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ABSTRACT 

OFDM has become a popular technique for transmission of signals over 
wireless channels. It converts a frequency-selective channel into a parallel collection of 
frequency flat sub channels, which makes the receiver simpler. A MIMO system takes 
advantage of the spatial diversity obtained by spatially separated antennas in a dense 
multipath scattering environment. For high data-rate transmission, the multipath 
characteristic of the environment causes the MIMO channel to be frequency-selective. 
OFDM can transform such a frequency-selective MIMO channel into a set of parallel 
frequency-flat MIMO channels, and therefore decrease receiver 'complexity. The 
combination of the two powerful techniques, MIMO and OFDM, is very attractive, and 
has become a most promising broadband wireless access scheme. For detection of 
OFDM signals, channel must be known at the receiver. Channel estimation is a 
challenging problem in wireless systems. 

The expectation-maximization (EM)-algorithm provides an iterative approach to 
likelihood-based parameter estimation. when direct maximization of the likelihood 
function may not be feasible. The EM algorithm consists of hvo major steps: an 
expectation step, followed by a.maximization step.. 

In this dissertation work, we consider EM and EM-MMSE based channel 
estimation techniques for OFDM systems. EM-MMSE technique is computationally 
simpler than EM technique. Following this, hard VBLAST-EM based channel 
estimation for MIMO-OFDM systems will be discussed. In this approach a plain 

VBLAST algorithm is used for data - detection. Finally, soft VBLAST-EM based 
channel estimation for MIMO-OFDM systems is considered. Soft VBLAST algorithm 
is an improved VBLAST, which takes the error propagation effect into account. IDD 
(Iterative Detection and Decoding) block is used to further improve the performance of 
MIMO-OFDM system. Simulation results are also presented. 
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Chapter 

INTRODUCTION 

The gradual evolution of wireless communication systems follows the quest for high 

data rates (bps). The first-generation (1G) radio systems used analog communication 

techniques to transmit voice over radio. The 2G systems were built with digital 

technology, such as Global System for Mobile Communications (GSM), Digital-AMPS 

(D-AMPS), code-division multiple access (CDMA), and personal digital cellular 

(PDC), among them GSM is the most successful and widely used 2G system. To 

accomplish higher data rates, two add-ons were developed for GSM, namely high-speed 

circuit switched data (I-ISCSD) and the general packet radio service (GPRS), providing 

data rates up to 38.4 Kbit/s and 172.2 Kbit/s, respectively. The demand for yet higher 

data rates forced the development of a new generation of wireless systems, known as 

third generation (3G) [1]. 

30 wireless technologies provide users with high-data-rate wireless access. The 

three major radio air interface standards for 3G are wideband CDMA (WCDMA), time-

division synchronous CDMA (TD-SCDMA), and cdma2000. The transmitted data rate 

of 3G is up to 144 kb/s for high-mobility traffic, 384 kb/s for low-mobility traffic, and 2 

Mb/s in good - conditions. One of the leading technologies for 3G systems is the now 

well-known universal mobile telephone system (UMTS). To yield the-3G data rates, an 

alternative approach was made with the enhanced data rates for GSM evolution 

(EDGE). The wireless communication system with features of high data- rate 

transmission and 'open network architecture, called 4G, is desired to satisfy the 

increasing demand for broadband wireless access. Hence, 4G refers to a collection of 
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technologies and standards that will find their way into a range of new widespread 

computing and communication systems. The key objectives of 4G are to provide 

reliable transmission with high peak data rates ranging from 100 Mb/s for high mobility 

applications to 1 Gb/s for low-mobility applications, high spectrum efficiency up to 10 

b/s/Hz, and ubiquitous services that can accommodate various radio accesses. 

Orthogonal frequency division multiplexing (OFDM) has become a popular 

technique for transmission of signals over wireless channels. OFDM has been adopted 

in several wireless standards such as digital audio broadcasting (DAB), digital video 

broadcasting (DVB-T), the IEEE 802.11 a local area network (LAN) standard and the 

IEEE 802.16a metropolitan area network (MAN) standard. OFDM converts a 

frequency selective channel into a parallel collection of frequency flat sub-channels. For 

detection of OFDM signals, channel must he known at the receiver [2]. 

Channel estimation is a challenging problem in wireless systems. Where, 

unlike other guided media, the radio channel is highly dynamic. The transmitted signal 

travels to the receiver by undergoing many detrimental effects that corrupt the signal 

and often place limitations on the performance of the system. Transmitted signals are 

typically reflected and scattered, arriving at receivers along multiple paths. Also, due to 

the mobility of transmitters, receivers, or scattering objects, the channel response can 

change rapidly over time. Multi path propagation, mobility, and local scattering cause 

the signal to be spread in frequency, time, and angle. These spreads, which are related 

to the selectivity of the channel, have significant implications on the received signal [3]. 

Different techniques are proposed to exploit these statistics for better channel 

estimates. These techniques can be classified as pilot-aided or blind channel estimation. 

In the pilot-aided channel estimation technique, a pilot sequence known at the receiver 
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is embedded into the signal. At the receiver side, using these, pilot symbols and the 

received signals, the channel is estimated. On the other hand, blind channel estimation 

techniques do not use any training symbols. They use the received signals and 

stochastic information of transmitted and received signals to estimate the channel 

coefficients. A widely used blind estimation technique is the subspace-based channel 

estimation. In this method, the autocorrelation matrix of the received data is 

decomposed into the signal and noise subspaces by using singular value decomposition 

(SVD) technique. 

Compared to pilot aided techniques, blind techniques save on the use of pilots 

and can thus increase the spectral efficiency. I-Iowever, blind techniques require prior 

knowledge of stochastic information of the transmitted and received signals. Moreover, 

they always result in poorer performance compared to pilot-aided techniques. 

Multiple antennas can be used at the transmitter and receiver, this arrangement 

is called as a multiple-input multiple-output (MIMO) system. A MIMO system takes 

advantage of the spatial diversity that is obtained by spatially separated antennas in a 

dense multi path scattering environment. MIMO systems may be implemented in 

different ways to obtain either a diversity gain to combat signal fading or to obtain a 

capacity gain. Generally, there are three categories of MIMO techniques. Such 

techniques include space—time block codes (STBC), spatial multiplexing(SM) and 

space—time trellis codes (STTC). In Layered space time architecture (LST), codes are 

expressly meant for improving multiplexing gain by transmitting Mr  independent data 

steams. In LST, by nature the data streams are orthogonal to each other. There are two 

major types of classification of spatial multiplexing — horizontal encoding (HE), and 
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vertical encoding (VE). A variant of vertical encoding (VE) is the vertical BLAST 

architecture. 

Multiple transmit-and-receive antennas can be used with orthogonal frequency 

division multiplexing (OFDM) to improve the communication capacity and quality of 

mobile wireless systems. Most of MIMO techniques are developed for flat fading 

channels. However, multi path will cause frequency selectivity of broadband wireless 

channels. Therefore, MIMO-OFDM, which has originally been proposed to exploit 

OFDM to mitigate ISI in MIMO systems, turns out to be a very promising choice for 

future high-data-rate transmission over broadband wireless channels. MIMO-OFDM 

has become a very popular area in wireless communications. A real-time FPGA 

prototype for a 4-stream MIMO-OFDM transceiver capable of transmitting 216Mbit/s 

in 20MHz bandwidth is considered in [4]. To obtain the promised increase in data rate, 

accurate channel state information is required. in the receiver. 

The Expectation-Maximization (EM) algorithm is a technique for finding 

maximum likelihood estimates of system parameters in a broad range of problems 

where observed data are incomplete. The EM algorithm consists of two iterative steps: 

the expectation step and the maximization step. The expectation step is performed with 

respect to unknown underlying parameters, using the current estimate of the parameters, 

conditioned upon the incomplete observations. The maximization step then provides a 

new estimate of the parameters that maximizes the expectation of log likelihood 

function defined over complete data, conditioned on the most recent observation and 

the last estimate. These two steps are iterated until the estimated values converge [9]. 
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1.1. Statement of the problem 

This dissertation work is aimed at performance study of EM based channel 

estimation for OFDM and MIMO-OFDM systems. 

The dissertation presents the following work 

I. Study and implementation of EM and EM-MMSE based channel estimation 

for OFDM systems in Rayleigh multipath fading channel model with both 

stationary and time varying environment. 

2. Study and implementation of hard/soft VBLAST-EM based channel 

estimation for BICM MIMO-OFDM systems in time varying fading 

environment. 

3. Implementation of iterative detection and decoding (IDD) used to improve 

the performance of soft VBLAST-EM based channel estimation for BICM 

MIMO-OFDM systems. 

1.2. 	Organization of the Report 

This report is organized in five chapters: 

In chapter 1, Introduction and the statement of problem of the dissertation work 

is summarized. 

In chapter 2, base-band OFDM system model is described first. Next, 

techniques for channel estimation for OFDM systems are described. Briefly EM 

algorithm, EM and EM=MMSE based channel estimation techniques for OFDM 

systems are discussed. 

5 



In chapter 3, VBLAST detection algorithm is described first. Next, BICM 

MIMO-OFDM system model is described. Conventional EM and hard VBLAST-EM 

based channel estimation for MIMO-OFDM systems are discussed next. 

In chapter 4, Channel estimation for BICM MIMO-OFDM systems using soft 

VBLAST-EM technique is presented. Iterative detection and decoding (IDD) is 

discussed. Simulation resuits are also presented. 

Chapter 5 gives the conclusion of the thesis work. 



Chapter 2 
EM BASED CHANNEL ESTIMATION FOR OFDM 
SYSTEMS 

In this chapter, base-band OFDM system model is described first. Next, 

techniques for channel estimation for OFDM systems are described. EM algorithm, EM 

and EM-MMSE based channel estimation techniques for OFDM systems are discussed. 

Next, simulation results on the performance of above channel estimation techniques in 

OFDM systems are presented at the end. 

2.1. Base-Band OFDM System Model: 

modulated 

input 	Iytodulation 	signals 	
Add bits 	 X(m) 

	

s/p 	IFFT 	cyclic 	PJS 
prefix 

- 	Transmitter 
.Channel 

	

One- 	 Remove 

	

estimated 	tap Demodulation 	
signals 	EQ 	 cyclic  

FFT 	prefix 	S P 
X(m) &P!S 

 

Channel 
estimation 

Receiver 

Figure 2.1 .Base-band OFDM system model 

Figure 2.1 shows a base-band equivalent representation of an OFDM system. 

The input binary data is first modulated using, MPSK or MQAM. Schemes can vary 

from one sub-carrier to another in order to achieve the maximum capacity or the 

minimum bit error rate (BER). The modulated data symbols are represented by complex 

variables X=[X(0).....,X(M-1)]T . Modulated data symbols are then fed into a serial 
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to parallel (SIP) converter. These data symbols are then transformed by the inverse fast 

Fourier transform (IFFT). The output symbols are denoted as x(0)..........x(M-1) [5]. 

Cyclic prefix (CP) symbols, which replicate the end part of the IFFT output 

symbols, are added in front of each frame to avoid ISI. The parallel data are converted 

back to a serial data stream before being transmitted over the frequency selective 

channel. The received data y(0).......... y(M —1) is corrupted by multipath fading and 

AWGN. The received data are converted back to Y(0)......Y(M-1) after discarding the 

prefix, and applying FFT and demodulation. 

LetH, h, N denote the vectors of frequency-domain CIR, time-domain CIR, 

and additive -white Gaussian noise respectively, where h = [ho ,...., hL_, ]T 

N=[N(0)......N(M-1)]T and H=Wh, WisaMxL matrix: 

11 	... 	1 

I e ~znM 
	e M 
 (2.1) 

1 e 	... 	
zu(M q(L I) 

 M 	a 	M 
MxL 

The channel is modeled as a multipath time-invariant fading channel, which can be 

described by 

y(k)=>h,t(k-1)+n(k), 0:—k:—M-1, 	 .(2.2) 
r=o 

where hr 's (0 —1 <— L —1) are independent complex-valued Gaussian random variables, 

and nk 's (0 < k < M-1) are independent complex-valued Gaussian random variables 

with zero mean and variance 62 . L is the length of the time-domain CIR. Cyclic prefix 

(CP) is added in each OFDM data frame. In order to avoid ISI, the length of the cyclic 

prefix (CP) must be longer than L. Only one OFDM frame with M sub-carriers is 

considered in analyzing the system performance. After discarding the cyclic prefix and 
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performing an FFT at the receiver, we can obtain the received data frame in the 

frequency domain: 

M-1 	kn 

Y(m) _ 	Z y(k)e 'Zft"~ 	 (2.3) 

Substituting (2.2) in (2.3), we get 

Y(m)=X(m)H(m)+N(m), 05m<M-1 	 (2.4) 

where H(m) is the frequency response of the channel at subcarrier in, which can be 
obtained by 

H(M)= h
re M,05m<M-1 	 (2.5) 

r_o 

and the set of the transformed noise variables N(m) , 0 s in 5 M-1, which can be 
obtained by 

N(m)= 1 ~n(k)e Jz M, 0<—m<_M-1 	 (2.6) 
V ~✓~ k=0 

are i.i.d. complex-valued Gaussian variables and have the same distribution as n(k), 

i.e., with mean zero and variance o z . 

2.2. Channel Estimation for OFDM systems 

Channel . estimation has significant role in single carrier communication 

systems [6, 7]. In these systems, the CIR is typically modeled as an unknown time-

varying FIR filter, whose coefficients need to be estimated. In OFDM based systems, 

the data is modulated onto the orthogonal frequency carriers. For coherent detection of 

the transmitted data, these sub-channel frequency responses must be estimated and 

removed from the frequency samples. Like in single carrier systems, the time domain 

channel can be modeled as a FIR filter, where the delays and coefficients can be 

estimated from time domain received samples, which are then transformed to frequency 

domain for obtaining the channel frequency response .(CFR). Alternatively, radio 

channel can also be estimated in frequency domain using the known. (or detected) data 

9 



on frequency domain sub-channels. Instead of estimating FIR coefficients, one tap CFR 

can be estimated (Figure 2.2). 

a  OR  OR v 	 p 

mTalFT 

.Tc hzk . 	 7a~riairr x 

Figure 2.2. Time and frequency domain channel representation for OFDM systems 

Channel estimation techniques for OFDM based systems can be grouped into 

two main categories: blind and non-blind. The blind channel estimation methods exploit 

the statistical behavior of the received signals and require a large amount of data. 

Hence, they suffer severe performance degradation in fast fading channels. On the other 

hand, in the non-blind channel estimation methods, information of previous channel 

estimates or some portion of the transmitted signal are available to the receiver to be 

used for the channel estimation. The non-blind channel estimation can be divided into 

two main groups: data aided and decision directed (DDCE). 

In data aided channel estimation, a complete OFDM symbol or a portion of a 

symbol, which is known to the receiver, is transmitted so that the receiver can easily 

estimate the radio channel by demodulating the received samples. The estimation 

accuracy can be improved by increasing the pilot density. However, this introduces 

overhead and reduces the spectral efficiency. In the limiting case, pilot tones are 

assigned to all subcarriers of a particular OFDM symbol. This type of pilot arrangement 

is usually considered for slow channel variation and for burst type data transmission 

schemes, where the channel is assumed to be constant over the burst. The training 

symbols are then inserted at the beginning of the bursts to estimate the CFR. 

In the DDCE methods, to decode the current OFDM symbol the channel estimates 

for a previous OFDM symbol are used. The channel . corresponding to the current 

symbol is then estimated by using the newly estimated symbol information. Since an 

outdated channel is used in the decoding process, these estimates are less reliable. as the 

channel can vary drastically from symbol to symbol. Hence, additional information is 
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usually incorporated in DDCE such as periodically sent training symbols. Channel 

coding, interleaving, and iterative type approaches are also commonly applied to boost 

the performance of DDCE techniques. 

Hence, the methods employed in data-aided and decision directed channel 

estimation need to be modified so that the variation of the channel over the OFDM 

symbol is taken into account for better estimates. There are basically three basic blocks 

affecting the performance of the non-blind channel estimation techniques. These are the 

pilot patterns, the estimation method, and the signal detection part. 

Iterative channel estimation algorithms can be exploited to minimize the channel 

estimation errors. In these approaches, the channel estimation can be found via any of 

the methods described above, and the estimates can be improved using the detected 

signals. For iterative estimation, better performance is achieved at the expense of more 

computation [8]. 
2.2.1. Expectation-Maximization Algorithm 

The Expectation-Maximization (EM) algorithm is a technique for finding 

maximum likelihood estimates of system parameters in a broad range of problems 

where observed data are incomplete. The EM algorithm consists of two major steps: an 

expectation step, followed by a maximization step. The expectation is with respect to 

the unknown underlying variables, using the current estimate of the parameters and 

conditioned upon observations. The maximization step then provides a new estimate of 

the parameters. These two steps are iterated until the estimated values converge [9, 

10]. 

Consider 0 as a set of deterministic channel parameters to be estimated from the 

observed data Y={y(0)...........,y(M-1)}, ML estimation of 0  is given 

by, 0 = arg me x{ f (Y / 0)} when Y has insufficient information (incomplete data), the 

maximization of f (Y/ 0) is not tractable and does not lead to an explicit expression. 

We assume that the data Z ("complete" data) can be separated into two components, 

Z=(Y, I), where Y is the observed data ("incomplete" data) and I is the missing data 

The E-step compute the expected value of the Z (complete data) using the 

current estimate of the parameter0(')  and observed data Y. 
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For the E-step compute: 

E{logf(Z/0)/Y=y,Ok } 	 (2.7) 

The M-step then finds Oak"), the value of 0 that maximizes Q(0/ O(k) ) over all 

possible values of 0: 

	

0(k") = arg max Q(0 / 0(x)) 	 (2.8) 
0 

This procedure is repeated until the sequence 0(0),0(.`),0(2). ... converges. 

The EM algorithm is constructed in such a way that the sequence of0(k r's converges to 

the ML estimate of0. 

2.2.2. Channel estimation for OFDM using EM algorithm 

OFDM divides its allocated channel spectrum into several parallel sub channels 

that are only subjected to flat fading. Thus we only need to estimate the 

individual H(m), 0 5 m 5 M —1, separately, which will result in a considerable 

reduction in computational complexity. To simplify the expressions, we omit the 

subcarrier index m, and simply write Y, X, and H instead ofY(rn),X(m), andH(m) 

[5,1 1j. 

We assume that the frequency-domain signal X of a given subcarrier represents 

a QPSK or QAM signal with constellation size C (=4 or 16 respectively).we denote the 

symbols in the signal constellation by {X;,1 <_ i<_ C} . 

Due to Gaussian noise assumption, the probability density function (pdo of Y 

given X and H given by 

	

f(Y/X,H)= 1 Z exp(— 1Z IY—HXI2 } 	 (2.9) 

	

Wa- 	l 2a 	111 

By Assuming that all C symbols are equally likely and averaging the conditional pdf of 

(2.9) over the variable X, we obtain the pdf of Y given I-I.as follows: 

 
f(YIH)= 

2gc~
~ iZ 

C 
exp{ 1Z IY HX !2 }

l 
(2.10) 

;=1 	2Q 	))J 
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Suppose the channel is static over the period of D OFDM frames. Different values of D 

can be applied in different applications depending on how rapidly the channel changes. 

We define the received signal vector Y=[Y',...,Y° ] and the transmitted signal vector 

X =[X',...X D ] for a specific subcarrier over D frames. Then we call Y and (Y,X ) 

"incomplete" and "complete" data, respectively. Assuming that additive Gaussian noise 

is independent from frame to frame for each subcarrier, the, conditional pdf of the 

incomplete data can be written as follows: 

f(Y/H,X)=II f(Y d /H,X d ), 	 (2.11) 

Thus, the log—likelihood function of the incomplete data is 

n 
log f (Y / H, X) = log•f (yd  / H; X') , 	 (2.12) 

d=1 

And the log-likelihood function of the complete data is given by.  

log f(Y/H,X)= log  {1  f(Y`/H,X,)}, 	 (2.13) 

	

d_I 	C 

Each iterative process p=0,1,2,....in the EM algorithm for estimating;H from.  Y consists 

of the following two steps: 

E-step: 

Q(H/HID ) )=EX  log f(Y,X/H)/Y,HIP ) } 	 ' 	(2.14) 

M-step: 

='arg max Q(HI H°') , 	 (2.15) 

where 

Q(HIHcv)1=YYlog{Cf(Yd x)}' 	(2.16) 
1 	i-1 r=1 
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I3( P" ) is the tentative estimate of H directly from (2.15). The final (p+l)St estimate of I-I 

, that is, H (°+' ) , will be obtained through additional manipulation on 

The value of H that maximizes (2.16) is found as follows: 

  f ( yd 	(r) 	1' 	c o 	f ( yd 	(n) 	1 
=[itxd' 

Ỳ lH ,Xl 
x ~.YdX lY lH ,X,l 

(2.17) 
f I Yd / H(P)) ] 

	[ i-' d=I 	.f ~1'd l H(r> ) 

H( E 

H( r 

Figure 2.3. Low pass filter structure 	 - - _ 

Channel is estimated in frequency domain at each iteration and then IFFT is 

computed to convert it into time domain that has M paths. In those M paths only L are 

relevant, all other are made as zero and again FFT is computed as shown in figure 2.3. 

In each iteration, the updated estimate of channel impulse response 	is 

obtained automatically as a byproduct. It is assumed that the number of multipaths L is 

known. In a real situation, L may not be known. In such a case, channel-order detection 

together with parameter estimation has to be done. Alternatively, we may use some 

upper bound for L, which may be easier to obtain than trying to estimate an exact value 

of L. In an OFDM system L can be set equal to or less than the length of the cyclic 

prefix. Another limitation of this model is that the mean E{hh} and the covariance 

matrix E of time-domain CIR are also assumed to be known. In a practical situation, 

these channel statistics may not be known. 

From the general convergence property of the EM . algorithm, there is no 

guarantee that the iterative steps converge to a global maximum. For a likelihood 

function with multiple local maxima the convergence point may be one ofthese local 

maxima, depending on the initial estimateH(0) . So, pilot symbols are.used to obtain an 
14 



appropriate initial value H (0) , which is more likely to converge to the true maximum 

point. 

2.2.3. Channel estimation for OFDM systems using EM-MMSE 
algorithm 

From equation (2.7), it may be seen that expectation of cost function (Q) is 

taken over all possible values of unknown parameters. The EM technique has the 

advantage of being-simple in principle but computing the expectations and performing 

the maximizations .  may be computationally taxing. In conventional EM-based 

techniques for estimating the channel parameters in OFDM systems, a cost function is 

defined in tenns of received signal, channel information and transmitted signal. 

Transmitted signal and channel information is unknown at the receiver. In E-step of EM 

technique, averaging of cost function is done on all possible values of transmitted data. 

Then in M-step, the estimated cost function is maximized to estimate the channel 

parameters. This process is done iteratively until convergence [12]. 

In conventional EM technique we estimate the cost function for all possible 

values of transmitted symbol. But in EM-MMSE, at each iteration, we first find the 

transmitted sequence using the knowledge of channel at that iteration. The transmitted 

sequence is calculated using MMSE method in step A. 

Step A: 

First IIY(n:) — H0 P' (rrr)X, (m)II Z  is calculated for l S i :—C, for each carrier and the 

transmitted sequence is calculated at p" iteration using MMSE. Let this estimate of the 

transmitted sequence. for each frame at iteration p is represented .by X(P'. Equation (2.4) 

can be represented in vector form for each frame, 

Y=H•X+N 	 (2.18) 

Where • operator denotes Hadamard product (element-wise matrix 

multiplication and both matrices must have the same dimension) and His the channel 

frequency response vector of dimension I x M. 
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Log Likelihood (cost function) for OFDM system in vector form for a frame can 

be defined as f (Y, XI H) . 

EM-MMSE can be directly applied for each frame, 

At (p+1)'" iteration, 

E-step: 

Q(H/ •  (r ) )°Ex  [log f(Y,X/H) /Y,H(r)1 	
(2.19) 

where expectation is calculated using the received symbol and channel estimate 

at p" iteration. 

After taking expectation on estimated transmitted sequence X. . 

Q(H / FI (v)) = [log .f (Y, X (v)  I H) /Y, H(ni l 
J 	 (2.20) 

M-step: 

Maximizing the'Q function of (8) ,we will get, 

H(p+i) = [vp) . k(p)• ] 1  x  [y. y(p), J 
L 	J 	L 	 (2.21) 

Using step A and (2.21), iteratively, channel is estimated in frequency domain. 

IFFT is computed to convert it into time domain channel that has M paths. Since only L 

paths are relevant, all other paths are made zero and again FFT is. computed.. For initial 

estimation ofA(0) , pilot based technique with linear interpolation is used. 

The efficiency of a channel estimator may be judged by the amount of training 

required and - the computational complexity involved. In EM -MMSE algorithm, 

computational complexity is reduced and it requires less number of pilot symbols as 

initial estimation is done only once. 
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2.3. Simulation results 

The channel estimation algorithm is tested through Monte Carlo simulations. 

We consider a 128 subcarrier OFDM system, with QPSK as the underlying modulation 

scheme. A Rayleigh multipath fading channel model with both stationary and time 

varying environment are considered and time varying environment is characterized by 

AR2 channel model. An operating frequency of 2 GHz and a channel bandwidth of 

2048 KHz have been assumed. The channel is assumed to be quasi static and does not 

vary with in each frame. For Rayleigh stationary multipath fading,. channel has been 

assumed independent for each OFDM frame and for time selective multipath fading, 

channel varies for each frame according to Doppler values. . Each frame consists of 30 

symbols. We have taken Doppler values of fdT=0.005, fT=0.01, fdT=0.001. and 

fdT=0.05 [12]. Simulation has been done in MATLAB environment. The system 

performance is evaluated for SNR values of 0-30db by averaging over 1000 frames. 

Rayleigh stationary multipath fading channel model: 

The impulse response h (n) of the, stationary multipath fading channel can be 

modeled as,. 

h(n) I Y,e kIIakS(n—k) 
K k_o 

Where K = ~e ;k is the normalization constant and a5 , 0 <— k 5L are independent 

complex valued Gaussian distributed random variable. 

This is the conventional exponential decay multipath. model. We have used, 4 . tap 

stationary muitipath channel model as in [13], 

h(n) = 0.806a0E(n)+0.486a,8(n-1)+0.2952a28(n-2)+0.179a,8(n-3) (2.23) 

Where, a„ 0 < i < 3 are independent complex valued Gaussian distributed, random 

variables with zero mean and unit variance. 

Time varying channel model using AR2 process: 

Time selective channel is approximated by an independent autoregressive 

process of order-2 (AR2). The channel tap vector for each OFDM frame is denoted 

by h = [h(n, 0) h(n, 1) h(n, 2) h(n, 3)] , where h(n,1) is, the 1" tap for the n'5 frame [14]. 

Considering the AR2 model, 
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h(n, 1) = a1 h(n —1,1) + a2h(n — 2,1) + v(n, 1) 	 (2 24) 

Where ai  and a2  are the AR2 coefficients and v(n, 1) is the modeling noise for I`" tap at 

time frame n. the parameters a, and a2  are closely related to the.,physical parameters of 

the underlying fading process. The values of AR2 coefficient can be obtained as, 

a, = —2rd  cos(27rfT) 
z 

az = i 	 (2.25) 

Where f p  is the spectral peak frequency, T is the symbol period, rr  is the pole radius 

that corresponds to the steepness of the peaks of power spectrum 

i.e. ra =rl—wd  f 
l 7r) 	 (2.26) 

It has been observed in literature that when the spectral peak frequency f,, = 0.8 fd  (f,, 

is the maximum Doppler frequency of the underlying fading channel), the 

autocorrelation function of AR2 process is close to the autocorrelation function of a 

fading process characterized by Bessel function. The variance of the fading coefficient 

h(n,I) is decided by the variance ofv(n,I), which is given by 

l+a 	o  r  2 	 Z 

l+a, [(l+.a2)2 -at] 	 .. 	 ._ 
(2.27) 

Figure 2:4. shows the flow chart of simulation structure of SISO-OFDM 

systems. We first initialize the system parameters. Channel is modeled using Rayleigh 

multipath fading with both stationary and time varying environment. Time varying 

environment is characterized by AR2 channel model. 
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estimation 
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Figure 2.4. Flow chart for simulation of OFDM system 

Figure2.5 and figure 2.6 shows the performance curves for the EM , EM-

MMSE and pilot based estimators for OFDM systems in Rayleigh fading 
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environment.The BER performance obtained when exact channel state 

information(CSI) is known is also plotted for comparison.We generate 100 independent 

realizations of the channel at each value of SNR for averaging. Pilot based estimator 

using 4 pilots achieves a BER of 0.013 at SNR of 30dB . It can also be seen that EM & 

EM-MMSE techniques also achieves a BER of 0.0017 at SNR of 30dB . The 

performance improves to within 0.3 dB of exact CSI curve at high SNRs. Figure 2.6 

compares the average number of iterations required using the EM & EM-MMSE 

techniques for channel estimation in Rayleigh fading environment for OFDM systems. 

It may be seen that the number of iterations required for EM-MMSE technique is 

reduced by a factor of almost 6 as compared to EM method. 

Rayleigh 

3 

----------------- -------------------------------------- ------------------ ------------------- -------------------•--------------------`---  ilots' 
---------------------------- ---------------------------- ------------------- - 	$ EM 

+ 	 --------------------------------------  
r ------------------- --------- 	------------------ 	 A— EM MMSE 

--------------------i ~S EXACT 

------- ------------------ --------------------- ----- - 	------------ 	- 	--- ------ 	------------------  
°-------------- i------------------ ----- 	- ----------° 	--- 	------------ i 

- 

	

------------ 	 -------- 
---------------+-----------------, -------------------'------------  ----------------- 
------------------'-------------------' 	 -------- -- 

P 

0 	5 	10 	15 	20 	25 	30 
SNR(dB) 

Figure 2.5 Comparison of BER performance for EM, EM-MMSE and pilot based 

channel estimation techniques in Rayleigh fading environment for OFDM systems 
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Figure 2.7 Comparison of BER performance for EM , EM-MMSE and pilot based 

channel estimation techniques in time varying fading environment for OFDM 

systems( faT =0.005). 
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Figure 2.8 Comparison of average number of iterations for EM and EM-MMSE based 

channel estimation techniques in time varying fading environment for OFDM 

systems( fdT =0.005). 
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Figure 2.9 Comparison of BER performance for EM , EM-MMSE and pilot based 

channel estimation techniques in time varying fading environment for OFDM 

systems( fdT=0.01). 
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Figure 2.10 Comparison of average number of iterations for EM and EM-MMSE based 

channel estimation techniques in time varying fading environment for OFDM 

systems( fdT =0.01). 

The performance curves for the EM, EM-MMSE and pilot. based estimators for 

OFDM systems in time varying fading environment for doppler values of £T=0.001 

and ffT =0.05 are shown below. Pilot based estimator using 4 pilots achieves a BER 

of 0.0283 at SNR of 30dB for fdT =0.001 and achieves a BER of 0.023 at SNR of 

30dB for .fdT=0.05. It can also be seen that EM& EM-MMSE techniques also 

achieves a BER of 0.0002 at SNR of 30dB for fdT=0.001 and achieves a BER of 

0.0012 at SNR of 30dB for fdT=0.05. Fig 2.12 & 2.14 compare.the average number of 

iterations required for EM & EM-MMSE techniques for channel estimation in time 

varying fading environment for OFDM systems. It may be seen that the number of 

iterations required for EM-MMSE technique is reduced by a factor of almost 6 as 

compared to EM method. 
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Figure 2.11 Comparison of BER performance for EM , EM-MlvISE and pilot based 

channel estimation techniques in time varying fading environment for OFDM 

systems(fT=0.001). 
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Figure 2.12 Comparison of average number of iterations for EM and EM-MMSE based 

channel estimation techniques in time varying fading environment for OFDM 

systems( fdT  0.001). 
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Figure 2.13 Comparison of BER performance for EM , EM-MM SEand pilot based 

channel estimation techniques in time varying fading environment for OFDM 

systems( fdT 0.05). 
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Figure 2.14 Comparison of average number of iterations for EM and EM-MMSE based 

channel estimation techniques in time varying fading environment for OFDM 

systerns( fT =0.05). 
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Chapter 3 
EM BASED CHANNEL ESTIMATION FOR MIMO-OFDM 
SYSTEMS 

In this chapter, VBLAST detection algorithm is described first. Next, BICM 

MIMO-OFDM system model is described. Conventional EM and hard VBLAST-EM based 

channel estimation for MIMO-OFDM systems are discussed next. Simulation results on the 

performance of hard VBLAST-EM based channel estimation for MIMO-OFDM systems 

are presented at the end. 

Kashima et al. in [15] have proposed two types of maximum a posteriori probability 

(MAP) receivers for multiple-input—multiple-output and orthogonal frequency-division 

multiplexing mobile communications with a low-density parity-check (LDPC) code. First 

proposed receiver employs the expectation-maximization algorithm so as to improve 

performance of approximated MAP detection. Different from a conventional receiver 

employing the minimum mean-square estimation (MMSE) algorithm, it applies the 

recursive least squares (RLS) algorithm to the channel estimation in order to track a fast 

fading channel. It not only improves the accuracy of the channel estimation but also can 

save the computational complexity. This is because the RLS is a recursive algorithm 

whereas the MMSE is a block type. The proposed receiver estimation is superior in 

channel-tracking ability to the conventional receiver employing the MMSE. 

In [16], iterative channel estimators for MIMO systems based on the expectation-

maximization (EM) algorithm are proposed. A major problem with the EM channel-tap 

estimation is that the estimates are biased. This bias can severely degrade the receiver 

performance. The authors have proposed an unbiased EM (UEM) channel estimator, which 

outperforms the classical EM estimator. The EM and UEM estimators require a matrix 

inversion. In order to avoid this matrix inversion, and thus to reduce the estimator 

complexity, the expectation-conditional-maximization (ECM) algorithm is proposed. This 

decreases the complexity of the maximization step of the iterative estimation process. Like 

the EM algorithm, the ECM algorithm leads to a biased channel-tap estimate. An unbiased 
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ECM (UECM) estimator has also been proposed. These algorithms have been applied for a 

turbo receiver operating over frequency-selective multiple-input multiple-output channels 

in order to compare them with known estimators, like the EM and the classical DA 

ML(decision aided ML) and DD-ML (decision directed ML) criterion. The iterative CIR 

(channel impulse response) estimation techniques outperform the classical DA ML 

(decision aided maximum likelihood) channel estimator. 

In [17], the authors have derived an iterative receiver for multiple-input multiple-

output orthogonal frequency division multiplexing (MIMO-OFDM) systems. The iterative 

receiver is investigated when the co-channel interference (CCI) exists. It is assumed that 

the CCI's are also OFDM signals. Since a joint detection of the desired signal and CCI is 

difficult, the desired signal is detected, while the CCI is assumed to be a (colored) noise. 

This approach can avoid the channel estimation and detection of the CCI and keep the 

complexity of the receiver low. The proposed iterative receiver estimates the channel 

impulse response of the desired signal and the covariance matrix of the CCI for the 

detection based on a generalized expectation maximization (GEM) algorithm. Since the 

CCI is considered as a noise in the GEM-based iterative receiver, the performance is 

limited by the CCI. Through GEM iterations, the performance is improved. 

Mohammad-Ali Khalighi et al. [18] have considered channel estimation in multiple-

input multiple-output (MIMO) systems using iterative detection at the receiver. Space-time 

bit-interleaved coded modulation (BICM) and soft-input soft-output maximum a posteriori 

(MAP) symbol detection and decoding are considered. The advantage of the BICM is its 

flexibility regarding the choice of the code and the bit-symbol mapping, as well as its 

conformity to iterative detection. The EM algorithm based on the maximum-likelihood 

(ML) criterion is used to update the channel coefficients at each iteration of the turbo-

detector. At the first iteration, a primary channel estimate was obtained based on the pilot 

sequences only, that allows the EM algorithm to be used in the succeeding iterations, to 

bootstrap. A "classical" and non-optimized EM implementation, gives a biased estimate of 

the channel coefficients. The authors optimized the EM implementation and proposed a 

modification to it that provides an unbiased channel estimate and leads to a better 

convergence of the iterative detector. The proposed modified unbiased (MU) EM 
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algorithms, especially for large number of transmit antennas and short training sequences 

achieved considerable improvement in the receiver performance. Finally the authors have 

considered a simple semi-blind estimation scheme, based on hard decisions on reliable 

decoded data bits, and compare its performance with the EM based estimation methods. 

In [19], the authors have proposed an EM based algorithm to detect the transmitted 

V-BLAST structured signals in MIMO OFDM systems while estimating the channel 

impulse response (CIR) iteratively. The proposed iterative algorithm can jointly estimate 

channel information and detect the V-BLAST structured signals in MIMO OFDM system. 

This method combines the interference canceling techniques with the expectation 

maximization (EM) algorithm, which is a general procedure for iterative maximum-

likelihood estimation. 

In [20], an iterative channel estimation scheme for VBLAST MIMO OFDM system 

is proposed. The channel estimation is done in two steps. In first step, PSA (pilot symbol 

aided) method is used, to get the initial channel estimation of the systems. In second step, 

the information bits are feedback to the channel estimator with help of Turbo iterative 

decoding. EM algorithm is used for iterative channel estimation. 

In [21], a convolutionally coded MIMO-OFDM system with EM-based channel 

estimation and a QRD-M data detection algorithm is considered. In this, one training 

symbol is transmitted from each transmit antenna for the MIMO channel estimation at the 

receiver. With the channel estimates available, data detection is done with QR 

decomposition and then makes the decisions from the strongest data to weakest data 

sequentially. M algorithm is combined to reduce the computational complexity. 

Pilot-symbol assisted modulation (PSAM) schemes for channel estimation are popular in 

single input single output (SISO) systems due to their simplicity and minimum mean 

square error (MMSE) optimality. The iterative channel estimators (ICEs) have the 

drawback that the interference from other transmit antennas cannot be removed when 

applied to V-BLAST OFDM systems. An ICE for MPSK V-BLAST OFDM systems 

operating on frequency-selective fading channels is proposed in [22]. The correlations that 

depend not only on the channel statistics but also on the a priori information of the 
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transmitted symbols are considered. The proposed ICE is robust on fast fading channels 

and has an inherent interference cancelling ability and it significantly improves the bit error 

rate (BER) performance when compared to conventional non-iterative PSAM estimators. 

The computational complexity of the proposed ICE is significantly greater than that of 

PSAM techniques due to the required inversion of an autocorrelation matrix. Furthermore, 

unreliable a priori information from the' channel decoder degrades the performance of the 

proposed ICE. Hence, the authors have proposed a low-complexity (LC)-ICE that exploits 

the most reliable a priori information in an efficient manner. 

3.1. Vertical Bell Laboratories Space-Time Architecture (VBLAST) 

Block diagram of high level V-BLAST system is shown in figure 3.1. A single data 

stream is demultiplexed into M sub-streams, and each sub-stream is then encoded into 

symbols and fed to its respective transmitter, where M is number of transmitters. All the 

transmitters operate co-channel at symbol rate 1/ T symbols/see, with synchronized symbol 

timing. Each transmitter is an ordinary QAM transmitter. The collection of transmitters 

comprises a vector-valued transmitter, where components of each transmitted M-vector are 

the symbols drawn from a QAM constellation. V-BLAST is a vector encoding process (a 

demultiplex operation followed by independent bit-to-symbol mapping of each sub-

stream).Receivers (Ito N) are, individually, ordinary QAM receivers. These receivers also 

operate co channel, each receiving the signals radiated from all Mtransmit antennas [23]. 

rx, 	 zix 
data 

V-BLAST 
Vector: 	 'I5F 	 ;.Signal' 	:R;&ta 

~Ericode' 	 "Professing 
-RX 	,Estimate 

T5C 1 
~RX 	`decode 

nu 

Figure 3.1. V-BLAST high level system diagram 

V-BLAST is essentially a single-user system which uses multiple transmitters. 

BLAST is simply using traditional multiple access techniques in a single-user fashion, i.e. 
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r2  = ri  ak  (H)k 	 (3.3) 

where (II)k  denotes the ly th column ofH. Steps 1-3 are then performed for components 

k2 ,....k,M bytaking r2,r3,......,rr respectively. The specifics of the detection process depend 

on the criterion chosen to compute the nulling vectors Wk,  the most commonly minimum 

mean-squared error (MMSE) and zero-forcing (ZF) are used. 

The kr  th ZF nulling vector is defined as the minimum norm vector satisfying 

T  
wk, ( H)k  = 	 (3.4) 

1 	j=i 

Thus, the k;  th ZF-nulling vector is orthogonal to the subspace spanned by the 

contributions to r, due to those symbols not yet estimated and cancelled. It is not difficult 

to show that the unique vector satisfying equation. (3.4) is just the k th row ofHI .  , where 

the notation Hk denotes the matrix obtained by zeroing columns kl, k2,..., k;  of H and t 

denotes the Moore-Penrose pseudo inverse. 

The ordered successive cancellation (OSUC) is combined with the MMSE 

algorithm to suppresses both the interference and noise components, where as ZF removes 

only the interference components. This implies that the mean square error between the 

transmitted symbols and the estimate of the receiver is minimized [25]. 

3.2. BICM MIMO-OFDM system Model [26] 

1 
Mapper 	IFFT&CP 

Convolutional 	Bit interleaver 

lair  encoder 	 S/p  

Mapper 	IFFF&CP 

Figure 3.2(a) BICM MIMO-OFDM transmitter 
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Figure 3.2(b) BICM MIMO-OFDM receiver 

A convolutionally coded layered MIMO OFDM system with N, transmit 

antennas, N, receive antennas and N useful subcarriers as shown in figure 3.2(a) . is 

considered in [26]. The input bits are convolutionally encoded, bit-interleaved. The bit-

interleaved bit stream is passed through S/P (serial to parallel converter) to convert it into 

parallel stream. The parallel stream is mapped onto symbols from the constellation. The 

modulated symbols are passed through IFFT and transmitted via antennas after 

concatenation of cyclic prefix (CP). Since size constraints on user-end equipment may not 

permit proper antenna separation, paths between antennas are assumed to be dependent. 

Multipath fading is modeled as a tapped delay line (TDL) with L taps, h°P denoting the 

L x 1 , channel tap vector from pt transmit to qth receive antenna. 

The frequency response of the channel between the p h̀ transmit and the qth receive 

antenna may be expressed as 

1 L-1 
Hvv(k)= 	 hv.n(1)e iz~tuN 0<k<_N-1 

~llv r-o 
(3.5) 

Taking DFT at the qth receive antenna, the received signal at sub carrier k becomes 

Y 9(k)_ q<_N, 	 (3.6) 
p=1 

where X' (k) is the symbol transmitted from antenna p at subcarrier k. 
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An alternative representation of the received symbols is as follows: 

y(k) = H(k)x(k)+w(k) 	 (3.7) 

Where y(k) is the N, x 1 received signal vector on subcarrier, x(k) is the N, x 1 transmit 

vector and H(k) is the N, x N, matrix whose (p, q)` j' element is the frequency response of 

the channel from transmit antenna q to receive antenna p at subcarrier k, given by H(k) 

and may be obtained from (3.5) by reversal of variables. 

The conventional VBLAST detection algorithm for MIMO-OFDM systems is a 

simple approach capable of attaining high spectral efficiency. The VBLAST algorithm at 

receiver based on [24] has been used for estimation of data as shown in figure 3.2(b). These 

data bits are bit interleaved and Viterbi decoded to get the estimate of transmitted data bits. 

3.3. Channel Estimation for MIMO-OFDM 

Assuming P pilots in an OFDM symbol and gathering the received pilots at q`h  

antenna, then 

i"=Ah4 +*" 
	

(3.8) 

Where h' is the LN, x 1 vector of the channel taps from all transmit antennas to the q'" 

receive antenna, W° consists of P AWGN noise samples with zero mean and identical 

variance 6w and 

A=[diag(X'(k1).....X'(ka ))FL .....diag(X A,( ),....X"'(kr))kL]rxav, 	 (3.9) 

And FL  is a PxL matrix obtained from the standard NxN DFT matrix. The least squares 

(LS) solution is obtained as 

(3.10) 

This pilot aided channel estimation method is also known as PACE. 
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3.3.1. Semi-blind channel estimation based on conventional EM: 

Considering (3.6) and (3.7), the received sequence for all the tones, we get 

(3.11) 

where yq is the. Nx 1 vector received on antenna q and 

A=[diag(X l (k),....X'(kY))FL.....diag(X N'(15),....X"''(ka))FL]N,LN, 	 (3.12) 

X" is the N x 1 transmit vector from antenna p and FL has first L columns of DFT matrix. 

Applying conventional EM to this system, we define the log-likelihood function of 

complete information as 

L=log f(Y°,A/hs) 	 (3:13) 

Since A is unknown, taking expectation then (3.13) becomes 

L = E[log f(Y',A/h')/Y°,h;°] 

= E[(log f (Yq / A, hq) f (A)) / Yq, h' ] 	 (3.14) 

where A is assumed to be independent of the channel, by is the estimated vector of size 

N x 1 step i. Thus 

f(Y9 /A, h9) = 	Niz 	exp[—(Yq — p)H C-' (Y9 — p) / 2] 	 (3.15) 
(2~r) 	detC 

with mean vector µ and covariance matrix C 

The PDF thus becomes 

.f(Yq /A,h°) = 
(2,c)mzaN eXP[—(26w )(YQ —Ah°)H (YQ —Ah°)] 	 (3.16) 
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whereas the PDF ofA is determined from a-priori probabilities of transmitted 

symbols. The maximization step involves differentiating L in (3.14) with respect to h9 and 

finding the channel parameter which maximizes the log-likelihood. Thus we have, 

a 	log(f(Yg /Ax,h°)f(Ax))  

] 

[ 	 i 
i.e. h°" =

L
~ Yq"Af(Z'a /Ax,h9)J 

	
AxAxf(Z'° /Ax hr)] 	(3.17) 

 xx 	J 

If the conventional EM algorithm is used directly for channel estimation using (3.17), then 

computational complexity increases. In [26], hard VBLAST EM algorithm is considered 

for semi-blind channel estimation in MIMO-OFDM. 

3.3.2. Semi-blind channel estimation for MIMO-OFDM using hard VBLAST-EM 
algorithm 

In hard VBLAST-EM channel estimation technique, plain VBLAST algorithm is 

used for data detection. VBLAST algorithm involves removing the effect of already 

detected symbols (assuming those decisions to be correct) and linearly combining the 

received symbols, in such a way that it reduces the interference from yet-to-be-detected 

symbols. The hard VBLAST-EM technique involves applying the PACE based channel h' 

as input to plain VBLAST algorithm and then applying the VBLAST algorithm on each 

subcarrier of the OFDM symbols received on N, antennas. The relation between transmitted 

and received symbols in an alternative form can be written as follows 

y(k) = H(k)x(k) + n(k), 	 (3.18) 

where y(k) is the N, x 1 vector of signal values received on subcarrier k , x(k) is 

the J'/ 1 vector of symbols transmitted from the N, antennas on subcarrier k, and H(k) is 

the N, x N, matrix of channel frequency response values, whose (p,q) h̀ element is given by 
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The plain VBLAST detection algorithm [25] for MIMO-OFDM system is a simple 

approach capable of achieving efficient detection at high spectral efficiencies. Here, 

VBLAST algorithm with optimal ordering and nulling is used. 

The first step of hard VBLAST-EM algorithm involves applying available estimates 

hQ ' of channel tap vector h";P from PACE. Channel tap vector h'•P are transferred to 

frequency domain to obtain the channel frequency response matrix H(k) for 0 <— k <— N-1. 

In next step, hard VBLAST algorithm gives the estimates of transmitted data 

symbols from each antenna over each OFDM carrier. Then, we take the expectation over 

these transmit data estimates and log-likelihood function in (3.14) becomes 

L = log(f(Y9 / AX, hq ).f (Ag ) 
	

(3.19) 

maximization of this function leads to 

log( 	N!2 N ✓  (ASI )J 
aaq (L) = aaq 	\1(270) 	 (3.20) 

(26w)(Y° — A
Xhe)N (Ya — AXh4) 

This reduces to 

aha C
h "a AHAXhq — Yy~AXhy ] = 0 	 (3.21) 

and hence 

— 
_ 	H 

hg C(YqH AX )(AHAX) '] x (3.22) 

This is evidently simpler to compute than (3.17). 

The algorithm may be summarized as follows: 

1) Using P pilot tones in the first OFDM symbol of the frame, the receiver obtains rough 

channel estimates using PACE as in (3.10). 
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2) The estimates obtained from PACE are used to run hard VBLAST algorithm and 

estimates of transmitted data X are found. 

3) Corresponding to the estimates, matrix AX  is computed and used in (3.22) to improve 

channel estimates. 

4) Steps 2) and 3) are iterated until convergence. 

3.4. Simulation results 

The hard VBLAST-EM channel estimation technique is tested through Monte Carlo 

simulations. We consider a MIMO-OFDM with two transmit antennas (N, =2) and two 

receive antennas (N,) with 128 subcarrier OFDM system. A Rayleigh multipath fading 

channel model with time varying environment are considered. Fading channel is modeled 

with L=2 taps and the SUI-MIMO channel with correlation coefficients p,=0.2 and p,=0.4 

are used. The convolutional code with a rate V2  code, constraint length of 7 and generator 

polynomials specified by {712} and {476} in octal notation is used. We use QPSK as the 

underlying modulation scheme. The channel is assumed to be quasi static and does not vary 

with in each frame and channel varies for each frame according to Doppler values. . Each 

frame consists of 30 symbols. We have taken Doppler values of fdT —0.005and fdT =0.05 

respectively [27]. Simulation has been done in MATLAB environment. The system 

performance is evaluated for SNR values of 0-20db by averaging over 500 frames. 

The performance curves using hard VBLAST-EM based channel estimation 

technique is shown below.We generate 100 independent realizations of the channel at each 

value of SNR for averaging. PACE is carried out by using 16 pilots. The estimates from 

PACE are used to initialize the hard VBLAST-EM based channel estimation technique. 

The BER performance obtained when exact channel state information(CSI) is known is 

also plotted for comparison. 

Figure 3.3 and figure 3.4 respectively shows mean square estimation error (MSEE) 

performance for Doppler value of fdT =0.005 and fdT =0.05. MSEE of PACE and hard 

VBLAST-EM is obtained through (3.23). 
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z 

MSEE= 1 ~~Ilhq—h9 ll 	 (3.23) 
RN,N,L r=~ q=I 

where R is the number of independent channel realizations used for averaging, h 

and hq respectively denotes the actual and estimated channel vector. PACE achieves a 

MSEE of 0.0044 where as hard VBLAST-EM achieves the MSEE of 0.0020 at SNR of 

19dB for fdT =0.005. The performance of hard VBLAST-EM improves by 2-3dB as 

compared to PACE curve at high SNRs. PACE achieves a MSEE of 0.0265 where as hard 

VBLAST-EM achieves the MSEE of 0.0160 at SNR of 19dB for fdT =0.05. The 

performance of hard VBLAST-EM improves by 1-2dB as compared to PACE curve at high 

SNRs. 

Figure 3.5 shows BER performance for Doppler value of fdT =0.005.BER 

performance curve for PACE using 16 pilots achieves a BER of 0.0038 at SNR of 19dB. 

BER performance cuvre for hard VBLAST-EM achieves a BER of 0.0015 at SNR of 19dB. 

The performance lies within 8-9dB of exact CSI curve at high SNRs. Figure 3.6 shows 

BER performance for Doppler value of fdT =0.05. BER performance curve for PACE 

using 16 pilots achieves a BER of 0.1085 at SNR of 19dB. BER performance cuvre for 

hard VBLAST-EM achieves a BER of 0.0083 at SNR of 19dB. The performance of hard 

VBLAST-EM improves at the Doppler value of fdT =0.005 as compared to the Doppler 

value of fdT =0.05. 
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Figure 3.3. Comparison of MSEE performance for hard VBLAST-EM and pilot based 

channel estimation techniques in time varying fading environment for MIMO-OFDM 

systems(fdT =0.005). 
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Figure 3.4. Comparison of MSEE performance for hard VBLAST-EM and pilot based 

channel estimation techniques in time varying fading environment for MIMO-OFDM 

systems( fdT 0.05). 
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Figure 3.5. Comparison of BER performance for hard VBLAST-EM and pilot based 

channel estimation techniques in time varying fading environment for MIMO-OFDM 

systems( fdT =0.005). 
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Figure 3.6. Comparison of BER performance for hard VBLAST-EM and pilot based 

channel estimation techniques in time varying fading environment for MIMO-OFDM 

systems( fdT =0.05). 
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Chapter 4 
Iterative Detection and Decoding for MIMO-OFDM using 
soft VBLAST-EM algorithm 

In this chapter, soft VBLAST-EM based channel estimation for MIMO-OFDM 

systems is presented first. Next, an iterative detection and decoding (IDD) scheme is 

discussed. Simulation results on the performance of soft VBLAST-EM based channel 

estimation for MIMO-OFDM systems with IDD scheme are presented at the end. 

4.1. Soft V13LAST-EM based channel estimation for MIMO-OFDM 

systems 

The first step of this technique involves applying soft VBLAST [28] algorithm on 

each subcarrier of the OFDM symbol received on each of the N, antennas. Soft VBLAST 

algorithm is an improved VBLAST, which takes the error propagation effect into account. 

Define the transmitted symbols as a signal vector Xk  = [x ,'E  xk • • • xe " ]T  , where xk represents 

the symbol transmitted from the nth  antenna at the kth  sub channel and xi is the detected 

symbol for layer n. The ordering of the decisions is made according to the optimal 

detection order assumed to be available. In the conventional V-BLAST algorithm, the 

predetected symbol vector xk until step i-1 is cancelled out from the received vector 

signal at step i, resulting in the modified received vector yk given by 

Yk — y — Hk[-'xk '   — IIk N'X k+ n k 	 (4.1) 

assuming all previous decisions are correct (xk = xk for n = 1,2,... i —1) . At step i, in order 

to detect xk , the remaining undetected symbols [x,. . xk ', xk+', ., x"] ] are treated as 

interferers. But in the presence of decision errors (4.1) becomes 

yk 1 kN  X k  + H k' ek +nk 	 (4.2) 

where ek = [ek,..,ek ']T  is defined withek = xk 

48 



The equalizer matrix for nulling the effects of already detected symbols is determined 

using MMSE criterion and this matrix also accounts for the decision errors and is defined 
as 

G = H t HkN'HkN~ t + ~s Hk!-IQe._1 Hk! It +cxlNr 
J

_ 	
(4.3) 

where i E {l, 2,..., N, } denotes the current symbol being detected according to the optimal 

order, Hr" is the matrix having N, —i+Icolumns from Hk corresponding to undetected 

symbols, Q_k , is the (i —1) x (i —1) error covariance matrix for decisions already made, 

Hki-' forms the (i — 1) columns of Hk relating to already detected symbols and a = c / r 

The Q. matrix is given by 
ek 

E{e Iz Xk

J 

l 	... 	E~ekek '+ xk,xk ' ] 

Q. _i  
ek 

i-  	1 2 , i' 

	

E L 1k ek Xk ,Xk... 	E[lek I xk 

The approximation of Q_;_, with reduced complexity leads to 
ek 

C'  1 
 

(4.4) 

Diagonal elements of Q. then represent the MSE value for each of the detected symbol. xk 

can be computed as xk = ,3xk + w 	 (4.5) 

	

N 	-1 

where 33=g,hk and w=)]g,hkxk +g,Hek +g,nk 
j=1 

g! is the ta' row of G. For next step i+1, the conditional expected value E [e z xk
J 

can be 

obtained as 

E ~I2k l IXk
J
=g~' S — Xk ID IXk =Sxk

] 

	
(4.6) 
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where 	k consists of the neighboring constellation points surrounding the hard decision 

point xk . The conditional probability P I xk = s xk 
J 

can be computed as 

1-2Pe +P2 , f s=xr 

P I xk = s Ixk 1 = P — Pz , if s is one of two nearest neighbors of x, 

l 	 p2 , else 

where Pe  is the probability of error for QPSK and is given by I- = Q I 1  i J . After 

computing (4.6), this term is added to the covariance matrix Q.  for next step i+l. The ex 

conditional pdf of xk is given by 

! 	1 	 x—,Qs Z  
pxklxk =s

J
= lZ exp — 	z 	 (4.7) 

Let S be a set of constellation symbols and s denotes an element of the S. The aposteriori 

LLR of bk' can be defined as 

2 

>I'exp 
 Ixk  —Qs 

ES a 	aw Lr1bk;`J_  log 	 (4.8) 
z 

xk —/9S 
exp — 	2 

ES 	 a,, 

S; and SS denotes the set of constellation points in which the i h̀  bit is 0 or 1, respectively. 

These LLRs are used to fmd the probability of each bit being 0 or 1 as follows 

exp(L(bk')) 

1+exp(L(bk))' b=0 
P[bk"=b]_ 	 (4.9) 

1 	ll  b=1 
1+exp(L(bkr))' 
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with these, the estimate of the transmitted symbol is computed as 

Xk = > S P (xk = S) 	 (4.10) 
'Es 

where S is the constellation being used. 

The algorithm may thus be summarized as follows [26] 

1) Using P pilot tones in the first OFDM symbol of the frame, the receiver obtains rough 

channel estimates using PACE as in (3.10). 

2) The estimates obtained from PACE are used to run soft VBLAST algorithm and LLR 

values (4.8) are used to find the estimates of transmitted data i from (4.9) and (4.10). 

3) Corresponding to the estimates, matrix AX is computed and used in (3.22) to improve 

channel estimates. 

4) Steps 2) and 3) are iterated until convergence. 

4.1.1. Iterative Detection and Decoding [28]: 

output 	 Bit- 	 output  deinterleaver 	 Viterbi 	obit ut 
VBLAST 	 decoder 

Encode & bit-
interleaver 

Parallel to serial 
conversion 

Serial to parallel 
conversion 

Interference 

	

siso 	 cancellation 
demapper 	 Zk 	 1 witti NIMSE 

fiiterin~ 
w1 

Figure 4.1. Iterative Detection and Decoding (IDD) 

The channel coding gain is exploited to further improve the performance by using 

IDD. In this, SISO (single-input single-output) demapper is used which simplifies the 
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computational complexity. In SISO demapper, the number of values require to compute the 

LLRs are only M (M is constellation size) for any antenna configuration. The structure of 

IDD scheme is shown in figure 4.1. The estimates of transmitted symbols over different 

subcarriers of multiple antennas are available to the IDD block from soft VBLAST-EM 

technique. The P/S and de-interleaving operations are carried out to the estimated 

transmitted symbols. The de-interleaved bit estimates are decoded with a Viterbi decoder 

and resulting bit stream is used to regenerate the estimate of transmitted symbols. Let Xk be 

the estimate of N, xl vector of transmitted symbols. The optimal order determined by soft 

VBLAST technique at each carrier is assumed to be available and this information can be 

used in the interference cancellation. Let t denote the location in the set {l, 2..... IV } 

corresponding to the current symbol being detected. In order to detect xk , the hard 

decisions for all the other symbols xk,..., xk, x ,...,xk , are used to cancel the interference 

from yk .For interference cancellation at t, we form a vector as 

-1 	~l 	-!-1 	'.1+1 	-.N,1 
Xk ,0,x .....Xk 

The received signal Yk is modified by cancelling the interference xk as 

yk —yk —H k Xk for k = 1,2,...,N 	

(4.11) 

Where Hk is the estimate of channel frequency response vector available from soft 

VBLAST-EM technique, xk = [e'k ,... ek , xk, 	 .......  	and ek = xk — xi. In order to get 

transmitted symbol x, MMSE filter w, is applied to the modified received vector. The 

MMSE filter vectorw, , which is a lx N, vector, minimizes the variance of the estimation 

error defined as e = xk —w,yk , 

when Viterbi decoder is used, the filter weight are found to be [29] 

w,=hk/(Ihk 2 +o /o ) 
	

(4.12) 
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Applying this filter to the received symbol vector yk gives 

Zk 

=ax" +V (4.13) 

which is a biased estimate of the transmitted symbol xk , for 1 < t <— N N and 0 <— k <— N —1. 

Let dk "' be the mil' bit (1 <— m <_ log2 M) of the constellation symbol at the t h̀ transmit 

antenna (t =1, 2, ..., N,) at the k h̀ subcarrier, the constellation has M complex data points. 

L (d,'") is the log likelihood ratio (LLR) vale for the bit dk•'" . The LLR values di" are 

given by 

zk - as  
exp - 

es„ 	6v 

L (dk•'") = log 	 Z 	 (4.14) 
zk —as 

exp —
1 Esm 	ay 

Here a=w,hk and6,2 =6(a—a2 ), 

So and Si" denote the set of constellation points in which the mt1' bit is 0 or 1, respectively. 

These LLRs are used to find the probability of each bit being 0 or 1 as follows 

exp(L(bk")) 
b=0 

1 + exp (L (bk'")) 
=b~= 

	

	 (4.15) 
1 

b=1 
1+exp(L(14")) 

with these, the estimate of the transmitted symbol computed as 

xk=>SP(xk =S) 	 (4.16) 
sES 

where S is the constellation being used. 
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The iterative procedure of IDD scheme is summarized as follows 

1. The estimates of channel frequency response and transmitted symbols are given as 

input to IDD block. 

2. Bit-deinterleaving and Viterbi decoding operations are carried out on the estimates 

of transmitted symbols, to get the bit stream. 

3. The bit stream is encoded, bit-interleaved and then converted into symbols using 

S/P converter. The output of S/P converter is given as input to MMSE filter. 

4. The MMSE filter gives the biased estimate of the transmitted symbol xk as in 

(4.12) & (4.13). 

5. LLR values are next obtained from (4.14) and are used to find the estimates of 

transmitted symbols using (4.15) and (4.16). This constitutes SISO demapper. 

6. The estimates of transmitted symbols are P/S converted. 

7. Steps (1) to (6) are iterated to improve the performance. 

Scheme for Iterative Detection and Decoding using soft VBLAST-EM based channel 

estimation for MIMO-OFDM system is shown in figure 4.2. 

9 

z t.~ ~w~wwcc~ 	SoftNTLAST-a%1 eume 	grt 
haled 	rh+AiA. 3 	llci~~tcelcovcr 	

Decoskr 
channel es€imator <smnscs 

pJ, 	Rc~oovc GF~, 
I°"L•'C 	 ~ 	 Enendc 

C.rnf<rlcnvc 

PIS 
1 SIP 

SISODcwsppa ~I MMSEB-scd 
IC 

Figure 4.2. Scheme for Iterative Detection and Decoding using soft VBLAST-EM based 

channel estimation for MIMO-OFDM system 
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4.2. Simulation results 

The soft VBLAST-EM channel estimation technique when the system is coupled with IDD 

block is tested through Monte Carlo simulations. We consider a MIMO-OFDM with two 

transmit antennas (N, =2) and two receive antennas (N, =2) with 128 subcarrier OFDM 

system. A Rayleigh multipath fading channel model with time varying environment is 

considered. Fading channel is modeled with L=2 taps and the SUI-MIMO channel with 

correlation coefficients p,=0.2 and p,=0.4 are used [26]. The convolutional code with a 

rate '/2 code, constraint length of 7 and generator polynomials specified by {712} and 

{476} in octal notation is used. We use QPSK as the underlying modulation scheme. The 

channel is assumed to be quasi static and does not vary with in each frame and channel 

varies for each frame according to Doppler values. We have taken Doppler values of fdT 

=0.005and fdT =0.05 respectively. Each frame consists of 30 symbols. Simulation has been 

done in MATLAB environment. The system performance is evaluated for SNR values of 0-

20db by averaging over 500 frames. 

The performance curves using soft VBLAST-EM based channel estimation 

technique is shown below.We generate 50 independent realizations of the channel at each 

value of SNR for averaging. PACE is carried out by using 16 pilots. The estimates from 

PACE are used to initialize the soft VBLAST-EM based channel estimation technique. The 

BER performance obtained when exact channel state information(CSI) is known is also 

plotted for comparison. 

Figure 4.3 & figure 4.4 respectively shows mean square estimation error(MSEE) 

performance for Doppler value of fdT =0.005 and fdT =0.05. MSEE of PACE and soft 

VBLAST-EM is obtained through (4.17). 
z 

MSEE= 1 ~~IIh4 —h9 ll 	 (4.17) 
RN.N,L  4=1 

Where R is the number of independent channel realizations used for averaging, h° 

and hQ respectively denotes the actual and estimated channel vector. PACE achieves a 

MSEE of 0.0044 where as soft VBLAST-EM achieves the MSEE of 0.0016 at SNR of 

19dB for fdT =0.005. The performance of soft VBLAST-EM improves by 2-3dB as 
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compared to PACE curve at high SNRs. PACE achieves a MSEE of 0.0257 where as soft 

VBLAST-EM achieves the MSEE of 0.0088 at SNR of 19dB for fdT =0.05. The MSEE 

performance for doppler value of fdT =0.005 gives better performance as compared to 

fT=0.05. The performance of soft VBLAST-EM improves to 2-3dB as compared to 

PACE curve at high SNRs. 

Figure 4.5 shows BER performance of the sysiem using soft VBLAST-EM, when 

coupled with IDD block for Doppler value of fdT =0.005.  It may be seen that as the 

number of iterations increases, the BER performance improves. BER performance curve 

for soft VBLAST-EM for one iteration of the IDD structure achieves a BER of 0.0048 at 

SNR of 19dB. As the iterations of IDD structure increases to four, the BER performance 

improves and acheives the BER of 0.0004 at SNR of 19dB. The BER performance 

improves to within 3-4 dB of exact CSI curve at high SNRs as iterations of IDD block 

increases to 4. 

Figure 4.6 shows BER performance of the system using PACE, when coupled with 

IDD block for Doppler value of fdT =0.005. BER performance curve for PACE using 16 

pilots for one iteration of the IDD structure achieves a BER of 0.0071 at SNR of 19dB. As 

the iterations of IDD structure increases to four, the BER performance improves and 

acheives the BER of 0.0008 at SNR of 19dB. 

Figure 4.7 shows BER performance of the system using soft VBLAST-EM, when 

coupled with IDD block for Doppler value of fdT =0.05. It may be seen that as the number 

of iterations increases, the BER performance increases. BER performance curve for soft 

VBLAST-EM for one iteration of the IDD structure achieves a BER of 0.0724 at SNR of 

19dB. As the iterations of IDD structure increases to four, the BER performance improves 

and acheives the BER of 0.0053 at SNR of 19dB. The BER performance improves to 

within 6-7 dB of exact CSI curve at high SNRs. 

Figure 4.8 shows BER performance of the system using PACE, when coupled with 

IDD block for Doppler value of fdT =0.05. BER performance curve for PACE using 16 

pilots for one iteration of the IDD structure achieves a BER of 0.0909 at SNR of 19dB. As 

the number iterations of IDD structure increases to four, the BER performance improves 

and acheives the BER of 0.0247 at SNR of 19dB. 
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Figure 4.8 shows BER performance of the system using PACE, when coupled with 

IDD block for Doppler value of .f,T =0.05. BER performance curve for PACE using 16 

pilots for one iteration of the IDD structure achieves a BER of 0.0909 at SNR of 19dB. As 

the number iterations of IDD structure increases to four, the BER performance improves 

and acheives the BER of 0.0247 at SNR of 19dB. 
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Figure 4.3. Comparison of MSEE performance for soft VBLAST-EM and pilot based 

channel estimation techniques in time varying fading environment for MIMO-OFDM 

systems( fdT =0.005). 
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Figure 4.4. Comparison of MSEE performance for soft VBLAST-EM and pilot based 

channel estimation techniques in time varying fading environment for MIMO-OFDM 

systems( ./,,T =0.05). 
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Figure 4.5. Comparison of BFR performance for soft VBLAST-EM based channel 

estimation technique with different IDD iterations in time varying fading environment for 

MIMO-OFDM systems( _fdT =0.005). 
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Figure 4.6. Comparison of BER performance for pilot based channel estimation technique 

with different IDD iterations in time varying fading environment for MIMO-OFDM 

systems( _[,T =0.005). 
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Figure 4.7. Comparison of BER performance for soft VBLAST-EM based channel 

estimation technique with different IDD iterations in time varying fading environment for 

MIMO-OFDM systems( ,/,,T =0.05). 
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systems( . f~T =0.05). 

62 



Chapter 5 
CONCLUSIONS 

In many parameter estimation problems, the situation is complicated because direct 

access to the data, required to estimate the parameters is impossible or some of data are 

missing. The ideal solution to deal with these problems is EM algorithm. The 

Maximum Likelihood estimate of channel impulse response is obtained by using 

channel statistics via EM algorithm. Due to the effective convergence of EM algorithm, 

it can be invariably applied to a variety of applications, like channel estimation, signal 

detection, speech recognition etc. This dissertation work is aimed at the channel 

estimation problems via EM algorithm in systems like OFDM, MIMO-OFDM and 

VBLAST MIMO-OFDM. Iterative detection and decoding improves both the detection 

and the interference cancellation performance by utilizing the decoder output. The 

conclusions drawn based on the simulation results are as follows: 

EM based channel estimation for OFDM systems 

We have used EM and EM-MMSE techniques for channel estimation of OFDM system 

in a Rayleigh multipath fading channel with both stationary and time varying 

environment. As simulation results of OFDM system show, EM-MMSE technique 

performs well when compared to the EM technique. In Rayleigh multipath fading with 

stationary environment, it is seen that, the BER performance for both techniques 

improves to within 0.3 dB of exact CSI curve at high SNRs and the number of 

iterations required for EM-MMSII technique is reduced by a factor of almost 6 as 

compared to EM method. In time varying environment, the number of iterations 

required for EM-MMSE technique is reduced by a factor of almost 6 as compared to 

EM method. 

EM based channel estimation for MIMO-OFDM systems 

We have used PACE and hard VBLAST-EM techniques for channel estimation of 

MIMO-OFDM system in a Rayleigh multipath fading channel with time varying 

environment. The estimates from PACE are used to initialize the hard VBLAST-EM 

based channel estimation technique. As simulation results of MIMO-OFDM system 
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show, the MSEE performance of hard VBLAST-EM improves by 1-2dB and 2-3 dB as 

compared to PACE curve at high SNRs for Doppler value of f5T=0.005 and fdT=0.05 

respectively. The BER performance improves to within 8-9 dB of exact CSI curve at 

high SNRs performance for Doppler value of f fT =0.005. 

Iterative Detection and Decoding for MIMO-OTDM using soft VBLAST-EM 

algorithm 

We have used soft VBLAST-EM technique with IDD structure for channel estimation 

of MIMO-OFDM system in a Rayleigh multipath fading channel with time varying 

environment. The estimates from PACE are used to initialize the soft VBLAST-EM 

based channel estimation technique. The MSEE performance of soft VBLAST-EM 

improves by 2-3 dB as compared to PACE curve at high SNRs for Doppler value of 

fdT 0.005. It may be seen that as the number of iterations of IDD block increases, the 

BER performance increases. The BER performance of soft VBLAST-EM technique 

improves to within 6-7 dB and 3-4 dB of exact CSI curve at high SNRs as iterations of 

IDD block increases to 4 for Doppler value of f5T =0.05 and fdT =0.005 respectively. 

Future work 

The performance of the system can be improved by using the soft decisions on the 

received symbol instead of hard decisions. In the IDD block, the Viterbi decoder can be 

replaced by a MAP decoder to improve the performance at the cost of increased 

computational complexity. It is pbssible to avoid matrix inversion by estimating the 

channel in frequency domain instead of time domain. However this can degrade the 

performance. It is also possible to design a joint iterative channel estimation and 

detection, which combines soft VBLAST-EM channel estimation and IDD tasks in a 

single block. By using iterative procedure the performance can be improved. The 

VBLAST detection algorithm can be replaced by QRD-M algorithm, for achieving the 

improved performance and decrease in the computational complexity [29]. The 

unbiased EM (UEM) can be designed to unbias the EM estimates which can be used in 

place ofEM [16]. 
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