
DATA COMPRESSION ALGORITHM FOR
WIRELESS SENSOR NETWORKS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

By

ASHISH.KUMAR MAURYA

G1~•1T RAL L leR
C,• 	S5 9,p ACCNo

Date..... 9~ °J...l

l T ROO~~~

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2011

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE — 247 667s INDIA

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the dissertation entitled

"DATA COMPRESSION ALGORITHM FOR WIRELESS SENSOR

NETWORKS" in partial fulfillment of the requirement for the award of the degree of

Master in Computer Science and Engineering, submitted to Department of

Electronics and Computer Engineering of Indian Institute of Technology Roorkee,

Roorkee, India is an authentic record of my own work carried out during the period of

June 2010 to June 2011 under the supervision of Dr. A. K. Sarje, Professor,

Department of Electronics and Computer Engineering of Indian Institute of

Technology Roorkee, Roorkee, India.

The matter being presented in the Dissertation has not been submitted by me for the

award of any other degree or diploma of this or any other Institute/University.

Date: 21-' 0 6 —2ol t

Place: PM ike 	 (ASHISH KUMAR MAURYA)

CERTIFICATE

This is to certify that the above statement made by the candidate is true to the best of my

knowledge and belief.

Date: 	 (Dr. A. K.`Sa'rje)

Supervisor

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to my learned mentor, Dr. A. K. Sarje,

Professor, Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee, for his encouragement, able guidance, painstaking supervision and

innovative suggestions. His capability to judge things beyond the written text has helped

this dissertation take its present form. He has been instrumental in shaping my approach

towards accomplishing the task at hand and I feel privileged to have completed my

dissertation under his supervision.

I wish to convey my sincere thanks to all my classmates and friends. The time spent with

them is unforgettable and has touched all aspects of my life. The late night interesting

discussions has helped me in think out of the box for all the problems that I faced. Each

moment spent together is memorable.

Above all, I have no words to express my love for my family. I could not have reached

this important milestone in my life without their constant support and encouragement. I

take this opportunity to thank my parents for their unconditional love and motivation that

shaped the confident individual in me.

I am thankful to the almighty for showering his grace that provided the courage and

perseverance to overcome all obstacles that stood in my way.

ASHISH KUMAR MAURYA

Large scale wireless sensor networks (WSNs) have emerged as the latest trend in

revolutionizing the paradigm of collecting and processing data in diverse environments.

Its advancement is fueled by development of tiny low cost sensor nodes (SNs) which are

capable of sensing, processing and transmitting data. Due to the small size of SNs there

are various resource constraints. It is the severe energy constraints and the limited

computing resources that present the major challenge in converting the vision of WSNs

to reality.

Power saving is a critical issue in wireless sensor networks (WSNs) since sensor nodes

are powered by batteries which cannot be generally changed or recharged. As radio

communication is often the main cause of energy consumption, extension of sensor node

lifetime is generally achieved by reducing transmissions/receptions of data. It is useful to

apply data compression to reduce the volume of data, and the associated energy

consumption of transmission. Data compression is the process of encoding information

using fewer bits than an unencoded representation would use, through use of specific

encoding schemes. Due to limited processing and storage resources of sensor nodes, data

compression in sensor nodes requires the use of ad-hoc algorithms.

In this dissertation, we propose a simple and efficient data compression algorithm which

is lossless and particularly suited to the reduced memory and computational resources of

a WSN node. The proposed data compression algorithm gives good compression ratio for

highly correlated data. Simulations for the proposed data compression algorithm are

performed on TOSSIM. Some experimental results and comparisons with the Marcelloni

et al. data compression algorithm is shown and discussed.

iii

Table of Contents

Certilicate... 	~

Acknowledgement ^^^^^^^^^^^^^^~^^^^^^^^`^^^^^^^^^^^^^^^^^^^~^^`^^-^^^`^^^^`~^^~~ ii

ct^......^... iii

List of Eiigure8.............................^^^^^^^^^^```^^^^^^^^^^^^ ^^^~^^^^^^^^`^^`^^^ 	^

Iist 	vii

Chapter 1 Introduction

Li Ovmzviovv'.''--'''..-.-...'..'-''.'-.-'.........'...-'-'--''-'--''-.--'''.'-- 	l
1.2 	Mmtvatom..'.-'--''-'-_...'...-'--''-'.''..''..-.-....-.-'-'--''-'---.. 	3
1.3 	Problem Statemco1.....''-.-''........--''-'..'---'-.............-..'.........-_ 	5
1,4 	Thesis Ormaoizaikuo....--''-'--.'...........'.'...'--''-_......'......_.....--- 	6

Chapter Background and Literature Survey 7

2.1 Introduction to Wireless Sensor Network....'''''.''''.''''''.......'.''''........'''''.- /
2.1.1 Wireless Sensor Network yw{mdcL.........-......-..........'-.............-- /
2.1.2 Applications of Wireless Sensor Netn)rks......'-'.....-'-'.....',''-...- 9
2'1'3 WSNs versus MANB7S....-'-'-.-.-'..'..'.........-.-.-'--'-''........ 1l

2.2 Data 	aipm'--'-'............'--''-...'-'...-.............-.......''.........- 12
2.2.1 CompressionTecb 	' 	co'.....'-'-'-.-'..''.'..-'.............-......—'_' l2
2.2.2 Modeling and 	'-'-....--''-.--'-'-..'-...-.'...............-'- l4

2.3 Data Compression Schemes for WSNs........'..'.-'-'-'-.-'-'-.-...'..'-'--- 17
2.3.1 Distributed C)ompzcsnion..'''''...............'...'-.-..''-.-'-'-'-'-.—. l7
2.3.2 Coding by Ordczog'......-''---.-.-''-.--....'.._..''--''-'_...'.- l9
2.3.3 Pipelined In-Network Comprcuaboo.-'--....-'.........-.'-'-'-...'...... 21

m

Chapter 3 Proposed Data Compression Algorithm 	 27
3.1 	Introduction ... 	2 7
3.2 	Model of Proposed data compression algorithm .. 	27
3.3 	The Compression Algorithm .. 	2 8
3.4 	The Decompression Algorithm ... 	33

Chapter 4 Experimental Results and Discussions 	 39
4.1 	Performance Metrics ... 	3 9
4.2 	Simulation Environment 	40
4.3 	Results and Discussions ... 	41

Chapter 5 Conclusions 	 45

5.1 	Conclusions .. 	45
5.2 	Scope for future work ... 	45

References... 46

Listof Pulblications ... 	50

Appendix A Introduction to TinyOS ... 51

v

List of Figures

Figure 1.1 	Possible deployment of a WSN for precision agriculture 	2

Figure 1.2 	Functional block diagram of a sensor node 	2

Figure 2.1 	Sensor network communication structure .. 	7

Figure 2.2 	Overview of sensor applications ... 	1.0

Figure 2.3 	Compression and reconstruction ... 	13

Figure 2.4 	Distributed Compression examples .. 	17

Figure 2.5 	Data path in coding by ordering data compression scheme 	19

Figure 2.6 	In-network Compression .. 	22

Figure 3.1 	Model of Proposed Compression Algorithm 	28

Figure 3.2 	Pseudo-code of the proposed encode algorithm 	30

Figure 3.3 	Flow chart of proposed data compression algorithm 32

Figure 3.4 	Pseudo-code of the decode algorithm ... 	35

Figure 3.5 	Flow chart of decompression algorithm .. 	37

Figure 4.1. 	Comparing the performance of algorithms on metric compression ratio..... 43

Figure 4.2 	Comparing the performance of algorithms on metric saving percentage..... 43

vi

List of Tables

Table 2.1 	Permutation and its represented integer value 	20

Table 4.1 	Results of Mercelloni's et al. Algorithm .. 	42

Table 4.2 	Results of Proposed Data Compression Algorithm 42

vii

CHAPTER 1

Introduction

1.1 Overview

Wireless Sensor Network (WSN) consists of spatially distributed self-organizing,

low-powered sensing devices with limited computational and communication
resources to cooperatively monitor conditions, such as temperature, sound, vibration,
pressure and humidity over a specific area for some specific purposes like target
tracking, area monitoring, industrial monitoring, health monitoring, surveillance,
environmental monitoring etc and report the collected data of all sensors to the user
for analysis. In a typical application, a WSN is scattered in a region where it is meant
to collect data through its sensor nodes. Figure 1.1 shows the possible deployment of
a WSN for precision agriculture. In this figure, sensors detect temperature, light
levels and soil moisture at hundreds of points across a field and communicate their
data over a multi-hop network for analysis. Instead of the conventional methods,
WSN deploys a large number of small nodes which gather data to be interpreted in a
distributed manner. For ease of deployment, sensor devices should be inexpensive
and have long lifetime. It is important to design protocols, software and hardware
solutions to make the most efficient use of the limited resources of energy,
computation and storage in a sensor node [1].

Each sensor node is a tiny device that includes three basic components _(figure 1.2): a
sensing subsystem for data acquisition from the physical surrounding environment, a
processing subsystem for local data processing and storage, and a wireless

communication subsystem for data transmission to a central collection point (sink
node or base station). In addition, a power source supplies the energy needed by the
device to perform the programmed task. This power source often consists of a

1

battery with a limited energy budget. In addition, it could be impossible or

inconvenient to recharge the battery, because nodes may be deployed in a hostile or

unpractical environment. On the other hand, the sensor network should have a

lifetime long enough to fulfill the application. requirements.

Figure 1.1 Possible deployment of a WSN for precision agriculture. [4]

-----`•--------------~

Transceiver
Sensor t

PolVer 	 ' 	'
Source 	 Embedded Processor 	 ADC

' 	~letzzol }~ 	i 	Sensor 2

------------ ----

Figure 1.2 Functional block diagram of a sensor node [3]

Experimental measurements have shown that data transmission is very expensive in

terms of energy consumption, while data processing consumes significantly less

energy. The energy cost of transmitting a single bit of information is approximately

N

the same as that needed for processing a thousand operations in a typical sensor node
[2]. The energy consumption of the sensing subsystem depends on the specific
sensor type. In many cases it is negligible with respect to the energy consumed by
the processing and, above all, the communication subsystems. In other cases, the
energy expenditure for data sensing may be comparable to, or even greater than, the
energy needed for data transmission.

Several- energy conservation schemes have been proposed in the literature. They are

mainly aimed at minimizing the energy consumption of the communication
subsystem. With regard to this, * there are two main approaches to energy

conservation: duty cycling and in-network processing. Duty cycling schemes define
coordinated sleep/wakeup schedules among nodes in the network. On the other hand,
in-network processing consists in reducing the amount of data to be transmitted by
means of compression and/or aggregation techniques [2]. Due to limited processing

and storage resources of sensor'nodes, data compression in sensor nodes requires the
use of ad-hoc algorithms. Only a few researchers have discussed the possibility of
embedding lossless compression algorithms into sensor nodes.

Obviously, compressing data can be a valuable help in power saving only if the
execution of compression algorithms does not require an amount of energy greater
than the one saved in reducing transmission: in [5] it is shown that compression prior
to transmission in wireless battery-powered devices may actually cause an overall

increase of power consumption, if no energy awareness is introduced, because

compression algorithms are aimed at saving storage and not energy.

1.2 Motivation

WSNs receive a lot attention due to their unlimited potential. The motivation for the
study comes from the unique challenges offered in the varied application domain.
However, the following key issues need to be addressed while designing the sensor

network [1]:

3

• Real World Protocols: Current WSN solutions are developed with

simplifying assumptions about wireless communication and the environment,

even though the realities are well known to be different. Many of these

solutions work very well in simulation but in the real world they can be shown

to work poorly in practice. Thus, there is a need to establish better models of

communication realities to feedback into simulation tools.

• Real-Time Data Delivery: In many cases, sensor data must be delivered

within time constraints so that appropriate observations can be made or

actions taken. Few results exist to date that meet real-time requirements of

WSN. Most protocols either ignore real time or attempt to process as fast as

possible and hoping that the speed is sufficient to meet deadlines.

• Limited Energy: The energy constraint in sensor nodes is unlikely to be

solved soon due to slow progress in developing battery capacity. Moreover,

the untended nature of sensor nodes and hazardous sensing environments

preclude battery replacement as a feasible solution. The surveillance nature of

many sensor network applications requires a long lifetime. Current research

focuses on providing full sensing coverage in the context of energy

conservation.

• Fault Tolerance: Fault tolerance is the ability to sustain sensor network

functionalities without. any interruption due to sensor node failures. In most of

the scenarios once deployed the nodes work on their own for re-configuration,

routing setup, re-clustering etc. The fault tolerance level depends on the

application of the WSN and is done by estimating initial density of nodes

required, and designing fault tolerant protocols at different network layers.

• Scalability: The number of nodes can vary from a few sensor nodes to a few

hundred or even more. New nodes maybe added intermittently or the same

type of nodes can be used for different application areas. Hence, any solution

must scale up with varying number of nodes without affecting the quality of

service.

ri

• Environment Interaction: The nodes should be designed in a robust manner

so as to withstand the harshest of environment like the bottom of ocean,

battlefield, and fast moving vehicles and still deliver the unpredictable data as

generated. WSNs are likely to exhibit low data rates for a large period of time

and have very bursty traffic when an event occurs. It is unlikely that there will

be generic solutions and application specific protocols are designed.

• Handling large volume of bursty traffic: WSN comprises of highly data

intensive networks where hundreds and thousands of nodes generate data

continuously. Since, nodes have limited storage and processing power it is

imperative that the data is not lost due to limited memory and also to save

energy by reducing redundant and spurious data on the network.

1.3 Problem Statement

The main objective of the present research work can be described by the statement of

the problem expressed as follows:

"To develop a simple and efficient data compression algorithm for wireless sensor

network that is lossless and particularly suited to the reduced memory and

computational resources of a WSN node ".

To achieve the above objective of reducing memory requirement and WSN energy

consumption following smaller objectives are set:

o To design preprocessor module.

o To reduce the total amount of data by building variable length codes.

o To reduce the total amount of data being transmitted on the network without

losing the originality of data.

o To achieve better compression ratio for proposed data compression algorithm

than previous data compression algorithms exists

5

As stated earlier, data communication is the most power consuming operation of the

sensor nodes. Therefore the intention is to reduce memory and save energy by

cutting down on the data being transmitted.

To achieve the above objectives the following design goals are set:

o Proposing a data compression algorithm to reduce the size of data by

removing the redundancy in the data such that minimum numbers of bits

have been transferred from originator node of data to the base station.

o Proposing a decompression algorithm to retain the originality of data at base

station.

1.4 Thesis Organization

This dissertation report comprises of five chapters including this chapter that

introduces the topic and states the problem. The rest of the report is organized as

follows:

Chapter 2 details the fundamentals and provides a literature review of the various

data compression algorithm and techniques used in wireless sensor networks.

Research gaps and shortcomings are identified and described.

Chapter 3 describes the proposed data compression algorithm which reduces

memory and saves energy by reducing the original size of data. This chapter also

describes the decompression algorithm which decompresses the compressed data.

Chapter 4 discusses the implementation details and provides the experimental results

of the proposed algorithms. In this chapter performance of the proposed algorithm is

also compared with the existing one.

Chapter 5 concludes the dissertation work and gives suggestions for future work.

M

CHAPTER 2

Background and Literature Survey

2.1 Introduction to Wireless Sensor Network

2.1.1 Wireless Sensor Network Model
The major components of a typical sensor network are shown in figure 2.1. They

are: sensor nodes, the sensor field, the sink and the task manager.

A sensor field can be considered as the area in which the nodes are placed i.e. the

area in which a particular phenomenon to occur.

Sensors nodes or motes are the heart of the network. They are in charge of

collecting data and routing this information back to a sink.

A sink is a sensor node with the specific task of receiving, processing and storing

data from the other sensor nodes. They serve to reduce the total number of

messages that need to be sent, hence reducing the overall energy requirements of

the network.

Elnt~ernet and
11te = 	s - Sink}~

Task manager 	 0
node 	 v 	~~
User

Sensor field 	Sensor, nodes

Figure 2.1 Sensor network communication structure

The task manager or base station is centralized point of control within the

wireless sensor network, which extracts information from the network and

7

disseminates control information back into the network. It also serves as a

gateway to other networks, a powerful data processing/storage centre and an

access point for a human interface. Hardware wise the base station is either a

laptop or a workstation. Data is streamed to these workstations either via the

internet, wireless channels, satellite etc [I].

Basic features of sensor networks are [6]:

• Self-organizing capabilities

• Short-range broadcast communication and multi-hop routing

• Dense deployment and cooperative effort of sensor nodes

• Frequently changing topology due to fading and node failures

• Limitations in energy, transmit power, memory and computing power

Some of the advantages of wireless sensor networks over wired one are as follows

[3]:

• Ease of deployment: These wireless sensor networks can be deployed at the

site of interest without any prior organization, thus reducing the cost and time

and also increasing the flexibility of organization.

• Extended range: One huge wired macro-sensor can be replaced by many

smaller wireless sensors for the same cost. Such macro-sensor can sense only

a limited region whereas network of smaller sensors can be distributed over a

wider range.

• Fault tolerant: With macro-sensors failure of one node makes that area

completely unmonitored. With wireless sensors, failure of one node does not

affect the operation substantially. At most accuracy of data collected may be

somewhat reduced.

• Mobility: If a region becomes unmonitored we can have the nodes rearrange

the nodes themselves to distribute the node evenly (e.g. if placed at nodes),

i.e., these nodes can be made to move towards area of interest but mobility is
lower compared to MANETs.

2.1.2 Application of Wireless Sensor Networks

Wireless Sensor Networks have changed the interface of information retrieval

from the physical world. In a typical application, a WSN is scattered in a region
where it is meant to collect data through its sensor nodes. Instead of the

conventional methods, WSN deploys a large number of small nodes which gather

data to be interpreted in a distributed manner [6, 7, 8, 9]. The application domains

are:

• Military: Military could use sensor networks for battlefield surveillance;

monitor, vehicular traffic; track the position of the enemy; safeguard the

equipment of the side deploying sensors; damage assessment and attack

detection (chemical, biological).

• Industrial Application: Monitoring and control of industrial equipment;

factory process control and industrial automation; wastewater monitoring;

landfill ground well level monitoring.

• Home Application: Home automation can be brought about by creating a

smart environment; theft detection; kids activity monitoring.

• Environmental Monitoring: Sensor networks can be used to monitor

environmental changes. Rainfall and flood monitoring; forest fire

detection; weather forecasting; geological studies; precision agriculture.

• Habitat Monitoring: Biocomplexity mapping by adapting to

environmental dynamics, through coordinated actuation by programmed

triggering of sensing to enable identification, recording and analysis of
interesting events to understand the behavior of birds, animals etc.

• Health Application: Tele-monitoring of human physiological data;

Tracking and monitoring patients and doctors inside a hospital; Drug
administration in hospitals; monitoring people's health conditions; Sensors

2

for: blood flow, respiratory rate, ECG (Electrocardiogram), blood

pressure, and oxygen measurement.

• Structure monitoring: Sensors could be used to monitor vibration that

could damage the stricture of a building. Such systems can detect, localize

and estimate the extent of damage. Thermostats and temperature sensor

nodes can be deployed all over the building's area.

• Smart sensor networks: These networks have a number of independent

sensors Each of the sensors make local decision and all the decisions are

combined and weighed based on a specific algorithm and a global decision

is taken.

Sensor

Network

Tracking (Monitoring

>It

	

y Tracking 	 A n-ifTracking 	 SNUrity [fie,I ctbn 	 rlr .
birds

stop erbg
fncm rL 	 . Cana kvd)

I(~t~ ire 	 'L_[itf[nci~~_trial 	 Pnhlici(ndustrhiI
` 	 Traf-k Tra rig 	 Strwturyl hbaicri(

	

Human tryk ni 	 Carffbis'rfacung 	 factory 1Moiionn.

	

l' try m6alorin-1, 	 Inventory Moni ing
1uhin_ Maah utg

OenuL1 MondOlinQ

}nTirnnmenc

	

Paint rm)nitcfing 	
Fnv iromturtaf h:anit-icing

lw& it}Lr, tenlpicalwc, pft SUfl)

Figure 2.2 Overview of sensor applications [9]

U

2.1.3 WSNs versus MANETs

There is also considerable research in the area of mobile ad hoc networks

(MANETs) [28, 29, 30]. WSNs are similar to MANETs in some ways; for
example, both involve multihop communications. However, the applications and

technical requirements for the two systems are significantly different in several

respects.

• The typical mode of communication in WSN is from multiple data sources

to a data recipient or sink (somewhat like a reverse multicast) rather than

communication between a pair of nodes. In other words, sensor nodes use

primarily multicast or broadcast communication, whereas most MANETs

are based on point-to-point communications.

• In most scenarios (applications) the sensors themselves are not mobile

(although the sensed phenomena may be); this implies that the dynamics

in the two types of networks are different.

• Because the data being collected by multiple sensors are based on

common phenomena, there is potentially a degree of redundancy in the

data being communicated by the various sources in WSNs; this is not

generally the case in MANETs.

• Because the data being collected by multiple sensors are based on

common phenomena, there is potentially some dependency on traffic

event generation in WSNs, such that some typical random-access protocol

models may be inadequate at the queueing-analysis level; this is generally

not the case in MANETs.

• A critical resource constraint in WSNs is energy; this is not always the

case in MANETs, where the communicating devices handled by human

users can be replaced or recharged relatively often. The scale of WSNs

and the necessity for unattended operation for periods reaching weeks or

months implies that energy resources have to be managed very

judiciously. This, in turn, precludes high-data-rate transmission.

11

• The number of sensor nodes in a sensor network can be several orders of

magnitude higher than the nodes in a MANET.

For these reasons the plethora of routing protocols and solutions that have been

proposed for MANETs are not suitable for WSNs, and alternative approaches are

required.

2.2 Data Compression

Data compression [5] is the process of encoding information using fewer bits than

an unencoded representation would use, through use of specific encoding schemes.

As with any communication, compressed data communication only works when

both the sender and receiver of the information understand the encoding scheme.

Compressed data can only be understood if the decoding method is known by the

receiver. There are many known methods of data compression. They are based on

the different ideas and are suitable for different types of data. They produce different

results, but they are all based on the same basic principle that they compress data by

removing the redundancy from the original data in the source file. The idea of

compression by reducing redundancy suggests the general law of data compression,

which is to "assign short codes to common events and long codes to rare events".

Data compression is done by changing its representation from inefficient to efficient

form [11].

2.2.1 Compression Techniques

When we speak of a compression technique or compression algorithm, we are

actually referring to two algorithms. There is the compression algorithm that takes

an input x and generates a representation xc that requires fewer bits, and there is a

reconstruction algorithm that operates on the compressed representation x, to

generate the reconstruction y. These operations are shown schematically in figure

12

2.3. We will follow convention and refer to both the compression and

reconstruction algorithms together to mean the compression algorithm [10].

Based on the requirements of reconstruction. data compression schemes can be

divided into two broad classes: lossless compression schemes, in which y is

identical to x, and loss, compression schemes, which generally provide much

higher compression than lossless compression but allow y to be different from x.

C'.-I„uµaVatVl I l
Jy TU%OXMW%T AAc 1

R ~~,t•t,i~urt

Original

ri 	 4)n L UVVOwuaca
.,ynw ~rG7~rri.i¢.

N P. bAWT

Reconstructed

Figure 2.3 Compression and reconstruction 1101

Lossless Compression

Lossless compression techniques. as their name implies, involve no loss of

information. If data have been losslessly compressed. the original data can be

recovered exactly from the compressed data. Lossless compression is generally

used for applications that cannot tolerate any difference between the original and

reconstructed data. Text compression is an important area for lossless

compression. It is very important that the reconstruction is identical to the text

original, as very small differences can result in statements with very different

meanings. Consider the sentences "Do not send money” and "Do now send

money." A similar argument holds for computer files and for certain types of data

such as bank records [10].

13

There are many situations that require compression where we want the

reconstruction to be identical to the original. There are also a number of situations

in which it is possible to relax this requirement in order to get more compression.

In these situations we look to lossy compression techniques.

Lossy Compression

Lossy compression techniques involve some loss of information, and data that

have been compressed using lossy techniques generally cannot be recovered or

reconstructed exactly. In return for accepting this distortion in the reconstruction,

we can generally obtain much higher compression ratios than is possible with

lossless compression.

In many applications, this lack of exact reconstruction is not a problem. For

example, when storing or transmitting speech, the exact value of each sample of

speech is not necessary. Depending on the quality required of the reconstructed

speech, varying amounts of loss of information about the value of each sample

can be tolerated. If the quality of the reconstructed speech is to be similar to that

heard on the telephone, a significant loss of information can be tolerated.

However, if the reconstructed speech needs to be of the quality heard on a

compact disc, the amount of information loss that can be tolerated is much lower.

Similarly, when viewing a reconstruction of a video sequence, the fact that the

reconstruction is different from the original is generally not important as long as

the differences do not result in annoying artifacts. Thus, video is generally

compressed using lossy compression [10].

2.2.2 Modeling and Coding

The development of data compression algorithms for a variety of data can be

divided into two phases [5]. The first phase is usually referred to as modeling. In

this phase we try to extract information about any redundancy that exists in the

data and describe the redundancy in the form of a model. With a perfect, concise

CA!

model that describes the generation of the input source which is to be compressed,

one could reproduce the data without transmitting the source data. For example, if

the sequence 1 1 2 3 5 ...6765 were to be transmitted, one could express it with a

"model" of Fibonacci numbers. In practice, one must approximate and construct

an approximate mathematical model for the data. In English text, for example,

one can model the probability of a letter occurring as a probability conditioned on

letters that have already been transmitted. This probabilistic model is transmitted

with a description of how the data differs from the model. The second phase is

called coding in which information is mapped to compact codewords. A

codeword must decode to a unique value so there can be no doubt of the original

message. In this phase, a description of the model and a "description" of how the

data differ from the model are encoded, generally using a binary alphabet. Often

the modeling and coding steps are tightly coupled [10]. Some popular coding

schemes for data compression tools are:

Huffman Coding

If the probability of each source symbol is known a priori (perhaps by scanning

through the source), a procedure known as static Huffinan coding can be used to

build an optimal code in which the most frequently occurring symbols are given

the shortest codewords [5]. Huffman codes are established by storing the symbols

of the alphabet in a binary tree according to their probability. As the tree is

traversed from root to leaf, the code grows in length. When visiting the right

child, a 0 is appended to the code. When visiting the left child, a I is appended.

Thus, symbols which occur frequently are stored near the root of the tree and have

the shortest codes. Since data compression tools rarely have the luxury of a priori

knowledge and cannot afford two passes through the data source, variants of the

Huffman algorithm have been developed that work dynamically and update the

tree as source symbols are encountered [10, 11].

Arithmetic Coding

1.5

Optimal compression ratio for a data source is traditionally described with respect

to Claude Shannon's definition of source entropy: a measure of the source's

information and therefore the average number of bits required to represent it.

Sometimes the most frequently occurring symbol can contain so little information

that it would be ideal to represent it with less than 1 bit. Huffman codes are

restricted to using an integral number of bits per symbol, increasing the coding

overhead. Arithmetic codes have been designed to support a fractional number of

bits per symbol to bring the average length of a codeword much closer to the

optimal [10, 11]. Knowing the probability of occurrence for each symbol, a

unique identifier can be established for a series of symbols. This identifier is a

binary fraction in the interval [0, 1). Unlikely symbols narrow this interval so that

more bits are required to specify it, while highly likely symbols add little

information to a message and require the addition of fewer bits as the interval

refinement is coarser. As the fraction converges, the most significant bits become

fixed, so the fraction can be transmitted most-significant-bit-first as soon as it is

known. Arithmetic coding requires frequent division and multiplication, but this

experiments show that an optimized implementation can run faster than the well-

optimized UNIX compact program, an adaptive Huffman encoder [5].

Lempel Ziv Codes

A Lempel-Ziv codebook [10] is made up of fixed-length codewords in which each

entry has nearly the same probability of appearing, but in which longer groups of

symbols are represented in the same length as single symbols. Thus, it may

require extra bits to send the coded version of a single symbol, but a string of

frequently occurring symbols can be represented with a fraction of the bits

ordinarily required. Since only it codewords can be represented with Ig(n) bits,

systems for dynamically increasing the length of codewords exist.

There are two terms used in data compression one is compression rate and other is

compression ratio. Compression rate is the rate of the compressed data. Typically,

it is in units of bits/sample, bits/character, bits/pixels, or bits/second. Compression

16

ratio is the ratio of the size or rate of the original data to the size or rate of the

compressed data. For example, if a gray-scale image is originally represented by 8

bits/pixel (bpp) and it is compressed to 2 bpp, such that the compression ratio is 4-

to-1. Compression rate is an absolute term, while compression ratio is a relative

term [5].

2.3 Data Compression Schemes for WSNs

Wireless sensor networks are resource constraint: limited power supply, bandwidth

for communication, processing speed, and memory space. One possible way to

achieve maximum utilization of those resources is by applying data compression on

sensor data. Existing compression algorithms are not applicable for sensor nodes

because of their limited resource. Therefore, it is necessary to design a low-

complexity and small size data compression algorithm for sensor networks. Some of

data compression schemes for WSNs are:

2.3.1 Distributed Compression

The basic idea behind the Distributed Compression scheme is using side

information to encode source information [12]. For instance, there exist two

sources (X and Y) as shown in figure 2.4.

SIde lnionnation

Ltltl?C1U`C 1

X -P l.:nCoder 2

Partial I nih ima ti onl

Figure 2.4 Distributed Compression examples

They are correlated and discrete-alphabet independent identically distributed.

Since in a sensor network, sensor nodes will be densely populated in a sensor

17

field, this correlation condition can be satisfied easily. Then, X can be compressed

at the theoretical rate of its conditional entropy, H (XIY), without the Encoder 1

accessing Y. The conditional entropy [121 can be expressed as

H (XIY) = - EP,,(y)YPX (x/ y)log 2 Pjxl y) 	 (2.1)

The general scheme of Distributed Compression is first to compose cosets, whose

codevectors of source X. The distance of any two codevectors in the same coset

has to be large enough. An index value is assigned to each coset. When

transmitting data to a decoder, the source X only sends an index value of coset, to

which the codevector belongs. The source Y sends a codevector as a side-

information. The decoder looks up the coset, which has the same index received

from X. Then, the decoder selects one codevector, which has a closest value to the

codevector sent by Y, in the coset.

A simple example of Distributed Compression [131 is as follow. There are two (X

and Y) 3-bit data sets. The Hamming distance between X and Y is no more than

one bit. If both Encoder 2 and Decoder know Y, X can be compressed to 2 bits.

Then if Y is only known by the Decoder, what will happen to the compression

rate of X? According to the Distributed Compression scheme, since the Decoder

know Y and X is only one Hamming distant apart from Y, it is not efficient to

distinguish X=111 from X=000. As a same reason, X=001 and 110, X=01 0 and

101, and X=011 and 110 do not need to be distinguished from each other. These

sets of two X values are grouped as 4 costes and assigned 4 different binary index

numbers:

coset 1 = (000, 111): 00

coset 2 = (001, .110): 01

coset 3 = (010, 101) : 10

coset 4 = (01 1, 100) : 11

If X=0.10 and Y=110, the Decoder received Y=l 10 as a side information from Y

and X=10 as a partial information form X. Then, at the Decoder, X=010 is

1)

selected from coset 2 since 110 has a Hamming distance of 2 from 110. Whether

X know Y or not, X can still compress 3 bits information into 2 bits.

Distributed Compression scheme can be applied to not only discrete sources as

illustrated by the above example, but also continuous sources. Also, it can be used

for both lossless and lossy compression scheme. For example, 4 cosets can be

formed from an 8-level quantizer. It is noticed that two codevectors in each coset

are grouped so that they can have the maximum 'possible distance from each

other.

2.3.2 Coding by Ordering

The Coding by Ordering data compression scheme [14] is part of Data Funneling

Routing. The compression scheme is works as follow. First, a data pass from

sensor nodes in the interested region to a collector node is set up as shown in

figure 2.5. In Data Funneling Routing, some of sensor nodes work as a data

aggregation node. For example, node A, B, and D area data aggregation node. At

an aggregation node, sensing data collected by other 'nodes is combined, and the

aggregated data is sent to its parent node. At node D in figure 2.5, data collected

by node E is combined with data collected by node D itself. Then, the aggregated

data is transmitted to node B.

tiiecestL'd .mL'irsn

Figure 2.5 Data path in coding by ordering data compression scheme

19

In the algorithm, when data is combined at an aggregation node, some data is

dropped. To include the information of dropped data in the aggregated data, the

order of data packet is utilized. For example, four nodes (Ni, N2, N3, and N4)

send the data to an aggregation node (Na). The data value of each node can be any

integer ranging from 0 to 5. If we decide to drop the data from N4 and express the

data from N4 by ordering packets from other 3 nodes (NI, N2, and N3), there are

3! = 6 possible ordering. Therefore, by using permutation of three packets, the

data value of N4 can be included in an aggregated packed without actually

including the packet of N4. The possible combination of permutation and data

value is presented in Table 2.1.

Table 2.1 Permutation and its represented integer value

Packet Permutation Integer Value

N 1,N2,N3 0

N 1,N3,N2 1

N2,N1,N3 2

N2,N3,N1 3

N3,N I,N2 4

N3,N2,N I 5

For a general case, let's assume that n is the total number of sensor nodes — each

node has different a node ID, m is the number of nodes sending a packet to an

aggregation node, k is the possible range of data value, and 1 is the number of

sensor node dropped at the aggregation node. Then, the number of possible

combination of IDs, which dropped nodes have, can be expressed as n-'n+IC1. Since

each of I nodes can take any value among possible k data values, there are k'

possible data value combinations. When combining possible IDs and data values,

there is total of (n-' Ci)k' possible values. This combination of values needs to be

expressed by (m-l)! permutations. Therefore, the following inequality has to be

satisfied.

(m-1) >

70

Theoretically, when n = 27, k = 24, and m = 100, approximately 44% of packets

can be dropped at the aggregation node by applying Coding by Ordering. Since

this method has good compression ratio and simple algorithm, it may be possible

to use for WSNs. One difficulty of utilizing this scheme is that since there is no

efficient algorithm mapping permutation to data value, it requires a mapping

table. As the number of sensor nodes aggregated increases, the size of table

increases exponentially.

2.3.3 Pipelined In-Network Compression

The basic idea of pipelined in-network compression scheme [15] is trading high

data transmission latency for low transmission energy consumption. Collected

sensor data is stored in an aggregation node's buffer for some duration of time.

During that time, data packets are combined into one packet, and redundancies in

data packets, will be removed to minimize data transmission.

For example, each data packet has the following form: <measured value, node ID,

tirnestamp>. Then, the compressed data packet has the following form: <shared

prefix, suffix list, node ID list, timestamp list>. The "shared prefix" is the most

significant bits, which all measured values in combined data packets have in

common. The, length of shared prefix can be changed by a user based on the

knowledge of data similarity. If the measured values are expected he close to each

other, the length of prefix value can be set to relatively long. The "suffix list" is

the list of measured values excluding the shared prefix part. The "node ID list" is

the list of node identifiers and the "timestamp list" is the list of timestamp. The

compression scheme is illustrated in Figure 2.6. In the figure, three nodes send the

data packets to the compression node. At the compression node, three data

packets are compressed into one packet. In this example, the length of shared

prefix is set to 3. In this example, total number of bits is reduced from 33 to 27.

21

• € ft€o€.o1.01)1:-1 N_€001 € H. €o. €ire= I V100IH)L € €. € € €:

loft_ i01.1€t.I3iftF.1,01 r10.11)4W1.101.1133)=-•

Figure 2.6 In-network Compression

One advantage of this simple compression scheme is that the shared prefix system

can be used for node IDs and timestamps. By doing so, more data compression

can be achieved. The efficiency of data compression depends on the length of

shared prefix. If we could set a long shared prefix and measured values have

commonality, the compression ratio increases. However, there is no similarity in

measured sensor values. Even if we could set a long shared prefix, the efficiency

of Pipelined In-Network Compression will decrease. In addition, if we are

combining a large amount of data packets, than a large data buffer is required to

temporary store those packets. Since a sensor node has only a limited size of

memory space, enough buffer space will not be available.

Although focusing on wireless ad-hoc networks, Barr and Asanovi'c show in [5] that

the energy required for transmitting a bit can be equivalent to the energy

consumption of a thousand microcontroller operations. However, their results were

acquired from a Compaq Personal Server handheld, which features 32 megabytes of

RAM and 16 kilobytes of cache. This significantly exceeds the resource constraints

on many of today's mote platforms.

Pradhan et al. [13] suggested a framework for distributed compression, in which

they have used joint source and channel coding that brings about the minimization in

the amount of inter-node communication for compression using both a quantized

source and correlated side information within each individual node. With the

22

introduction of many application domains like various kind of sensor networks that

are severely energy and power constrained, the topic of energy efficiency is getting

an important aspect to be taken into account. In some of the literatures, both of the

aspects, data compression as well as energy efficiency are considered together.

Magli et al. [16] introduced a low-complexity video compression scheme which is

based on JPEG data compression. This algorithm is specifically designed for the

wireless video surveillance system.

Hans and Schafer [17] present an overview of lossless data compression in the

context of audio data.

Zhuang and Li [1.8] have implemented the compression algorithms for seismic data.

In this paper, the amount of energy reduction due to the reduction in data after

compression has been estimated while considering only the energy costs of

communication.

Sadler and Martonsi [19] have described a variation of lossless LZW (Lempel-Ziv-

Welch) algorithm pertaining to the common sensor platforms with few kilobytes of

memory. This version can carry out the compression of the data block with a length

of 528 bytes at a time. The S-LZW (Simple LZW) algorithm causes the saving in

energy by the factor of more than 1.5x locally, and over 2.5x as far as the overall

network is concerned, for the tests carried out with the data reprieved from real

sensor networks. However, the evaluation of the system was made out with delay-

tolerant network setting while data was buffered before being transmitted.

Tsiftes et al. compare mechanisms to compress code updates to remotely reconfigure

nodes in [20]. They present the algorithm, which combines multiple preprocessing

and coding steps, while maintaining the characteristics that the decoder part can still

be run on memory-constrained sensor platforms. Results show that. network-wide

23

energy savings up to 67% can be achieved when compressing the code updates using

GZIP (GNU zip).

Ju and Cui presented the EasiPC packet compression mechanism in [21]. Each

packet field needs to be analyzed and classified according to its changing frequency

in advance. Different compression methods are associated with each category; while

randomly changing fields are always transferred uncompressed, sequence number

fields are e.g. encoded by difference coding. In addition, the sensor readings are

encoded by either difference coding or length-variable coding. Removing redundant

information from the packet, the developed mechanism allows for compression

gains of up to 50% as well as the corresponding reduced transmission delays. The

results were however not verified by an energy analysis.

Reinhardt, M. Hollick, and R. Steinmetz [22] present a compression framework

utilizing a stream-oriented compression scheme in which efficient data transfer

between nodes is provided by shifting data compression into a dedicated layer for

sensor networks.

Capo-Chichi et al. [23] proposed a data compression algorithm K-RLE inspired

from Run Length Encoding which increases the ratio compression compared to RLE

and SLZW where K is a precision parameter. The algorithm is lossy algorithm. The

energy consumption study shows that while 2-RLE offers a better compression ratio

than RLE and S-LZW(Simple LZW), it consumes half energy compared to S-LZW

which uses the most energy.

Zhou Yan-li et al. [24] proposed an improved LZW (Lempel-Ziv-Welch) algorithm

for wireless sensor network nodes. The compression algorithm is lossless data

compression algorithm. The results of compression test on sample data shows that

the algorithms can significantly improve the compression ratio and reduce the size

of the dictionary as well as energy consumption in data transmission than LZW

algorithm.

24

G~NTRAL Lie_
'

C ACC No. -<

Date

Kirsten Dolfus and Torsten Braun [25] explore the design space for data

compression for wireless sensor and mesh networks by profiling common, publicly

available algorithms. They focus on lossless, stand-alone (thus non-distributed)

compression schemes to lower the amount of data stored within a network node or

transmitted across the network. The performance of algorithms depends on the

platforms used. Several goals such as a low overhead in terms of utilized memory

and compression time as well as a decent compression ratio have to be well balanced

in order to find a simple, yet effective compression scheme.

A different approach has been explored by Marcelloni et al. [26]: In order to keep

the algorithm as simple as possible and to avoid complex computations on

embedded nodes, their solution relies on a two-phase coding process based on a

lookup table of the size of the analog-digital converter and compresses the raw bits

of a sensor reading. Here, a codeword is a hybrid of unary and binary codes supplied

by an adequate dictionary similar to the one used for DC coefficient coding in JPEG

compression. Since the size of the dictionary is fixed and encoding is done via

mapping, the algorithm is well suited for on-the-fly compression. However, the

obtainable compression ratio is highly dependent on a good mapping strategy.

2.4 Shortcomings and Research Gaps

Many data compression schemes have been carefully designed for Sensor Networks

so as to make the most efficient use of the limited resources in terms of energy,

computation and storage. Most of these data compression schemes aim to exploit the

technological improvements to make the devices more energy efficient rather than

making them more powerful. To reduce energy consumption a lot of work has been

done upon — finding optimal paths between source and sink for transfer, aggregation

of smaller data units from different sources or generated at different time to a

combined data unit (by data fusion), aggregation of nodes to act as a super node by

clustering. Some techniques have even shown relation between routing and spatial &

25

temporal correlations to save energy by means of calculating joint entropy.

However, following are the shortcomings and research gaps that have been

observed:

1. Previous research for data compression in communication mainly focuses on

how to decrease delay or save required transmission bandwidth. No any data

compression algorithm discusses the energy savings with reducing memory

when sensor data are compressed at the originating node.

2. It is well known that data transmission is the major contributor to energy

consumption in WSN. There is a need to understand and study the effects of

reducing the power consumption by shrinking raw data down to smaller

volumes, which is desirable for data communication since the compressed

data can require significantly less time and energy to transmit compared to

the raw data.

3. There is little or no work done in the field of suppressing spurious or

redundant data at the sensor nodes itself before dissemination. Such a

technique would affect the amount of data in the network and reduce inter-

node transmissions and result in energy and memory savings.

26

CHAPTER 3

Proposed Data Compression Algorithm

3.1 Introduction

The studies in the previous chapter illustrate that sending data is more power

consuming than computation, and thus minimizing data size before transmitting in

wireless medium is effective to reduce total power consumption. Therefore, it is

beneficial for WSNs to employ a data compression algorithm. In this chapter, a data

compression algorithm for wireless sensor networks has been proposed. The

compression algorithm is particularly suited to the reduced memory and

computational resources of a wireless sensor network node. The compression

scheme exploits the high correlation that typically exists between consecutive

samples collected by the sensor onboard a node. Using this characteristic and

following the principles of entropy compression [6], the algorithm is able to

compute a compressed version of each value acquired from a sensor. Finally, the

compression algorithm is lossless. A decompression algorithm is also proposed to

retain the originality of data at base station

3.2 Model of Proposed Data Compression Algorithm

The proposed algorithm consists of three phases:

1. Selector: This phase selects three previous values with current value.

Initially, assuming three readings are zero.

2. Preprocessor: It predicts the median value along with lowest and highest

values among three previous values selected and finds the suitable interval

in which current value belong. It calculates the deviation of current value

in the suitable interval.

27

3. Encoder: Encoder gives the variable length code to the deviation obtained

in the previous phase by removing the redundancy from data.

The basic idea of encoding is to map an alphabet to a representation for that

alphabet, composed of sequences of bits of variable sizes, so that symbols that

occur frequently have a smaller representation than those that occur rarely. Block

diagram of proposed compression algorithm is shown in figure 3.1.

a

L..Coull~ressed
Selector Preprocessor Encoder Dhr1

Figure 3.1 Model of Proposed Compression Algorithm

3.3 The Compression Algorithm

Suppose xi is the current value of the reading taken by the sensor node where

subscript i denote the sample number. Since the application of sensor nodes is

mostly used to report the status of interested area to users, it is more useful to

measure x; acquired by sensor node. For each new acquisition x;, the selector phase

of compression algorithm selects three previous values (let three previous values are

a;, b; and c;) and pass these values to next phase. The preprocessor phase predicts the

median value m; along with lowest value li and highest value h; among three

previous values selected and finds the interval of the current value then computes

the deviation di of current value in that interval. The encoder performs compression

losslessly by encoding differences d; more compactly based on their statistical

characteristics. Each di is represented as a bit sequence bs; composed of two parts

s;lt;, where si codifies the interval in which current value x; lies and ti is the

representation of di.

W

encode (xi,, prevArray [])

// xi is current value and prevArray[] contains previous three

values

ai = prevArray[0]

bi = prevArray[b]

ci = prevArray [2]

li = minimum(ai, bi, ci) 	// calculate lowest value

mi = median (a1, bi, c±) 	// calculate median value

hi = maximum(ai, bi, c1) 	 // calculate highest value

IF (li <= xj <= hi) THEN

SET set_bit TO '0'

SET si TO set_bit

// si codifies the interval

IF (xi < m1)

SET set_bit TO '0'

SET si TO << s-„ set_bit >>

SET means TO I l? +i nk
L2

SET di TO (mean; - x1)

ELSE

SET set_bit TO '1'

SET Si TO << Si, set_bit >>

„t. +11
SET means TO

2

SET di TO (mean; - x1)

ENDIF

ELSE

SET set_bit TO '1'

SET si TO set_bit

IF (x > h)

SET set_bit TO '0'

SET si TO << si, set_bit >>

29

SET di TO (xi - hi)

ELSE
SET set bit TO '1'
SET si TO << s1, set_bit >>
SET d; TO (ii - x1)

ENDIF

ENDIF

IF di = 0 THEN

SET ni TO 0 	 // build bsl
SET bsi TO si 	 // ti is not needed

ELSE

IF C11 > 0 THEN

SET n; TO [logz Id;f]+ 1

SET ti TO (d,)I
n

ELSE

SET ni TO log, Id11]+1

SET ti TO (d, —1)I

ENDIF

SET bs1 TO << sl , ti >>

ENDIF

RETURN bsi

// build t.

// build bs;

Figure 3.2 Pseudo-code of the proposed encode algorithm

The si part of the bit sequence bsi is computed in preprocessor phase of compression

algorithm. The coder phase compute the t; part of bit sequence bs; and appends this t;

with si. In the preprocessor phase of compression algorithm, current value x; may lie

in any one of four intervals. First interval takes values greater than and equal to li

and less than mi whereas second interval takes values greater than and equal to mi

and less than h,. The s; code for first interval is `00' and for second interval is `01'.

We calculate mean for these intervals to find deviation of current value x; from

mean value (say, mean;) and compute the difference d; = (mean; — x;) for both

intervals.

30

Start

Select 3 previous values
(say a;, bi and c;) and a
current value x;

Compute,
1; = minimum (a;, bi, ci)
mi = median (a,, b,, c;)
hi = maximum (ai, b;, ci)

Yes 	 No
1;<xi<hi

set bit = `0' 	 set_bit = `1'
si=set bit 	 si = set_bit

No 	 No
xi < m;

YPs 	 Yes,

set_bit = `0' 	 set_bit = `0'
s; = s; O set_bit 	 Si = Si O set_bit

mean; _ 	
2
	 d; _ (xi— h;)

d; = (mean; — x;)

set_bit = `1'
Si = si 0 set_bit

in. + h; mean1 =Ì
L2

d; = (mean; — x;)

set_bit = `1'
Si = si O set_bit
di = (li — xi) 	_

31

Figure 3.3 Flow chart of proposed data compression algorithm

Third interval takes value greater than h; and the si code for this interval is `10'.

Similarly fourth interval takes value less than Ii and `11' is the si code for this

interval. Compute the difference di = (xi - h;) for third interval and d; = (1; - xi) for

fourth interval.

Suppose n; is the number of bits needed to represent d;. If d; = 0, then n; = 0 else n;

= Llog, fr11I J + 1. If d; = 0, then bit sequence bs; is represented by si only. Otherwise, t;

is calculated and then concatenated with s; to forum bs;.

32

The t; part of the bit sequence bs; is a variable-length integer code generated as
follows:

1. If d; > 0, t; corresponds to the n; low-order bits of the two's complement
representation of di;

2. If d; < 0, t; corresponds to the ni low-order bits of the two's complement

representation of (d; — 1);

3. If d; = 0, t; is not represented.

The procedure used to generate t; guarantees that all possible values have different

codes. Once bs; is generated, it is appended to the bit stream which forms the

compressed version of the sequence of measures xi. Figure 3.2 summarizes the

algorithm used to encode measure xi. Here, << s, t i >> denotes the

concatenation of si and t; while vl„i denotes the ni low-order bits of v. Flow chart of

proposed data compression algorithm is shown in figure 3.3. In flow chart, symbol

O represents the concatenation operation.

3.4 The Decompression Algorithm

Decompression is the process of decoding information to get original data from

compressed data, through use of specific decoding schemes. As with any

communication, compressed data communication only works when both the sender

and receiver of the information understand the encoding and decoding scheme.

Compressed data can only be understood if the decoding method is known by the

receiver. The decompression algorithm reconstructs the measure xi from received bit

sequence bsi. Bit sequence bs; is composed of two parts silti, where si codifies the

interval in which current value x; lies and t; is the representation of di (d; is the

deviation of current value in the suitable interval).

33

decode (bs1, prevArray [])

// bsi is received bit sequence and prevArray[] contains previous

three values

ai = prevArray [0]

bi = prevArray [,[]

cj. = prevArray [2]

li = minimum (a;,, bi, c-)

mi = median(ai, bi, ci)

hi = maximum (ai, bi, ci)

SET count TO no. of bits in bsi

SET n; TO (count - 2)

IF ni = 0 THEN

SET d; TO 0

SET si TO bsi

// calculate lowest value

// calculate median value

// calculate highest value

ELSE

// break bsi into s; and ti

SET si TO first two bits of bsi

SET ti TO remaining bits of bsi

// read first bit of t;

IF ti[0] = '0'

SET ri TO -(2' --1)

SET dtl TO decimal value of ti

SET dti TO (ri + dti)

ELSE

SET dti TO decimal value of ti

ENDIF

SET di TO dti

ENDIF

// read first bit of si

IF SILO] = '0'

// read second bit of sE

IF Si[l] = '0'

34

1+/n. meani = 2 L 	J .
ELSE

in; + h;
m 	

-eanf L 	2
ENDIF

// compute. measure x;

SET xi TO 	(meani - di)
ELSE

// read second bit of si

IF 	S1[l] 	= 	' 0'
// compute measure xi

SET xi TO 	(di + hi)
ELSE

if compute measure xi
SET xi TO 	(li - d1)

ENDIF

ENDIF

RETURN xi

Figure 3.4 Pseudo-code of the decode algorithm

The algorithm selects three previous values and compute lowest value li, median

value mi and highest value h; among them. Count the number of bits presented in the

bit sequence bs; and set n; to (count-2). If n; = 0, then d; = 0 and s; = bsi else break

the bs; into si and t;. Assign first two bits of bs; to si and remaining bits to t;. Read

first bit of ti if it is `0', then compute d, = (-(2"' -1) + decimal value of t;) otherwise,

assign decimal value of t; to di. Read first and second bit of si such that si may take

any one of four possible values from'00', `01', `10', `11'.

35

S tart

Select 3 previous values
(say a;, b; and c1) and
a bit sequence bs;

Compute,
I; = minimum (a;, b;, c;)
mi = median (a;, b;, c;)
h; = maximum (a;, b„ c;)

count = no. of bits in bs;
n; = count -2

n;=0 d; = 0
si = bs;

No

Break bs; into s; and t;
Si = first two bits of bs;
t; = remaining bits to bs;

t1[0] = `0'
No

Compute, r; = - (2" -1)
	

Compute,
dti = decimal value of t; 	 dt; = decimal value of t;
dt;=r;+dt;

M

0

Figure 3.5 Flow chart of decompression algorithm

There are four cases arise to compute measure x;:

I 1.+m.
1. If s; = `00', then calculate xi = (mean; — d;) where, mean; = 	`

2

I m..+h.
2. If si = `01', then calculate x; = (mean; — d;) where, mean; = [' 2 '

3. If s; _ `10', then calculate xi = (d; + h;)

4. If s1 = 'I1', then calculate x; = (1; - d;)

37

The procedure used to generate xi from received bit sequence bs; guarantees that all

values are losslessly recovered. Figure 3.4 summarizes the algorithm used to decode

bit sequence bs; and flow chart of proposed decompression algorithm is shown in

figure 3.5

38

CHAPTER 4

Experimental Results and Discussions

4.1 Performance Metrics

Depending on the nature of the application there are various criteria to measure the

performance of a compression algorithm.

Compression ratio

Compression ratio [27], also known as compression power, is used to quantify the

reduction in data-representation size produced by data compression algorithm. It is

the ratio between the size of the compressed data and the size of the uncompressed

data and is defined as:

comp_ratio =
comp _ size

orig _ size

where, comps i z e and orig—size are the size of the compressed and the

uncompressed bit stream respectively. The smaller value of compression ratio the

better the data compression algorithm.

Compression factor

Compression factor [27] is the inverse of the compression ratio. That is the ratio

between the size of uncompressed data and the size of compressed data and is

defined as:

comp_factor =
orig _ size

conz p _ size

39

where, comp_size and orig size are the size of the compressed and the

uncompressed bit stream respectively. Compression factor should be more for better

performance of the algorithm.

Saving percentage

Saving percentage [27] is the reduction in size of relative to the uncompressed size.

It calculates the shrinkage of the source data as a percentage and is defined as:

saving__-percentage = (1 — comp _ size
orig _ size

) * 100

where, comp_,size and orig_size are the size of the compressed and the

uncompressed bit stream respectively. For better performance of the algorithm, it

should be more.

4.2 Simulation Environment

To evaluate the performance of proposed data compression algorithm, we used

TOSSIM [33], a discrete event simulator for TinyOS sensor networks.

Instead of compiling a TinyOS application for a mote, users can compile it into the

TOSSIM framework, which runs on a PC. This allows users to debug, test, and

analyze algorithms in a controlled and repeatable environment. As TOSSIM runs on

a PC, users can examine their TinyOS code using debuggers and other development

tools. TOSSIM builds directly from TinyOS code. To simulate a protocol or system,

there is a need to must write a TinyOS implementation of it. TOSSIM's primary

goal is to provide a high fidelity simulation of TinyOS applications. For this reason,

it focuses on simulating TinyOS and its execution, rather than simulating the real

world. While TOSSIM can be used to understand the causes of behavior observed in

the real world, it does not capture all of them, and should not be used for absolute

evaluations. TOSSIM does not model power draw or energy consumption. After a

simulation is run, a user can apply an energy or power model to these transitions,

40

calculating overall energy consumption. Because TOSSIM does not model. CPU

execution time, it cannot easily provide accurate information for calculating CPU

energy consumption.

In order to test the performance of the proposed data compression algorithm with

the Mercelloni's et al. algorithm, the algorithms are simulated and tested with a set

of data samples. Performances are evaluated by computing the above mentioned

performance metrics.

Consider samples acquired by a sensor node are generated randomly every 2

minutes and the probabilities decrease with the increase of the values. Total

numbers of samples collected by a sensor node in 24 hours or one day are 720

samples. Considering that uncompressed samples are normally represented by 16-bit

unsigned integers, the original size of uncompressed data for 720 samples = 11520

bits (= 7201̀ 16). Different numbers of samples are taken such as 720 samples, 1440

samples, 2160 samples, 2880 samples, 3600 samples, 4320 samples, 5040 samples,

5760 samples, 6480 samples, 7200 samples to measure the performance of

algorithms.

4.3 Results and Discussions

We have used the performance metrics given in section 4.1 for evaluating the

performance of the proposed data compression algorithm and the Mercelloni's et al.

algorithm [26]. We have selected the Mercelloni's et al. data compression algorithm

to comparing the performance of proposed data compression algorithm because

Mercelloni's et al. data compression algorithm have good compression ratio and

saving percentage other than existing data compression algorithms. The results of

the algorithms are shown in table 4.1 and table 4.2.

41

Table 4.1 Results of Merceiloni's et al. Algorithm

No.

01 Days

No. of
Samples

Total
Uncompressed

Data in bits

Total
Compressed
Data in bits

Compression
Ratio

Compression
Factor

Saving
Percentage

1 720 11520 3748 0.325347 3.073639 67.47

2 1440 23040 7621 0.330772 3.023225 66.92

3 2160 34560 11514 0.333159 3.001563 66.68

4 2880 46080 15688 0.340451 2.937276 65.95

5 3600 57600 19912 0.345694 2.892728 65.43

6 4320 69120 23833 0.344806 2.900180 65.52

7 5040 80640 27742 0.344022 2.906784 65.60

8 5760 92160 31327 0.339919 2.941871 65.96

9 6480 103680 35572 0.343094 2.914652 65.69

10 7200 115200 39330 0.341406 2.929062 65.86

Table 4.2 Results of Proposed Data Compression Algorithm

No.
of

Days

No. of
Samples

Total
Uncompressed

Data in bits

Total
Compressed
Data in bits

Compression
Ratio

Compression
Factor

Saving
Percentage

1 720 11520 2990 0.259459 3.852843 74.05

2 1440 23040 6027 0.261589 3.822797 73.84

3 2160 34560 9235 0.267216 3.742285 73.27

4 2880 46080 12245 0.265734 3.763169 73.42

5 3600 57600 15344 0.266389 3.753910 73.36

6 4320 69120 I8491 0.267520 3.738035 73.25

7 5040 80640 21722 0.269370 3.712365 73.06

8 5760 92160 24622 0.267166 3.742994 73.28

9 6480 103680 27827 0.268393 3.725878 73.16

10 7200 115200 30639 0.265964 3.759914 73.40

o Mercelloni's et al. algorithm ® Proposed algorithm

0.4

0.35

0.3

0 0.25

0 0.2 N

C 0.15

U 0.1

0.05

0

I

Ii II k■ U ■ .i■ ® ■ ~ I II ■ ■ U aI ■ ■ I
ii I I I 1 ■ • ■ l ■ • I LII I U. 1 1 I ■ ® ■

1 	2 	3 	4 	5 	6 	7 	8 	9 	1(
No. of days

Figure 4.1 Comparing the performance of algorithms on metric compression ratio

a Marcelloni's et al. algorirhm ® Proposed algorithm
100

90
, 80

70
60

50

= 40

30

20
10

0

I

I

Ir r r ■- ;~ ~r~ 	. ~- 'a-

II
ii
1

■ 1■ ,a a

■
■ a ia

-■
.1■

.1 !■ ;■ ■ ■ ~.;■
;■

!■ E■ e ■ a ,■ ■ a a a a a 'a La
1 	2 	3 	4 	5 	6 	7 	8 	9 	1(

No. of days

Figure 4.2 Comparing the performance of algorithms on metric saving percentage

43

Figure 4.1 and figure 4.2 shows the comparison of the proposed data compression

algorithm and Mercelloni's et al. algorithm on metric compression ratio and metric

saving percentage. The compression ratio of proposed data compression algorithm

(0.26) is less than the Mercelloni's et al. algorithm (0.34) which means proposed

algorithm compresses more data than Mercelloni's et al. algorithm. Proposed data

compression algorithm also reduces memory requirement by about 73.3 percent in

comparison to Mercelloni's et al. algorithm which only reduces about 65.8 percent.

CHAPTER 5

Conclusions

5.1 Conclusions

Minimizing energy consumption and reducing memory is a key requirement in the

design of sensor network protocols and algorithms. Since processing data consumes

much less power than transmitting data in wireless medium, it is effective to apply

data compression before transmitting data in order to reduce total power

consumption and storage by a sensor node.

In this dissertation, we have proposed a data compression algorithm to achieve

better compression ratio than other existing data compression algorithms. The

proposed compression algorithm is lossless and particularly suited to the reduced

storage and computational resources of a wireless sensor network node. The

performance of proposed algorithm is evaluated and compared with Mercelloni's et

al. algorithm on various metrics such as compression ratio, compression factor and

saving percentage. The algorithms are simulated on TOSSIM.

5.2 Scope for Future Work

In the future, this work can be extended in following ways:

• This work can be implemented on actual mote like mica mote.

• The performance of algorithm may be evaluated on mica mote for different

metrics.

• The compression algorithm may be extended to compress the image data as

well.

45

References

[1] Akyildiz, I.F.; Weilian Su; Sankarasubramaniam, Y.; Cayirci, E.;, "A survey on

sensor networks," Communications Magazine, IEEE , vol.40, no.8, pp. 102- 114,

Aug 2002.

[2] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, "How to prolong the

lifetime of wireless sensor networks," in Mobile Ad Hoc and Pervasive

Communications, M. Denko and L. Yang, eds. Valencia, CA: American Scientific

Publishers, to be published.

[3] Carlos de Morais Cordeiro, Dharma Prakash Agarwal, "Ad-hoc and sensor

networks: Theory and Applications," World Scientific Publishing Company, 2006,

ISBN: 981-256-681-3

[4] Jason Lester Hill, "System Architecture for wireless sensor networks," Ph.D. thesis,

University of California, Berkley, pp. 4, 2003

[5] K. C. Barr and K. Asanovi'c, "Energy-aware lossless data compression," ACM

Transactions on Computer Systems (TOGS), vol. 24, no. 3, pp. 250-291, August

2006.

[6] Kazem Sohraby, Daniel Minoli, Taeeb Znati, "Wireless Sensor Networks:

Technology, Protocols, and Applications," Willey-Interscience, A John Wiley &

Sons Inc. Publication, 2007, ISBN: 978-0-471 -74300-2

[7] Arampatzis, Th.; Lygeros, J.; Manesis, S.;, "A Survey of Applications of Wireless

Sensors and Wireless Sensor Networks," Proceedings of the 2005 IEEE

International Symposium on, Mediterrean Conference on Control and Automation,

pp.719-724, 27-29 June 2005

[8] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "Wireless sensor

networks: a survey," Computer Networks Elsevier 38 (2002), 393--422. 2002

[9] Jennifer Yick, Biswanath Mukherjee, Dipak Ghosal, "Wireless sensor network

survey, "Computer Networks Elsevier 52 (2008), 2292-2330, 2008.

46

[10] Khalid Sayood, "Introduction to Data Compression," Elsevier Inc. Publication,
2006, ISBN-13: 978-0-12-620862-7.

[11] David Salomon, "Data Compression: The Complete Reference," Springer-Verlag

New York, Inc. Publication, 2004, ISBN 0-387-40697 -2.

[12] J. Kusuma, L. Doherty, and K. Ramchandran, "Distributed Compression for Sensor
Networks," In Proceedings of 2001 International Conference on Inwwge Processing,

October 2001.

[13] S. S. Pradhan, J. Kusuma, and K Ramchandran, "Distributed Compression in a

Dense Microsensor Network," IEEE Signal Processing Magazine, Volume: 19,

Issue: 2, pp. 51-60, March 2002.

[14] D. Petrovic, R. C. Shah, K. Ramchandran, and J. Rabaey, "Data Funneling: Routing

with Aggregation and Compression for Wireless Sensor Networks," In Proceedings

of First IEEE International Workshop on Sensor Network Protocols and

Applications, May 2003.

[15] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu, "PINCO: a Pipelined In-Network

Compression Scheme for Data Collection in Wireless Sensor Networks," In

Proceedings of 12th International Conference on Computer Communications and

Networks, October 2003.

[16] E. Magli, M. Mancin, and L Merello, "Low-Complexity Video Compression for

Wireless Sensor Networks," In Proceedings of 2003 International Conference on

Multimedia and Expo, July 2003.

[17] M. Hans and R. W. Schafer, "Lossless compression of digital audio," IEEE Signal

Processing Magazine, vol.18, no.4, pp. 21-32, July 2001.

[18] Y. Zhang and J. Li, "Efficient seismic response data storage and transmission using

ARX model-based sensor data compression algorithm," Earthquake Engineering

and Structural Dynamics, vol. 35, pp. 781-788, 2006.

[19] C. M. Sadler and M. Martonosi, "Data Compression Algorithms for Energy-

Constrained Devices in Delay Tolerant Networks," in Proceedings of the 4th

International Conference on Embedded Networked Sensor Systems (SenSys), 2006.

[20] N. Tsiftes, A. Dunkels, and T. Voigt, "Efficient Sensor Network Reprogramming

through Compression of Executable Modules," in Proceedings of the 5th Annual

47

IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc

Communications and Networks (SECON), 2008.

[21] H. Ju and L. Cui, "EasiPC: A Packet Compression Mechanism for Embedded

WSN," in Proceedings of the Ilth IEEE International Conference on Embedded

and Real-Tinge Computing Systems and Applications (RTCSA), 2005.

[22] A. Reinhardt, M. Hollick, and R. Steinmetz, "Stream-oriented Lossless Packet

Compression in Wireless Sensor Networks," in Proceedings of the Sixth Annual

IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc

Communications and Networks (SECON), 2009.

[23] Capo-Chichi, E.P.; Guyennet, H.; Friedt, J.-M.; , "K-RLE: A New Data

Compression Algorithm for Wireless Sensor Network," Third International

Conference on Sensor Technologies and Applications (SENSOR COMM '09),

pp.502-507, 18-23 June 2009

[24] Zhou Yan-li; Fan Xiao-ping; Liu Shao-qiang; Xiong Zhe-yuan;, "Improved LZW

algorithm of lossless data compression for WSN," Third IEEE International

Conference on Computer Science and Information Technology (1CCSIT-2010),

vol.4, no., pp.523-527, 9-1 1 July 2010.

[25] Dolfus, K.; Braun, T.;, "An evaluation of compression schemes for wireless

networks," International Congress on. Ultra Modern Telecommunications and

Control Systems and Workshops (ICUNIT-2010), pp.1 183-1188, 18-20 Oct. 2010.

[26] Francesco Marcelloni and Massimo Vecchio, "A Simple Algorithm for Data

Compression in Wireless Sensor Networks," IEEE Communications Letters, Vol.

12, No. 6, June 2008.

[27] S. R. Kodituwakku, U. S. Amarasinghe, "Comparison of Lossless Data

Compression Algorithms for Text Data," Indian Journal of Computer Science and

Engineering (IJCSE), Engg. Journals Publications, Vol. 1, No. 4, pp. 416-425,

2007.

[28] Ashish K. Maurya, Dinesh Singh; "Simulation based Performance Comparision of

AODV, FSR and ZRP Routine, Protocols in MANET, " International Journal of

Computer Application, Foundation of Computer Science, New York, vol. 12, no. 2,

Novmber 2010.

[29] Ashish K. Maurya, Dinesh Singh, Anil K. Sarje, "Performance Comparison of

DSR, OLSR and FSR Routing Protocols in MANET using Random Waypoint

Mobility Model," IEEE International Conference on Network communication and
Computer (ICNCC-2011), New Delhi, India, 19-20 March, 2011.

[30] Ashish K. Maurya, Dinesh Singh, Anil K. Saije, "Comparative Performance
Analysis of LANMAR, LARI, DYMO and ZRP Routing Protocols in MANET

using Random Waypoint Mobility Model," IEEE International Conference on

Network communication and Systems (ICNCS-2011), Kanyakumari, India, 8-10

April, 2011.

[31] Phillip Levis, "TinyOS Programming," June 28, 2006

[32] David Gay, Philip Levis, David Culler, Eric Brewer, "nesC 1.2 Language Reference

Manual," August 2005.
[33] Philip Levis and Nelson Lee, "TOSSIM: A Simulator for TinyOS Networks,"

September 17, 2003.

List of Publications

[1] Ashish K. Maurya, Anil K. Sarje, "Median Predictor based Data Compression

Algorithms for Wireless Sensor Network," International Conference on Computer

Science and Informatics (ICCSI-2011)", Bhubaneswar, India, 19-20 June, 2011

(Accepted).

50

APPENDIX A

Introduction to TinyOS

A.1 Introduction

TinyOS [31] is a free and open source component-based operating system and

platform targeting wireless sensor networks (WSNs). TinyOS is an embedded

operating system written in the nesC programming language as a set of

cooperating tasks and processes. It is intended to be incorporated into smartdust.

TinyOS began as a project at UC Berkeley as part of the DARPA NEST program.

It has since grown to involve thousands of academic and commercial developers

and users worldwide.

TinyOS have following features:

• Conserving resources

• No file system

• No dynamic memory allocation

• No memory protection

• Very simple task model

• Minimal device and networking abstractions

• Application and OS are coupled—composed into one image

A.2 Programming Model

nesC (network embedded system C) [32] is a component-based C dialect. It is a

static language which has no heap, no function pointers and no any dynamic

51

memory allocation. In some ways, nesC components are similar to objects. For

example, they encapsulate state and couple state with functionality. The principal

distinction lies in their naming scope. Unlike C++ and Java objects, which refer to

functions and variables in a global namespace, nesC components use a purely

local namespace. This means that in addition to declaring the functions that it

implements, a component must also declare the functions that it calls. The name

that a component uses to call these functions is completely local: the name it

references does not have to be the same that implements the function. When a

component A declares that it calls a function B, it is essentially introducing the

name A.B into a global namespace. A different component, C, that calls a

function B introduces C.B into the global namespace. Even though both A and C

refer to the function B, they might be referring to completely different

implementations. Every component has a specification, a code block that declares

the functions it provides (implements) and the functions that it uses (calls).

TinyOS•Connponents:

Programs -itI-ebuilt out of components in which each component is specified by an

interface which provides "hooks" for wiring components together. Components

are statically wired together based on their interfaces to increases runtime

efficiency. Components use and provide interfaces, commands, and events,

specified by a component's interface and the word "interface" has two meanings

in TinyOS. Components implement the events they use and the commands they

provide:

Components Commands Events

Use Can Call Must Implement

Provide Must Implement Can Signal

There are two types of components in nesC:

1. Modules: Implements the component specification (interfaces) with application

code.

52

2. Configurations: Wires components together i.e. how components are wired
together.

Configurations connect the declarations of different components, while modules

define functions and allocate state. A component does not care if another
component is a module or configuration and a component may be composed of

other components. A configuration states must name which components it is

wiring with the components keyword. Any number of component names can

follow components, and their order does not natter. A configuration can have

multiple components statements. A configuration must name a component before

it wires it. A module contains C-like code while configuration doesn't use C-like
code.

A.3 Concurrency Model

There are two types of execution contexts:

1. Tasks: Tasks are longer running jobs having time flexibility and uses

(currently) simple FIFO scheduling. Tasks are atomic with respect to other

tasks, i.e., single-threaded but can be preempted by events. A task is

always posted for later execution; control returns to poster immediately.

Scheduler supports a bounded queue of pending tasks i.e. node sleeps
when the queue is empty. For simplicity, tasks don't take arguments and

don't return values.

2. Events: Events (an overloaded term) are more precisely, hardware

interrupt handlers. Time is a critical factor for events; events have

shortened duration as much as possible by issuing tasks for later

execution. Events follow LIFO semantics; can preempt tasks and earlier

events.

53

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Conclusions
	References
	Appendix

