E-01 
).19006214 
LOCATIONw 	3 	3 	3 	3 	3 

DST AND RELIABILITY ARE 	0.75000000E+02 	0*98323851 
)ST AND RELIABILITY ARE 

	

0.99662500 	0.99662500 	0.99662500 	0.99662500 
0.99662500 

)*71962446E-01 0.53 971835E-01 0.43177624E-01 0.35981350E-01 
),30841157E01 
-LOCATION = 	4 	3 	3 	3 	3 
)ST AND RELIABILITY ARE 	0.78000000E+02 	0.98606876 
)ST AND RELIABILITY ARE 

	

0.9 949380 	0.99662.500 	0.99662500 	0.9966.2500 
0.99662500 

CONTINUED ON THE NEXT PAGE 
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0.11193722E-03. 0.56131165E--01 0.44904932E-01 0.37420776E-01 
0.32074951E-01 

ALLOCATION 	4 	4 	3 	3 	3 
COST AND RELIABILITY ARE . 0.82000000E+02  0.98890718 
COST AND RELIABILITY A-E 

0.99949380  0.99949380  0. 9662500  0.99662500 
0.99662500 

0,11767427E-01 0,882.55702E-0Z 0.47207742E-~01 0. 9339646E-01 
0.33719697E--01 
%LLOCATION=  4  4  4  3  3 
:oSi AND RELIABILITY ARE  0.87000000E+02  0.99175377 
.QST AND RELIABILITY ARE 

0.99949380  0.99949380  0.99949380  0.99662-500 
À S 

0.99662500 
0.12485084E-01 0.93638132E-~02 0.74910506E-02 0.41738348E-01 
0,35775 52E--01 
ALLOCATION=  4  4  4  4  3 
:OST AND RELIABILITY ARE  0.93000000E+02  0.99460854 
:osi AND RELIABILITY ARE 

0.99949380  0.99949380  0.99949380  0.99949380 
0.99662500  _ 

0.1334.6155E-01 0.1000961.6E-01 0.80076930E-02 0.66730775E-02 
0.38243185E-03 
►LLQCAT I ON= 	4 	4 	4 	4 	4 
'OST AND RELIABILITY ARE  0.10000000E*03  OC997471.54 
•OS1 AND RELIABILITY ARE 

0«99949380  0,99949380  0.99949380  0.99949.380 
0.99 49380 

ERROR LC•p~2 IN STATEMENT 0000 + 05 L. L. 



APPENDIX —C 

C C RELIABILITY OPTIMIZATION IN BRIDGE SYSTEM BY REDUNDANCY:G L MADAAN 
DIMENSION R(5)iF(5)►C(5)►M(5)..RS(5)iRS1(5),Q(5) 
READ 10,CSG 
PUNCH10 ►CSG 
D09ITER=Is3 
RCAD1OsCRII)sI=1,5) 
PUNCH10s4R(I)#I=1►5) 

10 FORMAT (5F10.5) 
READ 10.(C(I)sI=ls5) 
PUNCH1Os(C(I)sI=1►5) 
DO 1#=1►5 
MCI)=i. 
Q(I) 1.—R(I) 
KO 
DO 7J=1►5 

7 RS1(J)=0. 
CS=0. 
DO 5J=1►5 
AMJ=MCJ) 

5 CS=CS+C(J)*AMJ 
8 DO 2I=1,5 
3 RS(I)=RS1(I) 

RSI*RS(I) 
X=R(1)*R(2) 
Y=R(3)*R(4) 
z=Rt4)*R(5) 
V=R(2)*R(3) 
T=R{1)*R(5) 
W=R(3)*R(5) 
U=R(2)*Y+R(1)*W X*(Y+Z)-V*(Z+T)-Y*T 
RS1(I)=X+Z+U+2.*R(3)*X*Z 
RSI1=RS1 (I) 
MCI )=M(I)+1 
KzK+1 
IF(K-2)12,13,13 

12 RI*R(1) 
13 R(I)=1.—Q(I)**MII) 

GO TQ(3►4),K 
4K0 

M{I)=M(I)-2 
RCI)=RI 
FI=(RSI1—RSI)/RSI 

2 F(I)nF1*CSJC(I) 
PUNCH 20s(F(I)si=1+5) 

20 FORMAT (4E16.8) 
FM=F(1) 
IMa1, 

CONTINUED ON THE NEXT PAGE 
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DO 6J=2.5 
IF (F(J)—FM)6,6,11 

11 FM=F(J ) 
IM=.J 

6 CONTINUE 
M(IM)°M(IM)+2 
R(IM) s1.--(Q(IM)**M(IM) ) 
CS CS+C(IM) 
RST=RS1(IM) 
PUNCH 3O,(M(J),jffi1,5) 

30 FORMAT{13H ALLOCATION= ,515) 
PUNCH40,CS,RST 

40 FORMAT(26H COST AND RELIABILITY ARE 
PUNCH50 

50 FORMAT(26H COST AND RELIABILITY.. ARE 
PUNCH5009(R(J),j=1,5) 

500 FORMAT (4(2X,E16.8)) 
IF( CS—CSG)8,9*9 

9 	CONTINUE 
STOP 

END 

,2(2X.E15.8)) 

,2(2XsE15.8)) 
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C C RELIABILITY OPTIMIZATION IN BRIDGE SYSTEM BY REDUNDANCYsG L MADAAN 

120. 
0.6  0.6  0.6  0.6  0.6 
4.0  6.0  5.0  7.0  3.0 

120*00000 
*60000  .60000  ,60000  .60000  .60000 
4.00000 6.00000 5.00000 7.00000 3.00000 

80.78602620E-02 53.85735080E-02 20.96069868E-02 46.16344354E-02 
10.77147016E01 
ALLOCATION*  1  1  1  1  2 
COST AND RELIABILITY ARE  2.80000000E+01  7.44768000E-01 
+OST AND RELIABILITY ARE 
60.00000000E-02 60.00000000E'02 60.00000000E-02 60.00000000E-02 
84.00000000E-02 
.198528 .054528 -.041472 .294528 .313728 
7,5251.3534E-02 30.02835782E-02 18.7099767 E-02 56.67440061E-02 
42,73266305E-02 
ALLOCATION=  2  1  1  1  2 
COST AND RELIABILITY ARE  3.20000000E+01  8.27251200E-01 
COST A14D RELIABILITY ARE 
84.00000000E-02 60.00000000E-02 60.00000000E-02 60.00400000E-02 
84600000000E-02 
.177331 -.1.40236 --.162892 .029107 .22341.1 

33..90641973.E-02 39.68992248E-02 22.6731652 E-02 34.01993355E-02 
42,54189295E-02 
ALLOCATION= 	2 	1 	1 	1 	3 
COST AND RELIABILITY ARE  3.50000000E+01  8.60244480E-01 
COST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E~►02 60.00000000E-02 60.00000000E-02 
93.60000000E-02 
.274375 -.043192 -.096952 ,052807 .320455 

33,,10924819E-02 29.82207104E-02 25.28751640E-02 38.95331708E•-Q2 
1.7.89824213E--02 
ALLOCATION= 	2 	1 	1 	2 	3 
COST AND RELIABILITY ARE  4.20000000E+01  9.27263232E-01 
COST AND RELIABILITY ARE 
84.00000000E-02 60,00000000E-02 60.00000000E-02 84.00000000E--02 
93.60000000E-02 
.183478 -.081788 -,060899 •033564 .367030 

15,74564302E-02 19.79197829E-02 12.06219779E-02 17.34620755E-02 
23.22050996E-02 
ALLOCATION=  2  1  1  2  4 
COST AND RELIABILITY ARE  4.50000000E+01  9.42642892E-01 
+OST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E-02 60.00000000E-02 84.00000000E-02 
97.44000000E-02 

T 
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.044287 -•254065 -.275569 
15,87707866E-02 14.50324735E-02 
7,89281.339E-03 

4217087  .387506 
32.47640621E-02 18.87731707E-02 

ALLOCATION=  2  1  1  3  4 
COST AND RELIABILITY ARE  5.20000000E+03  9.70323333E-01 
COST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E-~02 60.00000000E-02 93.60000000E-02 
97.44000000E-02 
•005734 -.2 2582 -•264227  ,211619  .408365 

76,03519604E-03 95.94353152E-03 59,816672,221E-03 84.76602430E-03 
11.61310788E-02 
ALLOCATIONm  2  1  1  3  5 
COST AND RELIABILITY ARE  5.50000000E+01  9.76824373E-0l: 
COST AND RELIABILITY ARE 
84,00000000E-02 60.00000000E-02 60.00000000E-02 93.60000900E-02 
98.97600000E-02 
-0050820 -.342725 -.351326 •285920 .417448 
75,,54274639E-03 69.38008071E-03 60.00910934E-03 90.18312981E-03 
48.80538976E-03 
ALLOCATION= 	2 	1 	1 	4 	5 
COST AND RELIABILITY ARE  6.20000000E+O1  9.88036219E--01 
+OST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E-02 -60.00000000E-0e 97«440000Q0.E-02 
98.97600000E-02 
,066592 -.350624 -.347282 ,284089 «426148 

35.89709199E-03 45.36374650E-03 28.52817271E-03 40.20294953E-03 
55.56126246E-03 
ALLOCATION=  2  1  1  4  6 
COST AND RELIABILITY ARE  6.50000000E+01  9..90692503E-01 
COST AND RELIABILITY ARE 

84.00000000E--02 .60,00000000E-02 60.00000000E-02 97.44000000.02 
99.59040000E-02 
.089354 -«378878 -.382319 •313953 •429924 
5.33009979E*-03 32.517061.97E-03 2801 482480E-03 42.24470371E-0.3 
23.23741168E-03 
ALLOCATION* 	2 	1 	1 	5 	6 
+OST AND RELIABILITY ARE  7.20000000E+01  9s95199589E-01 
COST AND RELIABILITY ARE 

99.59040000E-02 
84.00000000E-02 60.00000000E-02 60.00000000E-02 98.976000100E--02\ 

-.095719 -.382117 -.382117 -•.380780 *313277 #433461 
1.6.60719001E--03 20.99916925E-03 1,3,25079496E-03 18.63288434E-03  
25.83889906E-03 
ALLOCATION* 	2 	1 	1 	5 	7 
COST AND RELIABILITY ARE  7.50000000E+01  9.96.271042E-01  
+OST AND RELIABILITY ARE 
84.00000000E-02 60,00000000E-02 60,00000000E-02 98.976001\000E-02 
99.83616000E-02 
-.104846 -,393450 -.394826 ,325245 .434994 
16.23671932E--03 14.95657636E-03 12.97482569E-03 19.42683355E-03 
10.75462928E-03 
ALLOCATION=  2  1  1  6  7 
COST AND RELIABILITY ARE  8.20000000E+01  9.98077452E-0}. 
COST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E-02 60.00000000E-02 99,59040000E-02 
99.83616000E-02 



-,107401 -.394758 -,394223 .324985 .436418 
,5.53210643E-04 95,52995786E-04 60.36216933E-04 84.80625049E,-Q4 
11.77628138E-03 
ALLOCATION=  2  1  1  6  8 
COST AND RELIABILITY ARE  8.50000000E+01  9.98507463E-01 
COST AND RELIABILITY A-E 
84.00000000E-02 60.00000000E-02 60,00000000E-02 99.59040000E-02 
99.93446400E-02 

-.111056 -C399296 -.399847 .329775 .437035 
73,48108655E-04 67.73.,051327E-04 58.75854477E-04 87.94063173E-04 
48,80745561E-04 
ALLOCATION=  2  1  1  7  8 
COST AND RELIABILITY ARE  9.200013000E+01  9.99230599.E-01 
COST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E-02 60.00000000E-02 99.83616000E-02 
99.93446400E-02 

--,112079 -C399822 -.399608 #3296713 .437606 
33„87529990E--04 42.84812991E-04 27.08885124E--04 38.045567.31E-04 
52,85889305E-04 
ALLOCATION=  2  1  1  7 
+OST AND RELIABILITY ARE  9.50000000E+01  9.99402832E-01 
COST AND RELIABILITY ARE 

	

84.00000000E-02 	60..00000000Ei-02 	60.00000000,E-02 	99 83616000E-02 
99.97378560E-02 

-.113542 -.401638 -.401858 .331589 .437853 
*2.8279921,5E--04 30,25404511E-04 26,2576 050E-04 39*29184313E-04 
21.82925841E-04 
ALLOCAT.I©N-  2  1  1  8  9 
COST AND RELIABILITY ARE  1.02000000E+02  9.99692178E-03. 
COST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E-02 60,00000000E-02 99.93446400E-02 
99.97378560E-02 

-,113951 -,401848 -..401763 .331549 ,438082 
15,01905167E-04 18.99798391E-04 12.01322202E--04 16,86992848E.-04 
23..44339890E-04 
ALLOCATION= 2 1 1 8 10 
COST AND RELIABILITY ARE  1.05000000E+02  9.99761108E-0I. 
COST AND RELIABILITY ARE 

84.00000000E-02 60.000000130E-02 60,00000000E-02 99.93446400E-02 
99.98951424E-02 

-.114536 -,402575 -,402663 ,332315 .438181 
14,50947421E-04 13.37255004E-04 13,..606744794E-04 ].7,367.10286E-04 
96,52498712E-05 
ALLOCATION3 2 1 1 9 10 
COST AND RELIABILITY ARE  1.120013000E+02  9.99876861E-~01 
COST AND RELIABILITY ARE 

84.00000000E-02 60.00000000E-02 60,00000000E-02 99.97378560E-02 
99,98951424E-02 
.114700 -.402659 --.402625 .332299 •438272 

65.95916686E-05 83.43469400E-05 52.76378670E-05 74.09106048E-05 
10.29699399E-04 
ALLOCATION= 2 1 1 9 11 
COST AND RELIABILITY ARE  1.15000000E+02  9.99904439E-01 
COST AND RELIABILITY ARE 

84.00000000E-02 0,00000000E-02 60.00000000E-02 99,97378560E-02 
99.99580569E-02 

-,114934 -.402950 -,402985  .332606 ' .4383.12  ,  q 
63,55838903E-05 58.57938510E-05 50.84525437E-05 76.07739443E-05 
42,29005890E-05 
ALLOCATION= 2 1 1 10 11 
COST AND RELIABILITY ARE  1.22000000E+02  9.99950743E-01 
COST AND RELIABILITY ARE 
84.00000000E-02 60.00000000E..02 60.00000000E-02 99.98951424E-02 
99.99c~ g0569E-02 ..'.115QU0 	+'r4O O 2 	r - ,A~n-sn 	. _... __ 



APPENDIX -0 

k 

C C RELIABILITY OPTIMIZATION IN BRIDGE SYSTEM BY REDUNDANCY'G L MADAAN 
PROGRAM ACCEPTEDZ  36930 43320  59259 59999 

75.00000 
,80000  ,80000  .80000  .80000  .80000 
4,0,0000  5.00000  2.00000  7.00000 ' 3.00000 

4,1.9466291 	0.15573033 	0.94382020E-01 0.11123595 
0.25955055 

ALLOCATION= 	1 	1 	1 	1 	2 
COST AND RELIABILITY ARE  0.24000000E+0,2  0.94615200 
COST AND RELIABILITY ARE 

0.80000000  0080000000  0.80000000  0.80000000 
0.96000000 

0.19691657  0,551.24592E-01 0.72806065E-01 0.13223958 
0.57204763E-01 
ALLOCATION=  2  1  1  1  2 
COST AND RELIABILITY ARE  0.28000000E+02  0.97648640 
COST AND RELIABILITY ARE  e 

0.96000000  0,80000000  0H80000000  0.80000000 
0.96000000 

0.4492495E-01 0.69999540E-01 0.86911  O0Er-01 0.4999967.18-01 
0i59899326E-01 
ALLOCATION=  2  1  2  1  2 
COST AND RELIABILITY ARE  0.30000000E+02  0.98254840 
COST AND RELIABILITY ARE 

0.96000000  0.80000000  0,94000000  0.80000000 
0.9f 000000 

0.48338075E-0], 0.45923.232E 01 0.18512064E-01 0.32802308E-01 
0064450766E-01 
ALLOCATION=  2  1  2  1  3 
COST AND RELIABILITY ARE  0.33004000E+02  0.98888100 
COST AND RELIABILITY ARE 

0.96000000  0,80000000  0,96000000  0.80000000 
0.99200000  1 

0.52939002E-01 0. 16599429E-01 0.2044644.3E-01 0,36264798E-01 
0.14087033E-0.1 

ALLOCATION= 	3 	1 	2 	1 	3 
COST AND RELIABILITY ARE 	0.37000000E+02 	0.99522650 
COST AND RELIABILITY ARE 
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0.99200000 	0.80000000 	0,96000000 	0.80000000 
0.99200000 

0,117945518.01 0.18865333E-01 0.23438532E-01 0.1.347.5238E-01 
0.15727307E-01 

ALLOCATION= 	3 	1 	3 	1 	3 #  
COST AND RELIABILITY Ai E 	0.39000000E+02 	0. 9648740 
COST AND RELIABILITY AR+ 

	

0.99200000 	0.80000000 	0.99200000 	0.80000000 
0.99200000 

0,12485832E-01 0.11,9737.188-01 0.49332784E--02 0.85526558£-02 
0.)66490808-01 

ALLOCATION= 	3 	1 	3 	1 	4 
COST AND RELIABILITY ARE 	0.42000000E+02 	0+99776360 
COST AND RELIABILITY ARE 

	

0.99200000 	0.80000000 	0.9 200000 	0.80000000 
0,99840000 

0,1,3443815E-01 0.42860252E-02 0.53354315E-02 0.92.186160E-02 
0.35822.110E-02 

ALLOCATION= 	4 	1 	3 	1 	4 
COST AND RELIABILITY ARE 	0.460000008+02 	0.99904110 
COST AND RELIABILITY ARE 

	

0.99840000 	0,80000000 	0,99200000 	0.80000000 
0.99840000 

0.29422.2118'-02 0.47075540E-02 0.58752335E-02 0.336253858.02 
0.3921.4266E-02 

ALLOCATION= 	4 	1 	4 	1 	4 
COST AND RELIABILITY ARE 	0.48000000E+02 	0.99929630 
COST AND RELIABILITY ARE 

	

0.99840000 	0.80000000 	0.99840000 	0.80000000 
0.99840000 

0,30729622E-02 0.294927522E'02 0.12272636E-02 0.21059390E-02 
0.40972830E-02 

ALLOCATION= 	4 	1 	4 	1 	5 
COST AND RELIABILITY ARE 	0.51000000E+02 	0. 9955220 
COST AND RELIABILITY ARE 

	

0.99840000 	0.80000000 	0*99840000 	0.80000000 
0#99968000 

0.32654620E--02 0.104392748-02 0.13061848E-02 0.22377162E-02 
0.86738840 -03 

ALLOCATION= 	5 	1: 	4 	1 	5 
COST AND RELIABILITY ARE 	0.5O00000E+02 	0»99980820 
COST AND RELIABILITY ARE 	 1  

	

0.99968000 	0.80000000 	0,99840000 	0.80000000 
0.99968000 

0.707.38450E-03 0s11255158E-02 0,140^276908-►02 0.80393987E-03 
0.93701303E-03 
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ALLOCATION=  5  1  5  1  5 
COST AND RELIABILITY ARE  0.57000000E+02  0.99985920 
COST AND RELIABILITY ARE 

 

0.99968000  0.80000000  0.99968000  0.80000000 
0.99968000 

0.72970272E-03 0.70005856E-03 0.29074092E-03 0.50004182E-03 
OC97293696E-03 

ALLOCATION=  5  1  5  1  6 
COST AND RELIABILITY ARE.  0.60000000E+02  0.99991040 
COST AND RELIABILITY ARE 

 

0.99968000  0.80000000  0.99968000  0.80000000 
0. 9993600 

0.76806880E-03 0.24482392E-03 0.30302715E-03 0.52719008E-03 
0,20601844E-03 

~
L~OCATION= 	6  1  5  1  6 
OT AND RELIABILITY ARE  0.64000000E+02  0. 9996160 ' e I 
COST AND REL+ABILITY ARE 

 

0.99993600  0.80000000  0.9 968000  0.80000000 
0.99993600 

0,16480632E-03 0.25984996E-03 0.32961264E-03 0.18835008E-03 
0.22187517E-03 
ALLOCATION=  6  1  6  1  6 
COST AND RELIABILITY ARE  0,66000000E+02  0.99997190 
COST AND RELIABILITY ARE 

 

0.99993600  0,80000000  0.9 993600  0.80000000 
OC99993600 

0,16830473,E-03 0.16104451E-•03 0*6 301945E-04 0.116 756E-03 
0.22660635E-03 
ALLOCATION=  6  1  6  1  7 
COST AND RELIABILITY ARE  0.69000000E+02  0.99998220 
COST AND RELIABILITY ARE 

 

0.99993600  0030000000  0.99993600  0.80000000 
0.99998720 

0.17422808E-03 0.57961030E 04 0,69001225E-04 0.121245OOE'-03 
0.43700776E-*04 
ALLOCATION=  7  1  6  1  7 
COST AND RELIABILITY ARE  0.73000000E+02  0.99999230 
COST AND RELIABILITY ARE 

 

0.99998720  0.80000000  0.99993600  0.80000000 
0.99998720 

0.38325292E-04 0.61324470E-04 0.8030061,5E-04 0.43800335E-04 
0.48667040E-04 
ALLOCATION= 7• 1 7 1 7 
COST AND RELIABILITY ARE  0.75000000E+02  0.99999450 
+OST AND RELIABILITY ARE 

 

0.99998720  0.80000000  0,99998720  0.80000000 
0.99998720 
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APPENDIX —E 

C C G)L)MADAANsUNDOMINATFD ALLOCATIONS (MULTI—CONSTRAINTS 
DIMENSION R,(10),Q(10)rC(10),W(10l,M1(10)►M2(10)$Ft10) 

C 	N=NQ OF STAGES+CG=GIVEN COST,WG#GIVEN WEIGHT 
READ1:NsCGsWG 

1  FORMATII3r2F10.5) 
READ 2►(R(I),C(I)*I =1,N) 

2 	FORMAT(7F10.5) 
READ 2,(WII),I=1,N) 
PUNCH2►(R(I),C(II,I=1,N) 
PUNCH2,(W(ID,I=I,,N) 
D031*19N 
Q(I)1,—R(I) 
M1(I) 1 

3 	M2( I)'2 
Kat 
Al=0.25 
A20.75 	 - 

12 	CS=A• 
PUNCHZ,A1,A2 
Wsaa. 
RS=1, 
00411,N 
AM1=M1(I) 
CS=CS+C(I)*AM1• 
WS=WS+W(I)*AM1 
GOTQ(13,14)9K 

13 	RS*RS*R(I) 
00104 

14 	QI=Q(I) 
M11=M1(I) 
RP=(1•—QI**M11) 
RS*RS*RP 

4 	CONTINUE 
PUNCH59R5►CS,WS 

5 	FORMAT(3F10.5) 
PUNCH6, (M1(I ), I==1 #N ) 

6 	FORMAT(8I5) 
IF(CS—CG)10#10+11 

10 	IF(WS—WG)15,15,11  
15 	D071=1,N 

QI*Q(I) 
Mll=M1(I) 
M22=M2(I) 

• 
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CI=C( I) 
WIACW(I) 
D=A1*CI+A2*WI 

	

7 	F( I)=(LOGF(1.-0I#,'122)—LOGF(i.—QI**M11))/D 
PUNCH2.(F(I)sIuj:N) 
X=F(1.) 
N1=N-1 
J1=1 
009J=]. ,N1 
IF(X—F(J+1))g#8 9 9 
X=F(J+1) 
Jl=J+1 

	

9 	CONTINUE 
PUNCH]. J1,F'(J1) 
M1(JI)=M3(J1)+1 
M2(JI)=M2(Jj)+1. 
K=2 
GOTO 12 

	

11 	Al=AL+Or25 
A2=1•—A1 
00211 1,N 
M1( I) =1 

	

21 	M21 I) =2 
Ke1 
IF(A1.1«312'12,20 

	

20 	STOP 
END 
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