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SYNOPSIS

Tor nnalyainr the rolinbil ity of a gyotem, tho
£irot otop 1o t0 cvoluale the sgysten reliabllity. As tho
cize and cooplexity of the gystem increases, the system
7eliabilicy evaluation 1o quito time consuming and comnl -
catod. In ¢his deesortation come techniques are wroescented

for ovaluation of ayotcn roliability.

In Chaoter I, o mothod io vresanted to ovaluatoe
tho rolicbility of & hierarchicol oystem. The oxvacted numbor
of oubgysten rairs corrunicating throuph the firot level sube

syoton is considered cs a reliadbility reasure,

7
In Chapter II maintainod syatepé are conoldered.

Two nethod i.c. Succesoiveo disvlaccaent and Craph theoretic
annroachos are vresentod for Linding the steady otate
avallabllity of a syosten. “peetral docompoaition methed,
Caroniecal <¢ransformation cothod and otate tranpition matrir
nethed are rprocented to £ind inmherent avallability of the
ayoten,



1.
CHAFTER I

1«1 Introduction

The electrical power system is hierarchical with

a central control, center at the top of hierarchy, a mumber
of generating plants and substations in the bottom, snd
‘geveral regional and local control centers indetween, The
control centers, 1ntcrfncod‘wlth human operators, are

coupled together to a greater or lesser extent by communi-‘
cation nets ranging from looss coupling in the case of
teléphone line message transfer to direct oomputer-to-computer
data transmission through eyclic digital data transmission

and other communication #cnna. Thus in the power control
system a variety of controllers and control computers are
located at diversed points in the system and multiple

control functions are being exeouted simultaneously. The
concept of comeunication with and through the root is
particularly important here when dealing with such centralized
computer networks where all communication must take place
through some oentral computer, In terms of the new reliability
| measure to be detailed in the following chapter the expected
number of node pairs communicating through the root is taken
as a reliadbility measure which is different from conventional
rel iability measures such as MIBF and availability which
essentizlly are based on two valued logics, i.e,, the overal

system state 18 either up or 4own,
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1.2 Tres Network Reliabilit

We define a 'rooted tree' as a finite set T
of one or more nodes such that:

(a) There is one specially designated node called
the root of the tree, root(T)y and

(b)  The remaining nodes (excluding the root) are
partitioned into M > O diasjoint sets T1, TQ,

TS""'Tm and each of these sets in turn is

a rootek tree, The trees T1.....Tm are called

subtrees of the root.

Here for significant computational advantare the

ancestory relation in ihe_gggia tree is expdoited.

In a family tree immediate Quooeaaora of a rlven
parent node are'brothers’. We extend the seniority to a
set of drothers also. For example, the leftmoat‘to be the
eldest and right most to be the youngest. Charactericing
the axtended aeniority relation fully, a link from each
node to itn'eldest son' is called the successor index and
to itm next younger brother is oalled the brother index.
If a node has no sons or no younger drother, then the
successor (or brother) index is set equal to gzero., Similarly
the common ancestor of all nodes, which has no father, has

& 0 vredecessor index,

Now we proceed to calculate the reliadility of a
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tree notwork assuming the reliability of ita elements,
nodes and links are known., A state veotor with the root

9!‘ each of the subdtrees 1s associasted. This state vector
contains the mtoma.t.ion such as the expected number of
nodes which can communicate with that node and the expected
nuzber of node pairs communicating through the root. The
state vector of a given tree is obtained by a met of
recursion relations, provided the state of its subtrees
are know. Ye Join the rooted subtrees into larger and
larger rooted subtrees using the recursion relation until

the state of the entire network is obtained,

Suppose there are two subtrees with roota I smd J,
Let J = F(I) f,e. J i8 a predecessor of I, I¢f T(I) is a
state vector aaabciated with the root Ia of a subtree and
say 1t gives the expected number of nodes in the subtree
which communicate with the root I, including I, Similarly
let T{J) be the state vector nssociated with the root J
of a sudbtree, We assume the state of I and J i.e. T(I)
and T(J) are known. Now joining I and J by the link (I,J)
leads to a new state of J i,e, T(J)' which we wish to
compute, If the link (I,J) and the node J are operational
T(J)* « T(I) « T(J); if not, than T(J)* « T(J). Putting the

twoe together we have the recurrence relation

P(T)! = M(I) « T(I) QF(T) QL(T)
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Vhers QN(J) is the probability that node J is operative
and QL(I) is the probadility that the link (I,J) is

operat ive.

Now taking node pairs communicating through the
root as our criterion we consider a state component R(I)
where R(I) is the expaeﬁed number of node pairs {pairs
including I are allowed) both of which are connected to

the root node 1. The recurrence relation for R(I) is

R(I)' = R(T) [mms) . n(x)au(s)] gL(1)

An algorithm for the calculation of the reliability
of a tree network is dniclopad now, To facilitate the compu~
tation of algorithm we associate level with each node. Levels
are detinqd in ascending order from left to night. The
resulting algorithm ias

Step Ot Set T(K) = QN(¥) and R(¥) = O, for X = 1,N Set Ief
Step 1! If S(I) = I(I) = O, go to step 3, otherwise go to
next step.
Step 27 Set I = 141 and po to step 1
Step 3: Set J = P(1),1f J-0 go to step8,otheruise
-+ caloulate R(J) and T(J) with the help of

following relations,

R(J) = R(J) + (R(I)QN(I) » D(XIT(IRL(T)

T(3) = T(J) « T(X)QR(@T) QL(T)
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Step 4 : 1f B(1) > 0, 'go to next step, Otherwise go to
step 6.

Step 5- Set I = B(I)

Step 6 ¢ If 8(1) > 0, go to next step. Ctherwise go to

| step 3.

Step 7 : Set I = S(I) and go to step 6.

Step 8 ¢ 1IfJ =0, -stop. Otherwise set I = J and go to
step 3. .

The calculation can be carriedout in two ways.
In the first way 1ink and node: probabilities, PL(I),QI(I),
PN{1),3%(1) can be conh;daied a8 numbers and relinbility
oriterion can be evaluated as a number, The evaluation
can also be functional, that is the reliadbility of the
shbtrees can be repremwted as poly nomial functions of
the link and node probabilities. We assume a1l links are
operative with probability QI. = p and all arcs operative
with probability QN « q. |

As an exanmple using the algorithm the reliabity
is evaluated for the tree network of Fig 1,2. The various

indexes for the same are define as follows

Node,l ZEredecessor,P(1) Sucessor,S(I) Brother,B(1) Level,Xl(I)

1 7 0 0 1
2 9 T 0 b
3 10 9 0 3
4 0 10 0 3
5 10 1M 3 0
6 12 o 0 4
7 2 1 8 1



FIG..2 A TREE NETWORK.
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8 2 0 0 4
9 3 2 0 3
10 4 5 12 1
11 5 0 0
12 4 6 0 4

Let the 1ink and node probabilities be given as follows

1 1t 2 3 4 5 6 7T 8 9 10 11 12

ON(I)e .95 ,92 .98 .91 .91 .92 .97 .93 .93 .92 .93 .91

QIJ(I )! .89 -88 089 0 089 -91 092 096 092 09’ 092 091

Using a suitable computer program on the basis of the
alpgorithm developed, the tree network reliability was
evaluated to be equal to 7:618519E-1



CHAFTER-IT
ITN.0TUCPIOY

“hon ollowvins reoovalr of failed ooﬁponcnta. e
obcorve it 48 not meanin~ful to gpeak of coznonent roli-
abili¢y, but it 19 roonin~ful to oveal of the totnl oystonm
rolinbility to which o contribution is mcde by cuecossful
comproncent vorformanco, “ho difficulty lioe in tho foet that
cocroncnt roliability doco not allow conoideratior of comvo-
nent ropairs, Tirilarly oystom roliability doos not considor
the offeets of oystem rovairo oithor. Conconuontly, since
it ohould be to our advanta~e to rorvair fallod oyotcms ond
compononto ao ranidly as posoidle, osvecially if their
oncration is eritical to come desired objectivo, we nced
gone n~dditional wmcasurce of gyetem performance that comsiders
the offecto of repailr, Juch a meacurc io prbvided by the
concont of syotcm donondability, that io, vhether it 1o
overatin~ or onorzblc vhen wd wont it to bo, ~ivon that
tho syntcn paoces throurh up and dowm cycles during ito

1lifo tinmo,

Ono meagure of syotom dopondability is vrovided by
ito rolinbility, which 1o tho vrodability that tho oystem
will oncrate without failuro for o onecificd poriod of

tiro,.

Three sdditional mencures of oyotom dcoondability



thot areo dosizred to be conoidered aro dofined as followo:

(1) Ioint availability, dofined to be tho rrobability
that tho oystom 18 in an un state (1.c. cither

onoroting or oversdble) at a svoeified time,

(2) Intorval availebility, defined to bo tho cxpacted
froetionnl armount of on intervel of cpecified lonrth

that the systom 10 in an u» otato.

(3) 1Inheront availability dofinod to bo the owpocted
fractional 2mount of tinmc in a continuux of oporatine

time that the syotor ip as on ur stato,

Inherent avallability i commonly roferred to as the
uttime ratio or limiting avalladbility. “¢ ohall rofor to
measurcs (1)-(3) oo tho syotem availability roasuroo.

STSADY STATE AVAILABILIRY
2.2 tvoilability valuatiom of a HT Tuop Confir~uration:

“ho overall availability of o ~onorating unit io
dcpondont uvon the availobility of tho cubsystomo which
nalle uv that unit, In rany c¢asco, a simrle combination
method ¢an be used to find the syston availability ﬁs tho
subsyotcmo can be adsumed to overate indovendently., PThis
eprroach can alco be uped in certain eases vhore tho
cuboystoms are dencndent and havo relativoly low avajiladi-

11ti20. Deotailed nnalyeio of ocudboyotcems may require tho



devclopacat of moro copaistientcd rodolo ¢o imclude
conoroncnt dopendoney, oparc componcnt policies and
corrcctive and prevontivo mnintcenance eonsiderations.

“he technique uocd chould be oo uncovaicticated as the
problem will peraid, but in mamy easeo o completo nodol
of the cuboyotem cust Be consctructcd amd solved to obtain
the reouircd availobiiity indices. Theoe voluco ean bo
obtained by a simnliaticn method or dircet anclytieal
techniques such ag the arlrov approach. The lattor naweet
ic diccuosed here with rcopect to 2 practical suboystenm

application,

The penerating station proposed for a Rydrooystcon
containe four gonerating unito, The primary heat tronoport
oystem for cnch goneratings unit comteins four pumns., The
loss of more than onc of theee punpo que €o outoro rosults
in the totnl shut doum of the roector. The loss of omc punp
producos a unit deratins of 25 porcont of the rated unit
output. he punps havo bocn asouned 0 be ddentical inm
doedrn and funection in this onalysis. The heat {tronoport
pamp confisurction io not nn indopomdont cubsysotem. The
firct punp Loflure reocrifo in a 25 perecnt dorating vhile o
sceond £afluro rosulto in a cooplete chut down. The failuro
rate of the yremainine two pumng after chut dovn is cxtrcnmely

lov and thoy cen bo ascurad o be failurce £roc durings ¢thic
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D NG puimp
failed
a N Y
State 2 umit State 3 unit
75% one pump ol 75% no pump
failed i  failed
3A N4 3A 2Y
State 4 unit State 5 unit State & unit
down 2 pumps down | pump down no pump
 —— _—— ‘
foiied Qu

failed

N

WARE PUMP.

failed

FIG.2.2 STATE SPACE DIAGRAM OF A SINGLE UNIT V/ITH




condition, The punps con, however bo assumed o oporate
indopondeontly with ocech pump rooponocivle for 25 poreont
of tho output ac tho nrobability of having morc thon one
amw on simultaneoun outarc 18 very cmall. o sparc vumps
arc nrovidod to inprove the soyotem roliability. Sach
roneratinges unit wvithin the station 1o indopondont with
roonact to HT pump ovoration in another unit. All pump
falluren arc -~rouncd into one permanent failuro mode. A
normancnfly foiled vump must be removad from tho oncrating
gito for rooalr. A punmp 10 asoumod to be rostored to ito

ori~inal quality aftor ropair. Other minor failures arc

irmorcd. The followins deoignations are uscd:

., o failure rato of a mumn in orcration
u o= repair rote of o wrranently failod mumn,

Y = inctallation rote of a rovpaired pumb,

Sin~lo unit model:
Tirure 2.2 chows the statc onaceo dia~rom for thio caso.
Tho followvinr stochaotic troncitional rmatrix can be odbtained

frorn thic nmodol.

1 2 3 4 5 6
1 |- 0 Y 0 0 0 7
2 4N ={3heop) 0 0 Y 0
A=3 0 1 ~(3h+Y) 0 0 ey
£ 1o 3a 0 -2y 0 0
o 0 3 2u  =(pex) 0
6 Lo 0 0 0 u -2 Y7 _




.

A four ronerating unit modol:

Four coneratin:: unit modolo aro moro complicated
thon the cinrle unit caud. An owtremely lor~e number of
otateo are roguirod for the complote medol (926 for no
onare caoce)., A comrlete four unit rodel 10 not proocnted
herce due to its cxtrorely lorso pige. Such models can be

constructed by commutor nrorrom.

2.21 Gteady State "vnilability by Succéssive Displacement

he noe of method of succoosive displaccments or
alternately the (auos-'nridel mothod fg nrecented here for
obtainin~ the valuco of tho otato nrodabilities, "nowinr
the values of the stato nrobabilitico the values of the

ogystem's operatines ocharnctoriotico are oagily obtainod.

If the systom confi~uration and tho tranoitien ratno
arc Imowm a sot of stat, cquations for probability of bein~
in o~ch state con éircetly bo written, which can be wmodifiod

to obtain a sot of diffcrential ocuontion.
In matrix notation
p.‘ “-311 ﬁ12 s a1n ' P1 'T

LY I ! g4 Boo eess Boy P,

"... PR NN AP PERIBEBEEN L]

EEEER R N N NN N

™ | Y- Can P




2.

Yhere PqsPpese P, are state vrobabilities and 244 to

a, @re elementa of the tramsition rate matrix. |
\

- N
Tor steady etate availsdllity | § | = 0 we have
thus ",

-a a \
o r 0 "“;"g (XXX ""'19‘ y l‘\
§p1 3y 211 B \
- -2 ~82n \
Do sesus —— P
2{ o %22 a9 2 "
LA R N E NI NN N NNENE N NN R NNEN] . ® \\\Lf‘l
* L B I A W B W I RN I WO NN ¢ \\
'p - an‘!y *ang 0 " '
Sl I _ %
- -t -1 -
Ve Jefine Eﬁ'i o r 0 'a"l?" IR "a-lp'
11 11
232 822

LA B EENENREREERENENRYENE ]

L E N RN ENE ERENENENENNENRNYN]

ﬁ &?..... O

L%n ®m B

A' can be expressed as the sum of two matrices C
and D. Thus P « CP + DP, which su-~rest the use of an
itora¢ive solution procedure called the method of successive
d4splacements, p(k“” - Cpck) > Dp(k"’). The vector p(k)
contains thr estimates of the probabilities obtained on tha

k¥ th 1teration, Thus, the method of successive displacerents
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conoiatno of the followins~ gtops:
1. Choose an arbitrary 4nitial approvimation vedtor

» 1 519290-0 n,

2. Tenerate succgosive avproxvimations pi(k) by the
fteration

(ket) 7% 0 P

Py “yraaPy o T dgpylhen)

for 1 L= %,2,.-.,“ ~ngd k‘b 0"".-.

n
e toply the normaligings equation, ° Py= 1 after
i1 )
ench complote rournd of ifterations by dividing each
'probability’ valuo by the sum of the 'probability!

velues obtaincd durin: the iteration round.

4, Corntinue until an aprrovriaste convarcence criterion
1o oatiaficd, Tyrical convorponoe eriterior include

ipi(k#ﬂ)_ Dl(k)'

(a) mar e & @ for some treceribed
1< i< n | {(ket)

n .

(b)1 T ipi(k°1)- px(k)‘ < « for somec preceribed o
-9

(¢) X o™ for o preccribed intorer ¥

Zxanplos

To¥ins tho oincle unit HT pump model as discussed
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earlier for solution. 'ssuming the value of A » 0.2, 1 = 2,

» 2r Mool

and ¥ = 1,\ AMmpgtitutin-s in the transitional rate matrix A

dbtainad earlier we ret

6

e have ' « '\ F

Tor oteady 8tate solution

1
0.8
0.8
0

0

0

0

-

1.5

0.6

l.*uO

~2

2hue in matrivr rotation the balance eywation can be exnrasaad

as T = |A']T where P & (p;), 1 =:1,2,,,.6 - Fote that A' can

be ewrresced n3 the sum of two matrices £ and D, where

L ]

3.

2
=

1.25

0
0
0
C.2
0

0

0

0

o
1.333

0




0 0 0 0 0 0]
0.307 0 0 0 o 0
) 1.25 0 0 0 0
c = 0 0.15 0 0 0 0
0 0 0.2  1.33 0 0
0 0 0 0 1.0 0
. -
- o 0 .25 0 0 0"
) 0 0 0 0.38 0
0 0 0 0 0 1.25
D w
0 0 0 0 0 0
0 0 0 0 0 0
) 0 0 0 0 0

For the example problem, the ¥ th iteration can be exprezsed

a8 followss

(k) -0 §‘(kh1)‘ 0 Pz(k-1)4102593(k.1)*0 pﬂ(kb1) s O pgfyb1)

P4

o pl¥ - (1)

6

n2(k) ) 0.307591(k) . o p2(1«-.»1) .o p3(k~1) Vo pd(k-ﬂ

0.3846 p, (""" L0 p ¥ - (2)
p%(k) e 0 91(k) * 1’25p2(k) + 0 p3(k~1) +« 0 pd(kf1)

(x)
0 ps + 1.25?6“&’) - (3)



|6»

pet™) =00, ¢ 0.15 5" 40 5,0 0 p,

+0 bs(k"1) « 0 pﬁ(k.1) ' | - (4)
0s ™ w0 5, . 0 pMlosan, M. 1,333,
o (I=1) .0 ps(&-1) ' - (5)

pe(k) .0 p1(k) + 0 o?(k)*ong(k) +0 ?4(k)‘ °1‘°p5(k)

* Osﬁa(k‘-1) - (6)

Let the followines initial nrobability estimates be employedd

p1(o)\“ De(o)u Pg(O) - pé(o) - 95(9) - 96(0) ¢ 0.,1665

(1)

Trom enuation (1) the value of Py is obtained as follows

u1(’) e 1,250 ~ 0.1.666 = 0.20825
Thus from (2) - (6) resvectively

p, " - p.1281, 5t = 0.3693, 1,V < 0.0102

(1) (1

Dg - 0.09925,n6 = 0.09925

¥

Avplyin~ the normalizings ejuation vields the followingy
revised estimates of the rrobabilities:

(1) _ 0.2257
0.9223

P, e 0.2257

np ') w0.1388 , ps' ") = 0.3093, p,"a 0.0208, p'")a 01076

ps( 1 ) - 0. ’076.
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Zhioc vay wo furthor continuc the itorations ¢i11 thero
io the ohoase 4n tho valuco of the last two iterations,
Tho followins probability values have been obtained,namely

Ctondy otate availability of the system
= Dy 0y ¢ Py o ;0,820

2.22 Graph Theorotie Tormula ipproach for the Stoady
ato wallability Svaluation:

Ye reotriet attomtion to irreducible rrocess with
a finite mumbor of stateo, or the diecroto case, lot
n o= (7497500 %) B2 tho row voctor of stezdy state vrobabi-
litioo, and lot I be tho (I! ¥ 1) matrix of one stov trancition
probabilitioco (pij = Pr[:xnu J{Xn_1u i] )« Then the couationo
determirin~ tho pto~dy stato diotribvution

3( =« I) =0 (1)

]

I

™"

i=1

Mlore em(2) 1o tho normalicine oquation
Tor tho continuouo ¢udc, lot = = 0m1, u?...nw) be tho row

voetor of otecdy otato probabilities and let A be the matrix

. of inptantavicous ¢r-moition raten
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A © -—-3- ﬁrr}{(t) o j‘Y(O) ) 1-1
13 ° 7 TL 7 o
“he deotormining oquations aro
N =20 (3)
N
T :‘,iw % (4)
{1

Hore (4) io the nornalizine equation.

The matrices (P-I) and /A nre not arbitrary,
but rathoer vocoens certain propartics which follow from
the probability based definition of the elcmonts., Phe

provertics areo

(1) T™he off diaronal clcmonts of cach are non ne~ativo
(2) The 8iaronal cloments are strietly necative
(3) t2ch Tow gums to Zero.

“rom thoZo nroparties cnd the irreducibility asmumntion,

i¢ followo that the rank of both P-I and A will be ¥-1,

80 in o=2ch ca3c the neormalicin-s cquation is required to

eneure unioueness ag woll as to force tho solution to fulfil

the requirements of a probability distribution. in unnormalized
oteady state solution means any non gero vector C o (°1'°?"°°n)
satiofyins (1) and (3). The unique normalized equation is

rivon by

it
T C 1 o 1,2,...,F0



\q.

vherg C, are tho clements of -ny unnormaliecd polution.

|

The eraphe used are aimply the usunl transition )
dia-roms of tho Porlov rrocoss, with points renreoent;np
tho ’taton, and arce the traonoitions. The arc 'weirhts' )
corresnond to the p13 or kij‘ Tho presonce or absence of '
loovs w11l not mattor, since theoy are not usct in the

formula,

n intree to o owceific voint i in n directed
rraph G, denoted Ty, 10 o Orammin~ cubsrach of G in which
cvery noint but 4 has exactly ono aro er-matin~ from it
and 1 haoc none. If the oricntations of aren are inored, un
introc to a point 18 juet an ordinary trco in tho usual
rraph theoretic sensc. “hus an irtrec to woint 1 19 juot a
trece with tho arco all orionted towarde point i1, The woirht
of an intrco, (74), 15 dofined to te the rroduct of tho

vaimto of all ares oppoarine in Ty.

‘n unnormalicod colution to the otondy stato enun-
tions of finito, irrcdueidle, dicevete or continuous parnmeter

"Tarlov procenes iC rivon by

Ci = ¥ w(Ti)' f o 1’?’oc| LA

wnere the sur 1o tho overall intreco to the roint § in the

transition diarrem of the »nrocess.

ith ¢he otate vrobabilitico odbtaince”s from tho



Q0-

rorniglinzed colution the roliability of tho oyotonm can
caoily ba computod whon tho tranoition diacrem 16 larro
oxr comrlicatcd, it 1o difficult to bo certain that one
hao found all of tho introcs to a veint reroly by looking
at ¢the diarram. One ¢an, ofcourso vorify a hyroivresizod
éolution by cubotitutin- in the otoady otate equationo,
Mternatively, by nrorrommin~ tho fuitadble al-orithm all

the introceo enn be found ucin- = 481 '1tal comtuter.,

Por a einrloeo unit modol discusscd carlior the
roliability eon B3 ovaluntod by uoinrs thio rrarh theooretic

formuln,

The tranpition di~~r~m obtainod for the oyotcn
i shown in the Flruro 2.2?2, ™o intreon for various otatoo

are ghown in Firurc 2.722(n)=(f). Thuo wo ~ot

C. o YettaYe21e2Y ¢ Yo2F 50,20, ¢ poYoZuienn2Y

;
o 4Y?u2 'S 12Y2u2k e 4 Y?ms
o 57.6

¢, o 16 Y23 » 16 Yo

o 19,2

Cy = 16YuK o 48YuA% 16Y2u°N
o 6.8

c, = 20v?? o 202 o 72vH>

e 3 -3356



(1-44) 1-(34 44)

(1-30)

FIG.2.22 STATE TRANSITION DIAGRAM.

FIG.2.22(a) INTREES TO POINT ()
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FIG.2.22(e) INTREES TO POINT (5)
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FIG.2.22(f) INTREES TO POINT - (6)
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Cs = 144 Yih7 o 48 Yu?rn? o a8 Y02

LB 13032‘3

CG o 24 Yuzhz ¢ 72 u2h3 . 248 u3A2

c,, e,c:? ¢03 404 405 ¢C6 o 154,704

Thuo, ‘»?1 © ‘5‘1"@—-"
154.704

o 00376

g © 04125, w7y = 0.219, o 0,022

"4
”5 o 00089.‘ WG o 0.089

Stanly otate avellability of tho syoten = 9t 2¥73° 0,820

T3 DOFEUDENT AVAILARILYTY
2.3 2imc dopondant Systom Stnto Trobability ovaluntion

wvith Speetral Tecombooition

The avplication of the anvlov Frocess in tho
solution of multi-dorated oyotcm models hat been discourareod
boeaous: of the todious task of usin~ tho Laplace trancfore
m=tion <o find tho gencorcl timo dopendont solution., Tho
annlic.tion of the Upoctral Thoory in solving the stochustic
differonticl matrix for goneral timo dependent oolutior.has
Peen overlooksd by most of the cuthora,

The main ob'eetive hore 18 to dntroduce the
concents of the Spocir ) ‘hzory to solve a larre Pnrkovianf//

yotem, if tho cystem trunsition rates are Ymowa. The syotem
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trrnoition probability natrix {0 deorived by ucin~ tho
Smeeiral Theory. Nert, the oyoter roliability indices
arg conruted by uoins the Spasctral “hoory. “heoory for
tho esolution of larrc oyotc otnto probtabilitico 4o
diccusood in dotail with owcmvle, The aporoach is
cnalytic. 211 rosults aro onproneod in termo of the
gystem paremgters fellurc and ropoir ratoo and can bo

casily ovaluated on o diritedl comrutor.

Dofinitions?

The followinr dofinitions are uscd throurhout,

111 othor functiono and variablog are dosceribod as troy

anpoar
n 0. 0f oyotom otatoeo
1,3 192535000
A ™o poysteom tronnition rato notrir 6f mm dirntion
3y 4 Jre transition rate fror tho 4 th cinte to the
J the otato
> Tho oystom trancition nrobability oatrix
pl'j Tho trensition protabdbility fron tho 1 th stato
to tho j th stato
Ni nﬁFz....Kn

The nrojcction matrices dorived from A to »
have the followiny vnroporticst

I.¢7 . e0 i'rojcotion ratriocos aro mutuanlly orthoronal

T Vﬁ oI A ecomrloto o2t of projoction matrices cuma to tho
101

-

unit matriv
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mi“ﬁieﬁi A procotion motrix 1c nn fdomrotont matrix

I ldentity U"ntrix
oy “1’“2""'”n'e‘ ern values of a matrix
i The set of 411 poosible system operating statoo

1'23.00.1’1.

s(T) 3tate of tho oystom of time T

P (T) The prohability of tho oystem’s 1 th state at
time T2 '
Frob | 5(:) et ]
4 -

£(r) Tho syotem operatins state vector

. [Py (2)emp()eee B (R}
3 {?lP(ti} The conditionnl nrobability that the rencrator iso
in the state J ot time 7 are riven that state
0
veetor at t wep i(t)

ProbabilityES(T) = J[f(t)]

VPR TLATS 47U IeT

Vi

In thin coeotion, ~ nimple derivuation of the
vactor partial differcontinl ocquation which characterigco
tho conditionesl vrohability vector for tho gystem oncratinge

state as 2 function of timeo 10 procented,

The firot order differonce cquation associatod

with tho conditionnl vrobability function is ~iven by

F, [ww‘%m] = Trob [:sxmr) = 15(1) = 1.?»(3)]@
R
. 0
Frob| (1) et | P(t)] (1)
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Annlyin; the Farkov property to equation (1)@
~

) D "\? .-‘e“ r‘ (O ot ® ) :0 {
}':‘LA ,!!(t)J tsﬁ’f’llua(s)] ii A‘L(t)] {2)
iet

hore ?ji:?¢frtsj{?i} is the probability of transition to
state ] in timo interval /T riven that the system of time 2
ia in state 1. The assumption that the system has a time-
homorenesus transition rate between any two states mean that

ag {T - O3

Coupris (3 |
le_r*,ftsi(*i} = ay, IT for 1 £} (3)

The transition rate from state 1 to state ], aij' is time
homorenecus8 anéd non nerative, The forward Chapman~¥elmororv
partial differential equation ¢an be derived from above

ecuation (3) and has the following form:

Al o [02w] - ey 7 [21000)]

iey
or the set of n nartial differential equation can be written

28

— ?[Tig’(t)] - ?[“tg(t)} A (4)
du

4 denotes the nxn matrix of transition rates 8440
3{;1?(ti] to the conditional state vector of the system.
AL TICATION AT 27 20T AT TRICLY

A neatate ayatem model {8 taken to fllustrate the
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nroce@ureo of arectral thoory for derivation of the tims
dercndont system state nrohabilitioon. Trom envation (4),
the natrix differentinl covntions for tho n-otate ~onerator
cyeter o be solved &f tho.initial conditiono are Ynown.

Ihe diffeorent rossidble initinl conditions arc:
”1(0) = 1,0 92(0) o 0O : rn(o) e 0

?,(0) = 0 Fy(0) = 1.0 - F,(0) =0

P RN SOV O R BPIEDPEED AT N NN QGPOE BEF DA RNE NGOV ST R

SO P PGNP ES P LR RPE LI BE ANV O RN D AN OGNS s e

4(0) = 0 P,(C) = 0 P (0) = 1.0

The first iritiel conditions means that at tice
t » 0, the ogystom is in otate 1, lor this iritial condition,
the colution of oquation (4) will rive the state nrobabilitice
of the oyoten at time T, Similarly, other initinl conditione
can bo nocd to cileulate the oystom's gtate nrodbabilitico af

tiro T,

0 o)
The tronoition probaobility matrix F [T!P( t)}
mnd trancition rate matrix A can bo  .revrocented in tho

oroctral form Qo fbilowa:

;‘[Tll(t)] o Q 1 r-"1~§ Q 2 T‘2 ¢ seves © n ?"n (6]

A o m"}l‘ " a?l‘f124-...,_.,“ g”tqn _ (7)

vhcre w, = 'he eirenvaluceof A
3 o Tho proiectior mntriy of A

o499
CENTRAL LICRARY ULIVERSITY o?n%onxsz

DANRY R
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1 - 1.2;3'.000'110

n 0
horefore r;g.-i‘[fll-“( t)] enn be obtained simply by differen-
tistings eruation (6) with resrvect to T as follows
a vl n_ T

-~ s ) Y
-g'z" Tl [T!P(t)] - ﬂ'19 ! "1 +* Gze 2 Yoo ane n “-n {8)

md from ecuation (A) and (7}

A 0
ﬁ‘

2 o “ nonf” 0
F[TIP(t)} A - pi= a-(t)‘]

f) . 5 3 n

It is therefore simvly necessgxry to find the different
projection matrices correspondins to different eirenvalues
of A for the solution of system state probablilitico of time
T. Tor euch eirenvalue, the rrolection matriv “1 cnr be
exprensed in torms of its eigen-columrn vector and eiren row

vector ag follows:

Vv 5V
CR -» S | (9)

1
vria vci

Yhere

Vci is the eiren column vector of‘m1

-~ . £ M
Vrl 18 the ei~en ro vector o hi

The different stepo involved in the caloulation
of oysten state probabilities by the speetral Theory iporoach
ie outlined below.

Tten 1 ¢ Caleculate the efronvalue of the transition rate
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matriz. The charaoterictic oquation of tho trensition

rato metrix A i8 rivcn by!

an “n-1c N~-7

« N $ g : § C 4Yeseea® e O

Ne2

Sinco tho detominmmt of the transition rate matrix 19
gero, there will be no conotant torm in the characteristico
cmation(C.2.). The cocfficionto of the C.2. are repreconted by

Cc etc.

n=-1° Cpe2
c.El o a(an‘1 L ﬂnuacn-i ¢ vee ) o 0

One of the cigonvaluos of tho C,E, of tho tronsition rato
matrix will always bo soro. In 2 lator part of the discuoc-
gion 1t will be secn that the etoady stato transition rrobabi-
1ition aro associatod with ocipomvalue o = O

Step 2 ¢ Calculate tho matrices associated with cach oiren

Iﬁ(a‘.) o A - 611

n(ﬂz) e A - 021

ilay) o A - a1

vnoro I o Identity motrix

Stogn 3 | Caloulate tho cifen-column vector and oiren row

vcetor associated with ocach matrix B(aaj. m(ag).... E(an)
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‘D$(01}!w
Ji~en-Column vector *
(=1)°|Dy(a,)]
ch(a1) L - eesesse
(-1)“"1nn(a1)l

vhore D, Dyyee Dy ore tha co-fretoro of the determinant
w(a1) nlong the firot row or vc(a1) io the ovrcaonoion alone

tho firot row of tho dotormin~nt 4(n1).

“i{ren-row voctor =

% ne+t A
V_(ay) e [1«:1(4,:,)!.(-1) 1Colep)lyeeen (=17 !c,,ta,)l]
wvhere C1.62,...C ar: the cofazctoro of the detorminant :(“1)
alons the first colurn of Vr(m1) 19 the cxpmsion alons the
firat colurm of the dotermin-mt 3(01}. Similarly, the eipcr-
column veetors Vc(ae). caee Yo(mn) and ed ~on-row vectors

Vr(ag)...vc(an) are enleulated for the matrices E(ae)...)(an).

Tten 42 Caleulate the proicotionm matrices ﬂ,(a1). r?(u?) cone

Tn(gn) by uoinrs oguation(¢)

"‘vc?(c“)‘[
VC?("Q)l

LK B
e s e

¥
‘.Vcn((’1)‘l [vr1(ﬂ1) vr?(ﬂ‘)ooo vm(a1)-l

?ﬂ(aﬂ) o]

bvc1(a1)vr1(ﬁ’2) + VQQ(G.‘) vpa(ﬂ")" noovCr;("1)vrn(a1}
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rm11(ﬂ1) m12(a1) XIXEX: m1n€ﬂ1) B

m21(u1) mza(ﬁa) eosnens mgn(ﬂ1)
mi(a1) S 00 000080 NP EOPBPROREELOERNEEBERI OGS

I EEENNENNENIE NI RENEENNNEJIENENENRR-ER-REZEH:.H: ]

! mn1(ﬂ1) m?n(ﬂ1) XXX mnn(ﬂn)

Similarly My(ay), Mylas) oo ¥pley) can be caloulated
from eiren column vectors and elren rov vectors of

matrices E(ae), E(aa)...ﬁ(an).

dtep 5 ¢ Jubstitute the values of the rrojection matrices
0 o
in equation (6) for the solution P}%t?(ti}

T "l T ‘
PLr%@] = rtae o P rptag)enns 0 P ()

ﬂ1T )
Since 4" O and e w 1

whare ~ {8 the transition nro-abilfity matrix at time 7

and 15 riven bysd

rpﬂ Pa Py3 e Py

E 9?1 bza. pes [ XX ) pzn

| P31 Pyp Pyy te Py

t I RN AN B A KN IR NN N N AR A W)

l [ R AN N AN RN NN R NEEBENENNENRNENNNN N

t
‘npn1 Ppo Pn3 Pon

Sten A2 Caloulate the ayster state probabilities for any

ivern initial conditions, Tor examnle, Consider tro initial
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Condition:

P1(0) = 9 ' ﬁa(o) = O s Pn(O) s 0
The exprorsion for the system state probabilities aro
Pi(T) ©o m11{d1) < m?1(a2)0 < m11(33)0 soane

(!nT
sve m11(ﬁn)°

P o T

o
N e n

) ”~ ?!‘ :gnT
P (1) = myalag) o n1n(a?)0 tens meale.) @

For otoadv otate time domedn ealutionﬁ
Yoo
™ . - fen

P.5(°°) o mﬁ(%} Pn(w) o mm(u,)

Similarly the stoedy otate time domair colutiono for any
other initial conditions con be calculated from cquation(t1)

Jome vronerties of tho vrojecetion matricos of oguation( 1)

are
1« The rows of thc oteady-otate orojootion matrix
M{a = 0) alwaye add to 9
n

by m (ﬂﬂO) = ?.0 1 D 1'2,000 n
ju1 43

2. The rows of the transiont ctate projocction matrices

“(~ A O) always add to soro.

n
T miG(ﬁ ﬁ 0) w ic qugnt n
Je1
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3, The cum of projoction matricea ~ivon an idontifying

matriy

F o (g) oI
T VT {g) =
3 b |

4. mi(ﬂs) e ma(aj) e 0
Se ra(ﬁj) @ Mj(aﬂ) o “3(03)

In the Appendix A, the proof of the spectral

properties of the preojoctior matrices arc outlinced,

rurdmiip o) o)

Lot uo for oxample considor an (men} oystem with
T parallol ropaidr facilities in whieh coech componeﬁt hag
the onze conotant fallurc rate A and constant rovnair rate n.
Conoidorine(1,2) aeyotom with r & { ve obtain a 3 ¥ 3 tranoci-

¢ion vnte matrixz having the form

-2A m ol
2n (A ¢ p) u
0 A -}

cuch that in matrir notatiom

o P(2) = A P(T) |
Gt

Thup, dot (gl-4) = aloZe a(3he2u)e(ule2hn o 222))

= C!(C! - 02)(0! - ag)
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where

«(3ne2n) @'AlA ¢ 4p)
flz. "

(3N + 2u)=- YATAN & 4p)
2

(!3"

T.et it be given that if per day failure and repair rates
foyr such a system respectively A » 0.5 and u = 1 Then

substituting we ret

[=1 1 o"
be - s 1

A =
“ 0 0.5 —1J

The eisen values of the métrix A are

a1‘0. 32-—1. u.ja-z.ﬁ

Since in matrix notation, the Chammar Felmororov equation
can be renresented as

8. p(7) = P(T) A
9t

The matrices assooiasted with eipen values ftqs Gpe ay BTE

=(1eny) 1 ° 7 [ 1 ¢
9(01)' 1 "“(105%1) 0.5 ! 1 -1.5 0.5
0 1 ~(14ay) 0 1 -1




7(32) o

0 9 o
1 ~0.5 0.5
0 9 0

7.5 i
. B(33)° 1 |
0 1

-

33

0"‘1

0.5

1.5

TPo oiron column voetor and oiron row voetor for tho

patricos E(u1)n a,) ond B(us) are

"1‘] 1=0.5 ] "9 7
VQ(“Q) =) 9 vo(az) © 0 vc(ﬂg) o e ry
L1 W )
o
VT_("‘) = [1 1 005-
r. -
vr(ﬂg) = EOQS 0 005!-
' -
Vr(ﬂg) e [1 1.5 0.5‘-

‘“ho nrojootion matricoo

Hq(nq) o

" 2(02) o

- -+

Heleg)s "play) and "lag) are givon by

ey lBP A s
V (v )V (o K
r % c 1 1 1 005 SNAY

L 4

-0.5"} - »

vV (a,)V _(n,) ‘:.]Eos 0 05] i e
o 92 'n 2 o = - '__u .0 0 0
Vr(ﬂ?)vc(ﬂe) E005 0 O.5J E:'s-]Oo?S -0.5 0 .5



34.

K

Ll I P 05] e et
VolaglWulag) LASL 7% " Vi, s 2.25 ous

=}

Vr(ﬂ!g)vc(ﬂs) F; -1.5 0’5] : 5‘19075

'{’(qs) o

baad 1 "’1.5 005

1

From “an,.(4), tho opcetral rorresentation is therofore

T

or- o 9 a,'T L2 qg‘l'
P T]P(Q)J o © ?~11(n1) ¢ 0 ’5&!2(«2) + 0 MBC"B)

$ 0.5 0.25 0 -0.25] . ~1.5 0.5
1 v
o =—=fl 1 0506 ] 0 0 0 o Vo—11.52,25-,75
2.5 0.75 375
i % 0.5 L—o‘s 0 0.5_] 1 -1.5 0.5
ﬁc"‘2|5t

The onproocion for tho oyotem ototo probabilitieo are

Po(2) = 0.4 + 0,333 o~% o 0.265 0=2°9%

P?(?) = 354 bl 004 0’.‘2‘5‘:

M2) = P(T) ¢ Pp(T) = 0.8 ¢ 0.333 €™ - 0,133 o~2+5%

2.4 Canonical Transformation Fothod:
If n oyotcm io docerived by
X(¢) o AT(L) , Y(0) =%, (1)

wvhore ¥(t) ioc an n veector which defincs the otato of tho



38

cyoten at tioe € end A 40 on nxn constant matrix. The
colution of this voetor notrix differcortinl cquation ean

bo ohtadned by the following -  mothod . “akins use of

¢t e method gayotem ¢ioc dopondont availability can ocasily
be cvaluated,

oot

Any otate voctor y dofinod for thio oystom do
rclatod to X by

Y = Py
where P =« n ¥ n nonpinfular matrix

For a 9 = 3 constant matrix Al

M4 b c
vhoro A c| @ e} <
€ h i

whoro
1A = AI]l & = (A= x1)(k - xz)(a - h3)

and hq, }‘2 and hg arc @ifforent froo occch othor, o diaro-
nolizine tranoformation natrirx P that transforno A into

a dirronal matrinw matrix 4o given by

r O=A e £ o=h, 4 o-hg %
h i-a 4 h 1-1\2 h 1-k3
-] @ b ¢ -1 4 g 14 @ £
Po
d O=A q a | o-hz 4 o~h3
¢ h c h h
L e _.
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Ry means of a muitable transformation T = Py
we can tronsform eqn.(1) into
3'r =1 APy

If & has dintinet eirenvectors, then I-""’ A P can be
made eousl t0 D = dfag(A,, Ayyeeeeh ) and the solution

ia fouri 28

e 0
jkzt
vit) = 1. e y(0) = Z(t)y(0)
| B *
ot
LO e n
Sirce gt o ]
e
: hzt
Q(t)e’ ¢ = em
i .
n ot
| © e’
e obtain

¥(t) = e”%y(0)
or, |
Since 7 = W we obtain
y(0) = ¥~ v(0)

Thus 1f the solution ¥Y(t) of ean.(1) is desired, 1t is
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riven by

v(t) = cy(t) = 1 o(t) Y 7(0)
- 1" el“t k-1 ‘.(0)
-1, . -
e olF A1)t =155 (2)
In the case vhere A involves multinle eiren values

)‘1 of multinrlicity ”«“1(1 © 1,2,0000k] My My4ee.dly = n) ord

the eir~ervcoctors corresnondins~ to h, are also maltivle with

1

the corresnonding Taltinlicity mg» then I"'A T becomes the

Jordan canonical form, which we shall denote by J. The
aolution %(t) in this ca e is riven by

7(t) = P (%) o(t) 27 ¥(0)

=1 &8t =t ()

-.‘1
o olF AP)E =l (3)

vhere (t) 49 ~iven by
31(t) 0

':(t) P .
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unere

- % O M
e —?T (E‘f-(‘)'
1 0 1 % 104-2
i zmi-Z)!
si(t) N : : . @ X, matrix
0 0 0 PR t
0 0 0 ese |

State Trancition "atrix Tethods
‘notheruay to £ind the colution of can.(9) iec to

procsed as follows? Ry analopy with the sealar cage

8) = a(e), 20) = B

w’none's@olution ig () = eat ‘-}o. we use the matrir exvomontial
K. '
o A'¢
Fed Ift

for firdin~ the solution of cm.{(1). The series oMt converres

aboolutcly and unifornly in ony finite interval of the tire

avis. Jinco

2 o™y o ot®
as

the colution of con(9) catisfying the initiol cordition :\(to)e‘? o
ic piven by

v(s) = ol v, (8)

AC

Tor ¢ o 0, 07" rcduces $0 identity matrir. Therefore, eam(d)

clcorly oatiofies the initisl condition,
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Bx e

‘e conoider once again the transition matrix A

=1 1 o']
1 ‘105 1 !
0 -1

whoae eiren values were calculated ae

{

eo, A =1 » -"33-2.‘5

"1 2

‘e now vwrocced to obtair the solutiorn by the above two meéthods .

Coroniecnl Transformation ““ethods

e matrix P is as riven by

r" -
; l-i 5 11 -154+1 1 | [=1542.5 1
0.5 -1‘ 0.5 =121 0.5 -1+ 2.5
#q 1] 1 | 1 1
P a
1 0 -1{ O -"‘ 0 "‘14‘205
' 9 -1.51 1 =151 1 - =15435
Il o 0.5" | c 0.5 0 0.5
I : -
4 - 0.5 1.0\
= ‘ 0 "1.5
0.5 005 005
b —t

!P! L 10875



qo:

.75 o715 o195
[ —— ’QOQS 0 205
1.875
0.5 ~0.7% 0.5
;" 0.4 0.6 0.4
o - 0.666 0 1.993
\_ o266 -0-& 0c266

(0.4 0.4 0.4 ‘21 q GTF -0 o5 e“

7= ppo|-0.666 O 14333 3 4.5 1} |9 o -1.5

¥ 0 0
-9
0 0 2.
L 5
-1
(%) = P L ARIE = (o)

Pe) [+ -03 ¢ 1% o o TJ[o.4 o4 08 N FqloF

r(e) =l 1 O _esllo o® o |}-0.5% 0 13331 ¥ 5(2)

el los 0.5 0.5il.o © o255 | .266-0.4 .256] lE5(0L

Tor the initial eonditions

‘.11(0) o 9 Xz(o) a0 o K3(o) s 0

[ (6] e o ¢ 039 o . 0.266 00

%o(8) | |0+4 % - 0.4 0727
xs(ﬁ) 002030ﬁ - 0,333 O.t & 0.133 0-2.5ﬁ

CETRAL LISRARY UNIVERSITY OF ROORKEE

Y ALANL NI Fhr]
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Thag availablility o piven by

M) o 31(%) o 22(ﬁ)

e -2.5¢

] 008 <+ 00333 G. - 00133 @

Stato Yp-msition "atriw “othod

OA% may be cxparded co scrics of matriees end then

edded torether into a cloced form ac follows?
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The solution is

At

X(t) =e"" v(o),

For the initial condition

7,(0) = 1, T,f0} = 0, Y¥4(o)

o
. 2t
r’t#t)-\ ﬁ-t @ Tm—— B ees
21
V?(t) = ¢ "205 — A aww
Y
2
t
v (t) N8 e & .,
-5 - 2

Thus availability is given by

AE) @ T (1) « T(8)
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81"0.5"’-"0000
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3,0 CO"CIUSION

A method is preooomted to ovaluate a meacure
of roliaobility of a hicrarchieal system. The system is
coded in a ovoelal forxm to roduce the comrmutation time.
A large hicrarchical systen eonm be handled dy decompooing
it into caall cubsyoctens,

The successive displacozont mothod for finding
the steady otate availability of the oyotemr requires less
storere ond conmuter tine rather than othor =3thodes as tho
tranoition patrix can easily be deccomposed in I-U form. During
the desirn thase, variouo paramotero of the system are
vequired to bz chanred sogquentiolly. To £ind the stesdy ctate
availability for each channe in gyoter naremeter requives the
solution of the state egquations repeatedly vhich 1o quite |
tioe concunins, A graﬁh thooretic approach ic preoscnted waich
devolops the arithmatic crnression for syoten stendy otato
availebility In Corms of cyctonm warzmetors. Thuo avoido the

repeated colution of the otate cquation,

To find ¢the inhercnt availabdility three mothods
arc precantod. The state tranoition matrix method sives an
opproxinate colution, The accuréey of the solution dopends
on tho nuober of terms concidored im the e3ries cxvenoion of
OAT. <ho gpeetral decomposition methed pives an accurate valuo

of inhoront avellobility. Fut it requires more m2mory SNACG.



T™e canonical tranoformation method requires simnle
calculation and less memery requirement than the spectral

decomposition method. This also rives the cxact value of(]

inherent availability,
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To rrove the nroperties of matrix !, mentioned in the

precedings sectionn, let us consider the »n matrix K riven by

V. A

L 1' "‘2.00.'"‘n

wvhere

1 is the eirer-vector belonr~in~ to the ef~envalue

«i(i 2 1,2,4...0) from the rronerty of similarity of matrices

we have?
. |

[T N

This imnlies that
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Ther, from equation (A4-1)
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tron ewation(4-3} therefore
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Thercfore, the spectral rerrcsentation of the transition rate
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or transition orobability matrix is
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¢ C

1000
2000
3000

ATET TIY-B

FSTIABILITY TVALUATION CF A PR3 TITWORK
DIV T SICY 15(2og,xn(2n).1?(20),@?(20).2L(20) »T(20) ,R(20)
nvr*rsw" IL(20
I%AD 9000,% IR
ORI = 1,
rEAD 1000;1 (I),X5(X),IB(1),IL(1)
CONTINU 3
LZAD 2000, ("""Clg oI= 1,7107)
READ 2000, (3L(X),I=1,)
I0S K - 1, TN
T(? L (?)
T(F) = 0.C

CCHTINU®

I =1

17 ( 15(1; g 20, 10, 20

IF( I1(1 20, 30, 20

I a2 ¢ 1

GOTC 6

h IF(I 1 (3) 31,80,31

DI EI) e (RO . CR0) . wnrw} QL(1)
2(3) = T(I) « HI) * () * A1)

IF( IR(T) ) 60, 60, 40

T = IP(I

IF( 15(1) )30, 30, 50
I =15(1)

COTO 45

IF( J) 70, €O, TO

T 901 = 1, I

FUNCT 3000, m P(1),5(1)
CCrTIvy

TOL 11 7( 10I5)

FOEIA(°F 10.5)

TOIAP (14,27 10.6)

STOF

D
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