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ABSTRA CT 

Startinj with geographical positions of the 

substations, which are to be interconnected, it has been 

shown that a oat of equations can be obtained which are 

solvable by li.noar-programming techniques to obtain a 

minimum cost notriork design. Any security of supply 

conditions considered necessary can be incorporated into 

the design equations. One of the earliest proposals to 

formulate the criteria of power system design#  in such a 

clay that the problea could be solved by an automatic 

optimisation process, was put forward by Knight2  in 1961. 

Ho used new r ethod of linear programming to minimise an 

economic objective function of the electrical network, 

subject to a set of linear inequd,lities representing 

security requirements. The next approach to the planning 

of electrical-power networks is mixed integer linear 

programming based on interpretation of fixed coot 

transportation-type models which include both network 

security and cost of network losses. 

The row' rds for optimising the design of electrical 

power system increase with the size of the system but 

unfortunately severity of the problem increases very 

rapidly with the size of the system. Despite the 



Improvements in the sizo and speed of digital computers used 

for this purpose, it is always useful to reduce the storage 

requirement. To achieve this requirement piecevise optimi-

zation method is designed for use in the optimization of large 

linear problems. 

Examples are considered for the illustration of the 

discussed methods. In order to solve the integer programming 

problem Lexicographical, Enumeration methods are used. In 

the II chapter a comp,.itational procedure for system planning 

is presented. This procedure combines and optimizes load 

flow, reliability analysis and economic evaluation. 

In the III chapter Optimization techniques have been 

discussed with their advantages and disadvantages. Plow 

charts and the computer programmes have been developed for 

Enumeration, Lexico raphical and bounded value variable 

problems. Examples based on the reference2  are given and 

solvod, using the above computer programmes. A flow chart 

with computer programme is developed to write the security 

constraints by comp-iter itself to avoid the error and 

complexity occurring in data proparntion. 



IUTR ©DUCT I d f 

Cerny papers and books have been written over tho 

past sixty years on the analysis and performance of electrical 

poorer-system networks. D.C. and A.C. network analysis havo been 

used to supplement hand computation In steady-state networks 

analysis since about 1925. Sipco 1952, digital computers have 

boon increaoingly employed to obtain numerical solutions to 

steady state and transient network equations. All this work 

has been concentrated on analysing the porformance of networks 

and very little has been done on the mathematical deoiGn of 

networks. To illustrate the point, a network may be proposed 

which has a circuit between two substations A and D. The 

methods used for analyoina purpose.onablo one to predict what 

the voltage and power--flow conditions on this circuit are 

likely to be and what its cross-ooction should be. They do 

not give any asciatanco in saying whether, infant, a circuit 

should be provided between A and B or not. The aim could be 

to obtain a minimum-cost outline design of a network to supply 

a number of load points from a number of supply points. 

The method could be based on the use of the technique 

of linear programming, developed by economists and mathematiw 

clans during and since the ascend world war. The problem 

involves the consideration of a number of variables whose 
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relationship with each other is defined by a set of linear 

equations (or constraints), the number of variables being 

unequal to the number of constraints, and subject to the 

goneral condition that the variables should be non-negative. 

There may ho a large number of solutions satisfying the 

constraints, and the problem is to find which of these solu-

tions hra some preferred characteristic, say minimum cost. 

florin l algebric method can not be used to solve such a problem, 

and linear prorammin* enables optimum solution first to be 

obtained in a systematic manner and secondly to be identified 

when it is obtained. In order to solve the linear network 

equations threo types of linear programming approach can be 

used. 	(1) Noninteger programming2, (2) Mixed integer 

programming19, (3) Pure integer programming2. 

The method using mixed-integer programming approach 

to the planning of electrical-power networks is based on 

interpretation of fixed-cost transportation-type models:', 

and include both network securing and costs network losses. 

Both single period and multiperiod planning problems19  can be 

considered. 

The plsnnin,7 of electrical-pocwer network is a complex 

process in which the application of computing techniques has 

grown steadily for high voltage transmission system into the 

more recent applications in distribution system analysis. 



Altornritivo attempts to devise automatic computer methods 

have often resorted to a heuristic approach3 , and more recently, 

tho immorGenco of advanced facilitiesfor computer-aidod design 

has stimulated the development of effective Interactive 

computing; methods for systems design4' 5 . The methods have 

ignored tho time dependence of Practical planning proposals, 

and tho question of optimal sequencing of development has 

tended to be treated separately6  although the combination of 

dynamic programming with heuristic network synthoeis has been 

reported7  and linear programming has boon used for time 

phased planning of generation system. 

A mixed integer programming model for optimal'-power 

network planning that permits the dynamic requirements of the 

problem to be represented as a natural extension of network 

synthesis is described. Although according to requirements, 

present day computers are growing in size and speed, one is 

still faced with limited computational facilities. In the 

linear programming field, decomposition algorithms  has been 

developed which can deal with piecewise solution. But this 

cannot deal efficiently with the addition of constraints in 

the interconnecting systems. Kron9  has developed diakoptical 

optimization algorithm for transportation problem. 
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In computational procedure for oyotom planning 

doocribed in Chapter. II, Sec. (8) load flow, reliability 

a.n%lysio and economic evaluation are combined together. 

Actunny planning the oxpanoion of a high-volta,,  o transmission 

system involves deciding which now lines will enable the 

system to satisfy forthcoming loads with the required degree 

of reliability. Since these decisions involve considerable 

investment and operating costs, the planner will wish to 

keep all costs as low as possible. The difficulties of the 

problem come from the tremendous number of possible alterna-

tives, the need to make the best use of ijnformstion about 

future loads, and the complexity of the reliability constraints. 

The outages of some specific combinations of lines must not 

at any time overload any other line in the system. The 

recent literature on power system reliability has shown the 

importance of sound planning in satisfying future demand. In 

view of the extremely high investment costs of electric 

power systems, it is desirable to have procedures for 

adding the right kind of equipment at the right time in the 

right location to achieve the desired level of reliability 

and quality of service at lowest cost over a long range. 

Linear programming(12-14)  deals with the minimization 

of a linear fur ct.ion in which the variables are non-negative 
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and constrained by a syat©m of linear equations. In an all 

lntoaor method the problem is stated v ith given integer 

coeffici .ntu and all calculation result in integer coefficients 

at each iteration. For general purpose Lexicographical 

approach appears to be good tool to solve the integer 

programming problem. In special problem Enumeration method 

can be used conveniently but the convergence of this approach 

is not assured. In case the solution does not exist, the 

computer will not be able to give any such indication. In 

actual practice it is useful for the problem uhoro the 

variables are zero or one and is very very useful where only 

one or tuo lines are to be added to a existing power system 

satisfying the previous security and reliability constraints. 

The advantage of the Lexicographical algorithm is that if the 

solution is not existing, the computer will directly 

indicate it and its convergence is assured in finite number 

of iterations provided the solution is existing. tlext 

advantage of this method is that memory requirement for the 

long problem is not going to be increased excessively as 

compared to Enumeration m hhod. The memory requirement for 

Enumeration method increases tremendously with the also of 

problem, the speed bein,- faster. In case where the variables 

have upper bounded level, bounded variable interior programmes 

based on Lexicographical approach may be used. The flow chart 
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and computer programmes have been developed. For all the 

methods discussed above and it may not be possible to say 

which method will be superior because for a particular 

problem, a particular approach will be advantageous. The 

selection of the procedure depends on the experience and 

requirement of the problem keeping the computational 

facility available in mind. In present work' the programmes 

for L xicogr-i phical algorithm, Enumeration method and bounded 

variable problems are programmed on computer which can be 

used according to requirements. Ex=tmples are solved using 

these methods -ind. results are presented. 
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All the throo c-000 arico in order to ineroano the 

availability of supply to con8umers. In each caoe, one is 

preoentod with a goographical disposition of substations 

uhhich requir- connecting together at minimum coot sati3fying 

the desirable conditions for security of supply etc. AB tho 

number of substations increase, the ways in which thoso 

connections can be made in a technically satisfactory manner 

will become large. The art of system design lies in choosing 

tho scheme which is both technically and oconomica?ly the 

best or of least makds -~ reasonable compromise between to 

two requirements. 

(2) Criterion for Formulation of I cat ro lc Do i n Eauat ion z 

The criteria used in the formulation of design 

equations for optimal solution by linear programming methods 

are given as 

(a) A criterion which gives a minimum-cost design. 

(b) A criterion which gives a des i-,gn with minimum 

circuit length. 

(3) 

(3.1) Outline 	r t od 

Firstly it is necessary to consider what supply 
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CHAPPR -II 

(1) Important Poaturep of P uor-S l Network z 

(1 .1) Ro uiremeits of a Potter-suy,,Fly detwork 

A power supply network may be designed so that it 

will transmit given amounts of electrical power and oatiofying 

the conditions given below s 

(a) The cost of the network to be constructed and 

operated should be as small ao possible. 

(b) The continuity of supply afforded by the network 

should not be less than the minimum acceptable and this 

minimum acceptable limit for continuity depends on size and 

type of the load. 

(c) So far as it concerns to aenerrtting station, the 

connections provided should Civo adequate capacity out of the 

station undor those circuit outages and load conditions assessed 

as technically and economically justified during the design 

study. 

(d) The necossr+ry operational and control facilities 

required to obtain satisfactory performance from the network 



should be con3ietont with the facilities normally available 

for a network supplying loads of the size and typo concerned. 

(a) In case w here the extenoion of the power system is 

required, extension of the network should be possible. 

(f) There should be no risk of harm to plant or 

perconnel under normal or fault condition. 

In the present work, the aim is concentrated to fulfil 

the requirements (a) to (c), and (e). Further it has been 

shown that bow these requirements are achieved using linear 

programming. 

(1.2)  Difficulties in L+etwork Design  s 

At present due to complexity of the power system, 

ongineera even in advanced countries have to face the problem 

of intdreonnocting a number of substations by a network which 

will satisfy with the conditions given in Section (1 . t) . Such 

cases may arise in : 

(a) The provision of distribution methods (modium 

and hi ,h voltage) to supply new housing states. 

(b) The reinforcement of existing distribution notoora 

by superimposed subtransmission networks. 

(c) The reinforcement of existing subtronsmiesion 

notworl a by superimposed transmission networks. 
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. ll the throo c130a ariso in order to incronoo the 

availability of supply to consumers. In o, ch cmoe, one is 

preoentod with a goographical disposition of substations 

which roquir' connecting together at minimum coat satisfying 

the desirable conditions for security of supply etc. As tho 

number of eubotationo increase, the mays in which thoso 

connections can be made in a technically satisfactory manner 

will become large. The art of system design lies in choosing 

the scheme which is both technically and economically the 

best or at least makes -t rersonable compromise between tt.o 

two requirements. 

(2) Critorion for Foz"mulrttion of Ild w0 k Desiirn Equations s 

The criteria used in the formulation of deli n 

equations for optimal solution by linear pro ramming methods 

are given as 

(a) A criterion which gives a minimum-cost design. 

(b) A critorion which gives a dos i-gn with minimum 

circuit length. 

(3) Formu1ptjon by the rinimum Cost Criterion using  
Pure Integer eroiranmiinn 

(3.1)  Outline of I'ethood,  s 

Pirotly it is necessary to consider what supply 
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conditions the proposed network has to satisfy and then the 

attonpt can be made to formulate the dost n conditions mathe-

maticnlly. These will depend primarily on the network voltage. 

In the case of medium-voltage net.orks it is not always 

economical to provide a full duplicate supply, but particular 

attention must be paid to the voltage regulation. On the 

hi~3 ar voltage netowrks a failure of the network will affect 

many consumers and for this reason duplication of supply is 

more important, Here our attention is mainly concentrated 

tors the designs of <<igh volts:e distribution methods, 

sub-transmission networks and the lower voltage transmission, 

notwor?ts. At these voltages, the maintenance of supply is 

the most important consideration. Other factors to be 

ccnsiderod may be avoidance of excessive expenditure on 

auitehgear and of too many circuits along any one route. 

It is to be kept in mind that as the number of circuits 

along any particular route will increase, the coat invoetmont 

on svitchaear will also increase with the number of circuits 

along that particular pouts. 

while writing the constraints, or network equatiions, 

as a starting point it to assumed that unless there is no 

any restriction (natural or man made), a path pi j for one 

or more circuits ozioto between every pair of substations 

Si and 3. The aim is to design a value 0, i t 2... to 
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each path Pij  indicatinC that the optimum dooign requires 

G, 1, 2 .... circuits between oubst .tion ;31  and 3 J  . 

In order to do this, inequalities specifying security 

conditions (Soc. 3.2) and any other design conditions 

considered necessary, ouch aa_ limitation of the number of 

circuits into substations (Soc. 3.3)  or ;lone any Civon 

ruloa (sec 3.4) are trrittcn d own in terms of the posoiblo 

paths. These linear inequalities are then used ra 

constraint inequalities subject to which a cost function known 

as objectivd fur ction of the network, again in terms of 

possible paths, is minimized. Generally the values obtained 

for the Pi  j  will be non.integer, and it is necessary to omploy 

some methods which will produce an integer valued solution. 

(3.2)  Commission duce to Sec 	: 

In the beginning whilo writing the security of 

supply inequalities it is necessary to bear in mind th rt 

one has no knowledge of the final network connections. It is, 

therefore, n000ssn ry to specify minis um connections to every 

possible group of substations to ensure thit all groups in 

the final design will have adequate circuit capacity 

connected to them. 
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Many supply authorities have at'indardivod transformer 

oizos and overhead line and cable ratings. It is possible to 

say that two cafe Ito will supply upto, say, 3 subetrntions, 

4 substations will require 3 circuits, and so on. 

Alternatively, if substation loads differ appreciably, and 

particularly if the dosiun is to incorporate connections to ,  

generating stations, it is necessary to estimate the circuit 

capacity required into every possible group of substations. 

Thus security of supply conditions can be specified as 

(a) Each load substation must have at least hi  

circuits connected into it 

(b) Each possible group of Itio substations must have 

at least h2  circuits connected into it; 

(c) Fach poosiblo group of 3 load substations must 

have ct least h3  circuits connected into it. 

and so on, for every poosible group of load substations of 

all of zoo upto and including all the load oubotat ions . 

This sot of conditions will produce the following 

inccw'lit ico . 

1=1 	1 Piles  h1 for load substation 31 	... 	(1 .1 ) 
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r 	 r 
 

11 P111  + 	X 11 	 112 1 h2  
1 2 	 1 2 

for load substations 31,1 , 812  ... 	(1.2) 

whore, 	51 ... S are supply substations 

Sn... 3r  are load substations 

h is number of circuits required into a group 
of substations 

S is numbs r of substations in a group 

If the proposed network Is also to interconnect 

generating stations, it is necessary to add a sot of 

equations to specify that each generating station, ovary 

group of ge.erating stations and evdry group of 3enerating 

stations and load substations has sufficient circuit capacity 

connected to it to ensure that gdnoration is not restricted 

by lack of circuit capacity. 

13hon the network io supplied only from one supply 

substation, it is not necoea^.ry to specify any circuit 

connection at this substation because the final security of 

supply dquation (for all the load substntione) will show 

what total circuit capacity is required into all the load 

substations and therefore out of the supply substation. 
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If more than one supply substation in to be connected to the 

network, it may be nocoosary to specify at least n certain number 

of circuits out of each of the supply substations. 

(3.3) Constraint Due to itchroar 

Intension of the supply engineers is also towards the 

reduction of capital investment in suitchgear, which may account 

for 4C--5O of the cost of substation. Various methods used to 

reduce the capital investment in suitchgear take the form of 

controlling, more than one piece of equipment from one circuit-
breaher. Now it is-more important from the "a$poct of nottiork 

design to consider a limit for number of circuits which can be 

controlled at one substation. This limit may be 2, 3 or 4 

circuits. 

Thus if it is desired to limit the maximum number of 

circuits controlled at any load substation to say, k, a sot of 

inequalities can be written down as follows 

r 

iii 	l 
pil 	k 4.for load substation S1 	... 	... (4) 

This type of inequality could also be used to ensure 

that excessive fault levels would not occur on the proposed 

network when a fault infood over circuits is known to be very 

approximately constant. Supply substations must be focal points 
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of a network and hence any limitation of the numbor of circuits 

connected into these is not often justified except for fault 

level control. 

(3.4) Constraint Due to Limitation of  IntOreubat1on Circuits 

Sometimes it would be desirable to unsure that all 

circuits shall provide as much opportunity as possible for 

connection into future substations and the satisfy this 

requirement many supply engineers consider that the number of 

circuits along any route should be restricted. This criterion 

will lead to a set of inequalities of the form 

i'i j  E  W 	 ... 	... 	(5) 

where w is the number of circuits along any one route which it 

is not wished to exceed. 

If substations Sit  S1  and Sk  are practically In 

line, inequalitios of the form 

+ P 	 ... 	(6) 

Pik, + Pjk 	W 	 ... 	(7) 

will again oneuro that i given number of circuits along paths 

botweon thoco .ubntationo iz not exceeded. 
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3.5)  fotciork Cost I?unct on 

The network cost function which has to be minimised 

will be 

r 
= 

i=1 	i 
Cif  21 	... 	(8) 

i=1,'1. 

This equation implies that the cost of providing 

circuits botroon two points is proportional to the number of 

circuits. This is true for sin3le-circuit overhead lines and 

also applicable to underground cables. But it will only be 

approximately true for multi circuit overhead lines. 

The cost, Ci,, of a circuit between substations 91  

and 31  should include the coot of the controlling switehgear 

plus a preposition proportion of the establishment and civil 

onginoering costs for substations 3i  and 3. Therefore, it 

appoars to be necessary to assume the number of circuits to be 

connected into a substation in the final design in order to 

account the avitch(ear, establishment and civil engineering 

costs. If this assumption is not correct, it is unlikely to 

affect the final design as the error in the cost will be small 

in relation to the total circuit coat. 
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(4) 

(4.1) Distribution and Subtz'ansmission Networks 

Difficulty arisoo in the decision of circuit 

capacity that should be provided to the larger groups of 

substations. This is due to possible poor load sharing 

between a number of circuits. It may also be necessary to 

assume an outage of more than one circuit. 

Only experience of load flows on networks and a 

knowledge of field statistics can enable a good selection 

of the required circuit capacity. It has been suggested 

that actual substation loads should be considered. Parti-

cularly in the case if they vary widely, the total load of 

the group can be turned into equivalent numbers of circuits 

for writing into the constraints, as follows 

h = N1 + 111 

where N1 is the first integer greater than or equal to 

SL/S and P11 is a small integer say, equal to one (for from 

supply) 

SL  is total load in a group of substations 

S - Faximum rating of circuits on proposed network 
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(4.2) Transmission iotworkn  

In the case of transmission nettworks, the circuit 

capacity into a group of substations can be calculated as the 

sum of two components, the planned transfer and the inter-

connection capacity. The planned transfer is given by the 

difference between the group load and the group generation. 

The individual circuit capacities being known and the 

fault risk to be guarded having been decided, the nunber of 

circuits required into a group can be taken as 

h = 22 + T~2 	 ... 	(q ) 

where N2 is the first integer greater than or equal to 

(planned transfer + interconnection capacity) 

and 112 is small integer (for firma upply) 

It is quite apparent that the major difficulty 

in applying this method is due to the large number of cons-

traint inequalities needed to specify a design. The 

writing of the constraints if extrdmely tedious with the 

increase of number of substations to be interconnected. 

Some ways in which these difficulties might be tinimised 

aro suggested below 
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(5) Problems A©so intod ui h the J sin Bguatlor 

(5.1)  Problems of the Solution 

The limiting feature in the size of the problem 

which can be solved is the computer storage. The linear 

pro3ramming solution requiros the storage and nnipulation 

of a matrix slightly greater than the number of equations in 

one axis and the number of variables in the other arid. 

If aI  is the number of equations and upper bounded 

inequalities and b is the number of variables, a computer 

solution can be obtained by the reduced simplex method if 

(a1  + small integer)(b1  + small integer) computer storage 

('U) 

when the constraints are in the form of lower bounded 

inequalities 

(a2  + small integer)(b1  + small integer) computer storage 

where a2  is the number of lower bounded inequalities 

and b1  number of variables 

(5.2)  Network - Deoinn tiatrizt_ i ' 

Jith m supply and n load substations to be 

connected to the network, there will be m + n possiblo 
2 
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paths betueon the substations, or the number of paths will bo 

1/2 (m + n) (m + n - 1) 	••. 	.•• 	(t ) 

If all the design conditions proposed ar© to be 

included, there will be n upper-bounded inoquations specifying 

maximum numbers of circuits at each load substation, and n + nQ 
02 

upper bounded inqqualities specifying maximum numbers of 

circuits along any path. There will be n 	lower-bounded c 
1 

inequalities specifying security conditions to each load 

substation, n inequalities specifying security conditions as 
02 

discussed to all possible groups of two load substations, and. 

so on. Hence the total lower-bounded inequalities required to 

specify security conditions is 

	

nel + nc2 + nc3 + ... ... + n c 	+ n  = 2n - I ... (12) 
n-1 	n 

The total number of constraint inequalities will thorefore be 

(n + m +n ) 	 + 2 	- 1 dower bounded• 
c2 upper bounded 

in terms of in + n variables. 
C2 

e.g. A network design to supply 8 load substations from 2 supply 

stations would require the settin6 down of 308 inequalities in +c~ 

terms of 45 possible paths. 
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Practical experience in the application of network 

dooi-n has indicated that the majority of load substations in 

the final design, in fact, thit the circuits per path will 

rarely exceed two. Thus it is considered that inequalities 

for limiting circuits into substations and along path are, in 

practice unnecessary. 

As the greatest number of constraint inequalities 

result from the specification of minimum numbers of circuits 

into substation groups. But many of these constraints are 

over satisfied in practice, and could therefore be omitted 

from the design equation. This will be the case if paths 

between some substations are considered to be impossible or 

undesirable for circuit construction. In general, if there 

are n1  load substations with no direct connections to n2  other 

load substation, there is no need to consider security condi-

tions to any group composed of one or more substation from the 

n1  Croup and one or more substations from the n2  Croup. 

(5.3) Use of 8pepialQompuor Programme 

Once the number of circuits required to be connected 

into groups of substations of various sizes or load has been 

decided, the writing of the constraints inequalities is a 

purely mechanic l process. It has already been shown that the 

solution of a problem of any size requires the use of a 

computer and therefore writing of the constraints also by the 
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computer will be preferable. The 3avin„ in time and reduction 

of possible errors in coding the large matrices for computer 

solution would also be significant. In order to solve this 

problem a separate programme can be dovejopod very easily to 

prepare data for linear programme or data preparation programme 

may be itself a pioc6 of the linear programme. The second 

choice will be preferable with time point of view. 

A more promising approach is thought to be the use 

of Kron's 'tearing technique' discussed latter to in order to 

reduce the memory requiroment and consequently for the optimira- 

tion of the larger systems. When the solutions obtained in the 

examples were substituted in the initial design inequalities, 

it is found that 80;'S of these are over satisfied and therefore 

these may be omitted. An algorithm is given below for tho 

data preparation of the Lexicographical, bounded value problem 

and Enumeration methods. PrQgramm _is~lna- 

this al 	 IItx 	to-eta-#ham-saet ity 

of the grou.pa- -of--t 	 n. Developed approach is 

capable of writing the constraints of higher groups in the 

tame fashion as shown bolori. 
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5.4 Algorithm for Data Preparation of Leaico~traphical 
lie_ t_,,,hod 

1. Develop a tableau by listing the paths, number of substations 

i2(I)'  NQ(I) 

1 	2 

T 

N 

3 

2 	N 

3 	4 

3 	N 

• 

f 	 • 

(N-1) 	N 

where NP(I) and NQ(I) are the two substations at the end of 

path (I). 

2• security of each load station lead to 

r 
for load substation 31 

izti 
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3• 	r 	+ 	r ilt 	 h2  for load substation 211 ,322  
i=1 11.12 i=1  11'l2 

and „o on. 

Flow ch .rt is given for above algorithm indicating the 

whole techniquev4 Fi i• t-W- UU 

(6) Design by a I:inimum Circuit  Len..th Criterion 

While designing in hi gh.-voltage rural network, 

practically it has been observed that it is advantageous design 

to design a network to interconnect a number of points so that 

each point has at least one connection and total circuit 

length is as small as possible.  

Suppose we have to interconnect r points. Hence 

(r - 1) circuits are required and to specify at least one 

circuit into each point the following inequalities can be 

►ritten down. 

♦ M . 	 ... 	(13) 

i:14j j=1 4 1 
Pij 
	r -- 1 	 .. • (14) 

1;i1 	1 	 • • • 	• • • 	• .. 	(is) 
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The lonath of interconnecting circuits to be mintmiaod 

will be 

	

r 	r 
y = 	9 	'ii :iii 	... 

i=1'J jm141 
(16) 

uhcro 

to number of circuits along path iJ 

is lencjth of path i $ 

(7) Pormul a tion by o rzj.nimum poet oritorion using  
mixed intercor 'roo,r mmina 

(7.1) I~&~tod COOT TrnnRnorIntion Plodol_ 

Piae~k coat transportation problem can be modelled by a 

2-otaga coot function, conoisting of a fixed chargo f and an 

incromontal cost o that represents the marginal coat per unit. 

£ or n unite, the fiaod coot Z is givon by 

z = f + ox 	if:: 

or 	Z = 0 	if s-0 	.•• 	(17) 

thin coot function in ouproosod in mixed intoCer 

pro{;racming form by introducing an integer dummy variable 21 

which can taho only the values zero or ono, oo that if 

7 C, 21 = C i and if z 	= 0, 21 = 0. 
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For onamplo, 

z fp1+ on 

subject to 	 ... 	... 	(is)  

a4 Opt- I 
whore T1 is an upper bound on x and is made equal to the 

maximum carrying capacity. 

(7.2) 

Let us consider a planning problem in which a set of 

substations are to be connected together at minimum cost by 

making the beet selection of available paths. The feasible 

directions of power flow in a path will be referred as 'routes' 

Thus a path will contain two routes. 

(7.3)  Cost Punction 

If the opdrating coats and energy looses are neglected, 

the cost of establishing a connection ona path is simply equal 

to initial fixed capital cost of the circuit or circuitos 

installed. Thud the coot of the whole network consisting of 

ml paths is 	 0 

ml 

	

= _. 	K P1. 	 ... 	♦.. 	(tq 

	

d=1 	i 1  

where ml is total number of .paths, the pj are integer variables 

restricted to the valuos zoro or one, if only one circuit per 



26 

Path is permitted, or soro, one or two, if two circuito por pith 

are permitted; and so on. Thio coat function is to be minimised 

satisfying the security constraints (or in other words subject to 

the power-transfer capability of the network being adequate). 

(7. 	Conotraie is : illyll 

Firstly power flows into each substation i must be 
satisfied. For a load substation 

Cn(i, k) (P3 ' - P) a p~f 	... 	(20) 

For a sup ly substation 

Cn (i, k) (P3 	P3 ')=A1 	... 	(21) 

J-- UN(i) 

where Di* Ai, P1, PJ' 0 and 

Cn(it k) = + 1, i-k 

~- 1 ilk 

It being the number of node connected by branch 3 to node it and 

and Pi ' being the powor flown from node i to node k. secondly 
the power flowing along each path meat not be greater than the 

maximum capacity of the circuit or circuito. 

'C 	F:3p1 - P3 - Pi' 	... 	(22) 
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7.5 ,jnc1us icd of Coats of Loo s 

The annual coot of 12R losses in a (Jiven circuit is 

linearly related to the pock poor loss by the losa-load factor. 

For future annual peak-power flour, therefore, this annual cost 

may be capitalisod and represented as a quadratic function of 

peak-power flow (Pia. 1). 

jiyq2iç1_12R losoog 

The resulting nonlinear cost curve can be represented In 

the linear cost function by piecoc tse linoarisation, ithore the 

pouor-floe variables for circuit J. P and P3 ' are replaced by 
ouboUlary variables aj, 'bJ, PcJ, Paj', Pbj', Pct' etc. 

to represent power flogs at each of the cost rates Ca j • Cb~ , Cc j etc., 

the number of cost rates depending on the accuracy required. For 
circuit J. the loss costs appear in the cost function as 

Cai Paj +Cai a'+ Cbj 1~bJ +Cbj Fbj 	Goj Fcj+ Gcj )cJ e 

and the constraints of equation 22. are replaced by 

0 	flap1 i -P 	-k' a j 

-P -P' 0--TSbp1i 	bj 	bj 

0 	11cp1 i- 2e j - P'' o f 

cihoro, .:a , 11b, Q represent power-floww limits for each of the 

lose-coat rates. 
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(7.6) Interpret* tion of Model for Lot, Voltaire_ I3otrork Dosi~~n 

The general form of fig. (2) suggest the idea of a special 
coot function for the low-voltage distribution systems, where 

security constraints are not required, and trhere the cost of losses 

can be quite sianif icrnt.. Though Jiffernt tyrtes of cable or line 

arc used, a general power-flow cost function can be derived that 

to made up of c single fixed cost plus a linear unit charge, 

without reference to the type of conductor to be used, as shown 

in Fig. 3. 

7.7 	o 	e F 	110 la 

Time phase planning model permits the dynamic requirements 

of the problem that is a natural extension of networks. 

For multiple time intervals, each of the zero/one integer 

variables pIi is replaced by a specified ordered act of zero/one 

intoer variables D,t. Each member of the sot relates to a 

specific time interval. 

Since power f low will change with time, the number of 

power-wflow variables is multiplied by T (For T intervals) the 

fixed-cost portion of the cost function is of the form 
ml 	P 

j 3 1 t= i 
	Kjt 't 	... 	... (24) 
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cihoro J- jt  is present-valued coat of inatallinn; circuit J in the 
interval t. kouer-flog constraints (security constraints) are as 

boforc, but increased in number by the factor T., because a full 

set of corstrainti must be included for each interval. 

(8) iormu1tton Combining 3ecuz ity and Roliability 

(a.1)  Ro2uiromont 

In the linear integer, and mixed integer fore ulation 

discussed previously in 61rafters--k Section (1-7) minimum cost 

design of interconnected system, considering the security 

constraints has been obtained. Operational cost also has been 

reduced. But it is not euro at all that a system satisfying the 
security constraints would be reliable als9V upto the desired deree 

of reliability. Availability and reliability are two different 

criteria. A system serving upto a required degree of availability 

is not bound to be rolitble upto desired degree of reliability. 

But so sor concerned to transmission system, it must be reliable 

upto desired do-reo of reliability, otherwise, even a minimum cost 

dooin y not on?:b10 us to esc - pe from the various types of 

trouble. 

€3.2  C . Po' or Plot Epu!.tion 

A.C. rower flo: equation between two adjacont nodes 

i and j is aivon by 
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Pi - JQi a E1I 	1131 j - di [ Yif 1E11 	L e11 + di 

+ iyijl tEt L eij+ d j J 	--- 	(25) 

where, Pi 	Active component of power sent from node i to 

node j 

Qi Reactive Component of power --do-- 

L, E3 VOltages •b 	at node i and 3 respectively. 

5, d,3 'Voltages phase angle at node i and 3 respectively. 

= 

1 L 
~ ~ii 

Impedence magnitude of line (i, 3) 

Phase angle of impedance Zi j 

eii = - ei _j 

Prom Eq. (25) 

Pi = E12 yii Cos gii + EiB3yi3 Coo(813 + d3 - di) 

Qi 	Ei2 Y11 Sin 8ii + EiB3 yi3 Sin (Q + d3 - di) 

	

E 2 	E E 
or Pi 	-  - Cos ®ii -  Cos (0i~ + did ) ... (26) 

	

E 	ESE 
Sin Gii - 	sin (0i j + U13 ) .. (27) 

iii  

where, di3 = d - 
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(8.3) A.C. Power Plots i4odol a 

Injection of activo poaor at node 1 

I. 	 cos (9., La Z + d4 ) + 	 ... (28) 
ij 	ij 

i = 1, ..... n 

where j is the index of the node directly connected with node i 

Neglecting the resistance of branch (ij) 
B ~ 

Ii 	 -- ----J- in did 	 ... 	 ... (29) 
ij 

1= i t 2 s .... n 

By Taylor's series ezgansion simplified A.C. power-flow equation 

can be obtained neglecting the higher order term of did 

Thus, 

Ii

EE 
j - u(i) 	Zi j 	1 ... (30) 

shore U(i) is sot of all the nodes adjacent to node i 

Eq. (30) may be written as 

I (d 	d) 	... 

ihero C1i is capacity of branch ij (to be defined) 

Also for conveniency it may be written that for the line 'a' from 
node i to J, line 'lot Fija = Cija (d - d) 



Branch flow 
E  ~ 

CjJ is Ja 

a=1 	ZiJa 

32 

... (32) 

where S = number of circuits in line a 

Sia, Eja = Voltages at node i and J for line a 

= Impedance for line a between node i and J 

Let us define 6 	= 6i ~. 8 j , 	K = 1, 2 ....  Y 	a .. (33) 

where k refers to branch k (which has been oriented from node i 

to node j). 

The maximum loading of an EH'V line can be formulatod either 

as a maximum line flow or as a maxi mum 1*ae phase angle difference 
botueen its end nodes. T tore fie may suppose that for each line 'a' 
of each branch k, the permissible flow F 	= Oka Oka 

• 	k = 1, .... r and 'a' (- 8(k) 

where S(k) is set of all parallel lines in branch k 

Cka = capacity of line 'a' of branch It 

Oka = Voltage phase angle difference of line 'a' 
for branch Is. 

Hence inequality for line flow is 
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ha 	aka 	... 	• . • 	 .., 	(34) 

3imilzrly a positive angular limit ;,a to given by 

	

O~ 	Oka 	k - 1, ... a and a - 8(k) ... (35) 

During the formulation tie have to '-eep in mind that (1) If several 
lines of tho name length are compared, the cost per unit capacity 

tondo to decrease as capacity increases, (2) Several parallel 

lines are more reliable than a single line of equal admittance. 

To cheque a configuration, a series of outage teats must bo 
conducted. For each of these tests a certain combination of lines 

should be temporarily removed from the model and the angular (m) 

differences 0k are computed using (26), (32) and (33). Lot Ok 

be the anglo difference in branch k when toot m is conducted. 

After T1 test has been performed, the maximum voltage phaoa -angle 
difference that can ever appear in branch k during the outage toots 

may bo defined no 

fua 	4 	It - 1 , ... rand r (- (It « .. m) ... (34 ) 

If now to have 

	

` 	 I = 1, ... r 	 ... 	 .55(35) 

then the oyotom is declared secure. If not, it means that overloads 

appear during soma outage testa, and for each branch Ic, the maximum 
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overload is t 0* - bk), whenever this number is positive. 

Since these overloads are unacceptable, it is necessary to 

remedy them by appropriate transmission capacity additions. 

(9) 

(9.1) Repuiremot  

Despite the improvements in the size and speed of digital 

computers used to solve the linear progrsmme3, it is very necessary 

to find out the methods which require reduced storage capacity or 

fast convergence to solution or both. In order to got the first 

requirement, a piecewi©o method has been given below to eo vo the 

large linear programmes. 

(9.2) power Flocs EQuations 

Power floss through a branch may be expressed in terms of 

the voltage magnitude and phase angle in the non-linear form as 

given below t 

Sin (+~i - 3 	
(36) 

ii 

is the power flow through branch ij 

is the reactance of the branch 13 (resistance neglected) 

i and ri are the voltage r^agnitudes at node i and 3 respectively 

661 and g1 are the voltaaCo angles at node i and 3 respectively 
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Linearization of the po~rcr-flozr equation is done, for the 

application of the linear proaramminj. A linearization scheme is 

obtainod by the application of folloiin, assumptions 

(a) Vi, v 	= t 

(b) Sin (0i - 81) a 4 i - 0~ 

Nonce the potrer flow equation (36) is converted into the 
form 

e -e 
pig 	xii 

yji 

where yid a ~...-.- 
ij 

(37) 

(9.3) PrblemPo;ilation for the jeeizjse. Solution  

Let us consider the network shown in Fig. 3. 

rrj 
	 T ? T~,~ 	~'~•~,31 

Byapldtting, any,, nod O into two, the network shown in Pig. 4 
is obtained 



The shaded nobs in fig. 4 are reference nodes for each 

subdivision. The nodal equation for subdivision may be written as 

yoo ®~0 y00910 - yob9~b 
 + 1 'go .- P'to + t~3o 1 	0 

«-y 	81 	- cao 	0 
91 41 as 	a -yr 	91 

ab 	b +Pl ga -PI la + 	t = 	0 a 

bo8 o bn 	a - y 	' 	y 	' bb® b 	be 	o ' + 	gb P' lb + 0 -' = 	0 b 

	

ob9~ b + gcc~ o + P ge -- P 1c + f 	0 o~ 

...  (38) 

whore 'I g3 is total generated power at node i 

is load at node i 

ail is power injection due to tearing at node i 

and subscript I indicates subdividion 1. 

Excluding the e'uation a t the reference node from the above 

set of equations, we get following matrix equation : 

- y1910 + 1ø + P1g _ rl1 + G"1 = a 	... 	(9) 

The total generated power at the ith node PIgi may 

be related to the output of the individual generators PI as 

m .-- P1  Qi 	 G j=1 	ii 	j 

where m is the number of individual generators and C is equal 

to 1 if generator j is at node and zero otherwise. In matrix form 
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the above Eq. can be writvon as 

P1 	= Cl 2 Pf 	 ... 	... 	(40) g 
where CIF is topoloCical matrix 

The node power injection ti  may be related to the power 

tranofor t3I through the split nodes 

-1 =i C 1~ G1 	 Y*. 
	

(41) 

where C g is a topologic-1 matrix. 

Substituting from Eq. (40) and (41) into Eq. (39) we get 

	

Y1®I © + Y1G1 I + C12Pt + 0b9G I — P11 = 0 	... 	(42) 

The equation at the reference which was eliminated may now be 
replaced by the relationship which sums the total power transferred 

into a subdivision to zero. Thus we get 

31p PI + S11 - 81 p11 = 0 	... 	... 	(43) 

where S are summation row vectors willall the elements equal 

to one. 

The power output of each generator is constrained between 

an upper limit and lower limit giving 

p I 	pI L p' 	 f 44 ) m 	U 	 • ■ .  

Lot PI0 is the amount of generation above the minimum unit, 
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T:n . (42) , (43) and (44) my be written ns 

_1 	y191 +C1P P4 ® + C1 o1 -p~1 +CP 	144 	... (45) 

21 ~ p1 	+ 3 G - 811211 + f1 i'1m 	0 	... (46) 

0 	P10 	2111 - P1 m 	 ... 	 ... (47) 

The relation for the thermal limits on tho lines is 

..ii - 01 -8 G t.. 
yij 	yij 

In general the thermal limits for subdivision may be expressed as 

-TI G Ctt6~ G T1 	... 	 ... (48) 

uhoro Cat is branch nodal incidence matAix 

The relations for subdivision 2 may be written in 

nirnilar manner by changing the superscript I to 2 in Eq. (45) to (48) . 

Prom the above relations (45) to (48) it is clear that 

the constraints for every subdivision are trritton in terms of the, 

variables of every subdivision sepwrAtely. 

The constraint-' of the split node, however, link th000 

conotrairta toaothor. 

The constraint€ for the above example may be written as : 
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(} 1 .- G2 	"= 0 

8— — 0 	a 
C 	C 

or in general form 

C9G = 0 	.., 	., 4 ) (49) 

and 	CO ® = 0 	... 	.. 	C k 	(50) 

Constraints (45) to (50) may be expressed in matrix form 

to give the following programming tableau. 
Co t31 1 

N~1 1 Li 6 4 ttfS 

Tableau I 

The objective function of the linear programming to be 

considered is the generation cost which may be expressed in 

linear form as 

Cost = Ctg 

or Cost =Ct p + Ct 'P g m 	g. e 

Since the first term is constant the function to be miziimiaed is 

Coat - Ctg 2e ... 	..• 	(51) 
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The general linear programming problem have inequality 

constraints.  In these cases, we convert inequalities to 

equalities using the Black variables. For this purpose the 

coefficient of slack variables in objective function is taken 

equal to zero. 

3o far in the case of Optimal network expansion problems', 

we have tb0 find out minimum cost design satisfying the security 

constraints. Thus our aim is to find the number of circuits 

between each pair of substations to be interconnected. The 

number of the circuits along all the possible paths will be 

variables appearing in the constraints. As we have already 

discussed that linear programming give a solution in which 

variables are not restricted to be integer. Thus integer linear 

programming which gives the solution consisting of all integer 

values will be recommended for this purpose. 

2. Intoner 'rorcrammin 

In an all integer method the problem is stated with given 

integer coefficients; all calculation result in integer coefficients 

at each iteration. 

2.1 Opt~jtyyTheory for Inte, er Programmin,z 

We have to solve integer programming problem satisfying 

the conditions (1), where ail, bi and C~ are given into-era. 

The method used to find the optimal solution of Eq.(1) consists 



 Ill CHAPTER - 

SOLUTION..2ECI~fINUE3 USI G DIGITAL CO PUTT t: 

I . Lino ar _ 'of l_ami4  

A largo number of problems in mathematical programming 

are solved as linear programmes. The general form of linear 

programming problem is : 

To find x1 :, 0 for J = 1, 2, ... n that minimize Z 

when 

n 
C1 x =z 

n *.. 	(1) 

J=1 °ij gi w b
i 

where a bi and C1 are given constants. The linear 

form Z is called objective function. 

The solution to the problem usually results in fractional Xi 

values. The integer programming problem arises when the 

vrriables are restricted to integer values. 

The general - linear programme is always defined in terms of 

minimization, when we have to maximize Z = 	C3 X, we simply 

convert it 	to a minimization problem by minimizing - Z. 
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of making a series of changes of variables to achieve the 

transformation 
n 

xj  d~ + 
 d  Yk  J=t,2...n ...  (2) 

k=1 
The integer constants, d , djk are developed in an iterative 

procedure during the solution of the problem. The initial trans- 

formation is established- by writing Fq. (1) in parametric form 
as 

n 

n 
X :t 	..b + 

=1 a jyi 	a, i 	1,2... m 

The variables x +i 
for i = 1,2, ••• m, are surplus variables. 

Eliminating ~ from 
Putting (2), we get the equivalent 

programme 

To find integer yi 0 for J - 1, 2, ... n that minimize 
Z, when 

• 

7, z 0 + n 

J=1  Bj yJ 

n 

d3 + k 1 d 	yk 	0 J= 1,2... n  ... (4) 

n 

n+i 	" bi + J=1 ai, j Y1 	0, 1 - 1,2 ...m 
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The constants Z0, Cj, bi and aij are developed as result of 

transformation with 

n 

7,o' 
3=1 	i d3 
n 

C~ s  0kdkj, J = 1,2.►.ln 

k=1 

n 

bi 	bi 	:i a 	di , i 	1,2....  m 
_ 	n 

aii 	k=1  aiIC dkj' i = 1,2 ...m; 5= 1,2,.. n 

Theorem I 

If the constants C T 0, d1 7, 0, and bi O for all 
i and 5, then the minimal solution to Eq. (4) is given by 

Z 	?.,a 	y3 = 0 	for J = 1 ,2... n. 

3. :i,e, icographical I ethod 

3.1 Improving d Nonoptimal Solution 

Let us consider that all C5 0 we can write (4) as 
n 

x 	B + 	Ajy3  ... 	.. (6) 
5=1 

where xi is a column vector with components Z,=1 ,..• 

B is a column vector with components Zo, d 1 , d ,.. do 41 .. -bm 
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and A io •+ column vector Frith components C3 , di j' d2 j, ..dn 
_ _  _ 

a13, a23, .... a 31 

Initially (3) is also in the form of (6) with B components 

0, U, .... U, - bi, -b2,... -bm 

and ai components Ci, a, of .... Q, 1, 0, ... 0, a1 j .. am j • 

The 6 appears as the (J + 1)tvh componont of di 

Lexiicos,tpphic Ordering: 

In order to ensure a finite algorithm we use lexicographic 

ordering in considering Ai and B vectors. 

A vector R is defined as lexigoraphically greater than 

noro or lexi3opositive, if R has at least one nonzero component, 

the irot of which is positive. A vector R is less than vector 

S in the lexicographic sense, if the vector S minus R is 

o€a eé apb1e loxicopooitive 

If (3) is written in the form of (6) , we see that Al a 0 
because all CJ,7 0. Suppose at some iteration we have achieved 

a form like (6) whore A3-r © and one or more components of B are 

noGativo. At this stage optimality conditions of Theorem I are 

not fulfilled. solect a row' from (6) with negative B components. 
n 

Lot the inoquality be a4y~ --` bo  ...  (7) '  
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whore bo is the neantivo comDonen  
to have a solution, at least one of the ai Is - :-J A4sitive. Taking 
D a posjtivo number, any value a 

~Y be written as SID  

r 

D ( D ) D̀ , 0 c r <= D ... (8)- 

vhoro (a) donotes the smallest integer greator than or equal to a. 

Thus after dividing by D in (7) and using (8) we have 

U 

	

.:li 	
n 

y j 	+ ,~ 	jet r~y3 

whore F 	 1 n 

U 	 b 
Hence hkivo 1 P~y~ 	 ... 	... 	(9) 

Sinco the left hand side of (9) can have only an integer valu
e, a, then 

U 
; 

	

1 	jYj 	(10) 

tihoro q = (b0/D) 

It is desirable to make a change of variables for y, whore 
a 7 0; then if D is chosen so that D. AD FROM (10) , 0 
do Cot, 

Yo 	q - 	p y + 
Js 	i i 	Ye 	 .... 	(ii) 

ihero integer y15 	
0 represents the surplus variable In (10). If 

ye from., (11) is substituted into (6), No have 



Z 	B1 + 
A 
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The coefficients of 12 are 

  

1 4 s 

 

A t0 	Aa 

B' 	B + qA 
tie roquire that the 

Atj remain lexicopositive, 

Thus 

A3 - P 	 J As > 0, 	--~4-a 	... ~  ••• (14)  

Condition given by (14) enables us to determine the index 3 

and a value for D, which produces P values. If J
* is defined 

as the set of indices J where a3 '0 from (7), the index $ is chosen 
by the rule 

Aa = Lexicographically min A3 J(, J+ 

or Aa = 1 - min A3, J (- J+ 

Uhile developing the computer programme Index 8 is taken as L141td for 
°asineas . 

As is the lexicographically smallest of the A for J( J. 
o define min 

to be lexicographic minimuii. Define integer value  the lar(:eet intO..or that maintain q - g A 	
~c leicop 
	lue U 

J 	3 8 	positive 
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for J' ( J also take Us = 1. Condition (14) is fulfilled if 

P 	U . 

foj we are able to dotorzh .ne D. If D = ~k/Uk for some index 

it (- V' , than Pk = Uk . 	If D % ak/Uk, then 1'k can only be reduced 

and condition (14) holds. 

It is an important factor to be considered that in order 

to reduce the number of iterations, q is made as large as 

possible to bring a greatest change in B. Thus to produce a 

largo q value, D is made as small as possible, Hence we find Di 

by the rule 

- max 	I :_ D1 _ 	d ~ J+ 

It is notable that D1 may be fractional and that D as 

so that Fa is unity in (10). 

Uhen (12) is developed, we denote B' and A1 i values 

to be the current B and A values. Hence (12) is of the same 

form as (6), and repeat the process bogun with inequality (7). 

Eventually a form is developed where B has no negative components. 

At this point the form (6) is like (4) and the condition of 

theorem 1 are fulfilled. The optimal solution to (1) is then 

produced by the first ( n + 1) components of B. 
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3.2 Alaoritjj 1 

?. Develop a tableau by listing the column B, Al , A2, • • • . =a 
Initially Z 	a, bi 6 b; C 	C >, Q, dii = 1, did 	0 

for i 4 3; ail = nij Go to 2 

2. If d3 ~ 0 for J = 1 , 2, ....n 

and bi 	0 for i=1,2, ..., m 

the cinizn l solution is z = Zv 	x = d3 doe J = 1,2,....n  Stop 

Otherwise select the nonobjective row with the omallost B component. 

Suppose the row i - bo, a1 , a2,... an. 	Define J+ as the set of 

indices J where a3 - O. If all a j 4.. o, the problem has no solution; 

stop otherwise, go to 3. 

Plot: chart for algorithm (1) , taking into account the 

modification given in section (5) iz 1rawn on front r ido. 	yn°iu-b 

3. Determine index :3 from A. = 1 - min, + A3. Find 

the largest integer Ui that maintains Ai - U3A0 - o for 

J + J. If Ao and A3 begin with an unequal number of zeros, 

tako U J = c(D3 = o) . Otherwise, sup=pose the first non-zero terms 

are o -and oo. If oa does not divide oi, t'lke U3 = 

whore (a) denotes the greatest into-or leas than or equal to a. 

If oo divide oi , then Ui = o f /oa if Iti - (o3/o5)Aa > 0 

and Ui o1/0s - I otherwise. Albo Us = 1. Take D1 = max . a,/Ui 
J(~T 

Go to 4. 
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Calculate q - (b0/D1 ), P = (a1/D1 ) and new column values 

B1 = B + qAe and A16 = A - P A9 For J 4 S. Designate B1 

and AI i to be the current B and A. Return to 2. 

4. Bounded Variable Fro b:len e 

So far we are concerned to optimal network expansion, 

and hence come into need of restricting the number of circuits 

along a particular path say one or two. Thus we are interested 

in solving the integer programming problems when the variables 

have upper bound restraints. We have to find the solution of 

(1) with the addition constraints  xJ Ami For J.= 1,2,..n, 

where Am are given integer values. 

The solution of the bounded variable problem can be obtained 

by Algorithm f with the additional inequalities - x~ - Amj 

But the problem wi 11 grow considerably large. Hence a different 

approach is given below. 

Suppose at some later iteration we have achieved a form 

like (6), where  o and one or more components of B have value 

d i Am 

Select one such row from (6) and have 

n 
x = d +  ~  d~~y  ...  ..  (15) k 

Ami 
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The yk  must satisfy 

d  

k=1 

If we define dk  and bo  by 

ak 	- d jk 	k - 1 ,2, ..., n 

bo  = d - Am 

then (32) is exactly of the form given by (7). We develop 

transformation- (ii) and the new form of (6) given by (12) . The 
lexicographic property of the A is maintained. The bounded 
variable problem is solved by the use of (16). 

Algorithm 2 

1. Same as step I of Algorithm 1 with the additional listing 

of Am1 , Amt , ... Amn. 

2. (a) If o 4.di 	Am 	 for .J = 1 ,2, ... ,n and bid o 

for i = 1,2,...,m, the minimal solution is 

	

Z = Zo, x j 	d for J = 1,2,...,n; stop. Otherwise 

go to 2(b) 

(b) If did Ami  for J = 1,2,..n, go to 2(c). Otherwise, 

select the row with d component of B that produces 

the largest value of di  - Am1 7 o. Take bo  d j  - Ajj j  

ak  = - dj1  for K = 1,2,...n, As the row picked. 

Go to 2(d). -
t'RflW !l Ri4RY UNfVERS"T OF ROO KFr 
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(c) Select the nonobjective row with the smallest B component. 

Suppose the row is - b0, a1 , a2 ... a Go to 2(d). 

(d) Define J+ as the set of indices 3 where a1 0. If all 

a3 o, the problem has no solution; stop. Otherwise, 

go to 3. 

3. Same as 3 of Algorithm 1 

1. SAme as 4 of Algorithm I 

Flow chart for algorithm (2), taking into account 

the modification given in section (5) is drawn on ,front paige :. No. S 

5. Modification-.in A1orjtins for Development of 
ornputer proamrne 

In present work, the vector B and A3 for J  

are written in the form of a matrix. A(I,j). for 1=1,2,.., M1 

and J = 1,2,...N1 

where 

Ni  = n + 1 

M1 	= N+M+ 1 

n is number of variables 

and m is number of constraints. 

6. Enumeration METHOD 

Some ttJmes while solving the optimization problem, an 

enumeration problem has advantages over ot}~er methods. It is 

quite useful if the value of the variables is small say, zero 

or one. For the higher value of the variables existing in. 

the solutions the memory requirement will be large. Of course, 
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3inco tho variables take on only discrete values, they can be 

listed easily. 

+1e have to find integer values of xi o for 

J = 1,2,...h that minimise Z when 

i = 1,2,..., m 	... 	(1) 

To solve (t) directly by enumeration method, we 

begin by finding all the values of Z from 

aIxI +  c2x2 + c3x3 + ...... Cnxn ...  (2) 

that are produced by non negative inte'or values of x~ 

whore the Ci are positivo numbers. Ie find all feasible 

values of Z as a monotonic increasing sequence. For a 

feasible value of Z, say Zo, we also find x3 values that 

produce Z. 

In tho process of developing monotonic sequence of the 

Z, coo obtdin the solution to (1) when the smallest ZZ value in 

the sequence has corresponding xi values that satisfy the 

constraints. Thus the enumeration of (2) is performed in 

order of incrcasin,p v-. lue s and stopped when the constraints 

are satisfied. 
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Theorem 2 

If 10 is a feasible value for Z = n . CiX4 that 
J ==1 

is produced by integer values X°1 for J = 1,2,..,n, then 

other feasible values of 1. are produced by 

Zo _ Zo +Ci for J = 1,2,..., n 

Flow chart for the Enumeration method is given on r Qnt ;pfl a F~ go• 6 

7. Lranch and Bound Method 

The branch and bound procedure for the solution to 

integer programming problems is useful for the problems having 

few variables. For the problem consisting of many variables, 

however, it requires extremely large computer storage capacity. 

This procedure is applicable to mixed integer programming 

problem also. 

7.1 Branch and Bound solution StrateiUes Inveati ited 

In the network synthesis oven for nixed inte-or model, 

approximately 35 of the variables- to be determined are 

restricted to integer values onl;, mainly zero or one. The 

speed with which these variables can be found effectively 

aftharn - determines the computer time. The progressively 

improving sequence of feasible solutions, produced during 

the search, has advantages in poorer—network design where it 
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is often difficult to represent all constraints accurately, and a 

range of good suboptimal alternatives may therefore be of greater 

value than the true optimum. 

We have to solve the mixed integer programming problem 

x1 o for J = 1,2 ...n that minimize Z when 

n 

cigi 1 =z 

~ ai j X = bi 

xi 	mi 

i = 1,2,...m. 

j =.1,2...n. 

To handle the mixed integer case where only some of 

the X variables are restricted to be integers. The remaining 

variables can be integers or fractions and are never picked to be 

the integer restricted variables only.. Let us consider (16) 

linear programme by relaxing the integer constraints on the X. 

The resulting problem can be solved by the simplex method, which 

converts the equation (16) to an equivalent problem i.e. to find 

nouinegative integers aj mj that minimize Z when 

n _ 
- Z + 	C j X j = - Zo 

J=m+1 

n 

xi + 	aij X j ~ bi 
J=m+I 

i = 1,2,..m ... 	(t7) 
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uhoro the first m variables and the last (n m) variables have 

boon arbitrarily selected as the basic and non basic variables 

respectively. The values of the objective function and basic 

variables are given by 

7,i 0 a Za + 

1 	- 
bi = bi - 

cij 

J¢ U 

ai j m j 
J E- U 

whore V is the index set of non basic variables. 

If the continuous solution has all bIi (to be integer) 

as integer programme (16) is salved. If any of the bI i are fractio-

nal, we start the free enumeration. Uo consider the zero node 

of a tvoo as corresponding to the fractional solution with 

objective value Z. Integer X must satisfy xi 	(bi) 

or Xi ~; (b11) + 1. We branch to level one of the tree by adding 

either the upper or the lower bound to the constraints of (17) . 

Then we find a now continuous minimum for Z. Than we follow the 

other branch. The minimal integer solution occurs for one of the 

branches. Lot us assume that after some minimization we are 

at lovol r of the tree. Ue have a form like (17) with the 

additional constraints o ?i 4X J G m J 	and mi are lower 

and upp: r bounds, rerspectively. Initially, P = o, m = m1. 
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The values of the objective function and basio variables are 

given by 

Z t 	2 + 	C 	m . + 	C' ... (18) 

t 

	

- 	ai j ;j " 	~ aid p~ 
J4U 

where Z10 ie objective value. 

bIi is tth basic variable (Fi b1iL anti ) 

and L is the index set of nonbnaic variables at their lower bounds. 
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CHAPTER - IV 

PROBT1 POR1 ATI01 S AND RESULTS 

Example  

A dooi.,n is required to connect four 132/33 .V. 

:iubotationo 32  - 85  located at suitable points within a specific 

area to ono 275/132 K.V. substation C1  established at a particular 

place nay, 'A', where a firm source of power is available. The 

average load at each 132/33 X.V. substation is taken 60 IlVA, 

except at substation 34  whore the load is assumed to be 120 i:VA, 

It is assumed that circuites of 120 DIVA capacity would be used on 

the proposed network. 

The estimated cost of one circuit along each path is 

shown in Table (1) . 

Path 	Coot per 	 Path 	Cost per 
circuit 	 circuit 

x 1+04 	R.S. 	 z 104  R.9. 

212  312 P24 391 

P13  352 P25 220 

P14 193 P34  204 
P15  299 P35  317 
223  315 P45  370 
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Solut ton 

Let each group of one, two, three and four substations 

must have h1 , h2, h3, h4 circuits respectively connected into it 

h = NI + M1 S = maximum rating of circuito on proposed 

M1 

h 

h2 

h3 

h4 

network. 

SL R 	Smallest integer greater than or 

equal to SL/S 

Small integer (for firm supply) 

'TAKII G 241 * I 

1 0 2? 120 + 1 

~§O 
120 ~+ 1 

60 X: + 12d~ 1 	= 3 + 1 = 4 120 

W 2 

• 2+f' = 3 

Hence design equations (constraints) satisfying the group 

security are given as : 
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12 + P32 + P42 + P52 7 2 

+ 12i + P43 + P53 2 

P14 + k24 + P34 + k54,71 2 

15 +x,25 +P35 +P45 j2 

...  0) 

... (2) 	Socurity 
constraints for 
each load 
oubotation 

•0•  ( 4 

x'12 + P42 + 1'552 + P13 + P43 + p53.11 2 • .. ( 5 

P + P + P + P + P + P  2 ,~.« (6) Security 12 	32 	52 	14 	34 	54•7 	constrainto for 
etch group of 

P12 + k32 +  + P15 + P35 + P45 2 ... (7) tuo load 
substation 

Pt3 +P23 +P53 +214 +P24 + P54-d 2 0.V (8) 

P13 + P23 + 243 + 215 + P25 + P45 f 2 ... (9) 

214 + _4 + 1 r + P25 + Y35.~., 2 ... (i 0 ) 

P12 + P52 + 213 + 253 + P14 + P547 3 ..(ti) 

212 + 

212 + 

P 	+ 42 

1'32 + 

P 	+ 13 

+ 

' 	+ 43 

234 + 

P 	+ 15 

Pt. 5 + 

P 	3 45 . 

P35i 	3 

,.«(12) 

« ..(i3) 

Security 
constraints for 
each group of 
3 load 
substations. 

P13 + P23 + P14 + P24 + Pl5 + P2 7 3 ...(14) 

212 + k13 + x'14 + 15 ' 	► 4 ...(15) 3ecurity 
constraint for 
the group of 
4 load oub-
stationca . 
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The objective function to be minimised is 

312 212  + 352 P13  + 193 x'14 + 299 P15+  315 x'23 + 391 224  

+ 220 P2 5  + 204 P34  + 317 P35 + 370 245  	Z  

The above equations are solved by Lexicographical method and 

bounded variable problem method (Circuits along a path are 

restricted to be3 at most). The result obtained is given in 

TABLE 2. 

Znte,ger Solution 

Path No. of 	Path 	No. of 
circuits 	 circuits 

P12 	 P15 	1 

P13 	1 	225  

P14 	1 	P34  

All other P3j 	0 

Coat = Z a R-- 1580 x 104 



Example 2 

The value of h in let and 4th equation of let 

example are raised from 2 to 4 showing the increasing 

demand at load substations 32  and 85  

nteger 2a1ution 

Path 	No. of 	Path 	No. of 
circuits 	 circuits 

P12 	1 	 P 	1 

P13 	1 	 i 2̀5 	3 

.F 14 	1 	 234 	1 

All other P1i  

Cost = Z * Rs. 2020 z 104  

Example 

In in example (1) only 2 load substations 32, 23 

are to be connected to generating station (1). The constraints 

will be 

12  + P32 	2 	... 	0) 
13  + F23 	2 	... 	(2) 

I2 + 	2 	... 	(3) 

Objective function is Z = 312 P12  + 352 P13  + 193 P23  .. (4) 



Integer Solution 

Above equations are solved by Enumeration method 

and result is 

	

Path 	No. of Circuits 

	

P12 	 1 

	

P13 	 1 

	

P23 	 1 

Ez mple 4 

The value of h in first equation of example (3) is 

raised from 2 to 4 

Intes;er Solution 

	

path 	No. of circuits 

	

212 	 2 

	

P13 	 0 

	

P23 	 2 

Cost 	z = ib. 1010 a 104 
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0 RAPT 8 R - V 

C O N C L U 5 I O I1 

Formulations of optimal notwork expansion problem 

given in II Chapter from Section 1 6 give the intogor solution 

to the problem and use circuits along the permitted paths only 

when writing the network equations. In section (7) of Chapter 

(II) a mixed integer programming formulation has boon Qivcn 

for the design and expansion of the electrical network in 

which design constraints such as network security and the cost 

of energy losses are taken into account and facilititoo 

exton: ion to time Phased problems. In Section (8) of Chapter 11, 

it has been ouggostod to obtain an optimal debign considering 

the reliability conutrainte with the security constraints. 

The programme can be developed to test the reliability of the 

notwork by solving yearly load flows for over loads with any 

one combination of circuits out. Overloads are defined by 

thermal limits of the transmission circuit components or by the 

permissible power angle across the line as determined from 

system stability studies. In-3oction (9) of Chapter II a 

diaDoptic approach to the problem is discussed to reduce the 

etoraao requirement of the computer. 
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In Chapter III different solution techniqu®e has 

been discussed to solvo the linear programming problems. 

Algorithm with flow charts are given. In Chapter IV eaamplos 

are solved by lexicographical method, bounded variable 

problem method and enumeration method, Enumeration method 

is not so efficient as other two methods. But programmos 

presented with Lexicographical approach are useful to solve 

large size problems. 

A critical problem faced by a Planning Engineer is 

ns follows 

Ensuring that selection of network expansion patterns 

for economic studies include true optimum oy a near optimum 

pattern. 

Currently such works are in progress taking practical 

limitations into account that how many alternatives can be 

formulated and analyzed. Still sincere efforts are required 

to develop more powerful planning tools that apply to this 

type of problem. 
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APPENDIX 1 

LEXICOGRAPHICAL METHOD OF INTEGER PROGRAMMING R.S.CHAUDHARY 
N R.O. OF VARIABLES 
M NO. OF CONSTRAINTS 
A(I*J) COEFF• ON L.H.$IDE OF CONSTRAINTS 
A(1*J) COEFF. ON L*H.5IDE OF 06JECTIV£ FUNCTION 
A(I1) RsH.SIUE OF CONSTRAINTS*(-1) 

READ l,NrM 
1 FORMIT t1U15) 

N1N4 I 
MI•Mi N+1 
N9~N~ 2 
DIMENSION A(85,22)rXI22).NR(22)*A1(85).D(22),Ut22),A2(85)sRTt22)o 
1P(221,P1t22) 
REAL? 2stAIl,J).jw2sN1) 
READ 3r( (AI I.J),J*2.N).),I;Nb.M1) 
READ 3s(A(I.i),1*N8,Ml) 

2 FORMATt8F1O.11 
3 FORMATi16F5.1) 
00 115 I*2.N1 
00 175  •1 2. N1 

L A(I.I11. 
DO ll i I'I..NI 

L6 A(Ir1)*0. 
ITERATION FOR OPTIMALITY TEST STARTS 

LO DO 5 X "2,M1 
1F(At1sl))6t5, 
SELECTION OF NONO8J.ROW (I1) WI TH SMALLESTELEMENT IN F IRSTCOLUMN 

61-2 
L3 AM*A(I•3) 

11.1 
L8 IF( I--M1)9ph3r10 
9 I0It1 

IFIAM-At 1.2) )11,I1,1Z 
L2 GO TO 13 
U GO TO 18 
10 00 15 ,m 2.M 1 

IF'LA( 11.J) )15.13.1? 
15 CONTINUE 

PROBLEM HAS NO SOLUTION 
STOP 

17 DO 23 Ja2sN1 
IF(ACI1rJ)124v24.25 
SELE(TIOI4 OF INDEX NR(J) IN ROW (I1) 

24 NRIJ3s0 
G0 TO 23 

25 NR(J)sJ 
23 CONT14UE 

Js2 
30 IF(NI (J) )26*26s2l 
26 J*J+1 



GO TO 30 
27 DO 28 11,M1 
28 Al(l)aAtI,J) 

39 IF(J—N1)29,35,35 
29 J*J+1 
33 IF(NR(J))31,31,32 
31 J=,J+1 

IF (J—Nl)3' ,35,35 
34 GO TO 33 
32 Ia1 
40 IF(A1(I)—A(I,J))36,37*38 
36 GO TO 39 
37 101+1 

GO TO 40 
38 GO TO 27 
35 LMIN=J1 

DETERMINATION OF CONSTANTS DL)) 
DO 51 J2,N]. 
IF(NR(J))52,52,53 

52 D(J)=J. 
GO TO  51 

53 IF (J—LMIN)54►55,54 
55 U(J)*1. 

D(J) A(I1 J) 
GO TO 51 

54 Im], 
64 IF(A(IsJ))56,57,56 
57 IaI+1 

IF( I--M1)62r62,56 
62 GO TO 64 
56 IZ-I-1 

I=1 
65 I F (A (I , LMIN)-0. ) 58 ,59,58 
59 jaI+1 

IF( 1-11)63,63,58 
63 GO TO 65 
58 IZM=I--1 

IF(IZ-IZM)60+61,60 
60 D(J)aO. 

GO TO 51 
61 I3=IZM+1 

I4*IZ+1 
RTLJ)aA(I4,J) /A(I3sLMIN) 
T*1. 

66 IFtT—RT(J))67,68r69 
67 TaT+1. 

GO TO 66 
69 U(J)=T—1, 

DtJ)*A(I19J)/U(j) 
GO TO 51 

68 Ia1 
75 A2(I)aA(I,J)—RT(J)*A(I,LMIN) 

IF(A2(I))70,71+72 
71 IsI+l 

IF(I—M1)73,73,70 

v 



73 GO TO 75 
72 U(J)*FT(J) 

D(JI*A(I1.J)/U(J) 
GO TO 51 

70 U(J)aRTtJ)-1. 
D(J)=A(I1+J)/U( J) 

51 COIITINUE 
DETERMINATION OF MAX. D(J)=D1 
J=2 
DLaD(J) 

80 IF (J—N1)7L,77.77 
76 J=J+1 

IF(DL—D(J))78,79'79 
79 GO TO 80 
78 GO TO 84 
77 D1=DL 

DO 81 J=2,N1 
T11. 
P(J)=A(11s.a)/D1 
IF(P(J))85.86#87 

87 IF(T1—P(J))82s83.83 
82 T1=T1+1. 

GO TO 87 
83 P1(J)=Tl 

GO TO 81 
86 Pl(J)=0. 

GO TO 81 
85 IF(T1+P(J))38,89,90 
88 T1=T1+1. 

GO TO 85 
89 P1(J)=--T1 

GO TO 81 
90 P1(J)=—(T1-1.) 
81 CONTINUE 

Qt—A(I191)/D1 
DETERMINATION OF CONSTANT Q 
T2=1. 

93 IF(T2—Q)94,91,91 
94 T2=T2+1. 

GO TO 93 
91 Q=T2 

MODIFICATION OF OLD MATRIX 
DO 101 1=1sM1 
A(Isl).A(I,1)+Q*A(I,LMIN) 

,01 A(I *LMIN)*A(I,LMIN) 
DO 102 J*2,N1 
IF(J—LMIN)103+102,103 

.03 DO 105 I=1,M1 

.05 AU I ►J)=A(I,J)-P1(J)*A(I,LMIN) 

.02 COhNTINUE 
GO TO 110 

5 COIaTINUE 
PROGRAMME CONVERGE TO GIVE 
PUNCH 2PA(I.,1) 
PUNCH 2,(A(191),I=2,N1) 
STOP 
ENU 

AtI,J) 

SOLUTION 
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APPENDIX 2 

*I!****M****** #******* iHkitlF*lrititiF****i!*****1414*******it*iR*****1f4iFl *** 

C C BOUNDED VARIABLE PROBLEM R. S. CHAUDHARY 
READ 1,N,M 

C 	N Nn. OF VARIABLES 
C 	M NO. OF CONSTRAINTS 
c 	At1,J) CLIFF. ON L.H.SIDE OF OBJECTIVE FUNCTION 
C 	A(I.J) COEFF. ON L.H.SIDE OF CONSTRAINTS 
C 	A(I►1) R.►1.51DE OF CONSTRAINTS*( 1) 
1 	FORMAT(6110) 

N1*N4 1 
Ml=M+N+1 
NB•N+2 
DIMENSION A(7►4)►NR(4)►A1t7)rD(4),U(4l,A2(7),RT(4),P(4),P114). 

IAM(4),AI4EW(4) 
READ 2,IAt1,J),J*2,N1) 
READ 3 ► t (A ( I ►J) wJ-2,N11, I aNB ►M1) 
READ 3,(A(Z,1)►IsNB,Ml) 
READ 3,(AM(I),Im2*N1) 

2 FORMATC&F10«1) 
3 FORMAT(16F5.1) 
DO 115 L=2-,N1 
DO 115 JcZ,NY 
A(I,J)xa. 

115 A(I,I)m1. 
DO 1I $ I'1,N1 

116 A(I,))-0• 
C 	ITERt.(ION FOR OPTIMALITY TEST STARTS 
110 	DO 117 Iw2,M1 

IF(A{I+1))118+117►117 
117 CONT14UC 

DO 5 1a2►N1 
IFCA (I)-A(I,x))6+5►5 

118 	D1) 120 I12,N1 
IFEAM(I)-A(I,.t) y6►120,120 

120 CONTINUE 
C 	SELECTION OF 140NOBJ.ROW(11)WITH SMALLESTELEMENT IN FIRSTCOLUMN 

I*2 
13 	AM2sA(I►1) 

11•I 
11 	IFti-M119#10,10 
9 	I*I+1 

IF(AMZ—AC I,1)l1l,l1,13 
10 	ANEW(1)*-A(I1,1) 

DO 140 Ja2►N1 
140 	ANEW( J )-At 11, 11 

60 10 141. 
6 	I2'2 
128 AMl*At I2,1l-Atit12) 

Il 	1i: 
129 IF(12-NL)123,124,124 
123 I2*12+1 

IFIAM]-A112,1))i26,129,129 
124 ANEW(l)=A(I1,1).AM(Il) 

DO 130 J-Z,Nl 
130 ANEW(J);-A(Ii,J) 
141 DO 15 J=2,Nl 



"  IF(ANEW(J))15,15,17 
15  CONTINUE 
C  PROBLEM HAS NO SOLUTION 

STOP 
C  SELECTION OF INDEX NRIJ) IN ROW (I1) 

17 DO 23 J=2,N1 
IF(ANEW(J))24,24,25 

24  NR(J)=0 
GO TO 25 

25 NR(J)*J 
23 CONTINUE* 
J  

30 IF(NF(J))26,26,27 
26 JnJ+I 

GO T(. 30 
27 DO 28 I =1.M1 
28 A1tl)aA(I,J) 

J1=J 
39 IF(J-41)29,35,35 
29 JmJ+1 
33 IF(NR(J) )31*31,32 
31 J=J+1 

IF (J—N 1) 34, 3'5, 3 5 
34 GO TO 33 
32 I01 
40 IF(A1(I)—At I,.H)36,37,38 
36 GO TO 39 
37 I+I+1 

GO TO 4U 
38 GO To 27 
35 LMIN*J1 

C 	DETERMINATION OF CONSTANTS D(J) 
DO 51 J=2•N1 
IF(NR(J))52,52.53 

52 D(J)=0, 
GO TO 51 

53 IF (J--LMIN)54,55,54 
55 U(J)t1. 

D(J)-ANEW(J) 
GO TO 51 

54 I*1 
64 IF(A(I,J))56r57,56 
57 I*I+1 

IF( I—Ml)62,62.56 
62 GO TO 64 
56 IZRI-1 

I*1 
65 IF(A(I,LMIN)-0.)58,59,58 
59 I-I+1 

IF(I—Ml)63,63,58 
63 GO TO 65 
58 IZMAI-1 

IF(Ii.-IZM)60,61,60 
60 D(J)t-J• 

GO TO 51 
61 I3=IZ'l+1, 

I4=I2 p1 
RT(J)2ACI4,J)/A(I3,LMIN) 
T*1, 

66 IF(T—R T(J))67,68,69 
67 T*T+J, 

GO TO 66 
69 U(J)aT-1.  



GO TC 51 n 
68 I=1 
75 A2(I)aA(I,J)-RT(J)*A(I,LMIN) 

IF(A2(I))70,7J,72 
71 I;I+1 

IFl I-M1) 73,73,70 
73 GO TC 75 
72 U(J)*RTIJ) 

D(J)ANEW(J)/U(J) 
GO TO 51 

70 U(J)aRTIJ)-1. 
D(J)iANEW(J)/U(J) 

51 CONTINUE 
DETERMINATION OF MAXM. D(J) uDl 
J;2 

84 DL=D(J) 
80 IF lJ—Nl)76,77,77 
76 JsJ+1 

IF(DL--D (J) )78,79,79 
79 GO TO 80 
78 GO TO 84 
77 D1=DL 

DO 81 Jft2►N1 
T1=1. 
P(J)=ANEW{J)/DI 
IFtP(J))85,86,87 

87 IF(Tl—P(J))82+83,83 
82 T1aTl+1. 

GO TO 87 
83 P1(J)=T1 

GO TO 81 
86 P1(J)=0. 

GO TO 81 
85 IF(TI+P(J))88,89r90 
88 Tl=Tj+1. 

GO TC 85 
89 P1(J)=—T1 

GO TC 81 
90 P1(J) A—('fl-1.) 
81 CONT1 4UE 

Q=ANE 4(1)/D1 
C 
	

DETERMINATION QF CONSTANT Q 
T2=1. 

93 IF(T2—Q)94,91,91 
94 T2 T2+1. 

GO T( 93 
91 QAT2 

DO 101 Ia1,M1 
A(I,1)wA(I►1)+Q*A(I►LMIN) 

101 A(I,LMIN)==A(I•LMIN) 
DO 102 J==2►N1 
IF(J—LMIN)103,102,103 

103 DO 105 I=l,Ml 
105 A(I,J)*A(I►J)P1(J)*A(I,LMIN) 
102 CONTINUE 

GO TO 110 
5 CONTINUE 

C 
	

PROGRAMME COIlVERGE TO GIVE SOLUTION 
PUNCH Z,A(1,1) 
PUNCH 2,(A(I.,1),I-2►Nl) 
STOP 
END 
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APPENDIX 3 

cc 
C 
C 
C 

ENUMERATION AETHOD OF INTEGER PROGRAMMING 
N NO. OF SARIABLES 
M NO. OF CONSTRAINTS 
A(I,J) COt:FF. ON L.H.SIDE OF CONSTRAINTS 

READ 1,P•1,M 
FORMATCEI10) 
DIMENSION A(7+400),B(7),C(400),NR(400),IX(400) 
READ 2,(C(J),Jw1,N) 
READ Z+( (At I,J),Ja1,N),I=1,M) 
READ 2,(B(I),I=1sM) 

2 FORMAT (8F10.1) 
DO 3 J=1,N 

3 IX(J)a0 
IT-0 
Jul 

6 CAMC(J) 
JM=J 

7 IF(J-N) 8,9,9 
8 J=J+1 

IF(C/-CtJ))1O,10,11. 
10 GO T< 7 
11 GO IC 6 
9 CM=CA 
JM1=JA 
DO 1%J¢2,N 

12 NRtJ).zJ 
NF=D 
NF1-1 
NS" N 

50 DO 15 I 1,M 
IF(A(I,JM)-B(I))16,15,15 

16 NR(JA )=P 
ITx11+1 
IT1=IT-1 
NT=N*IT 
NT1=N*IT1 
JWJM1 
DO 17 K¢JM,NS 
J1=NT+K-JM+JM1 
C(J1I C(J)+C() 
NR(J1)aJ 
DO 17 I'1,M 

17 A(I,J1)=A(I,J)+A(I,K) 
IF(JM1-1)18,19,18 

18 NTO=NT+1 
N1=NT+JM1--1 
00 20 J=NT0,N1 
C(J)*0. 
NR(J)m0 
DO 20 I=I. M 

20 AUI,J)A0. 

R.S.CHAUDHARY 



19 DO 21 KPNF19NS 
J1uNT+K--NF 
JM2-J1—JM 
IN=1 

41 JM3=IN 9 N 
IF (JM2—JM3) 22, 23,42 

42 IN*II+'+1 
GO T( 41 

23 IX(Js)*IX(K)+1 
GO TO 21 

22 IX(JI)'IX(K) 
21 CONTIVUF 

Jul 
NT2*t T+N 

24 IF(NF(J))25,26,25 
26 J2J+1 

GO IC 24 
25 CA1SC(J) 

JM=J 
27 IF(J- T2)28,29,29 
28 J'J+1 
30 IF(NR(J))32,32s33 
32 J*.J+1 

IF(J—NT2)34,29,29 
34 Go TO 30 
33 IF(CA1-C(J))35s35,,36 
35 GO To 27 
36 GO TO 25 
29 CM=CA1 

ITN-1 
40 NS=N*ITN 

IF(NS—JM)38,39,39 
38 ITN=ITN+1 

GO TO 40 
39 ITN1=ITN-1 

NFm I TN 1*N' 
JM1=JM—NF 
NF1=NF+1 
GO TO 50 

15 CONTINUE 
IX(JM)=IX(JM)+1 
PUNCH 2,(C(J),J=NF1,NS) 
PUNCH 2s( (AC I:J►,JaNF1,IUS),Im1,M) 
PUNCH 1,(IX(J),J■NF1+NS) 
PUNCH 2'C(JM) 
STOP 
END 

1 -1 
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