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ABSTRACT

The present work deals with the optimal design of
a system from the reliability point of view. Due to
ingreased complexity and sophistication in the modern
ayétems, the system reliability alwaps tends %o decreaae.
Thereforg, some means must be provided for enhancing the
system reliability. System reliability can be improved by
employing structural redundancy at the subsystem level,
and/or by practising planned maintenance and repair
schedules. This , however is constraineaj;ﬁggi are limited.
and pose a problem_to the design and maintenance engineer.
Conse quently; the.problem of optimal allocation of redun-
- dancies and of the optimal number of repair-crews arises.
| The constraintavén the system are tﬁe overall cost, welght,
 avellability of the system and, power consumption, etc.
An attempt has been made to find the optimal allocation
of redundancies and the optimal number of repair crews,
for maximizing the system reliability or the system
: availability.

In chapter I, up~to—date, literature about the
aspects of réliability optimization has been surveyed
and is reviewed in brief.

The availabillty models of thq maintained systems
with different repair facilities are discussed in chapter II.
A problem of finding the optimal number ofvrepair-crews is
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solved by:assuﬁtng the necessary data. The problem of
finding the optimal maintenance interval is also discussed
in brief.

The mathematical modelling of. the optimal design

| of a system having active redundancy is pfesented in sect~
ion 2.5. The groblem of redundancy allocation to the
series and bridge systems has been discussed. The comﬁnter
prograﬁs fo: theSe problems are'developed in FGRQRAN-II

and a number of problems have been solved on IBM 1620 and
Tbc—312 computers. |

Chapter III deals with the optimization techniques
for maximization of the system relisbility subject to the
given constraints, The techniques discussed in this chap-
ter are Variational method, Penalty funotion method,
Lagrange's Mnltipliqr Method, and Lawler‘and Bell's opti~v
mlgation method. The constrained reliability problem is
converted inxo un@onstrainedvpréblem by the use of penalty
function and is solved by the steepest ascent method. Lawler
and Bell's method is made use of in solving the constrained
redundéncy problem by transforming the problem into binary
variables. At the end, various methods discussed have been
compared s¢ as to help the system,designex to apply the
appropriate techniquea;,‘ruture avenmies of research are
also discussad, in short.
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The reliable performandce of a system for a.mzasion
under various conditions is of utmost importance in meny
industrial, military and everyday life situations. Although,
the qgalitaxive con&epts of reliability are not new, its
qgantitaxive aspeots have been developed over the past two
decades, Such development has resulted from the increasing
ngeds for highly rellable systems and safer, Gheaper

components, -

" Reliability is a serious ooncern to the systems e
engiﬁeer. In the first place, he must be concerned with the
¢onsequences of system failure. Frequent failurea or
extended periods of down-time may result in a cdmplete lack
of syﬂfem,eapability._ Secondly, there are high maintenance
costs. It 18 reported that in U.S.A., it costs the Army
services about two dollars per year to maintain every dollar
spent on eleotran;o equipment, A third aspect of reliability
problem is safety. This problem ié extremely lgportant in
the design of aircrafts and systems for manned space fli%ht.

~ The increased complexity, sophistication and auto~
mation in modern systems has made the reliability problem
more acute, because as the systems become increasingly complex,

the reliability also tends to decrease. Therefore, some



means mist be employed to increase ByStem rellability. This
can be done by the following methods

1« By reducing the complexity of the system

2, By increasing the reliability of components through a
product improvement program

3. By using struciural redundanocy

4, By practising planned maintenance and repair schedules

Reduoing the complexity of the system may yleld poor
steady state and transient response of the system and reduced
accuracy. The product improvement program demands the use of
improved package and shielding techniques, derating etc.
Although these teehniqngs result in reduced failure rate of
the component, but require more time for design and special
state of ard of production. This makes the cost of part
improvement program higher as compared to a redundant component.
By employing structural redundancy at the subsystem level,
keeping specific system topology, one Gan provide theoretically
unity system reliability. Structural redundancy may involve
the use of two or more identical components, so that when one
fails, others are available in such a way that the system is
able to perform the specified task in the presence of some faults
in the oomponenta;//For example, the aeroplanes usually employ
two to four engines in redundanqyf/

Redundancy may be ¢lassified under three broad catago =
ries ¢! Active redundancy, standby redundancy and voting

redundancy. In active redundancy, all the redundant pahhs
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(ﬁnits) are continuously energised while the system operates.
If the redundant unit does not perform any funotion and comes
into eperation only when the primary unit fails, this type of
redﬁndancy is called standby redundancy. 1In thé third type of
redundancy, three or more units operate in conjunction with a
switch which seleots the unit with agreeing dﬁtputs if they
constitute a majority. This type of'redundancy is commonly

used in computer applications.

When the cost of repair in money as well as in time is
less in comparison with the cost of equipment, it is economiocal
to oonsider system repair. It may de possible that at a time,
more than one Component fail simultaneously. This requires more
than one crew in order to increase the operating time of the
' equipment, For optimal design, a mathema&ibal model is devalqui

- using Markov chains and the optimal repalr crew are found out.

‘ 'Several_aufhors hawg qbns;@ered the optimal redundancy
ailqoaﬁibn prdblem using various formulatiqne and computational
technigués,'nbscow;tz and Mo Lean |8} oona;déred fhe problem of
| maximizing reliapility_with.ona donstraintAi.e, cost using a
#ariaﬁional mefhod.- Go;den l9l'also cona&dera@,thg problenm of
éingle constraint, Kettelle |10| provided a computational
approach for max;mizing reliability gubject to a cost éonstraint.
| waetpr, Proschan aﬁd Braydj11| extended Kettelle's method to
include more than bné constraint fiz. cost,'waight. ete. Bellman
. and Dreyfue |12| sketched a dynamic programming method for
maximizing system reliability, given specific constiraint values.
Fan et al. |13| used the disorete maximum principle for
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maximizing reliability. Federowiez and Mazumder |14 formul-
ated the redundancy allocation problem in the form of Geometric
programmring probleﬁ to obtain approximate solutions. Tillman
and Dittschweger |15] developed a method for maximiging relia-
bility or minimiging cost subject to several constraints by
ueing an Integer programming formulation., Ghare and Taylor |16}
maximized the reliability of parallel redundant systems by a
Branch and Bound procedure. Lawler end Bell |17| described a

. 8imple, easily programmed method for solving discrete optimiga-
tion problems with monotone objective function and éompletely
arbitrary cqnstraiﬁts. Misra |18| applied thq method of |17]
to optimize eystem reliability or cost subject to multiple c
constrints. Misra |19| later on used least square formulation -
for maximizing system reliability. Banerjee and Rajamani |20|
uséd the parametric approach to solve reliability problem.
Misra and Sharma |21| applied Geometric programming technique
to the reliability problem. Sharma and Ve;nkgtes{varan |22}
presented a simpler method with no assuranceﬁof obtaining the
true optimum. Luis |23| presented a procedure of solving non-
linear programming problems which first finds, a psendo-
solution to the problem and thenuses direct search in the
neighbourhood of pseudo solution to find the optimum point.
Nakagawa and Nakashima |24| determined the optimal redundancy

. allocation by using a more reliable candidate at the stage that
has the greatest value of the weighted sensitivity function.
Tillmen et al |25| applied Hooke and Jeeves pattern search



technique in combination with the heuristic approach by
Aggarwal |26] to solve the mixed integer nonlinear‘program-
ming problem in which the system relliadility is to be maximi-
zed as a function of component reliability level and the

number of componants‘used at each Btage.

The introduction of meintenance 1s one of the major
options for increasing system’effectivénesa. Morse }4|
considered a | — unit system with repair and preventive
maintenance (pm) and derived the optimum pm peliey maximi-
ging the steady-state availability of the systeg. Graver 127}
and Srinivesan |28| obtained the Laplace-stielt es transform
of the time distribution to the first system failure for a
2 =unit standby redundant system. T. Nakagava and Sv Psaki
| l29l considered the two unit,ataﬁdby system with repair R
and pm. Balagurusemy and Misra |30| used the concepts of
minimal cut sets and minimal tie sets to assess the availabi-
1ity and other parameters such as failure frgqneney, méan
down time, etc. of a repairable m—-order system comprising
units with unequal failure and repair..rates. '



CHAPTER II

PROBLEM FORMULATION

2.1 NOMENGBAEUQQ': Unless otherwise stated, fhe foildwing
symbols are used in this dissertation report -

k 3
mj ‘ =
o I
Q.j =
RB =
QS f‘“
bi =
B =
t =
Py =
ay =
r =
RO =
Pi(t) b
A .

» Total amount of resources available for the 3 th

Number of atagae or subsystems in a eyatem
Number of standhy components
Number of redundant components in the j th stage

‘Reliability of the § th type component, § < Ty <1

Unreliabioity,oi the J th type component O <,qj < 1
Reliability of the J th stage, 0 < R3 < 1

System Reliability, 0 < Rg <1

System unreliability, 0_<~QB”<-1

Resources requirement associated with each component
of J th stage. ,

b

type of constraint.
Number of constraints on the system

: Miasion time B o
= Fallure rate of the J th type oomponent

Repair rate of the ] th type component
Number of,repairmenW’ayailabie .
Minimm reliability of each stage

» Probability of being in i th stage

System inherent availability (steady state),
0 < A% <1



2,2 SYSTEM MODELS

Any system can be classified in the following categories -
1. N-stage series system { 1 -~ out of N.F), showin in Fig.1.

The functional operation depends upon the proper
operation of all system components. Such systems are also
referred to a8 chain models or weakest link models, since the
system falls as soon as the weakest component fails.

Rg(t) = I:t Ry (%) | (2.1)
. | i=1 _ , )
2., M-stage parallel system ( 1 out of M.G ), -showh in Fig.2.

TheBe are M paths connecting the input to the output
and all componenta mst fail for the system to fail. Such
aystems are also known as rope models, since the system fails
when all the components fail and its behaviour is thus akin
to that of a rope, which breaks when all the fibers break.

oy .
Rg(¥) =1 = m [ 1-Ry (%) ] - 2

B nixed seriea parallel system shown in Fig. 3, N components
are connected in series and M such series conneotions are |
connected in Parallel to form the'Snyem. The reliability

of thie,typé of system Gan be found by decomposing into series

anﬁ parallel subsystems.

4. Mixed parallel-series system, shown in Fig. 4, N stages
are comnected in series, and components are ¢onnected in
parallel at each stage. The reliability of this type of
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| system can be found out by decomposing into Beries and
parallel subsystems. . ,

2s Element standby system, shown in Fig.5. It has the same

form as a mixed parallel series system. However; the pare~

llel components are not all active at the same time.

6. Standby system, shown in Fig.6. It has the same form
as a mixed series—parallal system. However, the parallel

M series subsystems are not all active at the same time.

7. Non—-series-parallel system, shown in Fig. 7. The
reliability can be evaluated by using conditional proba-
bilities or other approaches.

8, bomplex bridge network system, shown in Fig.8. It is
one of the cdmplex feliability systems in the form of the
bridge nefwoﬁk:* |

The reliability of such a system oan be found by

different methods viz. star delta transformation, factoring

theorem method and by thelmethod of inspection. By applying
the method of inspection, the reliability is found below :-

Forward Paths : 1-2, 4~5, 1=3-5, 2-3-4. s
Paths with one loop & 1-2-3-4, 1-2~4-5, 2_3,4_ 1m2=3=5,
o 1-5-4-5.
Paths with two loops : 1=-2=3=4-5

( two paths )

Rs = DT, 4T rs+r1 3 5+rér3 4-r1r2r3 4 r1rzr4r5~r2r3r4r5
TR T HETTT SR s

(2.3)



R, = 1472 +2, T2y X 5 +Tp: 5T, =% 2(r 4¥%y 5)
(r T 4T, ) -p T (r1r5)+2r3(r1r2?(r,r

)
45 34 475
, (2.4)

2,5  SYSTEM MAINTAINABILITY PROBLEM :

In this topic, the problem of developing mathematical
models for the reliability of systems that can be maintained
while in use, is considered. A Markovian approach is emplo-
yed for describing‘the stochastic behaviour under a variety
of failure ans repair conditions.

Since falled equipments are restored to operation
in a finite time, the figure—of-merit of the system's relia-
bility is called availability. It is emplqud to,ﬁétérmine
the probability that the system is in an acceptable state
at any time t, given that 1% was fully operating at t = 0.

Availability is zalassitied 1nto three catagcriee -~

1., Point ayailap;1ity 1+ It is definsd to be the probability
that the system is in an up state (l.ie: either operating
or operablg) at a 5P301£iad time. , |

2., Internal awailability = It is the expected fractional
amount of an interval'of,speoified length that thev
system is in an up state. | . :

3+ Inherent or Steady State Availability 3~ It is defined
to be the expectga‘fractional amount of time in a cont~
inuum of operating time that the system is in én up‘stateg
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Inherent availability is commonly referred to as the
uptime ratio or limiting availability.

Systems in which allowahle repair could he advantageous
include simple parallel and standdby systems. Series systems
with fepéir offer no increase in reliability since as soon
as a component fails, the system has failed, however, if
the objective 18 to keep the system operating as much as |
possible during a specified period of time, then repair would
be a valuable aid 1n meeting this objective.v

-2,‘3.1 Avanabiuty Model of Single Equipmen‘t Systems 1~

tha mo&el can be deaignated,by two states State 0,
the system is operating and state 1, the system is faiied and
unﬁer repair Since the eonditional Probability of failnre
in t, t+ﬁf_1s Bﬁt, and the conditional probability of comp=
leting a repair in t, t+dt is adt, the following transition

maﬁrix ¢an be made

(states at
o - t+dt )
States. ©0 | 1B . B
P = at ‘ .
| t 1 J a 18]

The probability of being in state O at time t+dt is

P, (t+dt) = By (%) (1-Pat)#p, (t)adt | (2.5)
The probability of being in state 1 at time t+dt is .
Py (t+dt) = P (t)Pat+R,(t)(1~adt) = | (2.6)



From equations (2.5) and (2.6)
B(t) = = B Bo(t) + aBy (%) (2.7)
L]
Fa(t) = B By(%) = ay(t) (2.8)
For the steady state behaviour

Py = lm P, (%)
t »
This means that the steady-state behaviour can be
found by setting the derivatives P;(t) equal to zero.

Frﬁm»(2«7) and (2.8)

0=-pR, +aP, | (2.9)
0= B 96 - op, | (2,10)
P, .'[ : B, =1] @.
Alsec 1 = P, + P * Lt T P, = 2,11
| R g0 L7 )

Solvihg'(2.9j. (2.10) and (2.11); the solutions are

S - (2.12)

0 _ﬁ*a
P e B | (2.13)

2.3.2 Availability model of (k,n) Systems with parallel
repalrs = o . -
Having déscribed the single eqnipmentvmodel. the
generaliged avallability of model of system with(k,n)compo-
nents, in which at least k components should operate for
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for the operation of system, is given:
The following assumptions are used in developing the model:

1. eomponentlfailurea are statistically independent.

2. The components have only two states, either operating
~ oxr non operating. - |

3. Fallure and repair times have exponential distribution.
. Fallure detection and switching devioces are perfect.

4, Multiple repair facility exists. |

5. Repairs begin immediately on first-come firsit-served

basis. o ] o o

6.' The probability of more than one failure in the interval

%, t+dt is of order 0(dt).

If at any time %, the system is in state i, then the
»Qrobabiiity}tﬁat during (t,t+dt) the transition i - i+1, for
0 £ 1K nk, oocurs equals P,d% + 0(dt) and the probability
of £ - i-1, for = £ i £ n-k+1, equals aidt + 0(at). Since the
total system fallure occurs when the system is in state n-k+1,
the only trensitions of interest are 1 = 4+1 for i = 0,1,...,

!1"1:"1, and i* 1-1 for 1 = 1§2,"oo.-.‘ n=m.,

ot , ?r [1 -+ §+1 in (tvt-ﬂ-ﬂt)l = ( n;'i' : ’)ﬁdt(“"ﬁdt)n‘i-‘
| + 0(dt) (2.14)
= (n-4)pat + o(dt) | (2.15)

n-i-1

Since (1-pat) = {-(n-i~1) pdt + O(at),



(n-i)ﬁ if 01 { nk

o e ﬂi =
4] otherwise
Similerly, ia gt g1 gr
ai - ra if o+ < ig n-k+1
0 other‘vise

Then, the transition pro’oa‘bili.ty.

(2.16)

(2.17)

pi(t#dt) a pi(t)(1~ﬁidt)(1—a at)+p1,1(t)51“1dt(1-ai 44t)

+ pi*1(t)ai*1dt(1 ﬁi 1&%) + O(dt)

- Pi(t)(1” (pi 1)&% ) + Pi*1(t)ﬁ1~1dt +

¢

+ 91*1(t)51*1

oF Pi(twdt)*pi(t) o |
| gt " T(Byre)py (%) ¢ By qpy ()

+*“1+1pi¢1(t)

letting d;t - 0
PY(8) = =(bys0, )2, () + BygPyoq(8) + 14211 (9
‘forbt‘) £1g n;kﬂ’
Using e@a§i§n '(;‘2;17 ); we éb-tgn-

P:)'(%) = = nfpy(t) + ap,(t)

(2,18)

(2.19)

(2.20)

(2.21)

(2.22)



P,(%) = =( (2-1)B * i) By(E) + (a-1+1)B By_4 (%) +
(1+41)a py 4 (%) (2.23)

for1¢1 &
i L | ‘
P;(t) = = (n""i'-‘)ﬂ +ra) Qi(t) + (n-i+1 )5?1...1,(1;) +
ra p1*1£t) (2.24)
N for r L4 < n-k

Ppoisi = “T8 Pylp,q(t) ¢+ 3B p o (8) | (2.25)
The steady state solution is found by defining

Py = _ tlimm pﬁi(t) -~ for i » 0,1,....,0~k+1 (2.26)

Taking the 1imit of both sides of (2.21) as t = +o, Ve
obtain, e
for 4 = 0,1,--“.;!1"1:4*1-

Solving equations (2.22) to (2.25),

6 =,~nﬁp6 + GPy _' , (2.28)
Oz=[(n1)Betal] pi *,ﬁ5p6-4 2ap, - (2.29)
0= (n=2)p +2a] p, + (n=1) Pp, +3ap3 (2.30)

Prom (2.28)', (2.29) and (2.30)



o py e ';'5[[ (=13 *“]'fa&’oﬂ’@ p"]

93 = ....l-s I 3(n—2)§*2ai Eixgll (.E )2. -(n-‘l)B P‘E Jpo ,

1 (ne -1
== | n(n_z)z =) ¢ 2-:-)2 N
n(n;f)(n;Q) 3
T (27 %
S . |
31 (n=3)1
In general,
‘. _ml pa
T T () R
PASRIE Dal
For r £ 1 £ (n~k)
o | .
Lpt_*‘ = ( rl:‘i ) ( g ' )r. Py

\ P,, u(;)(g’)rpo

O=p == i(n—r)ﬁ + m%:p,,«rraprﬂ +(a-r+1)p D,y

(2.31)

(2.32)
(2«33)

(2.34)



0= p;;1 @ - [(nrr-1)B+ra] pr*4ﬁrapr;2'+ (n~r)ﬁpr (2.35)

From equation (2.34)

ra

Py ® LI [ E(n-r)ﬂ + ro E ( : )(g )T - {n-r+1 )5(121)(5-)1“_"}1:0

B-1)eeesboo(n-r) (n-r+1)

- | p'r-t-‘l .
rt . a* (::'at)1 - | 0

Similarly solving eguation (2.35)

ﬁ(n"‘q)tpiooo.(n"x‘“"l) Bx*z - )
P e : — ~ - -

. P
T+2 | rt oF (ra)® o VO

In genexal,

n(n*"')--c.a ..(n"‘i*-'l) i

P = S P B™ P - (2.36)
1 ri aF (ra)i T 0
_ n-k+1 |
Since % Py = 1, we have
=1

. T n-k+1 n(xi—'i)._...(n-*jﬂ) -
p_0={'1+z(g)(£-)3* R - a"J
=1 Jored ' py a2 (za)dT

(2.37)
'For parallel redundant system
» (k=1 .
and for series redundant systen,
k=n _
Bquations for these systems oan be had from equations
(2.31),(2.36) and (2.37)



2.4

ORPTIMAL MAINTENANCE POLICIES

Failure of a system during aotual operation is some—
times costly and/or dangerous. Tﬁerefore, it is important
to maintain the operating system preventively before failure
(e.g+ inspection, overhaul or repair if needed).

In this topic aﬁ attempt is made to £ind or characterisze
optimum maintenance policies: +that is to seek the number of
a specific ¢lass of maintenance policies that minizes total
cost, maximizes availability, or in general attains the best
value of the prescribded objective function.

| Barlnw and Proschan |1] considered the maintenance
| polieies by governing the scheduling of replecement of
,. equipment so as to forestall failure Guring operation. They
aimed at achieving max@mnm-operaxional‘readinesé by inspection
policies through the model where failure is known only through
checking. Further they considered more oomplicate& formala~ -
tions in which decisions oon@ernihg'xeplapemant,-repair and
1nspectioﬁrare madé_ai each suocessive step. The Markoviah
model is considered, and the decision depends only on the
information concerning the present state of the syatém and
not on its past history.

In all the replacement models to be considered, a
cost ¢, is suffered for each failed item which is replaced 3
this includes all coste resulting Irbm.failure and ite

replacement. It is assumed that failures are instantly
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detected and replaced. -A cost o, < ¢, is suffered for each
nonfailed item which is exchanged. ILet N1(t) denote the

. number of failures during [ O,t ] and N,{t) denote the number
of exchanges of nonfailed items during {?O,t:}, wWe may eXpress
~ theexpected oost during [ 0,t] 4s '

¢(t) = oyElH, (6)|+ ozBlN, (4]

If we interpret ¢, as the mean time to replace a
falled comPQnéntAand cznas the mean time %o replace a non-

| 'faiied component. Then C(t) becomes the ex@eeted down time

in [ 0,4+]. The replacement policy minimizing C(t) will then

naximize 11miting availability.

‘¢ 1 OPTIMKL MAINTENANGE IHTERHA$

Gptimum maintenance interval can minimise total cost
of maintenance and repair |3|. The reliability can be set
| ‘at the level acceptable te a particular form of operation by
adjusting the maintenance interval. If mo hazard is involved,
and failure oan be toleratefi, then the Corrective maintenance

interval is tham"which produces the minimum operational cost.

If maintenance labour eosta are of paramount import~
ance, then the poasibility of achieving 100 percent relisbility
by means of standbywrgdundancy may become an attrantive -

f financial proposition. This isbeqﬁally true where the cost
'-of having plant.out of comnission is veiy high, and a small

amount ofhdownrtimeLanld cost more than the time cost of
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~ either keeping passive redundant standby equipment idle for
mich of the time or running active redundant equipment at
part load for much of the time.

‘Failure rate £, = F(t)
vhere t = time since new
Failure rate f, = F(t-nt )

where t, = interval during maintenance

n = No. of maintenance operations carried
out.

This assumes that maintenance is carried out which
restors the eqnipmeht to the as new condition.

Reliability = R = 1~ unrellability, and for equipment
being maintained at intervals & =

4 I | o
R=1=-g [ 24t | | .

. 5"31»(1;‘1: ‘).
.’""""’ﬁ of 'nn'dw

where T = total time of separation of each unit.
and K = No. of units.

Consider now a linear relationship between failure

rate and time since last overhaul @
F(t) =kt

F(t-nt;‘) = k(t-nt_) Fig. 7
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)
Reliabloity = 1 - % S EGem e

where T = ntm

k 2
= 1--2-1'?-11‘&13

which shows that as maintenance interval tm tends to O,
reliability tends to"1,andas t, tends to o, reliability
tends to O. Similarly, expressions can be derived for other
relationships between fallure rate and time.

2,4.2 OPTIMAL REPAIR GREW PROBLEM

In many situations, it 1s not always economically
feasible or desirab1e to repalr equipments as they fail.
Rather, one may decide to wait until m out of n equipments
have Yeached a faiied state. The optimum policy Ifrequently
depends upon the cost of the maintenance policy determatives
and their effects on system reliability. For example, in

the Oasé of a two equbment redundant system, the following

pollicies c¢an be considered

1. Have two repgix orews and repair each equipment as it
falls. o S N

2. Have one :epair erew and repair each eqnipment as 1t
fails, , _ , . .

3 Hawa'one repalir orew and repa;r the equipments when
the system fails. '

Assoclated with each poliocy is a different avallability
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end maintenance cost. These will be the cost of the repair
Crews and the oosf of replacement for failed equipments. The
repair crew 0cost of policy 1 will be about twice as high as
the other alternatives. The replacement cost of policy 3
will be less than the other alternatives since repairs will
be made less freqnenxly..ﬂhe availability of each of the
alternate policies |28] is | |

Policy . System Aveilability

1 a2 + 2Ba
' 2 a2
+ 2pa + B
5 _aa + 2fa
n % v 2pa + 2p°
' 3a2 M 2Ba
3.
30 + Sﬁa + B

Suppose ﬁ = ,005 per hour and @ = 1.0 per hour.
~ Then under. each policy respectiyely,‘Qumulaiive_dowmrtime_in ,
- a 10,000 hour”pgrioﬁ wili bev.248 hour, 0.496 hour and 16.667
-ho@r pespectifely@“in_the,pgnalty,eost pér unit dqwhrtimeiis
Rs. 10,000, the dost ofﬂa‘singlélrepgir oreﬁ is Rs, 5 per
unit time and the répgir,abtionﬂia‘to_reblape avfailed equip~
ment with a new one oosting Rs.2,000 disearding the failed
one. . ~' . “ .‘ . '. | M.
' The cost of single repair orew for 10 000 hour Period
+will be Rs.50 000.,



For policy 1, we would expect to be replacing an equipment
every 100 hours, aince each equipment has an MTBF of 200 hours.
Therefore, over a 10,000 hour period, we would expect to make
100 replacemente, at a cost of Rs.2,000,00 . For policy 2,

the rggults a;ekapproximately the Sames., For the third policy,
replacements would be made on an average of every 75 hours.
Therefore, in a 10,000 hour pgr1p@; we shall replace both
equipments at a ¢ost of Rs.3,000,00. The expected costs

for the various policies are given in the Table 1.

- Table 1

'Poliey‘ Expected | Repair crew | Expected Repla— | Expected
penalty cost in Rs. cement cost in Total cost

eost(Rs) | : Rs., \ in Rs.
1 2,480 | 100,000 200,000 302,480
2 | 4,90 | 50,000 200,000 254,960

- 166,667 50,000 300,000 516,667

From the table, we f£ind that policy 2 is the least expensive.
Therefore, for this problem, it is advisable to have one
repalr Crew. and regpair each equipment as it fails. °

2'4’.201 Mple
Consider another problem of finding the optimal repair
Ccrew policy. Consider three equipment parallel redundant

\
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system which can be in states 0,1,2 or 3 as defined in
section 2.3.1. Let use assume tpat'there is no loss when
the system is in state O, a loss of R8.500 per unit time
when the system is in state 1, a loss of Rs8.2,000 per unit
time when the system is in state 2 and a loss of Rs.5,000
per unit time when the system is in state 3. ILet us assume
the case of independent servicing. Then, the three policies

can be considered

Policy 1 = Assign one repair ¢rew
Policy 2 -~ Assign two repalr crews
Policy 3 & Assign three repair crews.
| ‘Tiet the cost of repéir,crew be Rs.Shpet hour and

the failure and repair rates of each equipment be .005"§nd
and 1.0 per hour respectively. Then from section 2,.3.1.2,
the amount of time, the system spends in each sfaxe for
the three policies is given in Table 2.2, and the nunerical
values are ealculated in Table 2.3 for a period of 10,000
bours duration. The gxpeeﬁed penalty costs and repair costs

‘for three policies are given in Table 2.4. From Table 2.49

.. We find that the best policy is to employ one repair éreWL.

Therefore, the optimal number of repair crew for this problem

is-only one, '



Table 2.2

Proportion of time in each state

Policy .
State 0 State 1 ~ State 2 State 3
3 2 . 2 3
One repair - X — 3pa . 6B a . . 6B°.
. . -~ - . ‘
crew am...umnm.vmm?.. mmwl a &ma *mwp*mmw +3a ,..mmn+mmw p.W+wmpm+mmuw+mmw
3 : N .3 &
2a : _6 n - . 68 "a _ 2 3p
Two repalr . S— . >
mﬂmﬁmwu mnw+mmn +mmmn+mmu 20’ +6fa +6 n+mmw1_mn +mmnm+mm n+um me+ammnm+ammmn+mmm
3 2 2 .3
. 3Ba . . 28" a, 8
Three repalr 3 , v v . imam—— A e -
ou.oMM ¢ au +wmpn+mmna._Ww1 nun.mwmnm,@umma ’ nm.vumwwﬂumumg‘vmu nu&wmw +u_mmn*mu
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Table 2.3
olioy | EXpecteﬁ‘ j;ime in 10,0:)0 rhours |
State O State 1 |  State 2 State 3
e repalr ' \ o | ,
o repair 9851.48 147.7722 0.73881 0.00098
aws ' §
Lree.repaif S
‘aws 9851449 147.7723 0.73886 0.00098
Table 2.4
Policy | Bxpected EXpeoted Bxpected
’ ' Penalty Maintenance Total cost
cost in Rs. cost in Rs in Rs.
One repair 76,865 g 50,000 - 126,865
Crew '
Two repair . 15,448 100,000 - 175,448
Crews :
Three repair | 75,370 150,000 225,370
Crews : o
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2,5  OPTIMAL REDUNDANCY ALLOCATION PROBLEM

Malfunctioning of any constituent part of a system
causes loss of money and time due to system interruption.
Therefore the system must have high reliabiliity. Since the
individual components can not be made 100 percent reliable,
the use of redundancies is often restorted to. The use of
redundancies, however, is constrained by the resources

available to the design engineer.

Several authors (Batlow, Bellman and Dreyfus,
Federowicz and Maxumdar, Ghare and Taylor, Jensen, Messinger
and Shoéman, Misra, Sharma, Mizukaml Koichi, Moskowitz and
Me Leéh,'Myersoanﬁ Enrick, Tillman, Tillman and Littis-chwager)
| have considered the above problem using various formulations
and computational techniques. The methods available are
gradient methods, variational methbds, dynamic¢ programming,
integer programming branch and bound methods geometric
programming, etc. The redundancy allocation is an integer
programming problem when the allocations are allowed to fake
only integer values. The system reliability function is a
non-linear function. The constraints can be normally linear

or nonlinear.

The variational method and the discrete maximum
principle, although being versatile, offer only an approximate
solution. Geometric programming also provides an approximate
solution after many simplifying assmptions. In most of the



approximate methods, the decision variables are treated as
being continuous and the final integer solution is obtained
by rounding off the real solution to the nearest integers.

”

2,551 SBRIES SYSTEM REDUNDANCY ALLOCATION

The various assumpitions to be made for the analysis
‘are %= ‘
1. The failure of any subsystem or module results in the
system failure; ,
2. The failures of the subsystems are statistically inde-
- pendent. S ; )
3 Tha.failure distribution of the component is expogential
with failurg,?ate ﬁj .

»

2:5 o1t S‘baﬁe‘ment Df the P rﬂblgm . ' -

Assuming that there are k subsystems or stages ( in
series) in a system. Then the system reliability is
.' | ‘ (k ’ N . . 4
Rg(n) = A R, (ny) I (2.38)
where, . - . -
- : Ry (nj) = Reliability of j th stage
nﬁ' = Number of redundant components in j th
stage.
Since the use of redundancy is-limited by the avall-
ability of resources, the optimal design problem can be stated

as,



Maximize system reliability
(n) r (n,) | 2,3
{n - b n . . \
Subject to the constraints
k ‘ . i
ﬁd Gij(nj) £ (2.49)
_ nj3g 1 and integers ;
i__ﬂ 1,2,‘&»;.?'8 ) . .
where Gij(nj) is the i th type resources requirement for

j th stage and hi is the total amount of resources available
for the 1 th type of constraint.

| It is nonlinear integer programming problen. For'_
solving this problem , the eXpression for reliability of the
J th stage is required. The reliability at the j th stege
can be increased by‘putting the components in parallel. Let
Btage § have a set:oflnj components Gonnected ;nlparallel,
each having the probability of failure as a4y Then the
expression for reliability 1is

. * “ | | |
| R (n) = k3 Ry (ny) - (2.41).
~ where, E '
’ ) a1 = j
Bying) =1 =g |
e R = n (mgy ) o (2.42)

3=1

A parallel redundant system is shown in Fig. 11.
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Fig. 12 shows how the reliability of the system increases
with the number of redundant components having exponential
fallure distridbution.

' 2.5.1.2 gGenersl solution of redundancy allocation problem :

Assuming linear constraints on n in equation (2.40),

AN

it tﬁe constraint is on cost, equation (2.40) becomes
K _ ) | B
oo sa @0
” L5 1,2500000,8 |
where 013 > 0 and each C, shows the a;iowgb;e'limit of aost,
weight or volume, etc up to s constraints. The problem can
therefore be stated as i the selection of n such that R(n) is

maximum subject to the constraints given in equation (2.41).

An approximate solution of problem (2.39) can be
rapidly and easily obtained by generating an incomplete
family of undominated alloeations,

To describe fhe'oonoept'of undominated redundahéy
allocation, we say n° is undominated if R(n) > R(n°) implies
Ci(n) > ci(n°) for same i, whereas R(n) = R(n°) implies
either C,(n) >\;ci(n9) for same i or 0, (n) ¢, (n°) for a11 1,

. . | ;
where Gi(n) = ‘3&1 cij@j

Taking logarithm on both sides of equation (2.39),

, o
Log R (n) = 331 Log Rj(nj) . (2.42)
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Since Log X is a monotone - increasing function of
%, the prodblem of maximizing Ra(n) is equivalent to maximi-
zing log R{(n).

The procedure for generating an incomplete family of

undominated azllocation can be smmmarised as follows ¢

~ Starting with redundancy allocation of (1,1,00.,1),
one aﬂdé a new component to that stage which yields greatest
improvement in system reliability for the cost incurred in
placing it. This contimues ¥ill any one constraint is
 violated. ‘If log Rj(n) is concave, each redundancy allocation
generated by above procedure is undominated |1|. To prove

that log (Rn? is a conoave function of'n; one Can show that

5% log Ra(n) = 57 log ( 1 uqﬁn )

= log e e (2.43)

where & log Rs(n) = log Rﬁﬂn+1) - log aj(n)

~ The denominator is large than mumerator as

n+1)2 - (1=q

qu-z ) (

(1-gy 1“an) = an(q5'1)2
>0

Therefore 52 log Ra(n) < 0, B0 also log Rs{n).‘as the sum

of concave functiong is again a concave functionl
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k
Hence log Ra(n) = ¥ log Rj(nj)

3=1

is concave
205'0'1 ] Exam'gle

S;ggléVCoat Factor
. Assuming that there is only one constraint in (2.42),
i.e+ cost of the item, the procedure for generating allocat-
ions will be to caleulate desirability factor Fj for each
-atage given by

Fj-; E_E:§3§lifil ‘qu [f1§g R,(n, +1) 1og Rd(nﬁ) 1
o S - o (2.44)

Retaining the 1ndex[36_for which Eié is maximum amongst |
the sgages, & component is added to that stage to find new
allocation. If maximum occurs for more than one index, the

lowest has been chosen for allocaxion.

making nnmerioal example |10{, in which data runs as,

Stage 5| 1 | 2 | 3 4
Reliability | 0.8 | 07 | 0.75 | o0.85
cost o 1.2 | 2.3 | 3.4 4.5

Table 2.5 gives the complete information about the undominated
allocations. I¢ may be noted that allocations are given for
the system and actual redundanoy allocation can be found by
substrapting (1, 1 1, 1) from the system allocations.



Table 2.5 - Single Cost Allocation

stem Systém System | v Desirability F@ctor 8
tg;n Reliability| Cost ¥, F3 2‘4
111 0.3570 11,4  0,15194 0.14407 0.06563 0i03106
111  0.4284 12,6  0,02732 0.11407 0.06563 0.03106
211  0,5569 14,9  0,02732 0.02910 0.06563 0.03106
221 0.691 18.3  0.02732 0,02910 0.01435 0.03106
222 0,8005 22,8  0.02732 0,02910 0,01435 ©,00431
522 0.,8560 25.1 0.02732 0,00836 0.01435 0.00431
522 0.8845 26,3  0.00536  0,00836 0.01435 0.00431
532 0,9287 29,7  0,00536 0,00836 0.00348 0.00431
132  0.9468 32,0  0,0053 0,00248 0,00348 0.00431
132  0.9529 33,2 0,00107 0,00248 0,00348 0.00431
33 0.9715 37,7  0,00107 0,00248 0,00348 0.00064
L 43 0,983 41,1 0,00107 0,00248 0.00086  0.00064
|43 0,987  43.4  0,00107 0,00074 0,00086 0.00064
43 0,900 44,6  0,00021  0,00074 0.00086  0.00064
i 53 0,9929 48,0  0,00021 0,00074 0,00022 ©.00064
.53 0,996  50.3  0,00021 0.00022 0.00022 0.00064
54 0.9974 54,8  0,00021 0,00022  0.00022  0.00010
54  0.9979 57.1  0,00021 0,00007 0.00022 ©,00010
64 0,997 60,5  0,00021 0,00007 0.00005 0.00010
"6 4 0,999 61.7  0.00004 0.00007 o.¢0005 0.00010
65 0.99% 66.2 - - - -

l




2.5.1.4 Minimum mamber of Components at each stggg for
desired reliabilit

Consider the problem of redundancy allocation to
each stage for getting a reliability of at least R, at ninimum
system cost. It is assumed that the redupdant equipments will
be in parallel arrangement. It is not difficult to See that
the reliabiiity of each stage must be greater than RO. Therefore,
the minimum number of equipments reqnired in each stage can
be found by solving

'RO P,1'”ﬂ( 1= rd ) . , . (2.45)
or - kj I o -
Taking 1ogarithm on both sides of equation (2446)
kj 103(1-rj) = 1og (1-301
or ,
. lo (1- )
- . gRO (2¢47)
-d ‘log(1ﬂrj)

q If a lineax cost relatlonship is assumed, where the
‘ ;cost of the j th stage is oy R cjkn » then the mlnimum
relative increase in cost per stage to reach reliability
Rols
- ; 31&E~.‘a lqg'(iﬁﬁo)

.

NI (2.48)
g ety

Thus the relative increase in.ocost is proportional
to the ratio of logarithme of the desired unrelisbility and
the unreliability with no redundanoy..
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‘Moskowitz and Mc Lean |8| have given a variational
solution to the allocation problem for linear cost functions.

The solutions are

. 8,
Log(1-Ro J )

| - _ (2.49)
- log(1~r3)
‘vhere,  o/r08(1mr,) |
R 2y - J/ og( it " (2.50)
k C, )

z | e——m——
1=1  log(i-r,)

2,5.1.5 Example

. Buppose the required 1ev§1;of system reliability
| Rb_ia,qp99ﬁgn§lt@g stage reliabilities without redundancy
are 0.80, 0.70, 0.80 and 0.70 respectively. Assmuming $hat
the gost.o: a single equipment in each stage is Rs.2000,
Rs.3000 and Re.1000 respectively. The data is given in
Table 2.5 and the minimum numbexr of redundant equipments
Per stage to meet sjétem reliabllity is calculated in
column n0.5,. k -

Table 2.6'- Basic Data For Allocation Problem

Stage| Cost per Equi~ Eqnipmen%"nquipment ‘Un-| Min.no.of
pment in Rs. Reliability l‘eliability redundant

equp.per stage
ro meet system

_lrelisbility

1 2000 - 0,80 0.20 3
2 3000 | 0.70 0:30 4
3 1500 . | 0.80 . 020 3
4 4

1000 | 0.70 0430
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2.5.2 Bri System Redundancy Allocation

Making the same assumptions as in section 2.3.2.1,
the optimal redundancy is found by the heuristic algorithm.
A computer program of the algorithm is written FORTRAN -~II
and a mumber of problems are solved on IBM 1620 computer.
The reliability of the system with 1n1t1a1;alloeaxion(1,1,1,1,1)‘
is calculated in section 2.2. Equation (2.4) can be 4imp-
lemented for cslculsting the initial reliabllity of the
system. A component is to be aﬂded to the stage where its
addition produees the greatest ratio of increase in reliabllity
to the inereasa in cost, The éesirabillty factors Fi's are
calculaxed for eaoh stage.'as )

| . & R,

et ’ Ce 5 -,(2‘51)
i . "698 o -

Then a component is added to the Stage that gives

the maximﬁm of the Fi's; Agaih. the réliahilify is computed
for the new oonfigurajion and the procedure is repeate& +111
the desired eonstraint on the cost is violated. |

Fron equation (2 ¢4)
Ry = r1r,+r4r5+r1 585+ T Ty 4 rﬁrz(r3r4*r4r5)-rzra(r4rsfr1r5)
r4(x%r5)*2r3(r1ré)(xztb)

and the system cost -

C.= . C

Try redundancy at stage 1, and calculate new system

*

reliability expression, R's‘.
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Then increase in reliability per unit system
L) o ’

reliability Rg - Ry

Rg

{2.52)

Increase in system cost per unit éystem cost

Caloulate Fp, Fy, F, and Fy. Find maximum of ‘these
Ei's.ﬁ Let it be'Fj. Then put one redundant component in

stage ] and compute the reliahility Again f£ind the best

- -allocation and repeat the proeedure til1 the ‘constraint is

violated. Then the preeeeding allocaxion gives the optimal

numbex of components in eagh stage
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OPTIMIZATION TECHNIQUES

The religbility optimization problem is a nonlinear
integer programming problem. The methods for solving this
pioblem are ciassified into‘tva groups, one which includes
me thods that require simple formulation and yield approximate
- resulis and-xheAéther‘whidh includes methods that abe comp~—
licated tut yield an oxact integer soclution to the problem
. 121} . The procedure to be uséd for the soiution of the‘
‘reliability prablem ﬁeyends on the aﬁouracy of the results
and the cost of obtaining thenm becanse the system aesigner
has to sSolve several alternativgs and dlteratiop in the
design parameter from other technicel considerations. The
redundancy allccation problem does not require an exact
splution as the objective function of the system reliabllity
is a well behaved nonlinear function and the linear constra-
inte need ngt.be_oonsidered ' too tight ' to relax at the
design stage. | |

3.1  VARIATIONAL MRTHOD

In section 2.5.1, from equation (2.38),

k :
and the basic system oost
X | :
00 = T ca - ( 3.2 )

J=1



The problem is to find redundancy allocation which gives
minimum cost for the specified system reliability of Rg.
Denoting the number of elements in stage J by mj the reliabv-

ility of stage J can be written as
Rﬁ 2 1 @ mj (303)
where q4 = 1~rjo rjis the reliability of each element in j th

stage and R.‘,j is the reliability of mj such elemente in paras-

llel. . _
xntroduaihg another variable &y defined by

. ay | |
Ry = Rg - G
It can be shown that a real positive number aﬁ between O and

1, can always be found to satisfy (3.4). Then from (3.3) and

(3.4) each m. Can be written as

J
. a
10@(1"R3) log(1=R" ) -
T T T T 10@3 | (3-3)
08 '
and the system Cost and reliability can be given by
dog(1-n3 ) |
k : k ¢, log(i-R_¥
¢ - m.c o —i : IO {3,
S 321 Jdd 3&1 Tog 9 (3.6)
(k
k " k a 21 aﬁ‘ .
) = ‘ : :
R 3:1 J 321 B = BT (3.7)
For (3.7) to be valid, |
k .
a= 3y a =1 (3.8)

3.1 !



It is possible to optimise cost with reliability. This
occurs for distribution of 3‘3’5 which gives stationary value
for the ratio G /Ra + The distribution of a,'s 18 to be

J
found which sgatisfies

Cq 5 O &R
L | k (3.9)
subject to the constraint that &a = 321 day =0 (3.10)
If 7\ is a real constant then simultaneous solution of
(3.6), (3.7) and (3.8) and
8¢ BR. ' '
8.« 28 -~ Nsa=O (3.11)

will provide the distribution of a,'s for stationary value
of GE/ RB‘ Now '

R, = R (a+ba) = R_(a)

Rg(Rg "
| isindé‘ ba -3 6'9.3_{ = 0

thereft;re 6R, / R, = 0 | ' (3.12)
Similarly the variation r;nf Gé‘with a is gifen by;' |

6C H‘OS(aﬁba) - Ca(a)



j=1 log 1y 8
k ¢ a
b 4 . log(1-R ¢ )
J=1 log g 8 .
ko, - (2, + 6a.}
= E 05 log ! R J jl

3=1 | ™7, (3.13)
. . 1 - RB j

where °§ = <>:l/-'logq_j
If it is assumed that Rs isquite higﬁ, i.e. very close to unity
and QB is very small '

a.+ba,

then.to the first approximation
ba
sc_ . %%y -

~ Substituting (3.12) and (3.14) in (3,11) yields

e S C L :
3 ‘ ‘ / | .
P day 7~§ bay = 0 | (3,45)
sJ _' . S
¢

-3

For (3.15) to hold good a8, = - ‘
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Solving for » » from I ay = 1
| J
'?

o e = ' 3 '
A § = (3417)
8

Substituting (3.17) in (3.16),

a, = 5. §/*°8 94
j 0' ' - (30?8)
o £ o,/log q
; 408

-

Therefore minimum cost can be obtained for the distribution

a, given by (3J8B) and substitution of (3.18) in (3.5) yields

J

the values of mj

' with the totsl cost as

(J = 1540..4k) 2 the elements in each stage

The general progedure for determining the optimum
allocation can be outlined as follows ¢

1. Using the cost and reliability data about each element
typeaﬁFs using equation (3,18)_are calculated and the
calculated values can be checked by finding their sum
which should be equal fo unity, i.e.

k

j§1 aj -



o~ =42

2, Por the given system reliability R, and unreliabilities
of each element type one ¢an ¢alculate the v§1ues of mj‘s
the probable number of elements in each stage, using
equation (3.5),

3, Usually the values so Oalculatgd for mj'e v(ill not be
integers and as the.ma'a ¢can only have integer values, 80
the values of mafs obtained in step 2 are rounded off to
the lower integer values, '

4y Now as the reliability of the system will fall short of
the given gystenm reliability due to truncation of the |
values of mi?s thé furtﬁer improvement.in system reliability
¢an be obtainea by adding suacessively the element types
that yield minimum increase in cost for a certain increase
in reliability.

Se Therefore the desirability factors Fj‘s for each stage are
caloulated as deflned by

AL
/%

where, Fj o the_desirability factor for adding a unit or

element to the 3§ th group

Rs’ 0 = gystem reliability and Qost before adding the

unit to J th group HE '
03 = cost of adding a uni'i: to § th dage.

However it can be shown that 535/35»“ 533/33 - (3,20)

Here Rj is the reliability of J th group before the



6. Once all Fj'a have been ¢aloulated in step 5, a new

T

addition of new unit to that stage and 61@\j is the increase
in reliability of that stage after new unit has been added.
Pherefore (3.19) can be written as

(3.21)
-°3/bs

To show (3.20) holds good one Can write that
k

Bt M

"and the reliability of the system R ' , affer a unit to

J th stage has been added will be

R R (1+ &R.)
R =1 R
‘also 6R_ = Ry = Ry  therefore,
{

- .

5R_ = R_ =i

8 8 R

J
or aas' 5R
R, Ry

element is added to the stage J for which the F, calou~
lated is maximum. o '

New relizbility and eost of the. system is caloulated, If
the reliability of the eystem is now more than or eqaal
to the given relisbility, the allocation obtained so far
is the optimum value, otherwise the steps 5 and 7 are
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repeated till the system reliability is at least equal
to Rg or greater than this.

3.2  PENALTY FUNOTION METHOD

In this method, the écnatrained problem is converted
into an unconstrained probvlem by the use of a penalty function,
which is added to the constrained problem.

The reliability prodlenm is
. » Dk .
-log Rg(n) = = 3 log Ry(n,) (3.22)
j=1
subject to the constraints

k- |
I Gy (nj) b

Ja‘ J e | (3&23)

o L m 1,2,.004,8

nj > O and integer
The equivalent unconstrained problem can be written as
Minimize

| 8 Xk -1
B ) == dea k) v L [“’1 TR T ] |
' SRR SR (3.249
where rp ie a parameter called as penalty factor. A
sequence of positive values of’rb which are strictly decre-
asing to zero, are used for minimizing (3.24). It results
in a sequence of minimum points which converges to the
constrained minimum of the = log n Rs(n). - If the optimal
solution is integral, then problem is solved. Otherwise, a



non-integral veriable, say nys 15 chosen wWnich has highest
fractional part , dnj. A new constraint is incorporated in
in the original problem which can be written as

ng 2 | n, | + 1 (3.25)

where gnjl is the integral portion of the n,. The
‘new problem is sgaln solved in the similar way as origingl

unconstrained problem, If new prodblem Converges, n, is set as

J

3njj + 13 othervise, as injj. The Bame procedure is

repeated for other variables.

3.2.1 Algorithm of the Method

1+ Select an initial value of rp > O and an interior point
n°, Set 1 =0 ,

2. If n; nearly minimiges F(n,x ), go to step 6, otherwise
.calculaxe direction veotors dé

3 = m R L e e
‘In, -
o _ j 3 & 1,2.,--o-gk
3+« Choose stepsize ti tbatfminimizea F(n; + t{d; . rb)

4. Caloulate new trizl point

n?}'ﬂ -n:; s
ju 1.'2")"0:5’k
5¢ Set 1 = 1+1 and go to step 2.

6. Check convergence., If salution is optimal go to step 7;

else replace I, by str;, where O < st < 1 and go to

step 2 with 1 = O,



T. Choose that wariable which has greatest dn
following constraint in the problem

3 and add the

n, g.]n | + 1

8. Repeat step 2 ~ 5. If problem converges sSet n =ln l+1 ;
| otherwise, n, = In | and remove J th stage from oalcular-
' 4%ion. | ' : o _
9. 1If all Variébles are tx.’ied_,atop : else, go to step 7.

The initial value of r, should be such that

J

‘ -1og n R (n) A
rg - — (3.26)

- 1_3- - ‘*is‘”)

where F_ 1s 0.01 < R, < 1f

D3 IA&GRANGE'S MBLTIPLIER ‘THOD

Gonaider a B:i.mple n unit series atructure. Lat the
. reliability of individual unita be x, .xz,.. .,3: and that of

the stmeture be x .'

Then melia‘bility of eomponents wi‘.\.l be 4 oy2o....y

Wherey ,
7y = 1, )
Yo = 1-12
' '
4
¥y = 1-—xn

Detfine parame ter ¢i as



y 1~xi
Then 4 :
i ‘¢i + 1

For the given series system

xs L] 11112,‘0010-333:& T (3.29)

ox (1+¢8) = (1&1)(“’32)"“”(1&:1) | ' (3.30)
;Fbr‘n>= 2
ﬁs =@y + ¢é *‘¢1¢2
Once @ is known from (3 30), the system reliability is
obtained‘fram_
xg = — (3.31)
B 14 ¢s .

In most rellability studies, the components have a relar
tively high value of 'x' 1.e. @ << 1,

. Eqpaxion (3.30) can be approximated by
= :: ¢ S (3.32)
| Po. T
Similarly for n unit paralle structure
S n ' . -
¢p-1=1 3 (3.33)

Now consider the redundancy problem in which, at the



j th stage nj is the total number of components in parallel.

+*+ System parametric equation becomes

g, = & ¢§3

(3.34)

The problem is to minimiae ¢e ( 1.e. to maximize

system reliability R) subject to the linear constraint

26;‘&:’5‘0&

Introduce the Lograngien Maltiplier to give the

ungenstrained promilation as

‘n, , o -
L= 580+ alzom -c]

§
The conditions of optimality are

on

3

-0

and

Differentiatins (3-35) W.i'.‘l’-- ya and A |
9""1"‘ = In ¢ o ¢ J + ¢, =0
n, I J

o 33

-------

From (3.38)

- (3.35)

(3.36)
(3.37)
(3.38)
(3.39)

(3.40)



where 1
33 = i;a;-
Lnk:
Lnﬁj‘
-0

kK, = — |
J Lnﬂa

by =

From (3 39) and (3 40)

A= e's;' |
where , c > °3b;

E¢ a

"

Once 7, is obtatned, n 5 oan be caloulated from

(3.41)

(3.42)

(3.43)

(3.44)

equation (3.40). ny go obtained by treating as a continuous

variable, is approximated to the nearest integer to get a
near-optimum solution. The algorithm of the method is given

in referenee 1201

3.3.1 EMLE |

consider the problem of maximizing the reliability

of the following 4 =stage system

Stage J | Cost ca

.

Reliability R,

_—

1 4 4.0
2 3.0
‘5 | 2.0

0.90

0:85

."0680'

0.70




)

wB Q-

Cost constraint is 30 units.
Following the procedure of section 3.3

0.1

v o0 % ’
g, = 0.176 In ¢é = = 1,737
¢3 = 0.250 : " Im ¢5 = - 1,386
g, = 0.428 - ~ In g, =~ 0.849

. -
Ln¢.‘;
ky « 1.727 - ~ Ink, = 0.546
kg ="1.443 In kg = 0.367
k, = 1.178 | | . Im k, = 0.164
1. _ _ Lnk,
By B e b, = __1
k Lng, ! 18,
= ~0,457 ' ' = =0,275
ay, = =0.576 b, = =0,314
ag = =0.721 by = ~0.265
a,4 = «1,178 b4 = «0,193

B8 i85 caloulated as

30=(=1,1=0,942~0,53~0,193)
~1(1.828+1.728+1.442+1.178)

22
. ‘7 % 2 RERCNA

RE b




8= 222185 . . 5.305

-5 ,305

vo.i )Ge
.= 0,00496
y4 = 8y In 2+ by |

¥p = 3,056 ~ 0.314
¥5 = 3.826 - 0:265
- 365é - 4
Y4 = 6:25 = 0.195
= 65057‘__6
Total Bystem Oost = 2(4) + 3(3) + 4(2) + 6(1)
= 8+ 9 4+8+6
« 3
| +*¢« The cost constraint is violated.
. 'The Legrangian Multiplier 7 15 decremented by 0.001
and the procedure is: . vepeated.
New A= 0.003% L S
©. . The optimal .allocation is found to be (2,3,4,5) and
the optimal system reliability 1s 0,98269,



Lawler and Bell |17} deacribéd a simple, easily
Programmed thﬁod for solving discrete optimigation problems
with monotone objective funotions and arbifrary (possibly
non-convex) constraint. mhe’problem can be stated as

Minimize‘z = gé(x)

subject to ;
811(3) -» 312(1) > 0

~_821(X) - 822(3) >,0 . o ‘(3»45)

b

1
+
" gpy{X) = gp(x) 2 0
In geﬁexal.‘the type or problema that can be Solved
by this method should be put 1n the form
B Minimize go(x) subject to the congtraint of the form
311(2) - g12(x) > 00 R
| i = 1,2.0.‘-.6,1’

where
X = (X.‘. x29oco',x )

anﬂ. j -OOJ.“‘ V’ ( a 31,2,,..;,“) '
with the restrictions that each of the functions 36’311'“"
» 0812 poesre ,gma is monotone non—deﬁreaaing . in eaCh of the

Va‘[’iables (X1 .12 » LR X} ,In) *

Here it is possible to transform non-negative integers

into binary variables also and if ngocessary, an arbitrary



objective function of the form

minimize go(x)
can be replaced by a monotone non-increasing objective
function by the formulation as

| ninimizw Z

subject to

g - gx) 20 . (3.47)

‘Veg‘;tor' X is '"binary! in the sense that 'éé,ch xj

is either O or 1.'x { y if afd only if x;j L 3r;l for
J=%,..s,n. This is the vector partial ordering. There
is aleso the lexicographic or numerical ordering of these
vectors obtained by identifying with each X, the integer
value'*;. _ .l : , o
N{x) _‘11(211-1) »‘xé(2n"2_) +...;+xn(2°) {3.48)
" Numerical ordering -i‘s» a refinement of the veotor partial
ordering i.e. X < y implies N(x) € N(y) ; however, N(x) <
N{y) doces not imply x £ y. '

.~ The method ie basically is a Search v‘method, which
starts with X = "(09_0;‘0‘6‘ »0) .and examine the Zn_,soiution ‘
veoto;s in the numerical ordering desoribed above. Furtb.e:r_:
the labor of exam:l.#at.ton, is considerably cut down by follo-
wing Certain mles, As the gxaminatg.on proceeds one can
retain the least costly up-to-date solution. If X is the
solution having fcost! _gé(%) and x ie the veotor being
examined then the following steps indicate the oondiiione

under which Certain Vectors may be skipped.
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. A -
1. Test if go(x) < go(x). If YES, skp to x* and repeat

the operation, otherwise proceed to step 2.

2. Exemine whether g¢;(x'=1) = g,,(x) O for 1 =1,...,r.
If YES, praceed to step 3 3 otherwise skip to x*and go to
step 1. ' ' | : '
3.»‘Further,'if gil(x)—&zﬁﬂﬁizl,.t.,r). regléce X by x

and skip to x *3 otherwise change x to x+1, In either casge
further execution is transferred $o step 1. Lewler and Bell
(17] 0all the above steps of the algérithm skipping rules
1,%.,2 » EQSpectivelyQ Following the above rules, all the
vectors are examined and scenning continues until) a vector
having maximum numerical order, viz.(1l,1,...,1), is found,
In case one has skipped to a vector having numerical order
higher than (1,...,1), designate this state by ‘foverflow' .
and termingte the procedure, The least 'costly' vector

recorded provideés the optimum solution,

One should not be overwhelmed by the number of | }'
trials., In practice the number of vectors to be examined \
may be wuite small, For example, in an 11 -variable prodblenm
with a total of 2*1 golution vectors, only 42 vectors were
examined,

x* 18 the first vector foliowing x in the numerical
order that has the property x :g;* « For any x, x* is calculated
on a computer by treating x as a binary number and then subg:
tracting~1 from it, Logically OR x end x~1 to obtain x* -QlQ‘
Finally add 1 to obtain x™*.



-,
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x* can also be found out by the following method

131,

Let the right most position of one in x be w and

the position of rightmost zero to the left of u be v. Then

x* vector ¢an be calculated from x dy

1 ~ putting xt = 1

‘2 - putting x§ =0 -for v¢1 (1< u

3 = putting x§f = x;, for 1 ¢ 4 < v-1
where us is the total length of vector x,
rememberig that x is written as (X,,Xpy«+ees%,)

It is found that the second procedure is efficient

with respect to the cComputer time.

3.4.1  ADVANTAGES OF THE ALGORITHM

This algorithm has been foynd of great interest in

solving varieiy of problems arising in the reliability area

and those that defy solution by any standard procedure. Thié

is due to the following reasons @

1.
2,

3.

4.

The algorifnm providéé‘énﬁ exact integer solution.
The proéedure is very simple end involves only the
functional evaluations. No partial aerivatives or
positivity tests.are required. o |
There exists a possibility of reducing the number of
searches and the secarch does not so greatly inerease

with the number of variables.

The memory requirements are extremely smaller thanas



with other methods..
5. A very large problem ¢an also be solved in various
passes as the search can be broken up in the range of

binary variables.

34442

OPTIMAL ALLOCATTON PROBLEM;

- Considering a series=-parallel system with statis-
.ticaliy independent componehs and assuming that ~
1Y« The system has n stages in seiiesg'i.e.; the system
" fails if any stage fails.
2,‘ Bach stage has severalvidentical'éomponents in parallel
" to provide the Tedundancy. The relisbility of each -
cemponemtis'known;;"_ ‘ .
‘3. For tha’j th stage, if 1fm3 components {each with
 Teliability pj) are used, the Stage reliability is

o 1em .
- R,{m.,) = 1=(1= 3 ;
| Bylmy) = -(py) (3.49)
The overall reliability of the system is
R ) n _14»m3 '
'Rs = dza Rdimj = 321 1~{1npj) “ (3.50)
or _ ,
Z = 3421 ﬂ’ﬂ (mj) | | . ) o (3t51)
| where

ﬂquaﬂir Ln Rd(md? .anﬁ Z = 1In Rs

This form 18 more convenient to use since each term of thé

sum depends on a single variable. Moreover, since ¢J(m3)'1e



a monotoneiincxeasing concave function of My maxi@izing .
R is' equivalent to maximizing In R, = X. Two situations
will be considered here.
1. minimizing the cost of a system, given that the
system reliadbility is not less than a preéssigned
. value; the cost function and constraints may be any
arbitrary functions.
2., maximizing the system reliability sudbject to given

constants § the constraints need not bde linear.

In the following sectons, we will show low different
redundancy optimization problems can be formulated as an
integer programming problem with zero-one type variables,
so that it is easler and more economical to solve them using

the Lawler-Bell algorithm then by eny other method.

3.4.2.1 EXAMPLE

- Congider a system consisting of two stagesf Ehé
reliability; cost and weight parameters of the components are
gilven below. It is required to find the optimal number of |
parallel eomponents 0 be employed in each.stagg to increase
the system reliability. The total cost and weight of the
system should not exCeed 40 and 30 units respectively.

" Stage B 2

Compoment Reliability 0.91 0.9
Cost 9 6
Welght 5 8
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The problem can be written as

Maximige In Rsf(n)

+1 +1
_ LoR_(s) = 1n(1-.09 ' )+1.n(1~.o4m2 )
’prv uinimize" o . m1+1. X o m2*1 ‘ -
go(n) = ~Ln(1-.09 ) = In(1-.04 ) (3.52)

subject to the constra:lnta
g1(m) = 25-9m, =6m, 2 0 . a (3,53)
gz(m) - 17~5m1~8m2 > 0 B (3.54)
Since the objective function is non-increasing,
the following situations will be made by once more replacing

‘usual binary variables x;_j with '(1-113)'. Subseript 1 afd j
rei‘er to tbe constraint and stage raﬁpeetively.

Be:fore m, and m2. the non-nega.tive integer variables, -
can be transformed to the variables of zero—- one type, it is
negegsary .to estimate their naximum values. "From (3.53) and
£3.54), e £ind that my £ 3 and my, { 3. Therefore, we make
the following substitution,

o e 4
my = Xyq + 2Xyp
= (1*111) 4 2(1 X )
= 3.x11 - 2112 | (3055)
my = ’21 v 2x5, |
= (1-x54) + 2_(1--;;22)
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where x5 is either O or 1

Substituting these values of m; and m,,

4=x,472x, 5 4=%5472%,,

go(x) = = In(1-0.09 } =~ Ln(1~.04 )

“84 2(3) = 821(35) s 0
8po(X) = 5x, +10X, 48X, 4 +16X,,~22

_ Following'the rales of Lawler-Bell algorithm, the

‘solution sequence is given in Table 3.1.

~ Pest Vector = - Conments
%2 %2 11 %29
s i ’ it ..- . i - _ hd . i _
-0 0. 0 O  Skip %o x* through step 2
o 0 0 1  Skip to x* through step 2
0 0 2 O  Skip to x* through step 2
0 1 0o O  Change X to x+1 through
atep 3.
o 1 1 Skip to x* through step
1 -0 Change x - x+1 through
8bep 3 . ’
0 1 1 1 g, =0.0943T, skip to x*

through step 3

Table contd..
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Table 3.1 contd.

Test Vectors _ Comments
*22 %12 *11 *29
1 0 0 4] Change x - x+1 through
Btep 3-
1 0 0 1 Change x - x+1 through
o step 3.
1 0 1 0 Change X = x+1 through
_ ‘ step 5.
1 0 1 1 gé = 0,04155, skip to x*
1 1 0 0 g, =0.00973, skip to x* -

The optimal solution obtained is
From eqnaxion (3 55) and (3.56)

m1 = 3"‘2 = 1

Therefore, the optimum number of parallel components
to be added to the existing-ones, are one in each stage,
with maximum reliability as 0.9903.
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The basic consideration in the design of a eomplex
systenm is that its reliability should be high. The reliar
bility of modern system, being sophicated, needs special
consideration, The relliability of the constituent components
is insufficient to meet the system reliability goal. Therefore,
some means must be provided for increasing the system relia~
bility. One can obtain high reliability for the eysten
by providing as mamy redundancies as possible, bdut to
ensure that this does not béco¢a too c¢ostly, heavy or bulky
system. Therefore, the question of optimization of system
reliability with respect to cost, weight or volume arises.
The other problem is to minimizé thq system down-time by ,
resorting to planned maintenance of the equipmenta. There~-
fore, the question of optimum maintenence policies arises.
Both of these aspects are covered in this dissertation work,

threugh the mathematical models.

| _mhe réiiability,problem hés form of nonlinear
integer‘programming Qrablem having 1n$eger variables. .A
JZev methods of optimization of such problems are presented
in chapter III. The methods diacussed are the variaxional
method, the penalty function method, Lagrange's Multiplier
Method and the Lawler and Bell's optimization method. Other
methods of optimization are leo available. Variational
method is easier to obtain foﬁ single aonstfaint problems,'
and it provides near optimum or optmmmm solutlon convenie-

ntly, fast and without much complexity When the reliability



-f2m
problem has a number of constraints and approximate solution
is required, the use of penalty function approach can be
made as explained in section 3.2. This method provides
continmuous solution and has fast convergence. For obtain-
ing the solution by Lagrangian Multplier method, one has
to try several values of the Lagrangian Multipliers before
arriving at a correct value. The exactrinteger solution
of the reliability provlem is obtained from Lawler and
Bell's algorithm. The nonlinear integer problem is conver-
tad into zero—one nonlinear pprogramming problem. This
method is easily programmable and the memory requirements
are extremely smaller as with the other methods. There
existé a possibility of reducing the number of searches and
the search does not so greatly increase with the number of
variablesy..mherefore; a very large problem can also be
solved in various passes as the search oan be broken up in
the range of binary variables. The method to be used for
the solution of reliability problem depends on the accuracy
of the results and the cost of obtaining them.

In future, due to tixe advent of !space age' the
system will demand more Sophisticated equipments for comm-
unications, Gommand and control, missile and satellite
launching and navigation. Many new techniques will be needed
to Cope with these new problems. A continuing growth in
the problems of system maintenance is anticipated. Therefore,

the problems of systems planning may be expected to become
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more important in the fubure and to require the develop=
ment of advance@ techniques for decision-making. It is
hoped that the present work may help in the design of

tomorrow's systems.
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RELIABILITY OPTIMIZATION N SERIES SYSTEM BY REDUNDANCYsG L MADAAN

10

12
i3

20

DIMENSION R{5)sF(5)9C(5)sM{5)sRS(5)»RS1{5})9Q(5)

READ 109CS6G
PUNCH10»CSG
DO9ITER=1+3

READ1C» (R{I)sI=145)
PUNCH1O09(R(I)sI=195)
FORMAT (5F1065)

READ IOQ(C(I}JIsliﬁi
PUNCH1O0s(C(I)sal=195)
DO 1I=1+5

M(1)=1

QtI)=1le=R(I}

K=0 ;

DO 7Jd=1+5

RS1(J)=0,

CS=0,

DO 5J=1s5

AMJI=M( J)
CS=CS+C{J)%2AMJ

DO 2I=1+5
RS{I)=RS81(1)
RSI=RS(I) '
RS1{I})=R{1)%#R{2)*R(3)*¥R(4)*R(5)
RSI11=RS1t1)
M{I)=M{1)+1

K=K+1
IF(K~2)12+13,13
RI=R{1) _
R{I¥=1la=QIy%uM(])
GO TO{(394)sK

K=0

M{T)=M(I)=-2

R(I)=RI
FI=(RST1-RSI)/Rsl
F{I)=FI*CS/C(1)
PUNCH 203(F(I)e1=195)
FORMAT (4E1648)
FM=F(1)

IM=1

DO 6J=2+5 ’

IF (F(J)=FM)696411

CONTINUED ON THE NEXT PAGE
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11 FM=F(J)
IM=J
6 CONTINUE
MEIM)=M(IM)+]
RIUIMY=1loe=(QUIM)%*M{IM))
CS=CS+C(IM)
RST=RS1{ IM}
PUNCH 30s{M(J)sJ=1l9e5)
30 FORMAT(13H ALLOCATION= »515)
PUNCH40 9 CSHRST S
40 FORMAT(26H COST AND RELIABILITY ARE »2{2XsEl1l5e8})
PUNCH50
50 FORMAT{26H COST AND RELIABILITY ARE 92(2X9E15481})
PUNCHS500+{R(J)»3=195)
500 FORMAT (4(2X9El6e8))
IF{(CS~CSG)B9e999
CONTINUE
STOP
END
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APPENDIX B

C RELIABILITY OPTIMIZATION N SERIES SYSTEM BY REDUNDANCYsG L MADAAN
PROGRAM ACCEPTEDZ 36930 42280 59339 59999

60600000
65000 +65000 «65000 «65000 65000
3450000 3420000 4400000 500000 650000

0¢22199993E+01 0024281242E4+01 0Ol 424994E401 0e15539995E+01
0¢11953845E+01

ALLOCATION= 1 2 1 1 1

-0ST AND RELIABILITY ARE 0.25400000E4+02 0.15663922
05T AND RELIABILITY ARE

065000000 0487750000 0465000000 065000000
065000000
0e25400000E+01 0072025515 0022225000E+01 0e17780004E+01
0613676923E+01
\WLLOCATION= 2 2 1 1 1

'0ST AND RELIABILITY ARE 0+28900000E+02 0621146295
:0ST AND RELIABILITY ARE

087750000 087750000 065000000 065000000
0465000000 :
0e74925945 081950253 0e25287505E401 0420230004E+01
0e15561538E+01 :
LLOCATION= 2 2 2 1 1

OST AND RELIABILITY ARE 0+32 00000E+02 0028547500
0sT AND RELIABILITY ARE

0487750000 0«87750000 0.87750000 0+ 65000000
065000000 T . :
0e85296285 0693292812 0C74634250 0e23030000E+01
0e17715384E401
LLOCATION= 2 2 2 2 1

OST AND RELIABILITY ARE 0+37900000E+02 0438539125
08T AND RELIABILITY ARE

087750000 0487750000 0.87750000 087750000
065000000
1498259237 0e10747104E+01 085976857 0e68781466
)920407692E401
LOCATION= 2 2 2 2 2

)ST AND RELIABILITY ARE 0+ 44400000E+02 0452027819
)ST AND RELIABILITY ARE

087750000 _ 0487750000 0«87750000 0.87750000

CONTINUED ON THE NEXT PAGE
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0487750600
0011511108E+01 0612590275E+01 0e10072222E+01 0480577762
0461982906
ALLOCATION= 2 3 2 2 2 ,
Z0ST AND RELIABILITY ARE 0.47600000E+02 0456748861
COST AND RELIABILITY ARE

0.877 0000 0495712500 0487750000 087750000
087750000 ,
0,12340738BE+01l 0443311809 0¢10798146E+01 0486385172
0,66450146 ,
\LLOCATION= 3 3 2 2 2

.0ST AND RELIABILITY ARE 0+451100000E402 0.61898294
08T AND REL+ABILITY ARE

095712500 0495712500 0,87750000 0487750000
087750000 | :
0642511134 0e46496553 0e11592131E+01 092737052
0,71336180 : '
WLLOC+TION= 3 3 3 2 2 :

:0ST AND RELIABILITY ARE 0,55100000E402 0467514992
JOST AND RELIABILITY ARE ‘

095712500 0495712500 0495712500 .~ 087750000
0487750000

0,45838802 0450136190 ' 0440108930 0699996288

0076920221 | | -

LLOCATIONE 3 3 3 3 2

0ST AND RELIABILITY ARE 0.60100000E+02 0673641352
OST AND RELIABILITY ARE
‘095712500 0495712500 095712500 095712500
087750000 -
+RROR LC=2 IN STATEMENT 0000 + 05 Le L.
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95,
«85 «85 +85 e85 85

3 be Se j 6o Te

¢ RELIABILITY OPTIMIZATION N SERIES SYSTEM BY REDUNDANCY»,G L MADAAN

PROGRAM ACCEPTEDZ 36930 42280 59339 59999
95,00000 . .
«85000 +85000 «85000 «85000 285000
3,00000 400000 5400000 600000 7400000
0612499998E+4+01 0493749987 0674999990 0662499991
0653571421
\{LLOCATION= 2 1 1 i 1

;08T AND RELIABILITY ARE 0+28000000E+02 0451026110
'OST AND RELIABILITY ARE

0497750000 - 0485000000 ' 0485000000 Oe 5000000
0085000000 »

0418260870 0410500000E+01 0484000000 0+ 70000000

0459999995 ‘

LLOCATION= 2 2 1 1 1

OST AND —~ELTABILITY ARE 0.32C000000E+02 0458680027
OST AND RELIABILITY ARE : :

0497750000 097750000 0.85000000 0485000000
085000000
0,20869556 Dei5652167 0495999986 079999993
0468571422 '
LLOCATION= 2 2 2 i i

OST AND RELIABILITY ARE 0e37000000E4+02 067482030
OST AND RELIABILITY A«E

057750000 0497750000 0.97750000 0.85000000
0.85000000

024130441 0418097831 - 0614478265 - 0492500000
0479285708 o :

LLOCATION= 2 2 2 2 i

0ST AND RELIABILITY ARE 0e43000000E+02 0677604335
OST AND RELIABILITY ARE

097750000 0697750000 0.97750000 0.977500bo"
085000000 :
)428043464 0421032598 . 016826078 0614021732
1692142850
.LOCATION= 2 2 2 2 2

)JST AND RELIABILITY ARE 0+450000000E+02 0489244985

e i

CONTINUED ON THE NEXT PAGE
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Z0ST AND RELIABILITY ARE

097750000 097750000 0.97750000 097750000
0497750000 :
0432608685 0e24456513 0e19565222 016304351
0413975158
\LLOCATION= 3 2 2 2 2

08T AND RELIABILITY ARE 0e53000000E+02 0.90991082
.0ST AND RELIABILITY ARE

099662500 0497750000 0697750000 0e97750000
097750000
0650853920E-01 0425923922 020739138 017282615
0e14813661
\LLOCATION= 3 3 2 2 2

0ST AND RELIABILITY ARE 0457000000E+02 092771343
'0ST AND RELIABILITY ARE

099662500 0499662500 097750000 0697750000
097750000 .
0,546916 OE=01 0s41018730E«01 0422304352 0185 6950
0015931671
LLOCATION= 3 3 3 2 2

0OST AND REL+ABILITY ARE 0e¢62000000E+ 2 Oe¢ 4586435 .
OST AND RELIABILITY ARE

0996 2500 099662500 0.99662500 097750000
097750000

0e59489206E~01 0444616905E<01 0e35693654E~01 0020217388
0417329190

LLOCATION= 3 3 3 3 2

0ST AND RELIABILITY ARE 0.68000000E+02 096437039

OST AND RELIABILITY AR+

0499662500 0499662500 099662500 099662500
097750000 '

0e65245993E~01 0448934495E=01 0,3 14T7736E~01 0,32623113E~01
)e19006214 '
.LOCATION= 3 3 3 3 3 ‘ ]
3ST AND RELIABILITY ARE 0+75000000E402 0498323851

ST AND RELIABILITY ARE

0699662500 0699662500 099662500 099662500
099662500

Je71962446E~01 0453971835E~01 0443177620E~01 0,35981350E~01
)¢30841157E~01 .

.LOCATION= 4 3 3 3 3

)ST AND RELIABILITY ARE 0+.78000000E+02 0498606876

IST AND RELIABILITY ARE

09 949380 099662500 099662500 0299662500
0499662500 '

CONTINUED ON THE NEXT PAGE
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t ' o
0611193722E~01 0e56131165E=-01 0e44904932E~01 0,37420776E-01
0,32074951E~01
ALLOCATION= 4 4 3 3 3
COST AND RELIABILITY ARE . 0482000000E+02 0.98890718
COST AND RELIABILITY A=~E
099949380 0699949380 OCe 9662500 099662500
099662500
061176T7427E~01 0+88255702E«02 0047207742E~01 Os 9339646E~01
0¢33719697E~01 '
ALLOCATION= 4 4 4 3 3
ZOST AND RELIABILITY ARE 0,87000000E+02 099175377
ZOST AND RELIABILITY ARE
0099949380 0699949380 0,99949380 0699662500
099662500
0612485084E~01 0693638132E«02 0s74910506E~02 0441738348E~01
0.35775 52E~01 -
\LLOCATION= 4 4 4 4 3
tOST AND RELIABILITY ARE 0493000000E+02 099460854
05T AND RELIABILITY ARE .
099949380 099949380 0099949380 0699949380
099662500 .
0013346155E-01 0e10009616E«01 0Q¢80076930E«~02 0,66730775E~02
0,38243185E~01 ' . '
\LLOCATION= 4 4 4 4 4
‘05T AND RELIABILITY ARE 0.10000000E4+03 = 0C99747154
-0ST AND RELIABILITY ARE

0e99949380 0499949380 0499949380 099949380
0e¢99 49380 ’

ERROR LC=2 IN STATEMENT 0000 + 05 Le Le
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APPENDIX =C

RELIABILITY OPTIMIZATION IN BRIDGE SYSTEM BY REDUNDANCYsG L MADAAN
DIMENSION R{5)» sF(5)sC{5)sM(5)9RS(5)9RS1(5)sQ(5)

READ 10,CSG
PUNCH10,CSG
DO9ITER=1,3
READ1O0s(R{I)sI=1s5)
PUNCH1O0s(R(I)sI=ls5)
FORMAT (5F1045)

READ 105(C{I1)sinls5).
PUNCH10s ({C{1)91=195)
DO 11I=1s5

M(I)=1

Q(I)=le=R(I)

K=0

DO 7J=1»5

RS1(J)=0,

CS=0,

DO 5J=145

AMJI=M(J) .
CSBCS+C(J)*AMJ

DO 21=145

RS{I)=RS1(I)

RSI=RS(I)

X=R(1)1%R(2)

Y=R({3)%R(4)

2=R{4 ) %R (5)

VaR({2)%R(3)

T=R{1)%R{5)

W=R{3)*#R(5)
UsRE2)I#Y4+R{ 1 ) #WaX® (Y42 ) =VR(Z4T )=Y¥%T
RS1{I)=X+Z4U42 e ¥R{3 ) ¥ X%Z
RSI1=RS1(I)

M{I)=M(I})+1

K=K+1

IF{K=2)12913,13

RI=R(1)

RUI)=1le=QUI)#*¥M(I)

GO TO(324)sK

K=0

M{I)=M(])=2

R{I})=RI _

FI=(RSI1=-RS1)/Rsl

F(I)aFI®CS/CULI)

PUNCH 209(F(I)s1=1s5)

FORMAT (4E1648)

FM=F(1)

IM=1

CONTINUED ON THE NEXT PAGE
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30
40
50

500

~16—

DO 6J=235

IF (F(J)~FM)6.6.11

FM=F(J)

IM=J

CONTINUE -~

MIM)=M{ IM) +1
ROIM)=le=(Q(IM)##M{IM))
CS=CS+C(IM)

RST=RS1(IM)

PUNCH 30p{M(JI’J=1,5)
FORMAT{13H ALLOCATION= »515)
PUNCH40 9 CS9RST !

FORMAT{ 26H COST AND RELIABILITY ARE 92(2XsE1548))
PUNCHS50 ,

FORMAT (26H COST AND RELIABILITY. ARE s2(2XsE1548})
PUNCH5009(R{J) s J=15)

FORMAT (4(2XsElgeB))
IF(CS=CSG) 89999

CONTINUE

sTop

END
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APPENDIX =D

€ ¢ RELIABILITY OPTIMIZATION IN BRIDGE SYSTEM BY REDUNDANCY,G L MADAAN

1204

Oeb Oe6 0e6 Oe6 Oe6
4eO 660 5e0 Te0 340

120,00000

+60000 «60000 260000 +60000 «60000
4,00000 6400000 5.,00000 7,00000  3,00000
80,78602620E=02 53485735080E«02 20496069868E=02 46416344354E=02
10,77147016E~01
ALLOCATION= 1 1 1 1 2
COST AND RELIABILITY ARE 2.80000000E401  7444768000E«01
. +0ST AND RELIABILITY ARE
60400000000E~02  §0400000000E=02  60400000000E~02  6000000000E~02
84400000000E=02 :
¢198528 4054528 ~=4041472 4294528 313728 |
7452513534E~02 30402835782E~02 1847099767 E«02 5667440061E~02
42,73266305E=~02
ALLOCATION= 2 1 1 1 2
COST AND RELIABILITY ARE 3420000000E401  8427251200E~01
COST AND RELIABILITY ARE
84+00000000E=02  £0400000000E=02  60400000000E~02  60400000000E~02
84400000000E=02 |
0177331 =4140236 =e162892 4029107 4223411
31,90641971E~02 39468992248E~02 2206731652 E=02 34¢01993355E~02
42454189295E=02
ALLOCATION= 2 1 1 1 3
COST AND RELIABILITY ARE 3.50000000E+01  8460244480E-01
COST AND RELIABILITY ARE
84400000000E=02  ¢0400000000E=02  60400000000E=02  60400000000E~02
93460000000E~02
0274375  =4043192 «4096952 052807 320455
33410924819E=02 29482207104E=02 25428751640E~02 38095331708E=02
17,89824213E-02
ALLOCATION= 2 1 1 2 3
COST AND RELIABILITY ARE 4¢20000000E+01  9427263232E=01
COST AND RELIABILITY ARE
84¢00000000E~02  £0.00000000E~02  60400000000E~02  84400000000E~02
93¢60000000E~02
0183478 ~4081788 =4,060899 ,033564 . 4367030
1574564302602 19479197829E~02 12406219779E~02 17434620755E«02
23422050996E~02
ALLOCATION= 2 1 1 2 4 :
COST AND RELIABILITY ARE 4,50000000E+01  9.42642892E-01
+0ST AND RELIABILITY ARE

84400000000E~02 6000000000€~-02  60400000000E~02 84+00000000E~02
97¢44000000E~02

T .U T XT
CON [N'gp ON 'y Ng'° Page

¢



-§—

0044287 =4254065 =e275569 217087 4387506
15487707866E=02 14450324735E=02 12¢47640621E=~02 18487731707E~02
7¢89281339E-03
ALLOCATION= 2 1 1 3 4 .
COST AND RELIABILITY ARE 5+20000000E+01 9470323333€E«01
COST AND RELIABILITY ARE
84400000000E=02 £0400000000E~02  60,00000000E=~02  93460000000E-02
97¢44000000E~02 _
0005734 «42 2582 =4264227 0211619 2408365
76.035196045-03 95094353152E=03 5981667221E«03 84.766024306~03
11661310788E-02
ALLOCATION= 2 1 1 3 5
COST AND RELIABILITY ARE 5+50000000E£401 9476824373E~01
COST AND RELIABILITY ARE , :
84400000000E~02 £0.00000000E~02  60,00000000E-02  93,60000000E~02
98¢97600000E~02
~o050820 =¢342725 =¢351326 +285920 «417448
75054274639E~03 69438008071E~03 60400910934E~03 90,18312981E~03
48480538976E~03
ALLOCATION= 2 1 1 4 5 ‘
COST AND RELIABILITY ARE 6e20000000E+01  9488036219E~01
+0ST AND RELIABILITY ARE .
84+00000000E~02 §0400000000E-02 -6o.ooooooaoa~oz 97¢44000400E~02
98.97600000E~02

=e066592 =~¢350624 «o¢347282 (284089  +426148 o ‘
35.89709199E~03 45436374650E~03 28452817271E~03 40.202949535~03 A \m
55,56126246E~03 ht
ALLOCATION= 2 1 1 4 6 o
COST AND RELIABILITY ARE 6+50000000E+01 9.9@6925035»01 R
COST AND RELIABILITY ARE T

84400000000E~02 60400000000E~02 60,00000000E-02 97.4400000@E~02
99459040000E~02 '

~e089354 =4378878 =e382319 313953 0429924 Y

5433009979E=03 32¢51706197E~03 28C1l 482480E=03 42.244703715~03 A
23423741168E~03 S
ALLOCATION= 2 1 1 5 6 . ;\‘
+0ST AND RELIABILITY ARE 7420000000E+01  9+95199589E~01 o
COST AND RELIABILITY ARE | . \

99¢59040000E~0C2
«2095719 =e382117 ~4380780 313277 s 433461
16460719001E-03 20499916925E~03 13¢25079496E=03 18.63288434E*03
25483889906E-03
ALLOCATION= 2 1 i S T
COST AND RELIABILITY ARE 7450000000E401 9496271042E~01 '
+0ST AND RELIABILITY ARE o
84400000000E~02 60+00000000E~02 60400000000E~02 98.9760@900E*02
99483616000E~02 . !
~9104846 ~4393450 «,394826 325245 434994

16423671932E~03 14495657636E~03 12497482569E~03 19.42683355E-03 "
10,75462928E-03 N

84400000000E~02 60400000000E=02 60400000000E~02 98o97600b00£~02§\
- \

A
\

ALLOCAT ION= 2 1 1 6 7 \
COST AND RELIABILITY ARE  8020000000E+01  998077452E~01 \

COST AND RELITABILITY ARE

A
84¢00000000E~02 60600000000E~02 60+00000000E~02 99+ 59040000E£=02
99483616000E=02 +230 |

%
\

P
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~¢107401 ~=4394758 =~4394223 0324985 ¢ 436418
,553210643E-04 95452995786E~04 60e36216933E~04 84, 806250495*04
11477628138E~03
ALLOQCATION= 2 i 1 6 8
COST AND RELIABILITY ARE 8450000000E+01 9¢98507463E~01
COST AND RELIABILITY A-E
84400000000E~02 60400000000E-02 60400000000E~02 99¢59040000E~02
99493446400E=02
—e111056 ~(399296 ~4399847 329775 437035 ,
73048108655E~04 6T7471051327E=04 589758544 TTE~04 874,94063173E~04
48480745561E~04
ALLOCATION= 2 1 1 7 8
COST AND RELIABILITY ARE 9420000000E401 9¢99230599E~01
COST AND RELIABILITY ARE
84400000000£-02 60+00000000E-02 60.,00000000E~02 994 83616000E~02
99¢93446400E-02
-e112079 ~C399822 =+399608 329673 0437606
33487529990E~04 42,84812991E~04 27¢08885124E-04 38404556731E~04
52485889305E~04
ALLOCATION= 2 1 1 7
+0ST AND RELIABILITY ARE 9@50000000E+01 999402832E~01
COST AND RELIABILITY ARE
84¢00000000E~02 50.000000005-02 60400000000E~02 994 83616000E«02
99497378560E~02
~e113542 =4401638 =~4401858 331589 437853
#2482799215E~04 30e25404511E~04 26.2576 050E~04 39429184313E~04
21,82925841E~04
ALLOCATICN= 2 i i 8 -9 .
COST AND RELIABILITY ARE 1402000000E+02 2¢99692178E«01
COST AND RELIABILITY ARE :
8400000000E~02 60400000000E~02 60+00000000E~02 994 93446400E-02
9997378560E~02 ' .
~e113951 ~,401848 ~,401763 «331549 « 438082 _
1540190516 7E~04 18e99798391E~04 12401322202E~04 16486992848E-04
23444339890E-04
ALLOCATION= 2 1 1 8 10
COST AND RELIABILITY ARE 1,05000000E+02 9¢99761108E~01
COST AND RELIABILITY ARE
8400000000E~02 60400000000E~02 + 60400000000E~02 99493446400E~02
99498951424E-02 _
~e114536 4402575 =4402663 «332315 «438181 ,
14450947421E=04 13437255004E=04 11460674794E«04 17436710286E~04
96452498712E~05
ALLOCATION3 2 1 1 9 10
COST AND RELIABILITY ARE 10120000005+02 9499876861E~01
COST AND RELIABILITY ARE
84+00000000E~02 60400000000E=02 60400000000E~02 99497378560E~02
99498951424E~02 S
~e114700 -4402659 =4402625 332299 = 4438272
65e95916686E-05 830434694008—05 52e76378670E~05 74409106048E~05
10,29699399E~04
ALLOCATION= 2 1 1 9 11
COST AND RELIABILITY ARE 1415000000E+02 9¢99904439E~01
COST AND RELIABILITY ARE
8400000000E=02 60400000000E-~02 60,00000000E=02 99.973?856OE~02
99499580569E~02
~e114934 «4402950 «4402985 332606 ' 4438312
63455838903E~05 58457938510E~05 50,84525437E~05 76.0773944BE~05
42429005890E-05
ALLOCATION= 2 1 1 10 11 : ‘
COST AND RELIABILITY ARE 1.22000000E402 9¢99950743E-01
COST AND RELIABILITY ARE
84400000000E«02 60400000000E-02 60,00000000E~02 99498951424E-02
99-98880569E~02
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C ¢ RELIABILITY OPTIMIZATION IN BRIDGE SYSTEM BY REDUNDANCY,G L MADAAN
PROGRAM ACCEPTEDZ 36930 43320 59259 59999

75,00000

«80000 +80000 +«80000 80000 «80000
4 00000 500000 2400000 7400000 ‘' 300000

0419466291 0415573033 0494382020E~01 0,11123595
025955055 C
ALLOCATION= 1 1 1 1 2

COST AND RELIABILITY ARE 0+24000000E+02 094515200
COST AND RELIABILITY ARE

080000000 0+80000000 080000000 080000000
0496000000
0419891657 - 0e55124592E~01 0472806065E~01 0613223958
0457204763E«01
ALLOCATION= 2 1 1 1 2

COST AND RELIABILITY ARE  0,28000000E+02 0497648640

COST AND RELIABILITY ARE , \
0096000000 0480000000 OHB0000000 0480000000
0496000000

0444924495E~01 0469999540E-01 0586911 OOE~01 0449999671E=01

0459899326E~01 |

ALLOCATION= 2 1 27 1 2

COST AND RELIABILITY ARE  0,30000000E+02 0498254840

COST AND RELIABILITY ARE »
0496000000 0480000000 0496000000 - 0480000000

096000600

0e48338075E~01 0.459232325“01 0e18512064E-01 0432802308E~01
0C64450766E~C1
ALLOCATION= 2 1 2 1 3

COST AND RELIABILITY ARE 0«33000000E+402 0498888100
COST AND RELIABILITY ARE !

0496000000 0480000000  0,96000000 0480000000
0499200000 | SRS
0452939002E-01 0e16599429E~01 0420446443E~01 0436264798E~01
0+14087033E-01 ‘
ALLOCATION= 3 1 2 1 3

COST AND RELIABILITY ARE 0437000000E402 099522650 |
COST AND RELIABILITY ARE

CONTINUED ON THE NEXT PAGE
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0099200000 0480000000 096000000 0. 80000000
0099200000

0411794551E=01 0e18865333E~01 0423438532E-01 0413475238E-01
0415727307E~01
, ALLOCATION= 3 1 3 1 3
COST AND RELIABILITY ARE  0439000000E+02 Qe 9648740
COST AND RELIABILITY AR+ |
0099200000 0480000000 0499200000 0. 80000000
0099200000
0412485832E~01 0411973718E~01 0449332784E~02 0485526558E~02
016649080E~01
ALLOCATION= 3 1 3 1 4
COST AND RELIABILITY ARE - 0+42000000E402 0499776360
COST AND RELIABILITY ARE
0499200000 0480000000 049 200000 0+ 80000000
0499840000 :
0,13443815E~01 0442860252E~02 0453354315E~02 0492186160E-02
043582211CE~02 » |
ALLOCAT1ON= 4 1 3 1 4
COST AND RELIABILITY ARE  0.46000000E402 0499904110

COST AND RELIABILITY ARE

099840000 04800000060 0499200000 0. 80000000
04998400600 : :
0429422212E~02 0e47075540E<«02 0458752335E-02 0433625385E-02
Ce39214266E~02
ALLOCATION= 4 1l 4 1 4

COST AND RELIABILITY ARE 0+448000000E+02 099929630
COST AND RELIABILITY ARE

0+9984000C . 080000000 0499840000 080000000
099840000 :
0,30729622E=02 0629492752E-02 0412272636E-02 0421059390E~02
0440972830E~02
ALLOCATION= 4 i 4 1 5

COST AND RELIABILITY ARE 0.51000000E4+02 Oes 9955220
COST AND RELIABILITY ARE

0699840000 0480000000 0099840000 04 80000000
0499968000 |
0432654620E~02 0e10439274E~02 0413061848E=02 0422377162E=02
0486738840E-03
ALLOCATION= 5 1 4 1 5

COST AND RELIABILITY ARE 0.55000000E+02 0.99980820
COST AND RELIABILITY ARE '
049996800C 0480000000 . 099840000 G« 80000000
0499968000
0e70138450E~03 0411255158E~02 0414027690E~02 0.80393987E~03
0493701303E~03

CONTINUED ON THE NEXT PAGE
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ALLOCATION= 5 1 5 1 5
COST AND RELIABILITY ARE 0457000000E+02 099985920
COST AND RELIABILITY ARE .
099968000 0«80000000 0499968000 0 80000000
0099968000
0472970272E=~03 0e.70005856E-03 0629074092E«03 0,50004182E~03
0C97293696E-03
ALLOCATION= 5 1 5 1 6
COST AND RELIABILITY ARE. 0+60000000E402 099991040
COST AND RELIABILITY ARE
099968000 080000000 0099968000 04 80000000
Os 9993600
0e76806880E~03 0424482192E~03 0630302715E«03 052719008E~03
0,20601844E-03
QL OCATION= 6 1 5 1 6 '
0ST AND RELIABILITY ARE 0«64000000E+02 Oe 9996160
COST AND REL+ABILITY ARE
099993600 080000000 0s9 968000 0+ 80000000
0099993600
0616480632E~03 0e25984996E~03 0e32961264E-03 0418835008E~03
0022187517E~03
ALLOCATION= 6 1 6 - 1 -]
COST AND RELIABILITY ARE 0466000000E402 099997190
COST AND RELIABILITY ARE g

099993600 0480000000 0e9 993600 0+ 80000000
0C99993600
0616830471E-03 0616104451E~03 06 301945E~04 04116 1756E~03
0422660635E~03
ALLOCATION= 6 1 6 1l 7

COST AND RELIABILITY ARE 0+69000000E402 099998220
COST AND RELIABILITY ARE
0099993600 - 0430000000 099993600 0+ 80000000
099998720 - '
0,17422808E=03 0457961030E~04 0469001225E~04 0412124500E~03
0643700776E~04
ALLOCATION= 7 1 6 i 7
COST AND RELIABILITY ARE 0.73000000E+02 099999230
COST AND RELIABILITY ARE
099998720 080000000 0699993600 0« 80000000
099998720
0¢38325292E«04 0061320470E~04 0480300615E~04 0443800335E~04
0e48667040E~04 ,
*ALLOCATION= 7 1 7 i 7 .
COST AND RELIABILITY ARE 0¢75000000E+02 0499999450
+0ST AND RELIABILITY ARE
099998720 0480000000 0499998720 0+ 80000000
099998720
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!

G)L IMADAANSUNDOMINATED ALLOCATIONS (MULTI-CONSTRAINTS
DIMENSION R(10),Q(10}sC(10)sW(10)9sM1(10)sM2(10)sF(10)

12

13

14

10
15

N=NO OF STAGESsCG=GIVEN COSTsWG=GIVEN WEIGHT

READ1sN»CGoWG
FORMAT{I392F10e5)

READ 29 (R{I)sC{I)oI=1N}
FORMAT(7F1045)

READ 2s(W{I)sI=19N)
PUNCHZ» (R(I)»C(1)sI=1sN}
PUNCH2» (W{IDsI=1sN)
DO31=1sN

Q(l)=1le=R{I}

Mi(I)=1

M2(I)=2

K=1

Al=0425

A2=0475

CS=0,
PUNCH29Al9A2
WSRO0,

RS=1l,

DO41=1sN
AMl=M1(1)
CS=CS+C(T)#AM] -
WS=WS+W({ I )#AM1
GOTO(13514) K
RS=RS%#R1 1)

GOTO4

QI=Q(I}

M1l=M1(1}
RP={]le¢-QI%#%M11)
RS=RS*RP
CONTINUE
PUNCH53sRS5»(SsWS
FORMAT(3F1045)
PUNCHG6s (M1({I)sI=1l9sN)
FORMAT(815)
IF{CS~CG)10,10911
IF(WS-WG)15915911
DOTI=1sN

QI=Q{ 1)

M1i=M1(1)
M22=M2( 1)

CONTINUED ON THE NEXT PAGE
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z21

20

CI=C(]}
WI=W(I)

D=Al#CI+A2%W]

F(I)8(LOGF(l.’QI*fMZZ)-LOGF(1.“01**Mll!)/0
PUNCHZ s (F(I)sI=14N)

X=F(1) ’
Nl=N=1

Ji=1

DO9J=1sN1
IF(X-F(J+1))8’8,9
XeF(J+1)

Ji=J+1
CONTINUE
PUNCH1 9 J1sF (J1)
MI(J1)=M1(J1}+1
M2{J1)=M2(J1l)+1
K=2

GOTO 12
Al=Al1+0425

A2=1 .""Al.
D021I=1sN
Mi(l)=1
M2(])=2

Kel
IF(A1~1.312512:20
STOP

END
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