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C HAP? ER•ONE 

I N T R 0 D U C T I ON 

It has been recognised for a long time that the vas-

cular system consists largely of a complex configuration 
of branched elastic tubes. According to Poioeuille's law, 
the flux of a viscous incompressible fluid through a rigid 
tube is a linear function of the pressure difference between 
the ends of the tube.. However, in the vascular beds of 
mammals, the pressure flow relation is always non-linear. 

This non-linearity has been ascribed to the elastic nature 
of blood vessels and their consequent rather large disten-
sibility. 

A great variety of mathematical and physical models 
of the human arterial system has been introduced, since the 
start of investigation in this field. They can basically be 
divided in two groups: the 'Windkessel-models' and the 
'Transmission models.'. It is generally felt now-a-days that 
a modelshould be more sophisticated and should have counter... 
parts of the essential hemo-dynamic quantities in the actual 
system such as pressure-flow relationships, reflection coeff-
icients, pulse wave velocity etc. The 'Windkessel' models can 
not be expected to do this because they lack in their original 
concept, a representation of pulse wave velocity. The Windkessel 



is equivalent to a single chamber, that is, a lumped system, 

in which the wave velocity is infinite and pressure and 
flow pulses change simultaneously. 

Transmission models require division of the arteries 
into segments. Inserting the parameters of each segment into 

the equation of motion and the equation of continuity results 
in a relationship between pressure-gradient and flow. on the 
one hand, and between flow gradient and pressure on the other. 

The form of an electrical delay line is determined where 
voltage stands for pressure and current for flow. Therefore, 
the construction of a passive electrical equivalent of the 
arterial system seems possible. 

Second, third and fourth chapters deal with the 
fundamental aspect of the arterial circulation. The fifth 
chapter deals with the mathematical analysis of the arterial 
circulation in quite details first taking the artery to be 
of circular cross-section and later considering it to be of 
elliptical cross-section. The sixth chapter deals with the 
electrical models of the arterial trees taking into consider-
ation of sleeve effect and non-newtonian properties of blood. 
Last chapter gives an account of arterial vs. venous hemo- 
dynamics. 

i 
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PHYSIOLOGY OF THE HRMODYNAMICS. 

2.1 INTRODUCTION 

Fluid dynamics is largely a consideration of the 

relationship between pressure and flow. Hemodynamics, 
being the fluid dynamics of ' blood, is concerned with the 
specific case of an inhomogeneous, viscous fluid contained 

within a series of flexible, branched tubes whose properties 

may be time varying. The majority of work in the field of 
hemodynamics has been done on the arterial system. In analy-

zing the flow of blood in the arterial-system we must first 
understand the blood dynamics from the physiological point 
of view. 

2.2 THE BLOOD 

The blood is a red fluid of alkaline reaction and 

is salty in taste, its specific gravity is 1.050-1.060. The 
blood consists of cells and plasma. The cells make up 

40-45 percent of total amount of blood and the plasma makes 
up 55-60 percent. The body of an adult contains about five 
litres of blood which weigh one thirteenth of the total body 
weight? 

2.3 F TION OF TEE BLOOD 

The blood performs an important function in metabolism; 

it delivers nutrients to the tissues of all the organs and 

carries the waste products away. 

0 



The blood performs a most important function in 
respiration, it delivers oxygen to the tissues of the 
organs and carries carbon dioxide away. Oxygen enters 
the blood through the lungs. Carbon dioxide is eliminated 
from the blood mainly through the lungs. 

The blood effects 'humoral regulation of the 
activities' of various organs; it transports various 
substances (harmones etc.) round the organism. 

The blood also , has a 'protective function,' it contains 
cells which possess properties of phagocytosis, and special 
products called antibodies, which play a protective role. 

The blood takes part in distributing heat within 
the organism and in maintaining a constant body temperature.. 
Because of the movement of blood through the blood vessels 
heat is transported from warmer parts of the body to cooled 
parts*  The blood gives off the excess of heat into the 

external environment, and the organism therefore does not 
become overheated. 	 0 

It should be noted that part of the blood dp es not 
circulate through the blood vessels, but is stored in so 
called blood depots (in the capillaries of the spleen, liver 
and subcutaneous tissue). Under different conditions the 
volume of blood circulating in the organism may increase 
or decrease through a change in the volume of blood depot. 
For example, during muscular work and in cases of blood loss 
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the blood from the depots is released in to general 

circulation. 3  

2.4  QA DI 	OI LA( SYSTEM_ 

The blood continuously moves through the organism; 

this movement is called blood circulation. All organs: 

of the human body communicate with each other through 
the circulation of the blood. The blood flows through blood 

vessels, which are elastic tubes with varying diameters. 
A closed network of blood vessel o radiates throughout the 

entire body. The heart, which is a hollow, muscular organ, 
contracts rhythmically and pumps the blood throughout the 
the organism. 

2.5 BI,QODSSSE iS 

There are three types of blood vasebis- (1) arteries, 
(2) capillaries and (3) veins.!  They differ from each other 
in structure and in function. 

RTERRIE Arteries are vessels through which the blood flows 
from the heart to organs. They have comparatively thick walls 
made up of three coats; an outer coat, a middle coat and an inner 
coat fig. (1) .. The outer coat, or tunica adventitia, a onsists 
of connective tissue. The middle coat, or tunica media, 
consists of smooth muscle tissue and contains elastic connec-
tive tissue fibres. Contractions of this coat decrease the 
lumen of the blood vessel. The inner coating, or tunica inti- 
ma, is made up of connective tissue and is lined with a layer 
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of flat cells, the endothelium. The arteries differ 
in diameter; the farther from the heart, the smaller 
the diameter. Inside each organ the artery divides into 
smaller branches. The smallest arterial vessels are 
called arterioles. The arterioles divide into capillaries. 

Capillaries  
Capillaries are minute blood vessels which are 

visible only under the microscope. The lumens of the 
capillaries vary and average 7.5 g; the length of a 
capillary does not exceed 0.3 mm. .There are several 
hundred capillaries per square millimetre of tissue of 
any organ. The total lumen of the capillaries of the 
entire body is 500 times that of the aorta. When an 
organ is in a state of rest most of its capillaries are 
contracted and no .blood flows through them. In an active 
organ the number of functioning capillaries increases. The 
wall of a capillary consists of one layer of endothelial 
Cells. The intercb nge of substances between the blood and 
the tissues takes place only through the capillary walls. 
Various nutrients and oxygen, and part of the blood plasma 
of which lymph is formed, pass from the blood into the 
tissues. Carbon dioxide and other waste products pass from 
the tissues into the blood. The endothelium of the capi.- 
llaries plays an active role in allowing the substances to 
pass from the blood into the tissues and vice-versa. The 
interchange of ,substances depends not only on the state of 



the capillary walls, but also on the main substance of 
the connective tissue surrounding the capillaries. As it 
flows through a capillary arterial blood changes to 
venous blood, which drains into the veins. 

Veins are vessels through which blood flows from 
the organs to the heart. Like arteries, they have walls 
composed of three coats fig. (i.), but they contain fewer 
elastic and muscle fibres and so are less resilient and 
collapse easily. Unlike art eries, -veins have valves which 
open in the direction of the blood flow. This helps the 
blood in the veins to flow in the direction of the heart. 
The smallest veins are called venules. Closer to the heart 
the venous vessels increase in diameter. The total lumen 
of the veins is larger than that of the arteries, but 
smaller than that of the capillaries. 

Each region or organ of the body is usually supplied 
with blood by several, vessels, One of them, the largest 
in diameter, is called the main vessel, while the smaller 
ones are called the accessory br collateral vessels. Some 
arteries communicate with each otherthrough connecting 
vessels, called anastomoses. There are also anastomoses 
between veins. 

If the blood ceases to flow in one vessel (if the 
vessel is cut or compressed by a tumor, etc) the circulat.. 
ion through the collateral vessels and anastomoses will 
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increase. New collateral vessels and anastomoses may 
gradually develop in addition to the existing ones. The 

blood circulation is thus restored. 

2.6 

All the blood vessels in the human body compose 
two circuits of blood circulation; the systemic (or 
greater) circuit and the pulmonary(or lesser) circuit. 

The systemic .circulation begins with the aorta which 
leads from the left ventricle and. carries arterial blood 
to all the organs. The aorta divides into numerous 
branches,, the arteries. The arteries enter the organs 
where they divide into smaller branches which then form 
network of capillaries. From the capillaries the, blood, now 
venous, passes into small veins which form larger veins. 
Prom all the veins of the systemic circulation the blood 
is collected into the superior and inferior venae cavae which 
empty into the right atrium. Thus #  the systemic circulation 
is a system of vessels through which the blood travels from 
the left ventricle to the organs and from the organs to 
the right atrium. 

The pulmonary circulation begins with the pulmonary 
trunk which arises from the right ventricle and conveys 
venous blood to the lungs. The arterial blood flows from 
the lungs through the pulmonary veins into the left atrium. 
In other words, the pulmonary circulation is a system of 
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of vessels through which the blood moves from the right 
ventricle to the lungs and from the lungs to the left 
at riuml  . 

2 .7  ARTERIALSYST$M 

It consists of the following main arteries. Fs j (z,) 
V 

1. auperfic .a1 temporal artery, 
2. facial artery, 
3. right common carotid artery, 
4. Left common carotid artery, 
5. brachiocephalic trunk (innonimate artery) 
6. left oubolavian artery, 
7. arch of aorta, 
8. right axillary artery, 
9. left brachial artery, 

10. radial artery, 
11. nlnar artery, 
12. renal artery, 
13. abdominal aorta, 
14. external iliac artery, 
15. femoral artery, 
16. deep femoral artery, 
17. popliteal artery, 
18. anterior tibial artery, 
19. posterior tibial artery, 
20. dorsalis pedis artery, 
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CHAPTER-THREE 	 -  

PROPERTIES OF THE ARTERIAL WALL 

3.1 THE STATIC ELASTIC PROPERTIE§ 4F TIE ARTERIAL WALL 

The E1ast is Modulus 

The Young's modulus of an isotropic tube, which does 

not change in length on inflation, is given by Love, 
2 

E QP 	2 1-QiRo 	
( ) 

where, 
►Ro = change in external radius, 
AP = change in pressure, 
Ri = Internal radius 

a = Poisson's ratio. 

Poisson's ratio is the ratio of transverse to longi- 
tudinal strain, all materials becoming narrower when they 	\f 
are stretched in length. If a = 0.5 no change in the volume 
of the material occurs e 	e~. 	for a very small strain. The equation 
assumes the isotropy of the material, that is the mechanical 
properties are identical in all directions. The arterial 
wall is more extensible longitudinally than circumferenti-
ally but when no change in length occurs the effective 

circumferential modulus is a function only of the true radial 
and circumferential moduli.5 

With these assumptions the incremental modulus is 

p -pl 2 (1. a2) Rig 02 
Einc p2r R 	2 	 ... (2) o3 of (Ro - R) 
where the subscripts 1,2,3 represent successive measurements 



of pressure and radius. If no voiums change occurs in 
the wall, then .2 R. is constant. The units of stress are 
force per unit area. Strain is a ratio of length and is 
dimensionless, thus elastic modulus has the same units 
as stress. It is, therefore, necessary to measure the 

internal-pressure, radius and .wall thickness of the 
arteries. 

The increase in modulus with increasing pressure 
depends both on the elastic properties of the collagen, 
elastin and muscle within the arterial wall, and out 
their arrangement and linkages.. Table I shows the elastic 
moduli(E) of arterial wall constituents. 

TABLE l.The elastic moduli(E) of arterial 
wall constituents. 

Tissue . . 	1E.dynes ~m2'a n61 

Collagen(tendon) 	100 

Elastin(ligamen.. 	6 
. turn nuchae) 

Smooth muscle 	2.5 
(resting) 

It is generally assumed that the smooth muscle, 
collagen and elastin in the arterial wall function in parallel, 
and each bears some load at all internal pressures. The 

elastic modulus of resting vascular smooth muscle is 
probably in the region of 1x105 dynes/cm2 . 



The arterial wall becomes stiffer as it is extended. 
This increase is less marked in the, thoracic arota upto a 
pressure of 1.00 mm Jig. Mean values for the static elastic 
modulus (dynes/cm2  x 106) at 100 mm fig, pressure were thoracic 
aorta 4.3, abdominal aorta 8.7,E  femoral artery 6.9, carotid 
artery 

3.2 The d namic Elastic pra erties of. the 
Ar.. erg. al . Wal . 
Although the response of the arterial tree to relatively 

810w changes in blood pressure is determined by its static 
elastic properties, the rapid pressure changes 00curing 
at each heart beat will result in rather different behaviour. 
This is due to the visco—elastic properties of the arterial 
wall. The mechanical response of a visco—elastic material 
depends both on the force applied (elastic response) and on 
the time it acts (viscous response) . These substances display 
'creep' (continuing extension at constant load) and stress 
relaxation. (tension decay at constant length)60  

The dynamic elastic modulus (E') is given by 

= c o i 

E' may be resolved into two components, elastic and 
viscous. These are termed Edyn  and 1)w respectively, and are 
defined as follows: 

Edyn.  = E'coso 
11w 	=E' siri 



where 0 is the phase angle between pressure changes 
(AP leading) and radius changes (©R0 ) 

jw is the product of the coefficient of viscosity 

(11) and the angular velocity 

Thus the amplitude of B', 

2 + (r1w) 2  I 1/2 	
..... (d) 

where sew is small say <1O'/.  , Edyn  

' Fdyn  - Et 	 ..,.. ,(7) 

Bergel suggested that the muscle content of an artery is 
primarily responsible for its viscosity. ,' Wiederhielm' has 
suggested a model for small arterial vessels and is shown in 
Fig.(3). The elastin is represented by a number of springs 
which engage at different degrees of extension and thus 
simulate the recruitment of fibers that occur at larger def-
ormations. 

The elastic properties due to collagen are shown in a 
similar manner and demonstrate the recruitment of collagen 
with increasing strain. The collagen fiber jackets surrounding 
the smooth muscle are simulated by two sets of elastic components, 
one in parallel and one in series with the muscle fibers 
Fig.3(a). 

In the relaxed state the muscle is quite extensible and 
the contribution of elastic forces by the muscle and the elastin 
is trivial since the elastic behaviour Is dominated by the 
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collagen, Fig.3(b). 

In the constricted state, the elastic elements 
connected in parallel with the vascular smooth muscle will 
be slack and thus not support any significant amount of 
tension. The portion of the collagen fibres between the 
smooth muscle cells will transmit the contractile force 
from one muscle cell to the next and appear as a series 
elastic element, fig. 3 (c) . 

3.3  MEL, A I;IC AAL PROPS RTI  OF ARTERIES 

The functions by which the cardiovascular system serves 
the biologic organism are mechanical. It 'is, therefore, 
necessary to understand the mechanical properties of the 
cardio-vascular system. One of the major components of cardio-
vascular system is its arterial network, the mechanical pro-
perties of which determine the propagation of energy from 
the heart to the periphery. The relationships of blood flow 
and blood pressure, of intravascular pressure and vessel 
volume, of pulse wave velocity and blood pressure are but a 
few of the variables often measured which depend quantitat-
ively on the mechanical properties of the blood vessel walls#7  

It may be assumed that the relationship between stress 
and strain in the blood vessel can be expressed by some equa-
tion representing the sum of a series of terms of increasing 
order and their coefficients, for example: 



p(t) = At + B 	+ C d- 2  + D d 	+ ...,. 
dt 	dt 

where A,B,C etc. are coefficients which are analogous to 

vessel parameters. 

It has been found that a first order linear differen-
tia]. equation will match both the contour and the amplitudes 
when recorded and simulated stress and strain are compared. 
This suggests that the mass or inertial (second order) and 
higher terms are negligible in the relationship of stress and 
strain in the artery wall since the elastic and viscous moduli 
are the predominant parameters. 

The strain which the arteries undergo as a result of 
arterial pulse pressure variations is normally between 0.01 and 
0.04 i.e. between 1 and 4 percent change in circumference. The 
total strain associated with marked constriction and dilation 
does not usually exceed 10 percent. Therefore*. the circumfer-
ential motion of arteries may be characterised as small strain. 
The mass of the artery wall does not play a significant role 
in determining the mechanical behaviour of the arteries and 
can therefore be neglected. 



CHAPTER-FOUR 

THE PHYSICAL  LAi GOVERNING THE. FLOW OF BLQO 

4.1 INTRODUCTION 
The biological function of the heart is to pump blood 

to the tissues of the body. The heart creates a regular, 

intermittent ejection of blood and so flow in arteries is 
pulsatile. McDonald8  described this flow and the accompany-
ing pressure waves by Fourier-series. Such a series is rep-

resented by 
m=-oa 

F(t) = ,Ao  + 	cos m( -)t + Bm  sin `m(g=)t + 
m=1 

where T = cycle length. 

Thus pulsatile flow consists of a set of terms which 
oscillate around a mean value A0 . This mean value is referred 
as the steady flow and the remainder as the oscillatory flow. 
The fact that the arterial system is essentially a set of 
pipes for distributing blood reminder that the steady or mean 
flow is the most important component. 

4.2  THE STEADY-FLOW 

If the shape of a typical flow curve fig. (4) is cons-
idered, it will be seen that it is an oscillation of asymmetr-
cal shape. There is a large peak of forward flow, due to 

systole. Following this peak there is a reversal of flow lead-
ing to a backflow. In terms of values about the mean we have 
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a peak value of 5.65 mi/sec. in the forward direction, and 
2.85 ml/sec, in the backward direction i.e. towards the 
heart. 

,Backfl ow- 
Blood flows towards the heart during part of a cardiac 

cycle as a normal phenomenon in many arteries. Backflow is 
expected in all arteries and will only fail to appear when 
the steady flow is greater than the negative component of the 
compound oscillatory wave. Physiologically the appearance, or 
absence, of a backflow will be determined largely by changes 
in mean flow. It will also depend on changes in the shape 
of the compound oscillatory flow curve. - 

The  Steady Pressure-gradient  
The measurement of steady flow is thus an important 

factor in calculating arterial flow curves. In the arterial 
pressure gradient there is a steady term, which is related 
to the steady flow by POISBUILLE' formula. The mean press-
ure drop along arteries is extremely small eg. the gradient 
corresponding to the mean flow in fig. (4) (12 cm/sec) is 
only 0.13 mm Hg/cm. 

4.3 HELL0W RELATB TO ML9SOILLAT  ING PRESSURE.GRADIENT 
If the pulsatile flow and pressure in arteries are 

expressed as a fourier-series then the elementary case to 
consider is that of simple harmonic motion of liquid in a 
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cylindrical tube. The mathematical treatment is initially 
similar to the standard derivation of POi5:EUILLE's law. 
The basic assumption made are the same, with the single diff-
erence that whereas in steady flow the pressure difference, 
P1-P2  between the two ends of the pipe of length L is 
constant with time in the present case the pressure gradient 
(Pl-P2)/L oscillates in harmonic motion. The other assumptions 

8 
on which the analysis is based are: 

1. The flow is laminar, 
2. - The tube is long, 
3. The viscosity of the liquid is independent of 

the rate of shear i.e. it is ` a Newtonian liquid. 

4. There is no 'slip' at the wall. 

5. The radius of the tube does not vary e.g. with 
changes of pressure. 

The equation of motion is a unidimensional form of the 
Navier-:•token equation and can be written, 

o 2w  1  d 	Pl-P2 	1 dw 

where, w is the velocity of the liquid parallel to the 
axis of the pipe (the .z—axis) at a distance 'r' from the 
axis. 

4 = viscosity of the liquid, 
v = kinematic viscosity (µ/,p ) 
.P = density, 	

Ii 

R = radius of the pipe. 
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Taking a pressure gradient which is periodic with 

time with a circular frequency w so that 

(p1-P2 ) /L = -A e t 	 ... (10 ) 

and the equation of motion Is rewritten, 

~2 d2c~ + 1 w - 1 d = A eiwt 	 .. (11) r dr v dt ~i 

Let w = u et and let the non-dimensional-quantity R.{w 
be denoted by a. Then the equation for u is, 

2 	 2 

Y 
(where y = r/R) 
which is a form of Bessel's equation and the required solut-
ion after replacing w is 

AR2 	Jo (ayi3/ 2) 	it 
w =u(ai3 

) } e 	... (13) 
0 

Womersley integrated equation (13) to give the so lut ion for 
the volume flow, 

211l(a13/2) 	iwt 

s. a {'Tai . 	(ai 2) ' a 	... (14 ) 
0 

If the real part of the pressure gradient Ae t is Mcos (wt-0) 
then the equation for volume flow is 

4 M.M' 
=- µ - - 0 sin (wt-4+E1Q) 	... (15 )

a 

Mi, a/a~2 and E l0 are functions of a. 
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Sianificanee of the parameter a in determ 

If the equation (15) is . 'compared with that of 
POISEUILLE'S formula which is, 

Q 	 ,(Pl-P2) 	 ... (16) 
84l 

the similarity can be seen at once, remembering that the 

pressure gradient (P1-P2 ) /L is written as M cos (wt.4) . The 
factor I~'Q/a2 modifies the modulus, or amplitude, of the 
flow and, in addition, a phase shift F-10 is introduced, 
so that flow lags (90-110) behind the pressure-gradient. 

Thus for a given pipe, if the pressure gradient 
oscillates at a very low frequency so that a is small, then 
the flow oscillate with it with a negligible phase lag and 
its amplitude will be nearly that given by Poiseuille's 

formula for steady flow. As the frequency increases the 

amplitude of the oscillation of the fluid, with a constant-
pressure oscillation, will diminish progressively and the 
phase lag will approach 90°. The value of a increases 
linearly with the radius of the pipe and with the square 
root of the frequency, that is 

	

a = R w v 	 ... (18) 

4.4 ARTER_ TAI,-IME ANC E 

For flow in a rigid walled tube, under a pressure 

gradient --AeiWt, we have the average velocity11, 



AR2 w ~ ei~1C) eit .  
%R 	a 

wAeiWtgO•e"110 	 ... (19) iw,p 

then the longitudinal impedance of the tube per unit length 
is 

iWt 

sin C1© + -- P COS Sl~ 	. . (20) 

It can be seen that for high frequencies the imped-

ance approaches iwP , that is, the motion of the fluid is 
governed by its density only, and the impedance is a pure 
inductance. 	 0 

The input impedance (Z0) of a conducting system 
depends both on the longitudinal impedance (Z) and the wave 

velocity (C) and is defined as, 

	

Zo = Z. C/io 	 ... (21) 

For the 'tethered and loaded tube' Womersley found 

Zo = Y- 	- 2 . 	------ -- exp (— .1~2C1 Q) 
O 

It can be seen that with increasing a, and MOo tends -to 1 
from below,, and v, 1C tends to 0 from above, the input imped- 
ance approaches that for the inviscjd system. In a perfectly 
elastic. system Co denotes the value given by the Moens-
Korteweg formula. If the wall material is elasto-viscous, 
then Co will not be constant, but will rise with frequency. 



4.5 THE BEHAVIOUR OF THE ARTERIAL WALL 

The first model of an artery considered was that of 
a thin-walled elastic tube, containing a viscous fluid in 

oscillatory motion. 

The movements of the wall are ' also of physiological 
interest. It 1s well known that arteries dilate with each 
cardiac ejection. Womersley pointed out that in the body 
the arterial expansion is more directly related to the flow. 

where, w is the average velocity of flow, 
C the wave velocity, 
E the radial displacement. 
R the mean radius of the artery. 

In addition to the radial movement, the viscous drag 
of the fluid will also cause a longitudinal movement of 
the wall of a free elastic tube. This effect should in fact 
be larger in magnitude than the radial movement. Further 
observations have shown that the arteries are largely 
tethered by the connective tissue around them, and thus 
it is not realistic to use the free elastic tube as a model. 

WQMERSLEY considered the model of an elastic tube 
subjected to an external longitudinal restraint, and loaded 
by the mass of the tissues around it. Mathematically, 

K = I (for free-elastic tube) 
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where h is the wall thickness. 

With the 'tethered and loaded tube' the term K is defined 

as,8  

K = (1 h  8111 _ m2  - 	) (1 ) 	 ... (24) 
W 

where, h1  = thickness of the loading mass 
,p,.Pl  = densities, 
fit,} = radius. 

m = natural frequency of the longitudinal restraint. 
and 	w = circular frequency of the oscillation. 

With a fairly stiff constraint (as in the body) m>>w and 
K is negative, tending to -co as m is increased indefinitely. 
The effect of this modification of wall behaviour on wave 
transmission is shown in fig.(5). It can be seen that the 
asymptotic value of the phase--velocity is. now greater than 
that for a non-viscous fluid in the same tube, and that the 
damping has increased. Both these effects are due to an 
increase in stiffness of the tube. Thus the 'tethered and 
loaded tube' is the satisfactory model of the artery. 

4.6  Wave-Transmiss ion 
The study of dynamic local distensibility of arteries 

shows that the arterial tree behaves as- a wave transmission 
system. 

The distensibility of a segment of artery is defined 
as the increase in volume per unit increase in transmural 
pressure. Local vessel distensibility per unit length may be 



defined as dS/dp where dS,  is the increment in cross-

sectional area S and di' is the increment in pressure p. 

In the description of the arterial circulation as a 
wave transmission system, the heart is considered to be a 
wave generator, linked to the periphery via an intensive 
set of short vessel segments undergoing multiple branching. 
In analogy with transmission line theory, each vessel seg-
ment is fully characterised by a set of three quanti ties'4- 

(a) Longitudinal fluid impedance per unit length (Z8) 

defined per harmonic as the ratio of pressure gradient, 

-dP/dZ, over pulsatile flow, dQ. 

(b) Transverse wall admittance per unit length, yt, 

defined per harmonic as the ratio of flow gradient, -dQ/dZ, 

over pulsatile pressure, dP. Transverse impedance Z. = 1/yt  

(c) Segment length, L. 

The pressure-flow relationship in such a segment is 
characterized by one more quantity. 

(d) Input impedance, , Zi  defined per harmonic as the 
ratio of pressur6,P, overflow Q, at the entrance of the 
segment. 

The two impedances ZZ and Zt  have equal importance in 
defining the transmission of pressure and flow waves in the 
arterial tree. They can be described by such quantities as 

characteristic impedance Zo  = 	Zt  , propagation constant 

A 	Zt  . All of the above quantities are complex and 



frequency' dependent and thus we have for the propagation 
constant 

Y(w) = a(w) + jP (w) 	 ... (25) 

in which a determines the wave attenuation and p the 
phase velocity 'C' (w = angular frequency) 

C() 	 ... (26) 

For a vessel segment of cross-sectional area S and 
infinitesimal length dZ, through which the flow of incompre-
ssible fluid is Q, the net increase in volume per unit time 
(t) and per unit length can be expressed as .dQ/°d? on one 
hand and as d$ /dt on the other hand. Thus we have, 

d 
dZ" dt 

For the harmonic of a with angular frequency c we have 

dS/dt = jwd8 	 .,. (28) 
and so we can write, 

Y. = (-mdQ/dZ)dp 
= jW (dS/dp) 	 ... (29) 
i/j (dP/dS) 	 ... (30) 

Thus the transverse wall impedance is inversely proportional 
to local vessel distensibility per unit length. 



CIiAPTER- FIVE 	
_  

HE M THEMATICAL ANALYSTS OF 	ARTERIAL 
,CIRCULATION 

5.1 INTRODUCTION 
For the analysis of pulsatile blood flow through a 

distensible vessel it is necessary to develop a system 

of simultaneous equationswhich express the balance of 
forces and the conservation of mass at every point in the 
fluid and its boundary. The equat ions of motion and of 
continuity for the blood and the 'Vessel wall represent two 
sets of four independent partial differential equations which 
contain the three coordinates and time as independent varia-
bles. The equation of state, which relates pressure,. density 
and temperature is usual .y• not required under physiological 
conditions, since blood may be treated as an incompressible 
fluid of density p at constant temperature. 

5.2 WAVIER-aTOM F UAT IONS 
Assuming no leakage flow through the walls the basic 

flow equations are given by the continuity equation15 

aV V av r +.2+ 	= 0 

and the Navier-Stokes equation for an incompressi) fluid 

av V dV 	 02V aY a2V  
+( 

	Z ) 
Z' r dr 	' 

... (32). dVr ayr 	ayr 	1 a 	d 2yr 1 d 	v. 	2 aV 
+Vr dr +vz oz gr - P #v( Or +r`r  

~Z 
S.. (33) 
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where, r and Z are the radial and longitudinal coordinates 
respectively, t =, time, p = the pressure, ri = the internal 

vessel radius, p = the density of the blood, v =) the kinematic 

viscosity of the blood, u = the viscosity of the blood, VZ 
the instantaneous velocity parallel to the vessel axis, 
Vr = the instantaneous fluid velocity along a radial coordinate, 
and F = the sum of external body forces such as gravity etc. 

The forces associated with the pressure gradient 
[ (1/p) (ap/dZ) ] and [ l/~o (ap/dr) 	are balanced by the inertial 
forces which are left hand sides of the equations (32) and (33) 
the frictional forces (the bracketed terms on the right hand 
side of equation (32) and (33)' and the body forces F. 

5.3 ASSUMPTIONS FOR PUIS ATILE BLOOD FLOW 

The validity of these equations rests primarily on the 
assumptions that, 
1) The blood behaves like a Newtonian fluid. In a Newtonian 
fluid stress and rate of strain are linearly related (the vis-
cosity is independent of the shear rate). 
2) Only laminar flows, without secondary flows or turbulence, 
are present. 

For pulsatile flow the total acceleration consists of two 
terms, (a) the local acceleration due to the variation of driv-
ing pressure, -4ith time (dp/dt) and(b) the acceleration due to 
changes in geometry of the flow channels, such as an increase 

or decrease in cross-section. 

Certain assumptions are made to simplify the Navier-Stokes 
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equat ions. 

1. The artery or vessel is an elastic one. 
2. The heart pressure variation is a periodic one. 
3. The velocity has both radial and axial components. 
4. The nonlinear terms of the equations are neglected. 

5. The artery is of circular cross—section. 

6. External forces to the body i.e. Fz and 'r are 
negligibly small. 

On imposing the above - assumptions, equation (32) 
simplifies to 

02 

 

. 
[ Z

2z 02Vz 	1 . '-~- ' + r dvz~ r 1 v C a ... 	(34) 
d ar 

For a sinusoidal pressure wave 

p = Alexp [ jw (t— r) 

where, 
C = wave velocity, 

w angular frequency 
Al= Modulus of pressure wave. 

5.4 LONGI~ NAL VELOCITY (VV ) 
.let VZ = RT Z 

jw(t—Z/C) 
R Ie 	I 

where, R and Z are space variables, 
P = time variable 
av  
___Zz 
dz 

•.• (35) 



02V R" T Z = ---2 
Or 
av 	 ... (36) 

R'ZT- dr 
av 

RZT' 
Putting in (34) the above values, we get, 

gTtZ"+Rt'TZ+ 1R'ZT =. 	[ RZT' j 	 ... (37) 
Dividing throughout by. RTZ we get 

 S... (38) Z 	r R 	vjT 

r 	 2 and r= w 
C 	C 

Putting in (38) we get , 

+ RIO + 1 R' 1( ~ ) -'2 	 r R v 
2 

or 	- +rte v Cy 0 	...(39) 
C 

(since is very small as compared to C, hence (u/C)2 is very 
very small) 

Multiplying (39) by r2R 

•'.r2R"+rR' - r2 ('—)R = .0 	 ... (40) 
Let Z- =a2 - JU therefore (40) becomes v 	 v 

.'. r2R"+rR'+(r2a2 )R = 0 	 ... (41) 

Let r2 a2= x2 (this is done to bring equation in the Bessel form) 

x 

or 	a. ar = Ox 

Thus , we get 



Z 
x2 	+ 7, dR + x2R = 0  ... (42) 

dx 

The equation (42) is the Bessel form of the differential 
equation. 

Solution- R , AOJ0 (x) + BOY0 (x) 
AOJ0 (acr) + BOY0 (ar) 

Yo (o) =oo, when r = 0 
To get the FINITE VELOCITY at r = 0, Bo = 0 

..R= A0 Jo (ar.) 
We have, RZT = R e t  6') = Z 

or V = Aojo (ar) r eiw,(t-Z/C, 

• • •, (43) 

• . • (44) 

when r = a (outer radius of artery), velocity = .Ci 
C 

.. Ao = J aa) and the complementary solution is 

Jo (ar) jc~ (t—Z/C ) 
V ' c1 Jo as e 	 ... (45) 

To find the particular solution 
Gradient of the velocity = 0 

jw (t-Z/C ) =..~ z LAle 

- 1 A 	- ~- e jw (t-Z/C ) 

d V = - P 1 .t 	[- ?] ej (t-Z/C) at 

j 0 

Integrating 



j Al feJw (t--Z/C ) 
fov ; = 	

fe 
,r 	jw (t-Z/C ) 

z=* 	 ... (46) 

.'. Complete solution is, = C.P. + P.I. 

C J0 (ar)  	j (t-Z/C) 
V 	Jo (as) + ,ÔJe 

4 

... (47) 

The above is the expression for longitudinal velocity. 

5.5 R IAZ VELW ITY (Vr) 

Continuity Expression, 
OV V dV r rz + + dr p ... (48) 

d'V 	 d V 	V 
Or r ~4 	•~• Z +rr `QLa 

r 	
dV 

(r. Vr) 	.. 
a 	Jo(ar) 	ejw(t-Z/C) 
tlZ [Cl  J(aa) 	,per" 

JxJo (x)dx = x J1(x) 

0/dr (2' Vj= _r[_- ° 	4j(. ) 
 

v 
C J (ar) 	Al 	Jw{t'Z/C} 

d (r. V~, ) 	= --r J as 	+ - {r~ -~ 	e 	d r 
v 

Integrating the above within the limits 0 to r, finally, 
CxJi (ar) 	Air jw (t-Z/C) 

Vr 	L aJ aa~ 
a 

o 	 ..• {49) 
Thus the radial velocity (Vr) can be calculated. 



5.6 FzoW„ &ATE OF THE FLUID (I ) 

I = Area z longitudinal . velocity 
ri 

I = f VV (2nr)dr 
o 

ri 	Jo (ar) 	A, 	 jw (t-Z/C ) 
! 	 l J0 as +,P 	e 	 (2nr) dr CC 
0  

2 Alr 	p J1(ar 	-- i) 	 jw (t—z/C ) uri • 	+ 2Cl A, ado ar ) - ,,, e  i 
21o (ari ) 

Let F10 = a Jo ari) = Womersley's constant. 

2 A, 	C1-PC 	,jw (t-z/C ) • Z = nr.p 	1 + - -F10 e 

This gives the fluid flow rate. 

5.7 kONGITU INAL IMPEDANCE (Zz ) 
It is given by, 

Ze =../I 

wherep=A1 e Jw (t-.z/c) 

. 	Z = --jw/c. p 
Thus 

... (50) 

... (52) 

where 

Al jw (t- /0 ) e 

	

2 Al 	CipC 	 jw (t-Z/C ) Ur . ~. Cl + A1 Flo j e 
- ~W 	c1Pc 	_l p2  

nrl
El Ai 

jw)o -1 
 2 ,1+r 2101 nrl . 

c1pc 

	

n = 
A 

...A 	= -1(approx) 
l 



5.8 TRRANBVERBB-IMPEDANCE (Z,l ) 

P It is given by 	Zt = - 	• ,(54) 

~A1 r dI d Z 
elto 	jw (t-Z/C ) 

since I = 	E1+ 	FloI e  JOC 

• s 	(., ,;.) ~,..... {l, l, P F 	}e t  _Z1 )]  

jw (t-Z/C ) 
Hence Zt = 

j tri 	jw (t-Z/C) rC fC 
C 

2-1 
--=---2 L'°irioJl  
~wnri . 

~wnri 
Note- For a rigid walled-tube r1 = -1, but for an elastic thin 

wailed tube, 1 is a function of a, a and K. 

•.Characteristic Impedance (Zo) - Zj ̀z 

and Propogat ion Constant (y) ,y  

On putting the values of Z,' and Zt we get finally 

= n 2 ~- E I + )Flo] 	 .. (56) 
Sri 

and 

Y =- 	••.(57) 
Thus characteristic impedance and propagation constant can 

be determined. 



5,q BQUATION OF MOTION 

For a thin-walled, uniform , isotropic cylindrical 
tube having internal viscous, elastic and inertial proper-
ties and external coupling to the surrounding tissues 
the equations of motion becomel5 

2 

U H 	r- p+ E h . d auk ur = (58) 
w 1-. l Q 2 r dz r~ 

d 2u 	 ov 	v 	 a u 	c du 
..PH- -pW uz-y L ( 	+ Z ) r=ri-' j 2 	) 0 

•.. (59) 
where, 

p = density of the wall material, 

H = weighted volume of wall substance taking into 
account external loading, 

Em ^ complex modulus of elasticity, real part of which 
is young's modulus. 

are = complex poisson-ratio 
h = wall thickness, 

= natural frequency of the longitudinal elastic 
constraint, 

ur and u2= displacement of a point on the inner surface 
of the wall in the radial (ui,) or axial  (u2) direct-
ion 

ri = Internal radius. 

The three terms in equation (58) represent, respectively, 
radial inertial force, radial stress of the fluid pressure 
(tranamural pressure), and radial stress related to visco-

elastic deformation of the wall substance. Al1--to-raez-are 
~i rn {~c{ ~n anon~w~~a-~ ..n n~► {.y, ~ r 7 	w ~,,~.{.,.,r,t~  . All forces are '• ~i'~+►7Ta.GV~7avz'-v'~+,'drtistvT—~'L3C—•~+i#a.rx--iT~t gr~"'VC~31'V a'  

expressed in terms of per unit area of inner wall. 

The four terms in equation (59) express the inertial 



force, the spring force of the external constraint, the 
drag force from the underlying flow and the force of visco-
elastic deformation of the wall substance all acting in 
Z direction. 

Assumptions. tom  Analyse  the Epuat ions of Motion 
1. The vessel wall is thin i.e. h/ri (0.1. Thus we can 

neglect radial velocity gradients within the wall 
substance. 

2. The displacements ur and uZ and their derivatives 
are small. 

• 3. The physical properties of the wall material are 
linear. 

4. The wall material is isotropic and homogeneous. 

5. The magnitudes of the real parts of E5 and 
oo are much greater than those of the imaginary 
parts. 

The equations for ' motion of the fluid and of the wall 
are coupled by the condition that the fluid does not slip 
along the surface of the wall, i.e. 

du 
Vx,a~r^r 

ciuz ... (60) and V~ =  
r-ri 

We have from the previous derivations, 

V- C J
o (ar) + Al 	Jw (t.~Z/C) 

1 J ar ) -PrI e 	 ... (61) 
o i 



and 	Vr = 2 I 
2C J (ar) 
J 
o 
1 ar

i 	
+ 

Alr 	jw (t-Z/C) 
P C-I e . 	... 	(62) 

The wall equations (58) and (59) are already linear and may 
be solved by substituting 

uZ ~ Bl exp C jw (t" z/C) 3 	 ... (63) 

and 	ur = Dl exp C jw (t-Z/C) j 	 ... (64) 

Substituting the derivatives of (63) and (64) in (58) and 
(59) we get finally, 

P 2 Bah B  w Hw Dl + Al ~. ---- i2 [ 	-iw T- r- = 0 	... (64) 
 r 

and 
{w2 2) ~t {w2ri 	j3a2F1oC 	Bah 	w 2 3., + jwci 2D1. 

PW 	., r '_ C o - ".,..~.2 	) _ 	2 (----2 	) 
1 2C 	 1-cs C 	i 

0 	... (65) 
where Bl and Dl are additional constants. 

From the boundary conditions 

r Vr = d 1 r=ri 

2C1Jo (ar)A,ri - jw (t-Z/C ) 	ejw(t- /C) Jo(ari) 	+' C 	e 	~ dt~1. 
 

=jwDle jw (t-z/C) 
p ri 2CZJo(ar) 
1 L J ar i o i m] 

r 
'r [F10c1+,] 	 ... (66) 



From eecond boundary condition 

+u 
vz'=  

or 	O1Jo (ari) + 2 
J e

aw (t`z/C) 	e (t_z/C) .. 
J ar 	P 	C 	_I o i JWBie jw(t-Z/G) . 

• q = Cl +,J 
	

... (67) 

Equations (64) to •(67) represent a system of linear homogen-
eons equations Pot' the complex constants, A1, Bl, Cl and Dl 
and the condition for the existence of a non-trivial solution 
requires that the determinant of the coefficients of these 
quantities vanish.16 

Assuming, external coupling of the tissues to the wall is 
not there i.e. Q= 0 and H = h. Finally we get, 

.h E 
1_ a 	

- 2 
2 ) riPw 

C2 (102) (1-F 	(1 10 	"") ri 
)` hE p02[2+K(3-F10) 

+F10 ( -26' 1 +F10+2K 

 

0  ...(68) 

where K = h/rl 
This equation .has roots, 

w 	G +, G2-(1-a2)R 	... (69) 

with G = 	;" a +- + a -~ 	 ... (70) 
10 

and H = 	- 1 	 (71) 
10 

Denoting,  0 



( hE 2)1/2  = X _ jy 
0 

and 	Ca =w 2hp 	 ... (73) o  

the phase velocity Cl  equals 
C 

Cl  = 	 ... (74) 
and the amplitude reduction in terms of the wavelength X, 

8 2 IVYZ/KX  
Womersley provided detailed tables for Co/C, r', 2iY/X 
and a 	as a function of a for a = 1(0.05)10 and for 
a number of values for K and a . Figure ( ) shows Cl/Co  
as a function of a for K = 0, .2, -co. 

K = C, represents a very thin unconstrained tube 
K = -cc, a tube with complete longitudinal 

constraint and 
K = --2, one with a small degree of constraint. 
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5.10 ELLIPTICAL CROSS-SECTION OF ARTERY 

We have 'considered the artery to be of circular 
cross-section. Now considering it to be of elliptical 
cross-section and applying a suitable transformation 

we can transform the cross-section to a circular one. Thus 
we can apply the well known equations for the analysis, 

2 	2 
+-7 - 1 

a b 
...  (76) 

is the equation of the ellipse. 
2 A transformation W = Z + a2 is tried, 	 ... (77) Z 

dW 
dZ 1 -7 Z 

The derivative is analytic every where except at Z = 0 
putting W = u + jv 

and Z = X + 3Y in equation (77) and equating real 

and imaginary parts, we get, 

a2x u = X + 2 
2 

Y - 22 y 

	

u 	a2C (x2+y2)-2x21 Now 	1 +  

	

dx 	(x2 + y2) 2 

i + a2 ~x2 ~ 2. ~-2 2 (x2+y ) 

l - a2C (y2+a2)-2y2 J 

	

dy 	(x2 +y) 



1 + Q2 2_x2) 

(xy' 2+ 2) 

and du _ -a2 	2 
(x +y ) 

a?
2x 

d- (a+y) 

As 	du = 	and do = - d , the function  ie analytic. da 	ay. 	Ty 	d o 
If a circle of radius R is inscribed in s-plane- then 

Re J" = z 
2 

W- u+jv=Z +a 

Rei$+ --a2 
Re JO 
2 

.•. 	u = (R + )cove 	a coact 
2 

v = (R --)sine = b sine 
2 	2 

Thus 	+ 	~ 1 
a b 

In other words, the circle of radius R is transferred 
to ellipse of semiaaes at and b. 

2 	 2 
Since, R+R =aand R.»f =b 

2 2 
. ' . R = b and a2 = (a2  R 

Now c = distance of focii from the centre and is given by 
2 2 2 

c2 a2-b2 Thne a2p2-b2 _--• 

C 



Thus the ellipse is transferred to the circle. 

Writing the. Navier -&token equation, 	 , 

ov 	av 	av 	02v 	dv 	02;
Z) 

+V 	+ vz ~ = Fz - . f- 	+ V d r 	
r r +  

1 	a 	 Z 	z 	Z 

Neglecting nonlinear terms and body forces, 

av 	av 2v 
`.P 	+ 	+ 	 ... (78) 

Assuming that the tube being considered is broken 

up axially into short segments of length AZ, and, radially 

into N concentric shells. 

The radii, to the midpoint of the nth annulus are, 

r = 2n l̀ R, 	n = 1, 2.... N 	 ... (79) n 2N-1 

and the separation between the midpoints 

2R ©r='mil ... (80) 

Let Ii t j be the longitudinal flow rate for an annulus. 

	

.'.Iioj w Ai►J V 	 ... (81) 

where Ai j is the area of the jth annular cross-section of 

the ith longitudinal section 

	

Aj►j n
[rxi + 	~ 2 ern - r)2] 

2nrn ©rvij 

4i 2 2n-1 v 
(2N-1) 	ii 



4nR (2n-1) 

Writing equation (78) in finite difference notation, 

+ 	fig' 14.l;V3. -1 + 	+ + vi..~" 	 Vi..~..i. 
o n 	 (4r) 

d. V 	2 4Vij 1 	1 ~o dt - Q - + µ Vi, j+1( dr
2 + 2rAr~ 

Ar  
DflAD 

On substituting from equations (79) and (80) we get; 

2 

pr 	n 	2R2  

Similarly ( --~) 	2N-1 2 (,fl.1) 
Ar 	2rr4r 	2R 

Putting above values in equation (83), we get 

+ - d(:1)-2 
  

 
d Z - 	

+ 
P dt 	vi, + n 	i, j+1. 2n-1 Pi, J--1 J 

...  (84 ) 

But .AP = po-pi = difference between output and input pressures. 

• p, 	i 	 .P~2N"`2)2 dI.. i1 	2N-1 2 	 J2N-1) 2  
AZ  

_ 	4%R ..._,....,.
.. (2+1) r dt 	2R2  _ 4%R(2n1) 2 	- 	1i r j 

p (2 N--1) 2 	d I i 	pt (2 N-1) 4 — 	---- — 	... (85) 
4nR' (2n-i) d 	8184 (2n-1) "# J 

For the simplest case, when N = 2, n = 1 

9pAZdIi 	81µAZ 
•• . p 	 I  ... (86) P0 -- pi -4 R2-- d 	- 8rx 	i• 



term in equation (86) gives the The coefficient of the last 
fluid resistance, 

Rb = 8-  SRR4 	 ... (87) 

Note:- The finite difference approximation gives a fluid- 
resistance only 81/64 larger than that given by 
Poibeuille's law. 
The coefficient of the other term on the right side, 

of equation (86) gives the fluid inductance 
9p z 
4%R 

... (88) 

Note: This 18 9/4 greater than the inductance obtained by 
assuming a flat velocity profile, since the velocity 
always drops off at the edges of the tube. This value 
of In may be regarded as a better approximation. 
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CHAPTER-SIX 

THE ELECTRICAL MODELS OF ARTERIAL TREES 

6.1 I~QCT _ION 

The application of network theory . to the study of 
circulatory phenomena presents a new and different method 
of approach which has both advantages and disadvantages. 

The striking similarities between hemodynamic and electrical 

quantities such as pressure ai voltage, flow and current 

led. to the consttuction of electrical equivalents of hemo-
dynamic phenomena. 

The study of wave transmission problems in an arterial 

-. tree seems particularly suited for the electrical analog 
approach. 

Transmission models require division of the arteries 

into segments. Inserting the parameters of each segment into 
the equation of motion and the equation of continuity results 

in a relationship between pressure gradient and flow on the 
one, hand, and between flow gradient and pressure on the 

other. The form of an electrical delay line is determined 

by the same relationships, where voltage stands for pressure 
and current for flow.Therefore, the construction of a passive 
electrical equivalent of the arterial system seems possible. 
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6.2 RATIONAL SYSTEM OF UNITS IN HEMODYNAMICS 

For many years, the concept of resistance has been 

used in hemodynamics by analogy with electric circuits. 

Recently, the analogy has been extended to include the 

concept of impedance, and inertance and compliance have been 

defined by analogy with inductance and capacitance, res-

pectively since electrical analogs have been increasingly 
used, as models of circulatory phenomena. 

By rational is meant consistent with the fundamental 

units of physics. Hemodynamic s units can rationally be 
defined in terms of either the C.G.a. or M.K.S. system. (18) 

TABLE II 

HEMODYNAMIC UNITS, AND CGS AND MKS EQUIVALENT 

	

Quantity 	 MIS' 	 CGS 	MKS uant it - 

	

Y 	Hemodynamic unit Equivalent Equivalent 

107g cm 4sec l̀ kg m74sec'l 

107gcm4 	kg 
10-7g em 4s ec 2 kg` 'm4s see 
107g cm 4dec-1 kg m 'see-1 

107g cm2sec-3 kg m2sec~`3 

Resistance 	Hemodynamio ohm 
(hohm) 

Inertance 	 Wome 
Compliance 	Frank 

Reactance, 	Hohm 
Impedance 
Power 	Watt 

In an ideal hemodynamic resistance (negligible inertance 

and compliance), the power dissipation is given by 



where, 
Q = flow in cm3  sec-1  

DP = pressure drop in joules cm 
W = power dissipation in watts 

Thus the •hemodynamio ohm. or ' hohm•, 

R=pP/Q 

where R * hemodynamic resistance in hohms. 

One . hohm is equal to one joule-second-cm 6  or 107  erg- 

second-cm 6. 
Hemodynamic impedance has been differently defined 

by different authors. Some define it in terms of pressure 
and linear velocity (cm/sec). Others define it in terms 
of pressure and volume flow. For a sinusoidal pressure and 
flow, the impedance in hohms is 

where, Z = modulus of hemodynamic impedance in hohms, 
dPm= amplitude of pressure sinusoid in joules cm`3  
Qm  = amplitude of flow sinusoid in cm3  sec.-1  

The inertance is given by 
L = a Py/Q 	 ... (4) 

where, L = inertance in joule-second2-cm-6  
APL  = pressure due to inertance in joules cmi 3 



= rate of change of flow in cm3  second 2̀  

It is proposed that the• unit of inertance be named 
in honor of late J. IL Womereley and hence it is ' Wome ' . 
One wome is equal to one-joule-sect-cm 6  or 107  erg-sect.. 

The compliance is given by 

C=AVAPC 	 :.: (5) 
where; 

C = compliance in cm6-joule-1  
p V = change in volume in cm3  

APc  = change in compliant pressure in joules cm 3 . 

The unit of compliance is named 'Frank' in the honor of 
Otto-Frank. 

6.3  PHYSICAL MODEL OF THE HUMAN VASCULA t SYSTEM 

The model of the circulatory system is shown in 
Fig. (6 a) . It consists of two elastic reservoirs connected 
by a long column of blood.19  

Writing the equation of conservation of mass for the 
first reservoir, let 

fin = volume of blood flow in. 
Vl  = volume of reservoir, and 
f = flow out of first reservoir. 

Then, 
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dV 
fin - f = ddt 	 ... (6) 

Similarly for the second rebervoir, 

dV 
f - Pout=d"~ 	 ...(7).  

Assuming that there is a constant linear relationship between 
the volume of the reservoir and the net pressure in it., i.e., 

pl - pe 	 0 

where, pl is the internal pressure and 

pe is some prescribed pressure surrounding the 
reservoir. 

and 
V1 = Vi nstretched + Ki (Pi-pe) 	 • . • (8) 

d111 	dpl 	dpe 
-" `Kid£"-K1 	 ... (9.) 

Similarly for the second reservoir, taking po as a constant 

(e.g. tissue pressure) 

V2 = V2 	 + K2 (p2-p0) 	... (10) 
unstretched 

and 	d V2 	dp2 
ddt =K2ddt- 	 ... (11) 

Assuming for .simplicity that the blood flowing between 
the first and second reservoirs is flowing in a rigid tube 
of uniform cross-sectional area A and of length £ . Neglect-
ing dissipation in the tube, conservation of momentum states 
that, 

time rate of change 
of momentum 	 Applied force 	. , . (12) 



or I (PAQ A) = p3A - p2A 	 ... (13) 

where, i0 is the mass density of the blood, 
f is the volume flow rate, 

.. 	f/A is the velocity of the flow, Thus, 

df MT= pi-p2  

where M = PIIA 

... (i4).  

M.A = effective inertanee per unit cross-sectional 
area of the blood, 

From the second reservoir the discharge is to the 
distal vascular bed (capillaries etc.) . Assuming that there 
is a linear relationship between pressure in the reservoir 
and flow into this bed, 

p2 
Pout ' r : . . (15) 

where,r is the total effective peripheral resistance 
dpe  

Defining 	fe  = &1 d-- e 	 ... (16) 

the total system of equations can be written as 
dp1  

f in .̀  f  = Kl d - fe 
dp2  

f - foist = "2 	 ... (17) df 
M at `pl -. p2 

and 	 foist = r?  

It is convenient to consider the electrical analog of 



the system and equations. The following analogies are. 

J 

drawn. 

Phys  creel 

flow rate in f ' gout' fe)  
Pressure (p1. p2) 
Compliance 
Mass equivalent (M) 
Peripheral. resistance (r) 

El ect Electrical Anal o 

Current (iin, I,  
Voltage (vi, v2) 
Capacitance (Cl , C 2 ) 
Induct gne a (L) 
Resistance (R) 

In terms of these variables, the equation become 
dv 

in " i = C1 l  _ e 
dv2  

_ out .C2d"" 

=vi -- v2 and '  

lout = v2/R  
The equivalent circuit is shown in fig.( 6b ). 

• During diastole it is assumed that ie  snd iin  are 
zero. Physically 1e  zero implies that there is no active 
vascular compression and iin  zero implies that during diaa 
stole there is neither flow into or out of the heart. With 
these assumptions the system during diastole becomes, 

dt 	1 vl 	42 
... (19) 

and 	d 	=—i...-v2  
2 	2 

EWIT' AL LIERARY UNlYERSITY OF RORKEE 
i,UORKLL. 

a 
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These equations may be written in the vector form 

X= FX 
i 

where 	X 
x2 	l vi 

x3 	' v2_ 

-~-  and 	 0 	0 '  

6.4 HEMODYNAMTC PARAMETER ESTIMATION 

Hemodynamic parameters such as the internal diameter 
of an artery or the arterial compliance are important quan-
titles in the evaluation of the condition of the systemic-
arterial system in patients. The computation is in effect a 
parameter-estimation technique, where the response of a 

system to an input signal is compared with that of a model 
of the system.20 

The lumped linear, time-invariant description of a 

segment of artery, illustrated in fig. (7c.b) contained the 
four components RS, L, C and RP, where 

RS --. -+ represents the laminar poiseuille resistance 
to blood flow through the arterial segment. 

L -- --- represents the inertia of the mass of blood 
contained within the segment. 

L and RS - together are called the longitudinal imp-
edance. 



~I 

C -- -.~ represents the compliance of the arterial—segment 
or the volume increase for a small increment in pressure, 
and is called the transverse impedance. 

Most of the blood flow directed into the arterial seg-

ment will leave at the other end, but some will leak' out 
of the segment via a number of smaller side branches. This 

secondary flow path is represented by a simple lumped 

resistance RP. 

Contrary to the properties of this model an actual 
aerial segment is of a distributed nature, has side 
branches. Fast variations are caused by pulsatile changes 

in the diameter of the artery during each heart beat. These 
are relatively small and thus ignored. Slow variations with 

time are caused by a change in contraction of the smooth 
muscle contained within the arterial wall material, but the 

time scale of this effect is such that changes over a small 
number of heart beats are unappreciable. 

In Fig. (9) are presented three arm models, using L, 
tee and pi(it) configurations. Although tee and , is segments 
are a more accurate-representation of a continuous transmiss-
ion line, the L segment was chosen for implementation on the 

computer to simplify the programming. It can be seen from 
fig. ( 8) that the two middle sections are identical in all 
cases, whatever representation is chosen. The differences 
occur at the boundaries, giving rise to an 'end-effect' i.e. 
the parameter values of first and last segment are less 

accurate. 
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The following set of equations approximately describe 5 
the properties of a uniform arterial-segment. 

8UT) 
= ~rrrr.r. 

S2 
... (` 3 

L = 	; C = dV/dp ; RP 

Fi = 	f (pi - po .. 1?i3 ) dt 

p 	1 j{F 	F 	po)dt 	
... (24) 

o_ L~ 	i'" o 
Ectai
Equivalent Diagram of L Section rrrrw.~ r.~r r~~.wr.~.~.rwrnrrr~+.0 ~~rrrr. 

The actual form of each L section is depicted in 
fig. ($L) . The values of RS and L follow from the arterial 
cross-sectional area 8 and the segment length . By main-

taining the length of each segment at a known and fixed 

value, it is possible to express FZ in terms of L by 
eliminating 8 in the equations for Rw and L. It follows that 

with A a constant which is inversely proportional 
to the segment length .. A - 0.8/! (approx) . 

The linking of R$ to L is important for two reasons, 

1) It reduces the number of adjustable parameters. 

2) It improves the uniqueness of the solution i.e. the 

input and output pressure pulses of an artery may provide 
the transfer of this 'system' as a function of frequency, 
but not the impedance level. 

6.5 THE ELEQTRICAL ANALOG OF A SEGMENT OF ARTERY 

The derivation of the electrical equivalent of the 

arterial tree is based upon the analogy between the linearised 
Navier-Stokes squat ion and the squat ion of continuity on one 



hand and the telegraph equations on the other. 

Writing the Navier- atokes equation, 

aV 	aVz 	Ovz 	02Vz 1 ovz a2V 
? „fa 	 ~Z 	 dr ..°. (25) 

In this expression for the pressure gradient, the 

first three terms in the right-hand member concern iner-
tial properties, the last three viscous. Noordergraaf16 
neglected the second and third terms in the right.hand 
member, with respect to the first, and multiplied by the 
crows-sectional area S, which gives, 

!V 	o2v dv a2V 
—dz 	ar 

For simplified model, we assume the longitudinal velocity 
Vi to be independent of ,'r' radius of the vessel, i.e. 
velocity is having a flat profile. The first inertial 
term in equation (26) on the right hand side represents 

the flat profile for velocity. The second bracketed viscous 
term represents the parabolic-profile. . 

. Viscous term is represented by Poission's flow and 
is equal to - I, where I denotes the flow. 

ar 

.'.- 	= 	 " v[ 	iJ  
ur 

or  fi +i 



or -_ 	*WI 	 ... (28) 

Considering again the arterial segment to be short, 

and .equating the difference between inflow and outflow 
with the sum of the uptake of blood an equation of cont-
inuity can be written: 

where, 	= flow gradient (Difference of the inflow and 
outflow) 

Term. 	represents the distensible property of the 
tube 

W'p = Escape of the blood due to lateral pathways, 
W i = Leakage of the blood which is escaped from 

the segments through the lateral arteries. 

d = distensibility per length 2'l "c 

a ='Poisson ratio for the wall material, 

B = Young modulus, 

h = wall thickness . 

The analogous telegraph equations are 

ov - = I,' pit + R ~ ' 	 ... (34) 

tlZ _C ff+GV 	 ...(31) 

where, 

V V(Z,t) - voltage, 
L' Inductance per length 

C' = capacitance per length 



i= i(z,t) = current, 

R' =. resistance per length, 

G' = conductance per length 

On comparing the equations (28), (29) and, (30), (31) 
yields, 

,pressure p  voltage V 

• flo r I 	" current i 
inertance per length + inductance per length L' 

Resistance per  ~, resistance per length R' 
length 8µ/,r4 
Compliance per 	,„~ capacitance per length C' 
length da/dp 

leakage per length W' conductance per length G' 

The corresponding passive electrical network t'ig. (9 ) 
representing a finite length of artery AZ coneAsts of four 
passive elements.16 

1 = 1't1Z = AZ 
1 R'6Z=DZ 

nr (3~ 
0=C#AZ=dp .®Z 
G = G'p Z == W'd Z 

The ratio -. 	/ i' is called the longitudinal impedance 
per length, the ratio - v/ol/oZ is called the transverse 
impedance per length. 
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FIG.IO PASSIVE ELECTRICAL NETWORK CONSIDERING 

THE SLEEVE EFFECT. 



6.6 .a I EE VE-EFFEC'I' 
In the above derivations we assumed flat velocity 

profile in the calculation of the inertial term and a para-
bolic velocity profile in the viscous term. This leads to 
frequency independent values for V and R' in the analogous 

equation (30). In special cases this may be an adequate app-

roximation. For many arteries this is not true because of 
the pulsatile nature of blood flow. In those arteries the 
interaction between viscous and inertial terms has to be 

taken into account, determining a velocity profile different 
from the two assumed. A modified passive equivalent electr-

ical network for 'sleeve-effect' conside ons is to be 
designed. 

Womersley derived a mathematical expression for the 
relationship between flow Q and pressure gradient 	for 
laminar oscillatory flow.21 

nr2 - 	L 	
2J1(aj3'2) 
	( jet Q 	 iw 

d 

p I- 
aj 

3- 2 

do(aj 	) 
r'rmj J e 	 ... (33 ) 

~ 

where, A = amplitude, 

w = circular frequency - 2uf 

A ejwt = pressure gradient 

a= r y where v a kinematic viscosity = 
Jo and Jl are the zero and first order Bessel functions of 
the complex argument 	1 

3~2 . 3/2 
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The relationship between flow gradient and pressure redu- 

ces for this limiting case to equation (29) . From this it foil-- 
owe that the transverse impedance remains unchanged,, so. that 

the sleeve effect requires a modification of the longitudinal 
impedance only. The longitudinal impedance Z~ is derived from 

equation (33) 
Z ,- Z~ /d Z, AZ = segment length. 

: 	o Qty Z 

«2 	2Jl (dc j3/2)  

nr 	a j3/2 Jo (aj3/2) 

Writing this as, 

ZQ = jL' (w) + R' (w ) 

then 	L' (w) = 	2 	0sel0 
R I (w ) 	u a2 e sinel© 

nr M10 
where 

2J 
M1© = modulus fl.2 .} 

a~ Jo 

•.. (34) 

•.• (35) 

2J 
s~ = phase {1- a~3 2J } 

0 
The corresponding c i„cui.t is given in fig. (to). L' (w) and 
are frequency dependent. The difference between L' and L' (w ) 

and between R' and B.' (w) is shown in Fig. ( 11 ) , 

From the recurrence ” formula for Bessel functions 

(n+l) 
 J(x) + Jn+2 (x) 	Z x 	Jn+1(r) 	 ... (36) 
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Pitting n = 0 in the above expression, we get 

Jo (x) + 24x) x d (x) 

or 	xJo (x) — 2J1 (x) 	2J1(x) = x J2 (x) 	• • • (37) 
Equation (34) can be rewritten 

Z f= 	a2 ac 	 . j3/2J (a j3/2).*2J (a j3/2) }_1 
... (38) 

 

~' Xr4 	aj3 zJ (aj  ) Q 

On applying (37), (38) reduces to 

	

jIAa2 	J0 (oj3/2) 

Applying the series development of the Bessel functions 

2m+n 

	

m=oo 	m f (m+n) 
g2 

to equation (39) and substituting A = 4--- leads to 

m Am 4µ m=o 
Z,  

nr 	Am 

I mm) 
Application of a continued fraction expansion results in 
(See Appendix I ) 

Z' = 	(a1X+b1+ 	+ rI + 	+ 
3

+ ... ) 
Ar. 	 (a2X) 	i "2 	(P-3)  

(41) 

with Y 

	

am = m 	 ... (42)
. 

bm = 2m 

The element values thus become 
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2.1 
m = 1,2,3 .... 	... (43) 

a m ur 
The corresponding passive network for the longitudinal imped-
ance is drawn in fig. ((z) . 

In the extreme case that a is sufficiently small, so 

that R2 + following elements may be omitted, the circuit of 

fig. (Iz) reduces to .LL, R1 and L2 in series, giving an 
impedance per length of: 

Z' 	4 	jw + Sim 	 ... (44) 

For direct current (c=o) equation (44) reduces to 

Z' - 	 ... (45) 
Q 

which is equal to the resistance. 
For large values of a £ . (34) asymptotic expansion 

of the Bessel functions gives 

Z4 	JW 	 ... (46) 
So for large a the term R'(w) , although an increasing funs 

tion of a2, may be neglected since JwL' (w) increases faster, 
fig. (lib). 

If a is eo large that R1, R2.... RN111 may be neglected, 
L, L2 •... Ln will virtually act as a single inductance L, 

with 
N 

LE i +U-
2 

N2-1 

~l 
(2m--1)} 

..• (47) 
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If a relative error of ~' is tolerated, RN + 
following elements may be omitted. The error decreases with 
decreasing a. since the resistance increase faster than the 
inductances. Hence, an accuracy of at least 1/N2_1 for the 
whole a range is obtained by using R1, R2 .... %-1 and 

I,Z, L2 0000 L only. This accuracy can be attained with 

even fewer elements for the a's we actually have to deal 

within the circulatory system. 

Elements required for each a in order to obtain an 
accuracy of 2'/. in modulus and 3 degrees error in phase, 
can be calculated. The results are shown in fig. ((3). Given 
the radius of an artery and having decided how many harmonics 

should be transmitted with this accuracy, fig.() indicates 
the elements necessary to represent the longitudinal impedance 
of a segment of this artery. 

Since L2 and RZ fig. (I2,) turn out to be equal to L 
and R in the network of fig. (c1 ), the required ' network, 

6 

representing the electrical analogy of laminar oscillatory 
flow impedance, only adds a corrective network to the circuit 
as shown in figure ('F). 

For the human systemic arterial tree an average number 

of correction elements are 5, the maximum being 8. Figure (I) ) 
gives magnitude and phase of the input impedance of the entire 
system, for the cases with and without sleeve effect. The inclu-
sion of the sleeve effect shows some tendency to smooth the 

input impedance. On the whole, the difference has proved not 
to be large, and so the contradictory assumption originally 
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made concerning velocity profiles had no devastating effect. 

6.7  ANQNALOU$. VI ,-COaITY 0Q  BLOOD 

It has been known for a long time that blood is not a 
Newtonian fluid, but that the relation between applied hydro-
static pressure gradient and steady flow is not a linear 

one. This is due to the fact that blood is a suspension:The 
apparent viscosity depends upon the rate of flow and upon 
the radius of the tube. Three phenomena may be considered 

.16 
responsible for this: 

1. Cohesion of red cells, 
2. Inclination of the red cells to move to the axis 

of the tube. 
3. Orientation of the cells. 

The rate of shear in blood, depends on the radius of 
the vessel, and is the determining quantity for the apparent 
viscosity. For low shear-stresses the apparent viscosity is 
almost independent of the radius and increases with decree s-
ing stress, while for high shear stresses it is almost inde-
pendent of the stress and decreases with decreasing radius. 

In the construction of an electrical analog of the 
arterial system the effects of the phenomena, described above, 
on the equations of motion of blood in the vessels, must be 
known. 

Taylor showed that neglecting the shear dependence of 
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the viscosity in the arterial system as a whole introduces 
only a small error, because the effects on oscillatory 
and steady components of the flow tend to extinguish each 
other. 

In small arteries there is a tendency of red cells 
to move toward the axial region of the artery thus generat-
ing a boundary layer of lower viscosity. 

Womereley assumed the viscosity of blood to be constant 
and the longitudinal velocity of blood at the wall to be 
equal to that of the wall itself. Taylor worked out two modi-
fications of this, namely: 

1) the flow equation for the condition that there is 
is a marginal layer of lower viscosity, at the wall of the 
vessel. 

2) the flow equation for the case that the viscosity 
is constant but that the fluid slips at the wall. 

Under the assumption of slippage at the wall, Taylor 
found, 21  

Aur4  r 	2J1 	- j(Ot

- 	J e 	(1-8) jµ ac 	a 	J -ka 	J 

where, 
A 5 jwt — oz Z 

ry 
and y = coefficient of friction at the wall.. 

Taylor, disregarding leakage, also derived an expression 



for the wave velocity, which can easily be rewritten as: 

 , /2 
= E r 	

Jl 
J ... (49 ) 

2ri(1-Q 
 

2 
From the relation Ztl ZQ = - 	, he showed that the 

C 
transverse impedance remains unchanged. The longitudinal 

impedance is given by 

, 	_ --0 OZ . 	A  w 	 Jo Z   

. o - =2 J1 -- K a 
aj 	... (50) 

In order to obtain the electrical equivalent of the longi- 
tudinal impedance a logical approach is to isolate the term 
containing K. 

2 

696 Z' 	_ w ' [3.+ 	J, 
e_ 	 J © J2 l-Ka j 72j i 

1 
=- J°_2 J1 w- 4Kj3 

 

[ /j0 	..y 	J 
(-1 + 	) + 2 K j a2 aj 2 J©-2 Jl 

2J 
Denoting /2  a 	= F10 

8 
. Z , 

	c . 	~~s= jw[+ (1F10r'l 	 3.+ JKja: 
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The electrical representation of Z 	is thus shown in 
fig»(16). Thus Z 	differs from ZL only by the presence of 
the resistor Ro, which is equal to 1R01 = 	the inverse of 

Knr 
the last term in the denominator in equation (51) . 

As no modification is required in the transverse imped-
ance, the passive electrical network, representing the osci-
.latory flow impedance of a segment of artery, accounting 
for both the sleeve-effect and slip at the wall, which is 
determined by the friction coefficient y , takes the form 
illustrated in fig. (17) . To the capacitor C a resistor may be 
placed in parallel, to account for possible leakage as in 

fig. ( u,-). The values of the elements are 

P » 	I "m 	2m-1 
m= 1,2,3.... 	... (52) 

Ro l = 	'. 
Taylor also derived the flow equation for the case of a 
boundary layer of lower viscosity µ' and width pr assuming 
perfect adherance of the fluid to the wall. The longitudinal 
impedance Z' a is equal to the Z' • He also showed that the r 
transverse impedance is unaffected, just as in the case of 
slippage. Therefore, the electrical network representing the 
flow impedance is identical to that illustrated in fig. (17). 



6.8 ELECT C A~-ANAIOG OF PU QNARY ARTERt TRBE 

Pollack, Reddy and Roordergraf 22 applied the network 
equivalent shown in fig. (I2), with some modifications, to 
the larger branches of the pulmonary arterial tree. 

The values of the electrical elements _ of fig. ( ) 
are as follows-- 

2 

Rm 	TIME 

fl !e  a 
For vessels with sufficiently 

and 

.. • (53) 

small cross-section S, 

the resistive term Rm are much larger than the ,inductive and 
capacitive terms, thus reducing the circuit of fig.(14) 

to a simple series resistor. Therefore, only the larger 

vessels need be represented by the complex network of fig. (14-). . 
Smaller vessels (radius under 2mm) ure represented simply by 

resistors. 

As an improvement over the network of fig.( I z) with 
its rotated 1 configuration Noordergraaf divided the trans- 
verse impedance into two sections, forming a 'it' network. 
This tends to reduce the error caused by lumping by distri-
buting the compliance of each segment. The resulting network 
is shown in fig. (r8) . The resistor Rlp8 (post-segmental leakage 
resistor) represents leakage through a small vessel originating 

at or near the distal end of segment. The generator marked 
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'extra vascular pressure' is used to simulate any desired 
perivascular.-pressure fluctuation resulting from respiration-
phenomena. 

The dynamics of the pulmonary arterial system .are 
Influenced by perivascular pressure continuously, fluctuating 
with respiratory rhythem. In the theory, such extramural 
pressure fluctuations were ignored. This constraint of aero 
extramural pressure has been removed by placing a voltage 
generator in each segment between the transverse impedance 
and ground fig. ( is). Each generator can supply the voltage 
corresponding to local extravascular pressure. 

Peripheral Resistance.. Total peripheral resistance is deter. 
mined by dividing the mean arterio-post capillary pressure 
difference by the cardiac output. Mean pulmonary arterial 
pressure in the recumbent position is taken to be 15 mm Hg. 
Although, no exact data are available on post.capillary press-
ure, its value can be estimated to 8.5 mm Hg from the measure-
ments of Agoetoni..Using 6.5 mm Hg(15 mm-8.5 mm) arterio-
post capillary pressure difference and assuming a cardiac 
output of 5 litres per minute, the peripheral resistance comes 
about 100 g 57-1  cm"4  or 100 ohm expressed in electrical language. 

In the model . each peripheral resistor RZ  or R.,, is 
chosen in inverse proportion to the cross-sectional area of the 
vessel. Since the parallel combination of these peripheral 
resistors constitutes the total peripheral resistance, the 
second condition in determining their value is-that the resis-
tance of the parallel combination is 100 ohms. 



CHAPTER—SEVEN 	 - 	6 8 

ARTERIAL VERtI VENOUS iEM03~YNAMICS 

7.1 INTRODUCTION 

Following the studies of Hagen and poiseuille, the 

science of hydrodynamics for flow through, rigid circular 
tubes has been widely developed by engineers and biologists.. 

An contrast, it is only during recent years that studies 

have been carried out concerning the flow through collap-. 

sible tubes and these have been few in comparison to the 

studies of flow through rigid tubes. 	- 

Approximately one sixth of the total blood volume 

of the vascular system is contained within a system of 

branching circular tubes (arterial system) in which the 

blood flow in described by the classical laws of hydro-

dynamics for circular tubes. In contrast, approximately 

two 'thirds of the blood volume is located within a branch-
ing system of collapsible tubes (capillaries, venules and 
veins) in which the flow differs from that in tubes of 
circular cross—section. 

7.2 ANATOMY OF VETI S 

The veins are composed of the same structural 

elements as the arteries, but there are some important 
quantitative differences . 



r 

The venous walls are some five to ten times thinner 
than the walls of the corresponding arteries. Thus they 
offer little resistance to collapse if either intra-
vascular pressure decreases (as during periods of transient 
flow acceleration) or extravascular pressure increases 
(as during muscular ou traction) . The absence of a .sig-
nificant number of elastic elements in the media. consti-
tutes the primary structural difference between veins and 
arteries. 

The presence of valves is a unique feature of the 
`venous system. The functional contribution of the valves 
consists in increasing the efficiency with which extramurally 
applied forces acting as an axiliary pump propel the blood 
toward the heart.23  

7.3 TRANN  VR.AL PRESSURE 
The pressure within the veins is low and pulsatile 

in nature. Because of these conditions the variations in the 
pressure external to the veins are also of consequence since 
the cross-sectional shape is affected. Hence, a third para-
meter, in addition to the pressure and flow, must be 
introduced, which need not be considered in case of arteries. 
This is transmural pressure, and is defined as the pressure 
difference from inside the vein to outside the vein. 

The extravascular pressure primarily due to respira-
tion and muscular contraction, are of the same order of 



,,nitude as the intravascular pressure. Thus they play 
an important role in establishing the transmural pressure. 

Tranamural pressure in the venous system can be zero 
or negative in regions of the venous system such as near 
the entrance of the thorax . The low transmural pressure 
plays an important role in venous modelling. The elastic 
modulus decreases non-linearily with decreasing trans- 
mural pressure especially as transmural-pressure approaches 
zero. The Young's modulus for ,a vein, is at least 2 to 3 
times smaller than that found for an artery. 

The thin wall, the low tranemural pressure, and small 
Young's modulus all contribute to making the veins struct- 
urally non-self-supporting and hence collapsible. It is 
this collapse phenomena that makes a theoretical analysis 
of the veins more difficult than for the arteries. 

In the flow of liquids through collapsible tubes the 
cross-section of the tube is free to change as the trans- 
mural pressure changes. In a collapsible tube there is a 
liquid-solid interface extending over the ' entire surface, 
even though the tube is free to change its cross-section. 
When a collapsible tube becomes distended to the point 

that its cross-section is circular, and its wall is stretched, 
it no longer behaves as a collapsible tube but functions 
as a distensible, circular tube, and the flow through it 
it is described by the classical laws of hydro-dynamics for 
circular tubes.24'25 
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7.4 DIFEXQ1JLTIL..LN  VENOUS BB ODYNAMIC  

For the reasons listed below it is not possible to 

apply the analytical treatment applicable to the arterial 

case directly to the case of veins .26 

1. Three rather than two variables must be related. 
Since two of these are independent, whole' families of 
solutions are obtained, rather than just one solution. 

2. The cross-section of the vessels cannot be assumed 
to be circular. Therefore, this introduces problems in the 
solution of the fluid flow equations such as to find vel-
ocity profiles. 

3. The cross-sectional area of the veins changes as the 
veins flatten out.This implies that the relationship between 
the pressure and the flow is non-linear. 

4. One of the most useful methods for studying the 
properties of the arterial system has been the electric 
analog. Since the arterial system is approximately linear, 
linear techniques of circuit-synthesis have been used 
successfully to design the circuit, and the circuits could 
be constructed easily from standard electric circuit ele-
ments. Since the pressure flow relationship within veins 
is nonlinear, linear synthesis techniques can not be applied 
directly. 
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C d N 0 Z us T 0 N S 

Equations are known which :desoribe the ,laminar flow 
of viscous fluids for all fluid flow systems. Although some 
turbulence may occur near bifurcations, which dies out rapidly 
at small distances from the bifurcation, so that the flow 
through the vessel is laminar. The equations of fluid flow 
consist of four partial differential equations in four unknown 
quantities, the three components of velocity and the pressure, 
of the four equations are expressed conveniently as a single 
vector equation known as the Navier-Stokes equation. 

The Navier-Stokes equation has the unfortunate property 
of possessing nonlinear terms. In the mathematical-analysis 
of the ar eries, they were usually ignored. The reason for 
doing this was that these terms were proportional to the square 
of the velocity, and that, since the velocity itself was small, 
as compared to the phase velocity, its square must be even sma-
ller and hence could be considered negligible with respect to 
other terms. 

In the analog computer for the human systemic circulatory 
system, the electrical equivalents of a segment of artery 
as designed up till now are not satisfactory, because they 
lack representation of sleeve effect, which results from the 
interaction between viscous and inertial forces during pulsatile 



blood flow. A network is discussed taking into account the 

sleeve effect and anomalous viscosity of blood. These effects. 
do not alter the circuit completely but only require adding 
to the former circuit a corrective network. 

The main dissimilarities between the venous system 
and the arterial system have been discussed. The primary 
area of concern appears to be due to the thin self supporting 

vessels whose wall properties vary with traxismural pressure. 
This attributes to a decreased phase velocity which makes 
accurate modelling difficult. 

A 



APPENDIX_ I 

Introducing the notation, 
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Rewriting I'gn•(40), 
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Applying equation (B) with s=l. leads to, 

7.,'p=-" 

 

[X+2+ 	+[+ 1~ +~"iJ + ..,• ~+ %r 	 " 

in general form we can write, 

[a, + ?~I + 	2 	
+ r`~ + 1" 	 1 (a~~) 

.... (41) 
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