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Large scale wireless sensor networks (WSNs) have emerged as the latest trend in 

revolutionizing the paradigm of collecting and processing data in diverse environments. 

Its advancement is fueled by development of tiny low cost sensor nodes (SNs) which are 

capable of sensing, processing and transmitting data. Due to the small size of SNs there 

are various resource constraints. It is the severe energy constraints and the limited 

computing resources that present the major challenge in converting the vision of WSNs 

to reality. 

Power saving is a critical issue in wireless sensor networks (WSNs) since sensor nodes 

are powered by batteries which cannot be generally changed or recharged. As radio 

communication is often the main cause of energy consumption, extension of sensor node 

lifetime is generally achieved by reducing transmissions/receptions of data. It is useful to 

apply data compression to reduce the volume of data, and the associated energy 

consumption of transmission. Data compression is the process of encoding information 

using fewer bits than an unencoded representation would use, through use of specific 

encoding schemes. Due to limited processing and storage resources of sensor nodes, data 

compression in sensor nodes requires the use of ad-hoc algorithms. 

In this dissertation, we propose a simple and efficient data compression algorithm which 

is lossless and particularly suited to the reduced memory and computational resources of 

a WSN node. The proposed data compression algorithm gives good compression ratio for 

highly correlated data. Simulations for the proposed data compression algorithm are 

performed on TOSSIM. Some experimental results and comparisons with the Marcelloni 

et al. data compression algorithm is shown and discussed. 
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CHAPTER 1 

Introduction 

1.1 Overview 

Wireless Sensor Network (WSN) consists of spatially distributed self-organizing, 

low-powered sensing devices with limited computational and communication 
resources to cooperatively monitor conditions, such as temperature, sound, vibration, 
pressure and humidity over a specific area for some specific purposes like target 
tracking, area monitoring, industrial monitoring, health monitoring, surveillance, 
environmental monitoring etc and report the collected data of all sensors to the user 
for analysis. In a typical application, a WSN is scattered in a region where it is meant 
to collect data through its sensor nodes. Figure 1.1 shows the possible deployment of 
a WSN for precision agriculture. In this figure, sensors detect temperature, light 
levels and soil moisture at hundreds of points across a field and communicate their 
data over a multi-hop network for analysis. Instead of the conventional methods, 
WSN deploys a large number of small nodes which gather data to be interpreted in a 
distributed manner. For ease of deployment, sensor devices should be inexpensive 
and have long lifetime. It is important to design protocols, software and hardware 
solutions to make the most efficient use of the limited resources of energy, 
computation and storage in a sensor node [ 1]. 

Each sensor node is a tiny device that includes three basic components _(figure 1.2): a 
sensing subsystem for data acquisition from the physical surrounding environment, a 
processing subsystem for local data processing and storage, and a wireless 

communication subsystem for data transmission to a central collection point (sink 
node or base station). In addition, a power source supplies the energy needed by the 
device to perform the programmed task. This power source often consists of a 
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battery with a limited energy budget. In addition, it could be impossible or 

inconvenient to recharge the battery, because nodes may be deployed in a hostile or 

unpractical environment. On the other hand, the sensor network should have a 

lifetime long enough to fulfill the application. requirements. 

Figure 1.1 Possible deployment of a WSN for precision agriculture. [4] 

-----`•--------------~ 

Transceiver 
Sensor t 

PolVer 	 ' 	' 
Source 	 Embedded Processor 	 ADC 

' 	~letzzol }~ 	i 	Sensor 2 

------------ ---- 

Figure 1.2 Functional block diagram of a sensor node [3] 

Experimental measurements have shown that data transmission is very expensive in 

terms of energy consumption, while data processing consumes significantly less 

energy. The energy cost of transmitting a single bit of information is approximately 
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the same as that needed for processing a thousand operations in a typical sensor node 
[2]. The energy consumption of the sensing subsystem depends on the specific 
sensor type. In many cases it is negligible with respect to the energy consumed by 
the processing and, above all, the communication subsystems. In other cases, the 
energy expenditure for data sensing may be comparable to, or even greater than, the 
energy needed for data transmission. 

Several- energy conservation schemes have been proposed in the literature. They are 

mainly aimed at minimizing the energy consumption of the communication 
subsystem. With regard to this, * there are two main approaches to energy 

conservation: duty cycling and in-network processing. Duty cycling schemes define 
coordinated sleep/wakeup schedules among nodes in the network. On the other hand, 
in-network processing consists in reducing the amount of data to be transmitted by 
means of compression and/or aggregation techniques [2]. Due to limited processing 

and storage resources of sensor'nodes, data compression in sensor nodes requires the 
use of ad-hoc algorithms. Only a few researchers have discussed the possibility of 
embedding lossless compression algorithms into sensor nodes. 

Obviously, compressing data can be a valuable help in power saving only if the 
execution of compression algorithms does not require an amount of energy greater 
than the one saved in reducing transmission: in [5] it is shown that compression prior 
to transmission in wireless battery-powered devices may actually cause an overall 

increase of power consumption, if no energy awareness is introduced, because 

compression algorithms are aimed at saving storage and not energy. 

1.2 Motivation 

WSNs receive a lot attention due to their unlimited potential. The motivation for the 
study comes from the unique challenges offered in the varied application domain. 
However, the following key issues need to be addressed while designing the sensor 

network [1]: 
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• Real World Protocols: Current WSN solutions are developed with 

simplifying assumptions about wireless communication and the environment, 

even though the realities are well known to be different. Many of these 

solutions work very well in simulation but in the real world they can be shown 

to work poorly in practice. Thus, there is a need to establish better models of 

communication realities to feedback into simulation tools. 

• Real-Time Data Delivery: In many cases, sensor data must be delivered 

within time constraints so that appropriate observations can be made or 

actions taken. Few results exist to date that meet real-time requirements of 

WSN. Most protocols either ignore real time or attempt to process as fast as 

possible and hoping that the speed is sufficient to meet deadlines. 

• Limited Energy: The energy constraint in sensor nodes is unlikely to be 

solved soon due to slow progress in developing battery capacity. Moreover, 

the untended nature of sensor nodes and hazardous sensing environments 

preclude battery replacement as a feasible solution. The surveillance nature of 

many sensor network applications requires a long lifetime. Current research 

focuses on providing full sensing coverage in the context of energy 

conservation. 

• Fault Tolerance: Fault tolerance is the ability to sustain sensor network 

functionalities without. any interruption due to sensor node failures. In most of 

the scenarios once deployed the nodes work on their own for re-configuration, 

routing setup, re-clustering etc. The fault tolerance level depends on the 

application of the WSN and is done by estimating initial density of nodes 

required, and designing fault tolerant protocols at different network layers. 

• Scalability: The number of nodes can vary from a few sensor nodes to a few 

hundred or even more. New nodes maybe added intermittently or the same 

type of nodes can be used for different application areas. Hence, any solution 

must scale up with varying number of nodes without affecting the quality of 

service. 
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• Environment Interaction: The nodes should be designed in a robust manner 

so as to withstand the harshest of environment like the bottom of ocean, 

battlefield, and fast moving vehicles and still deliver the unpredictable data as 

generated. WSNs are likely to exhibit low data rates for a large period of time 

and have very bursty traffic when an event occurs. It is unlikely that there will 

be generic solutions and application specific protocols are designed. 

• Handling large volume of bursty traffic: WSN comprises of highly data 

intensive networks where hundreds and thousands of nodes generate data 

continuously. Since, nodes have limited storage and processing power it is 

imperative that the data is not lost due to limited memory and also to save 

energy by reducing redundant and spurious data on the network. 

1.3 Problem Statement 

The main objective of the present research work can be described by the statement of 

the problem expressed as follows: 

"To develop a simple and efficient data compression algorithm for wireless sensor 

network that is lossless and particularly suited to the reduced memory and 

computational resources of a WSN node ". 

To achieve the above objective of reducing memory requirement and WSN energy 

consumption following smaller objectives are set: 

o To design preprocessor module. 

o To reduce the total amount of data by building variable length codes. 

o To reduce the total amount of data being transmitted on the network without 

losing the originality of data. 

o To achieve better compression ratio for proposed data compression algorithm 

than previous data compression algorithms exists 
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As stated earlier, data communication is the most power consuming operation of the 

sensor nodes. Therefore the intention is to reduce memory and save energy by 

cutting down on the data being transmitted. 

To achieve the above objectives the following design goals are set: 

o Proposing a data compression algorithm to reduce the size of data by 

removing the redundancy in the data such that minimum numbers of bits 

have been transferred from originator node of data to the base station. 

o Proposing a decompression algorithm to retain the originality of data at base 

station. 

1.4 Thesis Organization 

This dissertation report comprises of five chapters including this chapter that 

introduces the topic and states the problem. The rest of the report is organized as 

follows: 

Chapter 2 details the fundamentals and provides a literature review of the various 

data compression algorithm and techniques used in wireless sensor networks. 

Research gaps and shortcomings are identified and described. 

Chapter 3 describes the proposed data compression algorithm which reduces 

memory and saves energy by reducing the original size of data. This chapter also 

describes the decompression algorithm which decompresses the compressed data. 

Chapter 4 discusses the implementation details and provides the experimental results 

of the proposed algorithms. In this chapter performance of the proposed algorithm is 

also compared with the existing one. 

Chapter 5 concludes the dissertation work and gives suggestions for future work. 
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CHAPTER 2 

Background and Literature Survey 

2.1 Introduction to Wireless Sensor Network 

2.1.1 Wireless Sensor Network Model 
The major components of a typical sensor network are shown in figure 2.1. They 

are: sensor nodes, the sensor field, the sink and the task manager. 

A sensor field can be considered as the area in which the nodes are placed i.e. the 

area in which a particular phenomenon to occur. 

Sensors nodes or motes are the heart of the network. They are in charge of 

collecting data and routing this information back to a sink. 

A sink is a sensor node with the specific task of receiving, processing and storing 

data from the other sensor nodes. They serve to reduce the total number of 

messages that need to be sent, hence reducing the overall energy requirements of 

the network. 

Elnt~ernet and
11te = 	s - Sink}~  

Task manager 	 0 
node 	 v 	~~ 
User 

 
Sensor field 	Sensor, nodes 

Figure 2.1 Sensor network communication structure 

The task manager or base station is centralized point of control within the 

wireless sensor network, which extracts information from the network and 
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disseminates control information back into the network. It also serves as a 

gateway to other networks, a powerful data processing/storage centre and an 

access point for a human interface. Hardware wise the base station is either a 

laptop or a workstation. Data is streamed to these workstations either via the 

internet, wireless channels, satellite etc [I]. 

Basic features of sensor networks are [6]: 

• Self-organizing capabilities 

• Short-range broadcast communication and multi-hop routing 

• Dense deployment and cooperative effort of sensor nodes 

• Frequently changing topology due to fading and node failures 

• Limitations in energy, transmit power, memory and computing power 

Some of the advantages of wireless sensor networks over wired one are as follows 

[3]: 

• Ease of deployment: These wireless sensor networks can be deployed at the 

site of interest without any prior organization, thus reducing the cost and time 

and also increasing the flexibility of organization. 

• Extended range: One huge wired macro-sensor can be replaced by many 

smaller wireless sensors for the same cost. Such macro-sensor can sense only 

a limited region whereas network of smaller sensors can be distributed over a 

wider range. 

• Fault tolerant: With macro-sensors failure of one node makes that area 

completely unmonitored. With wireless sensors, failure of one node does not 

affect the operation substantially. At most accuracy of data collected may be 

somewhat reduced. 

• Mobility: If a region becomes unmonitored we can have the nodes rearrange 

the nodes themselves to distribute the node evenly (e.g. if placed at nodes), 



i.e., these nodes can be made to move towards area of interest but mobility is 
lower compared to MANETs. 

2.1.2 Application of Wireless Sensor Networks 

Wireless Sensor Networks have changed the interface of information retrieval 

from the physical world. In a typical application, a WSN is scattered in a region 
where it is meant to collect data through its sensor nodes. Instead of the 

conventional methods, WSN deploys a large number of small nodes which gather 

data to be interpreted in a distributed manner [6, 7, 8, 9]. The application domains 

are: 

• Military: Military could use sensor networks for battlefield surveillance; 

monitor, vehicular traffic; track the position of the enemy; safeguard the 

equipment of the side deploying sensors; damage assessment and attack 

detection (chemical, biological). 

• Industrial Application: Monitoring and control of industrial equipment; 

factory process control and industrial automation; wastewater monitoring; 

landfill ground well level monitoring. 

• Home Application: Home automation can be brought about by creating a 

smart environment; theft detection; kids activity monitoring. 

• Environmental Monitoring: Sensor networks can be used to monitor 

environmental changes. Rainfall and flood monitoring; forest fire 

detection; weather forecasting; geological studies; precision agriculture. 

• Habitat Monitoring: Biocomplexity mapping by adapting to 

environmental dynamics, through coordinated actuation by programmed 

triggering of sensing to enable identification, recording and analysis of 
interesting events to understand the behavior of birds, animals etc. 

• Health Application: Tele-monitoring of human physiological data; 

Tracking and monitoring patients and doctors inside a hospital; Drug 
administration in hospitals; monitoring people's health conditions; Sensors 
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for: blood flow, respiratory rate, ECG (Electrocardiogram), blood 

pressure, and oxygen measurement. 

• Structure monitoring: Sensors could be used to monitor vibration that 

could damage the stricture of a building. Such systems can detect, localize 

and estimate the extent of damage. Thermostats and temperature sensor 

nodes can be deployed all over the building's area. 

• Smart sensor networks: These networks have a number of independent 

sensors Each of the sensors make local decision and all the decisions are 

combined and weighed based on a specific algorithm and a global decision 

is taken. 
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Figure 2.2 Overview of sensor applications [9] 
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2.1.3 WSNs versus MANETs 

There is also considerable research in the area of mobile ad hoc networks 

(MANETs) [28, 29, 30]. WSNs are similar to MANETs in some ways; for 
example, both involve multihop communications. However, the applications and 

technical requirements for the two systems are significantly different in several 

respects. 

• The typical mode of communication in WSN is from multiple data sources 

to a data recipient or sink (somewhat like a reverse multicast) rather than 

communication between a pair of nodes. In other words, sensor nodes use 

primarily multicast or broadcast communication, whereas most MANETs 

are based on point-to-point communications. 

• In most scenarios (applications) the sensors themselves are not mobile 

(although the sensed phenomena may be); this implies that the dynamics 

in the two types of networks are different. 

• Because the data being collected by multiple sensors are based on 

common phenomena, there is potentially a degree of redundancy in the 

data being communicated by the various sources in WSNs; this is not 

generally the case in MANETs. 

• Because the data being collected by multiple sensors are based on 

common phenomena, there is potentially some dependency on traffic 

event generation in WSNs, such that some typical random-access protocol 

models may be inadequate at the queueing-analysis level; this is generally 

not the case in MANETs. 

• A critical resource constraint in WSNs is energy; this is not always the 

case in MANETs, where the communicating devices handled by human 

users can be replaced or recharged relatively often. The scale of WSNs 

and the necessity for unattended operation for periods reaching weeks or 

months implies that energy resources have to be managed very 

judiciously. This, in turn, precludes high-data-rate transmission. 
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• The number of sensor nodes in a sensor network can be several orders of 

magnitude higher than the nodes in a MANET. 

For these reasons the plethora of routing protocols and solutions that have been 

proposed for MANETs are not suitable for WSNs, and alternative approaches are 

required. 

2.2 Data Compression 

Data compression [5] is the process of encoding information using fewer bits than 

an unencoded representation would use, through use of specific encoding schemes. 

As with any communication, compressed data communication only works when 

both the sender and receiver of the information understand the encoding scheme. 

Compressed data can only be understood if the decoding method is known by the 

receiver. There are many known methods of data compression. They are based on 

the different ideas and are suitable for different types of data. They produce different 

results, but they are all based on the same basic principle that they compress data by 

removing the redundancy from the original data in the source file. The idea of 

compression by reducing redundancy suggests the general law of data compression, 

which is to "assign short codes to common events and long codes to rare events". 

Data compression is done by changing its representation from inefficient to efficient 

form [11]. 

2.2.1 Compression Techniques 

When we speak of a compression technique or compression algorithm, we are 

actually referring to two algorithms. There is the compression algorithm that takes 

an input x and generates a representation xc  that requires fewer bits, and there is a 

reconstruction algorithm that operates on the compressed representation x, to 

generate the reconstruction y. These operations are shown schematically in figure 
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2.3. We will follow convention and refer to both the compression and 

reconstruction algorithms together to mean the compression algorithm [ 10]. 

Based on the requirements of reconstruction. data compression schemes can be 

divided into two broad classes: lossless compression schemes, in which y is 

identical to x, and loss, compression schemes, which generally provide much 

higher compression than lossless compression but allow y to be different from x. 

C'.-I„uµaVatVl I l 
Jy TU%OXMW%T AAc 1 

R ~~,t•t,i~urt 

Original 

ri 	 4)n L UVVOwuaca 
.,ynw ~rG7~rri.i¢. 

N P. bAWT 

Reconstructed 

Figure 2.3 Compression and reconstruction 1101 

Lossless Compression 

Lossless compression techniques. as their name implies, involve no loss of 

information. If data have been losslessly compressed. the original data can be 

recovered exactly from the compressed data. Lossless compression is generally 

used for applications that cannot tolerate any difference between the original and 

reconstructed data. Text compression is an important area for lossless 

compression. It is very important that the reconstruction is identical to the text 

original, as very small differences can result in statements with very different 

meanings. Consider the sentences "Do not send money” and "Do now send 

money." A similar argument holds for computer files and for certain types of data 

such as bank records [ 10]. 
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There are many situations that require compression where we want the 

reconstruction to be identical to the original. There are also a number of situations 

in which it is possible to relax this requirement in order to get more compression. 

In these situations we look to lossy compression techniques. 

Lossy Compression 

Lossy compression techniques involve some loss of information, and data that 

have been compressed using lossy techniques generally cannot be recovered or 

reconstructed exactly. In return for accepting this distortion in the reconstruction, 

we can generally obtain much higher compression ratios than is possible with 

lossless compression. 

In many applications, this lack of exact reconstruction is not a problem. For 

example, when storing or transmitting speech, the exact value of each sample of 

speech is not necessary. Depending on the quality required of the reconstructed 

speech, varying amounts of loss of information about the value of each sample 

can be tolerated. If the quality of the reconstructed speech is to be similar to that 

heard on the telephone, a significant loss of information can be tolerated. 

However, if the reconstructed speech needs to be of the quality heard on a 

compact disc, the amount of information loss that can be tolerated is much lower. 

Similarly, when viewing a reconstruction of a video sequence, the fact that the 

reconstruction is different from the original is generally not important as long as 

the differences do not result in annoying artifacts. Thus, video is generally 

compressed using lossy compression [10]. 

2.2.2 Modeling and Coding 

The development of data compression algorithms for a variety of data can be 

divided into two phases [5]. The first phase is usually referred to as modeling. In 

this phase we try to extract information about any redundancy that exists in the 

data and describe the redundancy in the form of a model. With a perfect, concise 
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model that describes the generation of the input source which is to be compressed, 

one could reproduce the data without transmitting the source data. For example, if 

the sequence 1 1 2 3 5 ...6765 were to be transmitted, one could express it with a 

"model" of Fibonacci numbers. In practice, one must approximate and construct 

an approximate mathematical model for the data. In English text, for example, 

one can model the probability of a letter occurring as a probability conditioned on 

letters that have already been transmitted. This probabilistic model is transmitted 

with a description of how the data differs from the model. The second phase is 

called coding in which information is mapped to compact codewords. A 

codeword must decode to a unique value so there can be no doubt of the original 

message. In this phase, a description of the model and a "description" of how the 

data differ from the model are encoded, generally using a binary alphabet. Often 

the modeling and coding steps are tightly coupled [10]. Some popular coding 

schemes for data compression tools are: 

Huffman Coding 

If the probability of each source symbol is known a priori (perhaps by scanning 

through the source), a procedure known as static Huffinan coding can be used to 

build an optimal code in which the most frequently occurring symbols are given 

the shortest codewords [5]. Huffman codes are established by storing the symbols 

of the alphabet in a binary tree according to their probability. As the tree is 

traversed from root to leaf, the code grows in length. When visiting the right 

child, a 0 is appended to the code. When visiting the left child, a I is appended. 

Thus, symbols which occur frequently are stored near the root of the tree and have 

the shortest codes. Since data compression tools rarely have the luxury of a priori 

knowledge and cannot afford two passes through the data source, variants of the 

Huffman algorithm have been developed that work dynamically and update the 

tree as source symbols are encountered [10, 11]. 

Arithmetic Coding 
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Optimal compression ratio for a data source is traditionally described with respect 

to Claude Shannon's definition of source entropy: a measure of the source's 

information and therefore the average number of bits required to represent it. 

Sometimes the most frequently occurring symbol can contain so little information 

that it would be ideal to represent it with less than 1 bit. Huffman codes are 

restricted to using an integral number of bits per symbol, increasing the coding 

overhead. Arithmetic codes have been designed to support a fractional number of 

bits per symbol to bring the average length of a codeword much closer to the 

optimal [10, 11]. Knowing the probability of occurrence for each symbol, a 

unique identifier can be established for a series of symbols. This identifier is a 

binary fraction in the interval [0, 1). Unlikely symbols narrow this interval so that 

more bits are required to specify it, while highly likely symbols add little 

information to a message and require the addition of fewer bits as the interval 

refinement is coarser. As the fraction converges, the most significant bits become 

fixed, so the fraction can be transmitted most-significant-bit-first as soon as it is 

known. Arithmetic coding requires frequent division and multiplication, but this 

experiments show that an optimized implementation can run faster than the well-

optimized UNIX compact program, an adaptive Huffman encoder [5]. 

Lempel Ziv Codes 

A Lempel-Ziv codebook [10] is made up of fixed-length codewords in which each 

entry has nearly the same probability of appearing, but in which longer groups of 

symbols are represented in the same length as single symbols. Thus, it may 

require extra bits to send the coded version of a single symbol, but a string of 

frequently occurring symbols can be represented with a fraction of the bits 

ordinarily required. Since only it codewords can be represented with Ig(n) bits, 

systems for dynamically increasing the length of codewords exist. 

There are two terms used in data compression one is compression rate and other is 

compression ratio. Compression rate is the rate of the compressed data. Typically, 

it is in units of bits/sample, bits/character, bits/pixels, or bits/second. Compression 
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ratio is the ratio of the size or rate of the original data to the size or rate of the 

compressed data. For example, if a gray-scale image is originally represented by 8 

bits/pixel (bpp) and it is compressed to 2 bpp, such that the compression ratio is 4-

to-1. Compression rate is an absolute term, while compression ratio is a relative 

term [5]. 

2.3 Data Compression Schemes for WSNs 

Wireless sensor networks are resource constraint: limited power supply, bandwidth 

for communication, processing speed, and memory space. One possible way to 

achieve maximum utilization of those resources is by applying data compression on 

sensor data. Existing compression algorithms are not applicable for sensor nodes 

because of their limited resource. Therefore, it is necessary to design a low-

complexity and small size data compression algorithm for sensor networks. Some of 

data compression schemes for WSNs are: 

2.3.1 Distributed Compression 

The basic idea behind the Distributed Compression scheme is using side 

information to encode source information [12]. For instance, there exist two 

sources (X and Y) as shown in figure 2.4. 

SIde lnionnation 

Ltltl?C1U`C 1 

X -P l.:nCoder 2 

Partial I nih ima ti onl 

Figure 2.4 Distributed Compression examples 

They are correlated and discrete-alphabet independent identically distributed. 

Since in a sensor network, sensor nodes will be densely populated in a sensor 
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field, this correlation condition can be satisfied easily. Then, X can be compressed 

at the theoretical rate of its conditional entropy, H (XIY), without the Encoder 1 

accessing Y. The conditional entropy [121 can be expressed as 

H (XIY) = - EP,,(y)YPX  (x/ y)log 2  Pjxl y) 	 (2.1) 

The general scheme of Distributed Compression is first to compose cosets, whose 

codevectors of source X. The distance of any two codevectors in the same coset 

has to be large enough. An index value is assigned to each coset. When 

transmitting data to a decoder, the source X only sends an index value of coset, to 

which the codevector belongs. The source Y sends a codevector as a side-

information. The decoder looks up the coset, which has the same index received 

from X. Then, the decoder selects one codevector, which has a closest value to the 

codevector sent by Y, in the coset. 

A simple example of Distributed Compression [ 131 is as follow. There are two (X 

and Y) 3-bit data sets. The Hamming distance between X and Y is no more than 

one bit. If both Encoder 2 and Decoder know Y, X can be compressed to 2 bits. 

Then if Y is only known by the Decoder, what will happen to the compression 

rate of X? According to the Distributed Compression scheme, since the Decoder 

know Y and X is only one Hamming distant apart from Y, it is not efficient to 

distinguish X=111 from X=000. As a same reason, X=001 and 110, X=01 0 and 

101, and X=011 and 110 do not need to be distinguished from each other. These 

sets of two X values are grouped as 4 costes and assigned 4 different binary index 

numbers: 

coset 1 = (000, 111): 00 

coset 2 = (001, .110): 01 

coset 3 = (010, 101) : 10 

coset 4 = (01 1, 100) : 11 

If X=0.10 and Y=110, the Decoder received Y=l 10 as a side information from Y 

and X=10 as a partial information form X. Then, at the Decoder, X=010 is 



1) 

selected from coset 2 since 110 has a Hamming distance of 2 from 110. Whether 

X know Y or not, X can still compress 3 bits information into 2 bits. 

Distributed Compression scheme can be applied to not only discrete sources as 

illustrated by the above example, but also continuous sources. Also, it can be used 

for both lossless and lossy compression scheme. For example, 4 cosets can be 

formed from an 8-level quantizer. It is noticed that two codevectors in each coset 

are grouped so that they can have the maximum 'possible distance from each 

other. 

2.3.2 Coding by Ordering 

The Coding by Ordering data compression scheme [14] is part of Data Funneling 

Routing. The compression scheme is works as follow. First, a data pass from 

sensor nodes in the interested region to a collector node is set up as shown in 

figure 2.5. In Data Funneling Routing, some of sensor nodes work as a data 

aggregation node. For example, node A, B, and D area data aggregation node. At 

an aggregation node, sensing data collected by other 'nodes is combined, and the 

aggregated data is sent to its parent node. At node D in figure 2.5, data collected 

by node E is combined with data collected by node D itself. Then, the aggregated 

data is transmitted to node B. 

tiiecestL'd .mL'irsn 

Figure 2.5 Data path in coding by ordering data compression scheme 
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In the algorithm, when data is combined at an aggregation node, some data is 

dropped. To include the information of dropped data in the aggregated data, the 

order of data packet is utilized. For example, four nodes (Ni, N2, N3, and N4) 

send the data to an aggregation node (Na). The data value of each node can be any 

integer ranging from 0 to 5. If we decide to drop the data from N4 and express the 

data from N4 by ordering packets from other 3 nodes (NI, N2, and N3), there are 

3! = 6 possible ordering. Therefore, by using permutation of three packets, the 

data value of N4 can be included in an aggregated packed without actually 

including the packet of N4. The possible combination of permutation and data 

value is presented in Table 2.1. 

Table 2.1 Permutation and its represented integer value 

Packet Permutation Integer Value 

N 1,N2,N3 0 

N 1,N3,N2 1 

N2,N1,N3 2 

N2,N3,N1 3 

N3,N I,N2 4 

N3,N2,N I 5 

For a general case, let's assume that n is the total number of sensor nodes — each 

node has different a node ID, m is the number of nodes sending a packet to an 

aggregation node, k is the possible range of data value, and 1 is the number of 

sensor node dropped at the aggregation node. Then, the number of possible 

combination of IDs, which dropped nodes have, can be expressed as n-'n+IC1. Since 

each of I nodes can take any value among possible k data values, there are k' 

possible data value combinations. When combining possible IDs and data values, 

there is total of (n-' Ci)k' possible values. This combination of values needs to be 

expressed by (m-l)! permutations. Therefore, the following inequality has to be 

satisfied. 

(m-1) >  
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Theoretically, when n = 27, k = 24, and m = 100, approximately 44% of packets 

can be dropped at the aggregation node by applying Coding by Ordering. Since 

this method has good compression ratio and simple algorithm, it may be possible 

to use for WSNs. One difficulty of utilizing this scheme is that since there is no 

efficient algorithm mapping permutation to data value, it requires a mapping 

table. As the number of sensor nodes aggregated increases, the size of table 

increases exponentially. 

2.3.3 Pipelined In-Network Compression 

The basic idea of pipelined in-network compression scheme [ 15] is trading high 

data transmission latency for low transmission energy consumption. Collected 

sensor data is stored in an aggregation node's buffer for some duration of time. 

During that time, data packets are combined into one packet, and redundancies in 

data packets, will be removed to minimize data transmission. 

For example, each data packet has the following form: <measured value, node ID, 

tirnestamp>. Then, the compressed data packet has the following form: <shared 

prefix, suffix list, node ID list, timestamp list>. The "shared prefix" is the most 

significant bits, which all measured values in combined data packets have in 

common. The, length of shared prefix can be changed by a user based on the 

knowledge of data similarity. If the measured values are expected he close to each 

other, the length of prefix value can be set to relatively long. The "suffix list" is 

the list of measured values excluding the shared prefix part. The "node ID list" is 

the list of node identifiers and the "timestamp list" is the list of timestamp. The 

compression scheme is illustrated in Figure 2.6. In the figure, three nodes send the 

data packets to the compression node. At the compression node, three data 

packets are compressed into one packet. In this example, the length of shared 

prefix is set to 3. In this example, total number of bits is reduced from 33 to 27. 
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Figure 2.6 In-network Compression 

One advantage of this simple compression scheme is that the shared prefix system 

can be used for node IDs and timestamps. By doing so, more data compression 

can be achieved. The efficiency of data compression depends on the length of 

shared prefix. If we could set a long shared prefix and measured values have 

commonality, the compression ratio increases. However, there is no similarity in 

measured sensor values. Even if we could set a long shared prefix, the efficiency 

of Pipelined In-Network Compression will decrease. In addition, if we are 

combining a large amount of data packets, than a large data buffer is required to 

temporary store those packets. Since a sensor node has only a limited size of 

memory space, enough buffer space will not be available. 

Although focusing on wireless ad-hoc networks, Barr and Asanovi'c show in [5] that 

the energy required for transmitting a bit can be equivalent to the energy 

consumption of a thousand microcontroller operations. However, their results were 

acquired from a Compaq Personal Server handheld, which features 32 megabytes of 

RAM and 16 kilobytes of cache. This significantly exceeds the resource constraints 

on many of today's mote platforms. 

Pradhan et al. [13] suggested a framework for distributed compression, in which 

they have used joint source and channel coding that brings about the minimization in 

the amount of inter-node communication for compression using both a quantized 

source and correlated side information within each individual node. With the 
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introduction of many application domains like various kind of sensor networks that 

are severely energy and power constrained, the topic of energy efficiency is getting 

an important aspect to be taken into account. In some of the literatures, both of the 

aspects, data compression as well as energy efficiency are considered together. 

Magli et al. [ 16] introduced a low-complexity video compression scheme which is 

based on JPEG data compression. This algorithm is specifically designed for the 

wireless video surveillance system. 

Hans and Schafer [17] present an overview of lossless data compression in the 

context of audio data. 

Zhuang and Li [1.8] have implemented the compression algorithms for seismic data. 

In this paper, the amount of energy reduction due to the reduction in data after 

compression has been estimated while considering only the energy costs of 

communication. 

Sadler and Martonsi [19] have described a variation of lossless LZW (Lempel-Ziv-

Welch) algorithm pertaining to the common sensor platforms with few kilobytes of 

memory. This version can carry out the compression of the data block with a length 

of 528 bytes at a time. The S-LZW (Simple LZW) algorithm causes the saving in 

energy by the factor of more than 1.5x locally, and over 2.5x as far as the overall 

network is concerned, for the tests carried out with the data reprieved from real 

sensor networks. However, the evaluation of the system was made out with delay-

tolerant network setting while data was buffered before being transmitted. 

Tsiftes et al. compare mechanisms to compress code updates to remotely reconfigure 

nodes in [20]. They present the algorithm, which combines multiple preprocessing 

and coding steps, while maintaining the characteristics that the decoder part can still 

be run on memory-constrained sensor platforms. Results show that. network-wide 
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energy savings up to 67% can be achieved when compressing the code updates using 

GZIP (GNU zip). 

Ju and Cui presented the EasiPC packet compression mechanism in [21]. Each 

packet field needs to be analyzed and classified according to its changing frequency 

in advance. Different compression methods are associated with each category; while 

randomly changing fields are always transferred uncompressed, sequence number 

fields are e.g. encoded by difference coding. In addition, the sensor readings are 

encoded by either difference coding or length-variable coding. Removing redundant 

information from the packet, the developed mechanism allows for compression 

gains of up to 50% as well as the corresponding reduced transmission delays. The 

results were however not verified by an energy analysis. 

Reinhardt, M. Hollick, and R. Steinmetz [22] present a compression framework 

utilizing a stream-oriented compression scheme in which efficient data transfer 

between nodes is provided by shifting data compression into a dedicated layer for 

sensor networks. 

Capo-Chichi et al. [23] proposed a data compression algorithm K-RLE inspired 

from Run Length Encoding which increases the ratio compression compared to RLE 

and SLZW where K is a precision parameter. The algorithm is lossy algorithm. The 

energy consumption study shows that while 2-RLE offers a better compression ratio 

than RLE and S-LZW(Simple LZW), it consumes half energy compared to S-LZW 

which uses the most energy. 

Zhou Yan-li et al. [24] proposed an improved LZW (Lempel-Ziv-Welch) algorithm 

for wireless sensor network nodes. The compression algorithm is lossless data 

compression algorithm. The results of compression test on sample data shows that 

the algorithms can significantly improve the compression ratio and reduce the size 

of the dictionary as well as energy consumption in data transmission than LZW 

algorithm. 
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Kirsten Dolfus and Torsten Braun [25] explore the design space for data 

compression for wireless sensor and mesh networks by profiling common, publicly 

available algorithms. They focus on lossless, stand-alone (thus non-distributed) 

compression schemes to lower the amount of data stored within a network node or 

transmitted across the network. The performance of algorithms depends on the 

platforms used. Several goals such as a low overhead in terms of utilized memory 

and compression time as well as a decent compression ratio have to be well balanced 

in order to find a simple, yet effective compression scheme. 

A different approach has been explored by Marcelloni et al. [26]: In order to keep 

the algorithm as simple as possible and to avoid complex computations on 

embedded nodes, their solution relies on a two-phase coding process based on a 

lookup table of the size of the analog-digital converter and compresses the raw bits 

of a sensor reading. Here, a codeword is a hybrid of unary and binary codes supplied 

by an adequate dictionary similar to the one used for DC coefficient coding in JPEG 

compression. Since the size of the dictionary is fixed and encoding is done via 

mapping, the algorithm is well suited for on-the-fly compression. However, the 

obtainable compression ratio is highly dependent on a good mapping strategy. 

2.4 Shortcomings and Research Gaps 

Many data compression schemes have been carefully designed for Sensor Networks 

so as to make the most efficient use of the limited resources in terms of energy, 

computation and storage. Most of these data compression schemes aim to exploit the 

technological improvements to make the devices more energy efficient rather than 

making them more powerful. To reduce energy consumption a lot of work has been 

done upon — finding optimal paths between source and sink for transfer, aggregation 

of smaller data units from different sources or generated at different time to a 

combined data unit (by data fusion), aggregation of nodes to act as a super node by 

clustering. Some techniques have even shown relation between routing and spatial & 
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temporal correlations to save energy by means of calculating joint entropy. 

However, following are the shortcomings and research gaps that have been 

observed: 

1. Previous research for data compression in communication mainly focuses on 

how to decrease delay or save required transmission bandwidth. No any data 

compression algorithm discusses the energy savings with reducing memory 

when sensor data are compressed at the originating node. 

2. It is well known that data transmission is the major contributor to energy 

consumption in WSN. There is a need to understand and study the effects of 

reducing the power consumption by shrinking raw data down to smaller 

volumes, which is desirable for data communication since the compressed 

data can require significantly less time and energy to transmit compared to 

the raw data. 

3. There is little or no work done in the field of suppressing spurious or 

redundant data at the sensor nodes itself before dissemination. Such a 

technique would affect the amount of data in the network and reduce inter-

node transmissions and result in energy and memory savings. 
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CHAPTER 3 

Proposed Data Compression Algorithm 

3.1 Introduction 

The studies in the previous chapter illustrate that sending data is more power 

consuming than computation, and thus minimizing data size before transmitting in 

wireless medium is effective to reduce total power consumption. Therefore, it is 

beneficial for WSNs to employ a data compression algorithm. In this chapter, a data 

compression algorithm for wireless sensor networks has been proposed. The 

compression algorithm is particularly suited to the reduced memory and 

computational resources of a wireless sensor network node. The compression 

scheme exploits the high correlation that typically exists between consecutive 

samples collected by the sensor onboard a node. Using this characteristic and 

following the principles of entropy compression [6], the algorithm is able to 

compute a compressed version of each value acquired from a sensor. Finally, the 

compression algorithm is lossless. A decompression algorithm is also proposed to 

retain the originality of data at base station 

3.2 Model of Proposed Data Compression Algorithm 

The proposed algorithm consists of three phases: 

1. Selector: This phase selects three previous values with current value. 

Initially, assuming three readings are zero. 

2. Preprocessor: It predicts the median value along with lowest and highest 

values among three previous values selected and finds the suitable interval 

in which current value belong. It calculates the deviation of current value 

in the suitable interval. 
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3. Encoder: Encoder gives the variable length code to the deviation obtained 

in the previous phase by removing the redundancy from data. 

The basic idea of encoding is to map an alphabet to a representation for that 

alphabet, composed of sequences of bits of variable sizes, so that symbols that 

occur frequently have a smaller representation than those that occur rarely. Block 

diagram of proposed compression algorithm is shown in figure 3.1. 

a 

L..Coull~ressed 
Selector Preprocessor Encoder Dhr1 

Figure 3.1 Model of Proposed Compression Algorithm 

3.3 The Compression Algorithm 

Suppose xi is the current value of the reading taken by the sensor node where 

subscript i denote the sample number. Since the application of sensor nodes is 

mostly used to report the status of interested area to users, it is more useful to 

measure x; acquired by sensor node. For each new acquisition x;, the selector phase 

of compression algorithm selects three previous values (let three previous values are 

a;, b; and c;) and pass these values to next phase. The preprocessor phase predicts the 

median value m; along with lowest value li and highest value h; among three 

previous values selected and finds the interval of the current value then computes 

the deviation di of current value in that interval. The encoder performs compression 

losslessly by encoding differences d; more compactly based on their statistical 

characteristics. Each di is represented as a bit sequence bs; composed of two parts 

s;lt;, where si codifies the interval in which current value x; lies and ti is the 

representation of di. 
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encode (xi,, prevArray [ ] ) 

// xi  is current value and prevArray[] contains previous three 

values 

ai  = prevArray[0] 

bi = prevArray[b] 

ci  = prevArray [ 2 ] 

li  = minimum(ai, bi, ci) 	// calculate lowest value 

mi  = median (a1, bi, c±) 	// calculate median value 

hi  = maximum(ai, bi, c1) 	 // calculate highest value 

IF (li  <= xj  <= hi) THEN 

SET set_bit TO '0' 

SET si  TO set_bit 

// si  codifies the interval 

IF (xi  < m1) 

SET set_bit TO '0' 

SET si  TO << s-„ set_bit >> 

SET means  TO I l?  +i nk  
L2 

SET di TO (mean; - x1 ) 

ELSE 

SET set_bit TO '1' 

SET Si  TO << Si, set_bit >>

„t. +11  
SET means  TO  

2 

SET di  TO (mean;  - x1 ) 

ENDIF 

ELSE 

SET set_bit TO '1' 

SET si  TO set_bit 

IF (x > h) 

SET set_bit TO '0' 

SET si TO << si, set_bit >> 
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SET di  TO (xi  - hi ) 

ELSE 
SET set bit TO '1' 
SET si  TO << s1, set_bit >> 
SET d; TO (ii  - x1 ) 

ENDIF 

ENDIF 

IF di  = 0 THEN 

SET ni  TO 0 	 // build bsl  
SET bsi  TO si 	 // ti  is not needed 

ELSE 

IF C11  > 0 THEN 

SET n;  TO [logz  Id;f ]+ 1 

SET ti TO (d,)I 
n 

ELSE 

SET ni  TO log, Id11]+1 

SET ti  TO (d, —1)I 

ENDIF 

SET bs1 TO << sl , ti >> 

ENDIF 

RETURN bsi  

// build t. 

// build bs; 

Figure 3.2 Pseudo-code of the proposed encode algorithm 

The si part of the bit sequence bsi is computed in preprocessor phase of compression 

algorithm. The coder phase compute the t; part of bit sequence bs; and appends this t; 

with si. In the preprocessor phase of compression algorithm, current value x; may lie 

in any one of four intervals. First interval takes values greater than and equal to li 

and less than mi whereas second interval takes values greater than and equal to mi 

and less than h,. The s; code for first interval is `00' and for second interval is `01'. 

We calculate mean for these intervals to find deviation of current value x; from 

mean value (say, mean;) and compute the difference d; = (mean; — x;) for both 

intervals. 
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Start 

Select 3 previous values 
(say a;, bi and c;) and a 
current value x; 

Compute, 
1; = minimum (a;, bi, ci) 
mi = median (a,, b,, c;) 
hi = maximum (ai, b;, ci) 

Yes 	 No 
1;<xi<hi 

set bit = `0' 	 set_bit = `1' 
si=set bit 	 si = set_bit 

No 	 No 
xi < m;  

YPs 	 Yes, 

set_bit = `0' 	 set_bit = `0' 
s; = s; O set_bit 	 Si = Si O set_bit 

mean; _ 	
2 
	 d; _ (xi— h;) 

d; = (mean;  — x;) 

set_bit = `1' 
Si = si 0 set_bit 

in. + h;  mean1 =Ì 
L2 

d; = (mean;  — x;) 

set_bit = `1' 
Si = si O set_bit 
di = (li  — xi) 	_ 
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Figure 3.3 Flow chart of proposed data compression algorithm 

Third interval takes value greater than h;  and the si code for this interval is `10'. 

Similarly fourth interval takes value less than Ii  and `11' is the si code for this 

interval. Compute the difference di = (xi - h;) for third interval and d; = (1;  - xi) for 

fourth interval. 

Suppose n;  is the number of bits needed to represent d;. If d; = 0, then n;  = 0 else n;  

= Llog, fr11I J + 1. If d; = 0, then bit sequence bs;  is represented by si only. Otherwise, t; 

is calculated and then concatenated with s; to forum bs;. 
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The t; part of the bit sequence bs; is a variable-length integer code generated as 
follows: 

1. If d; > 0, t; corresponds to the n;  low-order bits of the two's complement 
representation of di; 

2. If d; < 0, t; corresponds to the ni low-order bits of the two's complement 

representation of (d; — 1); 

3. If d; = 0, t; is not represented. 

The procedure used to generate t; guarantees that all possible values have different 

codes. Once bs; is generated, it is appended to the bit stream which forms the 

compressed version of the sequence of measures xi. Figure 3.2 summarizes the 

algorithm used to encode measure xi. Here, << s, t i >> denotes the 

concatenation of si and t; while vl„i denotes the ni low-order bits of v. Flow chart of 

proposed data compression algorithm is shown in figure 3.3. In flow chart, symbol 

O represents the concatenation operation. 

3.4 The Decompression Algorithm 

Decompression is the process of decoding information to get original data from 

compressed data, through use of specific decoding schemes. As with any 

communication, compressed data communication only works when both the sender 

and receiver of the information understand the encoding and decoding scheme. 

Compressed data can only be understood if the decoding method is known by the 

receiver. The decompression algorithm reconstructs the measure xi  from received bit 

sequence bsi. Bit sequence bs; is composed of two parts silti, where si codifies the 

interval in which current value x;  lies and t;  is the representation of di (d; is the 

deviation of current value in the suitable interval). 
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decode (bs1, prevArray [ ] ) 

// bsi is received bit sequence and prevArray[] contains previous 

three values 

ai  = prevArray [ 0 ] 

bi  = prevArray [ ,[] 

cj. = prevArray [ 2 ] 

li  = minimum (a;,, bi, c-) 

mi  = median(ai, bi, ci) 

hi  = maximum (ai, bi, ci  ) 

SET count TO no. of bits in bsi 

SET n;  TO (count - 2) 

IF ni  = 0 THEN 

SET d;  TO 0 

SET si  TO bsi  

// calculate lowest value 

// calculate median value 

// calculate highest value 

ELSE 

// break bsi  into s;  and ti  

SET si  TO first two bits of bsi  

SET ti  TO remaining bits of bsi  

// read first bit of t;  

IF ti[0] = '0' 

SET ri  TO -(2' --1) 

SET dtl TO decimal value of ti  

SET dti TO (ri  + dti) 

ELSE 

SET dti  TO decimal value of ti  

ENDIF 

SET di  TO dti  

ENDIF 

// read first bit of si  

IF SILO] = '0' 

// read second bit of sE  

IF Si[l] = '0' 
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1+/n. meani = 2 L 	J . 
ELSE 

in;  + h;  
m 	

-eanf L 	2 
ENDIF 

// compute. measure x;  

SET xi  TO 	(meani  - di) 
ELSE 

// read second bit of si  

IF 	S1[l] 	= 	' 0' 
// compute measure xi  

SET xi  TO 	(di  + hi) 
ELSE 

if compute measure xi  
SET xi  TO 	(li  - d1 ) 

ENDIF 

ENDIF 

RETURN xi  

Figure 3.4 Pseudo-code of the decode algorithm 

The algorithm selects three previous values and compute lowest value li, median 

value mi and highest value h;  among them. Count the number of bits presented in the 

bit sequence bs; and set n; to (count-2). If n;  = 0, then d; = 0 and s; = bsi else break 

the bs; into si and t;. Assign first two bits of bs; to si and remaining bits to t;. Read 

first bit of ti if it is `0', then compute d, = (-(2"' -1) + decimal value of t;) otherwise, 

assign decimal value of t; to di. Read first and second bit of si such that si may take 

any one of four possible values from'00', `01', `10', `11'. 
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S tart 

Select 3 previous values 
(say a;, b;  and c1) and 
a bit sequence bs; 

Compute, 
I;  = minimum (a;, b;, c;) 
mi  = median (a;, b;, c;) 
h;  = maximum (a;, b„ c;) 
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Figure 3.5 Flow chart of decompression algorithm 

There are four cases arise to compute measure x;: 

I 1.+m. 
1. If s; = `00', then calculate xi = (mean;  — d;) where, mean;  = 	` 

2 

I m..+h. 
2. If si = `01', then calculate x; = (mean; — d;) where, mean; = [ '  2  ' 

3. If s; _ `10', then calculate xi  = (d; + h;) 

4. If s1 = 'I1', then calculate x; = (1; - d;) 
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The procedure used to generate xi from received bit sequence bs; guarantees that all 

values are losslessly recovered. Figure 3.4 summarizes the algorithm used to decode 

bit sequence bs; and flow chart of proposed decompression algorithm is shown in 

figure 3.5 
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CHAPTER 4 

Experimental Results and Discussions 

4.1 Performance Metrics 

Depending on the nature of the application there are various criteria to measure the 

performance of a compression algorithm. 

Compression ratio 

Compression ratio [27], also known as compression power, is used to quantify the 

reduction in data-representation size produced by data compression algorithm. It is 

the ratio between the size of the compressed data and the size of the uncompressed 

data and is defined as: 

comp_ratio = 
comp _ size  

orig _ size 

where, comps i z e and orig—size are the size of the compressed and the 

uncompressed bit stream respectively. The smaller value of compression ratio the 

better the data compression algorithm. 

Compression factor 

Compression factor [27] is the inverse of the compression ratio. That is the ratio 

between the size of uncompressed data and the size of compressed data and is 

defined as: 

comp_factor = 
orig _ size 

conz p _ size 
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where, comp_size and orig size are the size of the compressed and the 

uncompressed bit stream respectively. Compression factor should be more for better 

performance of the algorithm. 

Saving percentage 

Saving percentage [27] is the reduction in size of relative to the uncompressed size. 

It calculates the shrinkage of the source data as a percentage and is defined as: 

saving__-percentage = (1 — comp _ size 
orig _ size 

) * 100 

where, comp_,size and orig_size are the size of the compressed and the 

uncompressed bit stream respectively. For better performance of the algorithm, it 

should be more. 

4.2 Simulation Environment 

To evaluate the performance of proposed data compression algorithm, we used 

TOSSIM [33], a discrete event simulator for TinyOS sensor networks. 

Instead of compiling a TinyOS application for a mote, users can compile it into the 

TOSSIM framework, which runs on a PC. This allows users to debug, test, and 

analyze algorithms in a controlled and repeatable environment. As TOSSIM runs on 

a PC, users can examine their TinyOS code using debuggers and other development 

tools. TOSSIM builds directly from TinyOS code. To simulate a protocol or system, 

there is a need to must write a TinyOS implementation of it. TOSSIM's primary 

goal is to provide a high fidelity simulation of TinyOS applications. For this reason, 

it focuses on simulating TinyOS and its execution, rather than simulating the real 

world. While TOSSIM can be used to understand the causes of behavior observed in 

the real world, it does not capture all of them, and should not be used for absolute 

evaluations. TOSSIM does not model power draw or energy consumption. After a 

simulation is run, a user can apply an energy or power model to these transitions, 
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calculating overall energy consumption. Because TOSSIM does not model. CPU 

execution time, it cannot easily provide accurate information for calculating CPU 

energy consumption. 

In order to test the performance of the proposed data compression algorithm with 

the Mercelloni's et al. algorithm, the algorithms are simulated and tested with a set 

of data samples. Performances are evaluated by computing the above mentioned 

performance metrics. 

Consider samples acquired by a sensor node are generated randomly every 2 

minutes and the probabilities decrease with the increase of the values. Total 

numbers of samples collected by a sensor node in 24 hours or one day are 720 

samples. Considering that uncompressed samples are normally represented by 16-bit 

unsigned integers, the original size of uncompressed data for 720 samples = 11520 

bits (= 7201̀ 16). Different numbers of samples are taken such as 720 samples, 1440 

samples, 2160 samples, 2880 samples, 3600 samples, 4320 samples, 5040 samples, 

5760 samples, 6480 samples, 7200 samples to measure the performance of 

algorithms. 

4.3 Results and Discussions 

We have used the performance metrics given in section 4.1 for evaluating the 

performance of the proposed data compression algorithm and the Mercelloni's et al. 

algorithm [26]. We have selected the Mercelloni's et al. data compression algorithm 

to comparing the performance of proposed data compression algorithm because 

Mercelloni's et al. data compression algorithm have good compression ratio and 

saving percentage other than existing data compression algorithms. The results of 

the algorithms are shown in table 4.1 and table 4.2. 
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Table 4.1 Results of Merceiloni's et al. Algorithm 

No. 

01  Days 

No. of 
Samples 

Total 
Uncompressed 

Data in bits  

Total 
Compressed 
Data in bits 

Compression 
Ratio 

Compression 
Factor 

Saving 
Percentage 

1 720 11520 3748 0.325347 3.073639 67.47 

2 1440 23040 7621 0.330772 3.023225 66.92 

3 2160 34560 11514 0.333159 3.001563 66.68 

4 2880 46080 15688 0.340451 2.937276 65.95 

5 3600 57600 19912 0.345694 2.892728 65.43 

6 4320 69120 23833 0.344806 2.900180 65.52 

7 5040 80640 27742 0.344022 2.906784 65.60 

8 5760 92160 31327 0.339919 2.941871 65.96 

9 6480 103680 35572 0.343094 2.914652 65.69 

10 7200 115200 39330 0.341406 2.929062 65.86 

Table 4.2 Results of Proposed Data Compression Algorithm 

No. 
of 

Days 

No. of 
Samples 

Total 
Uncompressed 

Data in bits 

Total 
Compressed 
Data in bits 

Compression 
Ratio 

Compression 
Factor 

Saving 
Percentage 

1 720 11520 2990 0.259459 3.852843 74.05 

2 1440 23040 6027 0.261589 3.822797 73.84 

3 2160 34560 9235 0.267216 3.742285 73.27 

4 2880 46080 12245 0.265734 3.763169 73.42 

5 3600 57600 15344 0.266389 3.753910 73.36 

6 4320 69120 I8491 0.267520 3.738035 73.25 

7 5040 80640 21722 0.269370 3.712365 73.06 

8 5760 92160 24622 0.267166 3.742994 73.28 

9 6480 103680 27827 0.268393 3.725878 73.16 

10 7200 115200 30639 0.265964 3.759914 73.40 
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Figure 4.2 Comparing the performance of algorithms on metric saving percentage 
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Figure 4.1 and figure 4.2 shows the comparison of the proposed data compression 

algorithm and Mercelloni's et al. algorithm on metric compression ratio and metric 

saving percentage. The compression ratio of proposed data compression algorithm 

(0.26) is less than the Mercelloni's et al. algorithm (0.34) which means proposed 

algorithm compresses more data than Mercelloni's et al. algorithm. Proposed data 

compression algorithm also reduces memory requirement by about 73.3 percent in 

comparison to Mercelloni's et al. algorithm which only reduces about 65.8 percent. 



CHAPTER 5 

Conclusions 

5.1 Conclusions 

Minimizing energy consumption and reducing memory is a key requirement in the 

design of sensor network protocols and algorithms. Since processing data consumes 

much less power than transmitting data in wireless medium, it is effective to apply 

data compression before transmitting data in order to reduce total power 

consumption and storage by a sensor node. 

In this dissertation, we have proposed a data compression algorithm to achieve 

better compression ratio than other existing data compression algorithms. The 

proposed compression algorithm is lossless and particularly suited to the reduced 

storage and computational resources of a wireless sensor network node. The 

performance of proposed algorithm is evaluated and compared with Mercelloni's et 

al. algorithm on various metrics such as compression ratio, compression factor and 

saving percentage. The algorithms are simulated on TOSSIM. 

5.2 Scope for Future Work 

In the future, this work can be extended in following ways: 

• This work can be implemented on actual mote like mica mote. 

• The performance of algorithm may be evaluated on mica mote for different 

metrics. 

• The compression algorithm may be extended to compress the image data as 

well. 
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APPENDIX A 

Introduction to TinyOS 

A.1 Introduction 

TinyOS [31] is a free and open source component-based operating system and 

platform targeting wireless sensor networks (WSNs). TinyOS is an embedded 

operating system written in the nesC programming language as a set of 

cooperating tasks and processes. It is intended to be incorporated into smartdust. 

TinyOS began as a project at UC Berkeley as part of the DARPA NEST program. 

It has since grown to involve thousands of academic and commercial developers 

and users worldwide. 

TinyOS have following features: 

• Conserving resources 

• No file system 

• No dynamic memory allocation 

• No memory protection 

• Very simple task model 

• Minimal device and networking abstractions 

• Application and OS are coupled—composed into one image 

A.2 Programming Model 

nesC (network embedded system C) [32] is a component-based C dialect. It is a 

static language which has no heap, no function pointers and no any dynamic 
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memory allocation. In some ways, nesC components are similar to objects. For 

example, they encapsulate state and couple state with functionality. The principal 

distinction lies in their naming scope. Unlike C++ and Java objects, which refer to 

functions and variables in a global namespace, nesC components use a purely 

local namespace. This means that in addition to declaring the functions that it 

implements, a component must also declare the functions that it calls. The name 

that a component uses to call these functions is completely local: the name it 

references does not have to be the same that implements the function. When a 

component A declares that it calls a function B, it is essentially introducing the 

name A.B into a global namespace. A different component, C, that calls a 

function B introduces C.B into the global namespace. Even though both A and C 

refer to the function B, they might be referring to completely different 

implementations. Every component has a specification, a code block that declares 

the functions it provides (implements) and the functions that it uses (calls). 

TinyOS•Connponents: 

Programs -itI-ebuilt out of components in which each component is specified by an 

interface which provides "hooks" for wiring components together. Components 

are statically wired together based on their interfaces to increases runtime 

efficiency. Components use and provide interfaces, commands, and events, 

specified by a component's interface and the word "interface" has two meanings 

in TinyOS. Components implement the events they use and the commands they 

provide: 

Components Commands Events 

Use Can Call Must Implement 

Provide Must Implement Can Signal 

There are two types of components in nesC: 

1. Modules: Implements the component specification (interfaces) with application 

code. 
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2. Configurations: Wires components together i.e. how components are wired 
together. 

Configurations connect the declarations of different components, while modules 

define functions and allocate state. A component does not care if another 
component is a module or configuration and a component may be composed of 

other components. A configuration states must name which components it is 

wiring with the components keyword. Any number of component names can 

follow components, and their order does not natter. A configuration can have 

multiple components statements. A configuration must name a component before 

it wires it. A module contains C-like code while configuration doesn't use C-like 
code. 

A.3 Concurrency Model 

There are two types of execution contexts: 

1. Tasks: Tasks are longer running jobs having time flexibility and uses 

(currently) simple FIFO scheduling. Tasks are atomic with respect to other 

tasks, i.e., single-threaded but can be preempted by events. A task is 

always posted for later execution; control returns to poster immediately. 

Scheduler supports a bounded queue of pending tasks i.e. node sleeps 
when the queue is empty. For simplicity, tasks don't take arguments and 

don't return values. 

2. Events: Events (an overloaded term) are more precisely, hardware 

interrupt handlers. Time is a critical factor for events; events have 

shortened duration as much as possible by issuing tasks for later 

execution. Events follow LIFO semantics; can preempt tasks and earlier 

events. 
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