
CONTROLLER DESIGN FOR BALL BEAM SYSTEM 
USING VARIOUS CONTROL TECHNIQUES 

A DISSERTATION 

Submitted in partial fulfillment of the 
requirements for the award of the degree 

of 

MASTER OF TECHNOLOGY 
in 

ELECTRONICS AND COMMUNICATION ENGINEERING 
(With Specialization in Control and Guidance) 

By 

SWATI SWARNKAR 

4NTRALL/ 

ACCNo••• ••• 

~9j. .......... 
M t~, Date..... 

,~
v x 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE -247 667 (INDIA) 
JUNE, 2011 



CANDIDATE'S DECLARATION 

I hereby declare that the work presented in this dissertation entitled "CONTROLLER 
DESIGN FOR BALL BEAM SYSTEM USING VARIOUS CONTROL 
TECHNIQUES" submitted for the award of the degree of Master of Technology with 
specialization in Control & Guidance in the Department of Electronics & Computer 

Engineering, Indian Institute of Technology Roorkee, under the guidance of Dr. R. 
Mitra, Department of Electronics & Computer Engineering, Indian Institute of 

Technology Roorkee. 

Date: o I p 6 Q0 I 
Place: Roorkee 	 Swati Swarnkar 

CERTIFICATE 

This is to certify that the above statement made by the candidate is true to the best of my 

knowledge and belief. 

(Dr. R. Mitra) 

Department of Electronics & Computer Engineering, 

Indian Institute of Technology Roorkee 

Roorkee-247667, India 

i 



ACKNOWLEDGEMENT 

I express my foremost and deepest gratitude to Dr. R. MITRA, Professor, 

Department of Electronics and Computer Engineering, Indian Institute of Technology, 

Roorkee for his valuable guidance, support and motivation for this work. The valuable 

hours of discussion and suggestions that I had with him have undoubtedly helped in 

supplementing my thoughts in the right direction for attaining the desired objective. I 

consider myself extremely fortunate for having got the .opportunity to learn and work 

under his able supervision over the entire period of my association with him. 

My sincere thanks to faculty members of Control and Guidance for their constant 

encouragement, caring words, constructive criticism and suggestions towards the 

successful completion of this work My sincere thanks to the laboratory staff to access the 

computers and other resources at will for completion of this work. 

Last but not the least, I am highly indebted to my parents, friends and family 

members, whose sincere prayers, best wishes, moral support and encouragement have a 

constant source of assurance, guidance, strength and inspiration to me. 

11 



ABSTRACT 

The ball and beam system represents a standard nonlinear plant for both classical and 

modem control techniques. This system is widely used because it is simple to understand 

as a system and provides the opportunity to analyze the control techniques. The main aim 

of this research is to develop an intelligent controller to control the ball position and is 

able to perform satisfactory in presence of parameter variation and external disturbance. 

In order to achieve this objective, the thesis investigates the performance of a robust 

nonlinear control method called Sliding Mode Control (SMC) and various Artificial 

Intelligence (Al) techniques. 

In the formulation of any control problem, there will typically be discrepancies 

between the actual plant and the mathematical model developed for controller design. 

This mismatch may be due to unmodelled dynamics, variation in system parameters or 

the approximation of complex plant behaviour by a straightforward model. The designer 

must ensure that the resulting controller has the ability to produce required performance 

levels in practice despite such plant/model mismatches. This has led to an intense interest 

in the development of robust control methods which seek to solve this problem. One 

particular approach to robust-control controller design is the so-called sliding mode 

control methodology. Since, the actual model contains the ball on beam dynamics as well 

as dynamics of DC motor, making the controller design task difficult. So, initially a 

simplified model has been used (without considering DC motor). An SMC has been 

designed for this model. Next, an SMC has been designed for more realistic model. 

Although SMC is able to stabilize the system but it requires the model of system 

to be known. As modeling these complex nonlinear systems is often troublesome, hence, 

various soft computing techniques has been investigated, which allow controller design 

on model free basis. A Fuzzy Logic Controller has been designed for simplified ball beam 

system. Then, learning and generalizing capabilities of Neural Network has been 

explored. Finally, a hybrid approach called Adaptive Neuro Fuzzy Inference System 

(ANFIS) controller has been proposed. These techniques have been applied to ball beam 

system and are evaluated by simulation as well as real time control with the help of 

laboratory set up. In the end, the simulation and experimental results obtained from 

various controllers have been compared. 
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CHAPTER 1 

Introduction 

As this dissertation work is extension of the project work, the work done in the project 
has been included in brief along with the work that was proposed to be done in 
dissertation. The present work concerns the application of some of the conventional and 
modern control techniques to control the Ball-Beam system. The ball beam system is 

inherently unstable system, in which ball tends to move to one of the ends of the beam. 
The system is highly unstable because for bounded control input or bounded change in 

beam angle, produces unbounded movement of ball. The task is thus to apply a sequence 
of upward and downward forces of fixed magnitude to control the system so that the ball 
can be dynamically balanced at any location of the beam within a short period of time and 

beam can be kept in horizontal position. 

To control the Ball Beam system, various conventional and modern control schemes 
have been applied earlier. The classical (P, PI, PD) control technique has been the basis 

in simple control systems. Its simplicity has been the main reason for its wide 
applications in industry. Since classical controllers are fixed-gain feedback controllers, 

they can't compensate the parameter variations in the plant and can't adapt changes in the 
environment. Standard linear techniques are based on approximate linear models which is 

valid only around a small region of an operating point. In addition, in conventional 

techniques, mathematical modelling of the plants and parameter tuning of the controller 
has to be done before implementing the controller. Most real systems, relevant from a 
control perspective, exhibit nonlinear behaviour; furthermore, to model these systems are 

often troublesome. The need to overcome such problems and to have a controller well-
tuned not only for one operating point but also for a whole range of operating points has 

motivated the other control techniques and the idea of a robust and adaptive controller. 

Nonlinear control techniques, on the other hand, taking account of plant non-

linearities in the design of control law are capable of achieving better performance in a 
greater operating region. Specifically Sliding Mode Control (SMC) has been widely 

accepted as an effective method in dealing with uncertainties such as parameter variations 

and external disturbances. Sliding Mode controllers are a class of robust controllers which 
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uses discontinuous control. By proper design of the switching or sliding surface, VSC 
attains the conventional goals of control such as stabilization, tracking, regulation, etc. 
These controllers, however, require an infinitely (in the ideal case) fast Switching 

mechanism. The phenomenon of non ideal but fast switching was labelled as chattering. 
The high frequency components of the chattering are undesirable because they may excite 
unmodeled high-frequency plant dynamics. 

In the last four decades, numerous alternative control techniques, such as neural and 
fuzzy control, have been proposed instead of conventional classical technique. 

Development of artificial neural networks (ANN'S) and fuzzy logic theory (FL) have 

inspired new resources for possible implementation of better and more efficient control. 

ANN'S have capability of learning the dynamical systems that estimate input-output 

functions. Fuzzy systems transform sets of structured information into the appropriate 
control actions. Especially, neither ANN nor fuzzy systems need mathematical modeling 
of the plants. Fuzzy control systems can be developed along with linguistic lines and need 

some expertise information about the plant. On the other hand, before used for control 

purposes, ANN have to be trained and they need some information (not based on 
mathematical model but sometimes taken measurement from plant) about the plant. 

In this dissertation work, first of all, a Sliding Mode Controller has been designed for 

ball beam system. Essentially, SMC is a kind of Variable Structure Control (VSC) which 

utilizes a high-speed switching control law to drive the nonlinear plant's state trajectory 

onto a specified and user-chosen surface in the state space (called the sliding or switching 

surface), and to maintain the plant's state trajectory on this surface for all subsequent 

time. . The SMC controller developed assures desired behaviour of the closed loop 
system. Then, Fuzzy controller has been designed for Ball Beam system. The design of 

Fuzzy Logic Controller (FLC) is based on the knowledge of expert about the behaviour of 
system and it does not require rigorous mathematical calculation as in case of SMC. 
Next, the two controllers designed earlier (SMC and FLC) are utilized to achieve two 

level control action called supervisory controller. The two level control includes the 
simplicity and smooth control action of FLC as well as robustness of SMC. Then, several 

other soft computing methods have been employed to control the Ball Beam system. 
These include Neural Network Controller and ANFIS controller. The learning and 

generalizing capability of ANNs to imitate a particular input-output mapping presents a 

2 



new approach to control complex nonlinear systems. ANFIS is essentially a Fuzzy 
Inference System (FIS) which provides the functioning and advantages of an FLC but is 
generated with the help of training ability of Neural Network. Hence, it represents a 
hybrid neuro-fuzzy technique to deal with complex nonlinear problems. Finally, the 

performance of each controller has been evaluated by MATLAB/Simulink Simulation. 

Moreover, some of these controllers will also be applied to real time control of Ball Beam 
system and performance has been compared. 

1.1 Problem Statement 

The prime objectives of this research work will focus on developing Sliding Mode and 
Fuzzy Logic controllers, applied to ball beam system individually and in combination 

resulting in two level control scheme. Then, designing and examining the control 
performance of Neural Network technique to control ball beam system. Finally, a hybrid 

neuro-fiizzy approach called ANFIS has been -proposed. The control performance of 

various controllers designed will be compared on the basis of various specifications such 
as settling time, maximum overshoot, steady state error etc. 

1.2 Literature Review 

Various control schemes have been discussed in literature and have been applied to 
control the Ball Beam system. The control of Ball beam system using PD controller has 
been discussed in [1]. Several nonlinear control schemes for the ball beam system can be 

found in [2][3]. Conventional constant gain controllers used for ball beam system 
becomes poor due to strong non-linearities, modelling inaccuracy, parameter variation 

and uncertainties. Although PID control is a proficient technique for the handling of non-
linear systems and can be used to control nonlinear systems [1] but modelling these 
complex nonlinear systems is often difficult and sometimes impossible using the laws of 

physics. Hence using a classical controller is not suitable for nonlinear control application 

[4]. This necessitates the design of robust controllers which makes the system 
performance insensitive to parameter variations and uncertainties. 

The models used in feedback design should include some unstructured uncertainty 
to cover unmodeled dynamics, particularly at higher frequency. For a definite class of 
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nonlinear systems there is an appropriate robust control method called sliding mode 

control [5]. The subject has been treated in detail in [6]. This control method can be 

applied very well in the presence of model uncertainties, parameter fluctuations and 

disturbances provided that the upper bounds of their absolute values are known. The 

disadvantage of this method is the drastic changes in the manipulated variable. However, 

this can be avoided by a small modification: a boundary layer is introduced near the 

switching line which smoothes out the control behaviour and ensures the states remaining 

within the layer [7]. Given that the upper bounds of the model uncertainties are known, 

stability and high performance of the controlled system are guaranteed. 

To overcome the difficulty resulted due to modelling and to utilize the advantage 

of model free approach, interest in developing Artificial intelligence techniques has 

increased considerably. There have been an increasing amount of publications presenting 

research and implementations of artificial neural networks (ANNs) and fuzzy logic (FL). 

Being branches of artificial intelligence (AI), both utilizes the human way of using past 

experiences, adapting themselves accordingly and generalizing.. The work of L. A. Zadeh 

on Linguistic approach and system analysis based on the theory of fuzzy sets [8] was the 

basis of Fuzzy Logic. Zadeh's work motivated Mamdani and his colleagues to research 

on fuzzy control [9]-[l 1]. Fuzzy Logic Control is useful when the processes are too 

complex for analysis by conventional quantitative techniques or when the available 

sources of information are interpreted qualitatively, inexactly, or uncertainly [12]. Fuzzy 

modelling or fuzzy identification, first explored systematically by Takagi and Sugeno 

J [l3], has found numerous practical applications in control, prediction and inference. FLC 

gives better transient and steady state performance than PID in case of nonlinear systems 

[14]. Membership functions make the controller less sensitive to slight variations in the 

physical parameters. It does not require any system modelling or complex mathematical 

equations governing the relationship between inputs and outputs. It typically takes only a 

few rules to describe systems that may require several lines of conventional software 

code, which reduces the design complexity [15]. In [16], single input FLC has been 

presented which results in less computational requirement. The application of Fuzzy 

controller for real time control of Ball and beam system has been discussed in [ 17]. 

On the other hand, ANN works with parallel connected units, called neurons, 

which process inputs in accordance with their adaptable weights usually in a recursive 

manner for approximation. The pioneering work of McCulloch and Pitts was the 
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foundation stone for the growth of ANN architectures. In their paper, McCulloch and 

Pitts suggested the unification of neuro-physiology with mathematical logic, which 

showed way for some significant results in NN research. Perceptron rule and the LMS 

algorithm, the two early rules for training adaptive elements were first published in 1960. 

In the years following these discoveries, many new techniques have been developed in 

the field of neural networks [18] and the discipline is growing rapidly. The first major 

extension of the feedforward neural network beyond Madaline I took place in 1971 when 

Werbos developed a backpropagation training algorithm which, in 1974, he first 

published in his doctoral dissertation. In 1982, Parker rediscovered the technique and in 

1985, published a report on it at M.I.T. Not long after Parker published his findings, 

Rumelhart, Hinton, and Williams [19] also rediscovered the technique and as a result of 

the clear framework, they presented their ideas and they finally succeeded in making it 

widely known. The elements used by Rumelhart et al. in the backpropagation network 

differ from those used in the earlier Madaline architectures. The adaptive elements in the 

original Madaline structure used hard-limiting quantizers (signums), while the elements 

in the backpropagation network use only differentiable nonlinearities, or "sigmoid" 

functions. In digital implementations, the hard-limiting quantizer is more easily computed 

than any of the differentiable nonlinearities used in backpropagation networks [18]. 

ANNs have the ability to approximate a non-linear function. The performance of ANNs 

depend greatly on data used for training, [20] gives the idea for generating data and type 

of proper signal to be used for training. In past, ANNs have been employed by several 

researchers to control the ball and beam system., The real time control of Ball Beam 

system by a two layer network, developed using error back propagation (BP), temporal 

difference, and the reinforcement learning algorithms has been discussed in [21]. ANNs 

have proven superior learning and generalizing capabilities even on completely unknown 

systems that can only be described by its input— output characteristics. A neural network 

developed with genetic algorithms [22] shows the benefit of achieving more efficient 

solutions than regular neural network learning methods such as backpropagation (BP). 

The disadvantage in case of fuzzy controllers is problem involved with tuning, 

this implies the handling of a great quantity of variables like the ranges of the 

membership functions, shape of these functions, percentage of overlap among the 

functions, the design of the rule ,base, mainly, and when system is multivariable system, 

the number of parameters grows exponentially with the number of variables. On the other 
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hand, ANNs can be advantageous since they provide an adjusting mechanism and can 
adapt themselves to changes in the environment or optimize the system after an initial 
guess, which leads to learning and generalizing. Hence, various attempts have been made 

to combine these two techniques. A neural integrated fuzzy controller for Ball Beam 
system has been discussed in [23] which extracts fewer rules from operator and generates 
remaining rules by utilizing learning and interpolating capabilities of ANNs, taking 

advantage of the best of FLC and ANN. A Neural-Fuzzy algorithm for ball beam control 
system has been discussed in [24]. The superior features of ANNs combined with FLC to 
create hybrid neuro-fuzzy controller called Adaptive Neuro Fuzzy Inference System 

(ANFIS) was proposed by Jang [25]. ANFIS is also proved to be useful in modelling 
complex non-linear system utilizing input-output data sets [26]. A good example of how 

ANFIS is designed is given in [27], where it has been applied to control autonomous 
underwater vehicle. 

1.3 Organization of Dissertation 

This thesis consists of nine chapters and the topics covered in various chapters are: 
Chapter 1 gives the introduction part as well as literature review. 
Chapter 2 deals with the modelling and operation of Ball Beam System. 

Chapter 3 discusses the design of Sliding Mode controller for Ball Beam system. 
Chapter 4 demonstrates the Fuzzy Logic and its application to Ball Beam system control. 

Chapter 5 discusses the two level supervisory control design which comprises of FLC as 

well as Sliding mode controller. 

Chapter 6 investigates Neural Network controller design for ball beam system 
Chapter 7 discusses the hybrid Neuro Fuzzy approach called ANFIS which combines the 
capabilities of Fuzzy as well as Neural techniques to control complex nonlinear systems. 

Chapter 8 discusses the performance of various controllers by demonstrating simulation 

and experimental result as well as comparison between various controllers. 

Chapter 9 summarizes the whole dissertation_ 



CHAPTER 2 

Ball and Beam System Modelling 

2.1 Ball Beam System Description 

The Ball and Beam plant consists of a ball, beam, DC motor, lever arm, gear and belt 
pulley as shown in Fig. 2.1. The steel ball can roll freely along the whole length of the 

beam. The beam, at one end, is connected to lever arm, which is controlled by DC motor 
through gear and pulley. Two sensors are used to provide feedback information to the 

control system. An angle sensor is equipped in motor to provide current rotary position of 

motor shaft and other sensor, which is linear position sensor, is equipped along length of 

the beam that senses current position of ball on the beam. As the servo gear turns by an 

angle 0, the lever changes the angle of the beam by a. When the angle is changed from 
the horizontal position, gravity causes the ball to roll along the beam. 

Fig. 2.1 Ball and Beam system 

The objective is to design and implement controller which controls voltage to the motor 

in such a way so that desired position of ball is stabilized on the beam by changing the 

angle of the beam. This is difficult control task because the ball does not stay in one place 
on the beam but moves with an acceleration that is proportional to the tilt of the beam. In 

the control terminology, the system is open loop. unstable because the system output (ball 
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position) increases without limit for a fixed input (beam angle). Feedback control must be 
used to keep the ball in desired position on the beam. 

2.2 Simplified Model (Neglecting The Motor Dynamics) 

Let us consider, for simplicity, we neglect the motor dynamics. Then, the system model 
consists of ball on a beam only. The equation of motion of ball along the beam, using 
Lagrangian model, as given in [28], is 

CR2 +ml r+mgsina—mraz  =0 	
(2.1) 

Where, g is acceleration due to gravity (m/s2) 

m is mass of the ball (Kg) 

R is radius of the ball (m) 

J is ball moment of inertia (Kg m2) 

r(t) is ball position coordinate and a(t) is beam angle 

2.3 Complete Model 

The actual mathematical description of the system consists of the dynamics of a DC 

servomotor and the dynamic model of the ball on the beam. Modelling DC servomotor 
can be divided into electrical and mechanical two subsystems. 

The equations of motion describing the Ball on a Beam system can be written as [29]: 

(nzr2  +kl )a+(2mrr+k2 )cr+(mgr+ L Mg)cosa =u 	
(2.2) 

k4r-ra2 +gsina=0 	 (2.3) 

Where, r(t) : ball position 

0(t) : servo gear angle 

m: mass of the ball 

E? 



M: mass of the beam 

L: length of the beam 

g: gravitational constant 

The parameters of the system are 

R,.,,.: armature resistance of the motor 

KTZ  : motor torque constant 

J,,,, : effective moment of inertia 

K9  : gear ratio 

Kb: back EMF constant 

JI  : moment of inertia of the beam 

d : lever arm offset 

V;  : input voltage to motor 

i,,, : armature current 

L,,, : armature inductance 

Vb  : back EMF 

B,,, : viscous friction coefficient 

Vb =Kb9 

a : angular velocity of the beam. 

.12: moment of inertia of the ball 

k1, k2, k3  and k4 are functions of the system parameters as: 

k' RmJn,L 
 mK gd  

k  _  Km  Kb  + K +  R»,B,  
2 
 d R. 	b  KmKg  

k3  =1 + R" 
m 

k4  =7/5 

u(t) = k3  V(t) : control input to the ball on a beam system 

E 



2.3.1 Equilibrium of the system: 

The equilibrium can be found from the dynamic equations (2.2) and (2.3) as, 

mg1 ± 2Mg)cosa,, =ue  

sin a,, =0 

Since, the beam angle a is limited by —7r/2 <a < 7r/2, then sin ae  = O'implies that ae  = 0. 

Therefore, the above equation implies that r = 	Hence, any equilibrium point 
mg 2m 

of the Ball on a Beam system must be such that ae  = 0 and re  = rd, where rd is desired ball 
position. 
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CHAPTER 3 

Sliding Mode Controller 

3.1 Overview of Sliding Mode Control 

Sliding mode has been successfully applied to the problem of maintaining stability and 

consistent performances for nonlinear systems with modelling errors. In control theory 

sliding mode control, is a form of variable structure control (VSC). It is a nonlinear 

control method that alters the dynamics of a nonlinear system by application of a high-
frequency switching control. The multiple control structures are designed so that 

trajectories always move toward a switching surface, and hence the ultimate trajectory 

will not exist entirely within one control structure. Instead, the ultimate trajectory will 
slide along the boundaries of the control structures. The motion of the system as it slides 
along these boundaries is called a sliding mode. 

Intuitively, for a dynamic system sliding mode control uses practically infinite 

gain to force the trajectories to slide along the restricted sliding mode subspace. The main 

strength of sliding mode control is its robustness. Because the control can be as simple as 
a switching between two states (e.g., "on"/"off' or "forward"/"reverse"), it need not be 

precise and will not be sensitive to parameter variations that enter into the control 
channel. Additionally, because the control law is not a continuous function, the sliding 

mode can be reached in finite time (i.e., better than asymptotic behaviour). Sliding mode 

control is an appropriate robust control method for the systems, where modeling 

inaccuracies, parameter variations and disturbances are present. 

Sometimes sliding mode control has a demerit of chattering of the control variable 

and some of the system states. The strengths of SMC include: Low sensitivity to plant 
parameter uncertainty, greatly reduced-order modeling of plant dynamics and finite-time 

convergence (due to discontinuous control law). 

3.2 Sliding Mode Condition 

With sliding mode controller, the system is controlled in such a way that the error in the 

system states always moves towards a sliding surface. The sliding surface is defined with 
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Sliding mode 

S=0 

Reaching mode 

e 

dx/dt 

the tracking error (e) of the state and its rate of change ( e) as variables. The distance of 

the error trajectory from the sliding surface and its rate of convergence are used to decide 

the control input (u) to the system. The sign of the control input must change at the 
intersection of the tracking error trajectory with the sliding surface. In this way the error 

trajectory is always forced to move towards the sliding surface. The system in sliding 
mode can be described by a linear system of lower order than the original system. The 

state asymptotically approaches the state origin on the intersection of the hyperplanes. 

Consider the class of nonlinear systems that can be modelled by following equation: 

x" = A(X) + B(X)u 

Then the problem of designing the sliding mode controller is to find: 

(1) in switching functions, represented in vector form as S(X), the surface which 

represents desired system dynamics on which control u has discontinuity. 

(2) A variable structure control 

u=u+(X) when S(X)>0 

U = u-(X) when S(X) <0 

such that any state X outside the switching surface is driven to reach the surface in finite 

time. On the switching surface, the sliding mode takes place, following the desired 

dynamics. In this way the overall system is globally asymptotically stable. 

r 

x 

Fig. 3.1 Phase plot showing Sliding mode 
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Suppose at time t = 0, S(x,t) > O.Then, state x reaches the switching line S = 0 in a fmite 
time. Then, it crosses the switching line and enters the region S(x,t) <0 , resulting in the 

value of u being altered from u+ to u-. Depending on the value of system parameters and 

sliding function co-efficient, the state trajectory may continue in the region S(x,t) < 0, 

yielding bang-bang control or the state trajectory may immediately re-cross the switching 
line and enter the region S(x,t) > 0. This yields sliding motion. Assuming that the 

switching logic works infinitely fast, the state x is constrained to remain on the switching 

line S = 0 by the control which oscillates between the values u+ and u-. 

For sliding motion to occur, we need on opposite sides of the switching line, 

limn  —a+ S <0 	and 	lim o- S> 0 

This ensures the motion of state x on either side of S = 0 is towards the switching line. 

Hence the two conditions can be combined to give, 

. SS<0 
in the neighbourhood of switching surface. 

3.3 Sliding Mode Controller design for Ball Beam system 

3.3.1 SMC design for simplified Ball Beam model: 

The Lagrange model of the system developed in eqn. (2.1) is 

I +m
J
r  +mgsina—mra =0 R2   (3.1) 

Let, for small tilt in the beam, sina a, then, 

r= 1  [_mga+mra2]  (J 

 

Since, 

a=—d 0 
L 

13 



Although the control input is applied to motor fromwhere the motion is transferred 
through gear to beam, but for simplicity in design, motor is neglected, so that the control 

input u directly changes the gear angle 0. Hence, 

B=u 

So, 

d 
a =—u 

L 

Now, let r = x, 

Then, the state equations can be written as, 

Yl  =x2  

mxl x, — mgd u 
- 	k, 	k,L 

=f +h,u 

Let, the sliding surface be, 

	

s1  =,y+A(Y — rd) 
	

(3.2) 

Where, 

Y =xI 

y=x2 

Hence, 

s1  =x2  +2(x1  — ra ) 

Where, s1  = x2+),(x1-rd) = 0 is also called the switching surface. The term switching 

illustrates the fact that the control law it commutes while crossing the line sl  = 0. The 

behaviour of this second- order system on the switching line s1  = x2+).(xi-rd) = 0 is 

described by first order differential equation x2+A(xi-rd) = 0. It is important to note, that 

the behaviour of our system on s1  = 0 is dependent only on the slope A of the switching 
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line. This means the system is insensitive to any variation or perturbation of the plant 
parameters contained in state space model. 

If rd is a constant value, then 

s1 = z2 +."i.x2 

or, s1 = fs + hsu + Ax2 	 (3.3) 

Now, if we choose u as, 

u = -!-[–,ç -. – Ax., –p1 sgn(sl )] 
S  (3.4) 

Where, pl is a positive constant, then it can be shown from (3.3) and (3.4) that, 

s~ = –p1 sgn(s1) 

Which guarantees that 

s,s, <0 

i.e., the system states reach the desired trajectory [30] after a fmite time. 

3.3.2 SMC design for Complete Ball Beam model: 

In this design, the dynamic model developed in eqn. (2.2) and (2.3) will be used. 

However, for this model, the relative degree of the system is not well defined around the 

equilibrium a = 0. Hence, the centrifugal acceleration term rat is neglected, so that it 

results in a well defined relative degree of the system and Sliding mode control law is 

designed as [31]: 

From eqn. (2.2) and (2.3), 

a= 2 	u—(2mrr+kz )a— mgr+—Mg cosa 
1 	 L 

(mY +kl ) 	 2 

Y=- g since 
k4 
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Let, the state variables representing the system states be, 

xF =r 
xZ = 

x3 = a 

x4 = a 

Then, the equations of the system can be written as, 

xl = X2 

zZ = — sin x3 

4 

x3 = x4 

X4 = (mx+ 
Ic u — (2mx,x2 + k2 )x4 — mgx, + L Mg

J 
cos x3 

Let, the output of the system be, 

Y=x~ 

Then, 

y=x2 

y=— sinx3 
4 

Y(3) = —k x4 COSx3 
4 

Y(4) k4 (mx + k,) 
[—u cos x3 + (21nx,x, + k, )x4 cos x3 +~mgx, + Mg 

J 

cost x. + x4 (mx,2 + k,) sin x3 

= fs + hsu 

Where, 

g (2mx,xz +k,)x4 +(mgx, +! Mg)cosx3 
f = — 	 , 	 cos x3 +x sin x3 

k4 	 (mx, + kl ) 

h = 	—g 	cos x 
S k4 (mxi +k,) 	3 
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Let, the sliding surface is defined as 

s2 = +b,y+b2,y+b3(y — r , ) 

=—k x4 cos x3 —bl sin x3 +b2x7 +bb(x, —rd ) 
4 	 4 

Define the sgn function to be, 

	

+1 	if~p>0 

sgn(q) = 

	

-1 	if~p<0 

To guarantee switching, we need, 

s2S2 <0 

Ifp2 is a positive constant, then the sliding mode control given by, 

u = 	—f +bl x4 cosx3 +b2 sinx3 —b3 x2 —p2 sgn(sz ) 

always results in 

s2.2 <0 

i.e., it will asymptotically stabilize the output of the system to its desired value rd and 
forces the other states of the system to their equilibrium values. 

Since, 	 s, = y'+bl y +bZ y+ba y 

By substituting u in the above equation, we get 

.§2 = —p2 sgn(s2 ) 
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3.4 Problem of Chattering 

An ideal sliding mode does not exist in practice since it would imply that the control 

commutes at an infinite frequency. In the presence of switching imperfections, such as 
switching time delays and small time constants in the actuators, the discontinuity in the 

feedback control produces a particular dynamic behaviour in the vicinity of the surface, 
which is commonly referred to as chattering and is undesirable for proper operation of 
system. This phenomenon is a drawback as, even if it is filtered at the output of the 

process, it may excite unmodeled high frequency modes, which degrades the performance 

of the system. Chattering also leads to high wear of moving mechanical parts and high 
heat losses in electrical power circuits. That is why many procedures have been designed 

to reduce or eliminate this chattering. 

reaching Phase 

~.` 	 chhattering 

Sliding surface 

Fig. 3.2 Chattering Phenomenon 

One way to reduce chattering consists in a regulation scheme in some neighbourhood of 

the switching surface which, in the simplest case, merely consists of replacing the signum 
function by a continuous approximation with a high gain in the boundary layer: for 

instance, sigmoid functions or saturation functions as shown in Fig. 3.3 and Fig.3.4. 
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Fig. 3.3 Boundary layer around sliding line 

sign(s) 

sat(s, 0.05)  

-0.4 	- , 	-*.i 	-4.1 	0 	0_1 	a.2  

S 

Fig. 3.4 Continuous approximation of the sign-function 

Slotine and Sastry suggested a solution to avoid drastic changes in control by smoothing 

out the control discontinuity in a thin boundary layer neighbouring the switching surface. 

This is achieved by choosing control law u outside boundary layer as before (i.e. 

satisfying the sliding condition, which guarantees boundary layer attractiveness) and then 

interpolating u inside boundary layer. We now quantify the trade-off thus achieved 

between tracking precision and robustness to unmodelled high frequency dynamics. The 

method of softening the discontinuous control part by a continuous approximation is very 
attractive for its simplicity. One possible candidate is the saturation function [7], [30]. 

If we substitute function sgn(s) by sat (s/c) [32] in eqn. (3.4) and (3.5), where, 

C 

-0.5 

- 
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is I 5k 	if I s.'c) <1 
sat—) 

sgn(sk). ~fIs£I >_1 

Where, c is width of boundary layer. 

However, although the chattering can be removed, the robustness of sliding mode is also 
compromised. Another solution to cope with chattering is based on the recent theory of 

higher-order sliding modes. 
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CHAPTER 4 

Fuzzy Control 

4.1 Overview of Fuzzy Control 

Fuzzy systems have been successfully applied to a wide variety of practical problems. 

Recent advances of fuzzy memory devices and fuzzy chips [33] [34] make fuzzy systems 
especially suitable for industrial applications. In [35], it has been shown that fuzzy 

systems are universal approximators, i.e., they are capable of approximating any real' 
continuous function on a compact set to arbitrary accuracy. FLCs are suitable to be used 

in process control systems [36]. FLC has the advantage over conventional controllers as it 
does not need the exact. mathematical model of the system and thus it does not rely upon 

dynamically changing parameters. 

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a 

crisp, clearly defined boundary. It can contain elements with only a partial degree of 
membership. In fuzzy logic, the truth of any statement becomes a matter of degree. Any 

statement can be fuzzy. The major advantage that fuzzy reasoning offers is the ability to 
reply to a yes-no question with a not-quite-yes-or-no answer. In the practical world, we 

generally use modifiers like very, little, good, high, exactly etc. to express the extent 
related to a quantity. Humans do this kind of thing all the time (think how rarely you get 

a straight answer to a seemingly simple question), but it is a rather new trick for 

computers. 

4.1.1 Fuzzy sets 

The main concept of fuzzy theory is a notion of fuzzy set. Fuzzy set is an extension of 

crisp set. Zadeh gave the following definition: 
A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is 
characterized by a membership (characteristic) function which assigns to each object a 

grade of membership ranging between zero and one. 
A fuzzy set is denoted by an ordered set of pairs, the first element of which denotes the 

element (x) and the second pA(x) , the degree of membership: 
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A={(x,p4(x))I xEX} . 

Where, u, takes value in the interval [0, 1]. 

The fuzzy subset A on the universe X is defined by membership function, µA  from X to 

the real interval [0,1 1, which associates a number µA(x) c [0,11 to each element x of 

universe X. For example, the equation µA(x) = 0.7 means element x belongs to the set A 

with degree 0.7. 

4.1.2 Linguistic variable 

We can use fuzzy sets to represent linguistic variables. Linguistic variables represent the 

process states and control variables in a fuzzy controller. Their values are defined in 

linguistic terms and they can be words or sentences in a natural or artificial language. For 

example, for the linguistic variable: temperature, we can define a set of terms: 

T(temperature) _ { negative big, negative medium, negative small, close to zero, positive 

small, positive medium, positive big } 

4.1.3 Membership function 

Every fuzzy set can be represented graphically by its membership function. Membership 

values are discrete values defined in [0, 1]. If the referential set is infinite set, we can 

represent these values as a continuous membership function. In general, the shape of 

membership function depends on the application and can be monotonic, triangular, 

trapezoidal or bell-shaped as shown in Fig. 4.1. 

Fig. 4.1 Different shapes of membership functions: monotonic, triangular, trapezoidal and 

bell-shaped 



4.2 Fuzzy Logic Mechanism 

Basic Architecture of Fuzzy Systems 

Fuzzy 

non-fuzzy 	 non-fuzzy 
input 	 output 

Fuzzification I 	I I Defuzzification 

Fuzzy Inference 
Machine 

Fig. 4.2 Architecture of Fuzzy Systems 

The basic configuration of a fuzzy system is shown in Fig. 4.2. It comprises of four 

principal components: Fuzzification interface, fuzzy rule base, fuzzy inference machine, 

and defuzzification interface. 

4.2.1 Fuzzification Interface 

The fuzzification interface is a mapping from the observed input universe of discourse U 

c R to the fuzzy sets defined in U. There are two factors which determine a fuzzification 

interface: (1) the number of fuzzy sets defined in the input universe of discourse; and, (2) 

the specific membership functions for these fuzzy sets. If these two factors are specified, 

we obtain a fuzzification interface; hence, we can view these two factors as design 

parameters of a fuzzification interface. 

4.2.2 Fuzzy Rule Base 

The fuzzy rule base is a set of linguistic statements in the form of "IF a set of conditions 

are satisfied, THEN a set of consequences are inferred", where the conditions and the 

consequences are associated with fuzzy concepts (i.e., linguistic terms). For example, in 
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the case of an n-input-single-output fuzzy system, the fuzzy rule base may consist of the 
following rules: 

RR : IF xi is Ai and x2 is AZ and ........... and xn  is A' , THEN z is B' 

Where, xi ( i = 1, 2......., n) are the inputs to the fuzzy system, z is the output of fuzzy 

system, A and B' (j = 1,2, ..., K) are linguistic terms and K is the number of fuzzy rules 

in the fuzzy rule base. These fuzzy IF-THEN rules provide a natural form in which 
human experts represent their knowledge. By relating each linguistic term in the fuzzy 
piles with a membership function, we specify the meaning of the fuzzy rules in a 
determined fuzzy sense. This type of fuzzy rule is known as Mamdani FIS. Another form 

of fuzzy if-then rule, proposed by Takagi and Sugeno [13], has fuzzy sets involved only 
in the premise part. The consequent part is described by a non fuzzy equation of the input 

variable. There are many different kinds of fuzzy rules; see [37] for a complete 
discussion. Here, we consider only fuzzy rules in the form of Mamdani FIS. The design 

parameters of a fuzzy rule base are: (1) K, the number of fuzzy rules in the fuzzy rule 
base; and, (2) the specific statement of each fuzzy rule. 

4.2.3 Fuzzy inference process 

The fuzzy inference mechanism is decision making logic which employs fuzzy rules from 

the rule base to determine fuzzy outputs of a fuzzy system corresponding to the fuzzified 
inputs. It is the fuzzy inference machine that simulates a human decision making 

procedure based on fuzzy concepts and linguistic statements. There are many different 

kinds of fuzzy logic which may be used in a fuzzy inference machine; see [37] for a 

comprehensive review. The design parameter of a fuzzy inference machine is: which 
specific fuzzy logic is used. 

4.2.4 Defuzzification 

The defuzzification interface defuzzifies the fuzzy output of a fuzzy system to generate a 

non-fuzzy output. There are several existing defuzzification methods, namely: Centroid 
(i.e, center of area), bisector of area, and mean of maximum (see [37] for details). The 

design parameters of a defuzzification interface are: (1) number of fuzzy sets defined in 
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the output universe of discourse ; (2) specific membership funct 
G~N-rRat ~~eR 

sets; 

and, (3) which defuzzification method is used. 
ACC No...  

4.3 	Effect of different design parameters 	Date .................... 
The number of fuzzy sets defined in the input and output uni 	esT o}i(- d the 

number of fuzzy rules in the fuzzy rule base heavily influence the complexity of a fuzzy 

system, where complexity includes time complexity, i.e., the computational time 

requirements of the fuzzy system, and space complexity, i.e., the storage requirements of 

the fuzzy system. These parameters can be viewed as structure parameters of a fuzzy 

system. In general, the larger these parameters are, the more complex is the fuzzy system, 

and the higher is the expected performance of the fuzzy system. Hence, there is always a 

trade-off between complexity and accuracy in the choice of these parameters; and, their 

choice is usually quite subjective. 

The membership functions of the fuzzy sets heavily influence the "smoothness" of 

the input-output surface determined by the fuzzy system In general, the "sharper" the 

membership functions are, the less smooth is the input-output surface. The choice of 

membership functions is also quite subjective. 

The linguistic statements of the fuzzy rules are the heart of a fuzzy system in the 

sense that it is these linguistic statements that contain most of the information concerning 

the fuzzy system design; all other design parameters assist in the effective representation 

and use of the information. The fuzzy rules usually come from two sources: human 

experts, and training data. A general method to generate fuzzy rules from numerical data 

was proposed in [38][39]. 

The decision making logic used by the fuzzy inference machine is very important, 

and may be the most flexible component in the fuzzy system. If we compare a fuzzy 

system with a human controller, then the Fuzzification interface corresponds to our 

sensory organs (e.g., eye, ear, etc.), the defuzzification interface corresponds to our action 

organs (e.g., arms, feet, etc.), the fuzzy rule base corresponds to our memory, and the 

fuzzy inference machine corresponds to our thought process. 
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4.4 Fuzzy controller for Ball Beam system 

In general, the structure of an FLC can be of multi input and multi-output (MIMO). 

However, double-input and single-output (DISO) fuzzy logic controllers are more 

preferable for practical considerations. Specifically, a fuzzy PD controller using error and 

change of error as inputs, if properly designed, can infer a suitable control output 

resulting in good transient responses for a general nonlinear system. When comparing 

with conventional PD controllers, fuzzy PD controllers are usually found to be capable of 

improving tracking performance remarkably. By defining error and change in error as 

fuzzy inputs, the proposed fuzzy PD controller will be designed for second-order 

nonlinear system. 

The control object is to design a controller u such that the output y will approximately 

track a desired signal yd. The FLC being applied to Ball Beam system is shown in Fig. 

4.3. If yd(t) is the desired trajectory and y(t) is actual trajectory, then, the error signal is 

given by, 

e(t) = y(t) — yd(t) 

Sat Point 	
C~rputa 

Ertor 	ca~cuiate 	 Convatto 	 EduteFuzzt' 	detetmiaistic 
~[Ot8i4 

chart?. of eaor 	Fuzzy form 	control n►!~ 	antol input from apt 	outpui_ 
iuzzv klhu. 

Fig. 4.3 Closed loop control system using Fuzzy rules 

Membership functions chosen for two inputs are shown in Fig 4.4. Both inputs have three 

linguistic terms namely: Positive (P), Zero (Z) and Negative (N), whereas control output 

shown in Fig. 4.5 is described by five linguistic terms namely: Negative big (NB), 

Negative small (NS), Zero (Z), Positive small (PS) and Positive big (PB). Triangular 

membership function has been used for both inputs and output. 
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Fig. 4.4 Membership function for error and change in error 
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Fig. 4.5 Membership function for control output 

The fuzzy rule for 2 input FIS with each inputs described by three membership functions 

or linguistic terms have 32 i.e., 9 rules with error and change in error as premise variables 

and control output as consequent variable. The fuzzy rule base looks like shown below: 

Rule Base 

1. If error is N and Change in error is N, then control is PB 

2. If error is N and Change in error is Z, then control is PS 

3. If error is N and Change in error is P, then control is Z 

4. If error is Z and Change in error is N, then control is PS 

5. If error is Z and Change in error is Z, then control is Z 

6. If error is Z and Change in error is P, then control is NS 

7. If error is P and Change in error is N, then control is Z 

8. If error is P and Change in error is Z, then control is NS 

9. If error is P and Change in error is P, then control is NB 

0.5 

o. 
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CHAPTER 5 

Supervisory Control 

5.1 Introduction 

For complex practical systems, the single loop control systems may not effectively 

achieve the control objectives. In order to improve the tracking performance of the 

control system, we consider two-level control structures where first level is constructed 

from fuzzy PD controller and the second level is Supervisory controller [40]. FLC was 

earlier designed for ball beam system which has the advantages of simplicity and smooth 

control with inexact information but an often remarked disadvantage of the methods 

based on the fuzzy logic is the lack of appropriate tools for analysing the controller 

performance, such as stability, optimality, robustness, etc. The main advantage is the 

possibility to implement a human experience, intuition and heuristics into the controller. 

Among several approaches to solve stability problem with FLCs, one approach is to 

design FLC first without any stability consideration. Then, append another controller with 

FLC to take care of the stability requirement. Here, the supervisor has been derived based 

on variable structure control theory. This approach provides much flexibility in designing 

the fuzzy controller and hence the resulting fuzzy control system is expected to show high 

performance. 

5.2 Two Level Control 

5.2.1 Overview of supervisory Control 
A supervisory controller is a controller which operates only when some undesirable 

phenomena occur, e.g., when the state hits the boundary of constraint set. In this note, we 

develop a supervisory controller for nonlinear fuzzy control systems. The supervisory 

controller works in the following way: if the fuzzy control system (without the 

supervisory controller) is stable in the sense that the state is inside'the constraint set, the 

supervisory control is idle; if the state hits the boundary of the constraint set, the 

supervisory controller begins operation to force the state back to the constraint set. The 

fuzzy control system equipped with this supervisory controller is globally stable in the 

sense that the state is guaranteed to be within the constraint set specified by the system 
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designer. The two-level control structure is shown in Fig. 5.1. The first level PLC 

controller and second level supervisor will be switched by M = max { IsiI , Is21 }, where Si 

and S2 are two states of the system. 

Fuzzy PD 
First level 

VSC 	I Second level 

Fig. 5.1 Two level control scheme 

5.2.2 Need for Supervisory control 

Despite successful application of Fuzzy logic controllers to many practical problems, 

there are many issues remaining to be further addressed such as stability, controllability 

and observability. 

Conceptually, there are at least two different approaches to guarantee the stability 

of a fuzzy control system. The first approach is to specify the structure and parameters of 

the fuzzy controller such that the closed-loop system with this fuzzy controller is stable. 

An example of this approach is [41]. This approach often requires the fuzzy controller to 

satisfy some strong sufficient conditions which greatly limit the design flexibility and, 

therefore, the performance of the fuzzy controller. In the second approach, the fuzzy 

controller is designed first without any stability consideration, then another controller is 

appended to the fuzzy controller to take care of the stability requirement. This approach 

has been utilized here to .control Ball beam system. Because there is much flexibility in 

designing the fuzzy controller in this second approach, the resulting fuzzy control system 

is expected to show high performance. 

The key is how to design the appended controller to guarantee stability. Because 

we want the fuzzy controller to perform the main control action, the appended controller 

would be better a safeguard rather than a main controller. Therefore, we choose the 

appended controller to work in the following supervisory fashion: if the fuzzy controller 
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works well, the appended controller is idle; if the pure fuzzy control system tends to be 

unstable, the appended controller begins operation to guarantee stability. Thus, we call 

the appended controller a supervisory controller. In this note, we say a system is stable if 

its state variables are uniformly bounded. 

5.3 Design principle of Supervisory controller 

Designing a supervisory controller for a nonlinear fuzzy controller system where the 

fuzzy controller already exists has been discussed in and proposes modifications of the 

supervisory control which switch to the supervisory mode gradually. 

Consider the nonlinear system governed by the differential equation, 

x" )  = f (x,x,......,x("-' ) )+g(x,x,.......,x("-' ) )u 	 (5.1) 

where x c R is the output of the system, u e R is the control, x = (x, I...., x("-1) )T  is the 

state vector which is assumed to be measurable or computable, and f and g are unknown 

nonlinear functions. We assume that g>  0. From nonlinear control theory we know that 

this system is in normal form and many general nonlinear systems can be transformed 

into this form. The main restriction is that the control u is required to appear linearly in 

the equation. 

Now suppose that we have already designed a fuzzy controller, 

u=u f (x) 	 (5.2) 

This can be done by synthesizing fuzzy control rules from human experts and/or by trial 

and error using designing tools. Our task is to guarantee the stability of the closed-loop 

system, and, at the same time, without changing the existing design of the fuzzy 

controller. More specifically, we are required to design a controller whose main control 

action is the fuzzy control uj and that the closed-loop system with this controller is 

globally stable in the sense that the state x is uniformly bounded, i.e., 1 x(t) I <_ M, for all 

t >0, where M is a constant given by the designer. 

For this task, we append the fuzzy controller of with a supervisory controller ars  which is 

nonzero only when the state x hits the boundary of the constraint set { x : x < M }, i.e., 

the control now is, 
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u=u f (x) 	 if 	II <M 	 (5.3) 

	

=us(x) 	 if 	II >M 

Therefore, the main control action is still the fuzzy control of Our task now is to design us  

such that we always have I x I < M, for all t> 0. 
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CHAPTER 6 

Neural Network Control 

6.1 Introduction 

Artificial neural networks (ANNs) are the highly simplified models of biological nervous 

system and therefore have drawn their motivation from the way of computing performed 

by human brain. ANN is a highly interconnected network of a large number of processing 

elements called neurons in an architecture inspired by the human brain. An ANN can be 

massively parallel and therefore is said to exhibit parallel distributed processing. The 

power of neural networks is in their ability to learn and to store knowledge. Neural 

networks purport to simulate in a simplified manner the activities of processes that occur 

in the human brain. The ability to learn is one of the main advantages that make neural 

networks so attractive. In control engineering neural networks can be used to control 

multi input, multi output non-linear systems having delays. The ability of neural networks 

to control engineering processes without prior knowledge of the system dynamics is very 

appealing to researchers and engineers in the field. [42] discusses the neural network 

approach to control systems. Many papers has been published dealing with the 

application of artificial neural network technique to control Ball beam system. 

Target 

Neural Network 	I  
including connections 	 Compare 
(called weights) 

Input 	between neurons 	Output 

Adjust 
weights 

Fig. 6.1 Neural Network functioning 

A neural network performs a particular function by adjusting the values of the 

connections (weights) between elements so that a particular input leads to a specific target 
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output. Such a situation is shown in Fig. 6.1 where the network is adjusted, based on a 

comparison of the output and the target, until the network output matches the target. 

Typically many such input/target pairs are used to train a network in this type of learning 

called supervised learning. 

6.2 Neuron model 

An elementary neuron with R inputs is shown in Fig. 6.2. Each input is weighted with an 

appropriate weight. The sum of the weighted inputs and the bias forms the input to the 

transfer function f. Neurons may use any differentiable transfer function f to generate 

their output. 

Input 	General Neuron 
rmr 

1, 

IF 
R 

1, R 

f(N%-1p + b) 

Fig. 6.2 Single Neuron Model 

Their sum is simply Wp, the dot product of the (single row) matrix W and the vector p. 

The neuron has a bias b, which is summed with the weighted inputs to form the net input 

n. This sum, n, is the argument of the transfer function f 

6.3 Neural Network Architecture 

There are several classes of ANNs, classified according to their learning mechanism. The 

three basic classes of networks include Single layer feedforward, Multilayer feedforward 

and Recurrent networks. 
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.1- I  

1. Single Layer feedforward network 

This type of network comprises only two layers, namely input and output layer. The input 

neurons receive, the input signals and the output neurons give the output signal. The 

synaptic links carrying the weights connect every input neuron to the output neuron but 

not vice-versa. The graph is acyclic in nature, hence called feedforward network. Despite 

the two layers, the network is termed single layer as it is only output layer that performs 

computation. Input layer only transmits the signals to the output layer. 

x1 

y 

Fig. 6.3 Single layer network with two inputs and one output 

2. Multi Layer Feedforward Network 

This type of network consists of multiple layers. The architecture besides possessing input 

and output layer also have one or more intermediately layers called hidden layers. The 

hidden layer aids in performing useful intermediately computation before directing input 

to output layer. A multilayer feedforward network with 1 input neurons, m1  neurons in first 

hidden layer, ml  neurons in the second hidden layer and n output neurons is written as 1-
ml- m2-n. 

INPUT LAYER 	
HIDDEN LAYERS 

OUTPUT LAYER 

Fig. 6.4 Multilayer feedforward network 

34 



3. Recurrent Networks 

These networks differ from feedforward network architectures in the sense that there is at 

least one feedback loop. There could also be neurons with self-feedback links, i.e. the 

output of a neuron is fed back into itself as input. 

INPUT LAYER 	HIDDEN LAYER 

Fig. 6.5 Recurrent Network 

6.4 Types of activation functions: 

A function Fk is needed which takes the total input Sk(t) and produces a new value of the 

activation of the unit k. Often, the activation function is a non decreasing function of the 

total input of the unit: 

Yk(t+1) =Fk(sk(t))=F~ ~w;k(t)YJ(t)+BIL(t) 

Although activation functions are not restricted to nondecreasing functions, generally, 

some sort of threshold function is used: a hard limiting threshold function (a sgn 

function), or a linear or semi-linear function, or a smoothly limiting threshold. 
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Fig. 6.6 Hard-Limit Transfer Function 

The perceptron neuron produces a 1 if the net input into the transfer function is equal to 

or greater than 0; otherwise it produces a 0. The hard-limit transfer function gives a 

perceptron the ability to classify input vectors by dividing the input space into two 

regions. Specifically, outputs will be 0 if the net input n is less than 0, or 1 if the net input 

n is 0 or greater. 

Differentiable Activation functions 
The back propagation algorithm looks for the minimum of the error function in weight 

space using the method of gradient descent. The combination of weights which minimizes 

the error function is considered to be a solution of the learning problem. Since this 

method requires computation of the gradient of the error function at each iteration step, 

we must guarantee the continuity and differentiability of the error function. Obviously we 

have to use a kind of activation function which is differentiable otherwise the composite 

function produced by interconnected perceptrons will be discontinuous, and therefore the 

error function too. One of the more popular activation functions for backpropagation 

networks is the sigmoid, a real function s: IE8 --, (0, 1) defined by the express 

s(x) = 1  
l+e 

The derivative of the sigmoid with respect to x, is 

a S(x)  (l + e-̀ )2  - S 
 (x)(1- s(x)) 
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Fig. 6.7 Sigmoidal transfer function 

The sigmoid function generates outputs between 0 and 1 as the neuron's net input goes 

from negative to positive infinity. Alternatively, multilayer networks may use the tan-

sigmoid transfer function as given by, 

2 
S' (x) 

_ 
(1+e 2 )' 

a 
+1 

n 
D 

a = tansig(n) 

Fig. 6.8 Tan-sigmoid Transfer function 

Ocassionally, the linear transfer function purelin is used in backpropagation networks 
given by, 

a 

..........4.T3-~.... 

....../0-.. 

a = purelin(nj 
Fig. 6.9 Linear Transfer Function 

If the last layer of a multilayer network has sigmoid neurons, then the outputs of the 

network are limited to a small range. If linear output neurons are used the network outputs 
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can take on any value. Each of the transfer functions above, tan-sigmoid, log-sigmoid and 

linear function, have a corresponding derivative function. 

6.5 General feed-forward network 

6.5.1 The learning problem 

In general definition, a feed-forward neural network is a computational _ graph whose 

nodes are computing units and whose directed edges transmit numerical information from 

node to node. Each computing unit is capable of evaluating a single primitive function of 

its input. In fact the network represents a chain of function compositions which transform 

an input to an output vector (called a pattern). The network is a particular implementation 

of a composite function from input to output space, which we call the network function. 

The learning problem consists of finding the optimal combination of weights so that the 

network function approximates a given function f as closely as possible. However, we are 

not given the function f explicitly but only implicitly through some examples. 

Consider a feed-forward network with n input and m output units. It can consist of any 

number of hidden units and can exhibit any desired feed-forward connection pattern. We 

are also given a training set {(xl,tl)......(xp,tp)} consisting of p ordered pairs of n- and in 

dimensional vectors, which are called the input and output patterns. Let the primitive 

functions at each node of the network be continuous and differentiable. The weights of 

the edges are real numbers selected at random. When the input pattern xi from the 

training set is presented to this network, it produces an output o; different in general from 

the target t;. What we want is to make o; and ti identical for i = 1......,p, by using a learning 

algorithm. More precisely, we want to minimize the error function of the network, 

defined as, 

E  =!
P  

(o1  —t;)2  
2 i=, (6.1) 

After minimizing this function for the training set, new unknown input patterns are 

presented to the network and we expect it to interpolate. The network must recognize 

whether a new input vector is similar to learned patterns and produce a similar output. 
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6.5.2 Paradigms of Learning 

Neural Networks learn by examples. They can therefore be trained with known examples 

of a problem to acquire knowledge about it. Once appropriately trained, the network can 

be put to effectively utilize in solving unknown or untrained instances of the problem. 

The process of modifying the weights in the connections between network layers with the 

objective of achieving the expected output is called training a network. The internal 

process which takes place when a network is trained is called learning. Generally, there 

are/3 types of learning as follows: 

1. Supervised Learning or Associative Learning: 

It is the process of providing the network with a series of sample inputs and 

comparing the output with the expected responses. The training continues until the 

network is able to provide the expected response. The weights may then be 

adjusted according to a learning algorithm. This process is called supervised 

learning. Some of the supervised learning algorithm includes Backpropagation, 

Adaline, madaline, Hebb net, counter propagation net etc. 

2. Unsupervised Learning or Self organized Learning: 

If for the training input vectors, the target output is not known, the training 

method adopted is called supervised training. The net may modify the weight so 

that most similar input vector is assigned to the same output unit. Unsupervised 

networks are far more complex and difficult to implement. It involves looping 

connections back into feedback Iayers and iterating through the process until some 

sort of stable recall is achieved. These are also called self learning or self 

organizing networks because of their ability to carry out self learning. Self 

organizing feature maps, Adaptive resonance theory are examples of this category. 

3. Reinforcement Training 

In this method, a teacher is also assumed to be present, but the right answer is not 

presented to the network. Instead, an indication of whether the output answer is 

right or wrong is presented. The network then uses this information to improve its 

performance. This type of learning is applied when knowledge required for 

supervised learning is not available. 
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6.5.3 Modifying patterns of connectivity 

All learning paradigms discussed above result in an adjustment of the weights of the 

connections between units, according to some modification rule. Virtually all learning 

rules for models of this type can be considered as a variant of the Hebbian learning rule 

suggested by Hebb in his classic book Organization of Behaviour (1949) (Hebb, 1949). 

The basic idea is that if two units j and k are active simultaneously, their interconnection 

must be strengthened. If j receives input from k, the simplest version of Hebbian learning 

prescribes to modify the weight w A  with 

Aw k  = YYJYk 	 (6-2) 

where y is a positive constant of proportionality representing the learning rate. Another 

common rule uses not the actual activation of unit k but the difference between the actual 

and desired activation for adjusting the weights: 

OW = yy (dk - Yk) 
	

(6.3) 

in which dk  is the desired activation provided by a teacher. This is often called the 

Widrow-Hoff rule or delta rule. 

6.6 Networks with linear activation functions: The delta rule 

For a single layer network with an output unit with a linear activation function the output 

is simply given by, 

y='wx' + B 
(6.4) 

Such a simple network is able to represent a linear relationship between the value of the 

output unit and the value of the input unit. Suppose we want to train the network such that 

a hyperplane is fitted as well as possible to a set of training samples consisting of input 

values x1  and desired (or target) output values d". For every given input sample, the 

output of the network differs from the target value d" by (dp - yP), where yP is the actual 

output for this pattern. The delta-rule now uses a cost or error-function based on these 

differences to adjust the weights. 

The error function, as indicated by the name least mean square, is the summed squared 

error. That is, the total error E is defined to be 
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E=>E~'=1)(d''—y~')Z 
y 2, 	 (6.5) 

where the index p ranges over the set of input patterns and EP represents the error on 

pattern p. The LMS procedure finds the values of all the weights that minimise the error 

function by a method called gradient descent. The idea is to make a change in the weight. 

proportional to the negative of the derivative of the error as measured on the current 

pattern with respect to each weight: 

E N 
A wj .--y 

J 

where y is a constant of proportionality. The derivative is 

DEp_aEPayP 

J 	J y 	l 

Because of the linear units, 
aye =x. 
ow. 

J 

And 

_(d9— y) 

Such that 
A"w = 

where 8" = d" — y" is the difference between the target output and the actual output for 

pattern p. 

The delta rule modifies weight appropriately for target and actual outputs of either 

polarity and for both continuous and binary input and output units. These characteristics 

have opened up a wealth of new applications. 

Minsky and Papert (Minsky & Papert, 1969) showed in 1969 that a two layer feed-

forward network can overcome many restrictions and are capable of computing a wider 

range of functions than networks with a single layer of computing units, but did not 

present a solution to the problem of how to adjust the weights from input to hidden units. 

The computational effort needed for finding the correct combination of weights increases 

substantially when more parameters and more complicated topologies are considered. An 

answer to this question was presented by Rumelhart, Hinton and Williams in 1986 [ 19], 

(6.6) 

(6.7) 
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and similar solutions appeared to have been published earlier (Werbos, 1974; Parker, 

1985; Cun, 1985). The central idea behind this solution is that the errors for the units of 

the hidden layer are determined by back-propagating the errors of the units of the output 

layer. For this reason the method is often called the back-propagation learning rule. Back-

propagation can also be considered as a generalisation of the delta rule for non-linear 

activation functions and multilayer networks. 

Although back-propagation can be applied to networks with any number of layers, 

just as for networks with binary units it has been shown (Hornik, Stinchcombe, & White, 

1989; Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990) that only 

one layer of hidden units success to approximate any function with finitely many 

discontinuities to arbitrary precision, provided the activation functions of the hidden units 

are non-linear. In most applications a feed-forward network with a single layer of hidden 

units is used with a sigmoid activation function for the units. 

6.7 The Generalised delta or Back-Propagation rule 

Back propagation is a supervised learning method, and is a generalization of the delta 

rule. It requires a teacher that knows, or can calculate, the desired output for any input in 

the training set. It is most useful for feed-forward networks (networks that have no 

feedback, or simply, that have no connections that loop). The term is an abbreviation for 

"backward propagation of errors". Backpropagation networks are necessarily multilayer 

perceptrons. In order for the hidden layer to serve any useful function, multilayer 

networks must have non-linear activation functions for the multiple layers: a multilayer 

network using only linear activation functions is equivalent to some single layer, linear 

network. The detailed explanation of Backpropagation networks can be found in [43]. 

Since we are now using units with nonlinear activation functions, we have to generalise 

the delta rule which was presented for linear functions to the set of non-linear activation 
functions. 
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Fig. 6.10 Multilayer feedforward network 

The activation is a differentiable function of the total input, given 

Yr = F(sA) 	 (6.8) 
in which 

sk = ~ w/kY; + 6k 
j  (6.9) 

To get the correct generalisation of the delta rule, we must set 

OPWJk _ -y aEP 

OWJk 	 (6.10) 

The error measure E" is defined as the total quadratic error for pattern p at the output 
units: 

N 
E`.= 1 E(d P —Yo )2 

2 0=, (6.11) 

where do is the desired output for unit o when pattern p is clamped. We further set E 

=Z p EP as the summed squared error. We can write 

aEP _ 8EP as, 
caw k ask caw k 

By equation (6.9) we see that the second factor in above eqn. is 

When we define 

P 
Sk = yP 

CW -k 
(6.12) 
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P 

k 	ask' 	 (6.13) 

we will get an update rule which is equivalent to the delta rule, resulting in a gradient 

descent on the error surface if we make the weight changes according to: 

A pwjk = 7 5k Y 	 (6.14) 

The trick is to figure out what Sk should be for each unit k in the network. The interesting 

result, which we now derive, is that there is a simple recursive computation of these S's 

which can be implemented by propagating error signals backward through the network. 

To compute Sk we apply the chain rule to write this partial derivative as the product of 

two factors, one factor reflecting the change in error as a function of the output of the unit 

and one reflecting the change in the output as a function of changes in the input. Thus, we 

have 

SP  

asP 	aye aSk (6.15) 

Let us compute the second factor. By equation (6.8) we see that 

P 

k =F'(sf ) ask 	 (6.16) 

which is simply the derivative of the squashing function F for the kth unit, evaluated at 

the net inputs k to that unit. To compute the first factor of equation (6.15), we consider 

two cases. First, assume that unit k is an output unit k = o of the network. In this case, it 

follows from the definition of EP that 

aEp _ —(d' _ Yo ) 
~

p  o 

0 (6.17) 

which is the same result as we obtained with the standard delta rule. Substituting this and 

equation (6.16) in equation (6.15), we get, 

ao =(d' —Yo )Ion (so) 	 (6.18) 
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for any output unit o. Secondly, if k is not an output unit but a hidden unit k = h, we do 

not readily know the contribution of the unit to the output error of the network. However, 

the error measure can be written as a function of the net inputs from hidden to output 

layer and we use the chain rule to write 

aEP  N.  aEP O%p  N aEP a N,, 	N. aEP 	N, 

Yh 	o=1 N oyh o=1 aSo OYh >=1 	 0=1 aso 	0=1 	(6.19) 

Substituting this in equation (6.15) yields 
N 

' P E P 8' —( F  Sh ) l So Who 
o=I (6.20) 

Equations of (6.18) and (6.20) give a recursive procedure for computing the S's for all 

units in the network, which are then used to compute the weight changes. This procedure 

constitutes the generalised delta rule for a feed-forward network of non-linear units. 

The application of the generalised delta rule thus involves two phases: During the first 

phase, the input x is presented and propagated forward through the network to compute 

the output values yo  for each output unit. This output is compared with its desired value 

do, resulting in an error signal E. for each output unit. We strive to change the 

connections in such a way that, next time around, the error eo  will be zero for this 

particular pattern. The second phase involves a backward pass through the network 

during which the error signal is passed to each unit in the network and appropriate weight 

changes are calculated. 

6.8 Back Propagation network parameter selection: 

For the efficient operation of BP network, it is necessary to select appropriately the 
parameters used for training. 

6.5.1 Initial weights 

It will influence whether the net reaches a global minima of the error and if so 

how rapidly it converges. If the initial weight is too large, the initial signals to 

each hidden or output unit will fall in saturation region where the derivative of 

sigmoid has very small value. If weights are too small, the net input to hidden or 
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output unit will approach zero, which then causes extremely slow Iearning. So, 

initial weights and biases are set to random numbers between -0.5 to 0.5 or -1 to 1. 

6.5.2 Learning rate 

A high learning rate leads to rapid learning but the weights may oscillate, while a 

lower learning rate leads to slower learning. One method is to start with a high 

learning rate and steadily decrease it. Changes in weight vector must be small in 

order to reduce oscillations or any divergence. 

6.9 Deficiencies of back-propagation 

Despite the apparent success of the back-propagation learning algorithm, there are some 

aspects which make the algorithm not guaranteed to be universally useful. 

Slow Training Process 
Most troublesome is the long training process. This can be a result of a non-optimum 

learning rate and momentum. A lot of advanced algorithms based on back propagation 

learning have some optimised method to adapt this learning rate. 

Network paralysis 
As the network trains, the weights can be adjusted to very large values. The total input of 

a hidden unit or output unit can therefore reach very high (either positive or negative) 

values, and because of the sigmoid activation function the unit will have an activation 

very close to zero or very close to one. The weight adjustments which are proportional to 

y' (l--y') will be close to zero and the training process can come to a virtual standstill. 

Local minima 
The error surface of a complex .network is full of hills and valleys. Because of the 

gradient descent, the network can get trapped in a local minimum when there is a much 

deeper minimum nearby. Probabilistic methods can help to avoid this trap, but they tend 

to be slow. Another suggested possibility is to increase the number of hidden units. 

Although this will work because of the higher dimensionality of the error space, and the 

chance to get trapped is smaller, it appears that there is some upper limit of the number of 
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hidden units which, when exceeded, again results in the system being trapped in local 

minima. Figure 6.11 shows an example of a local minimum with a higher error level than 

in other regions. There is a valley in the error function and if gradient descent is started 

there the algorithm will not converge to the global minimum. 

Local mtrrnna 

Global 

Fig. 6.11 Local and global minima in the error surface 

6.10 Neural Network controller for Ball Beam system 

Ball Beam system is a nonlinear system with delayed feedback and hence needs some 

special techniques and complicated mathematical derivation in conventional control 

methods. Neural network is a non-classical means to solve the ball beam control problem. 

The special features of ANN over conventional approach include model free approach, 

learning and generalizing capability and high noise tolerance. 

A Neural Network controller has been designed for ball beam system using 

MATLAB Neural Network toolbox [44]. There are various functions available such as 

functions to create a network with adjustable number of inputs and outputs nodes as well 

as number of hidden layers and number of neurons in each layer and there are functions 

also to train and simulate the networks. The network designed has two inputs error and 

change in error and one control output and utilizes Backpropagation algorithm to train the 

network. 
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Fig. 6.12 Closed loop system with Neural Network controller 
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CHAPTER 7 

Neuro-Fuzzy Hybrid Controller 

7.1 Introduction 

The fuzzy model generated after training the adaptive neural network is called Adaptive 

Neuro-Fuzzy Inference system (ANFIS).This is one of the most researched forms of 

hybrid systems and has resulted in a stupendous quantity of publication and research 

results. Neural Network and Fuzzy logic represent two distinct methodologies to deal 

with uncertainty. Each of them has its own merits and demerits. Neural Networks are 

highly simplified model of human nervous system which mimics our ability to adapt to 

circumstances and learn from past experience. NNs can model complex nonlinear 

relationships and are appropriately suited for classification phenomenon into 

predetermined classes. But, the precision of outputs is quite often limited and does not 

ensure zero error but only minimization of least error. Besides, the training data has to be 

chosen carefully so as to cover the entire range over which the different variables are 

expected to vary. In addition, the training time required for NN can be substantially large. 

On the other hand, Fuzzy logic system addresses the imprecision or vagueness in 

input-output description of system by defining them using fuzzy sets and allows for a 

greater flexibility in formulating system description at the appropriate level of detail. But, 

the disadvantages in designing FLC include: 1) No standard methods exist for 

transforming human knowledge or experience into the rule base and database of a fuzzy 

inference system. 2) There is a need for effective methods for timing the membership 

functions (MF's) so as to minimize the output error measure or maximize performance 
index. 

Various attempts have been successfully made to synergize these different 

techniques in whole or in part to solve problems for which these technologies could not 

find solutions individually. The objective of hybridization has been to overcome the 

weaknesses in one technology during its application with the strength of other by 

appropriately integrating them. 
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Adaptive Neuro Fuzzy Inference Systems are a form of Neuro-Fuzzy hybrid. These are a 

class of adaptive networks that are functionally- equivalent to fuzzy inference systems. 

ANFIS represent Takagi Sugeno fuzzy model and uses a hybrid learning algorithm which 

is the combination of Gradient descent and least square estimates method. 

7.2 ANFIS Architecture 

An adaptive network is a multilayer feedforward network in which each node performs a 

particular function (node function) on incoming signals as well as a set of parameters 

pertaining to this node. The formulas for the node functions may vary from node to node, 

and the choice of each node function depends on the overall input-output function which 

the adaptive network is required to carry out. Note that the links in an adaptive network 

only indicate the flow direction of signals between nodes; no weights are associated with 

the links. To reflect different adaptive capabilities, we use both circle and square nodes in 

an adaptive network. A square node (adaptive node) has parameters while a circle node 

(fixed node) has none. The parameter set of an adaptive network is the union of the 

parameter sets of each adaptive node. In order to achieve a desired input-output mapping, 

these parameters are updated according to given training data and a hybrid learning 

algorithm. Functionally, there are almost no constraints on the node functions of an 

adaptive network except piecewise differentiability. Structurally, the only limitation of 

network configuration is that it should be of feed forward type. 

If the FIS under consideration has two inputs and one output, then the fuzzy rule base 

algorithm in Takagi Sugeno form [54] can be represented as : 

Let, x and y are two inputs with A1, A2..........A,, be the linguistic terms used to describe 

membership function for x. Similarly, B1, B2 .............Ba  be the linguistic term for y, then, 

Rule 1:IfxisA1  andyisB1 ,then ff =pl  x+qi  y+r, 

Rule 2:IfxisA2  and yisB2 , then f2 = pZ x+qZ y+ r2  
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Rule n: If x is An and y is B~, , then f„ = p,, x + qn y + r,, 

The ANFIS architecture with above rules is shown in Fig. 7.1. The architecture shown 
consists of 5 layers, which are defined as: 

Layer 1: Every ith node in this layer is an adaptive node with its output defined as, 

O1,i =p4 (x) , for nodes with input x 

= PB (y) , for nodes with input y 

The membership function for A and B can be any appropriate parameterized membership 
function, where the adjustable parameters, in this layer are called premise parameter. 

Layer 2: Every node in this layer is fixed node shown as 11, which multiplies incoming 
signals and outputs the product or T norm. 

e.g. 	 02,1= U,; (x) X Pg (Y) 

Each node output represents the firing strength of a rule. 

Layer 3: Every node in this layer is fixed node shown as N, called normalizing function. 
The i h̀ node calculates the ratio of i l̀'rule's firing strength to the sum of all rule's firing 
strength, 

03i= Wi = 
	w; 
w1 +w2 +......+w 

Layer 4: Every ith node in this layer is an adaptive node with function: 

Oai.= u';.f; =w(px+q;Y+ii) 

Where {p, q, r} is parameter set called consequent parameter. 
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Layer 5: The node in this layer is function E which computes sum of all incoming signals 

Yw,f 

i 

This results in an adaptive network which modifies premise and consequent'parameter for 
minimum error and having same function as Sugeno fuzzy model. 

Layer 1 	Layer 2 	Layer 3 	Layer 4 	Layer 5 

x 

il 

f 

Fig. 7.1 Architecture of 2- input 1-output ANFIS 

7.3 Hybrid Learning Algorithm 	 . 

The ANFIS can be trained by a hybrid learning algorithm presented. by Jang [108]. From 

the proposed ANFIS architecture, it is observed that given the values of premise 

parameters, the overall output can be expressed as a linear combinations of the 

consequent parameters. More precisely, the outputf in Fig. 7.1 can be rewritten as, 

wl  + w2  
f  w, 	 f  +w2 	w1  + w2 

- }VIJA + W2.f2 

_ (wix)P] + ( x'1Y)q1 + (W1 )Y + (i52x)P2 + (TV2Y)g2 +(i32)r, 
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which is linear in the consequent parameters (pl, ql, r1, p2, q2 and r2) . As a result, we 

have 

S = set of total parameters 

SI  = set of premise parameters 

S2 = set of consequent parameter 

More specifically, in the forward pass of the hybrid learning algorithm, functional signals 

go forward till layer 4 and the consequent parameters are identified by the least squares 

estimate. In the backward pass, the error rates propagate backward and the premise 

parameters are updated by the gradient descent. 

The consequent parameters thus identified are optimal (in the consequent 

parameter space) under the condition that the premise parameters are fixed. Accordingly 

the hybrid approach is much faster than the strict gradient descent. However, it should be 

noted that the computation complexity of the least squares estimate is higher than that of 

the gradient descent. 

7.4 ANFIS controller for Ball Beam system 

ANFIS solves the tuning problem involved with fuzzy controllers by tuning the fuzzy 

premise and consequent parameters to minimize error with the help of neural network 

learning capability. It serves as an advanced technique to control complex non-linear 
systems. 

While manually designing Fuzzy controller for Ball beam system, it was difficult 

to decide the universe of discourse for input and output fuzzy variables. This problem is 

solved by ANFIS by utilizing training data obtained from PD controller. Other tuning 

parameters such as overlap among membership functions and membership functions 

parameters are also tuned by ANFIS. 

Fig. 7.2 shows a 2-input ANFIS with nine rules. Three membership functions are 

associated with each input, so the input space is partitioned into nine fuzzy subspaces, 

each of which is governed by fuzzy if-then rules. The premise part of a rule delineates a 

fuzzy subspace, while the consequent part specifies the output within this fuzzy subspace. 
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Fig. 7.2 ANFIS Model 
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CHAPTER - 8 

Results and Discussion 

8.1 	Simulation Results 

8.1.1 Sliding Mode Controller 

The Ball position response of SMC with simplified model given in eqn. (2.1), obtained 
with the help of MATLAB/Simulink simulation is shown in Fig. 8.1. The system 

parameters used in simulation are given in Appendix. The figure shows that it takes 

around 2 sec to settle the ball for given initial condition of 0.1 m. The system does not 

show any overshoot and undershoot as shown in figure for well tuned parameters. 
However, the position response shows little oscillation in the steady state. The value of 

both constants A. and pi used in sec.3.2.1 were chosen to be 1.5. 
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Fig. 8.1 Ball position for simplified model using SMC 

The control output of SMC is shown in Fig. 8.2 for simplified ball beam model. It can be 

seen from figure that control signal is discontinuous unlike conventional controllers. The 

phase plane plot for the ball position and velocity states is shown in Fig. 8.3, given initial 
condition (0.1, 0), the SMC is able to reach the sliding line, however, chattering exists 
along the sliding line. 
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Fig. 8.2 SMC Control output for simplified model 
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Fig. 8.3 Phase plane plot ball position and velocity state 
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Fig. 8.4 Ball position for complete model using SMC 

The SMC control law obtained in eqn. (3.5) for the complete Ball beam model given by 

eqn. (2.2) and (2.3) has been designed and simulated in MATLAB/Simulink. The ball 

position response is given in Fig. 8.4 which shows smooth control action with 3 sec to 

reach steady state. Ball velocity and Beam angle has been shown in Fig. 8.5 and Fig. 8.6 

respectively. 

Fig. 8.5 Ball velocity for actual model using SMC 

57 



0.15 

0.1 
Ca 
W 

0.05 

E 
CD CD 
 0 

-- 	---•------ ------ ------- ------------------------------------------- 
p 	p I I 1 I 	I I 	I 	1 

1 I I 1 I 	1 1 	I 	1 
I I 1 1 1 	1 1 	I  
f I I 1 I 	I I 	I 	1 

-______1__--_- J------ J_______C_----- L---___ 1______J _____------___L_____ 
I 	I I 1 1 1 	1 1 	I 	1 

1 1 1 I 	1 1 	I 	1 
1 1 1 1 	1 1 	I 	1 
1 1 I 1 	1 1 	1 	'I 

II___ ---!_  I• 
1 1 	I 	1 

I 1 1  I I 	1 1 	1 	1 
1 I I I 	1 1 	I  
1 I 1 I 	I 1 	1 	1 

If 	1 I I I I 	I I 	I 	1 
1 I I I 	1 1 	I. 	1 

ii 	I 1 I I I 	1 1 	I 	1 
If 	I 1 I I I 	1 1 	I 	1 

I 1 I I I 	1 1 	1 	1 
If 	I 1 1 I I 	1 1 	I 	1 

------------------------------------------- 
1 1 I I 	1 1 	I 	1 
1 I 1 I 	1 I 	1 	1 

I I I I I 	I I 	I 	I 

M 

0 

-0.05 
0 
	

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 
Time (sec) 

Fig. 8.6 Beam angle vs. Time 

The control output considering the complete model is shown in Fig. 8.7. The above 

figures show that all the states of system reach equilibrium; hence, the SMC designed is 

able to stabilize the system. The parameters used during simulation have been given in 
appendix. 
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Fig. 8.7 SMC control input for actual model 
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8.1.2 Fuzzy Logic Controller 

The Simulink model of Ball beam system given in eqn. (2.1) is used for simulation 

purpose. The fuzzy controller designed is a Mamdani FIS with 2 inputs and 1 output. The 

Ball position error e(t) and change in error e(t) are the two inputs whose membership 

function s was shown in Fig. 4.4. The output membership function was shown in Fig. 4.5. 

The fuzzy scaling parameters used for control of Ball Beam system are ge = 15, gce = 6 

and gu = 3.The ball position response is shown in Fig. 8.8. The surface view plotted with 

error, change in error and control is shown in Fig. 8.9. 
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8.1.3 Two Level Controller (Fuzzy with SMC Supervisor) 

The fuzzy controller designed in the previous section could balance the system with small 

initial ball positions but as the initial ball position is increased, i.e. the states of the system 

goes beyond the universe of Fuzzy controller, it is not able to provide required control 

and hence system does not settle to the desired position. Fig. 8.10 shows the response of 

Fuzzy controller with initial ball positions of 0.05, 0.1, 0.15, 0.3 and 0.5. It is clear from 

figure that FLC is able to stabilize the system only for initial ball positions of 0.05 and 0.1 

and if this value is increased, FLC is unable to stabilize the ball to reference position 

which is taken as 0. 

Fig. 8.10 FLC response with different initial conditions 

Now, SMC designed earlier is appended to .FLC as a supervisory controller using a 

switching logic such that when FLC is unable to stabilize or the state goes beyond its 

range, SMC supervisor immediately becomes active and is then responsible for providing 

sufficient control. FLC with SMC supervisor response with different initial ball position 

has been shown in Fig 8.11. It is clear from figure that if initial condition is increased 



beyond 0.1 m, this two level scheme is able to stabilize the system. In other words, FLC 

with Supervisor is able to stabilize the system for any initial ball position. 
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Fig. 8.11 FLC with Supervisory controller for different initial conditions 

8.1.4 Neural Network Controller 

To design the Neural Controller, first step was to collect the relevant data that may be 

used for training. To train the NN Controller for its proper behaviour, the idea was to 

force it to perform similar to well tuned PD controller [20]. The ball position error e(t) 

and change in error de(t)/dt are the two inputs whose values obtained from well tuned PD 

controller is fed to train NN. The control signal u(t) obtained from PD is fed as target 

output. The training operation is done by writing a MATLAB m-file code which defines a 

backpropagation network and trains it using data provided for training. NN is trained for 

1000 epochs using a Levenberg-Marquardt backpropagation network training function. 

The weight and bias values are adjusted according to gradient descent with momentum 

weight and bias learning function. 
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Fig. 8.12 shows the performance plot of NN generated after training, which is plot of 

Mean square error vs. Number of epochs. Fig. 8.13 shows the fitting of NN actual output 

with the target output. 

Best Validation Performance is 9.4971e-006 at epoch 228 
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Fig. 8.12 Performance plot for NN 
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The dashed line in Fig. 8.12 shows the target output whereas solid line represents actual 
output of NN controller. It is clear from above figure that NN is able to fit the data 
exactly. 

After observing simulation results, it is clear from Fig., 8.14 that for given, initial 

condition 0.1 m for ball position and 0 m as the reference position, the NN controller 
controls the ball and takes around 3.2 seconds to settle it to reference position. 
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Fig. 8.14 Ball position response of Neural network Controller 

8.1.5 ANFIS Controller 

To design the ANFIS controller, first step was to collect the relevant data that may be 

used for training of ANFIS. To train the ANFIS for its proper behaviour, the idea was to 
force it to perform similar to well tuned PD controller [20] as was done in case of neural 

network. The second step was to choose the type of signal to be fed to ANFIS as inputs so 

that all the possible combinations of the different inputs is fed. If the ANFIS is trained 

with the data obtained only from PD, then.in case of parameter variation and external 

disturbance, ANFIS will not perform satisfactory. Hence, training ANFIS with all input 

combination ensures proper behaviour in presence of noise and parameter variation. 

The ball position error e(t) and change in error de(t)/dt are the two inputs whose all 
possible combination with in a given range is fed to train ANFIS. The control signal u(t) 

obtained from PD is fed as target output. Then, ANFIS is trained for 25 epochs using 'a 
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hybrid training algorithm which is a combination of least square and back propagation 
gradient descent method. Consequently, membership function parameters of single-

output, Sugeno type fuzzy inference systems (FIS) are obtained. Fig. 8.15(a) and 8.15(b) 
shows the properly tuned membership function generated after training ANFIS. Fig. 8.16 
shows the control surface of ANFIS generated Fuzzy controller which is completely 
linear. The resulted FIS is then used in closed loop with ball and beam system. 
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Fig. 8.17 Ball position response of PD and ANFIS controller 

After observing simulation result, it is clear from Fig.8.17, given, initial condition 0.1 m 

for ball position and 0 m as the reference position, the ANFIS controller controls the ball 

and takes 0.9 seconds to settle it to reference position while PD takes 2.2 seconds. 
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Fig. 8.18 Ball position response in presence of disturbance 

The difference in performance of these 2 controllers becomes more observable when 

external random disturbance is applied to the plant. Fig. 8.18 shows the output of two 

controllers with disturbance acting on plant. In this case also ANFIS performs better as 

steady state error is very small as compared to that of PD. 

8.1.6 Comparison of various controllers 

The output response of different controllers designed and simulated in 

MATLAB/Simulink is compared with the help of Fig. 8.19. Table 8.1 gives the 

comparison of simulation results of SMC, FLC, NN and ANFIS controllers designed for 

ball beam system. It can be observed from the table that the settling time and rise time is 

least in case of ANFIS. Overshoot and Steady state error is zero in case of all controllers. 
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Fig.8.19 Ball position response of different controllers 

Specification SMC FLC NN ANFIS 

Settling time 1.9s 1.5s 3.05s 0.9 s 

Rise time 1.15s 1.05s 2.1 s 0.65s 

Steady state error 0 0 0 0 

Overshoot 0 0 0 0 

Table 8.1 Comparison of various controllers 

8.2 Experimental Results 

The real time control application was carried out in the ball and beam hardware. The 

beam is 40 cm long, the radius and mass of ball are 0.01 m and 0.028 Kg respectively. 

Input to the system is motor control voltage and output is motor position (0) and ball 

position (r). The motion of the motor's shaft is governed by IPM 100 intelligent drive 

which is included within hardware. This is a high precision, fully digital servo drive with 

embedded intelligence and 100W power amplifier suitable for brushless/brush motors. 
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Based on feedback information from sensors, it computes error between reference and 

current ball position and then applies appropriate PWM modulated voltage to the motor 

windings in such a way that a sufficient torque moves the motor shaft according the user 

programmed control algorithm. 

IPM100 communicates with PC through RS-232 interface. The DC voltage to the drive is 

provided by the DC power supply. The control program is operated in windows Xp under 

MATLAB/SIMULINK. Since, resulting ANFIS controller requires ball position as well 

as velocity to be fed to it, derivative block of Simulink has been used to calculate 

velocity, as direct velocity measurement is not available. This requires position signals 

should be smooth enough; hence, first order LPF has been used. 

8.2.1 PD controller for Ball beam system 

The proportional and derivative gains used for PD controller were 20 and 10 respectively. 

Fig. 8.20 shows the ball position error as function of time when PD controller controls the 

system. The response has somewhat larger overshoot and small steady state error. 
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8.2.2 NN controller for Ball beam system 

The position error response of neural network controller implemented for the real time 

control is shown in Fig. 8.21. The network was designed with 2 inputs, 1 hidden layer 

with 5 nodes and 1 output and was trained using Levenberg-Marquardt backpropagation 

network training function. 

Fig. 8.21 Ball position error response ofNN controller 

8.2.3 ANFIS controller for Ball beam system 

The scaling factor used for error, change in error and control output in case of ANFIS 

controller were 0.5, 110 and 4 respectively. Fig. 8.22 shows the ANFIS control which 

stabilizes the system to reference position of 20 cm and results in small steady state error 

and small overshoot than PD. 

8.2.4 Experimental comparison of various controllers 

The real time performance of PD, NN and ANFIS . controllers has been compared in 

Table. 2. The table shows that overshoot and steady state error is least in case of ANFIS 

whereas settling time is least in case of NN. 

A9 



2 0.05 
w 

Q  0 

U, 

a -0.05 

i -0.1 

-0.15 

0.2 

0.16 1 	 1 
1  1  1  1 

1  1  1  1 

I  ~ 

1  1  1  I 

------_-_  ------------ -------------------------`------_ 

1  1  1 

1  1  1  1 

1 	 1 

I 	 I 	 1  

1  1 
------------'------------'------------'------------ I  1  , 

1  , 

I 

1  1 

1  ;  1 

_0.2 L  
0 

0.1 

2 	4 	6 	8 	10 
Time (s) 	 x 104 

Fig.8.22 Ball position error response of ANFIS controller 

Specification PD NN ANFIS 
Settling time 2.7s 2.3s 3.9s 
Overshoot 65.7 % 105 % 26.4% 
Steady state error 0.015 m 0.032 m 0.01 m 

Table 8.2 Comparison of PD, NN and ANFIS in real time control 
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CHAPTER 9 

Conclusion and Future scope 

Various techniques have been investigated in this research work to control the Ball beam 

system. The ball beam system is a good selection as it is a standard unstable nonlinear 

system with simplicity in understanding its operation and characteristics. However, the 

performance depends on the type of controller used. A Sliding mode controller has been 

designed and its performance has been analyzed for simple as well as complete model. 

The simulation results show that the presented SMC is able to control the system 
satisfactorily. 

As the ball beam system's operation is simple to understand and can easily be 

described in terms of linguistic labels using if-then statements, it is -simpler to implement 

a model free technique than designing an SMC after deriving a complex nonlinear model. 

The Fuzzy controller designed simply depends on several if then statements and presents 

a nonlinear control strategy. The results obtained from simulation show the better 

performance of FLC over SMC in terms of smoothness and speed of response. However, 

it is seen that SMC has good robustness property than FLC. 

A two-level control system with a fuzzy PD controller and a variable structure 

based supervisor has been presented. The main advantage of two-level control is that 

different controllers can be designed to target different objectives to meet practical design 

specifications. The supervisory controller for fuzzy control systems can guarantee that the 

state of the closed-loop system is uniformly bounded. The advantage of this approach is 

that we do not need to change the design of the fuzzy controller to guarantee stability; this 

permits us to design high performance fuzzy controller. The robustness property of 

variable structure control has also been utilized to make it insensitive to parametric 

uncertainty and disturbances. The approach has been applied to balance the ball beam 

system and it has been shown that how the supervisory controller forces the state to be 

bounded and fuzzy controller balances the system. 

To utilize the advantage of model free approach, another controller using neural 

network technique has been proposed. Neural network represents a good black box, 

because it has an arbitrary internal configuration that is capable of modelling poorly 
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defined processes. The advantages ofNeural Networks include fast computation and fault 

tolerant feature thus able to perform well under incomplete information. The proposed 

NN controller is able to smoothly control the ball beam system. However, the response is 

slower than FLC and SMC. 

To further improve the performance and get more intelligent control, the two 

intelligent control techniques FLC and NN, with each having distinct advantage over 

other, combined together resulting in ANFIS approach. This eliminates the tuning 

requirement in FLC thus makes its design simple. The main objective behind designing 

ANFIS controller was to implement real time control for Ball beam system. When the 

FLC was designed manually i.e., by manually tuning the membership functions and 

designing the rule base, the resulting FLC was not able to provide appropriate control 

action and hence was unable to stabilize the Ball beam hardware. ANFIS, on the other 

hand generates a properly tuned FLC with the help of training data provided to it. The 

ANFIS generated FLC, as seen from simulation and experiment results, results in better 

control action with fastest response among all controllers that have been designed. 

The work presented in this dissertation can be extended further to design more 

robust and intelligent controller by eliminating the problems involved with the present 

work such as: 

i. The chattering problem shown by SMC could be eliminated by designing the 

control law which softens the discontinuity inside boundary layer as suggested in 

chapter 3. 

ii. The Sliding mode controller as well as Supervisory control scheme works well in 

• simulation. These controllers can be applied for real time control of ball beam 

system. 
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APPENDIX 

The system parameters for simple as well as actual ball and beam model are: 

m 	0.028 Kg 

g 	9.81m/s2  

L 	0.40m 

M 	0.15 Kg 

Rm 911 

Jn, 	7.35 X 10-4  Nm/rad/s2  

Kn1 	0.0075 Nm/A 

Kg  75 

d 	0.04m 

J1 	0.001 Kgm2  

Kb 	0.5625 V/rad/s 

The m-file code to create and train neural network controller: 

load simerror; 
load simedot; 
load simcontrol; 
P = [simerror'; simedot']; 
TR = [simcontrol']; 
neti = newff (P, TR, 3, { }, 'trainlm') ; 
netl = train (netl, P, TR) ; 
a = sim(netl,P); 
figure; 
plot (P, a, P, TR) 
gensim (nett, -1) 

77 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Conclusion
	References
	Appendix

