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' t s dissertation ecmbodi es the solution of 

the problem of finding the eat iaftt a of the transient 

response of a stab. r ,power system consisting of s 

synOlironous generator connected to zw infinite bus; 

involving governor and regulator action.  

he swing -e;uation. With daaping n4 

sF~ sao~ t 'e #1a is fornaul8ted and then It is trans- - 	-~ 
-- sir a into _ 	 et of first order differential equations, 

as neacl!'for state space .p ~►roa©h. A. Lia ~unov t !notion 

fraged using Cartwright fe otbod. Sigen va`l ues 

of a nuabsr of Beet r3 o ens are found out, which Berri 

€ an the estimate of upper' and loaner bounds of the time 

®oustunte asSeviited with the systes transient response. 

The concept et these estieutelS is based on ffn4tnX 

the saxinum and kmint*us of 	 Where V(x) 

is the Liapa.nov function and V(X) its -its ederivative 

With res of to time. 

These are oo2ipared with the ixotual 

transient -response, obtained by n caertoal notbo.d an 

1.020 ilk digital cospater. 



The robloa o rntiti a* to be ore complex, 

when veIooity giver or, angle re lator and ti' 

oo binod ,otion #s 	ve tLgatod. The or.  er. of the 

nonlinear c f crenti ii equation inor rias to that 

oC fourth degree, boyo 	whiolt, it beoot er d.0.fiouit 

to construct •11L punov f oUon . 

Finally ;t3ow i ppronoh Is attempted to 

Usti ate the time oonst nts directly  

by Mornto Carlo method. 
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CHAPTER I 

XNTtO)tCTI ON 

1.1 INTLOMOTION  

The least information, needed to be mown 

dtiout i system is stability. thero stability is 

defined-  ts that attribute of the system, or part 

of the gyste, whiah ozbiee it to develop restorthg 

forces between the elements thereof, equal to or 

greater than the t1itt&rbing forces so as to rester, 

a state of equilibrium between the eloents.* The 

etady of stthiltty has assumed enormous importance 

since the development of Lucre complex power systes 

oornected to large size synchronous tinohines operating 

through long distanoo trariswi seton Uus. To ensure 

reliability of servioo to the consumers, it is 

necessary to in synohroni between the 

aolno, during the stdy state and the transient 

dtBtbancos an ceil. Prauttoatly, no power system 

remains in the steady state due to ever oceouring 

disttu'banoe8 by load changing, witching operations, 

- - 

%eriean Standard Definitions of EtectrteaI Porta, 
ASIM42 19 41. 
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faults and lose of excitation, The region of gtabttlity 

oan be determined for any nonlinear sy,to, it a suit-

-able Uaunov fanotion can be found out. If the 

initial point ties vrithin this region, the system  

is asymptotically stable. This to flireat Method of 

Liapunov, wlh obviates the need of Integrating the 

nonlinear differontial equations. 

Whereas the. maximum information whiob t 

essential from a system is Ito  trn*ient response. 

Phe dleraination of transient response entailw 

Integration Or nonlinear differential equations, 

which is onLy possible by well known numerical methods  

suitable for high speed digital oonuters. 

The practical design area lies some where 

in betwoer, these two orenos. This requires a 

knowledge of system behavior which Is less than the. 

complete tine respollse, besides finding the stability 

limit of the system. 

1.2 STATEMBNT OP THE  
.Mfls..ijjIy I 	1ItFt1fVl1CU'j!LI .rHIJ1 

In view of the practical design requJ.reentn, 

mentioned ibove, the problem cent era on first 

2 



aseertaining the ttthLttty of the-system and then 

devising tetwds to e&iate the tpp,r and lower bounds 

of the time oontant of the system trnaiert eponC,the 

t)irect methoa of LLapunov is 

The system to doscribed by a set of Ztrt 

order differential equations throh the use of 

single higher order differential equation, deriVed for 

a syo:;ronos machine oonooted to an infinite bus. 

The valieuey and daip*ng effects are Included. 

The system stability is ensured by the 

uogttve real part's of all the etgen values of the 

uocffioiont rautrix Obtained from Its dratta1 

equatioa9 and also selecting a suitable tiapunov 

function V( .X), which is positive definite 

such that its derivative V(X) is atleast 

negatiVe sevidefivita. This to verifIed with the 

help of the astAir equation 

11 	 -2 R 	 0-04011) 
whore AT 00offietent matrix .A 

V is the uatrix from the Liennov tLthO'ttOU 

xTyx 

It is a Real Snetziebsjtive efinite Matric(U, 



or Semi of .hLte Matrix (Mi. i) 

The co $ete transient rep one X i the 

system Is obtained by step by step Integrationof 
differential 'equations by ungo.. attar,OiU retliod 

on digital co puter. 
aimenmertrm(4 ) suggested that if a 

Liapunov function V( X) is oonLderod as the easire 
of the distance of any point on the trr&Joetory of 

the system from t.ro the origin, an idd+a of the speed 

with Which the System a m ro c os its steady state 

s obtainedfrom [. '(X)/i~( ) . They meant tat the 

Wa;Loum anddniun of 	'(X)/V ( ) oan give the upper 

and lower bona dary of the region, within which the 

transient response of the system it oqooted to a 4.at,. 

Later Vogt(43) dLsseug ed the relations 

aiaongst m iot ra and initni of 	 d 

wa *ur nd minium eigonl Values of atrioe A 

and 	-1" e mo lifted the 	: p.roaeh so an to . make 

it applicable even for certain olas of nonlinear 

A Ltapunov f 3nction Is oongtruoted by 

Cartwriht iitetb zl constraining V(X)to be negative 

serichtinite.. higher order terms are ne leoted so 

as to glia It a quadratie function. The atr'ix 

Is oaIera: a od tzou eco.(1.i.1). Than matrix 	an 

its ei cn vaiuea are determined. 

Farther a new zt tr a * Ia no choosen an te  

the matrix equation (i..ii) is solved for n(n+1)/2 

unknown Ql MOVt.s of, V'' wetri c , which La ass reed to 

4 



be symmetrical. There 13 19 the order of the matrix, 

Again R'V' 	and its eigen values cire caotitcitod. 

Upper and lower boands of iii e transient 

response are plotted with the help of mtniue and 

aiatnm eigc4n values of At 	and RV 

with the actu4l transient response, as. mentioned above. 

A new approach is tried to rind the etree 

valuos of the ratioE-~(X)/V(~,K]directly, by Monte 

Carlo method, and the thiflerent estimates are cotnpared. 

The same procothire is adod,wlt more 

colo diftero13t t al equ ati one, obtained by inolu ding 

governor, angle regal 	and their combined effect. 

The diUio.tlty is experionoed in constructing Liapunov 

functionfunotiono of higher order systema, 

5 
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C1L:~1YP r 	ii 

I. vi.Fw 

2.1 INO5C ION  

Tho modern trends in the design of big 

generating units, h ing bihor transient reactance 

and lower iiiertio oornst ant have aon .der i * t arr-

-o rod down the utar;ins of stahitity. It has become 

easontiai to pretllot stabilityaccurately and quick-

ly, due to the increase in oo splexIty of modern 

power systems. Th stability std is generally 

divided into two categories namely, (i) Steady State 

Stability (it) Prozisient Stability. 7hereas this 

distinct division is hardly real stic. The etuClos 

ossooi aced Gritti smalldisturbances are covered by 

steady state et ability and those with largo disturb. 

- foO3 are oateEorized under transient otahility. 

2.2 t-AB Y 1Ea 

Steady y State Stability 

The power systems with severalgeneratin 

units are inherently nonlinear. The t eady° state 

stability criteria is ap,lliead after linvorizing the 

Involved nonlinear diZforontial equations by sianll 

displacement theory. The obanges in the dependant 

variables are assn► ed to be very small. A n n er of 

methods have hoen suggosted by various 	thors. Some 

of the papular techniques are dot atled below. 



Routh LIU  Ltz 'S 

ConoorLa (1,2,3) in the yerei944,t ant1O 

obtained the obaracteristlo equation from the 000-

-tUciants of the iiieuriztl eqiaLtone, ocn11ering 

voitae regulator, angle regulator and buck boost 

Voltage regulator action repeotively. The 1nt'sti•cn 

bt the absolute stability was obtained 'by applying 

Routh Hurwitz's CrLtria. This tells the posLtion of 

its roots with reapoot to the imaginary eUa. If all 

he roots lie to the left of the nale s  the system  

Is stable, Ike itivestigated the gain in the stability 

1iit for varicue operating angle and aplifioation 

factors. 

Yu 41 Vongsuria(4). in his paper of the year 

i9t6 cousiere saliency, short circuit ratio, 

tieline reitanoe int1 reactance in a system contaft- 

-ins a 	machine oonneatod to au infinite 

bus with eontituoly acting voltage regulator and 

governor. 

U A 9 LLS. L Criterth 

The previos methecl rave the txfonttten about 

aboiute stability aoi no clue 1t3 wil&le as to 

its degree. Where tquiBt criteria iias the avtintage 

of preiioUng both, along with furnishing an Idta 

to irove upon it. 

teseerle & Bruck 	), used vii t ochni quo 

in the year 11356, for tnvest1gatin the stability, 

when control of prime mover torque and fiGiLl eott- 

7 



-ation is ei!eote'I by governors, controllers,,  

ite and angle regulators. 

M4rod & S o1shatt(6) in c)(30, obtained 

bnsto oloeei loop pattern for a synehronou 

*oJ.tho including Voltage rrgu1tor eftct and 

could itorpret the rasulLs f rom Niqutet p1ot. 

Ja,oyido, & A41kiru(7), in the year 1'63, 

studie(i tiv.,  effect or •proportioiutl, Integrator an 

derivative type of voltage :rezltor feedbacks and  

coat'ei the re(ilt5 with the help of Nkquist LOOle 

oot LOCUS invoiVo the plot Of th 1)0100  

and aud Xeroaof the open loop traztor twiotlon, when 

the gain is varied frora 0 too* it gives nn 146a of 

the rouge 'titUi w.th the parameter should lie to 

thtoin thc systom. to be 	Wile, For variation of 

otter pa-rameters other tliam gain, root contours 

fire .lrawn. 

The work of Staietoi() In 1964 t 

creditable in ti$ direction. He ztieh the root locus 

plots to study the variation in pertoIiaIkoe when 

parameters soh as gain, e:citor ttre c4nstant and 

derivative circuit of regulating 9ytrei were varied. 

61 
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A curve lei 	while varying the  

uiul1u frequency from -ato &0 in a plan  of 

two vartcie parameters. This iivtdi tte rrion 

Into stable and unstable port1on 

VotkoY & Litktfl(9) in 	vctitei 

the effects of voltage and ang le aper-at rutor 

oil the stebtlity limit. 

VongGuri (4) in the year 19( 

tb rLPartitton method for evaluating the tca1y 

state Stability of a synchronokes machine. with 

voitge relator and speed. governor. 

trooV & Sreeaharan (1() in 067, apiplied  

this th to ahooso the beat oombination of rogtiator 

praaotra In vie of stability. EXtct of Variation 

of two par ameters at a time was inveitd and the 

ailowablo range of txkese paraetrs w as determined. 

Method  

Walker (ii) in 1953 	later on Oovth 1 

used the Capability charts to find the limit •ot 

stable O)eF)titM1 aOVe obtained iodif ted flrt, 

when autoatie valtage regUtor action was constlered. 

floot of damping cottoient and eotter time constant 

was investigated.  



• 3te mro acA 

This a met hod required the eynter to be 

oxpresed in the form of a Bet of first order 

differential , equations, wh h facilitates this nprAteatton 

of moderhh control theory. 

Loughton (12) in t :e year 96C, eec'i 

matrix algebra in eaiculating a set of Hreral 

000fZtoient and introduced thea in Urn state Bpaoo 

euttone. It all Mia eis On vniues of the cee fic . 

4ent matrix had nogativo real parts, it c mute 

Byste stabilit . The € piioLt soiutien In the 

could also be obtained by convolution ante ; rnl in 

matrix £or ,  

The €  rot Motho ! of taptanov iw an entire y 

new a ,proavtz, by 1i tt a syeta: Btability can be 

Btnclied without the kr wledge o ' tkie ezrp'iic It time 

Solution of the diLferential. egteation . The t etoc 

involves Linding of a e~41tab 1. a f~.~.noti on. 

Undrill (i3) in 1967, obtained a model o ' 

syne€irono s aohhine with 3-ph ee , toe-ter Iran -» 

is,,Aon systei constraints, including a simple voltage 

regulator. 	later in other page ° ie the Li a>wnov 

equation to deterauine the epttnum. settings of govfrnor 

and volttge regE lator para ieters. 

1 U 



Vis .  

3atogue re ro%entation eases tho Job of 

evaluating the performance of - complex system i.nvol-

--vtng large number of variable parameters. Tho 
stability limit is deter mined by increasing than 

load Lit small steps. 

Aldred & Shaoksheft (14-) in 1.959, prediCt-

-en the sti*'blli y lift of the System with voltage 

eg lstor, by alving the system equ tion9 on 

elect:ranie naloguanalogue oo putor. Xt ta. charaotert .Mi 

was simulated by hs~.i€!iary feedback and writ g 

ne-t~zoa;C'q. 'sr:t volt, 	tatton eh.aracteristiev 

Were i t rouce to predetermine power tingle alines . 

M1: 	(Is) In the year i962, unaiy a the 

el: `eot of fl" variation,governor and reg l ator 

action by olvtng the Mulct aaohtne System o uat .ions 

on a alogue coiiptter. 

9. 	 LthL 
I ith the (loveIopme-rnt of hhgihh speed di ital 

computer,  , it #: s been possible to tackle ;he 
:om U .eaated pr ~btems most effectively, tsoouratly and 

at a laster rate, if they co old be codedi in c;i ital 

Meerle Bruck (5a ) an& Jaoovides 	A~ & tns(7) 

used digital. co .ptto s for plotting the points of 

N t qui et Loci. 

11 



Stroev & Sreei in a (iO) compiled the arogran 

for st;ibiUi.ty lave tig 3tion by 1LPartition curve. 

Vengsur.Lu (4), 0.chated tt:e root9 

est thhe c uar~ eteri stic equations. 

Laugbtou (i2), eterinë4 the et en vela eg 

of f he cooftoi nt matrix- e. 8ystc-1 stato space 

equ i)ti Qua. 

Aldred & Sh a k h in (14) a sed the d gi t al 

eovaputer Woo for solvtiig tba€► clif ereiitim equation, 

to study tie stability. 

V art & fl.:l3L.Lo (14r) th the year :1'67, 

ew ,lre~t rY 

 

d1ti ccm ite - ,ro ramne. for finding 

dyn rale sta ility 1itaits of a Bis~gio tiabthine 

connected to an i:thita bias ti rougl a t•afl0mtsLofl 

ll e, havingg oxo t t1on an prime ioVr oo etrr1 c. 

The of:foot e tat-: IHcU voltage, trkaisaicatom. U ,aye 

c am e, nd nacix&t inert a an t,hstability 

limitss was' investi; atecL 

e 1301, the cyst* 	Is InilertoiiiegalIy 11atur e3 

In 	is W1 ,twb It O ff:8 to e( .:t . Lbri m uond1tI+ n 

be~ord, 'tibr, 000utrnnje of tita 3'9€1 :t, ' aie° riaxizri 4owe'' 

dei1ve-"^e~J v1out Iing he S n 	be. reewl the 

gon rt ting units Is t arma ii tt o 	auur-iccnt stability 

lit it s 

T e to a)r ;t t -tt e in t`iso coi)iIiiIt3k a' 

the kor€ er api)roao:h of nwI pertarb ti o m; t&i t 

hO 4i good. Therefore of cr metht)rl;! are a pte 8 f r 

1 2 



the stuily of transient stiiiity.  

The earlier faethods as tito4 by Crary(1. 7 )  

and ':ibark (13) involve hand oa:Louiatton of trio 

change In vui&~ Iar pasition or the rotor aging stop 

by step rnethod. The c1 atLug paver is asxamed 

to be laejustant from the midile of the preeeding  

interval to the widdle of the interval considered, 

and the etiu1Er velocity remains oon&tant throh 

-out the interval, at the value onloulated for the 

ttlddlo of the interval. 

2, Fi Area 	 jr 

Criry. (17) a1 Kimrk (18) aoptcd this 

method for single rnaohine, systems. The load can be 

o*eEeed to a Ihdt where the are  areas it and 

deternined frwm the power angle curve, become equal, 

This ,rooeduro enables the thterination of trnetit 

stability limit w1thoit the neoesi'ty of Solving the 

ution. Critical switelAng irlo can also be  

calul&ed at which the £alt should be cleared before 

tho system goes unstable.  

nrJiitei:ia 

Aylett (19) in the year i95, -Asnd the concept 

t energy Integrals ants singular points for trantent 

stability study. U.e integrated the differevitiro 

U 



equation to obtain an expression onotaining kinetic 

energy and potential energy torø The total ones 

of the 9Yaten Is equatc to a constant, to give a 

curve defining he stable re-ions. If total energy 

is less than 	 constant, the systota i within 

the stable region. Formulae for e i1 cal at ion of 

Ori tical switching time and auto were obtained. 

4 

Ph io p1 ie technique which owes •t its 

origin to control theory, makeq, use of the nonlinear 

differential equation, transformed into two varithle 

parameter equation. This is Uoi uttiiei for ptotting  

the phase trj otory. 

Hemi Rao (2o) In 1962, adopted this  

rnethod to deterino critical ngo alltl time by 

plotting trojectories during and after fault 

Rao d Tao (21) in the year 196, plotted 

transient stability 111t, taKtng constant voltae 

behind transient reactance, constant flux 11nkae 

tit id field deoreizeut into eonsLdertion 

5. fltreot Method e1 Liaounov 

This method carne to be known after the 

publication of the Xao&e Ltn~punovls wetotre in 

the Russtu Journal In the your 18g. It- assuvied  

I'm 



wide iortnce, specially in the control theory, 

in the Soviet Jnion, as the principal tool for 

tackling linear and nonlinear stability problems. 

Now a lot of work is being lone, during tho Past 

few yetirs In the western countries. This mothod 

dcfin,s stability in the large, instead of oonfin 

-ing the study close to the equilibrium points, end 

eliminte any need of deteraining the solution of 

nonlinear differential equations. The Method sdles 

the sele Uon of a suitable I.Japunoy function V(X) 

hioh is positive definite, each that its derivative 

V(X) is netive definite, Then the solution will 

roach the steady state asymptotically, 

Gless (22) was the first to apply this 

wathod for power eyste stability, 'in the year 

i966, Ile could guess a s4tob1e tiapunóv function 

for a single maebine represented by a constant 

voltage at the beak of its transient reactance, 

negLeating dnpthg torque and governor notion. 

Flux linkage in the rotor circuit was assumed to 

be constant. e compared this method with equal 

area criteria cknd phase plane tc&ntae. Finally 
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a Liapunov AnnotLoti for a 3—eachine system was also 

g tessed anti the stability was predictecd,, when the 

machine velocities and angi s eg were known at the 

time of finat system distiffrbanoe. 

Many methods of constructing L1apunov 

f notions are avtilable in itteraturo of conLrolsystens, 

b t are l ass u sed. in the power cyst eVA.'Tbe most 

popular amongst thea gate 

i. 1ariable Gradient ?Jethod (23) 

ii, Xngwerson's Method (4) 

iii. Zubov' 4ethod (2 ) 

iv. .4izerm 's Method (t) 

V. Cartwright' 	ethod (27) 

ii-. a"bsi nd & N aappcin (28) in 196, obtained 

ttie triausi,ent stabili`tyF 3iivait through a d gital 

computer program for a ultitiachine system. If the 

con ition of the systea after fault fell on the 

boundry of region of asymptotic st ahi li ter, it 

could give the critical switching time. 

Z el.ayskayaa, Iktilov & Thr>irov ( 1' in the 

year 1967, published a paper, including a general 

expression for Uapunov function for a multimnohine 

system. ` oy e,: p lined proceddt.re for defining the 

region of asyaptot1e stability ,md then finding out 

t ~e critical switching. time. 



Yu & Voniuria (30) In U'e same year, 

applied Zubov's method to construct a Uapnov 

fuwition. The differential equation was exrese4 

in the form of first order statespace- eqation, 

with t he steady stato condit ion of the post, fault  

system tya&3Zcrred to the origin. They atili Red 

te damping coefficient to obtain a serie: of 

functions by this tethod and could prove tis ff ect-

-tvenoas even with a truncated series function. 

Williams(31) in the year 1968, extended 

his efforts in getting a Mpuuov function for n 

single Machine system connected to m InfinIte buss, 

including salieney, damping torque and governor action. 

fie could obtain better etiate of the stability. 

region as oopaFed to earlier nothods of energy 

integral criteria. 

Oharam Rao (32) in V)69, variftetl Pauth 

urwitz conditions through the )ireot Method of 

i apunov, [e generated several Li apunov functions by 

Cartwrigtit's method and Atertn's method. The domain 

of rtability given by these funotions was cowered 

tvith actual one obtained by digital coajuters. 

Governor aotlon g  pole saliency atill dai. effects  

were also conBidered. 



. .iii a,io' ~.le Met A.~Vdq' 

1~igher ordor systems with large .number 

of variable paraweter can be studied in respect 

R. .R offeo s of ariotis d.t t4-Y. rbanoem oc'iao ring in 

the eyeten by analogue methods without resorting 

to t Lone MZ th3vetical calaal ttione. times of 

any 1nvoe gatore' in the field appear In the 

literature. The I ort ant papers are duo to Boast 

Rector (33) in 19519 Van Neat (34) to 1054, Casson 

(35) in 1958 and Aldred ( 3) in the year 1962. 

7. Dig . t al Co,, cuter, eho8s 
NYU/ 4 Ypli! 	 Yid 

Johnson and Ward (37) in the year 1057, 

usod digits l o aputers for calculation of transient 

stability obareo eristice of power systems. They 

prof er ed Range Wutta me' od4, as it proven • to he 

accurate and self starting. The results were oomp_ 

ares with step by step calculations. 

Lane, Long ; Powers (38) In the yenr 198, 

dee®rthod a me clod oa automatic calculation of 

transientbility data without any seal interveu- 

`the prograi contained 	nge .KK tt Q--dpi .I1 

method for integration of -differential erluations. 

Faults and switching operations were automatically 

inelu1 d in the progra€ . 



Humpage A Stott (3) in 1965, anaiyeol 

transient stability problem by another nuorionl 

totbo1 known s res 	and Corrector method. 

They oithed wing in cornputing time and compared,  

the results with those from Thuig&utta method.. 

EST1k,1-'.JWJQ OF TRANSIENT,   ta__ RESPONSE —__ 

(hetaov (4k) was the first to introktoe 

the idea of finding  the egtt*.ate of the transient 

response behaviour from the Uapuftov function V(x). 

Afterwards 	(40) and !aZUChin( 4)) int&od 

modification to this concept. 

aItan 6,  Bertram (41) in the year 10, 

disetzsed it for linear systems atil maintained that 

the transient response can be viee1 as the rate 

WttLi which the valzo of the Lianov function rheR 

.oro. 

Popov (42) in the same year, proposed a 

method of estimating the quality of trantent repone 

by obtaining mi integrated square output from the 

frequency response of the linear part. 

Vogt(43) in t98 0  doViMed an improveI 

procedure of ettettng the upper zind lower bond 

of transient response time constants even for 

nonlinear systems by linear approxiviation of the 



yitei. lie outlined the methqj Of chnotng the  

Liapmov function suoh that the eatimatem may 

reach closer to actual response, He oould relate the 

etitates with the cigar values of the matrix 

obtninecl from the .LiatLnoV Stat lity Equation 
T A V + VA -2R 

and with those of the eoctticient suAtrix A. 

Recently, r3haaik & IdMialaribis (44) In 

the year 1969, Ibntedout that the improvements 

Ln results could be brought about, by tnebiding 

the approxisadea of nonlinear parts in the analysis. 

They considered Lure's type of nonlinear system  

an an illustration ant] utilized Lure 'r-PwtniRoy 

form of Liaptniov funtion, 

20 
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CHAPTER III 

TRANSIENT RESPONSE ESTIMATE OF 13INGUtA111NE 

INFINITE BUS 

3.1 

The system Ls aued to Consist o:r 

synchronous wachine connected directly to an infinite 

bus. (Fig. i). The swing equation with sallency ant? 

damping altoots Ls co,idoz'ee1. A •Liapunov fimtion 

by C twigt's metiod is cont•ruoted and the ctgen 

Values of matrices A 	and 	are calculated. 

Upper and lower boandrs of the systom transient 

reGpowaa are eed from these cigon values 

and by Monte Carlo Technfqu e, 

:3 • 2 SW! 	FGN 

The dynamical behaviour of a synchronous  

machine can be mathemattoolly epresod by swing  

equion. The order of thiE3 nonline*tr differential 

oqution may vary Uilota two to four depending, on 

the details incorporated in the machine reproent-

...atl. on and its control systems. 

A sting equation tor a synchronous machine 

connected to an infinite bus 	as derived in 

Appendix-  I, can be given by eq.(At.38) 

T 	 Ps2 gin 2 S 
dt 
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GENERATOR 	 INFINITE BUS 

FIG. 1. ONE MACHINE CONNECTED TO AN INFINITE BUS, 



where  
for angle with respect to a synobronously 

rotating referenoe 

P1 	400hcnici1 Power Input corrected for 
rotztticmaI loo. 

XV 

Pi2 vr 
2'J

do! "S714 KI 
I, 1 Xd" 	 Xq' 	 j 

Itrouothg a new Amensionless variable 

such that, 

tJ 1  
U 0 SUL ligoquatiall become s, 

+ 
Kdl L a Pi - sinS + P2 Sin 26 	00(2012)  

where 

K1i =  /Ji M 

Pt a  ill/pmi 

P2 = Pci2/Pi1. 

The following assumptions are made. 

1. Mechanical Power Input Is aontant. 

2. Voltage at Uie beck of the traiiiont reactance 

in constant. 

23 



J. The peod ohngo during a trwisient is auei 

to have ne&UTkible effect on stator voltages. 

4. The armature rotstance is neglected. 

. Pole saliency and damping effeats are considered. 

Lot So is the stable singularity,, 

obtained by Newton laphson'e method (011.1), on 

digital computer. Transferring this singe 1 arl ty 

to the origin by tho nesumption 

X1 + 5% 
The differential equation oan be reprent 

in state variable notatten, If 

24 

.. (2.i4\ 

11 - Sto(xi+S)+2Stn 2(i+e)_!C41x2 
dT' 

, . (2.v) 

where Sm = Stable point 

These two first order di Uorontt at equations  

can be represented as 

1 . f (x) 

where f (0) = 0 

it W= 

• 

[.XX- 



3.3 DIiWCT METHOD OF LItoV 

The trajectory of the systev will ree 

the origin i.e. steady state condition, aymptot- 

-icaily 01I.2), if. there exists a U*ptmov function 

V(X) such that the following conditions are 

satisfied in some vicinity of the origin.  

2. for XO 

3. Grad V(X) is continuous 

40  Y(X) 	0 for 

3 .4.  CAFLPRIG 'S METHOD 

TU19 iethod Is op.le of p,.eurating 

;.;IapunoV £notions ati sfaotorily, for sysitetas upto 

the fourth order. Phi e technique generalizes  from 

the linear system to the nonlinear one, 

Rearranging the ojuutioti (2,14) & (2.15), 

..k.gx) 

where 

r. Sin(+e) - P5tn 2(+a)-. 

iThioh is apparently a nonlinear function, The &oYc 

system can be linearized, If a linear tora k x 

is sabstittated for 

25 



Ii) 
OW 

TZa s 

A bLpUnQY function in the quadratte form to taken as 

x 	 •. (a2r) 

and a3  are constant coeffionts 

L*Uerentiating tte eq.(2.o) w.r,t. T, 

..(22t) 

Substituting  eq.(2.19) in 

• . ( 
.Is per the condition 	ontioned in eq. (2.17), 
Can be coniAtralnei to be negative definite 

(AII,a) or negative ao4-definite (A11.4) tunotión, 

by atioosing the suitable Values for a,,1111 
2 
 A. 

For convenience in higher order syste, it Lis sisde 

negative seal-definite funotion ot state vartobie 

x 2s with the following values of the coeffiotonts 

of V. 

S 

1 W k3 

utti*ig •q.(.23) In eq.(2 4 22)., 

2 	 • 

thih is negative for any value or x ann 



except at the orti, and 1.8 zero at,  the origin 

and for any value of x,, when xis 7ooro, This 

that eq, (20 24) Is oisti'aincd to be negative Semi- 

-deft n1 te 

Substituting the viuee of a,a& 	from oq.(2.23) 

in eq. (2,o), 
' 	I 	 . 	 I V 	4X + 	 2 • 3 . 

& 	 . 

Tt4Oi in positive dc3idtu (AII.) except at the 

origin, whore it is zero, provided 

In the linearized system of eq.(.v)), 

k2  appeared for the nonlinear function 

Therefore in order to chtinge over to the ncn1lnevity 

ag&n, 	in e. (2.2) can be relaood by 

jg (s I  ) (Is I 

Whence eq, (a.5) boeovee, 

V 	+ 1g4v)th 

or,  

4+ [S1U( +9 ) P 211r1$,$ 	 dv 
A 

This is the same form, as 	 pon'd in thy. 

past literature (22) 

Pr 



3,5 tEQ ON OF &ILI 

If a linear system itable, it is stable 

(AII.1) in. the entire state space, Whereas the  

nonlinear system stability is confined to an enclosed 

region due to the presence of the integral tors in 

the expressions for the Liapunov function. Tht s 

clearly shows that thO Li apmov function cannot be 

positive definite in the entire space. There will 

be a 5,pecifle limit to the value of the function  

beyond which, it doos'nt represent closed surfaces, 

ifliioh is an essential requiretnt for the asyiptetto 

stability of the aystes. 

Therefore, 

whore b a constant 

will represent closed surfaces, if 
M M9 

where b 	 is the lilting value of Vmax 
b max  ean be obtained by equating the 

elements of gradient (V) to ze, and sbet:ttting 

I 	 the nontrivial -values of the state space variable, 

thus obtained in the expression of litapanov funotion 

Taking the Li apimov function of o. (2.27) 

for eitWle, 

V 

28 

sin (x+)..P2Sin2(z+ 

I.- 	' 



or, 

S+) -!Sin2(+ 

x2 o 

The Solutiot of e. (Z.2) gives two value, 

namely oorropoudiug to øt(-it focus anti saddle thg-

-uiaritie.. The nontrivial solution vrill he the 

øathiie mint singUarity, when the stable oui1ibrth 

is transferred to the oFtLn. These two points can be 

det.orminel by Newton tthphon mothod(%UI .I) on M011 

computer. 

3 6 MTIlOfl OF ESPIMAflNG Tth PRANsir2T -- 	- 	- 

RS ?ONS 

The Li apunov function can be ooni der1 a 

a measure of distance between the equilibrium point 

ind the point on the trajectory in the state space. 

With this concept, Lot 

- (X) 

V(X) 

Valid in the region of oyptotlo stabllity. 

Ei (.30) given an idba of the rate with which the 

system reaches its Bteady state 
Integrating oq.1(2.3), 

V(X) e 	 ..(2.31) 

whore 
Is the value of V at the starting 

time too 



it 

Min. min 12  

and 	 I -
max*Max, 

E  V(X) I 
4 (t.t 

v( x0 ) o  

(2.,34) & (2.3$) dofie the boundary between 

which the actual reepone Ito. The estiniates can 

be brtnght as o1ov to the actual reoneo as 

desired by Judtoiouohotoe of the Ltapinov :tjnotiqn0 

This technique is useful in designing the  ytee 

bused on the concept of thproving this otiate by'  

ohigthg the set of variable system rete. 

Vogt (43) prover] a rel at ton amongst the 

real prt of tio olgen vaities of the coefficient 

matrix of the linearized system, matrix 

obtained from the Ltapunw equation, ath the etttee 

for a certain class of Linear an( nonlinear 

sytew kuld Uipunov functions. 

The Liaptanov £unotLn can be roduced to 

quadratic form,, by elimination of third ani tither 
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order ter £u the serios expanuton of nont in ear 

fact ores  U it ean be expressed as  

V(4 V1(X) + V2(X) 

where 
V1(X) Factor eoutainA quadratle 

v(S) 

 

Factor oontatniug tiItrd and higher degree 

1iiitiug V2(X), 

V"(x) 

3vx (say) 

where 

X 	p..dirneniona1 uttito vector 

of the state vector 

it .z n real symmetric positive 

kfintte matAN  

The fte derivative of V(s) Is 

V() 	XV . XVX e# (3.j) 

SLtiiw'iy, tLo Syst-Oul Lis alo teat'tzei! 

by neglooting higher order terms. 

Thus initially a systewexpressed as 

it (X) 

ean be &iowu as 

ti1(X) 

wbere 

contains higher degree terms. 
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Neglecting h(x), 

Substituting eq.(2.41) in eq. (2.38), 

+ XTV AX 

= X(Y + VA) X 

X 	(say) 

Wil e re 

Real Symmetric poittve definite or 

vemitdolinite U x n matrix , it the 

systes is asymptotically stable, 

Therefore from eq. (2,42) 

Which is known as Uiprnov Stability Equation, 

Substituting V(X) and V() from •q.(3i)&(242 

respectively in ec. (2.32) and (2.33) 0  

min min t.__:: 
X"YX  

Maxwax I;  

xvx 

This division Is permissible as 19 always  

positive definite except at tIe origin, when the 

numerator is also zero, jis trip rolatio &iape and 
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size of V(X) wad V(X) remains ae urwi-gh the poe, 

the rat1os may he considered for a speoitle constmt 

vUue of v(x) 

For convenience: 

V(X) = xTvx. 1 (say) 

Then from eqe.(2.44) & (2.45 

win.or 
maze 

ain.or 
Max, L 	Ix  

Ustaig Lagrange UuIti p1t er Tooftilque, .tor 

op*4t&t zati on, 

iiri,or 

where A i a suoh that 

rvx 

(2)L..,k X'J 

Then for oxtreaL value of 

with respect to ,we got 

( 	Y) X 	0 	 48) 

or, 
(21k) x = A vx 

or,  
X ()x AxA 

where 

= a ( AS5Ud) 

Therefore ir  OTOX Is minimum or txttni, 

depending on1  when ) is minimum or maximum respeot... 

..ively. 
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Where , to the oion vale of RV, as evident froa 

eq. (2.4E). 

Vogt(4) in tits paper conoluded that 

max, max 
 (A 

th. 	2A L(V) 	.2re 1 () 

where 

A inin are the waxistim end tntw elgen 

VaLues respectively of RV-1 matrix  

UUd 
& 	 re the Maximum and 	el  gen M41X  

0 
Mi 11

Ylailes rospeotivey of A matrix 

A chook o that all trio real parts of the 

elgen values of the coefficient matrix A of the 

linearized system , are negative s ei.surs the 

stbitity of the system In the a4aiI neihhourhood 

of the mill, solution. 

• 7 

This method requires a source of generation 

of randow numbers, which are not repeated even 

after the generation of ssveri gillion nbera. 

A subroutine in machine tanguge, for use on i1 

1620 digitaL computer, is prepared for this purpose, 

A program in accordance with the flow ohurt(Pig,14) 

is written to ealetilate directly the vaLie of 	mm 
and 

~ max from Pw /V( x]) 

3 0 8 TRAN S1 ENT RESE4.)N SP. 

The transient response of the state vari ables 

is determined by uuericaI integration of system first 

ordcr eqati,ns(2.16), usthglunge-ntta-6111 	tho(I.(Utt,7) 



9 E XAM PLL 

Asalient—pole synehronotts, generator 

having the following constants 

r'1 	0,24 	10, 75 

	

r0e37 Xq 0.75 	0.34 

T 0 5. 0 T d&2 0.035 
	

0.035 

f = 500/e itertia Oontait II 	Kw  

is delivering current of 1.00 per unit at 0.91 p.f. 

laggina through a circuit breaker to an infinite 

bus li3ving a voltage of 1,00 per unit, 	threo phase 

abort circuit occouring at the terminals of the 

generator Is cleared wibo&tt disconnecting the 

generator from the bus. 

The owing coiation for the system shown 

in FLU.2 oun be written as (Refer 

	

M d2L + 	 ~PSin2S 
ell 

Th ere 

Gil/U 

TI 

p 
2 (X d 	 j 	 Stn 

• 	4 	0086 d6 0 qo 
I;) 

4 

(i,8-o.22co 2 ) i1 
Ti 

0 

= .0294 	 0.53 

	

9 	9 

p 



Given that 

Vt. i.On 1.0), 00 

00 

Refering to the Vector Magran of,  tig,9 

Eq x Vt + J Xq  X 

+ 	0.75 x 1.0() J4.5°  
= 1.31 + 

1.41 27f 

I'd  = I Sin ( Z7,'+ 24.5) 

I sin 52 

= 0.788 

E q 9fm Eq'( Xq  — X 

(n.15-o.37) x 078 

= 1.48- 038 x 0.788 

C 1q 18 
Therefore, 
P go

1.18  

0.37 

a.i 
xd  

d 
O.T5-0.310/(Z x 0.75 0,37) 

SiAbatiC.Itlng these values in e.(M.3f), 



t.5? X 1O 	12 + ,0294  
at 	fit. 

Do t &)i ng, 

U2 t 

1,5 x 1O 

8 14.14 t 

•O2fJ4 

J -3, 19 	1*,  55) 	10 

Pt' P11  

 ' P 	
i)  18 2  

	aj 
The swing eution (2.r8) in o4tfte ast  

d2 	o.i31 __ 	 + .21 Sin 2  

i(S) 	(say) 
I 	 Tho siiigularltlee of this ytø re ob t ained 

by solving :C(S ) 	O by the Newton Raj,thon's mV -4o 

oi digital cornputer. (itIiI 1) 



The results are 

Stable fooe: 0.48 racunna or 27.60 

SatWiePoint: 04 radians or 166.4 0 

Transferring thO S&1O foaues to the origin,, 

B 

t5 the Zttb1e EOOU. 

The ring equation Lis now gjven by, 

42X 
1, + 	(.ii) 	.2 wafto~

cT2 	dT 

MATRIX A 

Expressing eq. (2.8) in state variable form, 

A2 	~*Ijlx 2- [,131n (X 1 +217.5 

Linearizing the above system ,, 

 2 •1 

-.1jIX2-.X 

or, 

Xii1 matrix for it can be written a 

(2.6t) 
I 	It 	 I I 	 I 

2i 	ts 	[j 
Therefore, the CoetfioiEit Matrix Ig  

A 	 ..(2,62) 

MI 



The oharatteri atie ec ration for the 

above matrix is deter fined by digital evc ter, 
and is given by 

p2 + .131 P + .56 = 	 ..(2.63) " 
The ei~eu Values of the above equation (2.03) 

are oii.Qu1Lated by Newton's Method (AZt!.3) 

v►'Lienoe, 
3, M .106 + 1 .751 

The negative sign of the real parts sho : 

that thesystem is, at1east stable In the dim dl 

neighbourhood of t e origin. 

The Lia unov 'unci tcn from eq. ( .27 by  

Cart ri, ht' ei Method I • 
,2 xI 

V(a 	+ 
It 

Sin( ¢. 	_.2i$ nf +, 	_. 	u 
2 

Choosing only those 'tams In the int gral 

which give second order terms a a ter in ogration, 
2 

V(X) 	+ .-,432u)du 
2 
2 

+ )(.56s u) dun 
Z  ~ 

2 	2 

I] 
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Ii 

La 	•!J LaJ 

xVx (ay) 

Therefore, 

284, 

Lo 
.The Uan!tov tbtltty equatton(2.43, 

Ph VA .2 rt 

Is so1srI for It aud then RV is valuat 	by 

coon programme (AUI.) wr1tti, as pr flow 

chart of 
The rawilts obtained are, 

Rv_i= 	I 
• .1 J 

Tho &A'iOtOViSttO equation and it* e1gei 

values by Via otL&od explained earlier, are. 

- 	+ 0 	 • 	.(2,1o) 

.131 



MATrUX 

Now a rea18yttetto postttvo 1eftnfte 

matrix is assumed. 

Lot 

100 

FE> 

and the Ltapunov stibiIity uation (2.43) is  

solved for unknown matrix- 	This involves n( n +. )/2 

equations to be olVe r  as v ,  is symmetric. Where  

n is tPie ork.r of the eyte*. 

Theo equation 03U be in4tten as  

41 

2a 1 	0 	Y j  

a21 V ;2  

0 	2a 	 2 "22  v 222 	L2 i2J12 

where 

LJ 	j1,2 

are the elements of A matrix 

and * 	( ii,z 

are the unknown e st1ts of V matrix. 

3btituting the 1town valtles troui (2.E2) 

and (2..2) its *q.(2.73) 



 t36 o ;1 

V;2  

v [o.iJ 
The resuLts are obt&Une1 by digital 

computer (iUXZ.) 

Theme are, 

V ;1  0.275  

f 	?r 

V 

Therefore, 

	

27S 	IG17 

	

LO .00 	O.5!j 
Then from eqs. (2,72) & (2,16), 

	

033 	0.016j 

- 	L 
• lcL. 030 	0. 

1i4, ctirneterI&10 equation for ec,(2,7.7) 
lei evaluated ats 

12 	13•0 >? . .003 	0 
The eign valuer, are 

• .03 



The stability region is efinei by 

on he Onlealated by &btitutthg the 

4dIe point with respoct 'to the now origin, 

tranalerred at stable focusa  In the eq, (2,66) 

.284 x + O5 4 
Tile Saddle point is given by 

S 

x1  = 2494 - .48 

2.46 

Thereto re 

O.2 	2,46 )13 

. 1.74 

The range for the state variable 

beyond which the system Is rntibio, can be shown as  

< 
The cone f or x , 	determined t'r* 

eq. (2.66) by equating It to 	 rI -solving formax 
A 29 theri Xl= C; 
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T° NST M RESPONSE 

The transient response in respect of state 

variables m l *tied system hiapunov •ft metio (ATTT.7) 

i9 determined by iings-KuttaGi1l sethor . 

The oo puti ng stop is .05 second and for 

every .25 second , the transient response is 

printed. 'I'he initial condition in the state spwc 

10 01100805 as 

x20 0,5 

REM tK 

The upper and lover bqun s of the transient 

ro ponse as estimated from. the maxi i 	ntmam 

values of p [=i~, 	.~E't 	 ,] an€ ~~ 	 " 	are 

pioToted. lion ; atttth the transient response •obtained 

by Pango- t a-0it1 aettid (Fig, 2) 

On comparing the plows, it is ooneiudeYo 

that estimates £ro thematrix [jtV-1 n4 those 

from to Monte Carla mathod are ai ®st aieti l ar. 

Whereas the lower and tipper tin ates from 

the eigen Values of A are cotheirlent 311 are running 

very close to the actual response. 

U t the boi.un cries of the region Obi aimed, 

when a regi symetrie positive definite aatrix It' 

is assumed and matrix '+ is calculated, pr ve to be 

the heat estimate, as they are closest to the actual 

time response. 
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RESULTS RUNGS KUTTA GILL .METHOD 

• WIT #OUT GOVERNOR OR REGULATOR  

TIM! 	Xl X.2 V 

1.00000 •50000 .40900 

.250 
1.10100 . 1 00 .294 

.5til 
1.15500 .12200 . 86 1 

.753 
1.16-30 -. Th€0 .98618 

1.000 
1.12400 -.24100 .38332 

1.250 
1.04200 -.41000 .3924,1 

1.500 
•92000 -.56000 .39118 

10750 

.7640-0 -►.6$500 • .40038 
2.000 

.58000 -.77800 .39818 
2.250 

.37800 -.9.340 .38896 
2.500 

.16600 -'.85200 .37078 



2.750 
.0004400 .8400 *34833 

-.24700 -.78400 .32465 
9*250 

-.440.0 ø*.70800 .30413 

3.50O 
"-.59900 -.60900 •28734 

3.750 
-.73730 ,49200 .7529. 

4.000 
.84400 .36100 .26746 

4,250 
.91700 .22100 .26329 

4.500 
-.95500 -.07600 62190 

4.750 
.5600. .06500 

5.000 

-,2200 .20100 .26162 

5,250 
-.65600 .32400 .26059 

5.500 

-.76100 .4200 #25778 
5.750 

.6420C .52000 .25225 



6.000 

• .~090300 .58600 

6.250 

-.35G00 .63000 923324. 

6.500 

#65100 

60750  

.002700 .6470.0 .Z0951 

7.000 

.13100 .61800 .1958.4 

7.250 

•27900 .56400 

7.500 

.41100 .40200 .16705 

7.7•50 

.52200 .39300 .1.5461 

86000 

.60700 .28400 .1.4497 

0.250 

066300 .16500 .13845 

• 500 

•69000 .04400 .13818 

968600 -.07500 *13646 

90000 

.65300 -.1$700 .158 



.93tW 	.2B8G0 	.14134 

9.500 
•1000 -0 7300 .14343 

9,750 
•40800 ...43800 .14320 

106000 
.29200 ..4eoo 91408 

10 • 250 
•1800 .1353 

10,500 
.04100 )500 .1Z79 

10.750 
...08200 -.48500 .11952 

11.000 
e.199O0 -.44700 .11115 

11.230 
-.30500 -.39500 •1044 

21.500 
.39600 ..2900 00986-6 

11.750 

-.46900 -.5.5O0 •O949 

12.000 
...52300 -.17400 .0262 

12.250 
-,55600 -.0800 .09116 



12,500 

,56SO0 -.00400 000163 

12,150 

-,95•8Q0 .07700 909139 

.000 

*052900 *15400 009133 

.0,8200 .223e0 

.0t961 

.30OO .0B747 

16,00 

-.25400 .3&40 .8457 

14.20 

"0  1601,00 *3.8400 .08100 

40006300 *3890.0 #01619 

14.0 

,Q300 07900 11072113  

1.O00 

.12500 	.35400 	.06710 
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FIG.2. MACHINE CONNECTED TO AN INFINITE BUS. 



CUA P1 I Y 

TRANSIENT SPONS1 ESTIMATE OF A SINGLE MACHINE 

CONNECTED'10 AN INFINITE 1US WITH GOVERNOR AOTroN 
Nslrrs 

4 j INOthCTIiJN  

The *yetex o-V the previous ohaper, hrving 

a synchronous *ubhi.ne oonneoted to an infinite 

bus is now incorporated with governor aotion.(Fig.3) 

Therefore theassumption nr constant mechanic i 

power input, made so far, is changed to that of 

'Variable mechanical power input an4 e transfer 	c e~ 

representing prime mover and governor is described. 

The .swing equation is modified to include the 

effect of Input power control. A hiapunov function 

for the third order system is constructed by 

Cartwright 's method! and the estimates of tran nt 

response are again determined. 

4,2 SING EATON 

Let the variation A ' ì in nieoh anni o l power 

input due to the velocity governor action be  

given by 

1 P, gip) (1+T`2p) (&)o 	alt 

There 

01. Yiaiooity governor gain 

W05 System rated angular frequency 

` u Servomecth ante . time const ant ,see. 

52 
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FIG.3. ONE MACHINE CONNECTED TO AN INFINITE BUS WITH VELOCITY 

GOVERNOR. 
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p 	Prime wovarftOtc eitnt, *00. 

In order to Unit the order of the *yetea 

to three, the eq. 4.11) Is 1pitfted by negeettg 

the prime mover coustant 

Thu*, 

• .(4t2) 
 tit 

DeftningAtte new variables  

so t.;t 

dT 
	—14 
	

.. (4. 13) 

*0 that 

Eq. (4,12 ) oaa be written 

	

dS 	Al. 

	

4? 	cit 
/ 	4T\ 
1 	 I 	 at 

- 	- 

( =
dtr + Tt) 

0 

rp') w0 dT  

where p' ie 



The swine equation (2.i2) Wit out governor 

ti nn is 

+ I1_ LS  1 Pa -sin + 1a, iu2 
dP 

a PI-sing 	 (2,I2 

Sin26 term is neglected for further of piifi°att°n. 
'Introducing oii Inge in webcanioa1 power 

input proportional to the vol°ratty, the equation 
(w e12) becomes 

~d S + Ml1 	P1- API- Sin 6 	.. (4,15) 
dT 

Substituting eq. (4,14) in eq. (4,x.5), 

d2s + d . d6 a -. ° -  
(°+T ip')w° 

..C4.1( 
Rearranging , 

T 	+ (°+?Kd1) 	(o.i di+OVw ) . ds 

4.3 LIAPJNOV FUNCTION 

The third order eysto oar be txpressod 
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k, = -XIX '3-k'~2 . g(x1) 

where 
g(x1) Its the nonlinearr factor in state variable 

S1. 

Corsiderin g(xI ) k& I 

The syMteu equationss (4.18) become 

XI= M2 

x2'* x3 ..(4.19) 

 

where k1 ,. , 	are const ants. 

 

A fume that the taia uaiov function in  

quadratic form be given us 

'Differentiating with respect to ti, 

Substituting ccs. (4.19) in •q. (4.2i. ), 

V a1X1X2 +t2x2x3+a 3 -k -1 M .4t ,) +a4/2(x + 

5b 



+ +(+) + 	A 

souoq (o) øotrb pu 

,c 

'(i4)@ UT 	 inqtis 

0 

+I Urn 

fi 

SO uo1jo 'iq. 

Q o *  c 

UT 

eta o;  ('t)b& 	u8UO 



As the nonlinear function g(zi) %ras roplaoed 

by the linear term k3x inoq, (4.18), 	(x1) d 

can be  eubtitut& for 	in eq. (4.36) 

Thus, 

V 	 +g()x2+k1  
	

g(t) du 

4.4 RNAIPLE 

Considering the same system f ohtper III 

(2.0), rind 'introthwing the oontrol of mebbanical 

power Input . by veiooity governor, as  shown In 

Fig,3, with the values. of the cnetts given a: 

01c 30 

= 0.1 Seo. 

The owing equt Lo; (4.17) 

(o+Tiii) j+(o.di+j+T1Coe)jL 
d1 

a 0, PI -0 sins 

cnn be 	 ree 	an 

2 	- iL 'ins•.4.2) 

58 

whore £ciin (2.7) , 
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o 	1/14.t4 

Jd1 .izt 

ve '286 

100 7r 

Substitt&ag those vuiuoa In cq.(4,28) we get, 

____ + 	+ • i31) sii +( 	i +Co 	 d5  
dT 3 	1.414 	dTT 1.414 	757  r 	iT 

	

M 286 	q.saiL, Sin 

	

14 	
S 

1.4 	1.414 

or, 

+.(437 2. +(,Y38+Co)j ,202-,T08 SLn 
412 

SINGULARITIES 

Stable focus and gaddle point 	gL;lr1t1 

are detorrned from ttie uquaUon 

Sins er 0 

Therefore, 

Stable Focus: .4 radians or 16,60  

Saddle Point: 2.85 radians or 143,4°  

Transferring the origin of the state space  

on the stable focus, the aq.(4,20) can be rritteri a, 

+ .837 	j + 
41T4 	 dT 

• .202 -.706(+.2) 

where (,+.20) 



41 AT fl . 

Rxprossingeq. (4.30) In -state variable form, 

•.(453j) 

Neglecting higher degree terms from eq. 

	

...S37 	1.7x0 

Cxprenstng eq,(4,32) in ioutrix form, 

R r  
;2 	0 	1 	z2 ( 	,, (4 • 

La kc 	..1728 ..18fl [aj 

ftere-rore the coettle.lent matrix Is given by, 

A  
ro 

	

1 o 	0 	1 1 	..(4.34) 

kloG i.12$ 

The charaotertatLe equation for the matrIx 

(4.34) can be expressod. as, 
3 p + . 	+.837  

anti the elgen values are 

60 



-.1@t + 31.232 

J.233 	 ..(4.36) 

p3 
The negative real parts of these values  

predict that tae SyStmon 19 •ttib1e in te ieE1tt 

iigbbourbood of the equilibrium condition. 

From eqa,(4.32)and' (4,26), the Liatuiov 

uition V(X) OW be shown by 

V 

+1G63?XO*?OG)X2 

• O+i.214t+8.x+.7OGx1x9+.83?x23  x  • ,(4•37.) 

qutton(4.37) in matrix form will be, 

E-1 i -v 2 'j P° 	. 	.
0 1i 

V() 	 L214 •41E3 x 	(4.33) 

L° •" 	.5J [3- 
iT  Vx- 

Tberefore matrix V to given by, 
*296 .353 .01 

V 	 t314 .418j 

Substituting eq,.(4.34) and (4,39) In thc 14punov 

stability Equation 

+ VA - 21 

the mwtrix 111, i 	tYrLiH)d as 



az  

.0  .0  .0 

R - 	.0 	.869 	.0 	 ..(4.40) 

 

.0  .0  .0 

and from eqs. (4.40) and (4.39) , 

.001 -.001 .0 

RV-~_ -.995 .833 -.697  ..(4,41) 

.001 -.00i .001 

The characteristic equation obtained for 

eq.(4.41) is 

A3 - .835A 2 + 0A + 0 = 0 	..(4.42) 

The ei g en values are 

Al = 0 

	

A2 = 0 	 .. (4.43) 

~3 = .835 

MATRIX R°VI -1 

Now a real symmetric positive definite 

matrix R' is choosen. 

Let, 

2 	r iii 

	

 

R' =111 4 1 	 ..(4.4) 
IQ 

 
L 1 J  

A set, of six equations (A1i.6) is obtained 

from Liapunov Stability Equation in terms of the 

uni~nown elements of the matrix V' . 



This set 1 is 

;jj 232j  2a 1. 0 	0 

aJL2 (a+) a32 	21 	1 	Vt2 

a13 a3a a33) 
(11 U 

#t32 	32 	
( 	V 22 

(a3+833) 32  23 

0 	2a 3  2a3  v 

2a1  0 

a13 	a12  

a 	Za 13 o : 

.2  R 
12 

.4 13 

..2 23 

-2 -733 

where I 
VIj 

j 

are the unknown elmonts of V 	matrix. 

Substituting e, (4.34) and 	 4) In 

0 	-1,412 0 	wit 4 

1 	0 0 0 -70 V 12  

0 	1 	-0• 637 0 0 -..?06 V 13 0,2 

0 	2 	0 0-3•4M3 0 22 

o o ...j.728 v 0.2 

0 	0 0 2 

•.(4,40) 

The solution of above equation 

(4e 4(;) 	1s 



~ 2 77 
v 
2 1.016 

f 
V1 .163 

1 
•R$4 	• .(4.47) 

.283 V ~ 

 

vc3 

T exeXore thematrix V wt fl be 

•773 .763 .283 

V .7S3 1.916 .684 	,.(449) 

,.263 ,64 

`ro (4.44) and (1.46), 

-.119. 

e °-3. —.139 .263  

.129 —.072 .202 

The cl4ractortsttc oquation for the above 

matrix of o .(4.40) 	is d+ ter 1n. d as, 

.-.sa5,A 	+,.~~~1.~.014=0 

and Lt i OL ,en Values are 

t 

• 2 

 .. (4.51) 

f 

,.494 
A3 
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MONTE CTtLOOla"CI I -€JL4 

The Lia, .x iov funotio In quadratic form 

from eq. (4.37) is 

21 	a 
(x) = • 216  -ct+1.21,4x2+O. 3+,, 7 6xI"i+. 37x2a 3  

and from e , (4.40) , 

—.738 X2 	(4. 2) 

The oadd to point as referred to now 

oiign can be shown as 

x3  as 0 

once borax  i. s obtiLned by substituting (4.r3)  

in eq. (4,37), 

`xzereore, t:eroitonirewh; tithe 

state vary,ttbIo . L  can vary , 

0  

and rojion for 2  can be obtained from 

14 

.1184 
T ererore , 	x2 	1.207 



AIR 

O2 	1. 20'7 

Region for x Is deterthed from  

K3  i9 

 

 

Terofore, 

flX3 : 1 '497 •.(457) 

nandow nambers are generated for state 

varjab19 v I  O N2  and x3  within tbe ranges aticomea 

in cq. (4.5), (4,6) and (4.51), and 

are calculated tron 

or) Min 
ft.j 

fvi n X  2  
or  Mm .: i. +i.x 

21 	
x) I 

The results are 

% max = .7721 

min 
S 

The system transient repona Is obtaiiite 

by numarloal tati 	the set of first order 



iiffercntil equations (4.3I)iig iIn,e—utta 

—Gill method, 

The initial condition of te sysitem 

io given by 

to 

.1 

t .1 

The The. upper (iflL1 lower bcuns obtained from  

tLLO eigell values of 	 to be aath 

reasonable , keeping in voiw the ciotuzil tranatnt 

The tipper boundary from the trA A, 

runs , well below the trniet response curve, 

initially mid then along wttLi the curve afterr1r4is. 

The tg.ou defined by matrIK  

very wide. Whereas the estimation of lower lilt 

by Ii  onto 00r10 WaRthad is heat. (Ss •Fig.4) 
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RE$t3LT$ RUNGE KUTIA GILL METHOD 
WITH. GOVERNOR 	- 
TIME 	xi 	X2 	X3 	V 

.10000 	.10000 	.1000.0 	.03553 
•250 

.12700 .11500 .02300 .033.62 
.50.0 

015600 .11200 .04400 .0161 
.750 

418200 409400 .0000 .0972 
1.00.0 

.20200 .06400 .02831 
1.250  

.21300 .02600 .15800 .02720 
1.500 

.21500 -.01300 -.16200 .02680 
I.7O 

.20600 -.05300 .]000 .02617 
2.000 

.18800 -.08800 -.12400 .02500 
2.250 •. 

.16300 -.115G.0 -.O3900 
2.500 

.13200 -.13200 -.04600 .02046 
2.750 



90900 .i...13900 ..00500 #01728 

3.00 

.06300 -.13500 .000 *01395 

3.Z50 

00310 -.12200 .07000 .0109.9 

3*500 

.00300 -.10100 .09600 .00867 

3.750 

-.0.1900' -.07400 .1.1300 .0071.3 

4,000 

03400 -.0450.0 .11900 .00648 

4*2.50 

-.04100 -.01500 .11300 .00617 

400 

-.04200 .01000 .09900 . 	.00608 

4.750 

-.03600 .03300 .07800 .00606 

5.00 

.02600 .04900 .05200 .00570 

5.250 

-.1200 .05900 *02400 .00524 

5.500 

000200 .06100 000200 .0040 

5.750 
.01700 .05800 -.02600 900394 

6.000 
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.O4QO 

6,O 

.049O) .czoo -.OiGO 002.89 

8.7 

G3O OOOO O78 

7.0)C 

405000 .oiicQ 
7.zo 

.)66OO ,c471Gc .C'02&6 

003800 4.003500 -W-003300 *41,0249 

79750 

,132O 	.O4jQ 	.i7': 

.01700 -.4400 -ijQ0100 0001-1.6 

.O6O .ozoc 

-000-300 t- ,-005700  

8.7 

.Q50O .flO4 

c'.2O 



CGOO 0000— O.0i00!— 009I 

oz. t 

*K000 OO'.- 0000000 00910 

OOZO 0090O OOOI  
OtLtt 

96000 4  QtZO- OQtO' QOLO 

QtO' GO1O! OO600S  

oize tt 

• O003' 

000•It 

19000 0  OOQO" 00W 3OIOO 

IL OOO. OOLOO 

LOGO 00510 Ootzae OOSTO*—  

OSZOOI 

t2GOO • OOO.  OO9O 	• 00810*1_ 

ooG*at 

69000 00600' 00IZO*',  
01606 

GQ90 O0YO0'o 00O 

68000' 00t.,O* 00600'- ootoL., 



.01400 .00900 -00160.0 .00032 

1.2.70. 

.01100 -.01300 .01000 .00030 

13.000 

.00700 -.0100 .00400 .0007 

13.250 

• . 	 .00400 -.01500 0.00000 •. 	.00024 

13.500 

0.00.000 -.01400 .00600 .00019 

.0000 0-120?0 .01000 000015 

i4.O0 

14.250 

.,00700 .eo5oo .01.400 .00011. 

14.50.0 

.000 .00200 .01400 .00011 

.00100 .01.300 .00011 

15.000 	. • ; 

.00400 .01100 .00011 

• . . 
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FIG.4. MACHINE WITH VELOCITY GOVERNOR ACTION. 



oaAc t v 
SXEWl RESP!  NSE T AP 	SI L MACHINE 

CONNECTED To AN INFINIPE &IS ' fITH ,1VOL Cd 3PROL 

The power system a ones attng of one synor 

-hronouu rpaotina supplying power og ntnet an ''Infinite 

brae includee a feedback loop to control the angle 

of the rotor with . reaps©t to a rototLng reference 

a s at ®tncbbronoue epeed. 

The .Angie #?etui*toz' is represented by 

a simple netevort~„ teedf.hg back signals proportional 

to angles Velocity and acceleration., an shown in 

Fig. 5. 	expres i *u of swing equ at ion for t a 

system with angle regulator action is derived. 

The tatrioers A, KV"1 and 	are determined, 

while the L t apouov rtiuction (4.2?)ai the Chapter 

IV is used. The estimates of the transient 

reop-onse from the maximum and minimum eigan 

values of the above matrices, and Loy Monte Cirlo 

r ethod caro obtained * 

5,2 s 1jG:EQUATLOL  

Based on the two nit o model of syxiohronou 

saachine, the voltage 'equation for the fief d circuit 



POWER 
AMPLIFIER 

EXCITER 

GENERATOR 
	 INFINITE BUS 

BREAKER 

K3 

K4P 

ANGLE SENSING 

K5 P2 

	
DEVICE 

FIG.5. ONE MACHINE CONNECTED TO AN INFINITE BUS WITH 

ANGLE REGULATOR . 



can be written as  

+ 

Vill  = Voge acrous tho terminals of the  

field ciroult 

rfd = Field circuit revistanoo 

Ltd = Field eurent 

liux iifflgo With the field ebuit 

V WX 

xrfd 

ad  v Xd 

w 

V • do 
rtd 

h 

ArI3uro vocation d 	direct axis 

ro actanco 

xfi,tr FLeld winding reactance 

VoIte behind dtroot axis trnsiont 

Tdo= Di root axis o • • ti-nn 4 on t time  oon t nt 



Multiplying (,ti) by W X 	oil beth s11o, 

+ 	' 2 $ r° .l 	.( .j4) 

or, 

jC* 	! 	ayFTt 
	p 

	
t~rfl • 	i (r fd 

	

Ud 	 Uslftp 

P do 

or, 
3 

. a 

r 

Prom the voc for dt rat of i . . 

€' .' L 	+ Id( - xd 4 ) 

'~tt  

Frt 	eq. (5.18), 

Su stituting c* (.i) in  e.(5.1?), 

F' VCo 

a ,~y 



78 

rci - 	VI  co 

LXdJ 

From wq. (5. i) 

T 0' 

Stitthg eq,(5.0) in eq. (i), 

To 	Eq 	 cijv: C036 	• .(72) 

er*fore 

( T (io  P + Xd/Xd ) 

The angle regulator action can be expressed 

atbentioaliy 	) 

+ 	+ 	 , • 24) 

where 

Value of F, without the angle 

regulator actlo 

(th Constwits of the angle mgu1tor 

p 	Diftereattal. operator 

tdrtn the swing 	tion witto't 

governor or regulator motion (A! 

+ ied.AL = P— P I  Sth 
tit 

Sth 24 term is ghote. 



V Coe 

where 
EV p i s` 
XI 

f. 
.. .215 

Substitutthg ®q. (5.24) In eco. (t25), 

d®+ $ +K4pS +2p S +( 

•t 	!_ +T(0' P ) 
r 

S.ubatitu'tii g this value of 0q ' in eek. (5.215) e 

pfd + !a +K4p • 6 . d`''d a Vp0 	Vi 

xd ~T e 

R®piaoing 	~ in s'ing equation (Ai.:36) byest.(c.27) e 
the swing equation with angle regulator action 

can be written 

p +  

tit °̀ 	tit 
d'+ Td0 f 

. •  

Simplifying and rearranging, 



• M X' P4'd3&+(M  X+ lid T do ,  -Nd '. l5M13in ) d2  
dt 2 

+(;xd+ 41 	pix 	 c)vt 
dt 

PjXr(ia +)sL . 	Vin  2 

Ef do 

Sin 2S term is negleotod for simplification, 

5.3  

The swing equation with Wgie regulator 

action (.2o) to a third degree equttouThorofore 

the expression (4q 26) for Ltapunov function, 

derived In Chapter U Is used bore. 

i.e., 

(k +x3  +k 	xL. +k1k3x 	..(4.26)  

514 Fa:MPX -41 

The se example of Chapter itt Is oontdered, 

with the contnts of the rnie regulator otrottit, 

as given below. 

K3 M5 	K4  4 	Ke 0,2 

batttvttng Via Oven valueo for nil the 

constarsto in eq.(5.29), the swing equtition beooee, 

RAL JY (IN! VFP$1TY OF ROORE& 

ROORKEE.  
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SIN SLt T _ 
The expression 

0.0128 (.O6S +.0215 ) tn =  

is solved for s able foottl and saddle point 

8ingui iri V ie by Newton a hEOf method. These points 

Stable Point • .317 raiii or 18.2 

addle ! oLnt i 3. 	F riat an or 1 6.5 	o ,(t335!)  

The suable. focus Is transferred to the 

origtr of the state apace ane the eying e u tion 

(s.3a) to expressed t . the . fora of state space 

first oz' ter differentiall eq ations. 

¶hu s the system i e represented by 

X2 X3 

sin("%+.31T)) ((. ( +. 17)+.o2i ) 

Sin(x +.3i7)-.0i28) 	 (. 

NeglectingNegtecting hther ore er termri to the ser eo 

d ,p sio of is nea ndent a `uno ione, a • ( . 36) 

can be expressed as 
. 	o 

3 
8 + +. 	o+31i)X3_(. 9)1;3 47+.G 	X y 	n 

	

Ls 	 ~° 

82 



.2 z .317 + 

I..•321 x 	.221 x9 	.O5O x, 

Expressing oq.(,37) In watrix fort, 

	

jx 	I 0 	1 	0 1 1 

	

0 	0 	1 

-'337J. L3 

The coefficient matrix A is given by 

	

To 	i 

	

A 	0 	0 	1 

The cliaraotorisitta equatten for the matrix of 

eq. (5.39) is 

p3 + .327 P . ..a± p + .o 
The elgen values are ea1oulateJ as 

P, a. j 
P2  M 3 •4M3 

P3 g  

All the negative real parts of thee 

oion values SNOW that the system is table 

in the neighbourliood of the or1dn,. wbh Is to 

stable equilibrium point. 

MAI .1ZV 

I 

The ttapunov function v(x), froeq,(4,i, 



2 Y(x) 	(k 	 2  

where from eq (.37), 

0 .327 

k2 .241. 

.0595  

Therefore, on subtitntion of these values  

of the constant In expression for Ltiptuiov funotion, 

we get, 

V(X) 	(.33?x2+x)2+!ix,22j x+.O59 X1X4 +x.327 

2 
4 t63x + 	+. 	327xx3  

When expressed In matrix form  

Ex1 	xTj[ FOoOPI ..3 	0 0 

V(s) 	 .03 ,163 .163 L • 2 .. 

,i33 

Therefore,, matrix V can he shown as 

V 	 097 .03 .0 -f 
03 .163 .183! 

e163 

Substituting 	3o)&(,4) in the 
Li pnoV staijility equation  

84 



... R 
and solving for the s ari x ft , we get 

." 	• 0 	.006 r 

.fl 	.n 	.0 
Then o1cuieUg the value of 

11r. 	•3S ..1O5 	 . • l s  „3 

.049 

The oh raoteri 8U . a equation for fRe above 

matrix (3.47) I 

Therefore ttt ei n v 1ca.e; re 

Al  W 0 

= 0 

3 	.326 

real 3 metr1e .pofitive leftnito antr1x 

1+ Is assumed. 
[.5 s1  

l i 	t 	.5 1.0 	.5 	..f . too 
R 2 	. 	• 

After substitution of the matrix Rt from  

85 



eq. (,0) in tba Li&punov Stability eqtation 

AV'J'A -2 

the solution for the matriz V Involves the siution 

of the sIx equations given bølo*, 

Toco .1000 ,its .000 	.00n .00 

L.000 .000 -.i •o 	-.050 000 V 12 -101 

0 000 1.000 -p327 .000 	•000 -07M VIS  f,114 

.000 2.000 .000 .000 	-,442 •000 

,000 .00 1.000 1.000 	327 -.221 V23  -0111 

L 000   .000 .000 .000 	2. 000 v'  

Trio equations (.5i) are solved and the  

unknown elements are given by 
Vit t = .09 .764 

V jil .175 V2310 •83 

V 
13 .084 	V33  '2,624 

There Co re the matrix VO on be wri tten as  

59 .17s 

= 	.714 ..853 

.953  

From eqa. (5.50) and (.53)) 



...tO8 

	

L313 _.048 Ei 	 41 

084 -.oie QO!j 
The oharaoeri tto equation for the above 

matrix (80M) is  

	

_ 326A'2  on A' 	o 
,lience tlu etgn values for this matrix  

IM 

I 

z 
*309 

tUE' 

The Liapwov funotion from theq. ( Ø 43) 0  

• t)O97x4,  

The saddle lioint(5,31S) , rferre'J to the 

stable toous as the new origin of the state sngce t  

can be given by 

	32 3,08 . 

2.76 

8? 



MIN 

The region of tibiiity is defined by 

b Max , wears it Call be obtained by substit uting  

the saddle point from  tie equation (5.7) in eq. 

Therefore,  

• .IO7 x (2.76)2 

= ,073 

The range for the etato s.paoe Vartablo 

can be geoified as 

Tito range Lor the state variable 

can be given by eqat1ng (5.43) to b 	and solving m ax 
for 	w4ie 

Similarly, 

.5 X3 	b 

where 

or, 

Therefore te range for X. will be 

0x 	. .382 



From eq. 

ft 

(x) 	x (r) x 

, •0i2 

Ibrindon numbere are gencrated between the 
ranges tpooi tied for 	9 X2 and 	by eqs. 

(5.Go) and (3.1) repeotive1y4 ~ Mal 	are 

evaluated from 

Hax 

or 	
frj 

cin MLn 

. 0 1  
ax 
or 

lit 1.1 .xj+.163z+.52~.otx1z, 

The results we 

4' max  = •0Ca93 

min 

The systew tr?rn&ient response -is obtained 

by nuierioal integration of the 80t of first or4ar 

differential equations (.3G), using nzngectitta. 

-Gill rnethod, 

he initial condition of the system is 

given by 

T 



x2Q  0-0  ala 

'S  3o ss s0 

ARKS 

The upper and lower bounds oorresponing  

to matrixes A • RV-1  and R IV I -1-  are sleet i ed. 

The transient .rer pose doto..rmined by Run ut* . 

Gita method is compared with these estimates along 

With the one obtained directly fro*  

by !onto Carlo mothod„ 

The transient response estimates from the 

elgon values of ¢atrioor, rtv 	and ,+Vf"'i  are. almost 

ei mi I aT. 

The uppor boundary obtained from the 

coefficient ma :rix A , reaches very oio ao to the 

transient rcponse and its lower boundary i s ate 

as those se o i the previous two matrices. 

Whereas the lower boundary doftned by 

Moiits Carlo ethac 3s crossed by the transient 

response at r n aber of planes, the Upper bonsd.- 

- arias from . onte Carlo Technique, matrices M  

and V I-1  are a aet iy the same. (VL.g..6) 

90 



01 

Q'ESULTS RUNGE KUTTA GILL METHOD 

WITH RU1AT0R 

TIME 	xi 	X2. 	X5 	V 

.I003 	-.05000 

• 250 

.08903 	.03765 	.04711 	.00063 

008100 	'.0247 	.04384 	*0006.3 

.750 

.07372 .01595 .04026 000062 

P1.000 

407295 .0006 , .00061 

.1,20 

.07245 .0224 .03237 I00060 

07398 000980 .02$14 .00039 

1.70 

.07727 .01630 .0 2.37 9 .0058 

2 • 00.0 

.08204 .02169 '  *01934 .00057 

2.250 
.08803 .02597 ' .0146 000055 

.09494 *02917, .0109 000054 



.1025 ••..03i17 i9 

41044 .3213 .00171 .00051 

3.a50 

.11348 0O320 

3500 

.03096 .0Q22 .00050 

3.750 

.13389 .0296' -.00977 .0004 

4.000 

.14079 .02610 -.01296 .00049 

4.250 

.14688 .0221 .0.1575 .0004 

4.500 

015199 .O126 .0004 

.4.750 

#15597 •01350 *01996 

•171 .0083? ,02134 .00050 

5.20 

.16011 .002fl6 . -.02.222 *050 

5.500 

.16013 .O274 -.02261 .00049 

5.750 

*15874 .02253 .00048 

6.000 

I 



J3 

*13594 .033 7 -.42201 .00047 

015176 -.419 7 -.02108 ..0004 
6.500 

.14627  -..0 448 .0i97 .00044 

.139 -'.02924 -►. 	1838 .00042 
• 7.0 

.13.1C9 .0356 56 --. d 1 F .O0•0 
7s''5 i 

.12281 s.0373 _. 1425 •00037 
7.00 

#1.1304 00004067 -.012 - w00034 
7.750 

.10252 .049 • '-.00971 000032 
860°70 

.091 .0455 .O734 4 ..00030 

.07980 -.04707  .0O4 7 *00028 	t ., 

.06790 -.04802 -0.00262 .0002,6 	 ' t 

,0384 -.0483 *-.00034 .00025  
} r., 9.000. ' 

•04375 k-.04820 •001.85 .00024 	 .. 

7*250  

4v. 

\t. 



.0118 •t474J .O*91 .O023 

9.900 

.O2O0 .cA625 .cW384 .00:022 
g.7 

.0O59 .044 .00764 

3213 —.04245 .009fl .00021 

-01249 ..403994 .G0020 

lO.5G0 

.i.02'2j3 00370a .01206 .0Q02 

.0101 ,,032 .0321 .0020 

Ih000 

—.03049 01620 ,C001 

,04624 101:02 .00019. 

—0247 li.002,2qo .01E to-0019  

-0772 0 i 9ec .01*1 .0001 

,O6196 '-.1fl6 l .Oi52 

12.230 
".06517 —.007 .0170 G001B 

12.500 
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• .06734 —.00657 .01674 0001 

1.70 

• " 	 06846 .00240 .0161 0 Clot 18 

13.C'OO 

• .0685 .00171' 016 .00018 

.2.5D 

.00573 aO00i 

~*06568 *00965 00i50 0000I8 

13.75'0 

.06280 .01339 ,014 000018  

14.000 

.01692 •0136 .0001a 

.05436 .02020 .0129 .019 

14.500 

.00019 

16.70 

00427 .0259 .01005 .00019 

• 15.000 

'.02822 .00858 .00019 



6 

9R 

5 

w 
N 
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\ 	 ACTUAL RESPONSE 

A [RV-I] 
' \ 	 [A] 

, 

	

------ [-v/v] 

1` 

0 	2 	4 	6 	8 	10 	12 	14 	I6 
TIME IN SECS. 

FIG.6. MACHINE WITH ANGLE REGULATOR ACTION. 



CHAPTER Yl 

QONNC?EI) TO AN uOurTE JS WITH 6OVERNOTt AND 

MGLE- REWLAITOU ACTION 

80 1 INTUOW, T 
 11*fi L'_ 4L!Y 

Thi 9 cUØer deals with a system of on 

yrioronous maebine oonneotel. to an infinite  

bus., incorporating a combined effect of governor 

and angle regulator aotto.(Fg,7). Amthg, equation 

of fourth order is formulated , 'rho metf --,iod of 

CartrtgLt, for constructing a Ltapunov function 

1:8 extended IS-Fo this fou'ttt ordar system , Coaffi.  

04tr%x A ,matriceis riV 	=4 IRIVO 	are  

determined. The traaint response by nge.utt 

Gillmethod - and its estirmater# frow tLe thove 

ated matrioes Lis plotted. Finally the  

aød lwer bowidaries are directly calculated toi 

[—~(x,)/V(X]) by Monte Carlo Methid., 

62 SWINGL___.. 
Tile owing, equation for a systom with 

wile regulator otion(.) in 

; Xd 	aa 	 '+tV '5' 	42. 
at 	 tit 

5iz1L 



CH. POWER 
INPUT 

GOVERNOR  
TURBINE 

EXCITER 
SPEED 
SENSING 
DEVICE 

ti 

POWER 
AMP. 

INFINITE BUS 

B I 	I ANGLE SENSING DEVICI 

K 3  

H K4p  
K5 p2 

FIG.7. ONE MACHINE CONNECTED TO AN INFINITE BUS WITH VELOCITY 

GOVERNOR AND ANGLE REGULATOR. 



The governor action (41) can be oxprose 

by 
Ph 	• Aft 	 • (4* 12 

w0(ir 1p) 	 8t 

Per inclusion of governor aation, rep1ao 

P ,  by 	(P115) In ( 5* 29 )40  

£onoe, 

___ + (MX+ P.10 1 X+V 1  AnS) 
•I 

dt 	 it 

+(+Iç  sin g X - 
dt 	 dt 

+ nido)y ,  

kitLpiytng o 	(.it) by (1+Tlp) on both 

and siiIytytng 

M 	''P . j.j+ 	x'T 0 ' + T 1( X+!P' X'  do 

+KV in<o ) d 	+((M*:X+ 'd 	1 + 1K1X 	. (i1+ 
Ca 

at.  

+ r1rv1  
A it' 

Sin&. T(K ,o*Kj ) V Co)jj 
dt 	dt 

' 	(K a 6 +t do) V1 St n 

j9 
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.3 LZMUNOV FUNCTION,-  

The Li apunov function for the fourth order 

system 

32 

3  

Xa= X4  

x4 	4 k232  

where 

g(A is nnonlLnear function of variable  

are constants.  

atui be determined in the following way; 

AGSUMO 

w1ere k. in a Ootl t ant 

Therefore the state spaccoquations btoine 

ea- 

• .(;,i;) 

t3t 4  
I 

x4  k14 k,,.3 k32 k41  

Let the Liainov function lie e roed by 

+ 



10 1 

Where 

aig
6 
	, Dry, a,g, a C e V o st l+ u s 1 

 ~eav entF acing eq. (6. It) 	 ttte tt e s 

ox ro'rning to for e, 

.k4x1,) 	tS3+' 2X2 ° l ! (x4+ x + z2) + a3 (N2 + 

} of eq, ( .if)  I s cor u rat aed to be negative 

scmidtjnite In tie state vagi a le .• 

Thus eq ati.n the coef iot encs of ter, 

other thann that of X22 to zero, 

0 

311,3 X11w 0 

0 

SO .{i'. $ tt Y aA:YGve  

A 	:,~ 	 d. k 	: 
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k 4 3 

m 
ssme that  

2 

Sabi;-bi t1 t vaieø e  

the expressionn ( 3 .1O) oZ Uapurnv 'uuo toti, 

2V 	I ? 	+( , -IC3,/ It'l lz,` 	+k 	*k1 4X , k 

..,.$6„2 

equation (X }wit) , tho tonI nu r term 

lxl ) way► epiao d by a 1iaBr ter 4 . 

"$1er o 'f4 In r4 ` or to Incla J non t t Frit" 

th, 11 tfloY 	s 
by 

~ t 

4z1 by 

S g(u) t: 
0 



Ha 

ienoo the LiLp3IoV ftfl1otjotj for the nonlinear 

system can 11ba expressed  

2V t 

xa)) 2+ 

(u) dkg(x)  

PLL 
The oLpIo (3,9) of Char III Is taken 

along with the tallwolng data for Velocity governor 

and iLgie reuittor circuits. 

VqJocty governor.,  

20 

T 0, 

agie fleg1 ator 

g3 5 

Subtitutitg Vie different Valuee, In ewing equation 

(6.13) and exprommina it in terms of the new time 

vriile T we get 

44 + (,8a a. 3Stn) j+ (.13+2.72Sid,~2.890osS A61 
4 	 426 

ttr 	 dT dIr 

+(.Oi2+.MStn+(,O..OZt) Cos +,Cud 

= 6009 ..(.042& 	-Cans  
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The st&ile focuel und saddle otnt 
antics can be obtained by solving the equation 

(.0425 +.0152) SinS 	C) 

Those points are given by 

Stable es .19 radts or 12,55 0 

Saddle Point:3.0i radians or 17.9 0 
, 

VIIATRI ::: A 

Origin of the State Spaee is tratsferret 

to the atable toous anti the swing equation(G.122) 

Its "pressed in the form of state space first 

order 1Uezontial equation, 

Thust 

;;4 (.e8 +.693 

+.2iO)+Ih89Cos(x1+2i) X.) 3 

Z1+.2iJ)+(1Ot(x1~.2i9 	Q2)Cos(x1+2Y 

042)  

Linearizing e. 
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2 

x 

+.6 	•2içC.fl332+.O5 .x ,219)x 

. * (43 * 

When expred In matrix torn, It atm be 

given by  

r i1 000 	i000 	•ocm 

•OO 	.000 	t.O 	•00 

It 	 0(() 	.00) 	1. 000 

T2 

TherIore, the ooettlelerd, aintrix A on 

be a-,.pressed u; 

— 1000 	.Q 

A Goo 	,000 	1.000 - 	.O0  28) 

.000 	000 

..169 	...78 

The evalaated characteristic equation for 

the bo'e w.utri,% (6.28) Is 

3  p4  + 	+.120 P + • fl39 f + 	0 

Uie eig values are 



P2 	3.32) 

P'3  Ca .6V3 +30 

.812 +3 0 

0,00,029) 

 

Comier the expression (G2) for the 

Lapinov function, which c-an be writterl as Mwri 

below , wbile Substitutingthe vacuo of aonstanta  

from eq.(6.23), 

2 .5 	 six +* 414z  •j 	+i 3   

+ 

+,022  X+. 4( 	 . 256x 2x4+. 

• 

Ii:* matrix 	the LAopunov £tneUoLi to  

. 	 .IJ 

	

v (.X) J.,016S .1421 ,233T .1281 	, 

90112 •.237 . 0 14 6325 x 

LL 	 C4] ,32 0 21M 2 



10? 

Therore the matrix V ow be written as 

•0t6S 0112 .000 

.0-168 141 .2337 t2 
V.a; I

.0112 ,33? • 14 •32 

'' 

Sbtitttig matrix V (6.34) ani matrix 

/ (.28) is the LLpnov Stability equation 

+VA 

and evsinatina tho matrix fl we got 
,00 	 oo 

00t) 0 a 	.00 .0001 

•0)O .0O *000 

000 .00a 9 000 1900  

Than th6 Lvatrlx found out from Gqt 

((.3&) and ((.34) 

Tbu, 

-.057 .i -174 

4445 .4t4 t.49 --j,95 

,486 .331 -1.05 

.336 •09 .-)64 1.i2 

m chariticteristic equation of the 

— i,1A3+ •A2 -.0(2A = 0 	.(.37) 

The e1en VaInes cnn be oett as 
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,002i 

A3 = 0 753 + J.432 

-. j432 

A real symmetric positive Semi-definite 

	

matrix 'fO Le 	 uLed sueb that 

	

i 	•oi. 	,oi 	. 

	

.01 	.  
V 	I 

*01 .01 .01 .01 30)  

.01 .01 .01 .01 

The Lipuov stability equation L 

for unknown atrtz V', Tte glutin Involves the 

following equatiomo  which are obtained from 

the, set (AII.87) by substitutinq the values of 

the olements of matrAces A and P from egs. 

V14 t  

V 
11  V 0 

169V14$..,051 v 4 t 	.02 

12 	 -.02 

-.02 14 	44 

V13 t -,1t3Y34 +v2 	.72v' 	02 

v24  O2 
v23, .1g44 y14t 
	-1192 



JL  

VV44 +V33 i 	V34  

2v34 8 _3.Ot$v44 1  

The oltioi of the, ou(6,4j)i 

vii' 	 V j4 tei 

257 v'457 	V 4 '.,Z.ti64 v'.Ct333  

V34  &6 0 37) V4 15  

'Therefore  the matrix V Is given. by 

3 , 	9 .490 i 
9  47 

.449 2,597 4,S ,76 2444 Cr 	4 
vs 	

49O 4.N •9 0.370 

;7O 4.228j 

Evaluating 1,i, ø•  fr 	equations 	6.39) 

and (642) wo g4 

• c) • Od 247 U4 

-482 t 9 16c _1513 

R'V'—I ,ocj 233 

[.aio ,11O 

The chartacteristic for the above matrix  

(c.43) im giYen L 

0 

'rho 614011 valuos are 

i.t4 ) )¼ 41 03.33 



CA11140 

The saddle 	 (6.24) 	referred 'to  

the tabie tocus as the now oriin of the et ate 

pace, can be given by 

xt  3.O71.-.219 

-130 0 

The region of stability e  defined by 

Is obtthe4 by sth$tituting the saddle point from 

eq,(3.4O) In eq.(O,30), 

Tbu a, 

b 	,004  
ii 

.O2 

Tho range of the state variable x can be 

written as 

o '( x1  

Tho range for te state varlzfoie 

obtained by oquating (8.0) to b 
M ax mid o1ving for 

While x I = X3 = X4 4)  

fleuce 

. 41 	,605 

tereforo the ruige f or Lwiii tie 

0 	.O5 



Simi I arly, 

X3 J'Ou •5i4 0 63:18 

where . 	O j 4w 4 
ThreX,re tLe range for 

and 

2.492 

wer 

Tkjau the range for 

 .492 

From eq. (O35), 

Random numbers are geuerated between t e 

rangeo peeiod or : , 23 aLdZ4  by oqs.(f3.48), 

(ti) respectively. 9maX and 

are evaluated from.  

MaX a 1-
1 ax C -. 7(X)/V(X)  

or 
min . 

I Ma 	 .014 
or 

.0064 z1+.Q33i2+,O224, 3 x.. 1421 

L2t 

Z4 ) 

11 



12 

The results are 

.. (6s4) 

 

The syst catrtsLent response is gaiin 

determined by numerical integration of the set 

of state spaoe equations (G.25), using Runge- u 	- 

611I method on ii  *a1 computer. 

The initial conditions are: 

x10 = .. 	 Z20 -.05 

X30 0 .05 	 X40 

The boundaries of the estimates with the 

help of the elgen values , from eqs. (6.29), (6.38) 

anti (6.4) are drawn along with the transient 

responsee obtained by Runo utta Gill method. 

ft is concluded that the estinatos from 

RY'°1 and R °i~ ~",' are almost similar. 

The boundary obtained f,drorpat r1 A is 

closer to the transient response curve and the 

lower one lies in between tr at of V—i an d 3' ' , 

Monte Carlo technique given the tipper 

boundary estimate exactly similar to those of 
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and " '`—It  and the lower •i to ito to sufte 

a bit upward from the t m si ent roeono*. (Fig.8) 



RESULTS RUGE KUTTA GILL METH015.  

WITH GOVERNOR AND REOULATOR 

TIME 	 X4 	V 

0.000 

01000000 .0500'000 .050000 0500000 .000031 

a2$O 

.0889402 	*0389740 ,038774. •00008 

a00 

,080290 '-00011 	.03076 '.0304021 .0000a26 

,0 

.0736257.—.029.66 .0236059 -'o024042.6 .0000208 

.06840'i —.ö1832o •02.824A •.01913'8 .0000197 

.064297 .143691 .013942 05295 .0000190 

.110 QU34 .otoito 05 .c0001S4 

1 750 
	 : 

•08924 -'.,OO9O?6 .00776 	•.046 	.0000I0 

.05615Y424 ,00741:85 •0084 .7894 ,000177 

.08419 .0679 .0783 006M85 0*0000173 
0 	 - 

•05799 ,0054957 .0021728  . 30039 .0000170. 

2.750 	 0/'• 

	

/00 	

00 
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.020678 .005043 .0012502 -.003961.6 .0000167 

• *0508350 -.0048507 .0G0366 ..00U77 .0000184 

3*250 

.046262 -.0048487 -0003212 -.0024059 .0000162 

.04$3981 90049978 .000469 '-.0018178 90000159 
750 

.0471177 -.002.611 -.0012386 -.00111 .0000156 
4.00.0 

.0457606 -.0056079 -.0015194 -.0009277 .0000153 
4*250  

.0443089 -.006Q131 -.0017082 -.0005931 .0000150 
4,soo 

.0427509 -.0064557 -.0018207 .0003156 .0000147 
6.750 

.0410794 -.0069102 -.001869 .0000854 .0000144 
C . 	. 

.0392913 -.0073863 .0.0167 .01050 .0000141 

.37.3868 -.0078480 -.0018202 .0002624 .0000138 
5.500 

.0353687 -.0082934 90017 .0003919 •0000136 
• 5.750 ... . 

.0332421 -.0087145 -.0016261 .000490 .0.000133 
6.00 



.1O14O .091045 -.00149Q5 ,QOQ58'2 .0000130 

.o2a629 .o09k81 O1354 .oao65 .000127 

Q228&4 MsCO770 -.0011849 .00070e3 .O0O125 

.281I1 -.010096 	0009 	.0007308 .00122 

1.000 

.0212725 .0102613 .0007904 ,0007S26 ,000119 

7.230 

:.o8&45 	010442 -00005917 	Q0005 	.0000116 

7.500 

.01E0596 ..0105568 	003884 	00016. .0000114 

7.750 

O134104 -.0106232 -.00182 	.Q0268 '.0000111 

8 ,.00o 

.0107496 .01080 .0000244 .02-0a277 '0000108 

8.250 

.0080907 .010180 .000230 .000S229 '40001.5 

.004460 -.0105327 .0004354 	0 0081 	.0Q0102 

.00288 .0103986 .000669 r01W798 .0000099 

.0002309 -.0102146 .000342 .0007792 .0000096 
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vs.0022746 0099819 •00102 V2 •0 75:6 V1 .000004 
9.00 

-.004761 -.0097020 .0012129 .600791 .0000091 
9.750 

.0071V218 -.0093765. .601305 .0095 .000008 

o.c.o V 

.009407 -.0074 .0015609 .0006644 *0000085 -  

1O.20 
V 

'.0116121 -.0085967 .0017224 .0006269 .0000083 

-..017158 .008.1470 .0618742 .600583 .0000081 

0-.0156925 .0074605 .0020154 .0000078 
11.000 

'.01754 -.0071402 .01.53 • 094 .0000076 
11.20 V 	

V 	V 	
V 

V 	

V 

 -.0'192600 0065389 .0022631 • 944 .0)0007 
110500 V 

V 

V 

.0208354 -.006)097 .0023683 .000944 .0000073 
11750 • V 

4022V2626 -.005405e .0024601 003 V97 *0000071. 
12.000 

V 

V 

'.02366 au,004707 .005380 

12.250 

-.0246517 .004160 .0026014  000227 *0,000069 
V 	

12.500 V 



*m.0756044 •-.Ob34 e L..L ,00Z6497  .0 .01629 .0000080 

12.750 

.02:63915 --•0028144 .0026627 .00010.05 .0000.068  

.270111 -.0021412 •0026999 .00003;69 X 000:067 

-.0274619 -.001-4657 .0027011 -.00002  .0000067, 

1,3.500 

--.02771+41 -.0007920 .008&j -• O0009Z. #0000067 

-.0278584-.0001.240 .002454 -.00O1571 * 0.00066 

14.OQO 

.,o2771  .00 5 40 •0-0,260 6 -.0002214 .0000066 

14.250 

-.0275926 •Q-021784 .002 5443 -.0002.46 •0000066. 

14,500  . 

.0272192 #0018049 •0024 50 -.0003463 .0000066  

14..750 

-.0266919 .0024098 •0O2713 -.0004059 ,000 16 - 

...0260164 .0029894 .0022626 -.O00627 .0000065 
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ACTUAL RESPONSE 

28 ` 	\ 	 ----- A [R V-1 ] 

24  
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TIME IN SECS. 

FIG. B. MACHINE WITH REGULATOR a GOVERNOR. 



120 

CHAPTER m 
CONCLUSIONS  

7.1 S1M\RY OF CON CLtISIONS 

The Liipunov fLmetionR an4 the Direct 

Wiletbod of Li apunov have been calade use of for 

ascertaining the atability of the uystes. 17100011tty 

efforts are being rude to correlate the Ltapunov 

function or a stable system with Its transient 

repone. This concept has helped in deatimling the 

stable systaris by varying the system pameteri, 

to bring the outpt response within the esirei 

limit, without the necoetity 'of evaluating the 

transient response by integration of system diff 

...erentlal equations. 

The method is apj:?Ite4 to stable power 

systems consisting of one aynahronoi4s tnaohine 

supplying power against an Infinite bag. This 

configuration As chooser , as any complox system 

Can be reilucad to this form , so as to pliable 

study in a partieilar region of iocret. The 

parts of the systems other than those of Interest 

can be asued equivalent to an infinite bus. 

The oases , without any ontrol o  with prime mover 

control, with etoitation control and with hoth 

the controls working together, are analysed  



for astimuting the transient repone0  The non. 

i.thoaviUe8 of the eyetemare considered by tno1. 

uding the firot terms of their expansions in 

serLeo form. 

The Li apunov funations are constructed 

by Cartwright Method, and the prootdurG Is  

further ad-opted to thwiop a L1pttnov 1!1flt3t1Qfl 

for a fourth order system, wherii o oobine 

action of governor and angle regulator Is sought. 

The upper anti lower boundaries of the 

efftimates are plotted frou the cigon values of 

matrices A 0 RV 	 and Further a new 

tho3 is devised to I1nd tbe natuv and mtnt- 

aim v4laes of the time constants treetly from 

(..V(X)/V(X)) by Monte Carlo Techni%quc, The ettmato 

by this approach are reasonably in oorrespondenoe 

with thoso.,  from 11V 	 andVV -t 	 atricet 

zttaQ1I1 Met ,1110d is u& to 

evaluate the systemsresponse for comparing it 

with the re9uitobtathed, ! number of noriol 

lgethod,s for inatrix, uitibl for 
Le on I 	1620 •eotput 	, are ut1lize1 
712 SCOPIR ?: FEN flfl WCK 

While th15 work i eon teJ to the problem 
of finding the trns1ent ropone eattactter, of 



stable systems with given fixed parneters, It,  

can be further extendoo to design the ytct, 

satisfy-Ing ocran rec#Urmnents to respect of 

transient response overoot, • settling time ana 

performanee index etc.  

Although it ho* been possible to oontruot 

LiapuoV, tunctions for dple Ponlinear 

Ingenuity is still needed In evolving now Methods 

to in  finA Uapunov fuaions for ccmplex systems,  

There is no wetho4 cydlibi•e as yet to find Lip 

utoV fniotions which oan define the actual stibiltty 

region of a system. TIL911 epped digital ceimputers 

rny probably give some o1ution in the near future.  

Once, an appropriate Uapinov ftinction is 

Sound out, it will prove a VQItUe tool In prdte 

ting preeieeiy the system stability and ita  

transient behaviour. 

PW 



APPM 	I 

AI.1. STING U.AL 	(i7,) 

The eqkttLofl of otto, neglecting damping  

may be written as  

I,d2 

where 

I Moment of Inertia of the rotating part 

Total e1oetLoai angular dsp1tfl 

from a fld reference axis. 

Ta hocelerating Torque 

The m000lorating torque 1 then not torque  

or the algebrtö sum of the shaft tortie torque 

due to rotLonai losses anti tho 

torque.  

Teore 

Th a T1 

where 

Ti = shaft torque Oorreot e') for 

rotational losses  

Te = Electro 	tio Torque 

It Is convenient to measure the 	 n1 r 

position and tbe angular velocity with respect 

to a synohronously rotating referanoo axis,  

+ WO t 



Where 

Angle with reerenoo to tie rotating aria 

wo= Uated normat synchronous speed. 

ibBtituting eq,(Aii2) and (tX 013) in 

(41.1i), the swing equation Modifies to 

1, d29 	Ti To .A1.14) 
4t•2  

Multiplying by w on both the Oldesp  

1-1 -PO 
d 

where 

W1= 1w = Angular momentum 

PL= Tiw = Shaft power Input oorreoted fuw  
rotational losses 

Pa m Tow = Electrical rower ottpt. 

but 

In 

,, (Al, 16 ) 

a 1 Inertia constant in KW oo/ffvt Capacity  

of tho MaOlAne 

0noted pparet power of the Machine in ICVA. 

M=  GU/rrf 	 ,AIt7) 

iI.2 LL12 (Pa) 

From the vector diatgr= of F ig, 



	

Pe = Voll eo a ;) 	 .. A .16) 
c.prese~ing it in teras of d ink!q ads 

oomponent of VI anti I t 
Ilea Ida 'Vs + tq Vq  

where 

	

Vel = V, sins 	 • . T .2Ys~ 

	

and Vq a V1 OAS 	 •, (AI 2i) 

1$ = (q 	Vq) / X.d f 	, . (Al'. 22 ) 

and 

Iq 	Y4/ Xq  

Substituting eqs. (AI.2 3), ( M,2t), (AI.2!) 

and ( ;.2 ) in eq.  

PewjV • Vd + 	. vq 

c ' V Sats •- V , ( ,~ € )itn 2 

	

+ 	 :Ud 1Xq 
..(MM.24) 

PhereCoro* the swing squab rn *nip now be 

expruose as 

U c12 	Ii .. 	1 Stns+ v?( ~. ' .1) . 3 s 
d.tz 	 tI $ 	 2L d#.Xc 

Pi — f j Sin 5 + P2 Sin 2 & .. (Ai.2 ) 

ja2aL1 v1 
2 4th• q 



AI.3 DAMPZNQ WEa 

The damper winding or tho aoild rotor 

sturucture of the eiYnefironous machine 4veiops 

transient stability study. 

In order t o derive Vie e.rtn of the 

damping power , an equivalent circuit as shown in 

Figab is drawn, based on Induction theory. A 

syramstrical rotor is assamed iittUy.  

The armature, field and damper OjhOUjt 

are Inductively ooupied, Wherean In tetdvaient 

T o1rouit , the tdetLty of armatare cmd aper 

eirouit is preserved, which-  is ito saxitabie to 

tin the di-per xurrmt 1k4 	Is the trnaient 

roactano e, as seen £rr the armature. torin at 

with damper ciroat open wid field 	 ciroit•ed. 

Jt like induction motor , the dampar branali  

contains the re$stauce Rb1/ , tthem Pkd Is the  

damper rt8iEtat1oo and a, is toxo slip, The value of 

the thPer leakage reaote XPkd , Is SAO that 

at large slips, the impe- dwice as seen from the 

armature side Is equal 'to the b.4r3ntent reao 

talloo A" , when the damper circuit is short otroult- 

Xd* =  XBIkd. Xd' / (:d + 	.AZ .26) 



I Xd 

r 

FIG.9. VECTOR DIAGRAM FOR SALIENT—POLE SYNCHRONOUS 

MACHINE, 

j XRKD 	R KD/S 

FIG.IO EQUIVALENT CIRCUIT OF SYNCHRONOUS MACHINE 

WITH DAMPER. 

i2 
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The hem :k / is ne 1. a.ated at large values  

of 811p. 

'tone e p 

X d Xd O  

Stator current isgiven by 

is 	LLJikL+LiXk&i 4i 

+ j X d) ( 	d 1)  
. • AT.a ) 

Wt h for s all all-Ps on be expre s aed as  

Is  V/ j XP  .20) 

and the rotor cirrent .til 

I = I 	Xf~ 

R d/to + (  d+ P;) 

I  LXtL 

Patting the valueof I from (Ai,2 ) in 

( .30) 

0 
The lac ing power can be shown by 

I r2 t 	/s 	►eglaoti 	(1-8) 
V/ Rkd  .,(AT,32) 

The a Uv•aJen re ct€ co as peen from the 

damper side with armature c.iroiiit open Is '', d+-' ' 



F'ot eq.. (AI.1236 

Xzkd • XV = Xfld 

and from eq. (AI.27) 

IMU + X1' 

Therefor by, Cho dfiit1oii of the direct 

axis b4run4ut open otrcatt time constant ?do, 

it en be shown as  

2 

w (mi) 	Xd41") Tthi 

Rkd'  

WWI  

Substitating the value of eq.(M,34) In 

Pd 	 (SW) 

(xd 'r 
When the rotor Is not qymmetrtoaU q, the 

Valao of the domping power fluotuate8 between vie 

above tu tho value obtained by replacing the  

dtrot axis constants by qtn1rotttve niø oonstants.  

Therefore the Verge Aping power can be 

otitetnd by w4batitt4ting V for Y In eq. 	 ars)  

and Vq in the correspending qurattro axis 
ox,pression  



where Vd V1 Sin 

Vq 	'VI ccs 

Thus, 

p 

	

fr 	+Vqo Cos2 jL 

Ii cLL 
dt 

There 

Thpthg CojUicLent 

77. 

	

r , 	 + 	rqo" 

	

ri 	'I 
) 	I Xd #2 Xq' 
0 

Includtng th t1ctng power developed, in 
the owing equation (AI.28) 0  we get, 

+ rca.AL e Pt - 	 + P2 Sin 2 
dt2 	Cit 

. .(AI.3!) 
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APNfllX 11 

Let 4 system be defined y 

, 	 .,(ill*  11) 
Wbare 

is a tate Vector 
an 

f(t) 	I a a state vao or wboo elements are 
unction of  O tto Va iILbIe x , , .. . 

,A- a uilibrium state Xe (Fig.i.i) of te 
systemis stable if for each re nueber E >00 , 
t ,.era is real number 	. to > 0 Groh that 

.,(MXi2)  

1) (t; Xo, to ). Xe ̀1 	 for all t > to 

where 
(t' o,to) is the soi4tLon of et ,( MT,1i) 

Fig. It siio 	a st ole eQuiiibrtw a of a, second 

order ay to r d theojeotory In starting f °o 

X0. 

L,2 	, 'OIC 	LI Y 

• e qui Ub rLwi state Xe of the system. 

defined by ( 	. i) to aDyntotioaiiy stab e, 

it it is stable and If ®v ry solution starting 
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at a state Xo Sufficient ,y near Xe convergee to 

Xe as t increasesindefinitely, Namely , given 

two real nuzber>O afid P a O , there are real 

nnmbor8 E>O and (p e S f to) each that 

. . :'J I . i. 4 ) 

( ; , o)...Xe~}~' & for 311 t>- to 

..(. I, IS) 

And 

1
0(t - 0,to)~ a 1 I~ f for all t~ tod ' {L, 5. to) 

t gu r€ . i2 st.cc ws an as p of i a al 1 y table 

equi iibriva st ate Xo of  a second order systww with 

a trajectory startingfrom XC), 
,%11.3 OS: V NUMATlY 3 a +'  

.1 scalar function V(XX) is positive 

(negative ) definite if at all nonzero points 

X in the spherical tc gion JIX 11 	tiro value of 

V(X) are positive' (nogativ ), •i 	t 	is  

(<0) e and if sr(0) 0® 

.ill.4 PQSITT (NI G. T. 'E) S TD1z 	ITH 
~IWIP1+4Miiti► rY~~w~i1WI~ 	iPd~fMwiMJ -rr~s w A s 	ce^ ped 

.A scalar funotIon 3{A) is positive 

(negativ 	) eomidefinite if for all X¢ 	suott that 

lI..x 	1I •V(X) ? 0 (o) and i ' V(00 

..(1,181 
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FIG. II GEOMETRIC INTERPRETATION OF THE DEFINITION 

OF STABILITY, 

Io 	 t 	 to + T(4.b,to) 

FIG.12, GEOMETRIC INTERPRETATION OF THE DEFINITION 

OF ASYMPTOTIC STABIL,I'YY. 
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AIX .5  
In order t h it a qu at rati e ' or ti 

Where V Is a constant matrix 
be poet ive definite , it ir. necessary an sufficient. 
that each of the quantitiez 

VII v12 v13 
v1 , via 	v21 v22 v23 ...A 

dot. VIII Q dot 	 dot v3i v32 v33 

bepositive. 	 ♦. (A .22O) 

It any of Cie above d+ torrafsnon to Tail to 
be pa Live by being ro, the f nction is only 
ee®i de finite. The mat rix V is negative defini t e 

or eer!deXLnite if the warrior - V is positive 

del1nita or so;nidefinite, 
When to w&&rL V haw real elements and 

is syn atrLe about Its dizgonai A i.e. vij vjf 
.~j . The .above definitioais are real oyrametric 
positive ( negative) definite or øeimi 4efini tea 

res ~ootiV€iy. 
Al1.o JIVUPi N3S 

The Li apunov stability eq:*ation as  

derived in ch-aptor XII ie 

where V and a l are 'real ay; stria 

positive definite matrices.  trieea A and R' 

are knocu for a toartL or'ier systeip. 
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A 3t of ten equations in errsof ten unknown 

elements of m4trix Y' Is.  to be detertned , so 

they may be glolved. ,to obtain the atrix 

Le the Matrlleas A 9  V1 and R' are defined by 

rall i2 a1 

A a21 a22 i23 a24 

a31 a32 a33 04 

[4i a42 a43 aJ 

[11i vj,21  v1V vI41 
vt2' v221  v23' V4 

Vt=  
V13 t v23 1 v33' v34' 

V241  v34 0 "'L 
RIZI ii3' 

t12 * MOM 23 R24 
* 

a 1' R23' t. 33 R34' 

LUV 24' '13-41  R4 &!J 

, (Al I.23) 

•.(AU .23) 

• .(AU24) 

a2.t a31 wiil 

1812 a•2 W32 d21 ALV 	d I 
1a13 a23 a33 

24 a34 cM 

VII I ¶712' v13' v14 

vV I ra' v2 v241  

v31  v33' V34 0  

v-141  v241 p34* 



V12 vVP %TIiT [ii M2 a13 

via v22' v2P v84 at 422 a23 a24 
V Ijo 	vW v73' v33' v34 a3l 32 aS 34 

V24' V341  V44 [1 	at 

Substttuting(AU.25) 0  (AII,26) & (AUJ4) in 

eq. (AXI.21) , and by eq&ating the elements of the 

L,11.S, to the oorresponding elements of th e  

a set of nouniudlar equAtIons can be written as  

saiL JIa2I £a3i 2i41 4000 	OOO 	OO OO 

a12 a11+22 032 	ai42 	021 	4131 	n41. .çYO •no • 
a13 i23 t1+ft33 a44 	 )OC) a3j a41. •O 
4114 a24 	a34 iia-i4 a 	90n U21 ,(3n) kJ31 	a4li  
o 2Al2 0 0 	2a32 3a42,  0 0 

0 a13 a12 0 a2 a33+a22 a,1.3 a32 a42 0 

0 	 0 	 a34 322 444 0 	a32 a42 
0 	02 a 13 	0 	0 2,423 	1 	23 	0 
0 	0 	at4 aO 	0 	a24 3 a34 a33+a44 a43 

0 0 	 0 Zad 0 
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vii' 	 nil , 

via' 	 R12 t 

of 3'' 	 U13' 

vii,' 	-2 	14' 	..(Al .?7) 
2' 

v23' ft23' 

v24' 24' 

v33' R33 1 

v34' 134' 
v44' 	 4 $ 

'11+ spat of es u a i s +mower order o ste o 
can b~ otermIssd direct , from (A ,27) by 
eliminating the unwanted row cad ooiou ". 



APPENDIX UI 

•AU I, 1 	 (40) 

This netho4 is a e1 for evabatt on of 

real roots of the transeen4ental eqtutton 

h(s) 	 • (AUT .ii) 

The roots Ar obtained ti ouch a number 

of Iterations by the ero4on 

until the required accuracy Its acideved 

: Value of the root on (k+i)th iteration 

: Valae of the root on k tb iteration 

h(xk) 	:Value of the function b for 

: Value of the differential of the 

function wr.t x for 

PLtrnendontal equations encountered In 

this work, have two root One to near zero radian 

and the other ties near 2-.14150 radians. Therefore 

these are taken as the initial values to start with 

iterationfor more acoorae results, 

Al I 2 

The Leverrier 1Paddeev method is used for 

finding the characteristic enation of a matrix. 



The following procedure to adopted. 

IJt 

At = A 	and mt a tr A 

A2 = A(Ai1X) nnd rn2 w tr 2 

A3 = A(A22l) 

I 

and u3 14 tr A3 
j 

and in 	tr M' 

The charaoterlatio equation will then be given by 

D 	n®1 	n...2
MIA 

1 tru 14) 

A11I U3 EIG EAN 	 71 (43) 

The elgen values are tm roots evaluated 

from the oharoteri8ttu OqU&iOi of soottoft AZfl,2. 

The program utli ee syntbetle substitution 

and Newton 1aphon method for evaluation of all 

real and complex roots of the algebricequattons 

with real or complex coeffLctent. 

U11.4 INVERSE Ok'UX( 47) 

The Inverse of a matrix is obtained by 

elimination mohod 

Let A is any n x ii matrix, of which the 

IEverse has to Ube found out • 'This atri.x can be 



F 
associatedwith a set of linear equation,  nts 

[iii a1 
I LWT: ,!••ra2n 

I .  

L ' ana . . . 	Zn 

or 
AX Y 

It b r e minion process, A is reused to 

a. unit matrix k.e; 

or, 

• . 
tjxu .  

	

fait b1a 	Y11 

	

2i: b22 	tY3' 
m 	 i 

S 

but 
 

b2 ...i bun 

•. (A1u'u.16) 

Then 	r -1  

AI I , 5 ?-F'€ I 	V° . 

hEn the matrices V • w A are know , the 

Lt apunov stability e a ion (2.3) 

. 	+VA a .2 

can be solved Lor the unknown matrix * Then the 

inverse of r tri V in  oai.oultod and the product 



cdeter fined, Tho programis written In 

acoortlanoc with the flow øart of Fig. 13, 

AMMM ,6 MATRIX V S& JP 	(47) 

	

This rora solves a set of n( 	 )/2  

linear a uaattont by altcLn aUonmethod, n ap r .. 

priato maltiple o Ue first o itioi t. added 

to each of the oUerequations, so as too.U.mtnat 

t 	eoet toienta of t) a xitern From n(n.+j) -t 

ec. t:;at.io gym. (The fir t cu ation 9houi , 	. ave 

xi term, or it may a Chang ;i for another one 

having it )Tt on an appropriate ti1tip1e of the next 

equation ii acted to the rinthg terms, so as  

to elim.tnatc 	term coeffioiont troz thot . ( If 

the secondcu tion does not orn ain x2 term, 

it fthouId be to erah age with another one hvthg  

it) , The process is repeated ant .L;1 a Bret of 

pivot . aquaUU on, ar; horn t el.+ , i s found Out . 

all 	+ a12 -=u 	.. 	n 	bi 

a22 x2 42aa 	b2 

a3L+ xn wb3 
s 

4 
xuixn M bn  

rro the last-equation:, 	.tea bil/tAn D 

on sbtttut1ng tbthe re It to t e l xast 

but one equation X11-1  i s found out , The process 

i s ropeat e4 u$o the .first squab on, when xi I 

known r 
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START 

READ [A] AND [V] 

CALCULATE [AT V] 

CALCULATE [VA] 

CALCULATE [R] 

CALL SUBROUTINE INVERT 

CALCULATE [V 17 

CALCULATE [RV -1] 

PUNCH [ATVJ, [VA] , CR] & [RV'] 

STOP 

FIG. 13. FLOW CHART FOR FINDING  
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AIIi.7 IWNGE KUTTA GITIA M12THOD (38) 

Runge Kutta Gill method is a modification 

of the Runge Kutta method for numerically integrating 

the n first order differential equations. ft 

saves the ioory saoe of the Ugital eon)uter, while 

possessing all the advantages of the original one. 

Lot the N. first Order differential equation 

are represented by 

where 

1,2 ...,.. N 

The initial values are given as 

xi,o  

The method involves iteration in four steps 

for each interval of time. The scheme is given below.  

X jj ' = ft (t,xi,J—i , .. 0 xN, i—i) 

Xjj  = Xj,j..1  + h( t(L bq1,1)) 

qj , j 	Qj , j_.1  

where 3= 12,3,4 

h. Integration step length 

a1c 	a2=i-.JT, 03 	it/F, 	i/(; 

bi =2 b2 = I b3 I b4 	2 

eh 	al c2 = a2 03 I' 



qi .o  C 0 initially, and thereafter in ecIvenoing the 

• solution, q1 	for the next stepr is equated to 

qi .4  of the proceedingstep. 

lei 1 Tom. 8 MON T E CARLO METHOD (48,49) 

The method- requires a subroutine to generate 

nonrepeatable random numbers between f0 au l 1, at 

a very high speed, by digital computers. A subroutine 

(AIV.7) in machine language is written for this 

-purpose. The program to determine maximum and 

minimum values of j_V( ) /V(.Xl is written according 

to the flow chart of Fig. i4, it is arrsmged to 

iterate for five hundred times an to print the 

results after every twenty five iterations. 

14 
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-- 

N 1 = 5O0 
N2 = 25 
N .n 

CALL 7l RANDOM 	 1 
NUMBERS 

I FIX THEIR RANGE 

I CALCULATE V 

NO 
IS V < b MAX. 

YES 

CALCULATE V 

N - N+I 
YES 

IS N=t  

NO 
F2=V/V 

tA) NO 
N.) 

S 
1 

c~ IS F1 =0  	YES-------~.J 

NO 

No  4 !S N =N2 
YES 

PUNCH F1 

IS N = N! 	NO 	N2=N2+25 

YES 

FOR MIN. C-V f V1 

FIG. 14. FLOW CHART FOR FINDING MAN . [- (X) / V (X)] BY MONTE 

CARLO METHOD, 



APPEIWI.X AIV.l. 

C C N1 WTOfi3 RAPHSON M ETHO! HC AGARWAL FED 21304. 

00 100 I=j 2 

REA01.X0 

1 FORMAT(F10.5) 

XAN-XO 

4 A= 

XD=A/B 

X=ABSF(XD) 

XP41.-XN—XD 

t.F (X—.001) 2, 2, 3 

3 X =XN1 

GO TO 4 

2 DEC=X11*18O./'3.14159 

PUN CH1 s X 1 

PUNCH19DEG 

100 COLI T I N1UE 

STOP 

END 

0.00000 

3.1415 

14 



APPENDIX .AIV.2 

C C PROGRAM RV INVERSE HC AGARWAL EEO 21304 

DIMENSION A(4,4),C(4'4),B(4*4) V(4,4),D(4 4) 

DO 3.5 L=1e3 

READ 4:N 

READIq ((.A( I sJ) aJ=1,N1) 4I =3.,N ) 

READ1, ((V(1.J) ,J=1,N) , Iz1,P4 ) 

4 FORMAT(I1) 

10 F0RMAT,(29X,F8.3 ) 

1 FORMAT (4F9.3 ) 

PUNCH 11 

11 E0R?1AT (29X 917HMATR I X A (TRAF S) *V/ ) 

D02 I-1,N 

D02 J=1'N 

2 S(I,J)=A(J,t) 

D03 I=1sN 

D03 -  J=1'N 

SU 0. 

D05 K=1*N 

5 SUM=B(I •K)*V(K.,J)+SUM 

C(IsJizSUM 

3 PUNCH l0,C(I.J) 

D06 i=1,N 

D06 J=1,N 

D07 K I,N 



7 SUM=V(I,K)*A(K,J)+SUM 

D(IsJ)=SUM 

ES(YJ) C(IsJ)+ti(I,J) 

Bi I J)=—O.5 '8(I *J) 

6 CONTINUE 

PUNCH 12 

12 FORMAT (29X,1 OHfi ATR I X V*A1): 

PtJNCH1Dsf(D(I►J)eJ=1, )'I1S,N) 

PUNCH 13 

13 FORMAT'i29X98HMATRIX R/) 

PUNCH 1O,( C (t•J).J=1,H),I=1,N) 

CALL INV PT(V,N) 

PUNCH 14 

14 FORMAT(29X►I8HMATRIX R*V(INVFR8)/) 

D0 I=N 

D08 J.=1,N 

SUM=Os 

009 Km1.►N 

9 SUM=i3(I ►K)*V(K►J)+SUM 

C(I•J.)zSUM 

8 PUNCH109C(TvJ) 

15 CONTINUE 

STOP 

END  
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SUBROUTINE MVEr T (v,N ) 

DIMENSION V(4,4).A(4,8),ID(4) 

NP4=N+1 

N2=2*N 

00 200 Im1,N 

DO 200 J= 1 sN 

20 A(I,J) Vfj,J! 

K=1 

001 Ic1.N 

DOI J=NN,N2 

A(I,J) 0. 

I CONTINUE 

0021 I=19N 

21 iD(I)=z 

2 CONTINUE 

KK¢K+1 

IS=K 

I TK 

B=AB aF(A(K sK) 

003 I mK,t4 

Do 3 JmK,,N 

IF(ASF(A(I'J))—X3)3',31 

1 ISI 

IT=J 

B=ABSF(A(IsJ)) 



ICU 

3 CONTINUE 

IF(IS—K)4 4*41. 

41 DO 42 J=I ,N2 

C=A(I5,J) 

A(IS#J)'A( eJ) 

42 A(K.J)=C 

4 CONTINUE 

1 tIT 	55,5 +51 

1 TC=ID(K) 

ID(K)ot.D(IT) 

ID(TT)=IC 

DO 52 !=1,N 

C=AUI,IT) 

A(I.IT) =A(TsK) 

52 A(teK)=C 

5 CONTINUE 

IF(A(K,K))6'120,6 

6 CONTINUE 

D) 7 J =KKeN2 

AU ,J)A(K,J)/A(K*K) 

DO 7 1'KKsN 

t=A(I,KI*A(K J) 

A(I,J)=A(I,J)—W 

I(= (ABSF(A(T eJ) )—•0001*A6SF(w) )71,7,7 

71 A(I,J)20. 

7 CONTINUE 



IF(K - tl'2*81*x20 

• 81 IF(.AU.NI)8,1 *8 

a CONTINUE 
o Jm N.N2 

A(M,J)*A.(N,J)/ACN,N) 

9 -CO iTIMUE 

N1 * Ab 1 

DO I,o Nic1.M1 

• Fist+1 

00 10K * 1 I oN 

0010 JvNN02 

A(I,.J) t.F,J)~-A(I,K)*.A(K,J) 

10 CONTINUE 

• DO 11 IwIsN 	 • 

IF(I CJ)-x )119111,11 

Ill DO 1U K NNiN2 

112 V(T,K.» )=A(J,K) 

11 CONTINUE 

RETURN 

120 PUNCH 1000 

RETURN i . 	
, 
	 • 

1000 FORMATt19 ' MA1RI'X .I5' $INGULA )' • 

END 
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'tr LOQ 

IIG 	9+4)J' 

flUwO) 4; 

411 	f'Oc, 

COO 

1ULNQ) I 

-, 
w'tr zoo: 
W'tcL ZOO 

(C' 	4; LVWdO4 01 

IM 

(I)L!iO4 II 

W'itiV3 

al 00 

NOISN314IG 

)H NOUOi 	I 	iLDVvH 
j 

E*AIV XIddV 



CO14TDWE 

DG7 11,N 

13(jj)Oa 

DOi ISvIoN 

7 CONTINUE 

1(*K+i 

GO TO I 

6.  C(N+1)*0, 

)O9 J'i.N 

9 CONTINUE 

Ltzt+t 

12 CONTINUE 

STOP 

END 

I 5 



APPENDIX ATV.4 

C :C EIG.EN VALU5 NC AA1W/L EED 21.30* 

Di MEMS VOW (R•,C1t5) ,DR(5) ifit 	4ER(5)EI1) 

READ ZpN,ACC 

2 FORMATtIt ,Ei3) 

3 FORMJ'fl4F$.9) 

ii EQRMAT(16X,13,2fl3,3) 

A.D 3t(CR(fl,iI,N1) 

Dc 4 !1M1 

4 cTU)O.O 

Do 5 

Cf(1)CRtl) 

DIU)CI(fl 

ER11)CU) 

E1(1)CiU) 

ROr71,t4 

Yi, 

6 DO 1-  

7 

!fl) 

ER t I  =DR 1t)+Ei( 	1X—Efl 1 ..-1)*Y 

8 EU)1(441—i)*V+ET(!1)*X 

1.5 



155 

DFNO 	R(N2) *2+E1(N2)**2 

X^X—(DR(N1)*ER(N2)+DI(t41)*E!(N2))/DENQ 

YMY+(DR(NI)*ET(N2)—DT.(Nl)*ER(N2))/DCNO , 

DIFF=~DR(Nl)**2+DI (Nl)**2 

IF(DIFE—ACC) 9,9,6 

aO 10 1 2,Ni 

CR(IFFDR(I) 

to CI(I)=DT(I) 

5 PUNCH lI'NROOTvX,Y 

I CONTINU ' 

STOP 

END 



APPEND fl( ; .TV:5 

	

C C V 4ATRiX 	TERM1NATICIN HC AGA1 AL EEO 13O4 

OT 	 S!O 	A.'±JI,6*271,P `,t16s17)sYt 6)*X( .6 kvlD(16) 

RADA  

2 FORMAT(4F.3)  

00 ?3 Y I, 

3 A(I vA AAU T,J) 

4 CONTINUE 

Do5 T=T.•N 

5 1 (T1 

6 CO4TZNU 

KK +l 

IS K 

YT=K 

) 

O 7 T'K,,N 

DO 7 J Kaft 

IF (AB F(A(!*J )-4) 7.7,8 

8 T! 

ITJ 

3=A SF A I J)) 

15 



7 CONTINUE 

16= i I SK) 9' 9 e j d 

1C) DO 11 J°r :NN 

C=A( I S,J ) 

A(IS J)=A(KsJ) 

11 A4K,J)=C 

9 CONTINUE 

IF(IT—K) 12.12.13 

13 IC=ID(K) 

ID(K)=ID(IT) 

ID(IT)-IC 

'DO_ 14 I=19N 

C=AU,IT) 

A(I►IT)=A(I,K) 

14 A(IsK)WC 

12 CONTINUE 

!F(A(K,K)) 15#16915 

15 CONTINUE 

DO 17 JrKK.,Ni 

A(K*J) A(KsJ)/A(KsK) 

Do 17 I=KK,N 

WoA(I,K)*A(KsJ3 

A(i,J) A(T'J )-WW 

IF'(A8$F(A(I,J)) .00O1*A5SF(W)) l3,17,17 

18 A(I sJ) O. 

17 CONTINUE 

t 



ILL 

K=KK 

I.F(K- 3) 6919,16 

19 IF(A(M,N)) 20,16,20 

20 CONTINUE 

YIN)=A( 1v%N)IA( lift) 

NM =N-1 

DO 21 I=1,NM 

K=N-I 

KK=K+1. 

Y(K)=A(K*NN!) 

DO 21 J=KK, N 

21 CONTINUE 

DO 22 !1,N 

DO 22 J=Itfl 

IF(IC(J)-I) 22.23.22 	 , 

23 X(I) Y(J) 

22 CONTINUE 

PUNCH2,(X(I ),T '1tN) 

GO 10 24 

16 PUNCH 25 

25 FOR AT (19H NO UNIQUE SOLUTION) 

24 STOP 

END 



APPENDIX A!V.6 

C C RUNGE KUTTA Gilt. METHOD HC AGARWAL EED2:1304 

900 FORMATI3F1O.3) 

903 FORMAT(fl0.3,2) 

904 F0RMATCZX.,F10.7)- 

17 FRMAT4X,F10.3) 

MENTON YO(4),vN4),O4),V(4),C(4),F(4)Dt4,W4) 

I READ 900,I4PR,XEND,H 

READ 903,XO ,-N 

PUNCH 170 XC 

002 ICION 

READ 94,VO(T) 

2 CONTINUE 

PUCH904,fl0(i),11oN) 

XPRMP•R 

X'XO 

00 9 t1iN 

3 OtUO.O 

1112 UtX 

DC 4 iI.N 

4 V(I)Yt4(1) 

I11 

GO TO 100 

5 D0& 1I,N 

CC I 

15 



1 6 L 

DC! )=,5*( (I)-2.O''Q(T)) 

W(I)=Y%, (I +O( I) 

0(I)=G (I)+ ,Q*D(T)—.5*C(Y) 

I12 

GCS TO 100 

B Do 9 Im10 S 

CCI )H* (I) 

DCI)'.292 9 2 -(Ci !)-0(I) ) 

(l)=W(I)+D(I) 

Q(I) 0it)+ .O*D(I)—.29289325 C(! 

II~ 

60 TO 100 

11 00 12 1a1sN 

C(I)*H*F(I) 

DCI )a1.7Q71O&7*( t'I) 0(I)) 

I)W(I) 	ill 

12 V(I)%(I) 

U=X+H 

11c4 

GO TO 100 

14 DO 1" T=I..N 

C(I)$H*F(T) 



16 

DVI Ii ~&16666667*(C 
 

)) 

YNI T)W( IJ+DU) 

i 

XX+H 

1F(XXPR)I62Ok 200 : 

1 GO TO 1112 

200 PUN CHI7.•X 

- 20t PUNCHc0494vN(j),rx1,N),z 

207 !FtXXNDi 203,202.202. 

202 GO TO 101 

203, XPRXPR+$4P:R 

.a To 112 

A00 
 Fti) 

Ft I) 

60 TO t56s11.i4).11 

101 STOP 

END 
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 1V.7 

C C TRANSIENT ESTIMATE MONTE CARLO METHOD HC AARW#L EEO 21304 

DIMENSION A(4) 

9 FORMAT(F1O.5) 

COMMON X 

.N1Oc, 

N22 

3QI1c1,4 

CALL RANDOM 

A(i.)rX 

I CONTINUE 

A(I)* 

Va 

)2.2*3 
2 vDa.  

iF(N1)4,4i5 

4 FIcVttV 

60103 

5 F2sVD/V 

Ic(F2—F1)6,6,7 

I FF2 



j 

0 '4. 

'4 
dft 0 dm 

c 4-4 fq 
+ 

1 z z 0 
li• a 0 Z 

* - z 
so 0 

'4 

'4 N m 4 A '0 0 00• 0 o 0 0 
0 0 0 000000 

I I 4 1 1 0 (V N rj 4 (V 04 ( 4 4 
0 4 4 (V 

000 00 
N N N 

o U - 
O i 
0 00000 

'4 
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0 N 
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00 
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• 000 
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z 0 
( 

0 

4 0 Z 4-0 N 
0 (V N 

o in '4 

0 o N m N 

- t 

c - o 
4 N e4 
in 

N 
'4  

in C '0 r. •r - tr 
4 in 

N (V N 
- q* 4 '•, 



164 

3I13bT OOtPliY 

1. C,Conoordta: Steady state stability limit éf 

synchronous machines as affected by voltage 

regulator okiaractortatte. Trans. ADZE , Vol,63, 

pp 218..220 May 1044, 

2, C. Concordia: Steady State Stability of synoh.. 

roneus rnaoIine as affected by angle regulator 

characteristics. Trans. !EE 1948, Vo1.07, Pt.! 

pp,68?, 

3. C. Co ordia: Effect of Buck-Boost Voltage 

rulator on steady state power limit. Trans. 

AUR, 1950, Pt.!, pp,360 

4 • YN Ya & X Vong su ri : Steady state stability of 

regulated synohronouaacbine connected to an 

infinite system, Trans. IEEE(PAS) July'66, pp,759 

5 • flK Hosserle & RW Bruck: Steady state stability 

of synchronous genera tore as affected by regulators 

and governorg. Proo. ICE, Pt.o, V61.103, pp.2434 

March, 1986 

6, AS Aldrsd&6 Shacsbaft: A 'frequency response method 

for ?r.t0z'tb0n  of synchronous maebine stability 

oo.lCE 190, Pt,C g  pp.2. 

7. LJ Jaoodives & B Adkins: Effect of sxoitation 

regulator on synchronous machtne stability. 

Proo, ICC, June 106, pp.1021 



165 

S. CA Stapleton: Root 1oou study of synchronous 

mawilue regulation. Proc. TC Ø  April ft64,P?7610  

9•  VA Vetikov & XV Utke: Experimental and flfllt.r 

tcg tuvcstattot of power system t4-1t1ity VIM 

aitovatio ally geli t 1 generator exec tat i or. 

CIU 19Z, paper 324. 

10..VA Stroov & ft Sroec1bam: Stoa1y state stability 

of alternators as atfeote1 by voitagm regulators. 

Proc. IE July8?0  pp 939, 

VLJli Walker: Operating characteristic of salient 

pole machines. Pro. 1EE 191530  Vol 100, Pt Ii, ppiS, 

i.MA L.Augtiton Matrix analyst of ynnie etablitly 

ire SynChrOUOUX WAIOMaChiLle sy,tei. 

Voiii3, pp .2t_30 0 Peb.t6. 

i30 Undrill: Power systert stability by the wotho1 

of LitpunoV state space upproh to synchronous  

ao11ie aedelling (I M,  I1). ans.AXE(tS'Juiy j967, 

pp. 71 & 802. 

14.AS aired G Sheksaft: The effect of the voltage 

regulator on the it1y state and tranint stab-

lilt1 of a Sy1(throfltU 3enerator. Proo ME,,Pt. 

Vt*010S, pp420, AQg.i958. 

15.M11e9: Unalysis or overall stability of iiult1. 

aohi no power system, Proc.. I3E, Pt A, gp2M3, 1. 

16,24 iwart & FP fleello: A 	uter program  
tr aUtOmatio determination dnimto stability 

tboc1a, Trans. TEES,•Ju1y(7, PAS, pp 9,67. 



161 

17.. S.3. Crory: Power 9yotem stability Vol*  I&II. 

John Wiley & Sons, mo. New York (Hook) 

18, BW tthrtc : Power etystem 9t1biiity Vol.I&I1X 9  

lLoLin Wiley & Soni, too., Now York (Book) 

19. PD Aylett: The energy integral criteria of 

transient stabtltiy limits of power oystee. 

Proc. lEE, Vol, 105 0 pp 527-5369  1958. 

20. liD Raoi, A new approach to transient stability 

problem. Trans. A1EI (Pa) Vol.81,pp 186-00 

June, 1962. 

21, 1) Rao & uNit ruó: Phase plane techniques for 

the solution of transient stability probies 

Pro. XE, Vo1.110, pp1451, No.8, August 1963. 

22. GE Glees: The direct method of Lyapunov applied 

to trwisient power system stability. Trans, 

IEEE (Pas), Yol.85, p p159, Peb.i06. 

23. DG Schultz & JE Gibson: The variable grtidtont 

method for gneratthg Ltapunov finctionø. 

Trans. A1t 1962, 81, PtII, pp 203-10. 

24, DR 1IIgWOTSOn: A modifie4 Ltapunov netboci for 

nonlinear stability analysis. IRE Trans. 161, 

, PP 199-210 

25. SG Margolis & WO Vogt: Control engineering appi- 

ioation of V.I. zabov's construction proceth*re 

for Liapunov functions. IEEE Trans, 1963,AC-R,ppiO4. 



16? 

26, CT Leoridoe: Advances in control systems, Vol.2 

(Academic Press) • 19650 

27, ML Cartwright: On the stability of solution ci 

certain differential equations of fourth orThr, 

Qat.J G :tech, 4tppl, Math, 16,.9,(2),pp15_94 

26, AU HI-Abiad & K agAppan: Trnn3eint stability 

regions of miltimaahine p owir systems. XE 

Trano, Pas, pp 18)-79, 1*eb D1gG6 

29. TD Zaiavkaya, AT Putilov & MA Pirirov: Uapnov'e 

function as criteria or synchronousynrnio 

stability#  Electric Technology 	ic7, 

pp. 125'r 

30, Yttavougauria : Nonlinear Power System Stability 

study by. Liapunov function. IEEE Trans. 19$7  

PP 14S0..-84. 

31, JL Villi-ams: Improved Liapiuiov functlous for 

transient 'power eystem stability. Proc. TEE, 

pp 1315 Sept.68. 

32. N )horai Rao: iWwh Hurwitz' conditions and 

Lispunov methods for the irnient problem.. 

Proc. IE, pp 53) 	April 109. 

33, WO Boast & J!) Root or An electric aloe ysethod 

for direct detergtinattoi of power system  istabl-

lity swing curve. trans.A!EE, 1951, Pt.lT,pp1833. 



168 

34. JE Vness: Synchronous machine analogties for 

use with network analyser, Trans. AI1I 154, 

Pt. III B, PP  .1054. 

35, Yasoñ: A conjugate network analyser operatin 

at 50 c/s Proo. IEE 1958, Pt, A , pp295, 

38. AS,  Aldred: An eieotrouto analogue computer 

simulation of multinaahine power system net- 

works. Proo. ICE 1962, pp.195 

37. DL Jobnaon & JD. Ward: The solution or power 

system stability problems by means of digital 

computer. Trans. IE 1956(Peb.1957 Sctio), 

Pt. Iii, Vol. 132, 

38. CM Lane, RW Long and JN Powers: Transient 

Stability studies 11, automatic digital ooput 

ation, Trans. AXEE 1958, Pt,IXI, pp 1291. 

39, WO luapage & B,Stott: Predictor Oorreotor 

methods of numerical Integration In digital 

computer analysis of power system trnient 

stability, Proo. lEE 4Wg,'65, pp 157. 

40. W flahn : Theory and Applicitt ens of Liapunov'e 

Direct Method. (BOOK) , Prentice Hal! InternatIonal, 

Chap. 3 , pp.659, 

41. RE Kahan & JE Bertram: Control system analysis 

and design via the seooud method of Liapunov 

I : continuous Time system, JSME Journal of 

C 



Basic Eaginoering, Series U, 82, June, 10 0„ 

42. VM Popov: Criterion of quality for nonlinear 

controlled system. Proc. list Congress, 1 AO, 

pp. i?;3-77. 

430, WG Vogt: Transient response from the Li apanov 

stability equation. JACO 1.965, Renselier 

Pol y'teehnto Institute , Troy, N,Y, PP 24-30. 

44. U ith.aomik & t aianbia : Estimates of the trans 

ient response of Lure `hype Sytee. Proo.I E, 

Oat. 1960, pp.1769. 
45. VI Doan: Geiometrto construction of stabtitty  

limits of synchronous machine. Poco.t! , 

May 1905 ► pp. 977. 
- 4. ?3 o Cormiok & Salvation: Numerical wathod is 

Portr (Book). Prentice-all of India Private 

ltd.,. NewDelhi- 1988 

47. tt Pennington: Introductory Computer m+ thhote  

and Kumenical Analysis. (Book) . The Macmillan  

Comp y. Now York. 1965. 

48. hA Mayers: Symposium on Monte Carlo Methods. 

John Wiley & sons., Inc. 196. 

49. TP C Dtambers: Rundorn number generation on 

digital co iputer., IEEE Spectrum, Vol.4, No.2 

Feb, 1!0?. 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix
	Bibliography



