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CHAPTER-ONE

INTRODUCTION

It has been recognised for a long time that the vas-
culaf system consists largely of a complex configuration
of branched elastic tubes. According to Poiseuille's law,
the flux of a viscous incompressible fluid through a rigid
tube 15 a linear function of the pressure difference between
the énds of the tubﬁ. However, in the vascular beds of
mammals, the pressure flow relation 18 always non-linear.
This nonf-linearity has been asceribed to the elastic nature
of blood vessels and their consequent rather large disten-

sibility.

A great variety of mathematical and physical models
of the human arteriél system has been introduced, since the
etart of investigation in this field. They can basically be
divided in two groups: the 'Windkessel-models' and the
'Transmission models', It is generally felt now-a-days that
a model should be more sophisticated and should have counter- .
parts of the essential hemo-dynamic quantities in the actual
system such as pressure-flow relationships, reflection coeff-
lcients, pulse wave velocity etc. The 'Windkessel' models can
not be expected to do this because they lack in their original

concept, a representation of pulse wave velocity. The Windkessel
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is equivalent to a single chamber, that is, a lumped system,
in which the wave velocity is infinite and pressure and

flow pulses change simultaneously.

Transmission models require division of the arteries
into segments. Inserting the parameters of each segment into
the equation of motion and the equation of éontinuity results
in a relationship between pressure-gradient and flow on the
one hand,and between flow gradient and pressure on the other.
The form of an electrical delay line is determined where
voltage sténds for pressure and current'for flow. Therefore.
the construction of a passive electrical equivalent of the

arterial system seems possible.

‘Second, third and.fourth chapters deal with the
fundamental aspect of the arterial circulation. The fifth
chapter deals with the matheﬁaxical analysis of the arterial
circulation in quite details first taking the artery to be
of circular cross-section and later considering it to be of
elliptical cross-section. The sixth chapter deals with the
electrical models of the arterial trees taking into consider-
ation of sleeve effect and non-newtonian properties of blood.
Last chapter gives an account of arterial vs. venous hemo-

dynamics.
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CHAPTER-TWO )

PHYSIOLOGY OF THE HEMODYNAMICS

2,1 INTRODUCTION

Fluid dynamics is largely a consideration of the
relastionship between pressure and flow. Hemodynamics,
being the fluid dynamics of * blood, is concerned with the -
specific case of an inhomogeneous, viscous fluid contained
within a series of flexible, branched tubes whose properties
mey be time varying. The majority of work in the field of
hemodynamics has been done on the arterial system. In analy-
zing the flow of blood in the arterial-system we must first

understand the blood dynamics from the physiological point

of view. ‘ \%
AN

2.2 THE BLOOD

The blood is a red fluid of alkaline reaction and
is salty in taste, its specific gravity is 1.050«1.060. The
‘bléod consists of cells and plasma. The cells make wp
40-45 percent of total amount of blood and the plasma makes
up 55-60vpercent. The body of an adult contains about five
litres of blood which weigh one thirteenth of the tofai body

weight.l
2.3 FUNCTIONS OF THE BLOOD

The blood performs an important function in metabolism;
it delivers nutrients td the tissues of all the organs and

carries the waste producte away.
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The blood performs a most important fuanction in
respiration, it delivers oxygen to the tissues of the
organs and carries carbon dioxide away. Oxygen enters
the blood through the lungs. Carbon dioxide is eliminated
from the blood mainly through the lungs.

The blood effects 'humoral regulation of the
activities' of various organs; it transports various

substances (harmones etc.) round the orgaenism.

The blood also has a 'protective function,' it contains
cells which pcssessfbrOPerties of phagocytosis, and special
products called antibodies, which play a protective role.

The blood takes part in distributing heat within
the organism and in maintaining a constant body temperature..
Because of the movement of blood through the blood vessels
heat is transported from warmer parts of the body to cooled
parts. The blood gives off the excess of heat into the
external environment, and the organism therefore does nbt

become overheated. , 0

It should be noted that part of the blood does not
circulate through the blood vessels, but is stored in so
called blood depots (in the capillarias of ‘the spleen, liver
and subcutaneous tissue).‘Under different conditions the
volume of blood circulating in the organism may increase
'of decrease through a change in the voiume of blood depot.

For example, during muscular work and in cases of blood loss
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the blood from the depots is released in to general

cireulation.z’3

2,4 CARDIOVASCULAR SYSTEM

The bloed continuously moves through the organism,

this movement is called blood circulation. All organs:

of the human body communicate with each other tﬁrough

the circulation of the blood. The bloed flows through blood
vessels, which are eiasti& tubea with varying diametersf

A closed network of blood veésela radiates througﬁout the
entire body. The heart, which is a hollow, muscular organ,
contracte rhythmically and pumps the blood throughout the

the organisn.

2.5 BLOOD-VESSELS
There are three types of blood vessdls- (1) arteries,
(2) capillaries and (3) veins. They differ from each other

in structure and in function.

ARTERIES~ Arteries are vessels through which the blood flows
from the heart to organs. They have comparatively thick walls
made up of three coats; an outer coat, a middle coat and an inner
coat f£fig.(1). The outer coat, or tunica adventiﬁia; consists

of connective tissue. The middle coat, or tunica media,

consists of smooth muscle tissue and contains elaestic connec-
tive tissue fibres. Contractions of this coat decrease the

lumen of the blood vessel. The inner coating, or tuﬁica inti-

ma, 15 made up of connective tissue and is lined with a layer
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of flat cells, the endothelium, The arteries differ

in diameter; thé farther from the heart, the smaller

the diameter. Inside each organ the artery divides into ‘
smaller branches. The smallest arterial vessels are

called arterioles. The arterioles‘ divide into capillaries.

Capillaries
Capillaries are minute blood vessels which are

visible only under the microscope. The lumens of the
capillaries vary -and average_7.5 ny the length of a
capiliary does not exceed 0.3 mm..Thére are several
hundred capillaries per square millimetre of tissue of
any organ. The total lumen of the}capillaries of the
entire body is 500 times that of the aorta. When an

organ is in a state of rest most of its capillaries are
 contracted and no blood flows through them. In an active
organ the number of functioning capilleries increases. The
wall of a capillary consists of one layer of endothelial
cells, The interchange of substances between the ﬁlood and
the tissues takes place only through the capillary wélla.
Various nutrients and oxygen, and part of the blood plasma
of which lymph is formed, pass from the blood into the
tissues. Carbon dicxide and other waste products pass from
the tissues into the blood. The endothelium of the capie~
lleries plays an active role in allowing the substances to
pass from the blood into the tissues &#nd vice-versa. The

interchange of substances depends not only on the state of
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the capillary walls, but also on the main substance of
the connective tissue surrounding the capillaries. As it
flows through a capillary arterial blood changes to

venous blood, which drains into the veiﬁa.

VEINS- Veins are vessels through which blood flows from
the organs to the heart. ILike arteries, they have wallse
composed of thiée coats fig. (1), but they contain fewer
elastic and muscle fibres and so are less resilient and
collapse easily. Unlike arteries, veins have valves which
open in +the éirection of the blood flow. This helps the
blood in the veins to flow in the direction of the haart.
The smallest veins are called venules. Closer to the heart
the venous vessels increase in diameter. The fotal lumen
of the veins is larger than that of the arteries, but
smaller than that.of the capillaries.

Each region or organ.of the body is usually supplied
with blood by several vessels. One of them, the largest
in diameter, is called the maln vessel, while the smaller
ones are called the acéessory or collateral vessels: Some
arteries communicate with each.other through connecting
vessels, called anastomoses. There are élso anastomoses

between veins,

If the blood ceases to flow in one vessel (if the
vessel is cut or compressed by a tumor, etc) the circulate

ion through the collateral veesels end anastomoses will
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increasse. New collateral vessels and anastomoses may
graduelly develop in addition to the existing ones. The
blood circulation is thus restored.

2,6 SYSTEMIC G ATER AND PUIMONARYfLESSER)
ULAT ION

All the blood vessels in the human body compose
two circuits of blood circulation. the systemic (or

greater) circuit and the pulmonary(or lesser) circuit..

The_systgmic.circulation begineg with the aorta which
leads from the left ventricle and carries arterial blood
to all the organs. The aorta divides into numerous
branches, the arteries. The arteries enter the organs
where they divide into smaller branches which then form
network of capillaries; From the capillaries the blood, now
venous, passes into amall veins which form larger veins.
From ell the veins of the systemic circulation the blood
is collected into the superior and inferior venae cavae which
empty into thg right atrium. !bhus. the ey.stemic eirculation
15 a system'of vessels through which tﬁe blood travels from
the left ventricle to the érgans and from the organé to
‘the right atrium. |

The pulmonary circulation begins with the pulmonary
trunk which afiaes from the right ventricle and conveys
venous blood to the lungs. The ﬁ:terial.bload flows from
the lunge through the pulmonary veins into the left atrium.

In other words, the pulmonary circulation is a system of
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of vessels through which the blood moves from the right

ventricle to the lungs and from the lungs to the left

1

atrium™,

2.7 ARTERIAL-SYSTEM

It

1.
2,
Se
4,
5
6.
Te
8,
9.
10.
11,

12.

13.
14.
15.
lé6.
17.
18.
19.
20.

congists of the following main arteries. Fgﬁa)

Superficial temporal artery,

facial artery,

right common carotid artery,

Left common carotid artery,
brachiocephalic trunk (1nnonimate artery)
left subclavian artery, '
arch of aorta,

right axillary artery,

left brachial artery,

radial artery,

vlnar artery,

renal artery, .

abdominal aorta,

external iliac artery,

femoral artery,

deep femoral artery,

popliteal artery,

anterior tibial'artery,

posterior tibial artery,

dorsalis pedis artery,



CHAPTER-THREE B L

PROPERTIES OF THE ARTERIAL WALL

3.1 THE STATIC ELASTIC PROPERTIES OF THE ARTERIAL WALL

The Elastic Modulus
The Young's modulus of an isotropic tube, which does

'not change in(length on inflation, is given by Love,

gl-o 2313
E= XX l)

where, | |
ARD = change in external radius,

AP = change in pressure,
Ri‘= Internal radius

¢ = Poisson's ratio.

,Pqisépn's ratio 1s the ratio of transverse to iongi- ‘
tudihal'straiﬁ, all materials becoming narrowsr when they
are stretched in length. If o = 0.5 no change in the volume
of’the material oécurs for a very small strain. The equation
assumes the isotropy of the material, that is the mechanical.
properties are identical in all directions. The arterial
wall 1s more extensible longitudinally than circumferenti-
ally, but when no change in 1ength oceurs the effective
circumferential modulus is a function only of the true radial

and circumferential moduli.”

With these aesumptions the incremental modulus 1s
. “Pl 2(1-0") K R 2)
1 ‘ p —-—2—-——-2-—- s e e \

where the subscripts 1,2,3 represent successive measurements
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of pressure and radius. If no volume changé occurs in
the wall, then Eo-E. i constant. The units of stress are
force per unit area. Strain is a ratio of length and is
dimensionlese. thus elastic moduius hes the same units

as stress..It is, therefore, necessary to measure the
internal~pressure, radius and wall thickness of the

arteries,

The iﬂéreaselinmmodulus with 1ncreasing préseure \
depends both on the elastic properties of the collagen,
elqstln,and muscle within the arterial wall, and ont
their arrangement and linkages. Table 1 showsS the elastic
moduli(E) of arterial wall constituents.

TABIE 1.The elastic moduli(B) of arterial
wall constituents.

- ) E(dynes/
}Tiasue o , cm2g;06)
Collagen(tendon) 1100
Elastin(ligamen=- 6

~ tum nuchae)
Smooth muscle 2.5

(resting)

- I% is generally assumed that the smooth musecle,
collagen and elastin in the arterial wall'function in parallel,
and each bears some load at all internal pressures. Thé
elastic modulus of resting vascular smooth muscle is

probably in the region of 1x10° dynes/cma.
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The arterial wall becomes stiffer as it is extended.
This increase is less marked in the thoracic arots upto a
pressure of 100 mm Hg. Mean values for the static elastic
modulus (dynes/cm2 b 4 106)'at 100 mm Hg. prassure were thoracic
gorta 4.3, abdominal aorta 8.7, femoral artery 6.9, carotid
artery 6. 4.(4)

3.2 The dynamic Elastic Properties of the
Arterial Wall,

Although the response of the arterial tree to relatively
8low changes in blood preséure ils determined by 1t§ gtat ic
elastic properties, the rapid pressure changes occuring
at each heart beat will result in rather different behaviour.
‘ This is due to the visco-elastic properties of the arterisl
wall. The mechanical response of.a visco~elastic material
depends both on the force applied (elastic response) and on
the time 1t acts (viscous response). These substances display
'ecreep' (continuing extension at constant load) and stress

relaxation (tension decay at constant length)G.

The dynemic elastic modulus (E') ie given by
p 20-F)RES |
'=ﬁ%——z«-z—-———’= v (3)

E' may be resolved into two components, elastic and

viscous. These are termed E

ayn and Nw respectively, and are

defined as follows?

Edyn. = E'COS¢ see (4)
Nw = E' sing ' ere (5)
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where @ is the phase angle between pressure changes

(AP leading) and radius changes (ARO)._

nw is the product of the coefficlent of viscosity

(n) and the angular velocity (w).(s)

Thus the amplitude of E'

341 = [Byg)? + (nw)2] ree (6)

where Nw is small say <1°./‘--Edyn

+ o Bayn 2 B Ceee (T)

Bergel suggested that the muscle content of an artery is
primarily responsible for ite viscosity. ‘'Wiederhielm' has
suggested a madel for smsll arterial vessels and is éhown in
Fig{(B). The elastin is represented by a number of eprings
which engage at different degrees of extension and thus
simulate the recruitment of fibers that occur at larger def-

ormations.,

The elastic properties due to collagen are shown in a
similar manner and demonstrate the recruitment of collagen
with 'Mcreasing strain. The collagen fiber jackets;"gurrounding
the smooth muscle are simulated by two sets of eléstic components,
one in parallel and one in series with the muscle fibers

Fig.3(a).

In the ralaxed state the muscle is quite extensible and
the contribution of elastic forces by the muscle and the elastin

1s triviel since the elastic behaviour ie “gominated by the
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collagen, Fig.3(b).

In the constricted state, the elastic elements
connected in parallel with the vascular smooth muscle will
be slack and thus not support any significant amount of
tension. The portion of the collagen fibres between the
- smooth muscle cells will transmit the contractile force
from one muscle cell to the hext and appear as a series

elastic element, fig.3(c).

3,3 MECHANICAL PROPERTIES OF ARTERIES

The functions by which the cardiovascular system serves
" the biologic organism are mechanical. It is, therefore,
necessary to understand the mechanical properties of the
cardio-vascular system. One of the major components of cardio- -
vascular system is its arterial network, the mechanical proé
perties of which determine the propagation of energy from
the heart to the periphery. The relationships of blood flow
and blood pressure, of intravascular pressure and vessel
volume, of pulse wave velocity and blood pressure are but a
few of the variables often measured which depend quantitat-

‘ively on the mechanical properties of the blood vessel walls.7

It may be assumed that the relationship between stress
and strain in the blood vessel can bé expressed by some equa-
tion representing the sum of a geries of terms of increasing

order and their coefficients, for example:
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P(t):Aﬁ +B-'£+c +D +.....
dt at at

vwhere A,B,C etc. are coefficients which are analogous to

vessel parameters.

It has been found that a first order linear differen-
tial equetion will match both the contour and the amplitudes
when recorded and simulated stress and strain are compared.
This suggestsAthattha mass or inertial (second order) and
higher terms are negligible in the relationship of strgss-and
strain in the artéry wall since the elastic and viscous moduli

are the predominant parameters.

The strain which the arteiies undergo as a result of
arterial pulse'pressure variations is norméliy between 0.01 and
0.04‘1.9. between 1 and 4 percent change in eircumference. The
total strain associated with marked constriction end dilation
does not usually exceed Y10 percent. Therefore, the circumfer-
entiél motion of arteries may be characterised as small strain.
The méss of the artefy wall does not play a significant role
in determining t@e mechanical behaviour of the arteries and

can thereforevbe neglected.
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CHAPTER-FOUR
THE PHYSICAL LAWS GOVERNING THE FLOW OF BLOOD

4.1 INTRODUCTION
The biological function of the heart is to pump blood

to the tissues of the body. The heart creates a regular,

intermittent ejection of blood and so flow in arteries is |
pulsatile. McDonald8 déscribed this flow and the accompany-
ing pressure waves by Fourier-series., Such a series is rep~-

resented by

F(t) = &) + mf:)Am cos m(%ﬂ-)t + By sin”m@%ﬁ)t +
= | veo (8)
where T = cyclé length.

Thus pulsatile flow consists of a set of terms which
oscillate around a mean value Aa' This mean value is referred
a8 the steady flow and the remainder as the oscillatory flow.
The fact that the arterial system is essentially a set of
pipes for distributing blood remindes that the steady or mean

flow is the most important component.

4.2 THE_STEADY-FLOW

If the shape of a typical flow curve fig.(4) is cons-
idered, it will be seen that it is an oscillation of asymmetr-
ical shape. There is a lafge peak of forward flow, due to

systole. Following this peak there is a reversal of flow lead-
ing to a backflow., In terms of values about the mean we have
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a peak value of 5.65 ml/sec. in the forward direction, and

2.85 ml/sec. in thé backward direction i.e. towards the

heart.

Backflow=
Blood flows towards theheart during part of a cardiac

cycle as a normal phenomenon in many arteries. Backflow is
expected in all arteries and will only fail to appear when
‘the steady flow is greater than the negative component of the
compound oseillatofy wave, Physiologically the appearance, or
absence, of a backflow will be determined largely by chanées
in mean flow. Iﬁvwill also depend on changes in'the shape

of the compound oscillatory flow curve. -

IThe Steady Pressure-gradient

The measurement of steady flow is thus an important
factor in calculating arterial flow curves. In the arterial
pressure gradient there is a steady term, which is related
to the steady flow by POISEUILIE'S formula. The mean press—
ure drop along'arteries is extremely small eg. the gradient
corresponding to the mean flow in fig.(4) (12 cm/sec) is
only 0.13% mm Hg/cm. |

4.3 THE_FLOW_RELATED TO_AN OSCILLATING PRESSURE GRADIENT

If the pulsatile flow and pressure in arteries are
expressed as a fourier-series then the elementary case to

consider is that of simple harmonic motion of liquid in a



18 -

cylindrical tube. The mathematical treatment is initially
similar to the standard derivation of POISEUILLE's law.

The basic assumption made are the same, with the single diff-
erence that whereas in steady flow the pressure difference,
Pl-Pz between the two ends of the pipe of length L is

constant with time in the present case the pressure gradient
(Pl-Pz)/L oscillates in harmonic motion. The other assumptions

8 .
on which the analysis is based are.

_1. The flow is laminarx,
2. The tube is long,

3. The viscosity of the liquid is independent of
the rate of shear l.e. it is ! a Newbtonian liquid.

4. There is no 'slip' at the wall.

5. The radius of the tube does not vary e.g.'with
changes of pressure.

The equation of motion is a unidimensional form of the

Navier-3tokes equation and can be written,

f;% +-% 2 4 P&'iz = ;; %% | ﬂ‘... (9)
where, w is the velocity of the ligquid parallel to the
axis of the pipe (the z=axis) at a distance 'r' from the
axis.

b = viscosity of the liquid,

v = kinemetic viscosity (wfP )

F = density,
R = radius of the pipe.
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Taking e pressure gradient which is periodic with
time with a circular frequency w 80 that
(Py=P,) /L = =4 o' ... (10)

and the equation of motion is rewritten,

2 2 ‘ ' )
0°a 9% 1 9w _ 1 du _ A Jdut
Fr +r“ 5~ 5 ot il eee (11)
iwt

et w = ue and let the non-dimensional-quantity R (W/Vv)

be denoted by a. Then the equation for u is,

2 - 2
o%a , 1 ou, 3.2, o AR®
:y?+ydy+iau m e ve (12)

(where y = r/R)

which is a form of Bessel's equation and the required solut-

ion after replacing w is

2 J (ayi2/2) _ iut
} e

AR 1 - .o
w =3 ;3;2{1 32222375; , (13)

Womersley integrated equation (13) to give the solution for

the volume flow, : 3/2 _
4 2d, (ai”’“) int
R 1
Q = L‘- l— m e cee (14)
" 1§a§ { 01?45 (a1?/%) }

If the real part of the pressure gradient 260t 54 Mcos (wt-¢)
then the equation for volume flow is

4 M.M! : _
= L‘.&.. "';?l“q sin(wt—¢4€10) ' se (15)

2
]
Ivllo/a and €, are functions of a.



‘The Significance of the parameter a in determining
OsciZIa%orxfﬁlow

If the equation (15) is ‘compared with that of

POISEUILLE'S formula which is,

o o BEL(E1-P2) ‘ ee. (16)
8L '

the similarity can be seen at once, remembering that the
pressure gradient‘(Pl-Pz)/L is written as M cos(wt-«@). The
factor mio/az modifies the modulus, or amplitude, of the
flow and, in addition, a phase shift €, is introduced,

so that flow lags (90-610) behind the pressure-gradient.

Thus for a given pipe, if the pressure gradient
‘oscillaxes.at‘a very low frequency so that a is small, then
the Flow oscillate with it with a negligible phase lag and
its amplitude will be nearly that given by Poiseuille's
formula for steady flow. As the frequency inereases the
amplitude of the oscillatibn of the fluid, with a constant-
pressure oscillation, wiil diminish progressively and the
phase lag will approach 90°, The value of a increases
linearly with the radius of the pipe and with the square

root of the frequency, that is
a=RJ(N) ' ees (18)

4.4 ARTERIAL-IMPEDANCE

For flow in a rigid walled tube, under a pressure

iwt 11

gradient «Ae » we have the average velocity -,
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then the longitudinal impedance of the tube per unit length

is
' iwt
z = &8
w N
P 1ws
= %I- sineg, . + &% cose ‘ oo (20) .
Mo 10 MiO 10

It»can be seen that for high frequencies the imped-
ance approaches iwf , that is, the motion of the fluid is
governed by its density only, and the impedance is a puie
inductance. ‘

The input impedance (Zé) of a conducting system
depends both on the longitudinal impedance (Z) and the wave

veloeity (C) and is defined as,

Zo = Z. C/iw *a 0 (21)
For the 'tethered and loaded tube' Womersley found | |
B
0 1. 1/2
b, = . > . éxp(—i é ) se (22)
2
o “Ff:E ﬁﬁ;; | 10

It can be seen that with increasing a, and Mio tends to 1
from below, and ¢, tends to O from atove, the input imped-
ance epproaches that for the inviscid system. In a perfectly
elastic systemlco denotes the vaiue given by the Moens-~
Kdrteweg formula. If the wall material is elastoaviécous,

then Co will not be constant, but will rise with frequency.
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4.5 THE BEHAVIOUR OF THE ARTERTAL WALL

The first model of an artery considered was that of
a2 thin-walled elastic tube, containing a viscous fluid in

oscillatory motion.

The movements of the wall are also of physiological
interest. Itis well known that arteries dilate with each
cardiac ejection, Womersley po;nted out that in the body

the arterial expansion is more directly related to the flow.

-3 L (@23)

where,
, w is the average velocity of flow,

C the wave velocity,
¢ the radisl displacement.

R the mean radius of the artery.

In addition to the radial movement, the viscous drag
of the fluid will slso cause a longitudinal movement of
the wall of a free elastic tube. This effect should in fact
be larger in magnitude than the radisl movement. Further
observations have shown that the arteries are largely
tethered by fhe connective tissue around them, and thus

1t is not realistic to use the free elastic tube a8 a model.

WOMERSLEY considered the model of an elastic tube
subjected to an external longitudinal restraint, and loaded

by the mass of the tissues around it. Mathematically,

K = % (for free~elastic tube)



FIG.5(a) VARIATION OF PHASE VELOCITY (ci) WITH <
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FIG.5(b) VARIATION OF DAMPING WITH &
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where h is the wall thickness.

With the 'tethered and loaded tube' the term K is defined

88,8

y - |
K= (1 - 5-11;&;1)(1- o) - coe (24)
w

where, hl = thickness of the loading mass
£.f| = densities, A
R.Rl = radius. |
m = natural fregquency of the longitudinal'restraint.

and w = circular frequency of the oscillation.

With a fairly stiff constraint (as in the body) m»w and

K is negative, tending to -® as nm is inerease&'indefinitely;
The effect of this modification of wall behaviouf on wave
transmission i1s shown in fig.(5). It can be seen that the
aéymptotic value of the phase-velocity is now greater than
that for a non-viscous fluid in the same tube, and that the
damping has increased. Both these effects are due to an
increase in stiffness of the tube. Thus the 'tethered and
loaded tube' is the satisfactory model of the artery.

WNave~Transmigsion

The study of dynamic local distensibility of arteries |
shows that the arterial tree behaves as a wave transmission

system.

The distensibility of a segment of artery is defined

as the increase in volume per unit increase in transmural

pressure. Local vessel disteneibility'per unit length may be
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defined as dS/dp where dS is the increment in cross-

sectional area S and dP is the increment in pressure p.

In the descripfion of the arterial circulation as a
wave tranemission system, the heart is considered to be a
wave generator, linked to the periphery via an intensive
set of short vessel segments undergoing multiple>5ranching.
In anglogy with transmission line theory, each vessel seg-

ment is fully characterised by a set of three quantitiesl4—

(a) Longitudinal fluid impedance per unit length (Ze)
defined per harmonic as the ratio of pressure gradient,

~-dP/dZ, over pulsatile flow, dQ.

(b) Transverse wall admittance per unit length, Vo
defined per harmonic as the ratio of flow gradient, -dQ/dZz,

over pulsatile pressure, 4aPr. T:ansverse impedance Zt = 1/yt
(c) Segment length, L.

The pressure-~flow relationship in such a segment is

characterized by one more quantity.

(@) Input impedance.'zi defined per harmonic as the
ratio of pressursé,P, overflow Q, at the entrance of the

segnment.

The two impedances Z@ and Z, have equal importance in
defining the transmission of pressure and flow waves in the
arterial tree. They can be described by such quantities as
.characteristic impedance 2, =,f§;§: » propagation constant
Y =,[§Z7§t . M1l of the above quantities are complex and
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frequency dependent and thus we have fof the propééation
constant

Y(w) = alw) + jplw) eos (25)
in which a determines the wave attenuation and B the

phase velocity 'C' (w = angular frequency)
Clw) = w/p(w) | ... (26)

For a vessel segment of cross;sectional area S and
infinitesimal length 4%, through which the flow of incompre-
ssible fluid is Q, the net 1ﬁcrease in volume per unit time
(t) and per unit length can be expressed as ~dQ/dZ on one

" hand and as d5/dt on the other hand. Thus we have,

For the harmonic of & with angular fregquency o we have

dS/dt = jwas ..o (28)
end 80 we can write, | |
¥y = (-dg/dz)ap-
= ju(as/ap) cee (29)
*e2y = 1/jw (aP/a8) | Cees (30)
Thus the transﬁerse wall impedance is inversely proportional

to local vessel distensibility per unit length.
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CHAPTER - FIVE -

THE _MATHEMATICAL ANALYSIS OF THE ARTERIAL
CIRCULATION

5.1 INTRODUCTION
For the analysis of pulsatile blood flow through a

distensible vessel it is necessary to develop s system

of simultaneous equations which express the balance of
forces and the conservation of mass at every point in the
fluid and its boundary. The equatiohs of motion and of
continuity for the blood and the vessel wall represent two
:éets of four independent partial differential equations which
contain the three coordinatas and time as independent varia-
bles. The equation of state, which relates pressure, density
and temperature is usually not required under physiologicsal
conditions, since blood may be treated asvan incompressible

fluid of density p at constant temperature.

5.2 NAVIER-STOKES EQUAT IONS

Assuming no leakage flow through the walls the basic
flow equations are given by the continuity equationl5

vV, Vv, ¢
Ir
L oo (30

and the Navier-Stokes equation for an incompressille fluid

. A 2

oV oV eV , v oV eV

— Z 2z _wp_ X 9p ., z,1 2 Z

otV or ' Vé 0z F, P 92 + vl o ztror * dzz )

oV oV oV 02y AR (32),

r r r _ l dp r_l1_r r 9 Vr

% vtttV =R T por + v 5 YT T2 Y3

r r YA
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where, r and 2 are the radial and longitudinal coordinates
respectively, t = time, p = the pressure, ry = the inbternal

vessel radius, p = the density of the blood, v =J% the kinematic

"

viscosity of the blood, u = the viscosity of the blood, VZ
the instantaneous velocity pérallel to the vessel axis,
V., = the instantaneous fluid vélocity along a radial coordinate,

r
and F = the sum of external body foreces such as gravity etc.

The forces associated with the pressure gradient
C (1/p)(8p/oz)]] and [ 1/p(0p/or) "] are balanced by the inertial
forces which are left hand sides of the equations (32) and (33)
the frictional forces (the bracketed terms on the right hand
gide of equation (32) and (33) and the body forces F. ‘

5.3 ASSUMPTIONS FOR_PUILSATILE BLOOD FLOW

The validity of these equations rests primarily on the
gssumptions that,

1) The blocd behaves like a Newtonian fluid. In a Newtonian
fluid stress and rate of strain are linearly related (the vis-

cosity is independent of the shear rate). |
2) Only laminar flows, without.secondary flows or turbulence,
are present.

| For pulsatile flow the total acceleration consists of two
terms, (2) the local acéeleration due to the variation of driv=-
ing pressure with time (dp/dt) and(d) the acceleration due to
changes in geometry of the flow channels, such as an increase

or decregse in cross-gection.

Certain assumptions are made to simplify the Navier-Stokes
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equations.
l. The artery or vessel is anvelastic one.
2, The heart pressure variation is a periodic one.
3. The velocity has both radial and axial components.
4. The nonlinear terms of the egquations are neglected.
. 5+ The artery is of circular cross-section.
6. External forces to the body i.e. Fz and F,, are
negligibly small.
On imposing the above assumptions, equation (32)

simplifies to

ozv 0%V, ovz 1
___2__.}.._?-}-— [ ] ‘ se (34)

For a sinusoidal pressure wave

p= Alexp[;jw(t- é)] e (35)

C = wave veloeity,
w = angular frequency

Al: Modulus of pressure wave.

5.4 LONGITUDINAL VELOCITY SV&)

Let Vé = RTZ

. [ejw (t-Z/C)]

where, R and Z are space variables,

T = Eime variable

0 V
o.oRTZ" =
5



NS
wn

8%y L
R"TZ = -—2-?-
or

av ses (36)
R'2T = 3T

ov
RZT'! =3¥Z_ )

Putting in (34) the above values, we getl,

L

REZ® +R* T2+ TR'2T = 1/, [ Rz1'] er (37)
Dividing throughout by RTZ we get

PoFLLERE] oo
2 2
-%": u—-g-z-and%-'- o

Putting in (38) we get ,

2 ‘RN ’ .
w . R 1R =%(Jw)

"C"'r TR
2
o R* 1l R! W W :
or y i -uls e— = EE = 0 "f_(39) |
(since w is very small as compared to C, hence (w/C)2 is very
very small)

Multiplying (39) by r2R

. Znﬂwa' - ()R = 0 oo (40)
Let J—— = a = - éﬂ-therefore (40) becomes

% r2R3+rR'+(r2a2)R.= 0 ees (41) '

Let r2a2= x2 (this is done to bring equation in the Bessel form)

o.'ora = X
or a.0r = 0X

Thus , we get



2
x° &3 +x 83 4 x%R =0 ee (42)
X

The equation (42) is the Bessel form of the differential

equation.

Solution- R = A J (x) + B Y, (x)
= A J (ar) + B Y, (ar) eee (43)
Yb(o) = 0, whenr = 0 '

To get the FINITE VELOCITY at r = O, By, =0
n;‘.R = ADJO(ar) ' se e (44)
We have, RaT = R o9 (8-2/C) _ y

2
or V= Aogo(ar)[ejm:(ta-z/(l)]

when r = a (outer radius of artery), velocity = Cy

- C
e A, = 3’%35) and the complementary solution is
o .

"Jo(ar) jo (t=2/C)
Vz::clme coe (45)

" To f£ind the particular solution
Gradient of the velocity = 0O

av

AN N [Alejw(;s-z/c):l
_ . %Al [.. ﬂﬂj e;Im('t;-Z/C)

"

.,,. . a, -% N [‘ ég] e;]w(t--Z/(.l‘) ot

Integrating



Juhy fer (t—-Z/G)

Jov, =V, =
5 {GJm(t-Z/C) } \
v, =}’E «oo (46)
.*. Complete solution is, = C.F. + P.I. | |
_ [ JJ i:r) iﬁ] jw(t-Z/C’) L

The above 18 the expression for longitudinal velocity.

5.5 RADIAL VELOCITY (V)

Continuity Expression,
ov v 9V

s +E e =0 | oo (48)
.:.;2,:0 ot '!g"‘z"'%+;€'=o

v oV

Falil o

L . %_Z lJJ(a:;) . A :' Jw (£-2/C)

JxJo(x)dx = x Jy(x)
‘ ¢190 (ar)

3/61‘ (r V )= -r "T'(EET +;%‘-] (= ém) e
- -7/C
PR R - _Lf(;é‘;fl - o, 0 03/0)

Integrating the above within the limits 0 to r, finally,
lJl(ar) Alr ju(t=2/C)

':a{“" (@) * 2R J° veo (49)

Thus the radial velocity (Vr) can be calculated.

juw (t=2/C)



5.6 FLOW RATE OF THE PLUID(I)

I = Area x longitudinal velocity
ry

f v, (2nr)dr

J, (ar) jo (t=2/C
.___,.I [1_9.(.:‘7:.'74,_;%]33“’( ) (omr) ar

s & po Jdylary) = Jo(t-2/C)
==1£r [l't'eclAlma%.—i-)—-Je

27, (axry)
Let F:.LO W) = Womersley's constant.

‘.‘.v I= arg‘% [1 + C]A:c FlO] ejw(t-Z/C)

This gives the fluid flow rate.

5e 7 LONGITQQINAL IMPEDANG (Zé)

It is given by,

Ze = - -5-Z/I

jw (t=2/C)
where p = e

g-% = «ju/C. p

Thus zéJ-“-’f‘E:B
2 e

2‘*1"EL+1jpc R,

c,fe -l
z‘jjf 1l +*—-— FlO]

. |
E *n 101

cyfe

where n = T = =1 (approx)

jw (t=2/C)

] jw (t=2/C)
] ©

ees {(50)

. (51)

(52)

e (53)
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5.8 TRANSVERSE-IMPEDANCE (2})

P
It is given by 2{ = = 3793 eee . (54)
o dw (t=2/C)
= - L5375z

. nhy T c,fe joo ($=-2/C)
since I = 7@-——— E.+ -—AI- FJ.O] e

- )[’;Alri ek A R, }ej.w(t-Z/C)]

:iw(t-Z/C)
. -hAs o0
" Hence Z{ = . 5 Al t-2/0) C o
Jw Ly jw(t=2 ,
ST P A [ + . F0)
—£& [ vo N
= 1 4
aumri 1 Al 10
2 -l
._..__ Pc [l-fl] OJ ..,., (55)

awnr

Note~ For a rigld walled-tube n = =1, but for an elastic thin
walled tube, n is a function of a, o and K.

".'.Gharacteris‘tic Impedance (Zo) =,| Ze' Zt' '

and Propogation Constant &) oy =) Z£'7Zt'

On putting the values of ZZ: and Z¢ we get finally

) -1
Ty = —ge [1 + nFloj coo (56)
nry
and
Jw
Y =g~ ' eee (57)

Thus characteristic impedance and propagation constant can

be determined.
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5.9 BQUATIONS OF MOTION
For a thin-walled, uniform , isotropic cylindrical

tube having internal viscous, elastic end inertial proper-

ties and external coupling to the surromnding tissues

the equations of motion become™ >
2
d"u * .2 u
W at leco roiz r ,
.2
0“u ov ov % o u Fou
2 Ty - E*h A b o
P H —55=p HQ“u 4 (z=B 4 =mt ) S (p 4 ) =0
L ‘ ﬂn 2 ar 0Z r—ri 1 cnz 07 r?zgy
[ I N ] 5

where,

‘fL = density of the wall material,

H = weighted volume of wall substance taking into
account external loading,

E® = complex modulus of elasticity, real part of which
is young's modulus.

qn_
L

complex poisson~-ratio

o2
]

wall thickness,

Q@ = natural fregquency of the 1ongitud1nal elastic
constraint,

Uy and u,= displacement of a point on the inner surface
of the wall in the radial (ur) or axial (up) direct-
ion

ry = Internal radius.

The three terms in equation (58) represent, respectively,
radial inertial force, radial stress of the fluid presshre
- (transmural pressure), and radial stress related to visco-
elastic deformation of the wall substance. All forces are
abetanee. All forces are

expressed in terms of per unit area of inner wall.

The four terms in equation (59) express the inertial
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force, the spring force of the external constraint, the
drag force from the.underlying flow and the force of vigco—
elastic deformationvof the wall substance all acting in

Z direction. '

Assumptions to Analyse the Equations of Motion
1. The vessel wall is thin i.e. h/ry {0.1. Thus we can

neglect radial velocity gradients within the wall
substance.,

2, The displacements u, and u, and their deriyax;ves
are small.

-3, The physical properties of the wall material are
linesr,

4. The wall material is isotropic and homogeneous.
5. The magnitudes of the'real parts of E® and
o™ are much greater than those of the imaginary

parts.

The equations for motion of the fluid and of the wall
are coupled by the condition that the fluid does not slip
along the surface of the wall, i.e.

du
V. = -EEi
T I‘=I‘i
duz ¢ oo (60)
and =5t

r=r,
We have from the previous derivations,

I t-2/C
_ [01 (ar) ] Jo ( /C) (61)

J, (ar)) *'"U‘
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1% (ax) AT jm(t-Z/C) .. (62)

ané gﬁ[-—m +;—a—

The wall equations (58) and (59) are already linear and may

be solved by substitﬁting ,

u ‘==~ By exp[ ju(t- 2/C)7] , eeo (63)

and  u, =D exp[ jw(t-2/)] . = - - .er (64)

Substituting the derivatives of (63) and (64) in (58) and
(59) we get fihally, |

P By _
Hw D + 4 - duzl:-% -Jw R :l,'.. 0 voo (64)
and ' -
3 2 a 2 . 2
J°a°F c! B jwor
98By (w°-2%)= & ( 13A1 7 - L c:l' tEE)
= ( , : sse (65)

where Bl and D1 are additional constants.

From the boundary conditions
du

I
vr = ot ]rzr‘i

2C.J - Jw(t-2/C . ;
19, (ar) Ay ~J er( ./C) _ %fDleaw(t-z/c)

B[S
=ijiejw(t'Z/C)

TRy

- [Flo°1+ ,;%] | ‘oo (66)



From second boundary condition
du
Vé_: 0t 'rzri

| c,J. (ar,) jw(t-2/C) jw (£=2/C) "
L T

JO “ri -
= ;jw'Ble

Jo (t-2/C)
ceqemy = [0 +5A%] | - cee (67)
Equations (64) to (67) represent a system of linear homogen-
eoﬁs equations ‘for the complex constants, Al’ Bl’ Cl and Dl
and the condition for the existence of a non-trivial solution
requires that the determinant of the coefficients of these

quantities vanigh, 10

Assuming, external coupling of the tissues to the wall is
not there i.e. Q = o and H = h., Finally we get,

bz (1-02) (1-F, ) |24 )
1l- l-F - 2+K(1=~
[(l-c )riF 2-, d 10 0’2)1’ 10
0(-2 -26‘)!4-1" +2K
= 0 v , 000(68)
where X = h/ri

Thie equation has roots,

- %%E-g - ¢ +J62-(1-A)n oo (69)

With Gz%igc “"%"‘O’“% cee (70)

wa ne[P24E -] e
1 :

Denoting, '
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( Q%E‘Z'C'Z)l/? = X - j¥ cee (T2)
o
and c, BJZ%":; cer (73)
the phase velocity Cl equals
c :
cl = ‘i‘g . e (74)

and the amplitude reduction in terms of the wavelength A,

o~2nYZ/XN s (75)

Womersley provided detailed tables for C,/C, X%, 2nY/X
and e'Z“Y/X as a function of a for a = 1(0,05)10 and for
a number of values for K and o . Figure ( ) shoﬁs'cl/c0
as a function of a for K = 0, =2, =0.

K = 0, represents a very thin unconstrained tube

K= -0, a tube with complete longitudinal
conetraint and

K= «2, one with a small degree'of constraint.



5410 ELLIPTICAL CROSS-SECTION OF ARTERY

We have considered the artery to be of circular

cross-section. Now considering it to be of elliptical

cross=section and applying a suitable transformation

we can transform the cross-section to a circular one. Thus

we can apply the well known equations for the analysis,

2 2
u v
ZFtz=1
a b

is the equation of the ellipse.

2 X
A transformation W= 2 + &= is tried,

Z
9..‘.'.’=1_“2
az ‘Z'E

... (76)

eee (17)

The derivative is analytic évery where except at 2 =0

putting W = u + jv

and Z = X + jY in equation (77) and equating real

and imaginary parts, we get,

2
a“x
u=Xx + -2-—
x +y2
2
a
¥ = - ‘2‘2
¥ x +y2
o a2E (x2+y2).-2x2:]
Now 3; & 1 + ( 3 Z)é
x° +y
2
. (x“+y°)
ov azE (72 +x2) =2y2 |
oy (xz + ya)i

i
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2,2 2y
1 ——-‘L——z"‘ 2)"

= +
(xzﬂf
and ¥ = —of BHL,
y (x“4y°)
, 2
oy _a 1’5!52

- gu _ 9v .o 9u _ _ Oy . i,
As ox = dy(and dy = " ox ’ the function is analytic.

If a circle of radius R is inscribed in g-plane then
Rem:z . |
2
W=u+;jv=z+%-

= Red®4 o
| Re J®

' 2
o u= (R +-§f)cose = & CO8Q

a’ :
(R = Hf)sine = b 81ing

<
"

In other words, the circle of radius R is tranaferred

to ellipse of semiaxes a, and b.

32 a2
Since, R+-ﬁ-=aand R-E-zb

2 3.2
e'e R = &_%—B and a2 = (252—)R = ﬂbih-
Now ¢ = distance of focii from the centre and is given by

‘ 2 .2 2
02 = 32~b2 « Thus aa = a zb = %

- - %



Thus the ellipse is transferred to the circle.

Writing the Navier-Stokes equation,

2 2
av oV oY ov 0 V
T“’Vr e tV, k= p az*”(drz* *'7’

Neglecting nonlinear terms and body forces,
o azv ’
,"p‘““.f’“f e [r or ] B vee (78)

Assuming that the tube being considered is broken
up axially into short segments of length 42, and radially

into N conecentric shells.

The ra&ii,.to the midpoint of the nth annulus are,

r, =3§-‘=’f n=1, 2 N Ceee (T9)
and the separation between the midpoints |

AT = %%:l ‘ ... (80)
Let Ii.:) be the longitudinal flow ra‘te‘for an annulus.

...Ii’j = Aip:} Vij XX (81)

/ .
where A:L j is the area of the jth annular cross«gsection of

the ith longitudinal section

4,3 :”{(rn + 45 )2y, - g)zj

Iij = ann Ar vij

2
#R® (2n-1

(2N-1)
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2H-1) 2 |
*V,. = = 1 : .ee (82)
13 "4nr% (2p-1) 13

]

Writing equation (78) in finite difference notation,

-V
8 - o JW[.L%J:_ ._a__A;)_?..J_...m]

dv 2 uV
o mtd . ij .
=L 3t T = Vg "'2" * AT )
tu vi,j-l(Ar o7, Ar) .-+ (83)
 On substituting from equations (79) and (80) we get;
2
. ZN;ll n
Ar2 ZIhAr 2R 2N=1
| 2
1 2N-1 Ne
Similarly (--§-— - ) = L—y)- (5---)
AT 2r ar = 2R% -1
Putting above values in equation (83), we get
Ag o 2N=~1 n-1 ]
= P “ﬁ‘)‘ =Yy, 5 *mr V1,94 * BT V4,31
[} (84)

But AP = p o~Py = difference between output and input pressures.

2
. BomPy P(ZN“I) ALy . (2n-1)? 2N-1
ot -(-——-)- _(28-1)2 1

'Y RE(B-].) [ 47R% (2n-1) 1'3]

in

plw-1)% a1, w(er-1)4

= - . - I, . (85)
4wk (2n-1) ¢ gnkt(2n-1) 113
For the simplest case, when N = 2, n = 1
' 9 AZ 8l u AZ . . (86)
... p - P = - '_"—'T—" eeo e
° i 4nR 8nR 1s3
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?he coefficient of the last term in eguation (86) gives the
fluld resistance,
Rm = '8—1-&%2 : .eo (87)
8nR _

Notei- The finite difference epproximation gives a fluide-
resistance\only 81/64 larger than that given by
Poiseuille's lav. |
The coefficient of the other term on the right side.

of equation (86) gives the fluid inductance

In = 3:523» | ()

| 4xR

Note: This is 9/4 greater than the inductance obtained by
assuming a flat velocity profile, since the velocity
always drops off at the edges of the tube. This value

of ILm may be régarded as a better approximation.



CHAPTER-SIX

THE_ELECTRICAL MODEILS OF ARTERIAL TREES

6.1 INTRODUCTION

The application of network theory to the study of
circulatory phenomena presents a new and different method
of approach which has both advantages and disadvantages.
The striking similarities between hemodynamic and electrical
quﬁhtities such as pressure and voltage, flow and current
led to the‘cohstruction of electrical equivalents of hemo-

dynamic phenomena.

The study of wave transmission problems in an arterial
~ tree seems particularly suited for the electrical analog

approach.

Irensmission models require division of the arteries
into segments. Inserting the parameters of each segment into
the equation of motion and the equation of comtinuity results

in 4 relationship between pressure gradient and flbw on‘tha
one hand, and between flow gra&ient and pressure on the
other, The form of an electrical delay 11#9 is determined

by the same relationships, where voltage-stands for pressure
and current for flow.Therefore, the construction of a passive

electrical equivalent of the arterial system seems possible.
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6.2 RATIONAL SYSTEM OF UNITS IN HEMODYNAMICS

For many years, the concept of resistance has been
used in hemodynéhiés by analogy with electric circuits.
Récently. the analogy has been extended to inglude the‘
¢6ncept of impedance, and inertance and compliance have been
defined by analogy with inductance and capacitance, res-
pectively éince electrical analogs have been increasingly

used as models of circulatory phenomena.

By rational is meant consistent with the fundamental
units of physics. Hemodynamics units can raxionally be
defined in terms of either the C.G.S. or M.K.S. system.(la)

TABLE I

HEMODYNAMIC UNITS AND CGS AND MKS EQUIVALENT

_ MKS. : CGS, MES
Quantity Hemodynamic unit| Equivalent | Equivalent
- Resistance Hemodynamic¢ ohm 107g cn4gec™ kg n4sec™t
, (hohm)
Inertance Wome 107g en kg m4
Compliance Frank 10°Z§%m4sec2 kg“1m4sec2
Reactance, Hohm 107g em 4aec™! kg n~4sec™t
Impedance ,
Power Watt 107g cmlsec™? kg nsec™”

In an ideal hemodynamic resistance (negligible inertance
‘and compliance), the power dissipation is given by



W= QP | | ves (1)
where,

Q = flow in em? sec™+

AP = pressure drop in joules cu™>

W = power dissipation in watts
Thus the ‘hemodynamic ohm or hohm,
R = AP/Q | . ¢s e (2)

where R & hemodynamic resistance in hohms.

6

One,hohﬁ is'equai to one joule-second-ém’ or :LO'7 erg-

second-cm’6.

Hemodynamic impedance has been differentiy.defined
by differentlauthors. Some define it in terms of pressure
and linear #elocity (cm/sec). Others define it in terms
of pressure and volume flow. For a sinusoidal pressure and
flow, the impedance in hohms is

. P
7 = ﬁ.ﬂ

Qm 1

where, Z = modulus of hemodynamic impedance in hohms,

ees (3)

AP = amplitude of pressure sinusoid in joules cm"3

Qm = amplitude of flow sinusoid in cm3 séc.'l

The inertance is given by
L= A PL/Q ' | vo e (4)

where, L = inertance in ;joule—secondz-cm"6

AP; = pressure due to inertance in joules em™?
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Q = rate of change of flow in cm second-?._

It is proposed that the unit of inertance be named

in honor of late J.R.Womersley and hence it is 'Wome'.

One wome is equal to cme-;joule-—secz--cm"'6 or 107 erg-secz--
cm™®,
The compliance is given by
C = aAV/aP, | - cee (5)
where; |
C = compliance in em®-joule™t
4V = change in volume in en’
AP = change in compliant pressure in joules cm'3.

c
The unit of compliance is nemed 'Frank' in the honor of

Otto=-Frank.

6.3 PHYSICAL MODEL OF THE BUMAN VASCULAR SYSTEM

The model of the cireculatory system is shown in
Fig.(62), It consists of two elastic reservoirs connected

by a long column of blood.19

Writing the equation of conservation of mass for the

first reservoir, let

fin = wvolume of blood flow in.

3
f .

4

volume of reservoir, and

flow out of first reservoir.

1l

Then,

[ \2
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T R ees (6)

out © E?g oo (D).

Assuming that there is a constant linear relationship betweqn

the volume of the reservoir and the net pressure in it, i.e.,

P; = Pe
where, Py is the internal pressure and

Pg is some prescribed pressure surrounding the

reservoir.
V1 = Vlynstretonea * %1 (Py-DPg) .ee (8)
and v
d dp dp . ‘
1 =1 e
& ~ha-hw e 9

Similarly for the second reservoir, taking p, 28 a constant

(e . tissue pressure)

V, =V + K, (py-p,) ... (20)
2 2‘unstretched Ka 2""o
g =% Fw | -ee (A1)

Assuming for.simplicity that the blood flowing between
the first and second reservoirs is flowing in a rigid tubde
of uniform cross-sectional area A and of length € . Neglect-
ing dissipation in the tube, conservation of momentum states

‘that,

ti rate of chan
o?emomegtum CUARE® = Applied force eoo (12)
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or %%- (Pag -ﬁ) = P4 - poA | wee (13)

where, @ 1is the mass density of the bdlood,
£ is the wvolume flow rate,

.‘. f£/A is the velocity of the flow, Thus,

as L |
M ‘a{ = pl'.pz eecoe (14’)

where M = Pe/A

M.A = effective inertance per unit cross«sectional
area of the blood,

From the second reservoir the discharge is to'the
distal vascular bed (capillaries etc,). Assuming that there
is a linear relationship between pressure in the reservoir

and flow into this bed,

s

2 -
£ 7 veo (15)

—
F—J

out

where,r is the total effective peripheral resistance
d};)9 ' ‘ 6
Defining fe = K 31 eee (16)

the total system of equations can be written as

’

dpl ‘
tin=f =K g -1,
. dP2
£f-fout =K g y a7)
df _ \ [ 3N N ]
M3t =P~ P
. Py

It ie convenient to consider the electrical analog of
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the system and equations. The following analogies are .

drawn.

Physical Model

‘flow rate (£, ,
Pressure (pl, Py

£ fout" f?e)
)

Compliance {Ki,Kz)

Mass equivalent

(M)

Peripheral resistance (r)

Electrical Analog

Current (i, 4, 1 4 i)
Voltege (v;, vy)
Capacitence (C,, C,)
Ind;ctgnce (L)

Resistance (R)

In terms of these variables, the equation become

iin -1

i-1i

= .

out

di
L%

iout

- vl -

= Cl

Cr 3

av. B
T - Lo

de

Vs and=

-

(18)

e é

The equivalent circuit is shown in fig.(éb).

During diastole it is assumed that ie and iin are -

zero., Physically 1e zero implies that there is no active

vascular compression and 11n zero implies that during dia-

stole there is neither flow into or out of the heart., With

these assumptions the system during diastole becomes,

a 1 | )
E%’Tﬁ’%%..
& o 1 i L ) eee (19)
at =7 GI
dvy - 4 1
and T U; b FU; v2 ]
109576/

CENTRAL LIBRARY UNIERSITY OF ROORKEE
nOORKCL
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(5) AN ELECTRICAL ANALOG CIRCUIT.
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(c) ANALDG COMPUTER CIRCUITARY

7 REPERSENTATION OF A SEGMENT ARTEY.
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These equations may be written in the vector form
i"—’ FX so e (20)
Xl i
where X = = ' ,
X, v, ees (21)
a4
|55 LY
un 1 1
© T - ,
1
1 1
T, ° -&
. 2 2 |

6.4 HEMODYNAMIC PARAMETER BESTIMATION

Hemodynamic parameters such as the internal diameter
of an artery or the arterial compliance are important qnan4
tities in the evaluation of the condition of the systemic-
arterial system in patients. The computation is in effect a
parameter-estimation technique, where the response of a
system to an input signal is compared with that of a model

of the system.20

The lumped linear, time-invariant description of a
segment of artery, illustrated in fig.(7..) contained the

four components RS, L, C and RP, where

RS -« - represents the laminar poiseuille resistance
to blood flow through the arterial segment.

L == = represente the inertia of the mass of blood
contained within the segment.

L and RS - together are called the longitudinal imp-
edance. '
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C == -> represents the compliance of the arterial-segment
or the volume increase for a small increment in pressure,
and is called the transverse impedance.

- Most of the blood flow directed into the arerial seg-
ment will leave at the other end, but some will leak out
of the segment via a number of smaller side branches. This
secondary flow path is represented by a simple lumped

resistance RP.

Contrary to the properties of this model an actual
arerial segment is o0f a distridbuted nature, has side
branches. Fast variations are caused by pulsatile changes
in the diameter of the artery during'each»heart beat. These
are relatively small and thus ignored. Siow'wariations wiéh
time are caused by a change in contraction of the smooth
muscle contained within the arterial wall material, but thé ,
time scale of this effect is such that changés over a small

number of heart beats are unappreciable.

In Fig.( %) are.presented three arm models, using L,
tee and pi(n)‘configurations. Although tee and -m segments
are a more accurate-representation of a continuous transmiss-
ion line, the 1L segment was chosen for implementation on the
computer to simplif& the programming. It can be seen from
fig.( 8) that the two middle sections are identical in all

cases, whatever representation is chosen, The differences

occur at the boundaries, giving rise to an ‘'end-effect' i.e.
the parameter values of first and last segment are less

accurate.
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The following set of egquations approximately describe 5;3
the properties of 2 uniform arterial-segment.
8nn

2

=
S

. ) ¢ ) (23)
L =-§E ; C=aV/ap; RP =g
8

Fy = ¢ [(®; - p, - F,BS) at

P
Po = % I(Fi - Fy - ﬁgodt

Equivalent Diagram of I Section
The actual form of each L section is depicted in

Cees (248)

fig.(34). The values of E3 and L follow from the arterial
cross—sedtional area S and the segmentilength « By maine
Yaining the 1eng£h of each segment at a known and fixeé
value, it is possible to express RS in terms 6f L by
eliminating S in the equations for RS and L., It follows that
RS = ALZ. with A a constant which is inverséhfproportionél

to the segment length {. A = 0.8/} (approi).
The linking of RS to L is important for two reasons,
1) It reduces the number of adjustable parameters.

2) It improves the uniqueness of the solution i.e. the
input and output pressure pulses of an artery may provide
the transfer of this ‘system' as a function of frequency,

but not the impedance level.

6.5 THE ELECTRICAL ANALOG OF A SEGMBENT OF ARTERY
The derivation of the electrical equivalent of the

arterial tree is based upon the analogy between the linearised

Navier-Stokes equation and the equation of continuity on one



hand and the telegraph equations on the other.
Writing the Navier-3tokes equation,

' 2 2
T IR AP ST T —g
(25)
"In this expression for the pressure gradient, the
first three terms in the right-hand member cdncern'iﬁef-
tial properties, the last three viscous. Noordergraaf ®

neglected the}eeCOnd and third terms in the rightahand
member, with respect to the first, and multiplied by the

cross-sectional area S, which gives,

A2 . A2
w oV 0%V, av )
S 9 Z z . 4 z '
“pat =ST VS| = tE "”;;Ez] (26)

For simplified model, we assume the longitudinal velocity
ﬁi to be independent of ‘'r' radius of the vessel, i.e.
velocity is having a flat profile.The first inertial

term in equation (26) on the right hand side represents

the flat profile for velocity. The second bracketed viscous

term represents the parabolic-profile.

Viscous term is represented by Poission's flow and

is equal to §%— I, where I denotes the flow.
nr ,

e _S_9p _ 41 8 .
. "'; 02 - B *SV[;‘?I se s e (27)
G- 42y
or =9 5 9% r



1
(=a)
¢y

\

op _# oI | -
or —a%zg ‘H“"WI s 00 (28)

Considering again the arterial segment to be short,
and equating the difference between inflow and outflow
with the sum of the uptake of blood an equation of conte

inuity can be written:

o1 _ 48 9p | | g
- 37 = R ot f W'p - se e (29)
where, = %% = flow gradient (Difference of the inflow and
| , - outflow) ,
4% - 9p ﬁ e - .
Term 3= . 5% represents the distensible property of the

tube
W'p = Escape of the blood due to lateral path.ways,

W' = Leakage of the blood which is escaped from
- the segments through the lateral arteries.

: 3
%% = distensibility per length = 2&&:%;122.

o = Poisson ratio for the wall material,
E = Young modulus,
wall thickness

]

The analogous telegraph equations ere

A d '
- 3%:= Lt E% +‘R'1 v ) e (30)
. OV ' a
- o feoy oo ()

where, .
Ve V(2,t) = voltage,
L' = Inductance per length

C!' = capacitance per length



i = 1(2,%) = current,

R' =. resistance per length,

.ﬁ%‘ = G' = conductance per léngth
'/

On compering the equations (28), (29) and (30), (31)

yields,
pressure P ~ voltage V
N
flow 1 ~ current i

Inertaﬁge per length ~ inductance per length L'
p/s A
Resistance per  ~ resistance per length R'
length 8u/mréd

Compliance per ‘ ~ ca@acitancé per length C!
length 43/dp -

leakage per length W' A conductance per length G'

~ The corresponding passive electrical metwork fig.(9 )

representing a finite length of artery AZ consists of four

passive elements.l6

L = L'AZ ='§AZ'

R = R'AZ = -8—% AZ :
. 7"'. ' ~? . : XX (32)
C e C‘AZ o= s—— .AZ ' '

G =€6'aZ = W'AZ
The tatiO'- %% / 1 is called the longitudinal impedance
per length, the ratio = Yyﬁi/az is called the transverse

inpedance per length.
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6.6 SLEEVE-EFFECT
In the above derivations we assumed flat velocity

profile in the calculation of the inertlial term and a para-
bolic velocity profile in the viscous term. This leads to
frequency independent values fpr L'_and R' in the analogous
equation (30). In special cases this may be an ade@uate app-
roximation. For many arteries‘this is not true because of
the pulsatile nature of blood flow. In those arteries the
interaction between viscous and inertial terme has to be
taken into account, determining a velocity profile different
from the two assumed. A modifiedlpassive eqﬁivalent electr-
ical network for 'sleeve-effect' comsidexstions is to be

designed.

Womersley derived a mathematical expression for the
relationship between flow Q and pressure gradient %% for

laminar oscillatory flow.21

24, (a35/?) jot )
Q= nr Y [1 WZ)] e veo (33)
where, A ; amplitude,

w = circular frequency = 2uf

A ejwt = gressure gradient = - %%

4 =.r,,f‘g where v = kinematic viscosity = u/P ,
JO and Jl are the zero snd first order Bessel functions 6f

the complex argument 3/2 / -1
. 43/2 -,
a ? = —— ol n—l
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The relafionship between flow gradient and pressure redu-
ces for this 1limiting case to equation (29) . From this it folle
ows that the transverse impedance remains unchangedf 80. that
the sleeve effect requires a modification of the ldngitudinal
impedance only. The longitudinal impedance @e is.éerived from
equation (33)

Z‘e" = Ze/AZ. AZ = segment length,
dp/oZ
L /2 1
o2 23, (a3%/2) - -
= . l - 3/2 / L (34)
| r e e{Io(n::i_3 2y
Writing this as, b o ;
' %é = JL'(w) + R'(w) oo (35)
then L'(w) = 2? - eoaeio
- wrt Mg
R'(w) = ~3~%3-~sineio
r Mio :

where

N 24,
1 - 3 -
M) o = modulus {l m}
Y

ZJi
U JU—
€10 = phase {1 '—'375——}
al Jo » '
The corresponding circuit is given in fig.(10). I'(w) and
R'(w) are frequency dependent. The difference between L' and L'(w)

and between R! and R'(w) ie shown in Fig.(}!).
From the recurrence formula for Bessel functions

Ip(x) + 3y o(x) = HBll g gy ver (36)
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Putting n = O in the above expression, we get
I (x) + Jptx) = £ 3; (x)

or  xiy(x) - 201(x) = 203(x) = ~x Jp(x) ... (37)
Equation (34) can be rewritten
J&z (20?220 (%) (L

eos (38)
ad3/25 (a3’ %)

On applying (37), (38) reduces to
oo 2 o(e?’®) (39)
e = e 1:1‘4 Jz(uJB/Z) | eee

Applying the series development of the-Bessei functions

20 (-1)m(ﬁ> 2asn
Jo(x)=3

m=0 mt(m+n)a

| a2
to equation (39) and substituting A = 4= leads to

Am
4u ﬁgo mi mi
Zi = 1 : " A se e (40)
nr , Km ‘

hzg my (m+2) |
Applicatior of a continued fraction expansion results in
(See Appendix I ) .

' e ;f%(alx+bl+-r?§223:f ijJ TT;T;TLl r—-l+ ces

ot e (41)
With&"’ +y='x-;3; | |
A \ eor (42)
8p = §m~i
bm = 2m J

The element values thus become
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G[A
P 2 v
In=T3 2m-1

Ry= 2y m

The corresponding passive network for the longitudinal imped-

m=1.2,3 es e e LY (43)

ance i8 drawn in fig.(12).

In the extreme case that « is sufficiently small, so
that R, + following elements may be omitted, the eircuit of
£ig.(12) reduces to L;» R, and L, in series, giving an
impedance per length of:

Zé:%'g o +§§- oo (44)

For direct cuirent (@no) eguation (44) reduces to

Bx | »
L

Zg-—"'é% so 0 (45)
which is equal to the resistance.

For 1arge values of « £9m. (34) asymptotic expanaion
of the Bessel functions gives

Zé = éP"jO’ | ce e (46)

So for large a the term R'(w) , although an increasing func-.

tion of a2

fig.(ub),

» hay be neglected since jwl'(w) increases faster,

If a is so large that 31. sz... RNwl may be'heglected.
Ll. Ly ..., Ln will virtually act as a single inductance I,
with ‘

L =‘§ [+ %2 (2m-1)}"l]

1
1 ) eoe (47
g @+ N2-1 | (47)




| If & relative error of ;glz is tolerated, RN +
following elements mgy be omitted. The erroxr decreases with

decreasing a, since vhe‘resistance increase faster than the

inductences. ﬁence.‘an accuracy of at least 1/N2-1 for the

whole @ range is obtained by using Rl' R2 sees RNul and

Lys Ly «ee. L, only. This accuracy can be attained with

even fewer elements for the «'s we actually have to deal

within the circulator& system.

Elements required for each a in order to obtain an
accuracy of 2% in modulus and 3 degrees error in phase,
can be calculasted. The results are shown in fig.(i3). Given
the radius of en artery and having decided how many harmonics
should be traensmitted with this accuracy, fig.('3) indicates
the elements necessary to represent the longitudinal impedance

of a segment of this artery.

Since I, and R fig.(12) turn out to be equal to L
and R in the network of fig.( 4), the required network,
representing the electrical analogy of laminar oscillatory
flow impedance, only adds a corrective network to the circuit

as shown in figure (14).

For the human systemic arterial tree an average number
-of correction elements are 5, the meximum being 8. Figure (1! )
g&ves.mégnitude and phase of the input impedance of the entire
system for the cases with end witﬁout sleeve effect. The inclu-
sion of the sleeve effeef shows some tendency to smooth the
input impedance. On the whole, the difference has proved not

to be large, and so the contradictory assumption originelly
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made concerning velocity profiles had no devastating effect.

6.7 ANOMALOUS VISCOSITY OF BLOOD

It has been known for a long time that blood is not a
Newtonian fluid, but that the relation between epplied hydro-
static pressure gradient and steady flow is not a linear |
one. This is due to the fact that blood is a suspension,The
apparent viscosity depends upon the rate of flow and upon
the radius of the tube. Three phenomena may be considered

.16 .
responsible for this.

1. Cohesion of red cells,

2. Inclination of the red cells to move to the axis
of the tube. ’

3. Orientation of the cells.

The rate of shear in bdlood, depends'on the radius of
the vessel, and is the determining quantity for the apparent
viacosity. For low shear-stresses the apparent viscosity is
almost independent of the radius and increases with decregs-
ing stress, while for high shear stresses it is e2lmost inde-

pendent of the stress and decreases with decreasing radius.

In the construction of an electrical analog of the
arterial system the effects of the phenomena, described above,

on the equations of motion of blood in the vesseis, nust be

known.

Taylor showed that neglecting the shear dependence of
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the viscosity in the arterial system as a whole introduces

only a small error, because the effects on ogscillatory
and steady components of the flow tend to extinguish each

other.

In small arteries there is a tendency of red cells
to move toward the axial region of the artery thus generat-

ing a boundary layer of lower viscosity.

womersley assumed the viscosity of biood to be constant
and the longitudinal velocity of blood at the wall fo be
equal to that of the wall itself. Taylor worked out two modi-
fications of this, namely: |

1) the flow equation for the condition that there is
is a marginal layer of lower viscosity at the wall of the
vessel.

2) the flow equation fdr the case that the viscosity
is constant but that the fluid slips at the wall.

Under the assumption of slippage at the wall, Taylor

found.21 .
4 24J - Jut
Anr , . 1
Q= "'E"[l" ' = , Je L
na | ;?72{"10_1‘“3372‘].1} “8)
where ,
' A edwt _ _ %%
K = %i’-

end y = coefficient of friction at the wall.

Taylor, disregarding leakage, also derived an expression
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0

for the wave velocity, which can easily be rewritfeﬁ as:

02 . B [ ~aPrzh - K ag?/%y ] oo (49)

. 2rf (1-62) J K a 33’ ¢

2
From the relation Zy- zy = - "%i » he showed that the

transverse impedance remains unchanged. The 1ongitudinal

impedance is given by

| 3/2
—op/ : Jd - Ka 3?4
é.s’ OQ % - j‘”g[ 02 - 3/2
Jom = Z72h - K i
oJ oo (50)

In order to obtain'_the electrical equivalent of the longi-
tudinal impedance a logical approach is to isolate the ‘herm
containing K. | .

2
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‘ - =% J.-K J.
0 Top3/2 Tk @ I
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s [ ¥ ajd/2 g . a1 -—'
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{—Jw g + Jw 5(15310) } +JE ‘P

= + -
3(0 (-jm g + Z;/ )::f“'K __%%4

The electrical representation of Zz,e is thus shown in
£ig.(16). Thue 7, _ differs from Z; only by the presence of
’
the resistor Ro’ which is equal to Rb'; ‘EEZ“_ the inverse of

Knr
the last term in the denominator in equation (51).

48 no modification is required in the transversé imped=
ance, fhm passive electrical network, representing the osci-
llatory flow impedance of a segﬁent of artery, accounting
for both the sleeve~effect and slip st the wall, which is
determined by the friction coefficient y , takes the form
11lustrated in fig.(17). To the capacitor C a resistor may be
placed in parallel, to account for poésible leakage as in

fig.(14). The values of the elements are
. ’ 3

m‘z 102t30"' Y se e (52)
Rﬁ e

Taylor also derived the flow eguation for the case of a
boundary layer of lower viscosity u' and width Ar assuning
perfect adherance of the fluid to the wall. The longitudinal
impedance Zé’a is equal to the Zi,s‘ He also showed that the
transverse impedance is unaffected, Just as in the case of
slippage. Therefore, the electrical network representing the

flow impedance is identical to that illustrated in fig. (17).
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6.8 ELECTRIC AL=ANALOG OF PUIMONARY ARTERIAL TREE

Pollack, Reddy and Noordergraf22 applied the network
equivalent shown in fig.(12), with some modifications, to

the larger branches of the pulmonary arterial tree.

The values of the electrical elements of fig.( )

are as follows~

Iy =% or £
R, = §§ nm §
’ 2
and ¢ = %ﬁ éﬁ%%l_ ¢ ‘

For vessels with sufficiently - small cross-section S,

”~

e (53)

ad

the resistive term Rm are much larger than the inductive and
capacitive terms, thus reducing the circuit of fig.(14)
to a simple series resistor. Therefore, only the larger
vessels need be represented by the complex network of fig.(14)..
Smgiler vessels (radius under 2mm) mre represented simply by

resistors.

As an improvement over the network of fig.(!2) with
ite rotated L configuration Noordergrasf divided fhe trang-
verse impedanceiinto two sections, forming a 'n' network.
This tends to reduce the error caused by lumping by distri-
buting the compliance of each segment. The resul ting network
is shown in fig.(!8). The resistor Ry g (Post-segmental leakege
resistor) represents leakege through a small vessel odginating

at or near the distal end of segment. The generator marked
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'extra vascular pressure' is used to simulate any desired
perivascular-pressure fluctuation resulting from respiration-

phenomena.

The dynamics of the pulmonary arterial system.are
tnfluenced by perivascular préssure continuously, flgctuating
with respiratory rhythem. In the theory, such extramural
pressure fluctuastions were ignored. This constraint of asero
extramural pressure has been removed by placing a voltage
generator in each 9qgment between the transvérse impedance
and ground fig.(ig). Bach generator can supply the voltage

corresponding to local éxtravascular pressure.

Peripheral Resistance-~ Total peripheral resistance is deterw

miged by dividing the mean arterio-post capillary pressure
difference by the cardiac output. Mean pulmonary arterisl
pressure in the recumbent position is taken to be 15 mm Hg.
Although, no exact date are availsble on post-caplllarf Press-
ure, its value can be estimated to 8.5 mm Hg from the measure~
ments of Agostoni. Using 6.5 mm Hg(l5 mm-8.5 mm) arterio-~

post capillary pressure difference and assuming a cardiac
output of 5 litres per minute, the peripheral resistance comes

about 100 g 871 em4 or 100 ohm expressed in electrical language.

In the model each peripheral resistor RL or BLPS is
chosen in inverse proportion to the cross-sectional area of the
vessel. Since the parallel combination of these peripheral

resistors constitutes the total peripheral resistance, the
second condition in determining their value is that the resis-
tance of the parallel combination is 100 ohms,



CHAPTER-SEVEN -

ARTERIAL VERSUS VENOUS HEMODYNAMICS

7.1 INTRODUCTION

Following the studies of Hagen and poiaeuille; the
science of hydrodynamics for flow through rigid cirecular
tubes has been widely developed by engineers and biologists.
.In contrast, it is only auring recent years that studies
have been carried out concerning the flow through collap~
sible tubes and these.have"been'few in comparison to the |

studies of flow through rigid tubes. ' -

Approximately one sixth of the total blood volume
of the vascular system is contained within a system of
branching circular tubes (arterial system)_in which the
. blood flow ia described by the classical laws of hydro-
dynamics for circular tubes. In conirast, approximately
two‘thirds'of the blood wvolume is 1ocated.within a branche
ing system of collapsible tubes (capillaries, venules and
veiné) in which the flow differs from that in tubes of

circular cross-~gection.

7.2 ANATOMY OF VEINS

The veins are composed of the same structural
elements as the arteries, but there are some important

duantitative differences,
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The venous walls are some five to ten times thinner

than the walls of the correeponding arteries. Thus they
offer little resistance to collapse if either intra-
vascular pressure decreases (as during periods of transient
flow acceleration) or extravascular pressure increases

(a8 during muscular comtraction). The absence of a sig-
nificant number of elastic elements in the média.consti-
tuies the primary structural difference between veins and

artéries.

The presence of valves 1s a unique feature of the

venous system. The functional contribution of the valves
congists in inereasing the efficiency with which extramurslly
applied forces acting as an axiliary pump propel the blood

toward the heart.23

7.3 TRANSHMURAL PRESSURE

The pressure within the veins is low and pulsatile
in nature. Because of these conditions the variations in the
pressure external to the veins are also of consequence since
the cross-sectional shape is affected. Hence, a third para-
meter, in addition to the pressure and flow, must be
introduced, which need not be considered in case of arteries.
This is transmural pressure, and is defined as the pressure

difference from inside the vein to outside the vein,

The extravascular pressure primarily due to respire-

tion and muscuiar contraction, are of the same order of
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onitude as the intravascular pressure. Thug they play

an important role in establishing the transmural pressure.

Transmural pressure in the venous system can be zero
or negative in regions of the venous system such as near
the entrance of the thorax . The low transmural pressure
plays an important role in venous modelling. The elastic
| modulus decreases non-linearily with decreasing trans-
mural pressure especially as traﬁsmural-pressure approaches
zero. The Young's modulus for a vein, is at least 2 to 3

times smaller than that found for an artery.

The thin wall, the low transmural pressure, and small
Ycungfs Podulus all contribute to making the veins struct-
urélly non-self~-supporting and hence collapsibdle. It is
this collapse phenomena that makes a theoretical anglysis

of the veins more difficult than for the arteries.

In the flow of liquids through collapsible tubes the
cross-section of the tube is free to change as the trans-
mural pressure changes. In a collapsible tube fhere is a
;iquid—solid interface extending over the entire surface,
even though the tube is free to change its cross-section.

When a collapsible tube becomes distended to the point
that its cross-section is circular, and its wall is stretched,
if no longer behaves as a collapaible tube but functions
as a distensible, circular tube, and the flow through it
it is described by the classical laws of hydro-dynamics for

circular tuhes.24’25

CENTRAL LIBRARY UNIVERSHTY OF ROGRKEE
ROORKEL



7.4 DIFFICULTIES IN_VENOUS HEMODYNAMICS . (L
For the reasons listed below it is not possible to
apply the analytical treatment applicable to the arterial

case directly to the case of veins .26

1. Three rather than two variables must be related.

Since two of these are independent, whole families of

solutions are obtained, rather then just one solution.

2, The cross~section of the vessels cannot be assumed
to be circular. Therefore, this introduces problems in the
sodution of the fluid flow equations such as to find vel-

ocity profiles.

3. The cross-sectional area of the veins bhanges as the
veins flatten out.This implies that the relationship between

the pressure and the flow is non-linear,

4. One of the most useful methods for studyihg the
properties of the arterial system has been the electric
analog. Since the arterial system is approximately 1inear.
linear techniques of circuit-synthesis have been used
succesafully to design the circuit, and the circuits could
be constructed easily from standard electric circuit elew
ments. Since the pressure flow relationship within veins

is nonlinear, linear synthesis techniques can not be applied

directly.
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CHAP TER-EIGHTH R

CONCLUSIONS

P

Equations are known which describe the'iaminar flow
of viscous fluids for all flu;d flow eystems. Although some
turbulence may OCCuUr near bifﬁrqatiéns, which dies out rapidly
et small distances from the bifurcation, s that the flow
~through the vessel 1s léminar.-The equations of fluid flow |
consist of four partial differential equations in four unknown
- quantities, the three components of velocity and the pressure,
of the four equations are expreeséd conveniently a8 a single

vector equation known as the Navier-Stokes equation.

The Naviér-Stokes equation has the unfortunate'property
of possessing‘nonlinear terms, In the mathematicale-analysis
oflthe argeries, they were uSually 1gnored. The reason for
doing this wae that these terms wéra proportional to the sguare
of the velccity, and that, since the velocity itself was small
as compared to the phase velocity, its square must be even sma-
'ller and hence could be considered negligible with respect to

other terms.

In the analog computer for the humen systemic circulatory
.system, the electrical equivalents of a segment of artery

a8 designed up till now are not satisfactory, because they

lack representation of sleeve effect, which results from the

interaction betweén viscous and inertial forces during pulaatile'



| .72
blood flow. A network is discussed teking into account the
sleeve effect and anomalous viscosity of blood. These effects
" do not alter the circuit completely but only require adding

to the former circuit a corrective network.

The main dissimilarities between the venous system
and the arterial system have been discussed. The primary
area of concern appears to be due to the thin self supporting
vessele whose wall properties vary with transmural pressure.
This attridbutes to a decreaséd'phaSe velocity which makes
accurate modelling difficult.
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PENDIX~1

Introducing the notation,

m N
AR ‘ A .
F(ZS) = % m)! /% m y B = 1,293)0009 (A)
= 28 + -(—~§ { - m“més)
. . 2B :

m] (m+28 )
< o AB+1 '
o mn (m+’és+1)!

km
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- , . 1 -1
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Rewriting Eqn, (40),
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Applying equation (B) with s=1. leads to,

anﬁ%[m%r? +.f%_|+f5%7\| +‘-%'—| +}...]

in general form we can write,

1= fer on e rrigher o e ey e o

eees (41)
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