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SCOPE OP THE WORK 

Distributed Parameter System (DPS) is a system in 

which mass or energy is distributed over all the spatial dimen-

sions. Such systems arise in various application areas, such 

as a Bending of beama, Heat transfer, chemical process systems, 

communication systems. Dynamics of .  such systems is described 

by partial differentia. equations. Compared to ordinary 

differential equations, very small amount of work has been 

done towards the solution of partial differential equations. 

Owing to these difficulties study of optimal control of DPS 

is formidable compared to its counterpart in Lumped Parameter 

Systems (LPS). 

There are many physical systems which are described 

by diffusion equations, for example, heating of solids, flow 

of viscous fluids, diffusion of gases, flux distribution in a 

solid rotor. Very often it is da4ribeI to achieve a particular 

type of distribution in such systems by applying manipulative 

control on its boundaries. It is also desirable to achieve 

such distributions by suitably designing the controller, in 

shortest possible time. From physical point of view, the 

control may sometimes have physical constraints. 

H 



This dissertation proposes to investigate time 

optimal control of multidimensional DPS considering linear 

Diffusion Equations as illustrative examples. The dimensions 

of the systems considered are one, two and three. The results 

are extended to N-dimensions. The boundary controlled Diffusion 

Systems are transformed to integral equations using successively 

Operation Variable and Laplace Transformation techniques, for 

Time Optimal Control studies. Structure of controller has been 

studied following optimal control theory of LPS, which demands 

the solution of a set of simultaneous non-linear equations 

involving exponential functions in 'time. The difficulties of 

solving these equations have been illustrated in the design of 

Time Optimal Control of fourth order - LPS. This leads to the 

belief that solution of these equations in the case of diffu-

sion systems is much more difficult when convergent results 

are desired. A transformation technique has been applied which 

overcomes these difficulties. The controllers thus obtained 

are tested for various systems and results then compared. The 

study ends with a conclusion emphasising extension of the 

present work for future studies. 
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CRA PP ER - I 

I N T R© D U G T 10 K 

A distributed parameter system is a system whose 

mass or energy is distributed over all its spatial dimensions. 

The behaviour of a such a system, in contrast to lumped para-

meter systems which depend on a single factor and whose para-

meters are concentratdd at a point, depend on various factors, 

say, time, distance. Behaviour of a multitude of physical 

systems can be represented by distributed parameter systems, 

flux distribution in a solid rotor (Fig. 1-1), oscillations of 

fluid in a tank, (fig. 1.2), transfer of power in transmission 

lines (Fig. 1.3), vibration of beams (.dig. 1.4) and circling line 

when an aircraft flies with a long flexible cable attached to 

it [9J (Fig. 1.5) are a few examples. Many other control And 

design problems faced in electronics, hydraulics, metallurgical 

and chemical plants are also distributed parameter problems. 

The usual phenomenon in a continuous industrial process is the 

flow of material through a number of processing zones which 

are distributed consecutively in space. The control action for 

them, e.g. the control of temperature are also distributed in 

space and act over the entire length of the processing zones. 

In metallurgy industry, the operation of a rolling mill, or any 

other system, for hot processing of metal by applying pressure 
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depends entirely on heating rate. Here then, it is required 

to control the heating to obtain a specified temperature 

distribution throughout the entire volume of metal, in minimum 
time. Another very popular example, which has been the topic 

of considerable importance in research works, is heat flow or 

diffusion equation. In general, all dynamical systdms are 

basically distributed systems whose behaviour is described by 

partial differential equations, integral equations, integro-

differential equations and sometimes more general and complex 

functionals and relations. 

The analysis of the distributed parameter system is 

a very complex and laborious task. Sometimes on neglection 

of some parameters of a distributed parameter system rest of 

the parameters can be lumped together, reducing the labour 

needed in analysis and computation. Such a system is lumped 

parameter system and its behaviour is described by ordinary 

differential equations, e.g. If there has to be transmission 

of power in a short AiIie (upto 60 or €30 Kms) then the line 

capacitance can be neglected. The. resistance and inductance 

of the line are then lumped and the analysis of this line is 

much easier to that when the capacitance was considered. Thus 

in a nutshell, lumped parameter system is a particular case 

of distributed parameter systems. 
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1.1  OPTIMAL CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 

The theory of optimal systems, based on the recent 

advances in mathematics and engineering, has been rapidly 

developing during recent years. As the technology is progressing, 

demands from automatic control system are growing more diversive. 

The range of objects operated by automatic control are rapidly 

increasing. In various processes automatic control systems 

are required to ensure highest productivity for P. given expendi-

ture of raw materials, , fuel or energy. High accuracy of 

operation of a system or a unit and high speed of operation are 

often required, some specified state is required to be 

approached with least expenditurelavailable means. Many indus-

trial systems operate in a manner such that, the potentiality of 

the plant is not fully utilized. It is, therefore, necessary 

to create methods of control that enable to utilize the 

potenti,ilities of the plant to the fullest extent and create 

systems that are optimal in any opecified een:o CIO, 3tJ 

Taking into account the importance of optimality 

in modern technology, optimal control of distributed parameter 

system is a topic of keen interest as behaviour of a multitude 

of dynamical systems is described in distributed parameters. 

But due to complications involved in treatment of partial 

differential equations and co mputation work, less attention 

has been paid towards it. Looking into the literature available, 

it is seen that, in general, the approach for numerical 



solution of optimal control problems in distributed parameter 

system is to prepare an approximate model of the physical system 

which can be solved by conventional techniques(.101. Reviewing 

the various methods used for approximating the system, they 

can be put into two categories. 

(1) In the first category, the optimal control problem 

is formulated for the equations ddseribing the distributed 

parameter systems. Conditions for optimality are obtained and 

an approximate solution to the optimal control policy is found 

out by utilizing the conditions for optimality. 

(2) In the second category, the distributed 

parameter system is approximated to a lumped parameter system 

by some technique. The specified performance index is then 

approximated to one specified for the lumped parameter system 

model and an optimal control policy is determined for lumped 

system. In this approach it is necessary to choose a lumped 

parameter system model which will yield optimal control law for 

the lumped system, which is sufficidntly close to the optimal 

control law for distributed parameter system. 

The first category makes use of either of the four 

methods 19] whichever i s suitable for the purpose of 

approximating distributed parameter system to a model 

in the problem - 
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(a) Eigen function expansion or Harmonic Truncation 

(b) Space quantisation 

(c) Time and space quantisation 

(d) Transfer function approximation 

Approximated model is then subjected to either of the four 

approaches L9,lo')to develop the necessary conditions for optimality 

(i) Variational method 

(ii) Moment method 

(iii) Dynamic programming method 

(iv) Function space method 

a 
Frequentlyr(combination of these methods is used to find the 

optimal control. 

Vinter [171 gave a generalised form of Pontryagins 

Maximum Principle and derived canonical equations yielding 

minimum time contfol for linear systems w ith quadratic control 

effort constraints. He observed that by taking a restricted 

class of system solution could be obtained in terms of system 

parameters and the same procedure could be employed for minimum 

energy problems. Lu and Shen [30) presented a practical approach 

to the problem of optimal boundary control synthesis in one 

dimensional linear stationaty distributed parameter s ystem 

and obtained optimal control function directly from a generalised 

quadratic performance index by using gradient methods extended 

to the functional space. Kin and Brzberger [20] considered a 

N-dimensional wave equation and desired Riccati equation for 



optimum boundary control with unconstrained control function 

and quadratic error measure. He solved these equations by 

using certain type of weighting factors in the quadratic error 

index and employing the separable variable method. Greenberg (20] 

took parabolic differential equation and formulated them as 

ordinary differential equations in Hilbert space. By formulating 

the quadratic cost criterion as inner products on this space 

he proved the existence of optimum control both when the 

system operator was coercive and the infinitesimal generator 

of a semigroup of operators. Wang & Tung 263 discussed general 

method of optimum control of distributdd parameter dynamical 

system 	with main features as mathematical description of 

distributed system, formulation of optimum control problem and 

derivation of a maximum principle for a particular class of 

system. Brogan E21) treated the distributed parameter problem 

involving non—homogeneous boundary conditions by dynamic 

programming technique and showed that it can be as powerful as 

the variational approach. Brogan 28 also took the wildland 

fire suppression from control point of view and taking the 

fire fighting as removal of heat he made a distributed 

parameter model of it. 	He then suggested many optimiSation 

problems but was not able to present a final solution due to 

scarcity of qualitative experimental data. 

In this dissertation time optimal control of 

multidimensional distributed parameter system haft been 

investigated by considering linear diffusion equation as an 

example. 
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1.3 TIME OPTIMAL CONTROL OF LINEAR DIFFUSION SYSTEMS 

Leibowitz and Surendran (29) developed a procedure 

of time optimal control of Linear Diffusion Systems consisting 

of two iteration s chemes and based on singular perturbation 

techniques and calculas of variation s. Khatri and Goodson (183 

synthesised one and two dimensional heat transfer system by 

reducing parti&l differential equations and boundary conditions 

to an integral equation and applying variation procedure. 

Boody C24] applied a noniterative finite difference method 

for solution of Poisson and Laplace equations with linear 

boundary conditions. He observed the method to be simpler 

and more accurate than iterative procedure and the computational 

work was vastly introduced. McCausland L83 applied three 

methods : subdivision method, fourier series method and the 

parabolic method for finding time optimal control in a single 

dimension heat conduction equation and observed that subdivision 

and harmonic method givesthe correct control input taking 

sufficiently high order approximation to the actual distributed 

system but the parabolic method gave an inherent inaccuracy whisk 

could not tte removed. McCausland [16) obtained a lumped model 

using truncated elgen function expansion for the distributed 

system but this approach was limited to the problems where 

the time and space variables could be seperated. Prabhu*l and 

McCausland CI17 applied Galerkin's method for modelling the 

diffusion system to lumped system and observed the obtained 



switching instants of the optimal control to be in a very good 

agreement with available literature. Mahapatra [13J converted 

the diffusion systems to integral equation and had proposed some 

transformation for time optimal control studies using Knudson's 

method applicable to lumped parameter systems [11. These 

transformations hate been ma usede4solution of non-linear 

equations (5.1) in this dissertation, which reduces the compu.- 

tation work tremendously. Sakawa(12) gave two methods I 

variational method and reduction of problem to linear or 

non-linear programming ,time optimal study of heat conduction 

equation in single dimension. Upon use of variational method 

he derived Freedholm's integral equations as necessary condi-

tions for time optimal control. 

In this dissertation diffusion problems giving heat 

conduction is one, two and three spatial dimensions have been 

stated in Chapter II. They are then subjected to Laplace 

Transform [5] and deperable Variable [51 techniques in Chapter IT 

Using the property of orthogonality, the system is then converted 

into lumped parameter integral equations. The technique has 

been extended to n-dimensions. Thus the problem of time optimal 

control in distributed parameter system is converted into time 

optimal control of lumped parameter system. The Pontryagin's 

Maximum Principle[23then gives the structure of control to be of 

Bang-Bang type, having (n-1) switchings for nth order system. 
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This leaves the problem as the solution of non-linear 

simultaneous equations involving exponential of time. It is 
this part which has been given the maximum stress in this 

dissertation. Taking three illustrative examples of f&urth 

order lumped parameter system in Chapter III and converting them 

into non-linear equations (of the nature obtained in distributed 

parameter system', it has been shown that tremendous difficulty 

is faced in their. solution if they are kept in time domain. 

Owing to these difficulties only a few persons have touched 

this portion of computation. A transformation[133 has been 

used in Chapter V which reduces the labour needed in computation 

of the solution of these non-linear equations. 

Lastly, using harmonic truncation method [14] , the syst 

response is obtained for increasing number of switchings. The 

computational work has been carried out on one, two and three 

dimensional linear diffusion systems. 
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CHAPTER - II 

g,Loul +, S TAT :'ENT 

The chapter describes various systems under 

investigation for Time Optimal Control studies* These 

systems include (1) One dimensional Diffusion System $ 

(ii) Two dimensional Diffusion System, and (iii) Three 

dimensional Diffusion System, 

2.1. PROBI. A ONE DII SIONAL DIFFUSION SYSThy 

Consider a rod of length L and of negligible 

width and thickness, The length is taken along the 

spatial coordinate - x, as shown in Fig.2.1.1. Heat 

is added, at one end of the rod at x = 0 and the other 

end ( x = L) is maintained at zero temperature. It is 

desired to attain a steady state 'temperature distribution 

85(x) in time T. Let u(t) be the source of heat (hence 
called controlled function) applied at x = 0. Let us 

assume the. initial temperature distribution of the rod 

to be zero. Neglecting the heat flow along y and z 

direction, the behaviour of temperature 43 at distance 

x and time t is characterised by partial differential 
equation: 

ti e (x!t) 	~tx't) 
c3 t 	= 	c2 	._, ..... ~....r 	' X E (0 s L) . « (2.1) 

d x2 
With boundary conditions: 
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6 (of t) '= u(t) * 0 (L,t) = 0 	(2.2) 

and with initial and final conditions: 

9(a, o) = o ; a (z, T) = 83(x) 	 (2.3) 

Where a2  is the conductivity of the material of the rod. 

When (2.1 - 2.3) are normalised with respect to 
ppatial coordinate 

x, then the system is tranformed to: 

as(x,t) 	a 8(x,t) 	• x (0,1) (2.4) 
dt 	 S 2  

With boundary conditions: 

$(o, t) = u (t) : 	9 (lit) '_ 0 	 (2.5) 

and initial and final conditions as: 

®(x,0)=o y 9( x,T) = 89(x) . = sin IP1/ 	, ( say) (2.6) 

2.2. PROBLRX--B:  TWO DIMENSIONAL DIFFUSI iy wYST 

Consider a square plate of length L in spatial 
coordinates x and y as shown in fig.2.2.7.Heat is added 
uniformly at the surface x = 0 and, all the other surfaces 
are maintained at zero . temperature. The temperature 
distribution 8 (x,,y,t) , for this system, when nox alised 
with respect to xvand $Jcoordinatee, is governed by the 
partial differential equation: 
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ae(z,y, t) 	a2e(x,y, t) 
	82e(x,y, t) 

at  aX2 
 ay2 

x,y Q (0,1) 
	

(2.7) 

Let u( t) be the heat source, hence called control function, 

applied at x == 0. Therefore, the boundary conditions are: 

0 (0,y,t) = u(t) ; e(1,y, t) 	= 0 	(2.8) 

e (x,0,t) 0 	a e(x,1,t) = 0 

Let us assume that the plate is ..nitially released and 

at t ,= T, the steady state temperature distribution is 

e* (x,y) . The initial and final conditions are then given 

as 

8(x,y:0) = 0 e(x,yr%) = 6 (x,y) 

Sin__ yx_..Sin_. wit ,(say) 	(2.9) 
~2 

2.3 ?k oBLI•C: THREE DTI LINSIONAL DIFF3SI©N SYSTEM 

Consider a cube of aut L as shown in Fig.2.3.1. 
Heat is added uniformly at the surface x = 0 and all the 
other faces are maintained at zero temperature. The 

temperature distribution e(x,j,z,t), for this syster, 

when normalized with respect to x, and $-spatial coordinates, 
is governed by the partial differential equation* 
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ae(x,Y, Z, t) 	de(x,y, z, t) 	d28(x,y, z, t) 
c7t 	 dX2 	± 	d ~2 

►28(x,t,z# t) 
d 	 x,y,z,E (0,1) 	(2.10) 

Lot u(t) be the heat source, hence called control 

function, applied at x = 0. Therefore, the boundary 
condition slot 

9 (Q,y,z,t) = u t~  ~i e ('t,Y, it) 	=. 4 

9 (a,0,z9t) = 0 	; d( x,l, z:t) 	0 	(2.11) 

0 (x,y,d, t) 	0 	8 (R, Y:1st ) 	0 

Like previous problems# let , us assume the initial 
temperature distribution of the plate to be zero. If s* 
(x,,z) be the steady state temperature distribution at 

t = T, then the initial and final conditions are given 
as:. 

8(xfy, z,O) = 4 i •(x,Y, z,) = 49*(x:Y, z) 

in fX slnv sin v z r (say) (2.12) 

2.a+ T. M,~j'' oPT rMeL CO TRnt.' 

Frain physical point of view, the heat source u( t) 

can have magnitude constraints of the type 

u( t) 	1.0 	 (2.13) 
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The time optimal control problem is to design 
the structure of u( t) for all the three systems mentioned 
earlier, such that, the steady state distributions a*( x) 
for one dimensional, 8"(x:y) for two dimensional, 
9*(x,y,z) for three dimensional Diffusion systems 
stated in equation (2.4 • a.6),(2.7 - 2.9) and (2.10 •2.12) 
respectivelyp can be obtained in minimum time To 
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This chapter examines the computational problem 
of time optimal control of systems described by ordinary 
linear differential equations. The control function is a 
scalar one. Results of this chapter will be useful to 
study the time optimal control of linear diffusion equation; 
described in later chapters, 
3.1  PROBL  STt TEVIEUT 

Consider a linear$  time-invariant lumped parameter 
system (LPS) described by a first order,. ordinary vector 
differential equation: 

I (t) - A X (t) + Bu(t) - 	... (3.1)  

with initial conditions:X (0) = Xo 	... (3.2) 

where A is the system matrix of order n x n. 

B :.s the control matrix of order n x 1. 

X(t) is state vector of order n x 1. 

u(t) is a . scalar quantity, called the control 2unction 
for the system (3.1 - 3.3). 

It is desired to design the structure of the 
control u(t) , such that the system described by (3.1) is 
driven from the Initial state Xo  to a final X* is minimum 
time T. The control being lirited in magnitude by the 
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constraint 
u(t) 	< 1 	 S... 	(3.+) 

3.2 
If the lumped parameter system is of order two 

or maximumthree $  u*(  t) can ',e designed using methods given 
in C2,3 J  . The principle adopted here to design the optimal 
control u* (t) is in the line of Smith 

Consider the diagonalisation of matrix A in (3.1) , 
assuming it to have (four the sake of simplicity) distinct 
eigen values 	s!  i = I, 2, ... , n. 

Let 
X( t) = PZ (t) 	 ... 	(3.5) 

where P is .a non singular matrix 
"den (3.1) can be written as' 

Z = P` 1  APZ + P 1B ' 	... (3.6) 

making the substitution 

Q= 'B;D=P;O1 A,P 	... (3.7) 

The system (3.1) gets transformed In the canonical form 

*' 	DZ + 	a ♦w• 	(3.8) 

where 

X2 
o 

0 	 . (3.9) 
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Fxc. (3.8) and (3.9)9. 

Z, 	zi + qi u 	i 12 ..,n .. , (3.10) 

Applying Laplace Transtorn technique to (300) , the solution 
is given as 	t 

(t) = (0) 0 'it + q 	a 	ut dT . 
. 0 1,2j«.«,n *. (3.11) 

Att T T 

i 	1,2 j...,n .. (3.12) 

or 

e t 	u(t)dt 
1121+ In 

qj 
.. (3.13) 

assuming t= o;: h+ noe giving(0) C 0 

Thus from (3.13) 
T 

T' t)  u(t) dt = c 	i ,2,, n 

1 	 # 4 ( 3011 } 

where øj•& ~T } 	
•.0 (3.15) 

From iontryagin 9 1 aximum Principle [2a , the 
structure of u(t) will be Sang -Bang type,, having (n-1) 
switchings for nth order system (3.1) , Since in our problem 
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the initial state vector is zero, Bang-Bang control will 
be + I at time t = 0 (see fig-3.1). Breaking the integral 

into n-sections with control u(t) changing in each section 

3.14) can be written as 

ti 	 t2 
eXi (T- t/ U(t) dt 	I e%i(T* t) u(t) dt +....  

T 

. 1 ) + 8Xj(T- t) U( t) dt =ci; 

I = 1 #2, .... ,n ... (3.16) 

where t1, t2,.... f tn.., 	are the tine of switchings and 
T the optimal time in which the control. transforms system 
(3.1) from initial state Xo to steady state X* 

Solving (3.16) 

2eXi(T-'Y 	i(T̀  t2)t ......+ ~ -'J) n- 2eAi(T- tnu. i)-eaiT 

+(•I)n-1+%, c1 49 i= 1,2,..,n. 

... (3.17) 

Substituting 

P1( `19 t'rf9 ...., tt..1!T) = Go X1(-t1+X1(T' t2) 

2ei(T-tn-I)-e)iT 

+ (iii )n.l + %i ci; i1,2,.. ,n 

... (3.18) 
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get 
Fi(t1 ,t2, ...,t 1,T) = 0 * i = 1,2,.....E n 	.... (3.19) 

Thus problem of time optimal control of system 
(3.1'3.3) with constraint (3.4) is finally reduced to the 
solution of non-linear equations (3.19) . 

3.3 SOLUTION OF NON LINEAR S ,JATIONS 

Newton-Raphson method for solution of non-linear 
simultaneous equations have been adopted here for the solution 
of (3.19). Let t1 t2 , .. * . , t be the approximate roots of 
(3.19) (tn. being the approximate value of optimal value of 
optimal time T) . If these apr oximate values are located., 
respectively, at intervals h1# h2, ...,, hn from the exact 
values of the roots$, then 

t 	t1 + h3 , j 	1 f2, ...., n 	... (3.20) 

and 	.. 	.. 	 .. 
F. (t1+ b1, t2 + hit ..., to + hn) -0; i=132,..,n. 

M!. (3.21) 

Expanding Fi's by Taylor's series and neglecting higher 
powers of hi ts in (3.21). 

Fib t1 t2 ....,tn) + hi 	aF 	+....+hn (a,,,= 0 s 
tist,~ 	 t to. 

1=1,2, ...,n ..(3.22) 

From (3.18) , 

a i _ 	(.1)i i 
0
i(T"t

1 
	3 =  

and )Fi 	=- 	h ehi T 	 ...(3.23) 
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Substituting these in (3.22), n"simultaneous linear 
equations in unknoim h1,, h2, f..,hn are obtained. 
Solutions of these equations are obtained by Gauss •5iedal 
method, 

4 ~°,^ Programwfor solving these equations (3.19) by 
the above method has been provided' in Apjidix - 3.1+.2 . 

. ILLUST&,TIVE F 'pLE 

Let x p6.8190 4.2700 "0.8120 0.2368 X1 

f 1 

 4.27 -7.6300 1'.5ô70 -0.8120 3~2 + 
•0.812 1+,070 "7.6300 4.2700 X3 

. w 0.2368 	"0.8120 1+.2?. 00 	•6.8170 X 

0.4872 

..1.0150 	u(t)•... (3.21+) 
199530 
x+.6620 

given that 
X (T) = 	0.1870 	and .X(0) = 0 	... (3.25) 

03010 
0.3010 

0.1870 



While proceeding towards the final solution, it was found 
that 

-0.9861 	0 	0 	0 

0 	"3.911f70 	0 

o 	0 -8.7190 0 

0 	0 	0 	-15.2780 

M 	0.371 	-0.601 	-0.601 	•0.371 

	

0.601 	.0.371 	0.371 	0.601 

	

0.601 	00371 	• 0.371 	-0.601 • 

	

0.371 	0.601 
	s

• -.601 	09371 
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0,601 0 .371 
0.371 • 0.601 

0.371 • -0.601 
....0*601 -0.371 

0.371 0.601 
P 1~ -,0.601 -0.371 

•0.601 0.371 

-0.371 0.601 

0.50111+ 
Z(T)= 0 

0 

0 
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0.9876 	 0.5074 
Q 	0*9936 	`, C= 	0 

	

-2.8599 	 0 

	

3.6995 	 0 

Computer programme for obtaining these values 
is shown in Appendix • 3.i 

The integral equations'  which are obtained on 
using all the above values, are then 

T 
-0.9861  (T- ) u(t)dt 

e3'1' (T-wt) u(t) dt = 0 

T 

e 8.7190 (T• t),  u(t) dt 	0 

fl 

T 
5.2780 t Ti- t) u( to dt = 0 

The initial values given as the approximate 
solution are seen in the first row of table - 3.1. The 
rest of the table gives an idea of the intermediate stages 
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reached, while proceeding towards final solution. The final 
solution obtained (giving the structure of the control u*(t) ) 
is as shown in table r 3.2 » Appendix 3oti summarizes results 
of two more examples of fourth order system. 

Finding time optimal control swi tch ings necessitates 
the solution of non linear equations (3.19) involving exponental 
functions in time. The Newton*Ralphson method adopted here 
for the solution of these equations needs some estimated value 
of the variables before proceeding towards the final solution. 
It has been seen practically that a great deal of difficulty 
is experienced in assuming these r  initial values of the variables 
t. , t2#  t3  and tie These finite timings can -lie any where on 
the positive reel line. This makes the choice of initial 
values, a matter of guess acid intutior.. It has been further 
found that these equations are very sensitive to the selection 
of initial values. I'lany a tine, on, giving,) a. set of initial 
values # overflow problems were a xpe rienc e d when working on 
IBM 1620. The pmgrItzte had to be brought to an. end and 
refed with a different set of initial values. The initial 
value chosen, thus, may or may not lead to the solution„ The 
difficulty experienced in solution of fourth order system 
leads to the belief that still more, difficulties will be 
expo rienced in finding time optimal Control switchings for 
a higher order system. 
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APPENDIX 3.4.1 

C C EIGEN VALUE AND EIGEN VECTOR CALCULATION RA.JIV GOYAL 
DIMENSION A(10*ifs)+B(10.10),8T(IQ)•YT(1O).LEMDA(10)#PTRANt10*1O), 
1D(10),Z(10) ,C(1O) 
Nw4 
READ 2st(A(I+J),J•1,N),I.1#N) 

2 FORMAT(4FZ0.8)  
READ 2.(BT(I)*I:1,N)  ( 
READ 2•tYT(IJvI=1,N)  
CALL E1GEq (A,8 N#1Q) 
PUNCH 4 

4 FORMAT( .SOX,14HE GEN VALUES) 
PUNCH 2.(A(I,I ),Ift1.N) 
PUNCH 5 

5 Fc)RNAT (2OX,15HE I GEN VECTORS) 
PUNCH 2s(1B(I.J).Js1.N)►I-1,H) 
00 10 1*1:N 
JP*I 
00 10 J*JP,N 
PTRA It IsJ)+ RtJir ) 

10 PTRAN(J,l)*Btl*J) 
00 11 I*1,►N 
fit 1)wPTRAN(I.1).ST(1) 
Z(I)*PTRA4t i,l)eYTI1) 
DO 11. JaZ#N 
D(I)aD(I)+PTRAN(19J)*8T(J) 

it Z(I)*Z(I)+PTRAN(IsJ)*YT(J) 
DO 12 I.1.N 

12 C(I)Z(I)/DU 
PUNCH 2s(Z(I),Isi.N) 
PUNCH 2ft?!t)►I 1►N} 
STOP 
END 
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APPENDIX 3.4.2 

C RAJIV GOYAL 	TIME OPTIMAL CONTROL. OF LUMPED SVbIEMS 
DIMENSION At 10►3O),Dt iO.1O)'DYt ,IUI,Rt lO).ft lO).T( 1O).X(1O).C4 1OI 

200 FORMATI8EtO.4) 
EPS.o.0001 
14-3 
Ni•N-1 
M*N+l 
READ 2UOr(RtU),IwlsN).(C(I1.Iw1.N) 
READ 200,111I),1*l,N! 

90 DO 25 Is1sN1 
25 X(I)*T(N)-T(I) 

X(N).T(N) 
00 30 I•l.N 

30 Fl! ln2.*EXPtR(I)4Xtllt-2.EXPlR(l)*X(Z))+EXP(R(I)*X(,S))— i3O+ 
1R(I)*C(i) 
0) 35 11.N 
DO 35 Js 3,141 
JA''J+l 

35 AtI•J1*-2.0*(.4.0)**JA*R(I)*EXP(R(I)*X(J)) 
DO 36 Im1sN 

36 AlI,NtRtlf tF(I2+3.0-RtII*CtI)) 
Do 38 1019N 

38 At I,Mt*—FI I I 
S0i,.UT ION BY GAUSS METHOD STARTS 
00 5 Ku1*Nl 
DO 6 J*K.M 

6 D(K,J)*A(K,,J)/A(K,K) 
KKwK*1 
DO 3 I *KK#N 
DO 4 JiK, eM 

4 D(t,J) A(IsJ) -A#I..K)*D(K,J) 
3 CONTINUE 
00 11 MM*3*N 
DO 11 NN'1,M 
Al MM, NN2.*).0 

11 AIMM+NNi"D(MM,NN) 
5 CONTINUE 
DY(N)*AtN*M!/A(N,N) 
DO 20 1=1,$1 
KwN-I 
SUMM0#0 

00 7 L*1 J 
LL•N—L. 

7 SUM- SUM+A(K,LL)*DY(LL) 
DYtKI•tAtKom)-SUM)/A(K#K) 

20 CONTINUE 
PUNCH 200s(ThI),Iw1.N)'(F(I)#Iw1.N) 
PUNCH 200r(DY(IZs1.1.N) 
IF(AB5F(F(1))—Ep5I15v15r60 

15 IF(A8SF1F42))—EP5)16.16,60 
16 IF(A8SF(F(3))—Ep5?17,17*60 



17 IF(A8SF(P't43 )-EP5)1Sp18p8G 
60 Do 40 t*l,N 
4o T(1)RT(I)+DYU) 

G0 TO 90 
is STOP 

END 

Vl 



k g Ir  • M 3.860 • .6115 0.1736 
3.'60 	•?.021 '.03 *0,611 

.0.611 	)..034 •?.021 3.860 
0.1136 ..6115 3.960 •v 6.4 

PO,* 3339 
0.75 n(t) 

.1.L810 

401380 

LL fl tt (4 a 	0.1870 

0930103 

0.3010 

0.1870 

It zciI found that 

•0.9' 93 	0 	0 	0 

0 	•3.8193 . 	0 	0 

0 	0 	""8.2431 0 

0l 	0 	0 	•i3vf193 
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0.371 -0.601 -0,601 i0.371 
0.6001 -0.371 0.371 0.601 
.00601 0.371 4.371 *-0.601 
0.371 0.601 '00.601 00371 

0,371 0.601 0.601 0.371 
•9960'1 '"0,371 0#371 00601 

Q-0.601 0.371 0.371 000,601 
-0,371 0.601 -0.601 0,371 

z 	w 
 

0~5Dt1tF 

0 

0 

0 

Q 	 0.97 

•2,81 
3.0071 

05129 

0 

0 

Or 

The solutiong i.e. the t3 a of mdttbing t and 
final t es T, VMrre found as cbovn In table - 3.3 
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T t t2  t3  

5'.322 !.619  - 	5.?*f2 5*?73 

• „„. 1 	2. 'i 	0 	0 
2#5 	405.0 	2#5 	0 
0 	2. 	 215 

0 	0 	« 	0500 

0 	u(t)  
3 	 0 

given that 

0,3010 
0*3010 
0.1970 

Aariug the ao1utio, It w-ns found that 
*000 $t+ 	0 	0 	0 

3 = 	0 	 0 	0 
0 	0 	•60545 	0 
0 	0 	0  
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35 •r 

1.62 0.618 	-0.618 P11.62  
P. 

1.62 •0.618 	«00618 1.62 

1.0 *1.0 	1.0 -1.0 

1.0 1.62 	1.62 	1.0 • 1.346 _ 
l'o 	loo 0.618 	** o618 	•#.o 0.0 

1.0 O.618 	too o.O 

1062 	•1.O 0 .0 

c= o. 
0  

2.5 0  

The txe op' oontrol switohange tro hovflin tb3NS 

t, t, t3 T(utt*) 

5.86 6.173 6.292 6.331 



I  . 	X36 

fin 

4. 

rj 	Is, 	,' 

r 
J 

• • • 
$A )1 

5! 

a 

1 	' 



a. 

} 

J 0 

0 U 

(Yl 

ft 
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CHAPTER IV 

CONVERSION OF LINEAR DIFFUSION EQUATIONS TO LUIPED 
PARAMETER SYSTRES FOR TILE OPTIVAL 

CONTROL STUDIES 

This chapter presents a -technique to convert linear 
diffusion systems into lumped equations using seperation 
variable and Laplace transforr techniques~s,►~.These lumped 
equations are utilized to study the tirr:e optimal control 
problems, stated in Chapter-IZ. Results are then extended 
to n-dimensions systems. 

.1. 9NE 	SIONAI LINARDI 	INRUTION 

Consider Problem-A, stated in ChapterrII (equations 
2.F - 2.6) . 

Taking Laplace transform on both the sides of equations 
2. 	2.5) with respect to t, 

s ®(x,$) • 6(x,0) 	d2 e(x.$). 	 (4.1) 
dX2 

and 

e(O,$) = N(s) , 	8(1,$) = 0 	 (-.2) 

Also 
sB(xg s) =_d 	,$) - 	since 8(x,o) 0 t .3) 

dX2 



Where rk  are the poles of F(s) and Ak  (x) is function 

of x only.. 

The poles of F(s) are given by 

slnh mss----  = p 

This gives 

s 	= - k2  u2  ; k = 0,1 *,2f  ..... 	(4.8) 

rk  

A0(x) is given by 

Ao  (x) 	Lim ( s- rQ) 	sinh ,,,/s  (1-x) 

Lin 	s  eJ8  (1-4 ,/s (i- x) 

*z 0 	 (4.9) 

Ak  (x) is given by 

p (1k). 
Ak  (x) = 	dq 	; k 0 	(4.13) 
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Where p Is the numerator and q denominator of F(s) . 



Let 8(x,$) be denoted by fl for the sake of simplicity. 
Solution of (4.3) is thus given by 

A 	
.~....~ 	' 	W. 

8 	sink 	 B .3 s 	x 	cosh j
... 

x (4.4) 

at x 1 	A sinh ,,/ a + F cosh „/s = 0 

or, 
A 

sinh Jr  

at x 0, From O+.2) and (4.4) 

B 

Thus solution of (4«3) is given as 

cash,,, fs 
0' ` ( r 	sink ,/s x + sinh Js x) u(s) 

sinbJs 

or$ 
sink ,,,~/~ (1•~ e = 	u(s) 	14.53 sinh ,,,,,/s 

Here let, 

Binh jr (I-x)  
F(s) 	sinh ,_/s 

Writing F(s) in the form [5~ 

F(s) 	A( X) . 	..- 	 (4.7) 
k 



Now 

and 

p (rk ) a t i sin kir (1-x) 

coati 
t do ) ~r ' ( 	 ) k2 I2 

k 	2 / s 

(1f.11)A 

• 

' , 	 .~ ': 	 O+.118) 
2jki: 

From 	(4.10), ('+•11A) and (i.11B) 

Ak( x) 	2 kit sin kw x 	 (f.12) 

Thus from ti ?), (4.9) and (Z+.12) 

F( s) 	= 2 it oO k sinkWx 
s+ k2 t2 

Thus from 
t 

2 9 (x, t)  = 2 	k sin kuxJem
" k

2 
i ( )

r) dT 
k1  

(x+.13) 

assuming expansion of 0 (z,, t) in coordinate x and time t, 
is a convergent series in the sense of Wein Berger ES] 
This gives the complete solution of system (2. - 2.6). 
While obtaining the time optimal control, we see that 



41 

at t = T,, from (2.6) and (4.13) 
0 	 T 

	

2 * 	It sin It it xfoe" It212 (T. t)  u( t) dt 
 

s irx 	 (+.1) 
it 

Multiplying both the sides by sin in 1 x,; in = 1,2, ..... 

and integrating w*thin limits 0 and I (using the property 

of orthogonality) [5,10] 
T 

2  1 
infoe

an2 172(Tat)u(t)dt s .r 2  in it z- dx 
 Jo 

Ii 
sin in 7 X0  Si!! it S 

dx 

in = 1,2,3, .«,. 
T 

or 	a  12 (̂T„t)  

	

fo 	212m 

_ 0 	m = 2,3, ..,« 

The one dimensional linear dimension equation 
for time optimal _ control studies, given by (2.4.2.6) , 
is, converted into a set of non-linear equationjinfinite 
domain. These type of equations have been discussed in 
Chapter-III for time optimal control studies of lumped 



parameter systems described by. state equations.. There. 
fore, these infinite number of intogeral equation (4.15) 
can be approximated in a finite domain and the non' linear 
equations governing switching instants can be obtained 
following the procedure adopted in Chapter III. Further, 
the diffusion system. under consideration is a heating 
phenomenon ( 9(x,o) = 0 and S* = sin A x/ir ). Therefore, 
the initial . sign value of the control should be +1. 
Hence$ the non-linear equations to be solved are given by 

•e.OM2 V ~ + 2elM2 2( T,̀  t • 2e M2 jr2(T ' t2)+ ...... 

+(_1)hl12 e"2  ,2 (T'"t'n►~»i)+(•,)n-.1 

+ in2 f2 'C~e 0 	in 	1 s2s 3~ •..... 

Where 
7 

0~2 	=. 	2 	1111 = 1 
2~r in 

0  m  2,3~ ....... 

4.2. 	TWO DIiEN NLINEAR DXF1JSI0N EQUATION 
Consider Problem • B, stated in Chapter" 11: 

(equations 2.7. 2.9)„ 

Taking Laplace transform on both the sides of(2.7) 
and (2.8) with respect to t and imposing zero initial 
condition (2.9). 
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Taking Laplace transform on both the sides of (2.7) and 
(2.8) with respect to t and imposing zero initial 
conditon (2.9). 

(x,y, s) 	+ a2 a (x,y,$) 	 » ~( 	s) 	0 
d x2 	 d y2 	 ~Y~ 

and 

(0,Y,$) = u(s) f e ( 1 ry,e) = 0 

9 (.x,o,$) = 0 ; 	8 (x,1,$) 	0 
	

(4.18) 

Now assuming 

8(x,yr s) 	X( zfs) Y(Y) 

(4.1?) gives 

d X(xis) 	 d2 Y{ Y} 
a X(x, s) Y( y) _ Z( Y) 	d 	+ X( x, s) 	2 

d y 

(4.20) 

With boundary conditions 

X(i,$) =0. 	
{4.21} 

Y (0) 	= 0 ;- 	Y(1) . = 0 

Writing X X(.xys) 0 Y = I(y) and dividing (4.24) by XY 

- ..._.~ _.... • e : ,. .. I.,r,... 	.. _ = X2 ( sag) 

	

Y 	dy2 

(4.22) 

(4.19) 



This. gives 

. 	 2 
= 0 	(4.23) 

and 

dy2 

Let the solution of 	be given by 

Y= At ain Xy+ BI sin )y 	 ( .2 

Applying boundary conditions at y 0 and y = 1 (4.21), 
the solution is given by 

J n „' ABM sib   	2 92 ; n1,2,3,-" 
(4.26) 

Which in turn . give$ the solution of (4,19) as 
CD 

0 L► 	Mfl sin my 	(x, s) 	(.27) 
n= 

at x = 0, (+.21) and (1f,2?) give 

Multiply! (1+.28) by sin k it y ! k = 1,2,3,.... on both 
sides and _integerating.within un its 0 and 1 (using 
property of orthogonality) 

Xk(01,$) = -- ~-, 	-- u (s) ; k is -cad 
it kA 	 .(4.29) 

= 	0 	 ; k is even 
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Let the solution of (+.23) by given by 

	

 

an sinh. ,Js + ►2 x + Dn Cosh Js 	Z x 
Of930) 

at x o 

Dn 	Zn (4,$) 

e 	u( s) ; n is odd 
In An 

at x = 1, from (4.21), 

Cn sinh s + x2 + Dn Cosh.1 s "K2 = 0 
Or 	

CCosh.n2 
n ~ 	rrnA' 	 u(s) ; 

n 	sink J s + n2,r2 

since X2 = n2 12 

Hence ('4.30) Can be written as 

$inh , n2 12 (1_I) 
Xh = 	 u( s) 

	

I nA In 	Sinh. a + j rr2 

	

n = 1,3,5, ..... 	(1.31) 

Thus solution of (1f.17) is given as 
00 0 (x,y, s) = ...~....._ sin n it y. 

n=1,3 

Binh J s + ac2 u2 (1-x) 

sinb „f ss + n2 12 	
u( s) ; 

....,. 	(x..32) 
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Following the procedure adopted in 4.1 to find the Laplace 

inverse of 0 (xis)s, we get 
0o 	aD 

n==1,3 k=1,2 

k sinniysinktx 
n 

t 

eu 	k2 u 2(t_q ) u(T) dT ...('.3.3) 
0 

Assume that the double series expansion of 9 (x,y, t) in 

x. and y coordinates and time tr is a convergent series in 
the sense of Woinbe rge r E 5].  
To convert, this into lumped integeral equations, we see 

that a t T,.(2.9) gives 

T  8 
	sin u y sin k ix 	p(n~'k

2) ,2( T-) 

nn1,3 1V1,2   0 

u( t) dt = sin  x sin pr y 

Multiplying both the sides by sin p it x, pp 1,2,...  and 
integerating within limits 0 and 1 (using property of 
orthogonality) 

T 
e (n2+ p2) ir2(T- t)u(t) dt - s 

n=1,3 	n ., 	 .8
0  

0 ; 	2,3, ... 

Ope ra Ling similarly with sin q if . y, q = 1, 3, 5, • .. we obtain 
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T 

e~ pl" g2)W2(Tot)u(0 dt 	~► 
p, q I 0  ~  ... 

0 	p 	2, 3, , .... ! q35,7... 

or T ®m212(T* t)u(t) dt 	2! m. 

where m2 = (p2 + q) 

°2 = 	. rn22 
8p112 

= 0 ; otherwise  

,..(4.36) 

The infinite number of integeral equations (4.35-x+.36) 
represent the equivalent lumped equations of two dimensional 
diffusion systems stated in chapter-I31by equations (3.I -3..15) 
for time optional. control 4 studies. These equations resemble 

0-A 
those of one dimensional diffusion equations ()+.I 5) ,,0L The 
constants are these equations (4.15) and (~+.351f.36) are c 
efferent. Furthers the time optional control involves heat 
ing phenomenon in both the situations, therefore the non-linear 
equations to be solved for determining the switching instants 
in the case of .two dimension diffusion systems can be referred 
to equation m2 being given by ('+„36) 

4.3 THREE DIVENSIONAL , IN B DIFFUSION TQUATI0h 

Consider Problem•C, stated in chapter-II: 
(equations 2.10-2.12). 

Taking Laplace transforms on both the sides of 
(2.10) and (2.11) , with respect to t and imposing zero initial 
condition (2.12) 

'~ (x yiz e) + 
d$2 

8?e(x,y,z,$)+ a2e( x,y:z:s).s(x,y,Z,$)=o 

ay2  az2 
 ,P .. ('r.37) 



1 

and 
8(O,y,z,$) = u(s) ; e(1,y,z,$) = 0 

	

8(x,O,z,$) = 0 ; 	e(x,1 r z,$) = 0 	... ('.38) 
e(x,Y,0s) 	0 s 	•(R,Yr1rs) 	0 

Nov assuming 

s(x,Yiz:s) = Z(Z) e1(x,Yr3) 	... (4.39) 
J 

( i.37) gives 

Z(z) 	02 x~t s) 	+ 	2 ►( X v s). + 	( Yrs) ....k.z) 
d ~c2 	a 2 	 dz2 

-sZ(z)g1('z,Y rs) 0 ... 

with boundary conditions 

Z(0) 	0 i Z(1)=0. 	..r ( 	'I) 
01(1,Yrs)=© i•1(x,,O,$) =0 ; e1(xr1 rs) =0 

Writing Z = Z.( z) 9=01(x,y r s) and dividing (Z+ 44) by Ze1 

'l.;~ 	: (o?e.1 .,. + d 	- s 	1Z = K', ( say) 
3x2 	dy W 	Z dz2 

.., (I+.42) 
This gives 

c3'91_ 	ã21 
a x2 	ay2 

and 
 K'Z 

dz2  

so (s+ K') e1 = 0 

0 

., . (t..)+3) 

000  

Similar to (4.21+) r applying boundary conditions (4,R t+1) r 
the solution of (1+,44) is given as 

Zn = Gn sin n r z" tKr = n2V2i n= 1929 39 .....  
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which in . turn gives the solution of (4, 37) es 
% sin nirz A 	 «r, (if.i6) 

n=1 

Assuming 
eln = YOy) X(x, s) .. # (x.47) 

( ..43) gives 

Y(Y) dx(x,a) 	+ 	X(x, s) 51(y) 	( 	1C 	)=o 

dy2  ... (1.48) 

with boundary conditions 
Y(0) = 0; Y (1) = 0 

X(is) =0. 
... (4.i-9) 

Writing 	Y(y) = Y,. X(x,$) = X and dividing by 

.... 	. (a+) =_1_  = t~ 	( say) 	... (4.0 ) 
X  dx y ay2 

This gives 

_____  (s + 	► + 	fir'") x = 0 (if .5, ) 
~2 

and 
a-.. + ft" x 	= 0 	 ... (1+.52) 
d2 

Applying boundary conditions (i..49) , the solutions of 
(4, 52) is given by 

Yd 	Hd sin dTry ; tri = d212,d = jj1.. (4»53) 
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which in turn gives the solution of (4.47) as 

en = it 	Ha  sin du y a 	 i .. (4.5`4) 

Following the procedure adopted in solution of (4..23), 

solution of (4.51) is obtained as: 

x, = x (0,$) sin h  Iss*U-14 w2(1_x). 
sin h sf (n2 d2)t2 

whiff \ 
8 (x,y f  z, s) = % H sin nuz sin d try/ xd(x, s) 

.. 0 551 
at ao1  (4.38) 

% Hd  sin nu z sin d uy xa(O, s) = .u(s) 

using the property of orthogonality in the case of double 

series*  we get 

X (0 0  s) =  ,,.1 b  	u (s) # i ands  a ,8oe odd 
ijGi E. 

... («6) 

= 0 ; I.or jiseven 

/q1)  
UNTk&L LrnRANY DNI'KISM Of Ree FF 
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Thus (4.55) can be wtitten as 

8(x,Y: z, a) =  6... 	 L 911nuzT 
172 	 rid 

n=1,3 cd1,3 

sin h s}(nd2)1t2(1.,x)u( s) 
sin h IEntd 

.6.(4.57) 
Following the proc edure-, adopted in 4,1 and 4,:21  to find 
Laplace inverse of 8 (x, s) and 4 (x,y, s) 

nd 
n=1,3 d=1,3 k=1,2 

t 
sindrysink1x 

v (t_-r)  u('t) dr 	... ('8) 

Assume that the triple series expansion of ( x, y, z, t) in 

x, y, z 	coordinates and time t, is a convergent series 
in the sense of Weingberger 	( 3 	. To convert this into 

lumped /  parameter system*  at t = T (2.12) gives 

,._k_ sin n}7' z sin dw3 sin kvx 
n=1,3 c1,3 k=1,2 nd 

T 

J 172 (T't)u(t) dt 

a 
 17 x sin it y.n.sin  u a 

173 
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Using the property of orthogonality for a triple series, we 
obtain 

T 

1 ee (,p2  +q2  +pS-) it2(T't) 
Jo 	 u(t) dt 

	

32 	p  2 	p,9 qt 3' =1 

	

0 	p 12  2,3 ,4.., .,►...... t 

q = 3,5,7, .1.0.; *.= 3,5,2, . 
(4459) 

or 	T 

e'" M2  IT2  (T.t)  

	

Jo 
	 U(t) dt 

32iv2  g 

2 =  

= 0, other*tse 

Where 
in2 = (p2  + q2  + r2 ) 

The infinite number of integeral equations 

(4.60•4'61) represent the equivalent lumped equations 
of three dimensional diffusion system stated in Chapter III 
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by equations (3."14-3.'15) fbr time optimal control studies. 

similar sort of representation was also seen in (4.15), 

for one dimensions and two dimension systems 
respectively. The difference being in the eigen values 

and constants involved in them. As here also the timq 
optimal control problem involves heating from o font J, 
state 8(x,Y,z,O) = 0 to a steady state e*, hence the 
initial value of the control will be +1. These integeral 
equations (4.6) - 4.61) on simplification give rise to a 

set of none-linear equations with the switching instants 
of the control u( t) as their unknowns. 

4.4. 	I1ENS ION L LINAR DIFFtJS.ION E UAT ON 

it is hard to attach any physical significance to 

nadimensional linear diffusion equations. But only for 

the sake of academic interest the method„ adopted for 

time optimal control studies of one y , two and these 
dimension linear diffusion equations, is extended to 
n-dimensional spatial coordinates. 

On the Lines of problems-As 8 and C in Chapter II, 

n• dimensional linear diffusion system ( in normalized form) 
is taken to be described by 

1x1, x2, ....., xn, t) 

a 	1...".~~....:.'..... , )..+.w 
i=1 	dpi 
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x$(01 1) ; i a 192, ......n 	(x+.62) 

With boundary conditions 

'a (O, X2, .0..., 	 t) =u(t) 

e( 1,z2, ...... s  x1!  t) = 0 

G(x1 ,0,.....xntt)= 038(x1 , 1 9  000rixnit)= 0 

(k5•63) 

8 (x1, x2, ....., 	.1' 0,t) 	0 

8 (x1  X29  .,.*.r9 Xh-1 9 l o t) 	0 

and initial and final conditions 

8 (x1,..+..#xnt0) -  ©; 

n 	sin n xi  
Ulf  410+.., xnq  T) 	0* - -  - 	n 	,(say) 

i=l 

The constraint on the magnitude oft, so called control 
function, is taken to be same as (2.13) for the time 
optimal control problem described In 2.4,E 

Taking Laplace transform on both the sides Of 
equations (4.62) and (1.63) with respect to time t and 
applying zero initial condition (11-.6+). 
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ate (xI, x2, ... r.... X1, S) 

i=1 	a x.2 

- se(x1, x2,, ....., x,~, s) = 0 	(4.65) 
and 

9 (0,x2, ..... x1, s) = u(s) ; 

48 (1,x2, w..., 	,$) 30 0 

8 (xi, 0, ...., z, s) 	0 ; 

4(x1, 1 .....,x, a)=0  

!! ( x1, x2, ..... , O, s) =0 

•(xIs x2, ........, 1,$)=0 

Nov assuming 

4•(z1,  :x2, .,,. , x, s) 	X(x) 8 "~ 

(x1, x2,.....xn_ 1, a) 	(.67) 

(4.65) gives 
a e n" I (x1 ,, 2, .... , f Ss) 

Xn(x~) 	 2 

d2 ( ) C 1, .... fxn- 	s, ...,......._.. .._._. 
d 	, 

•e X(x1) &"(x1, ....., 	's) 	0 
(4.68) 
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With boundary conditions 

X'(0) moo,« X (i) =0 

( 1, x2,..i. 1 a) . , 0 

e 1 (x1! 0, ...•sr Nn.10'0) = 

e ~• \.. 19 d2~iM.i.i~ 	i~ s) A4
' 0 (4*69) 

. .9nhl(x1~rx2, .,...,©,S) ' 0 ; 

OnuI 

w Writing X =X(x)  s &1 .1 1 8n" t  

and dividing ('i.68) by 0 

1 	
a2en-I 

xr1 	 a ~1 	is1 

.... ._..._ 	... 	..,..,,. 	,fin 	(say) 
dx 

1 	~n This gives 	a 	1 	.. (a +  p'1) e'1 1= 0 

i$1 	aXi 
(4.71) 

and 	d2 	+ An xn` 	o 	 (4«72) 
dx . 
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Applying boundary conditions (+,69), solution of ( 4.72) 
is obtained as 

Ti = B sinm n 	nn u 

An  -- :ri1 ir _  (+.73) 
n 

which inter iei turn gives the solution of (4.65) as 

t 	 it 	 w 

Bn 	Sin &1 a ,~ 8n-1 	(If.7If) n 	En 

Assuming 

.0mn 	 ( nr;1) &n 2 ( 1 , , :::.. ,x 2,$) 
mn 

(Z+• 75) 

(4.71) gives 
n-2Xn`I ~~" 	o2. 2 	,2 d2 X1 

	

# 8 	2 
i I  

• (ei An ) Xn'- 1 8n'* 2 0 	(4.7O) 

With boundary conditions 

Xn~1(0) = 0 ; 	xrr-1 (1) . = 

rn" 2 8 	(9,x2, ..,.., xn.02,$) = 4 



v 

' 0 

2̀ ( X1011 •..n.+! 3Cn-2§ 8)•. = 0 
	

('#a7r) 

1  • 

®"2 (x1!11 ..... * 	! 8)= 0 ; 

..... , 1,8)  = 0 

Where Xn 1 = Xn-1 (xc) and en-2  

Dividing (.?O) by Xǹ  1 8no*2 

8 	i=1 

2  

'=I YMr d u

yn
r - _1 rr~i  re n- say (.?8) 

 

which gives 

• (s+ 	r2 +An-1)8n.20 

i=1 
(4.79) 

and 
2 j 1 

it + 
2 Ate"` 	xn,* l =0 (a+.80) 

Applying boundary conditions (if.77) , the solution of 
(i.80) is obtains d as 



Which in turn gives solution of (x+.65) as 
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.~  oD 

e= 	 Bn 
ml  m ~~ 

Sin mnr a,n sin m 	8 	( x1, ..... 	*2' s) 	(4.82) 

Similarly successively applying the separable variable 
techniques as in (1..67) and (4.75) , we reach 

Co 

mn 7 

00 
Bn. 

r Tfln 

00 

F 
i r.1 ~.'1 • 

B 	.. i'... U •iii . 

mr 

Bm2 sin mn xn si-rn 	sin mns,~ xn_r --~•-- 

Sin ma ~r X2 a ( 	, s) ... 	(4.83) 
2 

and 

d2e1 (R1' 9) 	('s + ( m 2 # 2 * .,..,+m2)Tr2)=0 'nom 	2 
dx2 

()+»84) 

On the lines of procedure of solution of (l.23), solution 
of (44+) is obtained as 
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sixth Js + Mv2(1•x) 

sir~h 
.✓  M 12 

ems ( x1, 3) = el (a,$) 

Me! ( in 	+•n _1 ..... m& ) 
('8) 

Thus 
0o  ao 

i Lam......... 	 LLL~~~....rw... 

as 

Qo 

82 sin mn" z sin Zfl I *w Xn-1 4• 0 S SSiflin 
2 

4 	(xI, 3) 	(.86) 
2 

at' 
0, (4.613)• gives 

vo 	aD 	 Qo 

	

S...,.. 	 Bn Tjn~ •*..~.S.. 

ml 
	,in ,, i=1 
	 M l 	mn mn• i 

2 

	

B2 sin mn 1 	sin *n11 1 
I 

- , 1 . f . i O . * • 

	

sin m 	0. ( o , p) 
2  ~ 
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Using property of orthoganality in the case of n-order 
series, we get 

m~ 	~n B' 	 1n.1in-1 Bi 1 n  n 1 

1 • (-1)j2 
	1 	

u (s) 

i2 '2 

	

y -p - 	u(s) ; a1U.i are odd 
ii 

('+.8?) 
0 	• oterhwls e 

Thus(4.86) can be * riteen as 

O'(X.~t7L,29 •.air...., xn9s) 

•,may 	00 	CD 

M 

-,  mn-1 #3 m=1,2 

CO 

. wrr r.■n+ r 4 .r...runw 	 Sin 	v 	siii mnø. i 	Z1. 	i 1 ►..' ♦ 	11 

sinh „rJ + w (1•x1) sin m2 'r x., 	 u(s) 
s.nh , ` s g2 

(x•88) 
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Following the procedure adopted in 4.1 and t+.2 to find 
Lpplace increase of 6 ( U. s) and e(x,y,$) . 

2n-1 	Co 	00 
9 ` x1 , x2 r. •....,x 1 t) =  	-- 	 ~. 	 ""'

____ 	 > _, 	%1,3 

00  CO 
- 	sin 

m2 1 f 3 	mn Than1.1 2 

t 
Sin ma Xx sin m1 xI 	e-bMar2('t0 

(L.89) 

Assume that the n order series expansion of a in x1 ,x2,.... 

Zn coordinates and time t, is a convergent series in the 

sense of Weinberger (') , 

To convert this into lumped parameter systems at 
t T t i.6') gives 
n" 1 	w QD 	0° 	in 

" lrr 2 	 M n • rs .m2 
n 1,3  me ~3 In1=l,2 

T 	 ' 

	

Sin m w 	.,...,sin m~ 'I x 	e- A2(T u) t n 	 1 	-- 	u( t) dt 

	

_. 	 ...  

sin vxi 



or 	e''  1r2(T- t) 
u(t) dt = Cm2 

p2p3....pn 

= 

	 A 

21 v2p1 

M2 = II (x.91) 
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Following the methods used in 4.1,4.2 and 4+.3 ( using 
theproperty of or thegonality) , we get 

	

T 	2 

el 1 + p2 + .......• pn ) ,2 (T• t) 

 

Jo 	 J u(t) dt 

p2p ••••p 	• 	= 1 ` 	= 1 2 
z 	p1 

p = 

 

35? .....,, 	2,3,,..... (+.90) 

0 ;otherwise 
where 	•= ( pI + 1~2 ` 0000* + Pn) 	 (I+.92) 

Thus the integeral equations of the form (.i5),  V1+.35A.36) 
and (1+.60-4.61) are reached. 



AI,I TiR i (iJfJ  w 

In this chapter, ther non-linear equations obtained 
from sections L .l , Li.2 and Li.3 are transformed from time 
domain to S-domain with the help of some transformations (1*) 

These transfromed equations are then solved by Newton-Ralphson 
method. The geometry of the transformations indicate that 

the variables , thus involved in new equations, lie on the 
real line within a region 0 and 1 (excluding zero and one) . The 
switching instants for one dimensional, two dimensional and 

three dimensional systems are then solved by this method. The 
performance of the systems are compared with the help of graphs 

given at the end of this chapter. 

5.1 	A S 0RMATION$ 

The non linear equations to be solved for obtaining 

the switching timings ice. one, two and three dimensional linear 
diffusion systems are of the type 

e+m2n2T + 2e 	1,2( `tI).. 2e m2it2(T.t2) 1~ ......s 

( 1)ni2 2e'-m2Tc2(T- .i) +(-1)n-l"' m2'x2 C 	= 0 	(5.1) 
m~- 

64 
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The value of m2 being given by (L .16A) , (L.35) and (Li .60) and 
value of C z by (li.16B) , (4.36), (4.61) for one dimensional 

m 
two dimensional and three dimensional systems, respectively. 
Let, 

e 2 (T~t) = S ; S g (0,1) 
	

(5.2 ) 

Therefore, 
"'CaT C So and a 'r2'(T-ti) w S ; Ju1,2:..n-1 (5.3) e  

Let 

Thus the equation (5.1) is transformed to 

_ #-SQ + 2Sm - 28IM , +.....+(i 1)n*,lS ,1 

M 1t2 (Cm) = 0  

Observing the behaviour of S with respect to time in fig. 5.1.1 

So <l < SZ < .....< S 	; S,K 6(0,1); K 	0,1,2, ».., (n.'1) 

(5.6) 

From (5.3), 
1 	+~ n T ~-. 4 log sog t 	T + ~°g s • ~ 1., 2:.. , (n1)  

(5.7) 

Solution of equations (5.5) are obtained by Newton-
Rapheon method described in Chapter III and switching instants 
are obtained from (5,7) 

CFY`T?^1L U RR~y UNIVERSITY OF ROORKEF 
ROORKEE 



o W 0 opw xl ct tmior. a tctcn.o con 

bo otôiacz ecc cncC2onc Cti.153, 	tho ozc 	oD^c1 

In 90 i. egoocc (6,13) wo cozctc o 

s 	t,' C 1ze 0  

tthc~z o0 	0 mwI. 

0 0 	0 a 2a at 

` 0 Caticn. Of ttico O ' OLO g"' 1 to 0 3 ti V 

bcc otcmm amtl ci io  	o coi'atc ome n 
L'tv t rio becc un t''f COUWto c?c „o 	50:02»4 2o 

All 	O 	za hovo boe C01704 . t c of co i o' 	79 

90 01 	 0 	F 
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Colc 	for Q(s t) to ob nc3 in c m on (6,1) 

to at lz7 C tO 	ittItiOU 10 GAVE b.7 



b? 

.. 	2 	i.KZ n2 (T.t1) 
Q (x) - 2n t K sin Knx 2 (e 	42e 

kz 1 	I n 

2 
•W 2 e 4 1t2 (T t̀2) 

 

(_1) n"1 
	

(5.9) 

Taking first five harmonic terms in (5.9) , G(x) has been 

computed on IBM 1620 (See appendix 5.2.3 for computer program) 
for various final time T (see Table 5.1) . These are shown in 
Fig. 5.2.1. It is seen from these graphs that as the number 

of integral equations (L.16A) increase, the steady state 

distribution under bang-.bang control tends to the given 
distribution of function Q'(xØ 	in 	. 

The time optimal control switching instants can be 

obtained from equations (4.3L,), following the method adopted 
in 5.1. The equations (4.31i) can be converted to non-linear 
equations: 

m2 	m2 	2 	2 w Fm~so,en)= ft eo + as • 2 elm 	.,,..+(-1) 2Sn Z 	+(1)n 	.. 

	

m2 n2 Cm z = 0 ; m2 ffi p2 + 	; P 	1, 2, 3, .. , 
q=l3,5.. 

(5.10) 

with Cm zz 0.125, m2 = 2 , 
0 ; otherwise 



The solution of these equations for mz -2, 5,10,13 
(p = 1,2,3,; q = 1) have been obtained and summarised in 
Table 5.2. The computer program for this, based upon NR 
method ie given in appendix 5.3.1.. The complete iteration 

for m2 = 13 , has been shown in appendix 5.3.2 . All the 

equations have been solved with an accuracy of 10 

5.3.1 COMPARISON _ a ' PMM.O N 

Solution for 9(x, y, t) in obtained in equation(L .32) 
and substituting for the bangubarig control with (n.l) switchinge, 

the steady state distribution 8 ()x,y,) is given by 

2 n2 T 
® (x, y) = 8 	 sin ,a1y sin k 	.« 1.,,_2 ( e~m 

n=1.3 kzi,2 	 m it 

-m2,M2(T'.tl) 	I"m2n(T.t2) 	. n,1 -.0,42V-tn, + 2e 	*W 2e 	41 .•. +( 1) 	2e 

n-il 
(5.11) 

Taking first five harmonics, 0 (x) for y-0,2,0.h, 

0.6, 0.8 and 6*(y) for x - 0.2, •.'t, 0.6, 0.8 have been computed 
on IBM 360 (see appendix 5.3.3 for computer program) for 

various final time T (see table 5.2). These are shown in 

fig. (5.3.1 5.3.8) . it is seen from the graphs that, as 
the number of integral equations (1 .35) increase, the steady-
state distribution under bang-bang control, tends to the given 

distribution function (see 2.9). 



DIFFUSION SYSTEM 

The time optimal control switching instants for 

three dimensional diffusion system can be obtained from 
equations (1.60), following the method adopted in 5.1. These 
equations are converted to non-1 .near algebraic equations 

mz m2 m2 	_ 2 
FmPOPSK) 	.. S0 +251 -• 2S2 +.... h~-n 2 Sn.l +~ m 2 n2 Cm= 0; 

m2 p2•1g2+ ; 
p = 1,23,.... 

ci 
*_ = l3'5.... 

(5.13) 

with 
= 0.03225 ; m2 , 3 

0 	; otherwise. 

The solution of these equations for m2 =3, 6, ll, JJ',9 
(P s 1,2,3,; q 1,3; 7t_ = 1,3) have been obtained and 
summarised in Table 5.3. The computer program for this, 

bas6d on N-R method, is given 3.n appendix 5.11.1. The complete 
iteration for m2 , 19 has been shown in appendix 5.4.2. 

All the equations have been solved with an accuracy of 10~?. 

5.4 . l CQNPJRI80N OF PERrOR  MANCE 

Solution for 8(., y, z, t) is obtained in equation 
(L.58) and substituting the bang-bang control with (n-l) 

awtichings, the steady state distribution Q*(x,y,z) is given 

69 
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by 

k 
(x,y,z) = 

	

	 sin kn sin dny 
n=1,3 d1,3 k=1,2 n 

sin nn z 
l _ (seem 

m21  

	

2e-m2 (T-t) 	2e m̀R2(T-t2~ ,~....#(-.i}n'2 

	

2e m2n. (T-tn-11 	n-1 
(1) 	j 	(5. -la) 

Taking first five harmonica, 6* (Z) for y, z X3.2, 0.1,, 0.6, 0.8 

e(r) for x, z = 0.2, 0.11, 1.6, 0.8; and 0*(z) for x.,y =0.2,i.1~, 
0.6, 0.8 have been computed on IBM 360 (see appendix 5-A.3) 

for computer poogram) for various final time T (See Table 5.3) . 
These are shown in Fig. (5.1.1 • 5.11.8). It is seen from graphs 

that as the number of integral equation (11.58) increase, the 

steady state distribution under bang-»bang control, tends 
to the given distribution (see 2.12). 
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C RAJIV GOYAL TIME OPTIMAL CONTROL ZN'DISTRIBUTED PARAMETER SYSTEMS 1D 
DIMENSION S(20)sPHI(20)sPHID(20s20)sC(20),A(2Os21),X(20), 

1H(20),B(20)►T(2O) 
READ 1.N  

I FORMAT(I2) 
READ 2s(S(I),I=1•N) 

2 FORMAT (4E20.8 ) 
READ ZsACC 
Ni =N-1 
N2=N+1 
K=O 
CC11=t-1.)**N1+0.5 
DO 3 I=2.N 

3 C(I)°s(-1.)**N1 
8 DO 9 I=1,N 

YsI**2 
IYmY 
II*IY-1 
PHI (I)z-1.*S(1)**IY+C(I) 
PHID(Is1)1.*Y*S(1)**II 
00 9 J=2sN 
PHI (I)=PHI(I)+((mil,)**J)*2.*S(J)**IY 

9 PHID(I,J)*2.*((.1.)**J)*Y*S(J)**II 
PUNCH 2, (PHI (I),I=1,N) 
DO 13 Ifti,N 
H(I)=ABSF(PHI(I))—ACC 
IF(H(I3)13,13:11 

13 CONTINUE 
GO TO 14 

11 =K+1 
PUNCH 12 *K 

12 FORMAT4I6) 
DO 5 I *19N 
BCI}—PHI(I) 
DO 5 Ja1,N 
A(I,J)*PHID(I,J) 

5 A(IsN2)=B(I) 
15 CALL S©LEQN(A,Ns20) 

DO 22 I=1sN 
22 X(I)=A(I+N2) 

DO 7 I*1*N 
7 S(I)*S(I)+X(I) 
PUNCH 2sCS(I),I=1.N) 
G© TO 8 

14 PUNCH 20 
20 FORMAT (2OX s 21HT I ME  OF  SWITCHING) 

PI2=(22./7.)**2 
T(1)*—LOGF(S(l))/PI2 
DO 16 I=2sN 

16 1(I)=T(1)+LOGF(S(I))/PI2 
PUNCH 2►(T(I),I=1sN) 
STOP 
END 
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C PLOTTING OF ACTUAL  VALUE  RAJIV GOYAL  1D 
DIMENSION P(201,X(2O),EXP CT(20I,Z(20),T(20),Q(20),ACTU L(20), 
18(20) 
READ 1,M 

1 FORMAT(I2l 
2 FORMAT (BF10.6 ) 
EXPECTED VALUE 
L*19 
X(1)=0.05 
DO 5 Jr1:L 
J1aJ+1 
X(J1)=X(,J)+0.05 

5 EXP CT(J)nSINF(p(J))/(22./7.) 
PUNCH 2!,(EXP CT(K).Ka1,L) 
ACTUAL VALUE 
NTa4 
DO 100 JP=2,M 
READ 1,N 
READ 3,(T(I),Ic1,N) 

3 FORMAT(4E20.8) 
N1=N-1 
DO 6 Jcl,N1 

6 Z(J)T(N)-T(J) 
DO 8 KuI,L 
ACTU L(K)aO• 
DO 8 Ia1,NT 
G X**2 

Q(I)*G*Y 
DO 7 J=.1rN1 
J1=J-1 
Fx2.*EXPF(Q(I)*Z(J))*((-1.)**J1) 
IF( J-1)15,15,20 

15 8(1)*F 
GO TO 7 

20 B(J)=B(J1)+F 
7 CONTINUE 

F'B(Nl) 
F*(F—EXPF(Q(I)*T(N))+((-►1.1**N2))/(--Q(I)) 
XTmI 
PQ+~SINF((22./7.)*X(K)*XT) 

8 ACTU L(Kl*(2•*(22./7.)*XT*PQ*F)+ACTUL(K) 
PUNCH 11JP 
PUNCH 2 ,(ACTU L (K)'Kx1,L ) 

00 CONTINUE 
STOP 
r  
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APPENDIX 5.3.1 

C RAJIV GOYAL TIME OPTIMAL CONTROL IN DISTRIBUTED PARAMETER SYSTEMS 21 
DIMENSION 5(40),PHI(40)sPHID(40,40),C(40),A(40,41),X(40)9 
I.H(40),8(40),T(40).N(40) 

READ 1,L 
1 FORMAT(12) 
READ 1sLP 
READ 1,KPC 
READ 2,(S'(I),I=I+KPC) 

2 FORMAT(4E20.8) 
READ 2,ACC 
KP=0 
DO 50 Ia1,L:2 
DO 50 J=1,LP 
KP-KP+1 
N(KP)-(I**2)+(J**2) 
IF(KP-1)45,50,45 

45 KPTffiKP-1 
DO 49 M*1,KPT 
IF(N(KP)—N(M))49+51'49 

51 KP*KP—I 
GO TO 50 

49 CONTINUE 
50 CONTINUE 
12 FORMAT(16) 

KPl=KPC-1 
KP2'KPC+1 
Ko0 
C(1)=(-1.)**KP1..1.18. 
DO 3 I$2►KPC 

3 C(I)ut(-1.)**KP1 
8 DO 9 I=1,KPC 

Z'* N (I ) 
II=N(I) 
IZ=N(I ?—i 
PHI(I)--S(1)**II +C (I) 
PHID(I,1)=—Z*S(1)**IZ 
DO 9 J=2sKPC 
PHI ( I)aPHI(I)+Z.*(  )**J)*S(J)**II 

9 PHID(I,J)*2.*((..l.) J)*Z*S(J)**IZ 
PUNCH 2,(PHI(I),I=I,KPC) 
DO 13 I*1,KPC 
H(I)=ABSF(PHI(I))—ACC 
IF(H(I))13#13*11 

13 CONTINUE 
GO TO 14 



11 K=K+1 
PUNCH 12,K 
00 5 I=1,KPC 
8(I)=—PHI(I) 
DO 5 J=1,KPC 
AMIPJ)=PHID(IsJ) 

5 A(I,KP2)=8(I) 
15 CALL SOLEQN (AsKPC,40 ) 

DO 22 I=1.KPC 
22 X(I)=A(IPKP2) 

DO 7 I=1,KPC 
7 S(I)=S(I)+X(i) 
PUNCH 2s(S(I),Inl,KPC) 
GO TO 8 

14 PUNCH 20 
20 FORMAT (20X 921HT.IME 	OF 	SWITCHING) 

PI2=(22./7.x)**2 
T(1)=—LOGF(5(1))/PI2 
DO 16 Ia2.KPC 

16 T(I)=T(1)+L0GF(S(I))/PI2 
PUNCH 29 (T(I),I=1,KPCI 
STOP 
END 

'75 



APPENDIX 5.3.3 
~77 

76 

Iterati©n 

1 

2 

J 

5 

6 

F3  F4 

119 0.070905 •0.0687666 

76 •0.0282406 •O.0827806 

0.0290372 • .0099415 

9 -0.0054201 •0.0064914 

4 0.73x10"5 •0.99x10.5 

0 	-0.1x10`6 
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APPENDIX 5.3.3 

PLOTTING OF ACTUAL  VALUE RAJIV GOYAL  2  DIMENSIQN 	2A 
DIMENSION X(20),P(20),Q(20),EXPCT(20).T(20).Z(20),ACTUL(20,20)s 
1PACT(20).GSt20),8(20).Y(20) 
I FORMAT(I2) 
2 FORMAT(F10.6) 
3 FORMAT(4E20.8) 
4 FORMAT(20Xs6F10.6) 

Xt1)*O.2 
Y(1)*0*05 
FX*0.2 
FM=0,05 
ML*4 
L*19 
PRINT 81 
PUNCH 81 

31 FORMAT(1X,1HNs2X*1HX,25X,31MINTERVALS. OF 0.05 AT Y—AXES) 
DO 5 I.*1,ML 
I1 Ik1 

5 X)I1**X) I*sFX 
DO 6 J$1,L 
J1*J+1 

6 Y(J1)*Y(J)+FM 
ACTUAL VALUE 
PRINT 70 
PUNCH 70 

TO FORMAT(15HACTUAL  VALUES) 
NT*5  
M-4 
DO 100 JP$2,M 
READ I,N 
READ 3,(T(II,I*1,N) 
N1=N--1 
PRINT 1+N 
PUNCH 1,N 
DO 7 J-19N1 

7 Z(J)T(N)—T(J) 
DO 25 K*1,ML 
DO 30 IKa1,L 
ACTUL(IK,K)*0•" 
DO 20 JC*1sNT,2 
PACT(K)-0. 
DO 21 I*1,NT 
G 
YM*(22./7.)**2 
0(I)*G*YM 
DO 22 J*I.,N1 
J1#J--1 
f*2.*EXP tQ(I)*Z(J)J*(t.1.) J1) 
IF(J-1)15.15,18 

15 B(1)*F 
GO TO 22 

L8 B(J)*B(J1)+F 
22 CONTINUE 



F*B(N1) 
F*(F—EXP (Q(I)*T(N)1+((-1.) *N1)1!(Q(I)) 
XT*I 
PQwSIN ((22./7.)*X(K)*XT) 
PACT(K)=(XT*PQ*F)+PACT(K) 

21 CONTINUE 
ZM*JC 
FQ-SIN ((22./7.)*Y(IK)*ZM)/ZM 

20 ACTUL(IK,K)=F'Q*PACT(K)+ACTUL(IK,K) 
30 CONTINUE 

PRINT 2,X(K) 
PRINT 4,(ACTUL(IK,K)sIK*.1,L) 
PUNCH 2,X(K) 
PUNCH 4:(ACTUL(IK,K),IK*1►L) 

25 CONTINUE 
100 CONTINUE 

STOP 
END 

C C PLOTTING OF ACTUAL  VALUE RAJIV LOYAL. 2 DIMENSION  28 
DIMENSION X(20),P(20),Q(20),EXPCT(20) T(20)►Z(20) #ACTUL(20o2O)# 
1PACT(20)•GS(20)#8(20),Y(20) 
1 FORMAT(12) 
2 FORMAT(F10.6) 
3 FORMAT(4E20.8) 
4 FORMAT(20X,6F10.6) 
X(1)=O.05 
Y(1)=0.2 
FX*O.05 
FM*0.2 
ML-19 
L*4 
PRINT 81 
PUNCH 81 

81 FORMAT(1X*1HNr2X,1HYs25X,31HINTERVALS OF 0.05 AT X—AXES) 
DO 5 I=1,ML 
I1=i+l 

5 X(I1)=X(I)+EX 
DO 6 J-1,L 
Jl=J+1 

6 Y(J1)aY(J)+FM 
C  ACTUAL VALUE 

PRINT 70 
PUNCH 70 

70 FORMAT(15HACTUAL  VALUES) 
NT=5 
M*4 
DO 100 JP$2,M 
READ 1,N 
READ 3s (T(I ),I=I+N) 
Nl=N-1 
PRINT 1,N 
PUNCH 1,N 
DO 7 J*].  ,Ni 

7 Z(J)=T(N)--T(J) 
DO 30 IK=1,L 
DO 25 K=1,ML 
ACTUL(IK,K)*0. 
DO 20 JC=1,NT,2 



PACT(K)=0. 
DO 21 I=1,NT 
G 
YMs(22./7.)**2 
Q(I)=G*YM 
DO 22 Jz1+N1 
J1 J-1 
F=2.*EXP (Q(I)*Z(J))*((-1.)**J3,) 
IF(J-1)15,15.18 

15 B(1)uF 
GO TO 22 

18 B(J)sB(Jl)+F 
22 CONTINUE 

F-B(Nl) 
F-(F—EXP (Q(I)*T(N))+((-1.)**N1))/(-Q(il) 
XT•I 
PQ=SIN ((22./7.)*X(K)*XT) 
PACT(K)*(XT*PQ*F)+PACT(K) 

21 CONTINUE 
ZM■JC 
FQ¢SIN ((22•/7.)*Y(IK)*ZM)/ZM 

20 ACTUL(IK*K)*FQ*PACT(K)+ACTUL(IK,K) 
25 CONTINUE 

PRINT 2,Y(IK) 
PRINT 4,(ACTUL(IK,K),K=1,ML* 
PUNCH 2.'Y(IK) 
PUNCH 4,(ACTUL(IK,K),Ks1,ML) 

30 CONTINUE 
100 CONTINUE 

STOP 
END 

79 



Oo 

APPENDIX 5.4.1 

C C RAJIV GOYAL TIME OPTIMAL CONTROL IN DISTRIBUTED PARAMETER SYSTEMS 3D 
DIMENSION S(40),PHI(40)s,PHID(40s40f,C(40),A(4O,41),X(40)s 
1H(40),B(40),T(40),N(40) 

READ 1,L 
1 FORMAT(I2) 
READ 1,LP 
READ 1,IIP 
READ 1,KPC 
READ 2,(S(I),I*I,,KPC) 

2 FORMAT (4E20.8 ) 
READ 2,ACC 
KP=0 
DO 50 I=l#Lv2 
DO 50 JQ 1.IIPs2 
DO 50 J=1,LP 
KP=KP+l 
N(KP)*(I**2)+(J**2)+(JQ**2) 
IF(KP-1)45,5O 45 

45 KPT=KP-1 
00 49 M=1,KPT 
If (N(KP)—N(M)149s51,49 

51 KP=KP-1 
GO T© 50 

49 CONTINUE 
50 CONTINUE 
12 FORMAT(16) 

KP1=KPC-~1 
KP2*KPC+1 
K*O 
C(1)=(-1.)**KP1-1./32. 
DO 3 I=2sKPC 

3 C(l)*(-1.)**KPI 
8 00 9 I=1,KPC 

Z*N(I) 
II=N(I) 
IZ=N(I)-1 
PHI(I)=—S(1)**II +C (I) 
PHID(I.1)=—Z*S(1)**IZ 
DO 9 J=2.KPC 
PHI(I)=PHI(I)+2.*((-1.)**J)*S(J)**II 

9 PHID(I,J)=2.*((-1.)**J)*Z*S(J)** Z 
PUNCH 2*(PHI(I),I*1,KPC) 
DO 13 Ia1,KPC 
H( I)=ABSF(PHI(.1))ACC 
IFIH(I))13s13n11 

13 CONTINUE 
GO TO 14 

11 K*K+1 
PUNCH 12,K 
DO 5 I*1,KPC 
B(I)■—PHI(I) 
DO 5 J=1,KPC 
A(I,J)*PHID(I.J) 

5 A(I,KP2)=B(I) 
15 CALL SOLEQN (A,KPC,40) 

DO 22 I=1,KPC 



22 x(I) A(19KF2) 
00 7 I'1,KPC 

7 S(I)*S(I)+X(I) 
PUNCH 2s(S(I)*Im1sKPC) 
Go To 8 

14 PUNCH 20 
20 FORMAT(20X,21HTIME 	OF 	SWITCHING) 

PI2=122./7.)**2 
T(1):-LOCF(S(1))/PI2 
DO 16 I'° 2 , KP C 

16 T(X)*T{.1)+LOGF(S(I))/PI2 
PUNCH 2p (T(I),I=1,KPC) 
STOP 
END 
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t 	 . 

	

IteratiJ 	F2 	F3 	F4 	p5 

1 2401?  -0.0244839 -0.1358442 .0.2572719 .0.1942589 

2 X037161 -0.0106673 -0.017395 0.022724 -0.019605 

3 000282 -0.0000336 -0.0002504 -0.0003633 -0.0003199 
4 '2x]0 6 -0.2x10"6 .0.2x10"6 -0.1x106 •0.2x10-6 

5 ! 	0 001x10 6 0 0.1x110.6 

a ,r 

22 CONTINUE 
F*B(N1 
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APPENDIX 
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C C PLOTTING OF ACTUAL  VALUE RAJIV GOYAL 3 DIMENSION  3A 
DIMENSION X(20)fY(20)•W(20)+Z(20),P(20)#0(2Q),R(20):EXP T(20)• 
1T(20)*ACTUL(20)*PACT(20),GS(20),QPACT(20),B(20) 

1 FORMAT(12) 
2 FORMAT(2F10.6) 
3 FORMAT(4E20.8) 
4 FORMAT(3OXv5F10.6) 
X(1)m0.05 
Y(1)=0.2 
W(1)-0.2 
FLs0.05 
FM30.2 
ML 19 
Ls4 
PIE=22./7. 
DO 5 I=1,L 
I1=I+i 
Y(II).Y(I)+FM 

5 W(I1)=W(I)+FM 
DO 6 Ja1.ML 
Jl*J+l 

6 X(JI)uX(J)+FL 
PRINT 70 
PUNCH 70 

70 FORMAT(15HACTUAL  VALUES) 
NTw5 
M*4 
DQ 100 JP=2,M 
READ 1,N 
READ 3,(T(I),Iol►N) 
N1ffiN-1 
PRINT 1~►N 
PUNCH 1,N 
DO 7 J-1,N1 

7 Z(J)sT(N)--T(J) 
DO 30 IKw1.L 
DO 25 K=1.ML 
ACTUL(  K)*0. 
DO 72 JQ*1sNT,2 
QPACT(K)=0. 
DO 20 JC=1,NT,2 
PACT(K)¢0, 
DO 21 I=1.NT 
G 
YM=PIE** 2 
Q(I)aG*YM 
DO 22 Jw1,N1 
J1=J-1 
F=2.*EXP (Q(I)*Z(J))*(('1.)**J1). 
IF(J-1) 15,15,18 

15 B(1).F 
GO TO 22 

18 8(J)a8(J1)+F 
22 CONTINUE 

F*B (Ni)' 



w  

F*(F—EXP €Q(I) T(N))+(t.-l.) *N1))!(-Q(I)) 
XUI 
PQ=5IN (PIE*X(K)*XT) 
PACT(K)*(XT*PQ*F)+PACT(K) 

21 CONTINUE 
ZM=JC 
FQ=SIN (PIE*Y(IK)*ZM)/ZM 

20 QPACT(K)*FQ* PACT(K)+QPACT(K) 
ZQ=JQ 
FT*SIN (PIE*W(IK)*ZQ)1ZQ 

72 ACTUL(  K)=FT*QPACT(K)+ACTUL(  K) 
25 CONTINUE 

PRINT 2,Y(IK),W(IK) 
PRINT 4,(ACTUL(  K),K¢1,ML) 
PUNCH 2,Y(IK),W(IK) 
PUNCH 4,(ACTUL( 	K),K*1,ML) 

30 CONTINUE 
100 CONTINUE 

STOP 
END 

C C PLOTTING OF ACTUAL  VALUE RAJIV GOYAI. 3 DIMENSION  36 
DIMENSION X(20),Y(20),W(20),Z(20),P(20),Q(20),R(20),EXP T(20), 
1T(20),ACTUL(20),PACT(20),GS(20),QPACT(20),8(20) 
1 FORMAT(12) 
2 FORMAT(ZF1U.6). 
3 FORMAT(4E20.8) 
4 FORMAT €30X,5F10,6) 
Xtl)*4.2 
Y(1)*0.05 
W(1)*0.2 
FL* 0.0 5 
FM*0.2 
ML=19 
L*4 
PIEx322./7. 
DO 5 I¢l,L 
I1I+1 
X(Il)*X( I)+FM 

5 W(I1)=W(I)+FM 
DO 6 Jo1,ML 
J1¢J+1 

6 Y(Jl)*Y(J)+FL 
PRINT 70 
PUNCH 70 

70 FORMAT(15HACTUAL  VALUES) 
NT *5 
M*4 
DO 100 JP=2,M 
READ 1,N 
READ 3,(T(I),j*1,N) 
N1 *N-1 
PRINT 19N 
PUNCH 1,N 
DO 7 J=1 *NL, 

7 Z(J)aT(N)—T(J) 
DO 30 IK■1,L 
00 25 K=1,ML 
ACTUL( K) *0s 



DO 72JQ=1,NT,2 	 S5  
QPACT(K)=0. 
DO 20 JC=1,NT,2 
PACT(K)=0. 
DO 21 I=1,NT 
G 	a— ((I**2)+()C**2)+(JQ**2) ) 
YM=PIE**2 
Q(I)=G*YM 
DO 22 J=1,N1 
Jl=J-1 
F=2.*EXP (O(I)*Z(J))*((-•1.)**J1) 
IF(J-1) 15.5,18 

15 B(1)=F 
GO TO 22 

18 B(J)=B(J1)+F 
22 CONTINUE 

F=B(Nl) 
F=IF—EXP (Q(I)*T(N)f+((—.) N1))/(Q(I)# 
XT=I 
PQ=SIN (PIE*X(IK)*XT) 
PACT( K)=(XT*PQ*F)+PACT(K) 

21 CONTINUE 
ZM=JC 
FQ=SIN (PIE+Y(K)*ZM)/ZM 

20 QPACT(K)mFQ* PACT(K)+QPACT(K) 
ZQf: JQ 
FTmSIN (PIE*W(IK)+ZQ)/ZQ 

72 ACTULCK)=FT*QPAC T(K)+ACTULLK) 
25 CONTINUE 

PRINT 2,X(IK),W(IK) 
PRINT 4,(ACTUL(K),K 1,ML) 
PUNCH 2,X(IK),W(IK) 
PUNCH 4,(ACTUL(K).K=19ML) 

30 CONTINUE 
100 CONTINUE 

STOP 
END 

C C PLOTTING OF ACTUAL 	VALUE RAJIV GOYAL 3 DIMENSION 3C 
DIMENSION X(20),Y(201,WI20)►Z(20)tP(20),Q(20),R(20)*EXP T(20), 
1T(20),ACTUL(20)y  PACT( 20)'G5120),QPACT(20),B(20) 

1 FORMAT(12) 
2 FORMAT(2F10.6) 
3 FORMAT (4E20.8 ) 
4 FORMAT(30X,5F10.6) 

X(1) r0.2 
Y(1)s0.2 
W(1)=0.05 
FL=0.0 5 
FM=0.Z 
ML 19 
L=4 
PIE=22./7. 
DO 5 I=1,L 
I1=I+l 
X(I1)=X(I)+FM 

5 Y(I1)=Y(I)+FM 



DO 6 J=l,ML 
J1*J+1 

6 W(J1)-W(J)+FL 
PRINT 70 
PUNCH 70 

70 FORMAT(15HACTUAL 	VALUES) 
NT=5 
M*4 
DO 100 JP=2vM 
READ 1,N 
READ 3,(T(I),I =1sN) 
Ni=N—i 
PRINT 1.N 
PUNCH 19N 
DO 7 J=1.N1 

7 Z(J)=T(N)—T(J) 
DO 30 IK=lsL 
DO 25 K=1.ML 
ACTUL(K)=O. 
DO 72 JQ*19NTi2 
QPACT(K)*0. 
DO 20 JC=1.NT►2 
PACT(K)=O. 
DO 21 I*I,NT 
G 
YM*PIE**2 
Q(I)=G*YM 
DO 22 J=1,N1 
J1*J-1 
F=2.*EXP (Q(I)*Z(J))*(( 1.)**J1) 
IF(J-1)15.15,18 

15 B(1)=F 
GO TO 22 

18 B(J)=B(J1)+F 
22 CONTINUE 

F*B(NI) 
F*(F—EXP ( Q(I►*T #N))+((--1.}**NI,))/(-Q(I)I 
XT= I 
PQ=SIN IPIE*X(IK)*XT) 
PACT(K)*(XT*PQ*F)+PACT(K) 

21 CONTINUE 
ZM*JC 
FQ*SIN (PIE*Y(IK)*ZM)/ZM 

20 QPACT(K)*FQ* PACT(K)+QPACT(K) 
ZQ*JQ 
FT*SIN (PIE*W(K)*ZQ)/ZQ 

72 ACTUL(K)*FT*QPACT(KI+ACTUL(K) 
25 CONTINUE 

PRINT 2+X(IK),Y(IK) 
PRINT 4•(ACTUL(K),K*isML) 
PUNCH 2.X(IK),Y(IK) 
PUNCH 4.(ACTULIK),K*1,ML) 

30 CONTINUE 
100 CONTINUE 

STOP 
END 
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CHAPTER - VI 

CO N CLUS ION 

Reviewing the results obtained from computation work 
and the graphs thus plotted and taking into account first five .1 

harmonics only, it is seen that the achieved steady state 

distribution gradually approaches towards the desired distri-

bution as the number of switchings in the structure of control 

are increased.. Thus if more number of ewitchings are taken in. 

thestructure of control, steady state temperature response will 
be still more near to the desired distribution. Also, consi-

deration of more harmonics will give a better access to the 
distribution. 

It is also seen that the transformation given by 
Mahapatra [13] when utilized for the solution of nonlinear 
equation (5.1) reduce the computational labour to a large extent. 
As shown in Chapter III, the computational difficulties came in 
selecting the initial values of the variables t1 , t2, t3,..,tn-1  
while so*ving non-linear equations (3.17). These timings could 

be anywhere on the real line, making the range for estimation of 

initial values very large. But transfer of such equation (in 

distributed parameter systems) from time domain to 8-domain 

limits the values of the new variables in a range (0, 1). 

Thus the difficulties dxperienced during computation are almost 
eliminated. Above all, these transformations are not only 
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applicable in distributed parameter system, they are also 

valid for lumped parameter systems. Thus reducing the compu-

tation labour there. 

5.1  SCOPE OF FURTHER°W'ORK 

The geometry of non-linear equations (5.5) show 

that applications of non-linear programming, can completely 

eliminate the difficulties left in the computation. If this 

is achieved it would completely revolutionise the field of 

distributed parameter systems, which had been drawing less 

attention due to computational difficulties involved, giving 

rise to a lot of scope of further work. 
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