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ABSTRACT

Starting with geographical positions of tha
substations, which are to be interconnected, it has been
shoun that a set of equations can be obtained which are
solvable by linear-programning technigues to obtain a
minimum cost notwork design. Any‘aecurity of supply
conditions considered necessary can be incorporated into
the design equations. One of the earliest proposals to
formulate the criteria of powver gystem design, in such a
way that the problem could be solved by én automatic
optimisation process, was put foruard by Knight2 in 1961.
He used new method of linear programming to minimise an
economic objective function of the electrical network,
subject to a set of linear inequalities representing
security requirements. The next approach to the planning
of electrical~-power networks 1is mixed integer linear
programming bhased on 1interpretation of fixed cost
transportation-type models which include both network

gecurity and cost of network losaes,

The rownrds for optimising the design of electrical
pouer system increase with the size of the system but
unfortunntoly severity of the problem increases very

rapidly with the size of the system. Despite the



inprovements in the sizc and spoed of digital computers used
for this purpose, it i1s always useful to reducoe the storage
requirement. 7To achiove this requirement piecevise optimi-
gation method is designed for use in the optimization of large

linear problems.

Examples are conasidered for the illustration of the
discussed methods. In order to golve the integer programming
problem Lexicographical, Enumeration methods are used. In
the II chapter a computational procedure for system planning
is presented. This procedure combines and optimizes load

flow, reliability analysis and economic evaluation.

In the III chapter Optimization techniques have been
discugssed vith their advantages and disadvantages. F[low
charts and the computor programmos have been developed for
Enumeration, Lexico raphical and bounded wvalwe variable
problems. Examples based on the teferencez are given and
solvod, using the above computer programmes. A flov chart
with computer programmne is developed to write the security

constraints by comprter itself to avoid the error and

complexity occurring in data proparation.



INTRODUCTION

liany papors and books have been written over tho
paat sixgty ycars on the analysis and porformance of electrical
pover-system notvorke. D.C. and A.C. network analysis have been
used to gupploment hand computation in steady-state networks
annlysis oince about 1925. 8inco 19%2, digital computors have
boen increasingly employed to obtain numerical solutions to
steady state and transiont netwvork equations. All this vork
has been concentrated on analysing the performance of networxs
and very littlo has been done on the mathezatical design of
networks. To illustrato the point, » network may be proposed
which has a circuit botwoon two substations A and B. The
methods used for analyoing purpose onadlo one to predict what
the voltage and power—flow conditions on this circuit are
Jikely to be and what its crosa«éoction should be. They do
not give any assiotancoe in eaying vhethor, infact, a circuit
should be provided betweon A and B or not. The aim could be
to obtain o winimum=~cost outline design of a network to euppiy

a number of lond points from a number of supply points.

The method could be based on thd use of the techniquo
of linaar programmins, developed by economists and mathemati-
cions during and since the second world war. Tho problem

involves the consideration of a number of variables whose



relationship with each othor is defined by a set of linear
oquations (or constraints), the number of variables being
unequal to the number of constraints, and subject to the
goneral condition that the variables should be non-negative.
Thore ray be a large number of solutions satisfying the -
conotraints, and the problem is to find which of these solu-
tions hns some preferred characteristic, say minimum cost.
llorml algebric mothod can not be used to solve such a problem,
and linenr prorramming onables optimum solution first to be
obtained in a systematic manner and secondly to be identified
vhen it is obtained. In order to solve the linear network
equations threc types of linear programming approach can be
used. (1) HNoninteger programmingz, (2) Mixed integer
programming’g, (3) Pure integer prcgrammingz.

The mothod using mixed-integer programming approach
to the planning of electrical~pover networks is based on
interpretation of fixed=-cost tranasportation-type models'4.
and include both network securing and costs network losses.

19

Both single period and multiperiod planning problems ~ can be

considered.

The plannin~» of electrical-power network is a complex
proceas in which tho application of computing techniques has
grown steadily for high voltage tranemission system into the

more recont applications in distribution syotem analysis.
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Altornntivo attompts to devisc automatic computor methods

have often resorted to a hourioctic approach3

» and more recontly,
tho immergence of advanced facilities for computer-aidod design
has otimulated the development of effective interactive
computing methods for systems design4'5. The methods have
irnored the time dependende Qf fractical planning proposals,

and tho question of optimal sequencing of development has
tended to be treated eeparately6 although the combination of
dynamic programming with heuristic network aynthesis has been

7

reported’ and linear programming has been used for time

phased planning of generation system.

A mixed integer programming model for optimal-power
netvork planning that permits the dynamic requirements of the
problem to be repreaented as a natural extension of mnetwork
gynthegis is described. Although according to requirements,
preoont day computers are growing in size and speed, one is
8till faced with limited computational facilities. In the
linear programming field, decomposition algorithme has been
developed which can deal with piecewise solution. But this
cannot deal efficiently with the addition of constraints in

9

the interconnecting systems. Kron~ has developed diakoptical

optimization algorithm for tranaportation problem.



In computational procedure for oyotom plaonning
doocribed in Chapter II, Sec. (8) load flow, reliability
analysis and economic evaluation are combined together.
Actunlly planning the expanoion of a high-voltaro transmission
gystem involves deciding which new lines will cnadble the
pystem to satisfy forthcoming loads with the required degree
of reliability. 8ince these docisions involve considerabdble
investment and operating costs, the planner will wish to
keép all costs as low as pogsible. The difficulties of the
problem come from the tremendous number o0f possible alterna-
tives, the need to make the best use of information about
future loads, and the complexity of the reliability constraints.
The outages of some specific combinations of lines must not
at any time overload any other line in the system. The
recent literature on pdwer system reliability has shoun the
importance of sound planning in satisfying future demand. In
vioew of the extremely high investmont costs of clectric
power aystems, it is desirable to have procedures for
adding the right kind of equipment at the right time in the
right location to achieve the desired level of reliability

and quality of gervice at lowest cost over a long range.

Linear programming(12'14)

deals with the minimigation

of a linear furection in wvhich the variables are non-negative
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and constrained by a systom of linear equations. In an all
intogor method the problem i3 stated w ith given integer
coofficints and all calculation result in intoeger coefficients
at cach iteration. For general purpose Lexicograprical
approach appears to be good tool to solve the integer
programning problem. In apecial prqblem Enumeration method
can b2 wused conveniently but the convergence of this approach
is not assured. In case the solution does not exist, the
computer will not be able to give any euch.indication. In
actual practice it is useful for the problem where the
variables are zero or one and is very very useful where only
onc or two lines are to be added to a existing power systom
satisfying the previous security and reliability constraints.
The advantage of the lexicographical algorithm is that if the
solution is not existing, the computer will dircctly

indicate it and its convergence is assured in finite number
of iterations provided the solution is existing. lext
advantage of this mebhod is that memory requirement for the
long problem is not going to be increased excessively as
compared to Enumeration mdhhod. The memory roguirement for
Lnumoration method increases tremendously with the sigze of
problem, the spoed bein- fastor. In case whers the variables
have upper bounded level, bounded vaoriable interior programmes

baced on Laxicographical approach may be used. The flow chart



and computer programmes have been developed. For all the
methods discussed above and 1t may not be possible to say
which method will be superior because for a particular
problem, a particular approach will be advantageous. The
Belection of the procedure depends on the experience and
requirement of the problem keeping the computational
facility available in mind. In present work'the programmes
for lexicogr-phical algorithm, Enumeration method and bounded
variable problems are programmed on computer which can be
used according to requirements., Examples are scolved using

theae methods nd results are presented.



All the threoo engsoes arise in order to ineronso tho
availability of supply to consumers. In each case, one is
preascntod with a goographical disposition of substations
uhich requir: connocting together at minirmum cost satiafying
the desirable conditions for security of supply ete. As tho
number of substations increase, the ways in vhich thoso
connections can be made in a technically satisfactory mannor
will become large. The art of eystem dcsign lies in choosing
tho ocheme which is both technically and economically the
best or a2t lenst makds ~ reasonable compromiso betwoon the

two requirements.
(2) Criterion for Formulatio latvork Desisn Equations ¢

The eriteria used in  the formulation of desisn
cquations for optimal sulution by linear programming methods

aro given as 3

(a) A critorion which gives a minimum-cost design.

(b) A criterion which gives a desi=-gn with minimum
circuit loength.

(3) Formulation by tho Linimum Cogpt Criterion using
Yure Integor tfrogramming

(3+1) Qutline of ['ethod

Piratly it is necessnry to consider vhat supply



CHAPTLR ~1

— ey —

PORIULATION OF OFTINAL HNETHORK EXPAN3ION FROBLEX
USING LIIEAR FROGRAFIILG FMUTHODS

-

(1) Important Peatures of Powor-Supply Network
(1.1) Requirements of a Power-gupply Network :

A power supply network may bo designed so that it
will transmit given amounts of electrical powor and catisfying

the conditions given below 13

{(a) The cost of the notwork to be constructed and

oporated should be as small ac possible,

(b) The continuity of supply afforded by the network
should not be less than tho minimum acceptable and this
minimum accoptable limit for continuity depends on size and

type of the load.

(¢) So far as it concorns to generating station, the
connections provided should give adequate capacity out of the
station undor those circuit outages and load conditions assessed
as technically and economically justified during the design

study.

(d) The necessnry operational and control facilities

roquired to obtain satisfactory performance from the retwork
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should be consistent with the facilitics normally availabdle

for a network supplying loads of the aizo.and typo concerned.

(2) In case w here tha extencion of the power system is

required, extension of the network should be possible.

(f) Thore should be no risk of harm to plant or

personnel ander normal or fault condition.

In the present work;'the aim is concentrated to fulfil
the roquiraments (a) to (¢), and (e). Purther it has been
shown that how thegse requirements are achieved using linear

prosramning.

(1.2) Difficulties in Network Dessisn :

At presont due to complexity of the pouwer asyster:,
engineers evon in advanced countrios have to face the problem
of intdrconnecting a number of substations by a netwyork which
will satisfy vith the conditions given in Section (1.1). Such

cases may arise in @

(a) The provigion of distribution mothods (medium

and high voltage) to supply new housing states.
(b) The reinforcement of existing distribution notworks
by superimposed subtransmission networks.

(¢) The reinforcement of existing subtransmission

netuoris by superimposed transmission networks.




All the throc cnoes arise in order to incroase tho
availability of supply to consumers. In onch caoe, one is
prescented vwith a goographical disposition of subatations
wvhich requirs connceting together at minimum cost satiafying
the desirable conditions for security of supply ete. As tho
number of sutstations increase, the ways in which thoge
connections can be made in a technically satisfactory manner
will become large. The art of system design lies in choosing
the scheme vhich ims both technically and economica’ly the
best or at lenst makds ~ reasonable compromiso betueen tho

two requirements.

(2) Criterion for Formulntion of Uétwork Desimn E ions ¢

The eriteria used in  the formulation of desizgn
equations for optimal asalution by linear programming mothods

are given as :

(a) A critorion which gives a minimum-cost design.

(b) A critorion which gives a desi-gn with minimum
circuit length.

(3) Formulation by the Einimum Cost Criterion usi
Yure Integer rrogramminsg @

(3.1) Outline of l'ethed @

Pirotly it is necessary to consider what supply
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conditions the proposed notwork ras to satisfy and then tho
attonpt can be made to formulate the dosign conditions mathe-
matically. These will depend primarily on the network voltage.
In the case of medium-voltage net.orks it is not aluays
econorical to provide a full duplicate supply, but particular
attention must be paid to the voltage regulation. On the
higher voltage netowrks a fallure of the network will affect
many consumers and for this reason duplication of supply is
more important, Here our attention is msinly concentrated
tounris the designf of 'igh volta-e distribution methods,
gub-transmisgsion networks and the lowsr voltage trénamission,
notwors. At these voltages, the maintenance of supply is
the moat important coneideration. Other factors tc be
censidered may be avoidance of excessive expenditure on
gwvitehgear and of too many circuits along any one route.

It is to bte kopt in mind that as the number of clrcuits
along any particular route will increase, the cost invostmont
on suitchgear will also incremse with the numdber of circuits

along that particular poute,

thile wuriting the constraints, or network equatiions,
ag o starting point it io assumed that unless there is no
any rostriction (natural or man made), a path Pid for one
or roro circuits oxiots tetueen every pair of substations

Si and 33‘ The aim is to design a value 0, 1, 2... to
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each path P, . indicoting that tho optioum dosign rogquires

1]

Cy, 1, 2 ev.e circuits between oubst.tion si and 33.

In order to do this, inegqualitics specifying security
conditions (Soc. 3.2) and any other design conditions
considered necesszary, such ac. limitation of the number of
circuite into substations (Sce. 3.3) or ~long any civon
rules (Sec 3.4) are writtcnd oun in torms of the poassiblo
patha. Theso linear inequalitios are thon used cs
constraint inequalities subject to vwhich a cost function known
as objectivd furction of the network, again in terme of
possible paths, is minimiged. ‘Generally the values obtained
for the P

)
some methods which will produce an integer valued solution.

will be non~integer, aond it is necessary to omploy

(3.2) Commission due to Security

In the beginning whilo writins the security of
supply inequalitien it is neceasary to bear in mind th-t
one has no knovledge of the final network connections. It is,
therefore, ncceas~ry to apecify minirum connections to avery
possible group of substations to ensure that all groups in
the final desisn will have adoquate circuit capaclty

connected to thom.
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Fany supply authorities have stndardized transformer
gizos and overhead line and cable ratings. 1t is poassible to
say that tvo cticmits will supply upto, say, 3 substntions,

4 substations will require 3 circuits, and so on.
Alternatively, if substation loads differ appreciably, and
particularly if the desi.n is to incorporatc connactions to -
gonerating stations, it is nocosocary to estimato the eircuilt
capacity required into every possible group of substations.

Thus security of supply conditions can be specifiod as @

(a) Each load substation must have at least h,

circuits connected into it.

(b) Each possible group of 3wo substations must have

at least h2 circuits connected into it.

(¢) Fach possible group of 3 load substations must

have ot least h3 circuits connected into it.

and so on, for every posaidble group of load substations of

all pizos upto and including all the load sutotations.

This sot of conditions will produge the following

incqurlitico.
= 2
e 2,37 h, for load substation 8y e (141)

i=1 & 1
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r r
P + 2= P
=7 4 1,,1, il =1 41,1, 1127 h,
for load substations S,,, Sy, ... (1.2)
where, s,... Sm arc supply substations

Sn"‘ Sr are load substations

h is numter of ecircuits required into a group
of 5 substations

S is number of substations in a group

If the proposed network is also to interconnect
generating stations, it is necessary to édd a sot of
equations to specify that each generating station, every
group of gererating stations and evdry group of generating
stations and load substations has sufficient circuit capacity
connected to it to ensure that génoration 1s not restricted

by lack of circult capacity.

Vhen tho network is supplied only from one supply
substation, it 1s not necessanry to specify any circuit |
connection at this substation becauae the final security of
supply dquation (for all tho load substntions) will showu
vhat total circuit capacity is required into all the load

substations and thereforc out of the supply substation.
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If more than ono supply subdbstation is to be connected to the
netvork, it may bo nocoosary to opecify at least n cortain number

of circuits out of oach of the supply substations.

(3.3) Constraint Due to Switchmear

Intension of the supply engineers is also towards the
reduction of capital investment in switchgear, which may account
- for 40-507 of the cost of substation. Various mothods used to
reduce the capital investment in suitchgear take the form of
controlling more than one piece of equipment from one circuit~
breaker. Now it is-moro important from ‘the asp@ct of ne tuork
dosign to consider a limit for number of circuits vhich can be
controlled at one substation. This limit may be 2, 3 or 4

" eircuits.

Thus 1f it is desired to limit tho maximum number of
circuits controlled at any load substation to say, k, a set of

inequalitics can be vritten douwn as follows ¢

& Fy k ~Zfor load substation 5, ... oo (4)

This type of inoquality could also bo used to ensure
that cxcessive fault lovels would not occur on the proposed
netwvork when a fault infeod over circuits is known to be very

approximately constant. Supply substations must be focal points
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of a netvork and hence any limitation of the numbor of circuits
connected into these is not often justified except for fault

level control.

(3.4) Constraint Due to Limitation of Intérgubstation Circuits

Somotimes it would be desirable to omsure that all
circuits shall provide as much opportunity as possible for
connection into future substations and tbd satisfy this
requirement many suprly engincers consider that the number of
circuits along any route shoul@ be restricted. This criterion

will lead to a set of inequalities of the form

Pij _sw co ese (5)

vhere w is the number of circuits along any one route which it

is not wished to exceed.

If substations Si, S, and Sk are practically iIn

J
line, inequalitiocs of the form
P“ + Py 2 v cer (6)

vill agnin onsuro that n given number of circuits along paths

botweon theasce substations is not excocded.
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(3.5) Hotuork Cost Pungtion

The network cost function which has to be minimised
will be
r c,. P (8)
£f= 3= S i3 "1y
i=t £ § J=1 41 | '

This equation implies that the cost of providing
circuits botwvoen tuwo points is proportional to the numbtor of
circuits. This is true for single-circult overhead lines and
also applicable to underground cables. But it will only be

approximately true for multi eircuit overhead lines.

The cost, cij, of a eircuit between substations Si
and SJ should include the cost of the controlling switchgear
Plus a prepesitien proportion of the establishment and civil
enginoering costs for substations Si and Sj' Therefore, it
appears to be nocessary to assume the number of circuits to be:
connected into a substation in the final design in order to
account the svitchgear, establishment and civil engineering
costs. If this assumption is not correct, it is unlikely to
affect the final design as the orror in the cost will be small

in relation to the total circuit coste.
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(4) Spegificntion of Circuit Capacity into
Subatntion Groups for Intoner rrogramming

(4.1) Distridbution and Subtranamission Networks

Difficulty arises in the decision of circuit
capacity that should be provided to the largor groups of
substations. This 1e due to possible poor load sharing
‘hetween a number of circuits. It may also be necessary to

assume an outage of more than one circuit.

Only experience of load flows on networks and a
knowleaga of field statistics can enable a good selection
of the required circuit capacity. It has been suggested
that actual substation loads should be considered. Farti-
cularly in the case if they vary widely, %he total load of
the group can be turned into equivalent numbers of circuits

for writing into the conetraints, as follows :
h = K1 + I

vhere N1 is the firat integer greater than or equel to
8;/S and M1 is o small integer say, equal to one (for from

supply)

SL is total load in a group of substations

S = HNMaximum rating of circuits on proposed network
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(4.2) Trmnémieaion flotworks

In the casc of transmission notworks, the circuit
eapacity into a group of substations can be calculatod as the
sum of two components, the planned transfer and the inter-
connection capacity. The planned transfer is given by the

difference between the group load and the group generation.

The individual circuit capacities being known and the
fault risk to be guarded having been decided, the nuhber of

circuits required into a group can be taken as

‘ = CR ) q
h R, + 1, (1)

where Ng is the first integer greater thran or equal to
(planned transfer + interconnection capacity)

and li, is small integer (for firms upply)

2

It is gquito apparent that the major difficulty
in applying this method is due to the large number of cons-
traint inequalities needed to specify a design. The
uriting of the constraints if extrdmely tedious with the
incrense of number of substmtions to be interconnected.
Jome ways in vhich these difficulties might be hinimised

arc suggested below :
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(5) Froblems Associnted with the NHoinn Equations

(5.1) 2Problems of the Solution

The limiting feature in the size of the problem
vhich ean be solved is the computer storage. The linear
programming solution requiros the storage and manipulation
of a matrix slightly 5reatér than the number of equations in

one axis and the number of wvariables in the other axis.

If a, is the number of equations and upper bounded

1
inequalities and b 1is the number of variables, a computer

solution can be obtained by the reduced simplex method if

(a, + small :Lnteger)(b1 + small integer) computer storage

1

“os (')

vhen the constraints are in the form of lower bounded

inequalities
(a2 + small integer)(b1 + samall integer) computer storage

where a, is the number of lower bounded inequalities

and b1 number of variables

(5.2) Hetwork - Degign Hatrix Size
Yith m supply and n lond substations to be

connected to the.natwork, thero will be m + n, possible
2
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paths betweon the substations, or the number of patho vill be
1/2 (m +n) (m+n - 1) .o cos (v)

If all ths'design conditions proposed are to be
included, therc will be n upper-~bounded inequations ﬂp@éifying
maximum numbors of circuits at each load cubstation, and n + n02
upper bounded inaqualities spocifying maximum numbers of
¢ircuits along any path. Therc will be nc1 lover-bounded
inequalities specifying security conditions to each load
substation, nc2 inequalities specifying security conditions as
discussed to all poassible groups of two load substations, and
8o on. Hence the total loﬁer-bounded inequalities required to
specify security conditions is

n +n +n n
cq c, 03 + see ses * ncn_1+ nci1 = 2 f ... (12)

The total number of constraint inequalities will thorefore be

n~1i
(n+ m *n ) + (2 = 1-)lm«:er bounded

) upper bounded

in terms of m + nc variables.
2

e.g+ A network design to supply 8 load substations from 2 supply
stations would require the setting down of 308 inequalities in <¢e:

terms of 45 possible paths.
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Practical cxpericnce in the application of notuorlk
doaizn hns indicated that the majority of load substations in
the final design, in fact, that <the circuits per path will
rorely exceed two. Thus it is considerod that inequalities
for limiting circuits into substations and along path are, in

practice unnecessary.

As the greatest number of conatraint inequalities
result from the specification of minimum numbers of circuits
into substation groups. But many of these constraints are
over satisfied in practice, and could therefore be omitted
from the design equation. This will be the case if paths
between some substations are considered to be impossidle or
undecirable for circuit construction. In general, if there
are n, load substations with no direct connections to n, other
load substation, there is no nced to conaider security condi-
tions to any group composed of one or more substation from the

n, group and one or more scubstations from the n, group.

1

(5.3) _Use of Special Computer Programme

Once the number of circuits required to be connected
into groups of subgtations of various sizes or load has beon
decided, the writing of tho constraints inequalities is a
purcly mechanic-l process. It has already been shoun that the
solution of a problem of any size requires the use of a

computer and therefore uwriting of the constraints also by the
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computer will be proferable. The saving in tirwe and reduction
of possible errors in coding the large matrices for computer
solution would also be significant. In order to solve this
problem a separate programme can be develéped véry eagily to
prerare data for linear programme or dnta preparation programme
may be itself a picce of the linear programme. The second

choice will be preferadle uith time point of view.

A more promising approach is thought to be the usé
of Kron's 'tearing technique' discussed latter &n in order to
reduce the momory requiroment and consequently for the optimiza-~
tion of the largoer systems. Yhen the solutions cobtained in the
examples were substituted in the initial design inequalities,
it is found that 805 of these are over satisfied and therefore
these may be omitted. An alporithm is given below for the
data preparation of the Loxicographical, bounded value problem
and Enumeration methods. PFProgramme is alse-developed—using
this algorithmfer—the oerourity—eongtrointo—urto—the—socurity
of the groups-of-two—substatien. Developed approach is
capable of writing the constraints of higher groups in the

same fanshion as shown below.
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5.4 Algorithm for Data FPreparation of lexicographical
Fethod

1. Develop a tableau by listing the paths, number of substations

NP(I) NQ(I)

1 2
. T
1 N
3 3
2 H
3 4
3 N
{5-1) N

where NP(I) and NQ(I) are the two substations at the end of
path (I).

2. Cecurity of each load station lead to

r
S~ P4y 7 by for load substation 3,
i=1 A1,
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Z = Zh, for load substation 9199315

and SO On.

Flow chart is given for above algorithm indicating the

whcle technigueimFiG. noe(V)

(6) Design by a Minimum Circuit Lensth Criterion

While designing an high-voltage rural network,
practically it has been observed that it is advantageous destgn
to design a network to interconnect a number of points so that
each point has at leest one connection and total circuit

length is as small as possible.

Suppose we have to interconnect r points. Hence
(r = 1) circuits are required and to specify at least one
circuit into each point the following inequalities can be

written down.

E P1331 oo (13)
i=1£3

r‘.&“ g. Pi = r - 1 Teon (14)
i=1£3 3=1 £ 1

1“1351 *se LN LA (15)
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The longth of intoercomnccting circuits to bo minimicod

will be
r r
= é : L ]
£ = Ly By (16)
1=143 J=1#1
vhere

Pij is number of circuita along path 1]

1 is length of path 1]

1]

(7) Pormulation by tho minimum cost eriterion using
nixed inteper Programming

(7.1) Pixed COIT Transportation Medel :

Pirxed cost transportation problem can bhe modelled by a
2=-gtage coot function, conosisting of a fized charge £ and an
incromontnl cost o that ropresents tho marginal cogt per unit.

Ffor z unitg, the fizocd cost 7 is givon by
% = £ +ox 1fx O
or Z = 0 if x =-0 ces (17)
Thio cost function is oxproosed in mized integer
progroeaing forn by 1ntro§uc1ng an intesor dummy variablo ¥

vhich can take only the valuos zero or onc, 00 that if

2>, Pt =2€¢,ond i x =0, P{ = O,
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For onramplo,

72 = fpi+ ox
subject to see NER (\Q)

O<L Hpi=~- 2
vhore M is an uppor bound on x and is made equal to the

maximum carrying capacity.

(7.2) Application of Fixed Copt Transportation
model to Network Synthenis.

Let us consider a planning prodlem in vhich a set of
subatations are to be connccted togethor at minimum cost by
makiny the best selection of avai}able paths.' The feasible
directions of power flow in a path will be referred as ‘routos’

Thus a path will contain two routes.

(7.3) Cost Function

If the opdrating coats and onorgy losses are neglaected,
the cost of eetablishing a connection ona path is simply equal
to initial fixed capital cost of tho cipcuit or circuites

installed. Thus the cost of tho whole network consisting of

m! paths is .
mi
f = z K P eew see (l‘*\}
J=1 d i

vhero m1 is total numbor of patho, the pj are intoegor variableo

rostricted to the vnluos zoro or one, if only one circuit per
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Path 15 permittod, or gzoro, one or tuwo, if tuo circuits por path
aro permitted; and so on. This cost function is to be minimised
satiefying the sccurity constraints (or in other words subject to

the power-transfer capability of the netuork being adequate).

(7.4) Conotraints :

Firstly powver flows into each substation i must be

aatisfied. PFor a load substation
' - P = PP ‘
C, (4, k) (Pj PJ) D, (20)
FPor a sup ly substation

¢, (1, k) (PJ - PJ‘)=A1 eee  (21)

Jé& UN(1)
vhere Di' Ai' P, PJ' Z O and
cn(i, k) = + 1, i<k

= -1, 17k

k being the numbor of node connected by}branch J to node i, and
Pj and Pj‘ being the povor flows from node 1 to node k. Uecondly
the pouver floving Along each path must not be greater than the

maximun capracity of the circuit or circuits.

O<Epty =Py - Rt ... (22)
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7.5 Inclusich of Cogts of Logses

The nnnual coot of 12R losses in a given circuit is
linearly related to the poak power loss by the loss-load factor.
For futuro annual peak-power flous, therefore, this annuanl cost
may be capitalisod and represented as a quadratic function of

peak-povor flow (Fig. 1).

Lincarined 12R lospes

The resulting nonlinear cost curve can be represented in
the linear cost fTunction by plecoewise linearisation, vhore tho
powor-flow variables for ecircuit jJ, Pj and PJ’ are replaced by
subsidfary variables Pag' ij, PcJ’ Paj" ij‘, ch' ete.
to represent powar flows at each of the cost rates caj. ij. ch ote.,
tho number of cost rates depending on the accuracy roguired. For

circuit j, the loss costs aproar in the cost funetion as

Ca:}_ Paj + caj Paj’ + Obj'ij + ij ij' + cci ch + coj ch'

ond the constraints of equation 22 arc replaced by

- - - Pt
0< Ilapid Paj Puj

: - - P
0 < nbp’J .ij b4 b3

S N - - ]
0 ﬁ;ncpij ch P o3

vhoro, ﬁa, M ﬁc roprosent power=flow limits for each of theo

b’
loss=coot ratos.
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(7.6) Interpretntion of Hodel for lLow Voltane Ietwork Desisn

The gener-l form of fig. (1) suggest the idoa of a special
cost function for the low-voltage distribution systems, wvhere
gecurity constraints are not required, and where the coat of losses
can be quite significant. Though differnt tyres of cable or line
arc used, a general power-flov cost function can be doerived that
io made up of = single fixed cost plus a linear unit charge,
wvithout reference to thd type of conductor to be used, as shown

in Fig. 3.

7.7 ZIime Fhaged Planning lodels

Time phase planning model permits the dynamic requirements

of the problem that is a natural oxtension of networka.

For multiple time intervals, each of the zero/one integer

variables pt, is replaced by a specified ordered set of zero/one

3

inte;er variables D Each member of the sot relates to a

b
apecific time interval.

Since power flow will change with time, the number of
pover-flow variables is multiplied by T (For T intervals) the

fixed~cost portion of the cost function is of the form
m1 T (24)
f = g X K D LI ] (L] 24
R RN
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vhora th 10 vreoaent~valued coot of installing circuit J in the
intorval t. FYower-flow constraints (security constraints) aro as
baforc, but increasod in number by the factor T, because a full

sot of corgtraint: must be included for each interval.

(8) rorrulation Combining 3ecurity and Rolinbili
Conatrnints togother

(8.1) Roguiromont

In the linear integer, and mixed integer forrulation
discuased proviously in @medbere~i Section (1-7) minimum cost
domigﬁ of interconﬁected system, considering the security
conotraints has been obtaiﬁed. Operational cost also hns been
raoduced. But it is not surc at all that a system saticfying the
gocurity consetraints would be reliable alsgk upto the desired de-ree
of roliability. Availability and reliadbility are two different
critoria. A system serving upto a roguired degree of availability
i not bound to be reliable upto desired degree of reliability.
But go for concerned to tranoemission gystem, it must be reliable
upto desired desree of reliability, otherwise, even a minimum cost
dosisn mry not ennble us to esc-pe from the various types of

troublo.

8.2 HeCoe POY’ZQ& Flcw Egu'w‘tiong_

A.C. Povor flow equation between two adjacont nodes

i and § 1s given by
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B, -Jdo, = By, = 1BI/Z-a, [y, B} £ O, +aq

) \ + " o~ . 2
+ o ygg) VBN L840 ay) (25)
where, P, = Active component of power sent frow node i to
node jJ
Q N = Reactive Component of power ~ @ G
E.t' E j = VOltages b at node i and J respectively.
di, dj = Voltages phase angle at ndde i and j respectively.
y = ¥ =
i1 33 Zy s VA O
1] z /e
. )
2y 4 = Impedence magnitude of line (i, 3)
Qi 3 = FPhase angle of impedence Z’ij
©41 = = 8y
Prom Bq. (25)
| 5 | |
P, = E,“y, Cos6, + EiEinj Cos(oij + 4, d,)
. 2
Q = By, 806, + E,E, Yiy Sin (913 +dg d,)
g2 E,E -
or P, = -};-L— Cos ©,, -—%—-1—-* Coa (Gi +d.,) «o. (26)
A J i}
i3 3 ij
E E.E
Q = -;i-— 8in 0,, - 2y Sin (913 + 413) e (27)
13 N
where, d = d, - d
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(8.3) A.C. Powor Flov llodol :

- Injection of activo pouor at node 1 4
, s

' ' E.BE E,© Cos ©
= 14 = 1 1i '
Ii = - 7 Cos (Gia -+ dia) + 7 ceos (28)

3 1] 3 i3

12:!" XEEE) n
where ] is the index of the nodo directly connected with node 1

Neglocting the resistance of branch (1))
Z B E

Ii = j zij Sin dij LI s e e (29)

1«‘:1' 2' aces 1N

By Taylor's series expansion simplified A.C. pover-flow equation

can be obtained neglecting the higher order torm of dij

P

Thus,

s ByBy
I = ———tee (A, - d,) oo (30)
1 JeU(L)  Biy 17 3

vhore U(i) is sot of all the nodes adjacent to nodo i

Eq. (30) may be written as

= = c (di -4

I
i s M

wvhere CiJ is capacity of branch i1j (to be defined)

J) "o es e (31)

Also for conveniency it maoy be written that for the line's' from

node 1 to 3}, line flow P

192 = Ci3a (44 - 4y)
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Branch flow

= : co vee (32)

vhere 3 = number of circuits in line a

E = Voltages at node 1 and j for line a

ia’ Eja

4 = Impedance for line a betweon node 1 and j.

1]

Let us daefine ¢k = 0, -6 E = 1,2 eoee™ ces (33)

i I
wvhere k refers to branch k (vhich has bteen oriented from node i

to node j).

The maximum loading of au EHV line can be formulated either
as a maximum line flow or as a mraxi mum 24me phase angle difference
botucen its end nodes. Ruara tie may suppose that for each line 'a’

of each branch k, the permissible flow P = C ¢ua
k=1, eoe. rand 'a' & 8(k)

wvhere S{(k) is set of all parallel lines in branch k
cka = capacity of linc 'a’ of branch k

¢ka = Voltage phase angle differcnce of line ‘'a’
for dbranch k.

Honce inequality for line flow is
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le Pka LR N ] e »e v (34)

Jimilarly a positive angular limit 'aka is given by

¢m z "ka X =1, «.. 2 and a & 8{(k) ... (35)

During the formulation we have to "eep in mind that (1) If several
linos of tho same length are compared, the cost per unit capacity
tends to decreanse as capacity increases, (2) Several parallel

lines are more rcliable than a single line of equdl admittance.

70 choque a confiruration, a series of outage tests must bo
conducted. For each of these teats a certain combination of lines
should be temporarily removed from the mocdel and the angular

(m)
ditferences $, are computed using (26}, (32) and (33). Let §

be the angle difference in branch k when tost m is conducted.
Aftor FH test has boeen performed, the maximum voltage phas: -angle
difference that can ever appear in branch k during the outage tosts

may be defined as

o

¢k = Vox \¢$ \ k=1, «eo v ond me {(1,...m) ...(34)

If now we have

o .
¢1§‘{:~ .‘¢k k = ‘. sre I L} 000(35)

thoen the gyotom is declarod secure. If not, it reans that overloads

appear during oome outage tests, and for each branch k, the maximum
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£+ 3 o
overload is ( ¢k - ¢k), vhenover this number is positive.
Sinco theso overloads are unacceptable, it is neceassary to

rehedy them by approprigte tranemission capacity additions.

(9) Diakoptic approach to the optimipation for linear
model of electrical netvorks

(9.1) Reguirement

Despite the improvements in the size and speed of dipsital
computers used to solve the linear programmes, it is very necessary
to find out tﬁe methods which require reduced storage capacity or
fast convergence to solution or both. In order to get the first
roquirement, a piecewvise method has boen given below to sotve the

large linear programmos.

(9.2) Power Flow Equations

Power flow through a branch may be expressed in torms of
the voltage magnitude and phase angle in the non-linear form as

givon below ¢

1 ,
X,

cos (36)

Pij 1o the power flow through branch 1]

Xij is the roactance of the bdranch ij (resistance neglected)

Ei and

A
Gi and Gj

are the voltage ragnitudes at node 1 and j respectively

are the voltare angles at node 1 and § respectively
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Linearization of the powcr-flow equation is done, for the
application of the lincar programming. A linearigation scheme is

obtainod by the application of followiny assumptions
(a) V. vj = 1
(b)  Sin (6 -0,) = 6, -6,

Honce the power flow equation (36) is converted into the

form
P = .ui.__gi_.
i} Xij
e, -6
= ——L—_L ‘ see s (37)
yij

13

(9.3) Problem Formulation for the Plegewise Solu

Let us consider the networlk shown in Fig. 3.

P o0 b e d
a '{\/x 7,
ot
i | 'r"\»H Frg

Byaplétting, say, nodeC into two, the network shown in PFig. 4

is obtained G;ig

- .
ﬁ_; . e 4 $Gd =
, -1
Ge=q
-2
0 Ge
~i -
Gro l

SU\:) c\‘gi;\O Ny GQ = ¢ [l didig\on 2
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The shaded nodes in fig. 4 are reference nodes for each

subdivision. The nodal equation for subdivision may be uritten as

1 1 1
Y. 0~y &' ~y .0 - - pt -1
oo O on © ob b + F g0 P 10 * Go = 0
- 1 _ 1 1 ot ot -1 _
yaog o yaae a yébg » + P ga E la ¥ Gu ,0
1 1 _ 1 1 1. _ p -1
"% 0" Yool a " Ve’ b " Tbef e tFap " FaptO, = O

S A LU LS L L Y

gb b ce ¢ g¢ 1c c
sese {38)
whore P131 is total genorated power at node i
Pili is load at node 1
G is power injection due to tearing at node %

i
and subscript ¥ indicates gubdivisgion 4.

“

Lxzcluding the enuation a t the reference node fror the above

set of equations, we get following matrix equation :

gl L tg! 1t
y9‘°+¥° +Pg P1+G = 0 ane ‘59)

The total generated powor at the ith node P‘g1 Eay

.be related to the output of the individual generators P‘ as

1 1
P = Cc P
al hEX i J

RUEE]

vhere m is the number of individual genmerators and C, , is equal

13
to 1 if generator j is at node and zero othorwise. In matrix form
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the above Eq. can be writien as

P1 = C‘ P' . LN ;00 (40)

vhero C'P is topolozgical matrix

The node power injection G~' may be related to the power

tranofor G1 through the split nodes

¢e”! = o' @ (41)

1

vhere C g is a topologic~l matrix.

Substituting from Eq. (40) and (41) into Eq. (39) ve get

1.1 141 1 ot 1 L1 1
~ye 4T, +C P +C SG -P, = 0 ... (42)

The equation at the reference which was eliminated may now be
replaced by the relationship which sums the total power transferred

into a subdivision to zero. Thus we get

s'_ ', slg! - 8') ¥ 0 cieeee {a83)

P 171 %

where S are summation rovw vectors wilh all the elements equal

t0 one.

The power output of each generator is constrained detween

an upper limit and lower limit giving

» <« p! 2 P (44)

m ﬂ . -« ‘lUI

1

Lot P o 18 the amount of generation above tho minimum unit,
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Tq. (42), (43) and (44) my bo vritten as

P R P R P1e + c‘ge‘ - p1l + €, P=0 ... (45)
’ (¢]
s’y pb s‘gs‘ -shp! . s‘p o= 0 oo (46)
R 1
O PO Px..}"'Pm LN L N (47)

The relation for the thermwal limits on theo lines is

t
~AL oo -0, . —AL
yij J = yij

In goneral the thermal limits for subdivision may be expressed as

= c’,bea1 z 7! s vee (48)

wvhero 01t is branch nodal incidence matfix

The relations for subdivision 2 ray be written in

oimilar manner by changing the surerscript t to 2 in Eq. (45) to (48).

From the above relations (45) to (48) it is clear that
the conotrainta for every subdivision are written in terms of the

variablea of overy subdivision separately.

The constraint: of +the split node, however, link thego

conotraints togethor.

The conatraints for the above example may be written as
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a G 1 = O

- - @ = 0
C

or in general form

CgG = O ons .o *ﬁﬂﬂ (49)
and Oy ®= O o X543 (50)

Congtraints (45) to (50) may be expressed in matrix form

to give the following programming tableau.

COCNTY,
B UE Ui
. CONST Fog
2™ Qup gy

CONBTRRINT G 0

Tableau 1

The objective function of the linear programming to be
considered is the generation cost which may be expreased in

linear form as
A
Cost = C P
g

t t
or Cost = C g Pm + C g.Pe

Since the first term is constant the function to be minimised is

t

cost = C g PG ee e see (51)
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The general linear programming problem have inequality
constraints. In these cases, we convert inequalities to
equalities using the slack variables. For this purpose the
coefficient of slack variables in objective function is taken

equal to gero.

30 far in the case of Optimal network expangion prodlems’,
we have tbg f£ind out minimﬁm cost design satisfying the security
constraints. Thus our aim is to f£find the number of circuits
between each pair of substmtions to be interconnected. The
number of the circuilts along all the possible paths will be
variables appearing in the constraints. As we have alraady
discussed that linear programming give a solution in which
variables ﬁre not restricted to be integee. Thus integer linear
programmingﬁwhich gives the solution consisting of all integer

values will be recommended for thig purpose.

2. Integer Fropramming

In an all intoger method the problem is stated with given
‘intoger coefficionts; all calculation result in integer coefficients

at each iteration.

2.1 Optimnlity Theory for Integer Programming

le have to solve integer programming problem satisfying
the conditions (1), where 2440 b, and GJ are given inte~ers.

The method used to find the optimal solution of Eq.(1) consists
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CHAPTER =~ III

SOLUTION TECREIQUES USING DIGITAL CONPUTERS

1. Linear Programming

A large number of problems in mathematical programming
are solved as linear programmes. The general form of linear

programming problem is :

To find xj:g OforJd =1, 2, ¢«ee n that minimize Z

whon

L LN (1)

<
§=1 B‘ij Xj z= bi
vhere aij bi and CJ are given constants. The linear

form 7 i3 canlled objective function.

The solution to the problem usually results in fractiomal xj
values. The integer programming problem‘arises when the XJ

vnariables are restricted to irteger valuves.

The general linear progmmmme is alvays defined in terms of
minimigation, when ve have to maximige Z = g.cj xj, we simply
convert it to a minimization problem by minimizing - Z.
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of making a series of changes of variables to achieve the

transformation
n
x:J = dJ + = djkyk I=t,2...n ... (2)
k=1

The integer constants, a5 dy) are developed in an iterative
Procedure during the solution of the problem. The initial tranag~
formation is established by writing Bq. (1) ip pParametric form

as . n
L = f Cy
J=1 73
RJ zyj z 0 J=1,2'uoooo (3)
!!V ‘
*nay 7 7y + £ 849, 0, 1=1,2...aq

The variables xn+1 for i = 1,2, «ov m, are surplus variables.

Eliminating X, from <), putting (2}, we get the equivalent

Programme:

To fingd integer ydt; 0 for J = 1 2, vv. n that minimige

Z. when

- n o
L o= 72 + £ ¢ Yy

° Jag J 73

- (a)
x nd + S_ d y 0 J=1,2'oon sep 4
T ek

n

xn*i = - bi + Ji' aid yj 0' i = 1’2 ool
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The constants Eo' 53. Si and ;;3 are developed as result of

transformation with

- n
7, = =
0
Cc, d
=t 33
n
-6 = Z Cd M j:: 1;20-;1“ see (5)
] k=t KK
5 £
b, = b, =~
i i Ja’ &ij dJ, 1331,20-0013
- n
= .
aij = k=1 aik dk:]’ i-= 1’2 + s oll}j ja 1,2,.- n
Thaorem 1

If the oconstants 5335'0, 63 = 0, and bi

1 and j, then the minimal solution to Eq. (4) is given by

f;O for all

Z = E; yg =0 ford=1,2...n.

3. Lexicographical Fethod

3.1 Improving 4 Nonoptimal Solution

Let ua consider that all 0337 0 we can write (4) as

n
x = B+ = A

Z ne ves .. (6)

where xj is a column vector with components 2,11,... X em

B 13 a column vector with components zo, d,, d2 vee dn --b1 .o --bm
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and AJ io 1 column vector with components E%; dij’ 623"'dn

j.

013’ azj, ssee amj-
Initinlly (3) is also in the form of (6) with B components

0, 0' XK 0, - b,, "bz,nco "bm
and ﬂj components cj, 0, 0, eeee 0, 1, 0, +.. 0, °13 .o amj'

$h
The ¢ appears as the (J + 1) componiont of dJ

Lexiconraphic Ordering:

In order to ensure a finite algorithm we use lexicographic

ordering in considering aj and B vectors.

A vector R is defined an lexigoraphically greater than
goro or lexicopositive, if R has at least one nongerc component,
the 8irot of which is positive. A vector R 1s leans than vector
S in the lexicographic gense, if the vectoi 3 minug R is

2oztcosraphie  lexicopositive

If (3) ia written in the form of (6), ve see that Aj > 0

becausoe all C,7 0. Suppose at some iteration we have achieved

3

a form like (6) vhere A,» 0 and one or more components of B are

3
nogative. At this stage optimality conditions of Theorem 1 ~re

not fulfilled. Seclect a row from (6) with negotive B comporents.
n

Lot the inoquality bo N A 2 (7)
=1
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vhore = bo is the negative component of B, FOR THB inequality

to bave a solution, at lcast one of the aJ is positive. Taking

D a positivo numbder, any value aJ/ may be written as
D
o a r |
R = 0£r; 2p ... (g)

D

vhore (a) donotes the smallest intoger greator than or equal to a,

Thus aftor dividing by D in (7) ana using (8) we have

in P > bO 1 g
I L R j=1 Ty¥y4
. 1 N
where Pj 5—(&343')—&&&—343;' FJTVJ Zz U}
n b
Hence wo have = Pjyj > —%' oo cen (9)
I=t

Since the left hand sige of (9) ean have only an intoger value, then

vhore g = (bo/D)

It is desirable to kake a change of variables for Yys Where
8,7 0; then if D g chosen 80 that D > Ag FROM (10),
we got,

1
Yo = q - ;iﬂ PJyJ + ¥, ceve  {11)

vhere intoger y’s Z 0 reprosents the surplus variable in (10). 1f

Yo fron (11) 15 substituteq into (6), wo have
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1 n ,
FeBae o Py ee. (12)
j:ﬂ '1 j
Tho coofficients of 12 are
Al = A, -
J J J7e Jddg
A’ = A
0 8 s (13)

B = B + qA
Ve roquire that tha S

A’j remain lexicopositive,

Thus

.AJ-PJ A, 7 Opddg—rs ee. (14)

Condition given by (14) enablos uo to determine the index S
and a value for D, which produces Pj values. If J* g defined
as tho get of indices J where aj.vo from (7), the index 3 4g chosen

by the rule
A, = Lexicographically min Aj Je¢ J*
or A = 1 - min Ag' J gt

while developing the computer programme index 8§ 48 taken as LMIY for
Caainess. |
Ay 18 the lexicographically smallest of the 4y for Ja¢ Jt,

ve dofine 1min Yo be lexicographic minimuh, Define integer valuo Uj

08 the larrest intesor that maintain AJ - U& Ae lexicopositive
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for J ¢ J° also take U = 1. Conaition (14) is fulfilled if

Psé Uj'
llov yo are able to deterfhiine D. If D a‘ﬂk/uk for some index
k G-3¢ » then Pk = Uk . If Dz-ak/qk. then Pk can only bve reduged

and condition (14) holds.

It is an important factor to be considered that in order
to reduce the number of iterations, q is mnde as large as
possible to bring a greatest change in B. Thus to produce a

large q value, D is made as small as possible, Hence we find D‘

by the rule
rax a
D =
! Jgedt T
J
It is notable that D, may be fractional and that D &,
so that P_ iz unity in (10).
then (12) is developed, we denote B' and A13 values

to be the current 3 and A, valuee. Hence (12) is of the same
form as (6), and repeat the process bogun with inequality (7).
Eventually a form is developed where B has no negative components.
At this point the form (6) is like (4) and the condition of
thoorem { are fulfilled. The optimal solution to (1) is then

produced by the first ( n 4 1) components of B.
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3.2 Algoritkm 1

f. Dovelop a tableau by listing tho column B, Byy Apy wen o

C, =0

Initially 2o = 01 dy =2, by & o 1=t dgy=0

gor 1 # 33 844 - 244 Go to 2

2. If 4 ‘7/0 forJ:', 2’ .oo-n

3

and 'Sié 0 for i =1,2, eve, m

tho cinimal solution is Z = Zg xy = 4y doo J = 1,2,....n  Stop
Othorwvise select the nonobjective row with the omallest B component.
3uppose the row 1% = b , @,, a,,... & . Define J* ns tro set of

indices J vhere 337;0. If all ajgg 0, the problem has nc solution;

stop otherwise, go to 3.

Flou chart for algorithm (1), taking into account the

modification given in section (5) i. Hrawn on front dideaﬂaﬂo.hnqnqu—b

3. Dotermine index 3 from Aﬂ =1 - minaGJ + Aj' Find |
the largest intoger U, that maintaino Ay - U > o for at*

d+ 3. If AB and A, begin with an unequal number of geros,

J

tako uj -.-:&(DJ = 0). Othervisc, suppose the first non-zero terms

aro o, and o_. If e  does not divide oy take UJ = (eJ/es).

vhoro (a) denotes the greatest intesor less than or equal to a.

If o  divide o,, then U, = eJ/eG if ny = (aJ/ea)Aﬂ > 0

3 3

= ej/os - 1 otherwise. aAlgo Us = 1. Take D‘ = max

and U % aj/UJ

h]
Go to 4.

Je
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Calculate q = (b /D, ), Py = (2,/D,) and new column values
{ 1 _ 1
B' = B+ qA, and A § - AJ PJAS For J £ 8. Designate B

and A'j to be the current B and AJ. Return to 2.

4. Bounded Variable Prohlensg

So far we are concerned to optimal network expansion,
and hénce come into need of restricting the number of circuits
aloné a particular path say one or two. Thus we are interested
in solving the ihteger programming problems when the variables
have upper bound restrgints. We have to find the solution of
(1) with the addition constraints xJé:Amj For .= 1,2,..n,

where Amj are given integer'véluea.

The solution of the bounded variable problem can he obtained
by Algorithm 1 with the additional inequalities - sz; - Am:l
But the problem wi 11 grow considerably large. Hence a different

approach is given below.

Suppose at some imbder iteration we have achieved a form
like (6), where Ajw o and one or more components of B have value

ddz_‘ Amj

Select one such row from (6) and have

n
é e ee e .o
xy=d, + £ djr:yk (15)
= Am

3
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The Yy must satisfy

™\ s

k=1
If we define ‘k and bo by

= - d k=1,2,o-9gn

8y ik’

ho = dj - AmJ

then (32) is exactly of the form given by (7). we develop
transformation. (11) and the new form of (6) given by (12). The
lexicographic property of the Aj is waintained. The bounded

variable problem is solved by the use of (16).

Algorithm 2

1. Same as step 1 of Algorithm 1 with the additional listing

of Am‘, Amz, o Amn.
2. f{(a) If 0 £d, cAny for J =1,2,...,n anaSigo
for 4 = 1,2,...,m, the minimal‘aolution is
7 = Eo' xj = dJ for J = 1;2,....n; stop. Otherwise
go to 2(b)

() It dy Amy for J = 1,2,..n, go to 2(c). Otherwise,
select the row with dj component of B that produces

the largest value of dJ - Amj7 o. Take b° dj - éld

a = - dJk for K = 1,2,...n, As the row picked.

Go to 2(d). &S
CENTRAL -UBM:SY UNIYERSTTY OFSROGRKFF

LAY 2N s,
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(¢c) Select the nonobjective row with the smallest B component.

Suppose the row is =~ b , a,, 8, .. a G0 to 2(d).

(d) Define J* as the set of indices j where ay o. If all
ay 0, the probvlem has no solution; stop. Otherwise,
go to 3.

3. Same as 3 of Algorithm 1

3. SAme as 4 of Algorithm 1

Flow chart for algorithm (2), taking into account

the modification given in section (5) is drawn on front page:wigne.5

5. Modification in Algorithms for Development of
gomputer programme

In present work, the vector B and AJ for J = 1,2,...n
are written in the form of a matrix. A(I,3). for I=1,2,.., M1
“and J = 1,2,...N
where

N1 = n+ 1
M1 = N+ M+ 1
n is number of variables

and m is number of constrainta.

6« Enumeration METHOD

Some "ies while solving the optimization probdlem, an
enumeration problem has advantages over otrer methods. If is
quite useful if the value of the variables is small say, zero

or one. For the higher value of the variables existing in,

the solutionjy the mezory requirement will be large. Of course,
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Sinca tho variables take on only discrete values, they can be

listed easily.

de have to find integer wvalues of z

J ¢ for
l’ = 1,2,0.0“ that minimise Z When
n
= C = 2
g 1
s (1)
= a X ?b » iai,z,--.,m e e 1
j=1 1373 1

'To solve (1) directly by enumeration method, we

begin by finding all the values of Z from

a,x, + CX, ¥ CxXy + ecesse Cnxn cee (2)

that are produced by non negative intezer values of x

3

vhere the C, are positivo numbers. Ye find all feasible

]
valucs of 2 as a monotonic increasing sequence. For a
fcasible value of 7, say Zyr we also find xj values that

produce Z.

In tho process of developing monotonic sequence of the

%, wa obtain the solution to (1) when the emallest 7 value in

the sequence has corresponding xJ valucs that satisfy the

constraints. Thus the enumeration of (2) is performed in

order of incrcasings velues and ustopped when the constraints

are satiafied.
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Thoorem 2

it Zo is a feasibdle value for 2 = %a cjxj that
j=1

is produced by integer values XOJ for J = 1,2,..,n, then

other feasible values of ” are produced by

Z ‘A‘*Zo“'c fOI‘Jz'l,z,-oo,n

0

J
Flow chart for the Enumeration method is given on ﬁrqnt:page:%ﬂwé

7. Branch and Bound Method

- The branch and bound procedure for the solution to
integer programming problems is useful for the problems having
few variables. For the problem consisting of many variables,
however, it requires extremely iarge computer storage capacity.
This procedure is applicable to mixed integer programming

problem also.

7.1 Branch nnd Bound solution Strategies Investignted

In the network synthesis even for rixed inte-~er model,
approximately 35% of the variables to be determined are
restricted to integer values onl,, mainly zero or one. The
speed with which these vnriables can be found effectiyely
nhhorn- determines the computer time. The programeively
1ﬁproving sequoence of feasible solutions, produced during

the search, has advantéges in powver-network design where it
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is often difficult to represent all constraints accurately, and a

range of good suboptimal alternatives may therefore be of greater

value'than the true optimum.

We have to solve the mixed integer programming problem

xdzpo for J = 1,2 ...n that minimize Z when

n
£
g2 o =2
zaij xj = bi i = 1,2,:-0“10 ee (16)

X :4.; mj 13_1,200- N

To handle the mixed integer case where only some of
the XJ variables are restricted to be integers. The remaining
variables can be integers or fractions and are'néver picked to be
the integer restricted variables only.  Let us consider (16)
linear programm& by relaxing the integer constraints on the Xj.
The resulting problem can be solved by the simplex method, which
converte the equation (16) to an equivalent problem i.e. to £ind

nonnegative integers x mJ that minimize Z when

J
n - -
-7+ < C,X, = =12
% o
n ,
X, + = a X, = i). 1 =1,2,¢eem ..o (17)

i
J=m+1
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where tho first m variables and the last (n -~ m) variables have
boen arbitrarily selected ns the basic and non basic variables
respectively. The values of the objective function and basic

variables are given by

bi =bi - = aij mj
JeU

vhore V ig the index set of nonbasic variables.

If the continuous solution has all b'i {to be integer)
as integer progrémme (16) is solved. If any of the ‘b‘i arc fractio-
nal, we start the free enumeration. Ve consider the zero node
of a 3veo as corresponding to the fractional solution with

objective value Z'o' Integer Xi must satisfy X 2 (bi)

or X; (b"i) + 1. Ue branch to level one of the tree by adding
either tho upper or tho lower bound to the constraints of (17).
Then we find a nev continuous minimum for Z. Then we follow the
other branch. The minimal integer solution occurs for one of the
branches. Lot us assume that after some minimization we are

at lovel r of the tree. Ve have a form like (17) with the

additional conztrnints OéPJ -é_Xjé;j i 'i"j and m:j are lowver

and uppsr boundo, regpectively. Initially, P, = o, m, = m,.

3 3 3
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The values of the objective function and basic variables are

given by
AR Jeu c:‘1 mJ, + el c;1 PJ eee (18)
‘ - — - " s -
b = b P a m - = a P
i 1 4 13 7 JeB > S B |

where z’o.is objective value.

{ - | EE |
b i is tth basic variable (Pié b Jcm y )

and L is the index set of nonbasic variables at their lower bounds.
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PROBLZH FOREATIONS AND RESULTS

Example 1

A dosisn is required to connect four 132/33 K.V,
Gubstationo 8, - 8¢ Jocated at suitable points within a specific
area to onc 275/132 K.V. substation g, estabdlished nt a particular
place oay, ‘'A', vhere a firm source of power is available. The
average load at cach 132/33 X.V. subetation is taken 60 MVA,
oxcept at substation 54, vhore the load is assumed to be 120 VA,
It io ascumed that circuites of 120 KVA capacity would be used on

the proposed network.

The estimated cost of one circuit along each path is
shotn in Table (1).

Path Coot por Path Cost per
circuit . circuit
x 10%  R.s. x 104 r.3.
P,3 352 | IP25 220
P14 193 P34 204
i‘s 299 iss 311
23 315 45 37
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Solution

Let each group of one, two, three and four substations

must have h!' h2, h3. h4 circuits respectively connected into it

h=HK +M 5= npaximam rating of circuitoc on proposed
network.

KSL SL
o N = |3~|'t5"| = Smallest integer greater than or
equal to 8,/5

M1 = Small integer (for firm supply)

1 120 g
\ 2TARIFG Fy = 1
h2 = (§%§%~g§ + 1 = 2
h3 = {éggg—zi + 1 =m2+1 = 3
h, = {0x3.+120¢ =3+1 = 4

Hence design equations (constraints) satisfying the group

security are given as @



o

42

43

34

35

52

52

42

53

43

P

34

13

13

14

14

t4

24

ees (1)
eee (2)

ven (3)

ees (4)

PEBW 2 veo (5)

P54-7/ 2 . (6)

59

Socurity
congstraintas for
each load
gsubstation

Security
conatrainta for
each group of

345?2 eee (?) two load

?547} 2 eV (8)
Piszy 2 oo (9)

3352? 2 ..f(iﬂ)

?54? 3 enelll)
?452, 3 aee(12)

Pyoy 3 veel13)

Pyep 3 eeel14)

eee(15)

substation

Jecurity
constrainta for
each group of
3 load
substationa.

Jecurity
constraint for
the group of

4 load oub-
atations.
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The objective function to be minimised is

312 B, + 352 PtB + 193 PM + 299 P15 + 315 Py + 39 224

+ 220 P

25 + 204 P

+ 317 B, + 370 P

45 - 3

34 35

The above equations are solved by Lexicographical method and
bounded variable problem method (Circuits along a path are
restricted to be3 at most). The result obtained is given in
TABLE 2.

Integer Solution

Path No. of Fath No. of
cirouits circuits
P12 1 1’15 1
P13 1 225 1
' P14 1 234 1
All other Pij = 0

Cost = Z = Rn 1580 x 104
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Example 2

The value of h in Ist and 4th equation of Ist
example are raised from 2 to 4 showing the 1increasing

demand at load subétatiohe 82 and S

5
Integer Solution
Path = No. of Path Ro. of
circuits circuits
P12 1 Piﬁ | 1
Fyy ! Fag 3
}14 1 934 1
All other Pij

Cost = 2 = Bs. 2020 x 104
Example 3

In in example (1) only 2 load substations 3., 33

are to be connected to generating station (1). The constraints

will be
Bo+ Py 22 .o (1)
P‘} + P23 .Z/ 2 se e (2)
2 cos (3)

1"2 + P'3 ,?)
Objective function is Z = 312 F,, + 352 P,3 + 193 223 ees(4)
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Above equations are solved by bEnumeration method

and result is

Path

No. of Circuits

12

13

23

Ex-mple 4

The value of

raised from 2 to 4

Integer Solution

h in first equation of example (3) is

Fath

Ro. of circuits

By

Pys

s

Cost = 2 = &. 1010 x 104
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CHAPTER -V

CONCLUSION

Pormulations of optimal notvork oxpansion problem
given in II Chapter from 3ection 1 = 6 give the integer solution
to the problem and use circuife aldng the pormitted paths only
vhen writing the netuork equations. In section (7) of Chapter
(I1) a mixed intoger programming formulation has boen givon
for the design and expansion of the olectrical network in
which design constraints such as network security and the cost
of oncrpgy losses are taken into account and facilititos
extenolon to time phased problems. In Sdetion (8) of Chaptor II,
it has boen osuggested to obtain an optiral design considering
tho relinbility constraints with the security conastraints.
Thoe programme can be developed to test the relisbility of the
notvork by solving yearly load flows for over loade with any
one combination of circuits out. Overloads arc defined by
thermal 1limits of the transmission circuit componcents or by the
‘permissible power angle acrocs the line as detormined from
system otability etudies. In Jection (9) of Chapter 1I a
diahoptic approach to the problem is discuased to reduce the

storage requirement of the computer.
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In Chapter III diffeorent solution techniques has
been discussed to solvo the linear programming problemo.
Algorithm with flow charts are given. In Chapter IV examplos
are solved by lLexicographieal method, bounded variable
problem method and enumeration method. Enumeratioh method
is not so efficient as other two methods. But programros
presented with Lexicographical approach arae useful to solve

large sigze problems.

A critical problem faced by a Planning Engineor is

ng follows ¢

Ensuring that selection of network expansion patterns
for economic studies include true optimum oY a8 near optimum

pattern.

Currently such works are in progress taking practical
lipitationa into account that how many alternatives can be
formulated and analyged. 8till sincere offorts are required
to develop more powerful planning tocis that apply to thie

type of prodlem.
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I LEKlCOGRAPHlCAL METHOD OF INTEGER PROGRAMMING ReSeCHAUDHARY

Lé
LO

13

L8

12

11
19

N MOe OF VARIABLES
M NOe OF CONSTRAINYS
AlleJ) COEFFe ON LeHeSIDE OF CONSTRAINTS
AllsJ) COEFFe ON LeHeSIDE OF OBJECTIVE FUNCTION
Allsl) ReHeSIVE OF CONSTRAINTS*(=1)
READ 1»NoeM
FORMAT (1U]5)
NlsN< |
MimsMIN+]
NB=N4 2 : ‘
DIMENSION A(B85022)eX{22)aNR(22)9A1(85)sD(22)oU122)9A2(85)eRT(22)
PL22)1+P1C22)
READ 2+ 1AL19J)e gm2sNl)
READ 3+l (ALl sJ)yIm2oNLl)e]I=NBMl)
READ 39(A(Is1)eInNBoeMl)
FORMAT(8F10.1)
FORMAT{16F5411)
00 115 Is=2.N1
D0 119 J=m2enl
Allsv)nly,
Allslixle
00 115 I=leN1
A{lsl)=0,
ITERATION FOR OpTIMALITY TEST STARTS
D0 5 I=2.M)
IFLAGL91)162595
SELECTICON OF NONOBJSROW(IZIWITH 5MALLESTEL&NENT IN FIRSTCOLUMN
12 :
AM=mA(l21)
il=]
IF(1-M1)9¢10,10
Inlel
IFCAM~ALTI»1) 111411012
GO T0 18

GO TO 18
DO 15 um2sM1

CIFLALT L)) 15818017

15
17

24
25
23

30
26

CONT INVE

PROBLEM HAS No SOLUTION
ST0P

DO 23 J=2aN1

IFCALLI10J) 024024925
SCLECTION OF INDEX NR(J) IN ROW (1))
NR{J) =0

GO TO 23

NR(J) sy

CONT | QUE

Ju2

IFINF(J))28426927

JeJ+}

e



27
28

GO TO 30
D0 28 I=l,M1
AL(1)=All+J)

CJi=Jd

39
29
33
31

34
32
40
36
37

38
35

52
53
55

54
64
57

62
56

65
59

63
58

60

61

66
67

69

68
75

71

IF(J=N1)29+35:35
JaJ+1l
IFI(NR(J))31931932
JaJ+]

IF (J-N1)34935435
GO TO 33

I=l
IF(AL(I)=A(I9J))36937+38
GO TO 39

Ins]l+]

GO TO 40

GO TOo 27
LMIN=J1

DETERMINATION OF CONSTANTS
DO 51 J=2,yN1

IF(NR(J) 152952953

DtJY=Va

GO TO 51

IF (JU~LMIN)54955954
U{Ji=le
D(JSY=A(I1lsd)

GO TO 51

i=}
IF(A(19J))56357,56
Inl+l
IF(I~-M1162+6295¢
GO TO 64

1Z=1~1

I=)
IF(A(IsLMIN)=04)58959+58
I=I+1
IF(I~41)63+63058

GO TO 65

[iM=]~1
IF(12-1ZM)60+61,60
D(J)=0,

GO TO 51

13=1ZM+1

14212 +]
RT(J)=A(TasJ)/ALI39LMINY
Tmle
IF(T-RT(J))IET968969
T'T"’lo

GO TO 66

UiJ)=T=1,
D(J)I=A(TI1»J)/U(Y)
GO TO 51

I=1l

A2(I)=A(19J)=RT(JI®ACISLMIN)

IFCA2(I) 170971072
I=l+l
IF(I-M1)73973»70

Dty

()



73
72
10
51

80
76

79

78
77

87
82

83
86

85
88

8¢9

90
81

93
94

91

01

.03
05
02

GO TO 75

UGJ)agT(J)
DtJI=A(I1sJ)/ULY)

GO TO 51
U(J)=sRT(J)=1,
D(J)=A(I1sJ)7ULY)
COLTINVE .
DETERMINATION OF MAXe D(J)=D]
Ju?2

DL=D(J)

IF (J=N1)T7€9T77+77
JuJ+l
IF(DL=D(J))T8979279
Go TO 80

GO TO 84

Di=DL

DO 81 J=2uN1

Tlsle

PlJ)=A(11lsv)/D1
IF(P(J))85+86+87
IF(T1=-P(J))82+83+83
Ti=T1l+1le

GO TO 87

P1(J)=T1

GO TO 81

P1{J)=0s

GO TO 81
IF(TL+P{J}])38+89+90
Ti=T1l+1le

GO TO 85

Pl{J)=~T1

GO 7O 81
Pl{J)a={T1l~1,)
CONTINUE
Qe=A(Ile12/D1
DETERMINATION ©OF CONSTANT Q
T251e

IF(T2~Q) 94291993
T23T2+1e

GO TO 93

Q=T2

MODIFICATION OF OLD MATRIX Al{lsd)
DO 101 I=1sMl
A(L21)=A(Is1)+QuA(IsLMIN)
A(TsLMIN)=A(TIsLMIN)
DO 102 J=2sN1
IF(J=LMIN)1039102+103
DO 105 I=1,M1
AlTodi=A(T9Jd)=PrUJ)RA(T»LMINY
COMTINUE

GO TO 110

COuTINUE

PROGRAMME CONVERGE TO GIVE SOLUTION

PUNCH 29A(1»1)

PUNCH 23 (A{I91),I=2sN1)
STOP '
END

F 33 33 2 T3 36 I I8 I3 3 3 I 3 W 3638 363 36 36 3 I I I 63 369 36 I N6 T 1696 I I 36N IE I I I K I I
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APPENDIX 2
Pvpepppreage et 2 7T TS 2 2R S T E R R I R R LS e A SR R A a2

¢ C BOUNDED VARIABLE PROBLEM Re S« CHAUDHARY
READ 1leNoM

C N NNe OF VARIABLES
C M  NOe OF GONSTRAINTS
¢ All9sJ) CCiFFe ON LoHeSIDE OF OBJECTIVE FUNCTION
C A{lsJ) COEFFe ON LeHeSIDE OF CONSTRAINTS
C Afl1s1) R.MaSIDE OF CONSTRAINTS®(=1)
1 FORMAT(8110)
Nl=N41
MizM+Ne+l
NBsN+2

DIMENSION A(7o4)sNR(G)SALITIsDIA) sU(4)sA2{T)sRTI4 P4} P14}
1AMUG ) o AHEWLA)
READ 2s{AC1lroJ)rJ=2eNl)
READ 39 ((A(LsJ)oJdm2aN1l) s aNBsML)
READ 39 (A{Isl}sl=NByM1)
READ 39(AM(I)elm29N1)
FORMAT({B6F1041)
FORMAT(16F541)
DO 115 [=2sNl
DO 115 J=2sN1)
All9J)x0, 7
115 A(Ie+l)ml,
PO 1145 I=]1sN1
116 A(l»} 120,
C ITERZTION FOR OpTIMALITY TEST STARTS
110 DO 117 Is=2sM1
o TFCA(T91))118s1179117
117 CONT ) VUE
DO 5 [=2»Nl
IFCAM(I)=~ACT141))695+D
118 DO 120 I=24N1
IFCAMCT)=A(T98) 1691205220
120 CONTINUE
< SELECTIOUN OF IONOBJoROW(I1)WITH SMALLESTELEMENT IN FIRSTCOLUMN

W N

1=2
13 AM2=A(Is])

Il=1
11 IF(1-M1)9910,10
9 I=]+1

IF(AMZ=A{T911)11011913
10 ANEW(1)m=A(I1+1)

DO 140 J=2y4N)
140 ANEW(J)=A(Ily ))

GO TO 1al
6 [2=2 4
128  AMl=A([29l)=Ali(12)
I1=]2

129 IF(I12-N1)123+1249124
123 12=][2+1
IFIAMI=A(12+1))12821299129
124 ANEW(1)=A(11,1)=AMLIL)
DO 130 J=24N1
130 ANEW(J)==A(11sJ)
141 DO 15 J=m2,N1



24

17

25
23

30
26

27
28

39
29
33
31

34
32
40

36
37

38
35

52

53
55

54
64
57

62
56

65
59

63
58

60
61

66
67

69

IFCANEW(J))15915917
CONTINVE

PROBLEM HAS NO SOLUTION
STop

SELECTION OF INDEX NR{J) IN ROW

DO 23 J=2»N1
IFCANEWLJ) ) 24924925
NR(J)=0

GO To 23

NR(J)=J

CONTINVE"

Js2
IFINF(J))26926927
JaJ+]

GO T¢ 30

DO 28 I=1lsM1
AL({T)=A(I»J)

Jisy
IF(J={1)29935:35
NENE S

IFINR(J)I 31931032
Jal+l

IF (U~N1)344+3%935
GO TO 33

I=}l
IF(Al(I)-A(l:J))36’37’38
GO TQ 39

Isl+]

GO TO 4v

GO0 TO 27

LMIN=J1

DETERMINATION oOF CONSTANTS
DO 51 J=m2sN1

IF(NR{(J) 152952953

D(J)=0,

GO TO 51

IF (J=LMIN)54955454
Utdr=l,

D(J)=ANEW(J)

60 TO 51

=1

IF(ALI+J))5645T,56

I=1+]

IF(I-M116246295¢

GO TO 64

1z=1-1

I=1
IFCA{TsLMIN)~04)58959458
[=2f+]

IF(I-M1)63+63958

GO TO 65

[ZM=] -1
IF(12~1ZM)604561,60
D(J)LJQ

GO TU 51

13=]2ZM+]

1431241

RT(J) sA( 149 J)/A(139LMIN)
T=le
IF(T=RT(J))6T+68+69
TaT+l,

GO TO 66
UtJ)aT=1a.

DLJ)

Coew3t ¥ Iy

(1)

!



68
75

71
73
72
T0

51

84
76
79

78
17

87
82

83
86

85
88

89

90
81

93
94

91
101

103
108
102

GO T¢ 51

I=1
A2(1)=A(I9J)=RT(JI*ACIILMIN)
IFCA2(I))70471972

I=l+]

IF(I-M1)T3973570

GO TC 75

U(J)aRT(Y)
D(J)=ANEW(J) /UL Y)

GO TO 51

U(J)aRT(J)~1e
D(J)y=ANEW(J) /U Y)

CONTINUE

DETERMINATION OF MAXM. D(J) =Dl
J=2

DL=D(J)

IF (J=NL1)T763T77»77

Jud+l

IF(DL=D(J))T78s79979

GO TO 8¢

GO TO 84

D1=DL

DO 81 Jr2sN1

Tl=1,

P(J)=ANEW(J) /D1
IF{P(J))85986»87
IF(T1-P(J))82+8383
Ti=Tl+1le.

GO TO 87

Pl(J)=T1

GO TO 8i

P1(J)=0,

GO T0 81
IF{TI+P(J))88+89+90
Ti=Ti¢le

GO TC 85

P1L(J)==T1

GO TC 81

PlL{J)==(T1~-14)

CONT ] UE

Q=ANE ¥(1)/D1 . '
DETERMINATION QF CONSTANT @
TZ“I.

IF(T2-Q) 94991491

T2=T2+1e

GO T( 93

Q=T2

DO 101 T=1yM1
ACIsl)=A(T151)+QeA(IsLMIN)
A(TsLMIN)=A(IsLMIN)

DO 102 J=2sN1
IF(J~LMIN}103»102»103

DO 105 i=1l.M1
AlL»J)=A(lJ)=P1(J)RALLLMIN)
CONTINUVE

GO TO 110

CONTINUE '
PROGRAMME COIIVERGE TO GIVE SOLUTION
PUNCHh 29A(1s1) :
PUNCH 29 (A(I91)yI=29N1)
STOP

END

15’
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APPENDIX 3 -
23 2063 360 36 A I e 33630 B DU I A 2 I 3E I A 06 000 33 36060 3606 38 6 T I I6 3 36

ENUMERATION AETHOD OF INTEGER PROGRAMMING RaeSeCHAUDHARY
N NOs OF SARIABLES
M NOe OF CONSTRAINTS
A{IsJ) COILFFe ON LeHeSIDE OF CONSTRAINTS

READ 1lsMoM

FORMAT-(£110)

DIMENSION A(79400)B{T)sCL400)9NR{400)}»IX(400)

READ 29 (C{J)rJ=19N)

READ 29 ((A(]9J)eJdm=leN)sl=lsM})

READ 22 (B{I)sI=]1sM)

FORMAT (8F10,1)

PO 3 J=1l,N

IX{J}=0

IT=0

Jul

CA=C(J)

JM=J

IF(J-N)B8+9s9

JuJ+l

IF(C-CUJ)) 10910011

GO T¢ 7

GO TC 6

CM=CA

JMl=J¥

DO 12J=1sN

NR{J}) 2J

NF=9

NFl=1l

NS=aN

DO 15 i=1sM

IFCACToIMI=B(I)) 16915215

NR{J} ) =0

[T=11+1

ITi=IT-1

NT=N*®IT

NT1=N¥IT1

JuJMl

DO 17 KsJMsNS

J1aNT+K~JIM+IM1

C{J1)=C(N)+C(2)

NR(J1)=J '

DO 17 I=1leM -

AlLoJ1)=A(I s J)+ALINK

IF(JUM1=1)1841Y918

NTO=NT+1

N1=NT+UM1~1

DO 20 J=NTO4NL

C(J)=0,

NR(J)=0

0O 20 I=1lsM

A(I’J)ﬂ()o



19

41
42
23

22
21

24
26

27
28
30
32
34
33
35
29

40
38
39

15

DO 21 K=NF1lsNS
J1sNT+K~NF
JM2=J1l~JM

IN=1

JM3=IN%N
IF(JM2-JdM3) 22923942
INsIN+1 '
GO TC 41
IX(Ji)=sIX(K}+1

GO TO 21
IX{J1)=IX(K)
CONT] NUE

Jel

NT2=A T+N

IF(NR(J) 125426925
Jad+l

GO TC 24

CAl=C(J)

JM=J
IF{J-NT2)2829929
JeJ+]
IFINR{J})32932933
JeJ+l
IFLJ-NTZ)134929229
GO TO 30
IF(CAL-C(J))35935436
GC TO 27

60 TO 25

CM=CAl

ITN=1

NS=N*ITN
IFI(NS=JM)}3B893¥939
ITN=ITN+1

GO TO 40
ITN1=ITN~1
NF=ITN1%M
JMl=JM~NF
NFl=aNF+1

GO TO 50
CONTINUE
IX(IM)=IX(UM)+1

PUNCH 2s(C{J)sJaNF19NS)
PUNCH 22 ((A(TIsJ)ysJusNF1oNS)sInlsM)
PUNCH 1s(IX{J)sJ=NF1sNS)

PUNCH 2sC(JM)
STOP
END
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