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ABSTRACT 

Sensitivity and Robustness is the primary issue while designing the controller for non-

linear systems. One of the performance objectives for controller design is to keep the error 

between the controlled output and the set-point as small as possible. Controlling the speed 

and position of a DC Motor in all the condition is not possible by conventional control 

technique. The classical control methods have its limitations. Most of these techniques are 

based on hit and trial method. The response of the system is also not proper. And in the case 

of disturbance or parameter variation it fails to control the system. 

PID controller is one of the most basic and successful controller. It controls the 

disturbance and parameter variation up to some extent. But the response of the system 

changes to a large extent. For controlling the response Fuzzy Controller is used. The fuzzy 

controller helps in controlling the system non-linearity. 

A much improved system response can be achieved by Self Tuned Fuzzy Controller, 

which adjust the gain of controller according to the system variation or disturbance. However 

this response can be further improved by the systematic analysis of system response. 

Manually we can adjust the fuzzy rules by analysing the effect of each rule over the system. 

This analysis can be made through the graphical analysis of the system response. 

Adaptive Fuzzy Controller is the most advanced form of controller. It adjusts the fuzzy 

logic based controller to give better response. We have used a Tabular Based Adaptive Fuzzy 

Controller to control the system non-linearity. It is a sugeno type controller, which adjust the 

rule base according to the system variation. 

Controlling the position of a DC Motor is a major control issue. A Neuro-Fuzzy 

Controller helps us to design a controller which is build from the data base of the system. The 

FIS generated after training is very effective in controlling the position of DC Motor. As it is 

compared with the PID controller under loaded condition, the response of the controller 

generated through ANFIS is more robust than PID. This shows that FIS generated have more 

adaptability than normal PID controller. 
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1. INTRODUCTION 

Direct current (DC) motors have been widely used in many industrial applications such as 

electric vehicles, steel rolling mills, electric cranes, and robotic manipulators due to precise, 

wide, simple, and continuous control characteristics. Traditionally rheostatic armature control 

method was widely used for the speed control of low power do motors. However the 

controllability, cheapness, higher efficiency, and higher current carrying capabilities of static 

power converters brought a major change in the performance of electrical drives. 

The purpose of a motor speed controller is to take a signal representing the demanded 

speed, and to drive a motor at that speed. The controller may or may not actually measure the 

speed of the motor. If it does, it is called a Feedback Speed Controller or Closed Loop Speed 

Controller, if not it is called an Open Loop Speed Controller. Feedback speed control is 

better, but more complicated, and may not be required for a simple purpose. Motors come in 

a variety of forms, and the speed controller's motor drive output will be different dependent 

on these forms. 

The desired torque-speed characteristics could be achieved by the use of conventional 

proportional-integral-derivative (PID) controllers. Speed of a DC Motor can also be 

controlled by the conventional controller, which are build of power electronic circuit. As PID 

controllers require exact mathematical modeling, the performance of the system is 

questionable if there is parameter variation. The speed controling crcuit usualy do not work 

properly, if the paramiters of the system is changed. 

In recent years fuzzy logic and neural network controllers were effectively introduced 

to improve the performance of nonlinear systems. The application of NNC and Fuzzy Control 

is very promising in system identification and control due to learning ability, massive 

parallelism, fast adaptation, inherent approximation capability, and high degree of tolerance. 

Fuzzy logic based controller are very effective in controlling the non-linearity of a 

system. The application of fuzzy logic is an effective alternative for any problem where 

logical inferences can be derived on the basis of causal relationships. As a mathematical 

method which encompasses the ideas of vagueness, fuzzy logic attempts to quantify linguistic 

terms so the variables thus described can be treated as continuous, allowing the system's 
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characteristics and response to be described without the need for exact mathematical 

formulations. 

However the small non-linearity of a system can easily be controlled by a fuzzy 

controller. But the system with large variation can be controlled effectively by adaptive fuzzy 

controller. As it is known to us that there are many parameters which effect a fuzzy 

controller, like membership function, rule base, scaling factor. In the adaptive fuzzy 

controller these parameters are adjusted according to the system variation. The adaptive 

controller can tune membership function using performance criteria. It can be a self 

organizing controller or a model based controller. Adaptive Fuzzy controller used in by us is 

a tabular based adaptive fuzzy controller. It basicaly consist of two fuzzy rule base. One is 

static and another one changes its rule base with the change in system, to make combat 

parameter variation. 

One of the most important fuction of a controller is to give controlled output at 

optimum value. The optimization of of the controller parameter is also vary important for 

design purpose. The optimization can be done through vareous methods. One of the most 

effective method is genetic algorithm. The genetic algorithm is a method for solving both 

constrained and unconstrained optimization problems that is based on natural selection, the 

process that drives biological evolution. The genetic algorithm repeatedly modifies a 

population of individual solutions. At each step, the genetic algorithm selects individuals at 

random from the current population to be parents and uses them to produce the children for 

the next generation. Over successive generations, the population "evolves" toward an optimal 

solution[l]. 

Training the controller with system variation is one of advancing field in control 

system. This training of controller can be done with Artificial Nural Network. Neural 

networks are composed of simple elements operating in parallel. These elements are inspired 

by biological nervous systems. As in nature, the network function is determined largely by 

the connections between elements. We can train a neural network to perform a particular 

function by adjusting the values of the connections (weights) between elements. 

1.1 History and Background[2] 

The first variable speed drives were certainly mechanical and were based on adjustable 

pitch diameter pulleys. Such systems are still in use but for obvious reasons are not in general 

uses in industrial applications today. The brushed DC motor was invented in 1856 by Werner 
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Von Siemens in Germany. Variable speed by armature voltage control was first used iri the 

early 1930s using a system involving a constant speed AC motor driving a D.C. generator. 

The generator's DC output was varied using a rheostat to vary the field excitation and the 

resulting variable voltage DC was used to power the armature circuit of another DC machine 

used as a motor. This system was called a Ward-Leonard system after the two people credited 

with its development. The Ward-Leonard method of DC variable speed control continued 

until the late 1960s when Electric Regulator Company brought to market a practical, general 

purpose, static, solid state controller that converted the AC line directly to rectified DC using 

SCR (thyristor) devices. That technology was adopted by virtually all manufacturers and still 

is in use today. In brushless DC Motor, Voltage on the motor determines speed. 

1.2 Motivation 
DC Motor has great industrial application. Due to the large application its controlling 

is a major area of research. In control system there are some clasical methods to control the 

speed of motor. These methods are like speed control of DC Motor by root locus technique, 

speed control of DC Motor by the frequency domain anlysis, and speed control by the state 

space analysis. All these methods are are based on trial and error. Also the result of these 

methods are not very much upto the mark. Although PID controller is able to control the 

speed of DC Motor with full accurary. But in some cases it not appropriate. 

PID controller has its limitations like, it is not suitable for the system which has 

changing parameters. This limitation urge us to design controller for the speed control of DC 

Motor. The motor with small non-linearity can be controlled by fuzzy logic controller. But 

for the large variation we needed adaptive controller to control the motor. 

We have initially controlled the speed of motor by a chopper circuit. It was able to 

control the speed, but the response of the system has little oscillation. This motivated us to 

design a controller which has minimum oscillation. 

1.3 Problem Statement 

The classical control methods for the speed control of DC Motor has many problems 

in controlling the speed of motor. The output of the system is not perfect by these controller. 

The response of the system is eighter overdamped or underdamped. Also in some cases it 

fails to meet the design requirement like, settling time not more than 2 seconds, overshoot 

less than 5%, steady state error less than 1% etc. 
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To over come these short coming PID controller is designed. It is able to meet all the 

avobe design criteria. But it fails to control the variation in system parameter. This problem is 

removed by fuzzy controller. However this controller also has its limitation, like it not able to 

control the large variation in the system. Then to remove all these problem we have applied 

adaptive controller. We have used two types of adaptive controller Adaptive Fuzzy controller 

and Adaptive Neuro Fuzzy Inference System. 

1.4 Outline of the dissertation 
In this chapter we have introduced DC Motor and its industrial application. History 

of the speed control of DC Motor drive is introduced in brief. And the motivation of the 

dissertation. In chapter 2, basic principal of the operation of DC Motor is introduced. Its 

characteristic is dealed in brief. And the speed control methods of DC Motor is explained. 

Chapter 3, contains the modeling part of DC Motor. It also deals with the classical control 

system technique to control the speed of motor. The methods explained are PID speed control 

technique, Root Locus method of speed control, speed control by Frequency Domain analysis 

and Digital PID speed control method. Chapter 4 contains the theoretical explanation of 

Genetic Algorithm, which includes its structure, mechanism and advantage. Chapter 5 deals 

with the tuning of fuzzy control and modeling of DC Motor drive in fuzzy model. In chapter 

6 adaptive fuzzy controller is explained. It also includes the neuro fuzzy conroller 

explanation. The complite algorithm and equation of ANFIS is explained. Chapter 7 contains 

the simulation result. A new method of rule tuning is explained in this chapter. It contains the 

simulation model and results of comperetive study among Adaptive Fuzzy, Simple Fuzzy and 

PID controller. The comperetive study of ANFIS and a PID controller is also explained with 

an example in matlab simulation. 
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2. DC MOTOR 

A dc machine is constructed in many forms and for a variety of purposes, from 3-mm 

stepper motor drawing a few µA at 1.5 V in a quartz crystal watch to the giant 75000-kW or 

more rolling mill motor. It is a highly versatile and flexible machine. It can satify the load 

requiring high starting, accelerating and retarding tourques. A de machine is also easily 

adaptable for drives with a wide range of speed control and fast reversals. 

2.1 History and background [31 

At the most basic level, electric motors exist to convert electrical energy into 

mechanical energy. The basic principles of electromagnetic induction were discovered in the 

early 1800's by Oersted, Gauss, and Faraday. By 1820, Hans Christian Oersted and Andre 

Marie Ampere had discovered that an electric current produces a magnetic field. The next 15 

years saw a flurry of cross-Atlantic experimentation and innovation, leading fmally to a 

simple DC rotary motor. Faraday set to work devising an experiment to demonstrate whether 

or not a current-carrying wire produced a circular magnetic field around it, and in October of 

1821 succeeded in demonstrating this. Joseph Henry (U.S.) praposed by the summer of 1831 

Joseph Henry had improved on Faraday's experimental motor. Henry built a simple device 

whose moving part was a straight electromagnet rocking on a horizontal axis. Its polarity was 

reversed automatically by its motion as pairs of wires projecting from its ends made 

connections alternately with two electrochemical cells. Two vertical permanent magnets 

alternately attracted and repelled the ends of the electromagnet, making it rock back and forth 

at 75 cycles per minute. William Sturgeon (U.K.) Just a year after Henry's motor was 

demonstrated, William Sturgeon invented the commutator, and with it the first rotary electric 

motor -- in many ways a rotary analogue of Henry's oscillating motor. Sturgeon's motor, 

while still simple, was the first to provide continuous rotary motion and contained essentially 

all the elements of a modern DC motor. Sturgeon used horseshoe electromagnets to produce 

both the moving and stationary magnetic fields (to be specific, he built a shunt wound DC. 

motor). 

2.2 Principles of operation[41 
In any electric motor, operation is based on simple electromagnetism. A current 

carrying conductor generates a magnetic field; when this is then placed in an external 

5 



magnetic field, it will experience a force proportional to the current in the conductor, and to 

the strength of the external magnetic field. As we know, opposite (North and South) 

polarities attract, while like polarities (North and North, South and South) repel. The 

internal configuration of a DC motor is designed . to harness the magnetic interaction 

between a current-carrying conductor and an external magnetic field to generate rotational 

motion. The operating principle can be seen clearly in Fig 2.2.1 

When electric current 
passes through a coil un 
a magnetic field, the 

magnetic force 
produces a torque 

I 
	which tarns the 

DC motor, 

t 1 ''~s 
electric 
current supplied 
externally through 
a commutator to both quire and 

magnetic field 
R Nm 

Fig 2.2.1 DC Motor Operation 

2.3 Some Basic Equations Of DC Motor 
a. The magnetic flux Of is generated by the field winding current If and Of is 

proportional to this field current. 	 ` 

So, Of= Kf * If 	(Kf is constant) 

b. If the magnetic flux Of is generated by permanent magnet, Of can generally be 

expressed as a constant. 

c. When the rotor is rotated, the flux linking those rotor windings will be changed during 

the rotation. The rate of flux linkage changes will be proportional to the motor speed 

Gn. 
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d. The winding induced voltage can be expressed as: 

Ea=K* Of * com =K*Kf*If*co.=Ks*If* ro„ 

e. Neglecting the losses the output power is : 

Pout=Ea *I Q =Ks * If * Wm  * Ia 

f. Hence the torque output of DC motor is : 

Tout =Pout/w„r  = Ks *If*„ *Ia/w,,, = Ks*If*Ia 

2.4 Characteristics of DC Motor 
The great power of the do motor lies in its versatility and ease with which a variety 

of speed-torque charecteristic can be obtained, and the wide range of speed control which 

is possible without the need of elaborated control scheme while a high level of operating 

efficiency is maintained. DC motors are of three types according to how these are excited 

a. Shunt Motor 

b. Series Motor 

c. Compound Motor 

c. l Cumulative Compound Motor 

c.2 Differential Compound Motor. 

2.5 Speed Control Of DC Motor 

The do motor are in general much more adaptable speed drives than ac motors which 

are associated with a constant- speed rotating field. Indeed one of the primary reason for 

the competative position of dc motors in modern industrial drives is the wide range of 

speeds afforded. As it can be seen from equation given below 

n =K(V  q;i  ) 	 ( 1) 

where 

n = speed, T = flux 

Since the armature drop is small, it can be neglected 

The avobe equation gives the two method of speed control i.e the variation of field 

excitation and terminal voltage control. 
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Field Control 

Field control in shunt motor is achieved by means of a rehostat in the field circuit. Sreies 

motor has three different ways of changing field current. These are diverted field control, 

tapeed field control, and series parallel control. 

Armature Control 

There are three main types of armature control scheme rehostatic control, shunted 

armature control, and series parallel control. 

0 
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3.CLASSICAL METHODS OF DC MOTOR SPEED CONTROL 

3.1 Modeling of do motor 

A common actuator in control systems is the DC motor.. It directly provides rotary motion 

and, coupled with wheels or drums and cables, can provide transitional motion. The electric 

circuit of the armature and the free body diagram of the rotor are shown in the following 

figure 3.1.1 

Fig. 3.1.1 Circuit Diagram, and Free body Diagram of Rotor 

we will assume the following values for the physical parameters:- 

* moment of inertia of the rotor (J) = 0.01 kg.m^2/s"2 

* damping ratio of the mechanical system (b) = 0.1 Nms 

* electromotive force constant (K=Ke=Kt) = 0.01 Nm/Amp 

* electric resistance (R) = 1 ohm 

* electric inductance (L) = 0.5 H 

* input (V): Source Voltage 

* output (theta): position of shaft 

The rotor and shaft are assumed to be rigid. The motor torque, T, is related to the armature 

current, i, by a constant factor Kt. The back emf, e, is related to the rotational velocity by the 

following equations: 

T = Ki 	 3.1.1 



b 
d B — J 
ddji K 

L 

3.1.8 

	

e = Ke6 
	

3.1.2 

In SI units (which we will use), Kt (armature constant) is equal to Ke (motor constant). 

From the figure 3.3.3 above we can write the following equations based on Newton's law 

combined with Kirchhoff s law: 

JO+ b6=Ki 	 3.1.3 

di Ldt + Ri=V—K9 	 3.1.4 

3.1.1 Transfer Function 

Using Laplace Transforms, the above modeling equations 3.1.3 can be expressed in 

terms of s. 

s(Js + b) B(s) = K I(s) 	3.1.5 

Simillarly equation 3.1.4 can be expressed as 

(Ls + R) I (s) = V — Ks 0(s) 	3.1.6 

By eliminating I(s) we can get the following open-loop transfer function, where the rotational 
speed is the output and the voltage is the input. 

9 	K 
V (Js+b)(Ls+ R)+ K2 	

3.1.7 

3.1.2 State-Space 

In the state-space form, the equations above can be expressed by choosing the rotational 

speed and electric current as the state variables and the voltage as an input. The output is 

chosen to be the rotational speed. 

6 = [1 o] [!] i 
3.1.9 

3.2 Matlab representation and open-loop response 

We can represent the above transfer function into Matlab by defining the 

numerator and denominator matrices as follows: 

Numerator = K, Denominator = (Js + b) (Ls + R) + K 2  
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n oS 

72 

CL 

..u3 

Matlab m-file is written to check the open loop response of the system. It is written for both 

transfer function and state space equation. 

Design requirements 

First,, our uncompensated motor can only rotate at 0.1 rad/sec with an input voltage of I 

Volt which can be seen from fig 3.2.1 given below. Since the most basic requirement of a 

motor is that it should rotate at the desired speed, the steady-state error of the motor speed 

should be less than 1%. The other performance requirement is that the motor must accelerate 

to its steady-state speed as soon as it turns on. In this case, we want it to have a settling time 

of 2 seconds. Since a speed faster than the reference may damage the equipment, we want to 

have an overshoot of less than 5%. 

If we simulate the reference input (r) by an unit step input, then the motor speed 

output should have: 

• Settling time less than 2 seconds 

• Overshoot less than 5% 

• Steady-state error less than 1% 

Step,  Response for the Open Loop System 

o  i_... 	1 	 1  

ume (eec) 

Fig 3.2.1 Step Response of Open Loop System 
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From the plot we see that when 1 volt is applied to the system, the motor can only 

achieve a maximum speed of 0.1 rad/sec, ten times smaller than our desired speed. Also, it 

takes the motor 3 seconds to reach its steady-state speed; this does not satisfy our 2 seconds 

settling time criterion. 

3.3 PID Design Method for DC Motor Speed Control 

A PID controller is used for the speed control of dc motor. The transfer function of PID 

controller is given is: 

Ki 
K p  + —+ KdS 

S 

Kd s2  + Ks + KL  
S 

3.3.1 

The closed loop system used for controlling speed is given in figure 3.3.1 

R  ``) 	iController 	r Runt _ } 

Fig 3.3.1 Closed loop system model for dc motor speed control 

R = Reference speed 

u = Controller output 

9 = Output Speed 

We first started our controlling with simple proportional controller (Kr ). We taken gain 

Kp  = 100. By adding few more codes to the m-file of 3.2.1, for adding the gain Kp  and to get 

the closed loop response of system. The closed loop response of dc motor with proportional 

controller is shown in fig 3.3.2 from the plot we can see that the system has large steady state 

error and large overshoot by adding an integral term we can eliminate the steady-state error 

and a derivative term will reduce the overshoot. We have started PID controller with small K;  

and Kd. 
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Step response with Proportion Control 
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Fig 3.3.2 Closed Loop Step Response with Proportional Controller 

By manually tuning the three components of PID controller KP, K,, and Kd. This is done 

trough manually adjusting these gains. Through this hit and trial method we finally got the 

values of three gains which designed the controller to full fill all the design requirement given 

in starting. 

The gains are 

K= 100 

K;  = 200 

Kd= 10 

After adding few more codes to the 3.2.1 m-file we got the response given in figure 3.3.3 
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Fig 3.3.3 PID Controlled Output 

3.4 Root Locus Design Method for DC Motor Speed Control 

A root loci plot is simply a plot of the s zero values and the s poles on a graph with 

real and imaginary coordinates. The root locus is a curve of the location of the poles of a 

transfer function as some parameter (generally the gain K) is varied. In addition to 

determining the stability of the system, the root locus can be used to design for the damping 

ratio and natural frequency of a feedback system. Lines of constant damping ratio can be 

drawn radially from the origin and lines of constant natural frequency can be drawn as arcs 

whose center points coincide with the origin. By selecting a point along the root locus that 

coincides with a desired damping ratio and natural frequency a gain, K, can be calculated and 

implemented in the controller. Many controllers like lag, lead, PI, PD and PID controllers can 

be designed approximately with this technique. 

The main idea of root locus design is to find the closed-loop response from the open-

loop , root locus plot. Then by adding zeros and/or poles to the original plant, the closed-loop 

response can be modified. 
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Speed control fo do motor through root locus design involves following four steps that we 

have used: 

a. Drawing the open-loop root locus 

b. Finding the gain using the rlocfind command 

c. Adding a lag controller 

d. Plotting the closed-loop response 

Two arguments in the sgrid command are the damping ratio (zeta) term (0.8 corresponds 

to a overshoot of 5%), and the natural frequency (Wn) term (= 0 corresponds to no rise time 

criterion) respectively. The -single argument in the sigrid command is the sigma term (4.6/2 

seconds = 2.3). 

Root Locus othout a controller 
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Fig 3.4.1 Root Locus of DC Motor Without Controller 

To fmd gain in root locus plot, we have used rlocfind command 

As per our design requirement we need the settling time and the overshoot to be as 

small as possible. We from the property of rout locus that location of poles determine the 

behaviour of system. Large damping corresponds to points on the root locus near the real 

axis. A fast response corresponds to points on the root locus far to the left of the imaginary 
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axis. To fmd the gain corresponding to a point on the root locus, we can use the rlocfmd 

command. We can fmd the gain and plot the step response using this gain all at once. This 

can be done by adding some commands to 3.4.1 m-file. i.e adding proportional gain to the 

system and the closed loop step response is seen in the figure of output. 

[k,poles] = rkctind(num,den) 
[numc,dent]=eIoopp(k*num,den,-1); 
t=0:0.01:3; 
sten(numc,denc,t) 
title('Step response with gain') 

from the plot and we have selected a point on the root locus half-way between the real 

axis and the damping requirement, say at -6+2.5i. From the camand window of matlab, we 

got the value of selected point, gain and the location of poles. 

Selected point = -6.0118 + 2.2547i, k = 10.5317 

poles = -6.0000 + 2.2546i, -6.0000 - 2.2546i 

The step response for the cdresponding gain is shown in the figure 3.4.2 : 

Step. response with gain 
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Fig3.4.2 Step Response With Gain 10.53 
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As we have seen, the system is overdamped and the settling time is about one second, so 

the overshoot and settling time requirements are satisfied. The only problem we can see from 

this plot is the steady- state error of about 50%. If we increase the gain to reduce the steady-

state error, the overshoot becomes too large. We need to add a lag controller to reduce the 

steady-state error. 

Adding a lag controller 

From the plot we have seen that this is a very simple root locus. The damping and 

settling time criteria were met with the proportional controller. The steady-state error is the 

only criterion not met with the proportional controller. A lag compensator can reduce the 

steady-state error. By doing this, we have increased our settling time. We have tried the 

following lag controller first: 

(s+1) 
3.4.1 

(s + 0.01) 

For adding this lag controller the new m-file 3.4.3 is written. After running this 3.4.3 m-file 
we got plot very much similar to the figure 3.4.1. the plot is shown below in figure 3.4.3. 
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Fig 3.4.3 Root Locus With Lag Controller 
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Plotting the closed-loop response 

We have closed the loop and seen the closed-loop step response. By Entering the 

following code at the end of 3.4.3 m-file: 

[k,poles]=rloc i icnd(numb,denb) 

[numc,denc] =clocop(k* numb, denb,-1); 

t=0.:0.01:3; 

step(numc,denc,t) 
title('Step response with a lag controller') 

After reruning this m-file in the Matlab command window. We have than selected a 

point, near the damping requirement (diagonal dotted line). We got the plot shown in the 

figure 3.4.4: 

Step response wwwith a lag controller 

rime (sec; 

Fig 3.4.4 Step Response With a Lag Controller and Gain 19.4768 

Our gain has to be about 20. As we can see the response is not quite satisfactory. We have 

also noted even though we have selected gain to correlate with a position close to the 
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damping criterion, the overshoot is not even close to five percent. This is due to the effect of 

the lag controller kicking in at a later time than the plant. (its pole is slower). What this means 

is that we can go beyond the dotted lines that represent the limit, and get the higher gains 

without worrying about the overshoot . After reruning the m-file, we have placed the gain 

just above the white, dotted line. After trying number of times we got a satisfactory response. 
The response looked as shown in the figure 3.4.5. The gain of the system is arround 50. 

Step respcn-se with a lag controller 
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Fig 3.4.5 Step Response With Gain 51.27 

The steady-state error is smaller than 1%, and the settling time and overshoot 

requirements have been met. As we can see, the design process for root locus is very much a 

trial and error process. If we had not been able to get a satisfactory response by choosing the 

gains, we could have tried a different lag controller, or even added a lead controller. 

3.5 Frequency Design Method for DC Motor Speed Control 

The main idea of frequency-based design is to use the Bode plot of the open-loop transfer 

function to estimate the closed-loop response. Adding a controller to the system changes the 

open-loop Bode plot, therefore changing the closed-loop response. 
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A Bode plot is a graph of the logarithm of the transfer function of a linear, time-invariant 

system versus frequency, plotted with a log-frequency axis, to show the system's frequency 

response. It is usually a combination of a Bode magnitude plot (usually expressed as dB of 

gain) and a Bode phase plot (usually expressed as degrees of phase shift). 

We have designed the speed controller of dc motor through the steps given below: 

a. Drawing the original Bode plot 
 

b. Adding proportional gain 
C;Dfitel .V__.11. 4 

c. Plotting the closed-loop response 

d. Adding a lag controller 
We have started our designing by drawing the original bode plot of the dc motor. 

Original bode plot is shown below fig 3.5.1: 
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1 	1 	{ e E  ~'à'~ --~r-~~i-;^2~a€- n-~----~r--r-z'( rz'r 1z__ - ~~R- y- ~s - rrsre----- F 

: ! t 

-4r 
I 	1 K eft 	1 	i 	/  

6K 

	

k Y 	 1 K K 	 Y 	k 	1 f K 	 k 	K t 

	

i 	t 	k K g 	i  5 	t 	K k II t t b 	 f 1 P 	 i 	i 4 B t X 

	

1 	i 	I q(it44 	 fiiK? ➢ i 	 tia 	t 	k 	 1K 1  
3I 

- 	u n 	) 	t 	f 	E* t t! K 	K 	5 	t 	K L t Y K T 	K 	6 	1 	C T f E K K 	i 	8 	K t K S 1 

j
.. .tu..k _~__y
i t A !
t 1 F i
Y 1 i !
i t 

 

    

g re. rfr w utw 	V M .rrap ..O. 

	

S 	 ! 	 e 	) 	t 	
* 
	 4* tt 	 t  Nt 

..O
9 

N
t 
~3 

	

S 	1 	 F i 4 S3i 

 
 S i 

! 	S 	t 	( d k 	S 	t 	S 	E C kf 	8 	1 	l 	K i 1 f b 

	

d 	 k f Y z k 	[ 	9 	K 	K k t 	4* 	 A 	i 	t 	t F 1 f *4 K 	K 	L 	1 	t R 6 Y 

	

t 	A 	i 	i 	t t t P f 	t 	t 	! 	t t t 1 	1 	t 	i 	3 	4* k *1 	k 	k 	k! i t i! 

	

S 	( 	t 	C 	1 S S/ II 	t 	/ 	3 	k I k i 1 1 	4 	i 	t 	i 	8* Y *4 	f 	i 	i 	i i P 9 
'l-'ettrr —*r 	t""H^YH W'V'YH .yev.e vt..»/'.1^K'C t f•C ...w... .Z ...r ..  

	

l4y * YN4 4* 8* 	 t v t*K8{Y tt 	k PItII{t*K 	t tK9B]k} 
1 	( 	( *4 1 *4 	f 	} 	i 	S I t t e t 	 1 	S 	i 	4 1! *4 	 t 	S 	th P P S 3 
1 	I F 1 t 	k K 	K 	K 	K K k S 1 * t 	X _*._.*4.___**    (t 4 	K 	Y 	k t M 1! K 
tk k 	 i 	i S k K K i 

2C 	l t  

Wy 

	

iO 	 1O
J s 	 C 	 1OW 

Frequency (rad/eec) 

Fig 3.5.1 Original Bode Plot of DC Motor 
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Adding proportional gain 

From the bode plot above, we have seen that the phase margin can be greater than about 

60 degrees if w is less than 10 rad/sec. We have added gain to the system so the bandwidth 

frequency is 10 rad/sec, which will give us a phase margin of about 60 degrees. To find the 

gain at 10 rad/sec, we read it through Bode plot (it looks to be slightly more than -40 dB, or 

0.01 in magnitude). The bode command is used to get the exact magnitute: 

[mag,phase,w] = bocde(num,den,10) 

mag = 0.0139 

To have a gain of 1 at 10 rad/sec, we have multiplyed the numerator by 1/0.0139 or 

approximately 72. 

num = 70*num 

Know again runing the rn-file though slite modification we got the bode plot shown below: 
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Fig 3.5.2 Bode Plot of DC Motor by Adding Proportional Gain 
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Plotting the closed-loop response 

From the plot above we have seen that the phase margin is now quite large. The closed-

loop response look like: 

[numc,denc]=cloop(num, den, -1); 

t=0:0.01:10; 

step(numc,denc,t) 

Step Response 

1 	2 	3 	 6 	7 	9 	a 	1-3 

Time (sec} 

Fig 3.5.3 Closed Loop Step Response 

We observed from figure 3.5.3 that the settling time is fast enough, but the overshoot 

and the steady-state error are too high. The overshoot can be reduced by reducing the gain a 

bit to get a higher phase margin, but this would cause the steady-state error to increase. We 

have applied a lag controller. 
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Adding a lag controller 

We have added a lag controller to reduce the steady-state error. At the same time, we 

have tried to reduce the overshoot by reducing the gain. We have taken gain equal to 50. The 

lag controller is 

(s+1) 	
3.5.1 

(s + 0.1) 

the steady-state error is redused by a factor of 1/0.01 = 100 (but it increase the settling time). 

By adding few codes to 3.5.1 m-file, we got the plot shown in figure 3.5.4. 

Bo a Diagram 
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Fig 3.5.4 Bode Plot by Reducing Gain and Adding Lag Controller 

The phase margin is quite good. The steady-state error is about 1/40dB or 1%, as desired. 

We have closed the loop and seen the step response. Added the following lines of code to the 

end of our m-file and rerun 

[numc,denc]=cloop(numb, denb, -1); 
t=0:0.01:10; 
step (numc,denc,t) 
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We have seen the response given in figure 3.5.5. Finaly we had the step response that 

meets the design requirements. 

Step Response 
1. 

i.2 

u 
J 

0.2 

CL 	
L`. 	v 	5 	 3 	r" 

Time (Bee) 

Fig 3.5.5 Closed Loop Step Response of DC Motor 

3.6 Digital DC Motor Speed Control with PID Control 

In this section, we havel considered the digital control version of DC motor speed 

problem. A digital DC motor model can be obtained from conversion of the analog model. 

The controller in this example is designed by PID method. 

Prosedure for desining the digital speed controller of dc motor is: 

a. Continuous to Discrete Conversion 

b. PID Controller 

The modeling of de motor is dealed in section 3.1. The same parameters of motor is 

considered in this example. 

Continuous to Discrete Conversion: The first step in designing a discrete control system is 

to convert the continuous transfer function to a discrete transfer function. Matlab command 
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c2dm will do this. The c2dm command requires the following four arguments: the numerator 

polynomial (num), the denominator polynomial (den), the sampling time (Ts) and the type of 

hold circuit. In this example, the hold we have used is the zero-order hold ('zoh'). 

From the design requirement, we have taken sampling time, Ts equal to 0.12 seconds, 

which is 1/10 the time constant of a system with a settling time of 2 seconds. 

After running the m-file 3.6.1 we got the discrite transfer function: 

0.0092z + 0.0057 	 3.6.1 
zz — 1.0877z -- 0.2369 

First, we have seen the closed-loop response of the system any controller. As we have 

seen the nurnz matrices shown above, it has one extra zero in the front; we have to get rid of 

it before closing the loop with the Matlab cloop command. We haveadded the following code 

into the end of our m-file 3.6.1: 

numz = [numz(2) numz(3)J; 
[numz_cl,denz_cl] = cloop(numz,denz); 

After we have done this, seen the closed-loop step response looks like. The dstep command 

will generate the vector of discrete output signals and stairs command will connect these 

signals. Added the following Matlab code at the end of previous m-file and rerun it. 

[xl ] = dstep(numz_cl,denz_cl,101); 
t=0:0.12:12; 
siairs(t,xl) 
xlabel('Time (seconds)') 
ylabel('Velocity (rad/s)') 
title('Stairstep Response: Original') 

we have seen the response shown in the figure 3.6.1: 
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Fig 3.6.1 Stare Step Response of DC Motor 

As we can see from the avobe figure the system has large steady state error. Now we have 

applied the PID controller to get the desierd response. 

PID Controller 

There are several ways for mapping from the s-plane to z-plane. The most accurate one is 

z= eTs 

We cannot obtain PID transfer function in this way because the discrete-time transfer 

function would have more zeroes than poles, which is not realizable. Instead we are going to 

use the bilinear transformation shown as follows: 

_ 2 z-1 
S Ts z+1 

Thus we can derive the discrete PID controller with bilinear transformation mapping. 

Equivalently, the c2dm command in Matlab will help us to convert the continuous-time PID 

compensator to discrete-time PID compensator by using the "tustin" method in this case. The 

"tustin" method will use bilinear approximation to convert to discrete time of the derivative. 
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According to the PID Design Method for the DC Motor explained in section 3.3, Kp  = 100, K; 

= 200 and Kd = 10 satisfied the design requirement. We will use all of these gains in this 

example. 

After running the matlab comand with these values of Kp, Ki and Kd, we got the unstable 

response. As we have seen from the plot, the closed-loop response of the system is unstable. 

Now we have made a proper analysis of system through root locus.From this root-locus plot, 

we have seen that the denominator of the PID controller has a pole at -1 in the z-plane. We 

know that if a pole of a system is outside the unit circle, the system will be unstable. This 

compensated system will always be unstable for any positive gain because there are an even 

number of poles and zeroes to the right of the pole at -1. Therefore that pole will always 

move to the left and outside the unit circle. The pole at -1 comes from the compensator, and 

we can change its location by changing the compensator design. We choose it to cancel the 

zero at -0.62. This will make the system stable for at least some gains. Furthermore we have 

choose an appropriate gain from the root locus plot to satisfy the design requirements using 

rlocfind. 3.6.2 m-file gives the complete modified m-file. 
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Fig 3.6.2 Root Locus of Compensated System 
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The closed loop response of digital control dc motor is shown in figure 3.6.2. 

Stairstep Response with PlO controller 
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Fig 3.6.3 Closed Loop Step Response of Compensated System 

The plot shows that the settling time is less than 2 seconds and the percent overshoot is 
around 3%. In addition, the steady state error is zero. 
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4. GENETIC ALGORITHM 

4.1 Introduction [5] 

This idea appears first in 1967 in J. D. Bagley's thesis "The Behavior of Adaptive 

Systems Which Employ Genetic and Correlative Algorithms". The theory and applicability 

was then strongly influenced by J. H. Holland, who can be considered as the pioneer of 

genetic algorithms. 

The world as we see it today, with its variety of different creatures, its individuals highly 

adapted to their environment, with its ecological balance (under the optimistic assumption 

that there is still one), is the product of a three billion years experiment we call evolution, a 

process based on sexual and asexual reproduction, natural selection, mutation, and so on. If 

we look inside, the complexity and adaptability of today's creatures has been achieved by 

refining and combining the genetic material over a long period of time. 

Genetic Algorithms are simulations of evolution, of what kind ever. In most cases, 

however, genetic algorithms are nothing else than probabilistic optimization methods which 

are based on the principles of evolution. It can also be said as genetic algorithms are 

optimization methods. 

Genetics is very much related to genetic algoritms. The table shown below gives a list of 

different expressions, which are common in genetics, along with their equivalent in the 

framework of GAs: 

Natural Evolution 1  Genetic Algorithm 

genotype coded string 
phenotype uncoded point 
chromosome string 
gene string 	 osition 
allele value at a certain 

position 
fitness objective function 

value 
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4.2 Algorithm 

t: = 0; 

Compute initial population Bo; 

WHILE stopping condition not fulfilled DO 

BEGIN 

select individuals for reproduction; 

create offsprings by crossing individuals; 

eventually mutate some individuals; 

compute new generation 

As obvious from the above algorithm, the transition from one generation to the next consists 

of four basic components: 

Selection: Mechanism for selecting individuals (strings) for reproduction according to their 

fitness (objective function value). 

Crossover: Method of merging the genetic information of two individuals; if the coding is 

chosen properly, two good parents produce good children. 

Mutation: In real evolution, the genetic material can by changed randomly by erroneous 

reproduction or other deformations of genes, e.g. by gamma radiation. In genetic algorithms, 

mutation can be realized as a random deformation of the strings with a certain probability. 

The positive effect is preservation of genetic diversity and, as an effect, that local maxima 

can be avoided. 

Sampling: Procedure which computes a new generation from the previous one and its 

offsprings. 

The flow chart of Genetic Algorithms is shown below [6]. The flow chart clearly explains the 

procedure of optimization. In the beginning suppose the nth generation is intialized it goes 

under evaluation, if it satisfy the desired value the algorithm stops at that point. But if it do 
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not find the apropriate value it goes under various process like reproduction, cross over, 

mutation. And finaly it gives (n + 1)th generation. Simillarly algoritm repeats it self. 

Begin 

Initialisation 
(n)"' Generation, 

Evaluation I Fitness 
Computing 

(eg. travel time, cost) 

(n+ 1)t' Generation 

Mutation 

Crossover 

Reproduction 

~/ 	No 
STOP? 

Yes 

End 

Fig 4.2.1 Genetic Algorithm Structure 

Compared with traditional continuous optimization methods,_ such as Newton or gradient 

descent methods, we can state the following significant differences: 

1. GAs manipulate coded versions of the problem parameters instead of the parameters 

themselves. 

2. While almost all conventional methods search from a single point, GAs always operate on 

a whole population of points (strings). This contributes much to the robustness of genetic 

algorithms. It improves the chance of reaching the global optimum and, vice versa, reduces 

the risk of becoming trapped in a local stationary point. 
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3. Normal genetic algorithms do not use any auxiliary information about the objective 

function value such as derivatives. Therefore, they can be applied to any kind of continuous 

or discrete optimization problem. The only thing to be done is to specify a meaningful 

decoding function. 

4. GAs use probabilistic transition operators while conventional methods for continuous 

optimization apply deterministic transition operators. More specifically, the way a new 

generation is computed from the actual one has some random components. 

4.3. Adaptive Genetic Algorithms 

Adaptive genetic algorithms are GAs whose parameters, such as the population size, the 

crossing over probability, or the mutation probability are varied while the GA is running. A 

simple variant could be the following: The mutation rate is changed according to changes in 

the population; the longer the population does not improve, the higher the mutation rate is 

chosen. Vice versa, it is decreased again as soon as an improvement of the population occurs. 

4.4 Hybrid Genetic Algorithms 

As they use the fitness function only in the selection step, genetic algorithms are blind 

optimizers which do not use any auxiliary information such as derivatives or other specific 

knowledge about the special structure of the objective function. If there is such knowledge, 

however, it is unwise and inefficient not to make use of it. Several investigations have shown 

that a lot of synergism lies in the combination of genetic algorithms and conventional 

methods. 

The basic idea is to divide the optimization task into two complementary parts. The. 

coarse, global optimization is done by the GA while local refinement is done by the 

conventional method (e.g. gradient-based, hill climbing, greedy algorithm, simulated 

annealing, etc.). A number of variants is reasonable: 

1. The GA performs coarse search first. After the GA is completed, local refinement is done. 

2. The local method is integrated in the GA. For instance, every K generations, the population 

is doped with a locally optimal individual. 

3. Both methods run in parallel: All individuals are continuously used as initial values for the 

local method. The locally optimized individuals are re-implanted into the current generation. 
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4.5 Self-Organizing Genetic Algorithms 

As already mentioned, the reproduction methods and the representations of the genetic 

material were adapted through the billions of years of evolution. Many of these adaptations 

were able to increase the speed of adaptation of the individuals. We have seen several times 

that the choice of the coding method and the genetic operators is crucial for the convergence 

of a GA. Therefore, it is promising not to encode only the raw genetic information, but also 

some additional information, for example, parameters of the coding function or the genetic 

operators. If this is done properly, the GA could find its own optimal way for representing 

and manipulating data automatically. 

4.6 Tuning of Fuzzy Systems Using Genetic Algorithms 

There are two concepts within fuzzy logic which play a central role in its applications. 

The first is that of a linguistic variable, that is, a variable whose values are words or sentences 

in a natural or synthetic language. The other is that of a fuzzy if-then rule in which the 

antecedent and consequent are propositions containing linguistic variables. The essential 

function served by linguistic variables is that of granulation of variables and their 

dependencies. In effect, the, use of linguistic variables and fuzzy if-then rules results through 

granulation—in soft data compression which exploits the tolerance for imprecision and 

uncertainty. In this respect, fuzzy logic mimics the crucial ability of the human mind to 

summarize data and focus on decision-relevant information. 

Two important components which have to be specified in order to make a fuzzy system 

work, the rules and the fuzzy sets. The scaling factor of fuzzy control can tuned through 

genetic algorithms. 
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5. TUNING OF FUZZY CONTROL AND DESIGNING FUZZY 

MODEL OF DC MOTOR DRIVE 

Conventional control system design depends upon the development of a mathematical 

description of the system's behavior. This usually involves assumptions being made in 

relation to the system dynamics and any non-linear behavior that may occur. In cases where 

assumptions in respect of non-linear behavior cannot be made, the need to describe 

mathematically, ever increasing complexity becomes difficult and perhaps infeasible. 

Fuzzy logic is the application of logic to imprecision and has found application in control 

system design in the form of Fuzzy Logic Controllers (FLCs). Fuzzy logic controllers 

facilitate the application of human expert knowledge, gained through experience, intuition or 

experimentation, to a control problem. Such expert knowledge of a system's behavior and the 

necessary intervention required to adequately control that behavior is described using 

imprecise term known as "linguistic variables". The imprecision of linguistic variables 

reflects the nature of human observation and judgment of objects and events within our 

environment, and there use in FLCs thus allows the mapping of heuristic, system-related 

information to actions observed to provide adequate system control. In this way, FLCs 

obviate the need for complex mathematical descriptions of non-linear behavior to the nth 

degree and thus offer an alternative method of system control. 

5.1 Structure of a fuzzy controller [7] 

The principal structure of a fuzzy controller is shown in figure 5.1. It consists of 

following components: 

5.1.1 Fuzzification Module 

The fuzzification module performe the following functions: 

1. FM - Fl: Performs a scale transformation (i.e., an input normalization) which maps. 

the physical values of the curren process state variables into a normalized universe of 

discourse. 

2. FM — F2: Perform the so-called fuzzification which converts a point-wise (crisp), 

current value of a process state variable into a fuzzy set, in order to make it 



compatible with the fuzzy set representation of the process state variable in the rule-

antecedent. 

Crisp Process-State 
Values 

FM 

Normalization 
FM—Fl 

Crisp Control-Output 
Values 

DM 

Denormalization 
DM—F1 

Fuzzification 
FM - F2 

Inferance 
Engine 

Rulebase 

Defuzzification 
DM—F2 

Database 

Fig 5.1 Structure of Fuzzy Control 

The design parameter of fuzzification module is choice of fuzzification strategy. 

5.1.2 Knowledge Base: 

The knowledge base of a fuzzy controller consist of data base and rule base. 

a. Data Base 
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The basic function of the data base is to provide the necessary information for the proper 

functioning of the fuzzif cation module, the rule base, and the defuzzification module. This 

information includes: 

1. Fuzzy sets (membership functions) representing the meaning of the linguistic values 

of the process state and contorl output variables. 

2. Physical domains and their normalized counterparts together with the 

normalization/denomalization (scaling) factors. 

Design parameters of the data base include, choise of the membership function(M.F) 

and the choice of scaling factors. 

b. Rule Base 

The basic function of the rule base is to represent in a structured way the control policy 

of an experienced process operator in the form of a set of production rules such as 

if (process) then (control output) 

5.1.3 Inference Engine 

The inference mechanism has two basic tasks: (1) determining the extent to which'each 

rule is relevant to the current situation as characterized by the inputs u;, where i = 1, 2, .....n 

(we call this task "matching"); and (2) drawing conclusions using the current inputs ui and 

the information in the rule-base (we call this task an "inference step"). The inference engine 

or rule firing can be of two basic types: 

• Composition based inference: In this case, the fuzzy relations representing the 

meaning of each individual rule are aggregated into one fuzzy relation describing the 

meaning of the overall set of rules. The inference or firing with this fuzzy relation is 

performed via the operation composition between the fuzzified crisp input and the 

fuzzy relation representing the meaning of the overall set of value. As a result of the 

composition one obtains the fuzzy set describing the fuzzy value of the overall control 

output. 

• Individual rule based inference: In this case, first each single rule is fired. This firing 

can be simply described by: (1) computing the degree of match between the crisp 
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input and the fuzzy sets describing the meaning of the antecedent and (2) "cliping" the 

fuzzy sets describing the meaning of rule consequent to the degree to the rule 

antecedent has been matched by the crisp input. Finally the clipped values for the 

control output of each rule are aggregated, thus forming the value of the overall 

control output. 

5.1.4 Defuzzification 

The final .process of the FLC is to aggregate the fuzzy sets resulting from the 

inference mechanism to produce a decision (i.e. crisp output), which is the "most certain" 

in respect of the current system behavior. 

A number of methods can be used for defuzzification (e.g. center-average, mean-of 

maxima), however the most commonly used method is the equation for computation of 

center-of-gravity (COG), or centroid, which ensures a smooth control action but which 

requires more complex calculations particularly for non-linear MFs. 

5.2 Assumptions and Constraints in Designing a Fuzzy Logic Controller [8] 

To apply the Fuzzy Logic Controller to various control engineering problems, certain 

properties of the system are exploited so that the design of the controller can be made 

easier. As the systems used are symmetrical, it is assumed that symmetrical membership 

functions about the y-axis will provide a valid controller. A symmetrical rule-base is also 

assumed. 

Other constraints are also introduced to the design of the FLC: 

• All universes of discourses are normalized to lie between —1 and 1 with scaling 

factors external to the FLC used to give appropriate values to the variables. 

• It is assumed that the first and last membership functions have their apexes at —1 and 

1 respectively. This can be justified by the fact that changing the external scaling 

would have similar effect to changing these positions. 

• Mostly triangular membership functions are to be used. 
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• The number of fuzzy sets is constrained to be an odd integer greater than unity. In 

combination with the symmetry requirement, this means that the central membership 

function for all variables will have its apex at zero. 

• The base vertices of membership functions are coincident with the apex of the 

adjacent membership functions. This ensures that the value of any input variable is a 

member of at most two fuzzy sets, which is an intuitively sensible situation. It also 

ensures that when a variable's membership of any set is certain, i.e. unity, it is a 

member of no other sets. 

5.3 Tuning of Fuzzy Controller via Scaling Universes of Discourse [81 

As we have explained in our privious section that the scaling factor in fuzzy control 

behaves same as the gains in normal controller. In this section we will exaplain the tuning of 

fuzzy scalling factor and it effect on the syatem. 

We have taken an example of inverted pendulam. As the of fuzzy controller for 

inverted pendulam is designed for balancing it over moving cart. 

r 

Fits or:oller  
Ft ' 	~r-udultt~ 

Fig 5.3.1 Fuzzy Controller for Inverted Pendulum with Scaling Gains go, gi, and h. 

In the figure 5.3.1, r is the refrence angle and y is the output, u is the controlled output go, gl 

and h is the scaling factors of the fuzzy controller. We have tried to explain the effect of 

scaling factor over fuzzy control. 
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5.3.1 Input Scaling Gains 

First, consider the effect of the input scaling gains go and gi. We can actually achieve the 

same effect as scaling via gi by simply changing the labeling of the dt e(t) axis for the 

membership functions of that input. The case where go = gi = h = 1.0 corresponds to our 

original choice for the membership functions in Figure 5.3.2. 

?  -I  0  1  2 
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\: 

Fig 5.3.2 Membership functions for an inverted pendulum for d e  (t) 

The choice of gi = 0.1 as a scaling gain for the fuzzy controller with these membership 

functions is equivalent to having the membership functions shown in Figure 5.3.3 with a 

scaling gain of gi = 1. We see that the choice of a scaling gain gi results in scaling the 

horizontal axis of the membership functions by 1/ gi. 
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Fig 5.3.3 Scaled Membership Function for dt e(t) 

Generally, the scaling gain gi has the following effects: 

• If gi = 1, there is no effect on the membership functions. 
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• If gi < 1, the membership functions are uniformly "spread out" by a factor of 1/ gi 

(we can see each number on the horizontal axis of Figure 5.3.2 is multiplyed by 10 

produces a Figure 5.3.3). 

• If gi > 1, the membership functions are uniformly "contracted". 

The expansion and contraction of the horizontal axes by the input scaling gains is 

sometimes described as similar to how an accordion operates, especially for triangular 

membership functions. Notice that the membership functions for the other input to the fuzzy 

controller will be affected in a similar way by the gain go. Similar statements can be made 

about all the other membership functions and their associated linguistic values. Overall, we 

see that the input scaling factors have an inverse relationship in terms of their ultimate effect 

on scaling (larger gl that is greater than 1 corresponds to changing the meaning of the 

linguistics so that they quantify smaller numbers). While such an inverse relationship exists 

for the input scaling gains, just the opposite effect is seen for the output scaling gains. 

5.3.2 Output Scaling Gain 

Similarly the effect of scaling factor can be explained as: 

• If h = 1, there is no effect on the output membership functions. 

• If h < 1, there is the effect of contracting the output membership functions and hence 

making the meaning of their associated linguistics quantify smaller numbers. 

• If h > 1, there is the effect of spreading out the output membership functions and 

hence making the meaning of their associated linguistics quantify larger numbers. 

There is a proportional effect between the scaling gain h and the output membership 

functions. This can be explained form the two figures shown below. Figure 5.3.4 shows 

the normal membership function. And the figure 5.3.5 shows the scaled output 

membership function. The figure clearly shows the effect of scaling gain h on the 

spacing of the output membership functions. 
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Fig 5.3.4 Normal Membership Function 
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Fig 5.3 Output Membership Functions Scaling Gain h 

5.4 Self Tuning of Fuzzy Control 

Most of the real world processes that require automatic control are non linear in 

nature. That is , their parameter values alter as the operating point changes, over time, or 

both. As conventional control schemes are linear , a controller can only be tunned to give 

good performance at a particular point or for a limited period of time . The controller needs to 

tunned if the operating point Changes ,or retuned periodically if the process changes with 

time. This necessity to retune has driven the need for adaptive controllers that can 

automatically retune themselves to match the current process characteristics. An excellent 

introduction to "conventional" adaptive control systems is by Astrom. 

There is still contention as to what exactly constitutes an adaptive controller, and there 

is no consensus on the terminology to use in describing adaptive controllers. Adaptive 

controllers generally contain two extra components on top of the standard controller itself. 

The first is a "process monitor" that detects changes in the process characteristics. It is 

usually in one of two forms: 
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• A performance measure that assesses how well the controller is controlling, 

• A parameter estimator that constantly updates a model of the process. 

The second component is the adaptation mechanism itself. It uses information passed 

to it by the process monitor to update the controller parameters and so adapts the controller to 

the changing process characteristics. Adaptive controllers can be classified as performance-

adaptive or parameter-adaptive depending on which type of process monitor they employ. 

Fuzzy controller contains a number of sets of parameters that can be altered to modify the 

controller. performance. These are: 

1. The scaling factor for each variable, 

2. The fuzzy set representing the meaning of linguistic values, 

3. The if-then rules. 

Set point + 1 

Fig 5.4.1 Performance Adaptive Fuzzy Controller 

The introduction of the Takagi-Sugeno fuzzy model initiated research on the structure 

and parameter identification for fuzzy systems. Fuzzy systems have been utilized to generate 
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nonlinear input-output functions of complex plants. Evolutionary steps that have shaped 

fuzzy control theory in forms similar to those of conventional control theory. This latter 

approach to fuzzy modelling and control involves off-line parametric estimation and 

stabilization of the identified model within the context of classical control tools. The control 

problem in the fuzzy model based methodology is associated with the requirement, of well-

known system parameters. The case of changing system parameters due to operational 

variations in the controlled process raises the question of adaptive design schemes. Fuzzy 

adaptation in tuning for some types of control systems has been investigated. The treatment 

of the concurrent problem of identification and fuzzy control has been explored. In this 

article, we approach the solution of the fuzzy modelling and control problem simultaneously. 

A fuzzy model identifier is employed to approximate the input-output description of the 

physical plant online. A fuzzy controller is utilized to implement the control action, which is 

calculated on the basis of the parameter estimates and according to the certainty equivalence 

principle. Since the fuzzy model is a weighted superposition of linear systems, the design 

specifications of the closed-loop can be met through the imposition of analogous criteria on 

the component systems. Hence, linear control techniques are reckoned suitable to achieve the 

design objective. The architecture of the overall scheme emanates from the self-tuning 

control structure. 

5.5 DC Drive Fuzzy Model[9] 

This section deals with the methodology of designing a complete fuzzy model of a DC 

drive based on a suitable database of measured input—output values. This methodology covers 

the entire range of possible drive inputs, without requiring any information about the drive 

structure and parameters. 

Methods of applying fuzzy sets in various applications in the field of electrical drives have 

recently become a frequently appearing issue in specialized literature. One of the tasks 

involved is the development of corresponding models of the particular drives. The solution of 

this task can be based on analytical knowledge of the given drive type, however this approach 

does not introduce any advantages against conventional analytical models, neither does it 

exploit fuzzy system properties. The other option is to attempt setting up a model of the drive 

based only on the knowledge of the relevant drive inputs and outputs, without prior 

knowledge of the drive structure or parameters. This method deals with the latter approach; it 
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provides a description of a DC drive fuzzy model design procedure that is based on a suitable 

database of measured data, without anticipation of any further information about the given 

drive. This algorithm is verified by a DC motor drive simulation. 

An electrical drive presents a dynamic system that can be generally described in state 

space by the following equations: 

z = A(x, t)X + B(x, t)u 	5.5.1 

y = Cx 	 5.5.2 

The aim of the investigation is to set up a fuzzy model of the drive on basis of the measured 

database of inputs and their corresponding output values. 

Fig 5.5.1 Electrical Drive Fuzzy Model Structure 

In order to enable modelling of the drive in according to the equation (1) and (2), it is 

necessary to complement the fuzzy system (FS) by a dynamic part (DP). A complete fuzzy 

model of the drive will then look as shown in Fig. 5.5.1. 

The principal requirements that must be observed when designing a fuzzy model of a drive in 

accordance with Fig. 5.5.1 are as follows: 

1. For the measured input points of the database (and hence also input vectors f for the 

FS), the y outputs must be equally accurate. 

2. There must be full coverage of the entire scope of possible drive inputs by rules accord. 

Otherwise it is possible that with an uncovered input state f the FS output would present a 

non-defined or incorrect value. 

3. Consistency of the measured values database, or of the progression of vectors f, 
corresponding to the measured values, must be ensured. With an inconsistent database, there 

would be various outputs y corresponding to "approximate" vectors f. As vectors f are in fact 
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inputs into the FS, this would result in inconsistent rules and hence in the principal non-

feasibility of the FS. 

The quality of meeting the above requirements depends mainly upon: 

• Proper selection of the structure of the dynamic part (DP) of the electrical drive 

model 

• Properly selected measurements regarding the drive input signal u 

• Proper forms of membership functions at the fuzzification of the FS inputs. 

5.6 Procedure of Designing an Electrical Drive Fuzzy Model 

For a constant input signal value Ui, the drive output always stabilizes at the same value 

Yi during a period of time shorter than Tmax. For example, at a specific voltage of the DC 

rotor the angular speed always stabilizes at the same value; at a specific asynchronous motor 

stator frequency the angular speed always stabilizes at the same value, etc. 
A complete fuzzy model of the drive can be obtained by integration of all the transition 

trajectories that originate from all the transitions between all possible drive input values. If 

we divide the range of the input variable u into n number of levels, we will need to measure 

and then model n (n - 1) trajectories. 

Modelling an Individual Trajectory 
The block scheme for creating a database of values for a single trajectory of a drive fuzzy 

model is shown in figure 5.6.1. 

Fig 5.6.1 Block Diagram for Creating Database 
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Figure 5.6.1 shows the block diagram for the creation of data. The parameters shown in the 

blocks are: 

KA — armature gain, "4.55" 

TA — armature time constant, "0.05" 

ccp - motor constant, "0.333" 

J— moment of inertia, "0.382" 

Tl — time constant of first order inertia system, "0.2" 

M — motor torque, 

Mz — load torque, 

co - angular speed, 

u — system input, 

y — system output. 

0  0.1  02  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 

Fig 5.6.2 Time Response of Both with Step Input 

The trajectory that denotes the transition from one steady state to another steady state at 

step change of input u represents a set of successive output y values in time. In order to 

explicitly distinguish the time intervals and to avoid measurement of absolute time, input u 

will be transformed through a first order block of inertia with unit amplification to function fl. 



The database will then be made up of points < fit, yi> measured in ti time intervals. In order 

to reduce the number of fuzzy rules necessary for the FS, only several central points (centres) 

will be selected from the database. This can be done either on basis of the graphical time 

response of the trajectory. 

Fig 5.6.3 Selected pairs of points describing the static part of the FS 

The mentioned points will represent the centres of individual membership functions, 

which will be applied in the fuzzification of the input fl function for the FS. The width of a 

particular membership function must not extend further than the immediate neighbour 

(centre) on either side of the relevant centre. Otherwise the output value y in the given centre 

would not necessarily be identical with the value measured in the centre, which is in conflict 

with requirement No. 1 quoted in the preceding Section. Membership functions for 

neighbouring centres must overlap, as otherwise they would not cover the entire fl range, and 

this would be in conflict with requirement No. 2 quoted in the preceding Section. 

We have Consider a model of a separately excited DC motor with step change of 

input. The database will be created by measurements of values fl s and y at constant time 

intervals Ti = 0. is, as per Figure 5.6.4. The value of Ti will be selected according to the 
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transient function of the drive in such a way that the dynamics of fi would approximately 

correspond with the dynamics of the transient function. The time response of both fl and y is 

shown in Figure 5.6.2. Selected pairs of points [fi, y] describing the static part of the FS 

model are shown in Figure 5.6.3. 

The fuzzy model of the presented drive is shown in Figure 5.5.1. Its dynamic part is 

represented by first order inertia. The FS static part is created according to Figure 5.6.4, 

which presents the graphical representation of rules and membership functions for considered 

FS. 

Fig 5.6.4 Graphical Representation of Rules and Membership Functions 

Figure 6.5.5 shows the comparison of the real trajectory with its modelled fuzzy 

substitute: the two are identical in those points, from which the FS part of the fuzzy model 

was built. 

Hence it is possible to select a different fl function: 

First order inertia system is, however, very simple and easily implemented. For the 

fuzzification of any fl, all of the above requirements must be met. Furthermore, it is clear that 

the more precise fuzzy approximation of the y trajectory is requested, the more fuzzification 

centres over fi have to be selected, which, however, results in a larger number of rules within 

the FS (one centre = one rule). 
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Fig 5.6.5 Comparison of the Real and Modelled Trajectory of a DC Drive Output 

The principal properties of a fuzzy model designed in the described manner are as 

follows: 

• It covers the entire state space of the drive. 

• Depending on the required degree of precision, the density of dividing u into 

individual states can be selected. 

• For a number of selected input levels n , the number of FS rules will always be pn2  , 
where p is the number of points selected for an individual trajectory (at complemented 

trajectories for steady states). 

• The dynamic part of the model will be identical for each drive. 

• The fuzzification of the nonlinear static part of the FS model is very simple and it 

ensures coverage of the entire state space of the drive. 

• Principal consistence of the measured database values is ensured. 

• No knowledge of the drive type, structure or parameters is required. 

With regard to the properties outlined above it can be assurned that the presented manner 

of modelling can be applied to any type of drive. 



6. ADAPTIVE FUZZY AND ADAPTIVE NEURO-FUZZY 

INFERENCE SYSTEM 

6.1 Adaptive Fuzzy Controller[7] 

Adaptive controller consists of two parts: 

1. The process monitor 

2. The adaption mechanism 

Change in process characteristic can eighter be detected through on line identification of 

process model, or by assessment of the controlled response of the process. 

The most commonly used model in controller design is the single input and single 

output, linear , first order plus dead time model described by transfer function. 

y(s)  _  KPe—tds 
u(s) 	rs+1 

Where y(s) is the Laplace transform of the process-output, 

u(s) is the Laplace transform of the process-input, 

Kp is the gain, 

td  is the dead-time, and 

i is the time constant. 

Identification of fuzzy process model involves estimation of fuzzy relation, R, from 

process input output data. R is also called fuzzy relation matrix. Adaptive controllers that use 

on line identification of a process model as their performance monitor are known as 

parameter adaptive controllers. 
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The alternative type of process monitor forms an assessment of controller performance 

based on readily measured variables. For the regulatory control problem, were the aim is to 

keep a process state variable at its specified set point. Adaptive controllers that use the 

measure of controller performance as their performance monitor are known as performance 

adaptive controllers. Number of performance related variables is overshoot, rise time, settling 

time, decay, ratio, frequency of oscillating of the transient, integral of square error, gain and 

phase margin. 

6.2 Self Organizing Controllers 

This type of controller is developed by Mamdani. Their idea is to identify which 

rule is responsible for poor performance of the controller, and then to replace these rules with 

better rules. The performance monitor accesses the controller performance on the basis of the 

error and change of error of process output variable compared to that of the desired one. This 

gives the idea of changing the process output variable to achieve the good control. This can 

be done using simple incremental control of the process that relates changes in process inputs 

to change the process output. This controller can modify a predefined set of rules, or it can. 

start with no rules at all and learn its control policy as it goes. It is also performance adaptive 

controller. In this case it is the rules that adjust itself, not the fuzzy set definition, or scaling 

factor. 
The controller is double input, single output type it can be seen from the figure 6.2.1. 

The error (e) and change in error (De) are input, the process input or control output (u). 

Performance monitor consist of measuring the performance and regulate the control 

requirement. That is the sufficient fast approach to return to set point, good damping when 

close to set point and the measure of tolerance when close to set point. The output of 

performance monitor is not given as the value of performance, but as a value for correction 

required at the process output to obtain good performance. 

6.2.lAdaptation Algorithm 

This input reinforcement is - the amount that must be added to the process input, i.e., control 

output, to compensate for the current poor performance. Dynamics of control output 

processes are responsible for poor performance. High order process with large time lag will 
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a 

Fig 6:2.1 Self Organized Fuzzy Controller 

require control output for long time in the past to be adjusted. Low order process for short 

time lags will require control output much nearer the present to be adjusted. Correcting the 

control output in the fuzzy controller means altering the rule consequents of the appropriate 

rules. Their adaptation mechanism requires the parameter that specifies which past control 

outputs should be corrected. If delay is small the control action is too close to the present is 

corrected. 

The controller used by us is self organising fuzzy controller, which changes the rules 

according to the situation. It is a tabular fuzzy which is of sugeno type. The controller used 

by us is like two fuzzy controllers working together. The values or a rule of one fuzzy 

controller is adjusted by other. It is a on line tuning technique. 

6.3 Adaptive Neuro-Fuzzy Inference System(ANFIS)[10] 

ANFIS uses a hybrid learning algorithm to identify the membership function parameters 

of single-output, Sugeno type fuzzy inference systems (FIS). A combination of least-squares 

and backpropagation gradient descent methods are used for training FIS membership function 
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parameters to model a given set of input/output data. As we have already seen, fuzzy 

systems present particular problems to a developer: 

• Rules. The if-then rules have to be determined somehow. This is usually done by 

`knowledge acquisition' from an expert. It is a time consuming process that is 

fraught with problems. 

• Membership functions. A fuzzy set is fully determined by its membership 

function. This has to be determined. For example if it's gaussian then what are 

the parameters? 

The ANFIS approach learns the rules and membership functions from data. ANFIS is an 

adaptive network. An adaptive network is network of nodes and directional links. Associated 

with the network is a learning rule, for example back propagation. It's called adaptive 

because some, or all, of the nodes have parameters which affect the output of the node. 

These networks are learning a relationship between inputs and outputs. 

Adaptive networks covers a number of different approaches but for our purposes we will 

investigate in some detail the method proposed by Jang known as ANFIS. The ANFIS 

architecture is shown in figure 6.3.1. The circular nodes represent nodes that are fixed 

whereas the square nodes are nodes that have parameters to be learnt. 

Layer 1 	Layer 2 	Layer 3 	Layer 4 	Layer 5 

Fig 6.3.1 An ANFIS architecture for a two rule Sugeno system 
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A Two Rule Sugeno ANFIS has rules of the form: 

If xisAl  and yisB, THEN f =pl x+q,y+r, 

If x is A2  and y is B2  THEN f2  = p2 x + q2  y + r2  

For the training of the network, there is a forward pass and a backward pass. We now 

look at each layer in turn for the forward pass. The forward pass propagates the input vector 

through the network layer by layer. In the backward pass, the error is sent back through the 

network in a similar manner to backpropagation. 

Layer 1 

The output of each node is: 

— P (x) 	for i =1,2 

; PPa1 _, (y) 	for i = 3,4 

So, the Ol, j  (x) is essentially the membership grade for x and y. 

The membership functions could be anything but for illustration purposes we will use the bell 
shaped function given by: 

Where a•, bi , ci  are parameters to be learnt. These are the premise parameters. 

Layer 2 

Every node in this layer is fixed. This is where the t-norm is used to `AND' the membership 
grades - for example the product: 

OZ;  =w;  =µa,(x.)Ua,(y),  i = 1,2 
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Layer 3 

Layer 3 contains fixed nodes which calculates the ratio of the firing strengths of the rules: 

Wi 

03 =Wi= 
Wl + WZ 

Layer 4 

The nodes in this layer are adaptive and perform the consequent of the rules: 

Oaf =Wif = wi(pix+ qiy+ri) 

The parameters in this layer (pi , q j, ri ) are to be determined and are referred to as the 
consequent parameters. 

Layer 5 

There is a single node here that computes the overall output: 

05, 	
_ ~' ~fWifi 

i = 	 iJi -  
r 	~wi 

This then is how, typically, the input vector is fed through the network layer by layer. We 

now consider how the ANFIS learns the premise and consequent parameters for the 

membership functions and the rules. 

There are a number of possible approaches but we will discuss the hybrid learning 

algorithm proposed by Jang, Sun and Mizutani (Neuro-Fuzzy and Soft Computing, Prentice 

Hall, 1997) which uses a combination of Steepest Descent and Least Squares Estimation 

(LSE). 

It can be shown that for the network described if the premise parameters are fixed the 

output is linear in the consequent parameters. 

We split the total parameter set into three: 

S = set of total parameters 
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S1= set of premise (nonlinear) parameters 

S2= set of consequent (linear) parameters 

So, ANFIS uses a two pass learning algorithm: 

• Forward Pass. Here Sl  is unmodified and S2  is computed using a LSE algorithm. 

• Backward Pass. Here SZ is unmodified and S1  is computed using a gradient 
descent algorithm such as back propagation. 

So, the hybrid learning algorithm uses a combination of steepest descent and least squares to 
adapt the parameters in the adaptive network. 

The summary of the process is given below: 

The Forward Pass 

Present the input vector 

Calculate the node outputs layer by layer 

Repeat for all data - A and y formed 

Identify parameters in 52  using Least Squares 

Compute the error measure for each training pair 

Backward Pass 

Use steepest descent algorithm to update parameters in Sl  (backpropagation) 

For given fixed values. of Sl  the parameters in SZ  found by this approach are guaranteed to be 
the global optimum point. 
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7. SIMULATION RESULTS 

7.1 Tuning of Fuzzy Ruler by Graphical Analysis of System Response 

7.1.1 Introduction: 

In this method, tuning of Fuzzy Rules based on graphical analysis of the system 

response is proposed. Two fuzzy contollers with triangular membership functions of equal 

scaling parameters and rule bases but with dissimilar crossover points are considered. First 

controller has cross points greater than 0.5 and other equal to. 0.5.Based on the observed 

superior response of the first controller,the second one is tuned to yield better results than the 

earlier one.Comparitive study of firing of rule base of both the controllers are done,which 

prompted us in designing the simpler controller with reduced rule base to yield better 

response.In order to study the behaviour of the tuned Fuzzy controller it is employed to a DC 

Motor. 

With refrence to the technique given in the book[ 11 ]. The membership functions(MF) 

with larger support was used. Figure 7.1.1 shown below has membeship functions with cross 

point more than 0.5. The type of membership function was used in book[11]. As when these 

kind of membership functions are compered with membership functions with cross point 

equal to 0.5 as shown in Figure 7.1.2. A better result is given by first one. 

Membership function plots Plat points:  

Ill; i EdS ZO PS Pill P 

input varnable e"~: 

Fig 7.1.1 Membership Function With Cross Point Greater Than 0.5 
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Fig 7.1.2 Membership Function With Cross Point Equal To 0.5. 

To study the behavior of these kind of M.F , analysis on these was performed using 

matlab. A DC shunt motor is used to - study the behavior. The motor is armature controlled 

motor. With the M.F given in this technique, at a time upto 8 to 9 rules get fired. To analyse 

how these M.F are better than M.F with normal support. A comparission is made in matlab. 

This has been compared with fuzzy controller having normal M.F with cross point equal 

to 0.5 and same rule base. By using these kind of M.F only 3 to 4 rule fire at a time. 

Both type of controller is implemented on the transfer function of DC Motor. 

W(s) 	 K G(  s) _ 	— V(s) [(R + Ls)(Js + b) + K 2 ] 

The simulation is done on matlab. On compereing these two kind of M.F in matlab 

simulation we observed, that M.F with spread support(MF with cross point > 0.5) has better 

response than normal M.F(with cross point = 0.5). It can be seen in figure 7.1.3 given below. 
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Fig 7.1.3 Characteristic System Response Using Two Type Of Controller. 

Allthough this method gives better response, than normal fuzzy M.F. But we can 

modify the system response by altering some of the rules. Analysis of system response is 

made. The output of system response is observed closely in excell sheet (Appendix Table 1). 

This analysis gives us the clear idea about the firing of rules. By analysing system response 

of error and change of error, and coresponding values of Kp, Ki, K. We have come to know 

exactly which rules are responsible for the system response. By simple modification in these 

rules we got a controller which is superior than the controller with spread M.F. 

Thus we concluded that by keeping normal membership function and by systematic 

study of system response we can get the desired response by altering some rules. 

7.1.2 System Analysis and Alteration of Rules 

The whole process of the alteration of rules are described below. The whole analysis is 

done through excell sheet (Appendix Table 1) and matlab system response. 
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Alteration of rules are done as 

By seing the initial graph of the system in the above Figure 7.1.3 we concluded that the 

system has low rise time. For this Kp should be made proper. t 

Initialy the error and derivative of error are in the range of zero. Which can only be observed 

though the analysis of excell sheet value. So the rules of this region is altered. 

From, e(z) ec(z) Kp (z) 

To, 	e(Z) ec(Z) Kp (PB) 

By increasing Kp from Z to PB the rise time increases, but it has large overshoot and 

steady state error which can be seen in Figure 7.1.4. 
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Fig 7.1.4 System Response by Changing Kp 

So accordingly K; and Kd is changed to modify the system response. These two valued 

are also observed though excell sheet values. As we know that Kd is responsible for the 
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overshoot of system, and K; is responsible for the steady state error. Hence the rules for K, 
and Kd is changed as 

From , e (Z) ec (Z) K, (Z) 	Kd (NS) 

To, e (Z) ec (Z) K, (PS) Kd (PB) 

by changing these rules, rise time of system remaines same, but oveshoot decreases and 

steady state error become zero. As it can be clearly seen in the graphical response of the 

system shown below in Figure 7.1.5. 

1 	 1 	 1 	 - 

' 	 cross over point > 0.5 I  I  I  I  1  1 

' 1 	 ......••••cross over point = 0.5  

......4..............I 
 .... 

 1  1  1 
 

-------J-__------L- 	••••~27•J'SL a.a a.naW Vara 
1  1  1  , 

i  

1  1  1  1  1  I  1 
1 	 1 	 1 

'• 	 ' 	 1 	 1 	 ' 	 1 	 1 	
1 	 1 

Y  1  I  1  1  1  1 

1 	 1 	 1  
1  I  1  1  1  1  1  1 

1  1  1  1  1  1 
1  1  1  1 

1  1  1  1  1  1  1  I 
----- --_•_-------J----  L--------J  1--------J---------1--------J---------  1  1  1  I  1  1 

J  1  1 

1  1  1  1  1  1  1  

------------------------------------------------------------------ 

1 	 1 
1  1  1  I  1  1  1  1  1 
1 	 1 

1 	 1 1  1  1  I 

1  1  1  1 
1 	 ~ 	 1 	 • 	 ~ 

I  1  1  1  
1  1  1  1  ~  ~  1 

1 	 , 

1 	 I 	 1 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 
Time (s) 

Fig 7.1.5 System Response By Changing K; And Kd 

Becouse of change of rule specialy Kp, the system has oveshoot. It is seen from the graph 

that, at a point e(Z) and ec(NB) the Kp has to be changed. By changing this rule we got the 

better response. 
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It is changed 

From, e(Z) ec(NB) K(  PM) 

To, e(Z) ec(NB) K(  PS) 

By changing this rule large overshoot is controlled. As it can be 'seen from the Figure 6.1.6. 
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Fig 7.1.6 Final System Response By Changing Rules. 

Thus by the systematic analysis of system response we can modify system response by 

changing some rules which are responsible for system behaviour. 

DC Motor is used for the analysis. Modeling of DC Motor is done as under[12]. 

To perform the simulation of the system, an appropriate model needed to be established. 

Therefore, a model based on the motor specifications needs to be obtained. 
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7.1.3 System Equation and Transfer Function 

The motor torque T is related to the armature current, i , by a torque constant K; 

T = Ki 	 (7.1) 

The generated voltage ea,, is relative to angular velocity by; 

ea  = Kcim=K de 	(7.2) 

we can write the following equations based on the Newton's law combined with the 

Kirchoff s law: 

	

d20 + b dt  = Ki 	(7.3) 

Ldt+ Ri=V—Kdt 	(7.4) 

Transfer Function 

Using the Laplace transform, equations (7.3) and (7.4) can be written as: 

Jsz  0 (s) + bsO(s) = KI (s) 	(7.5) 

Lsl (s) + RI(s) = V (s) — KsO (s) 	(7.6) 

From (7.6) we can express: 

	

I (s) = V(s) — KsO(s) 	 (7.7) 
R + Ls 

and substitute it in (7.5) to obtain: 

K(V(s) — KsO(s)) 
Jsz  0(s) + bsO (s) = 	R + Ls 	 (7.8)  

It is easy to see that the transfer function from the input voltage, V (s), to the angular 

velocity, 0, is: 

w(s) — 	K 
G _ " (s) V(s) [(R + Ls) (Js + b) + K2] 	

(7.9) 
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Let the motor simulation constant are: 

R= 1 ohm, 

L= 0.5 H, 

K= 0.01 Nm/A, 

b=0.1, 

J= 1. 

So we get the transfer fuction of DC Motor: 

0.01  
G(s) 0.552  + 1.05s + 0.1001 	

(7.10) 

Simulation model of system is shown in Fig 7.1.7. 

The self tuned simulation model of matlab shows that response of the system is 

controlled by the fuzzy controller. The scaling factor for error and change in error is 

calculated through Genetic Algoritham. The Genetic Algoritham gives us the best possible 

gain of Kp, K,, Kd. The same gain is used in both the model. Initialy the spreaded M.F shows 

better result which can be seen from figure 7.1.3. By keeping the same gain we have 

modified some rules through analysis of system response which gives much better result, it 

can be seen from figure 7.1.6. 
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Fig 7.1.7 Matlab Simulation Model of Tuning Technique 
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7.2 Speed Control of DC Motor by Adaptive Tabular Fuzzy Control 

In this controller a adaptive fuzzy controller is created to control the non-linearity of the 

= 

	

	system. The controller has the sugeno type rule base. Initialy a static rule base is created. The 
rules base of first fuzzy controller is changed or regulated by another fuzzy controller. When 
ever the system parameters (DC Motor Transfer Function) is changed the adaptive controller 

has the best perfonse. 

The comperision is made among Adaptive fuzzy, Simple Fuzzy and a PID controller. The 
simulation is done on Matlab, the block diagram is shown in figure 7.2.3. Equation 7.10 of 
the DC Motor is used for simulation. Initialy we have tried to adjusted the response of all the 

three controller to match each other. It can be seen from the figure 7.2.1. 
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Fig 7.2.1 Response of Three Controller Without System Variation 

The ISE of the three controllers are: 

Adaptive Fuzzy = 0.099, Simple Fuzzy = 0.126, PID = 0.132 

It can be seen from the figure 7.2.1 that all the controllers gives allmost same response for 
a step input of magnitude 0.5. Now to study the robust ness of the controller, we have again 



simulated the same simuling block. But this time we have changed the parameter of the 

system. The coefficient of s2 is changed from 0.5 to 5.5. The response of the system can be 

seen from the figure 7.2.2. 
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Fig 7.2.2 Response of Three Controller With Parameter Variation 

The ISE of three controller after parameter variation: 

Adaptive Fuzzy = 0.179, Simple Fuzzy = 0.372, PID = 0.504 

Observations from figure 7.2.2: 

1. Figure shows Adaptive Fuzzy controller is the most robust controller. It can be seen 
from the figure, it gives only slight over shoot. 

2. Simple fuzzy controller shows better response than PID. It has low over shoot and 
less settling time than PID. 

3. PID was disturbed most. It has the oscillation due to system non-linearity. 
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Adaptive Controller has the rule base in tabular form. It has two tabular based rule base. One 

is static and another one is the inverse rule base. The inverse rule base changes the rules of 

static rule rule- base to adapt the non-linearity. 

Persistent rules are 

rules=[1 1 	1 1 1 	1 	0.8 	0.6 	0.3 0.1 	0; 

Y 1 1 1 1 	0.8 	0.6 	0.3 	0.1 	0 -0.1; 

1 1 1 1 	0.8 	0.6 W 	0.3 	0.1 	0 	-0.1 -0.3; 

1 1 1 	0.8 0.6 0.3 	0.1 	0 	-0.1 	-0.3 -0.6; 

1 1 0.8 0.6 0.3 	0.1 	0 	-0.1 	-0.3 -0.6 -0.8; 

1 0.8 0.6 0.3 0.1 	0 	-0.1 	-0.3 	-0.6 -0.8 	-1; 

0.8 0.6 0.3 0.1 0 	-0.1 	-0.3 -0.6 	-0.8 -1 	-1; 

0.6 0.3 0.1 0 -0.1 	-0.3 	-0.6 -0.8 	-1 -1 	-1; 

0.3 0.1 0 -0.1 -0.3 	-0.6 -0.8 	-1 	-1 -1 	-1; 

0.1 0 -0.1 -0.3 -0.6 -0.8 	-1 	-1 	-1 -1 	-1; 

0 -0.1 -0.3 -0.6 	-0.8 	-.1 	-1 	-1 	-1 -1 	-1]*gf; 

The adaptive nature of the rules can be observed by the change in rules in matlab workspace. 

One of the changed matrix of rules is shown below: 

simout(:,:,1400) = 

Columns 1 through 9 

-50.0000 -50.0000 -50.0000 -50.0000 -50.0000 -50.0000 -40.0000 -30.0000 -15.0000 

-50.0000 -50.0000 -50.0000 -50.0000 -50.0000 -40.0000 -30.0000 -15.0000 	-5.0000 

-50.0000 -50.0000 -50.0000 -50.0000 -40.0000 -30.0000 -15.0000 -5.0000 	0 

-50.0000 -50.0000 -50.0000 -40.0000 -30.0000 -15.0000 -5.0000 0 	5.0000 

-50.0000 -50.0183 -40.1338 -30.3426 -15.7531 -6.8165 -1.2905 5.0000 	15.0000 

-49.9419 -40.0105 -30.1455 -15.3426 -4.2835 0.1192 4.1756 	15.0000 	30.0000 
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-39.6846 -29.9921 -15.0117 -5.0000 1.4696 6.9356 15.0026 30.0000 40.0000 

-29.3842 -15.0000 -5.0000 	0 5.0000 15.0000 30.0000 40.0000 50.0000 

-14.0552 -5.0000 0 - 5.0000 15.0000 30.0000 40.0000 50.0000 50.0000 

	

-3.6978 	0 5.0000 15.0000 30.0000 40.0000 50.0000 50.0000 50.0000 

15.0092 15.0908 15.0972 30.0000 40.0000 50.0000 50.0000 50.0000 50.0000 

Columns 10 through 11 

	

-5.0000 	0 

0 	5.0000 

5.0000 15.0000 

15.0000 30.0000 

30.0000 40.0000 

40.0000 50.0000 

50.0000 50.0000 

50.0000 50.0000 

50.0000 50.0000 

50.0000 50.0000 

50.0000 50.0000 



Fig 7.2.3 Matlab Simulation Model of Speed Controller 
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7.3 Position Control of DC Motor by Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The tool box of ANFIS is available in matlab. For creating the FIS of any system, the data 

are taken into the work space. These datas are used by the tool box to create an adaptive FIS. 

The FIS created by this tool box is of sugeno type. 

The ANFIS for a DC Motor is created to control the angular position of the motor. 

Initialy we were using PID controller to control its position. But this is not effective. Due this 

short coming the PID is removed by an FIS created from from ANFIS tool box. 

The data points are taken from the PID controller. Three simout is connected for 

calculating input data base and one simout is connected for output data base. After getting the 

data base in array form, we open ANFIS tool box. The datas are given into the tool box, the 

error tolerance is selected and finaly by giving the number epochs, training is started. 

After getting the complite FIS the comperetive study of PID and ANFIS are done on 
matlab simulation. The complete simulation model is shown in figure 7.3.3. In the no-load 

condition both the controller has same response. It can be seen from figure 7.3.1. 

Fig 7.3.1 Step Response of PID and ANFIS at No-Load 

It can be seen from the figure 7.3.1, at no-load condition both the controller track the 

refrense input signal, which is in the form of pulse: The green line in the figure is refrence 
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position. The blue line is the response of ANFIS controller. And the red line is the controller 
response of PID. 

Now the system robustness is tested by loading the simulation model by a load. The 

response of the system can be seen from the figure 7.3.2. 

Fig 7.3.2 Step Response of PID and ANFIS on-load 

The green line is refrence position. The red line is PID controller output. And blue line is 

the ANFIS system response. 

It can be observed from the figure 7.3.2, the ANFIS gives best response. When the system 

is loaded both the controller get disturbed. But after some time ANFIS controlled the DC 

Motor position faster than PID. 
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Fig 7,3.3 Matlab Simulation Model of Position Control 
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CONCLUSION AND FUTURE SCOPE 

In this dissertation various speed control technique for DC Motor is discussed in detail. 

The classical control technique includes PID controller, Root Locus Technique for the speed 

control, speed control by the Frequency Domain analysis, and Digital PID controller. All 

these methods are based on manual adjustment and estimation. Which is very time taking and 

also these methods are not effective in controlling the non-linearity of the DC Motor. 

To control the non-linearity of the system a fuzzy logic based controller is used. The 

controller is very effective in controlling the speed of DC Motor. A much improved response 

is obtained by the systematic analysis of the graphical response. By altering the rules of fuzzy 

controller we got the much improved respose. 

A comparetive study is made among Adaptive Fuzzy Controller, Simple Fuzzy and 

PID. All the three controllers are simulated in matlab for the speed control of DC Motor. We 

concluded that with the variation in system parameter the Adaptive Fuzzy is most robust. 

And Simple Fuzzy gives better result than PID controller. 

Adaptive Nuro-Fuzzy Inference System is used for the position control of DC Motor. It 

is compared with PID controller. The comparison of the two controllers are observed in 

matlab simulation. Under the loaded condition of DC Motor the ANFIS gives better response 

than PID. This shows that ANFIS is a much better controller than normal PID. 

Graphical Analysis of the system response can be made generalized for all types of 

system. So that, this can be used for the designing of more improved fuzzy controller. The-

Adaptive Fuzzy controller used in this dissertation is sugeno type. This algorithm can be used 

to construct a mamdani based fuzzy controller. 
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Appendix A. TABLE 

sl 
no. 

error 1 c error 1 Kp 1 Ki 1 Kd 1 error 
2 

c error 2 Kp 2 Ki 2 Kd 

1 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.f 

2 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

3 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0. 

4 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.! 

5 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.! 

6 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

7 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0J 

8 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

9 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

10 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

11 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

12 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

13 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

14 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.I 

15 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.I 

16 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

17 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

18 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

19 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.I 

20 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

21 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

22 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

23 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

24 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.; 

25 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

26 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

27 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

28 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

29 0.1214 0 0.0049 0.0006 -0.5771 0.1214 0 -0.0158 0.0032 -0.~ 

30 0.1176 -9.4369 0.1228 -0.0313 0.6071 0.1214 0 -0.0158 0.0032 -0. 

31 0.1114 -15.2013 0.1229 -0.0315 0.6048 0.1214 0 -0.0158 0.0032 -0.; 

32 0.105 -15.8977 0.123 -0.0317 0.6025 0.1214 0 -0.0158 0.0032 -0.~ 

33 0.0984 -16.2902 0.1232 -0.0319 0.6 0.1214 0 -0.0158 0.0032 -0.; 

34 0.0918 -16.4136 0.1233 -0.0321 0.5975 0.1214 0 -0.0158 0.0032 -0.; 

35 0.0852 -16.3014 0.1234 -0.0324 0.595 0.1202 -2.8749 0.1843 -0.0369 W 

36 0.0787 -15.9861 0.1235 -0.0326 0.5926 0.1151 -12.7823 0.1849 -0.04 0. 

37 0.0724 -15.4981' 0.1236 -0.0328 0.5902 0.1095 -13.708 0.1856 -0.04 0. 

38 0.0664 -14.8661 0.1237 -0.033 0.5878 0.1033 -15.3269 0.1863 -0.04 0. 
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39 0.0607 -14.1171 0.1238 -0.0332 0.5855 0.0966 -16.4953 0.1871 -0.04 0.; 

40 0.0553 -13.2763 0.1239 -0.0334 0.5835 0.0897 -17.251 0.188 -0.04 0.~ 

41 0.0503 -12.3666 0.124 -0.0336 0.5816 0.0825 -17.6329 0.1889 -0.04 0.' 

42 0.0457 -11.4089 0.1241 -0.0337 0.5798 0.0754 -17.6807 0.1897 -0.04 0.' 

43 0.0415 -10.4221 0.1242 -0.0339 0.5782 0.0683 .-17.4337 0.1906 -0.04 0.: 

44 0.0377 -9.4229 0.1243 -0.034 0.5767 0.0615 -16.9311 0.1914 -0.04 C 

45 0.0343 -8.4261 0.1243 -0.0341 0.5754 0.0549 -16.211 0.1923 -0.04 0 

46 0.0313 -7.4443 0.1244 -0.0342 0.5742 0.0487 -15.3108 0.1931 -0.04 0.: 

47 0.0286 -6.4887 0.1244 -0.0343 0.5732 0.0429 -14.2661 0.1939 -0.04 0.1 

48 0.0264 -5.5684 0.1245 -0.0344 0.5724 0.0376 -13.1103 0.1947 -0.04 0.1 

49 0.0245 -4.6909 0.1245 -0.0345 0.5716 0.0328 -11.8747 0.1953 -0.04 0J 

50 0.0229 -3.8623 0.1245 -0.0345 0.571 0.0285 -10.5882 0.1959 -0.04 0.1 

51 0.0217 -3.0871 0.1246 -0.0346 0.5705 0.0248 -9.2773 0.1965 -0.04 0.1 

52 0.0207 -2.3687 0.0874 -0.0197 0.0555 0.0216 -7.9662 0.1969 -0.04 0.1 

53 0.0199 -1.8906 0.072 -0.0159 -0.1937 0.0189 -6.676 0.1973 -0.04 0.1 

54 0.0193 -1.6734 0.0588 -0.0123 -0.3724 0.0167 -5.4255 0.1976 -0.04 W 

55 0.0186 -1.5293 0.0509 -0.0104 -0.4793 0.015 -4.2306 0.1979 -0.04 0.1 

56 0.0181 -1.4202 0.0454 -0.0092 -0.555 0.0137 -3.1045 0.198 -0.04 W 

57 0.0175 -1.3325 0.0411 -0.0083 -0.6048 0.0129 -2.0579 0.1981 -0.0396 -0.. 

58 0.017 -1.2596 0.0376 -0.0075 -0.6366 0.0124 -1.1159 0.1133 -0.0227 -0.' 

59 0.0165 -1.1972 0.0347 -0.007 -0.657 0.0122 -0.6361 0.059 -0.0118 -0. 

60 0.0161 -1.1429 0.0322 -0.0064 -0.6703 0.0119 -0.5867 0.055 -0.011 -C 

61 0.0156 -1.0951 0.03 -0.006 -0.6744 0.0117 -0.4405 0.0434 -0.0087 -C 

62 0.0152 -1.0524 0.0281 -0.0056 -0.6755 0.0116 -0.3546 0.0363 -0.0073 -0.' 

63 0.0148 -1.014 0.0264 -0.0053 -0.6762 0.0115 -0.3045 0.0321 -0.0064 -0. 

64 0.0144 -0.9791 0.0251 -0.005 -0.6765 0.0114 -0.2756 00296 -0.0059 -C 

65 0.014 -0.9468 0.0247 -0.0048 -0.6767 0.0113 -0.2587 0.0281 -0.0056 -0. 
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3.2.1 m-file of transfer function:- 

J=0.01; 
b=0.1; 
K=0.01; 
R= 1; 
L=0.5; 
num=K; 
den=[(J*L) ((J*R)+(L*b)) ((b*R)+K^2)]; 
step (num, den, 0 : 0.1:3) 
title('Step Response for the Open Loop System') 

3.4.1 m-file of root locus 

J=0.01; 
b=0.1; 
K=0.01; 
R=1; 
L=0.5; 
num=K; 
den=[(J*L) ((J*R)+(L*b)) ((b*R)+KA2)]; 
rlocLus(num,den) 
sgrid(.8,0) 
sigridl(2.3) 
title('Root Locus without a controller') 

The command sigrid is the user-defined function. 

3.4.2 m-file sigrid 

function[ ] = sigrid(sig) 
error(nargchk( 1,1 ,nargin)); 
hold on 
limits = axis; 
mx=limits(1,4); 
mn=limits(1,3); 
stz=abs(mx)+abs(mn); 
st=stz/50; 
im=mn:st:mx; 
lim=length(im); 
for i=l:lim 
re(i)=-sig; 
end 
re(:); 
plot(re,im,'.') 

hold off 
returnn. 
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3.4.3 m-file 

J=0.01; 
b=0.1; 
K=0.01; 
R=1; 
L=0.5; 
num=K; 
den=[(J*L) ((J*R)+(L*b)) ((b*R)+K^2)]; 
z1=1; 
p1=0.01; 
numa = [1 zl]; 
dena = [1 pl]; 
numb=conv(num,numa); 
denb=conv(den,dena); 
rlocus(numb,denb) 
sgrid(.8,0) 
sigrid(2.3) 
title('Root Locus with a lag controller') 
[k,poles]=rlocfmd(numb,denb) 
[numc,denc]=cloop(k*numb,denb,-1); 

t=0:0.01:3; 
step(numc,denc,t) . 
title('Step response with a lag controller') 

3.5.1 m-file bode plot 

J=0.01; 
b=0.1; 
K=0.01; 
R=1; 
L=0.5; 
num=K; 
den=[(J*L) ((J*R)+(L*b)) ((b*R)+K^2)]; 
bode(num,den) 

3.6.1 m-file 

R=1; 
L=0.5; 
Kt=0.01; 
J=0.01; 
b=0.1; 
num = Kt; 
den = [(J*L) (J*R)+(L*b) (R*b)+(Kt^2)]; 
Ts = 0.12; 
[numz,denz] = c2dm(num,den,Ts,'zoh') 



3.6.2 m-file 

R=1; 
L=0.5; 
Kt=0.01; 
J=0.01; 
b=0.1; 
num = Kt; 
den = [(J*L) (J*R)+(L*b) (R*b)+(Kt^2)]; 
Ts = 0.12; 
[numz,denz] = c2dm(num,den,Ts,'zoh') 
numz = [numz(2) numz(3)J; 
[numz_cl,denz_cl] = cloop(numz,denz); 
[xl ] = dstep(numz_cl,denz_cl,101); 
t=0:0.12:12; 
stairs(t,xl) 
xlabel('Time (seconds)') 
ylabel('Velocity (rad/s)') 
title('Stairstep Response: Original') 
Kp=100; 
Ki = 200; 
Kd = 10; 
[dencz,numcz]=c2dm([1 0],[Kd Kp Ki],Ts,'tustin'); 
numaz = conv(numz,numcz); 
denaz = conv(denz,dencz); 
[numaz_cl,denaz_cl] = cloop(numaz,denaz); 
[x2] = dstep(numaz_cl,denaz_cl,101); 
t=0:0.12:12; 
stairs(t,x2) 
xlabel('Time (seconds)') 
ylabel('Velo city (rad/s)') 
title('Stairstep Response:with PID controller') 
rlocus(numaz,denaz) 
title('Root Locus of Compensated System') 
dencz = conv([1 -1],[1.6 1]) 
numaz = conv(numz,numcz); 
denaz = conv(denz,dencz); 
rlocus(numaz,denaz) 
title('Root Locus of Compensated System'); 
[K,poles] = rlocfind(numaz,denaz) 
[numaz_cl,denaz_cl] = cloop(K*numaz,denaz); 
[x3] = dstep(numaz_cl,denaz_cl,101); 
t=0:0.12:12; 
stairs(t,x3) 
xlabel('Time (seconds)') 
ylabel('Velo city (rad/s)') 
title('Stairstep Response:with PID controller') 
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