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ABSTRACT 

Synchronization is an essential task for any digital communication system. 

Without a proper and accurate synchronization method, it is not possible to reliably 

receive the transmitted data. Synchronization is the first and most important task that 

must be performed at the receiver. So, whole receiver architecture depends on the 

synchronization method that is used. 

Orthogonal frequency division multiplexing (OFDM) is one of the most 

promising techniques for achieving high speed wireless data communication. OFDM is 

a multicarrier transmission technique, which divides the single wideband channel into a 

number of narrowband channels called sub-channels; each subcarrier in each sub-

channel is being modulated by a low rate data stream and sub-carriers are transmitted in 

parallel over the channel. The increased symbol duration reduces the impact of ISI. 

When the synchronization in an OFDM system is not perfect, the orthogonality 

among different subcarriers is destroyed and the ICI will be introduced. Therefore in 

OFDM system CFO estimation is an important issue that needs to be considered. 

In this dissertation work, we have used repeated data symbols to estimate the 

carrier frequency offset for OFDM system, which is one of the earliest CFO estimation 

schemes for OFDM system. Following that we will discuss a Numerical technique for 

estimation of CFO for OFDM system. The technique is a blind maximum likelihood 

(ML) estimate of frequency offset using the Newton - Raphson method. Reduced 

complexity CFO estimation technique for OFDM systems which use null subcarriers is 

also been exploited. For simulation MATLAB is used and it is demonstrated through 

simulation results that the performance of CFO estimation using null subcarriers 

approach is close to the Cramer Rao bound. 
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Chapter 1 

INTRODUCTION 

There has been a paradigm shift in mobile communication systems every 

decade. The first generation (1 G) systems introduced in the 1980s were based on analog 

technologies, and second generation (2G) systems in 1990s, such as Global systems for 

Mobile Telecommunications (GSM), Personel Digital Cellular (PDC) and interim 

standard (IS)-95, on digital technologies for mixed voice-oriented data traffic. The third 

generation (3G) systems are also based on digital technologies for mixed voice, data and 

multimedia traffic and mixed-circuit and packet-switched network [1]. 

As the demand for higher data transmission rate and worldwide roaming in 

cellular devices increasing, the development of next generation (4G) wireless systems 

using digital broadband is underway. Therefore, enhancing system capacity as well as 

achieving a higher bit rate transmission is an important requirement for 4G systems. 

Fourth generation (4G) aims to provide variable rate multimedia services to the user 

(which include text, voice, data, audio, image or video), over broadband connections in 

a seamless manner. Together with an ever increasing quest for high data rates, poses a 

challenge to develop efficient coding/modulation techniques and signal processing 

algorithms, so that wireless links may be utilized as efficiently as possible [2]. 

These developments must cope up with several performance limiting challenges 

that include channel fading, multi-user interference, limitations of size/power especially 

at mobile units. A primary challenge to high rate in wireless communications is the 

presence of multi path fading channel. Multipath fading results from the fact that radio 

signal propagates trough many paths with different delays from the transmitter to 

receiver. For typical narrow band modulation, this gives rise to variations in received 

signal amplitude (fading); if the delay spread of the various components is significant 

fraction of the symbol duration as in frequency selective fading, it also leads to. inter 

symbol interference (ISI). 

Multicarrier modulation (MCM) [3] is an alternative approach to alleviating the 

impact of frequency selective fading channels. Orthogonal Frequency Division 

Multiplexing (OFDM) is a widely known multicarrier modulation scheme in which a 



serial data stream is split into parallel streams that modulate a group of orthogonal 

subcarriers. OFDM is a promising technology in broadband wireless communications 

due to its ability in mitigating multipath effects. Hence, it has been adopted as the key 

technology for standards such as DVB (Digital Video Broadcasting, DAB (Digital 

Audio Broadcasting) and it has been selected as the basis for the air interface for several 

new high-speed wireless local area network (WLAN) also known as Wi-Fi standards 

including IEEE 802.11 a, IEEE 802.11 g, and HIPERLAN. One of the main reasons to 

use OFDM is to increase the robustness against frequency selective fading and 

narrowband interference. In a single carrier system, a single fade or interfere can cause 

the entire link to fail, but in a multicarrier system, only a small percentage of subcarriers 

will be affected. Error correction coding can be used to correct the few erroneous 

subcarriers. A single carrier system suffers from trivial inter symbol interference (ISI) 

problem when data rate is extremely high [4]. 

OFDM is an effective way to increase data rate and simplify the equalization in 

wireless communications. It splits entire bandwidth into number of overlapping narrow 

band subchannels requiring lower symbol rates. Hence, OFDM symbol has much longer 

symbol interval and suffers from much less inter symbol interference (ISI) than single 

carrier transmission. Furthermore, the ISI can be easily eliminated by inserting a cyclic 

prefix (longer than the length of the channel impulse response) in front of each 

transmitted block and it is removed at the receiver block. OFDM is inherently robust 

against frequency selective fading channel, since the total bandwidth divided for 

multiple sub bands, the bandwidth of each subcarrier becomes small compared with the 

coherence bandwidth of the channel, i.e., the individual subcarrier experiences . flat 

fading, which just requires a complex multiplication on each subcarrier data for 

equalization. The high spectral efficiency in OFDM is achieved using orthogonal 

signals allowing spectrum in each subchannel to overlap another without interfering. 

OFDM has an additional advantage of being computationally efficient because the fast 

Fourier transform (FFT) technique can be used to implement the modulation and 

demodulation functions. Combined with the progress in digital signal processing (DSP) 

and very large scale integration (VLSI) technologies OFDM has become a 

technologically practical and commercially affordable [4]. 
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One of the most interesting trends in wireless communication is the proposed 

use of multiple input multiple output (MIMO) systems [5]. A MIMO system uses 

multiple transmitter antennas and multiple receiver antennas to break a multipath 

channel into several individual several spatial channels. The basic idea is to usually 

exploit the multipath rather than mitigate it, considering the multipath itself as a source 

of diversity that allows the parallel transmission of N independent sub streams from 

the same user. The exploitation of diversity and parallel transmission of several data 

streams on different propagation paths at the same time and frequency allows for 

extremely large capacities compared to conventional wireless systems. The prospect of 

many orders of magnitude improvement in wireless communication performance at no 

cost of extra spectrum (only hardware and complexity are added) is largely responsible 

for success of MIMO as a topic for new research. The combination of the two powerful 

techniques, MIMO and OFDM, is very attractive and, has become a most promising 

wireless access scheme. 

However OFDM is very sensitive to carrier drifts. A carrier offset at the receiver 

can cause loss of subcarrier orthogonality, and thus can introduce inter-carrier 

interference (ICI). In addition, the frequency offset occurs due to a Doppler shift which 

results from a relative movement between transmitter and receiver in mobile radio 

environment. In digital communications estimating the frequency offset is essential for 

reliable performance of the receiver. Otherwise, the desirable properties of this type of 

transmission are lost [6]. In the literature, two categories of approaches have been put 

forward to mitigate the effects of the CFO. In the first category, the OFDM system can 

be made robust to ICI using techniques mentioned in the next paragraph. In the second 

category, CFO can be estimated at the receiver and then compensated. 

To make OFDM robust to ICI two approaches can be employed: windowing and 

self intercarrier interference cancellation based approaches [7], [8], [9]. The self 

intercarrier interference cancellation based scheme can be regarded as a coding scheme, 

where only the code words with low ICI are used. Hence, spectrum efficiency is 

reduced since the coding rate is less than one [7]. The windowing scheme is achieved by 

shaping signals at the output of the IDFT by a window. This scheme normally results in 

SNR loss and ICI in case of no carrier frequency offset [8]. 
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For the approaches in the second category, different CFO estimation schemes 

have been proposed in the literature. Typical CFO estimators have been developed 

using CP [ 10], training symbols [II],  [ 12], virtual (null) subcarriers [13], [ 14], [ 15] 

channel information [16] and blind approaches [17], [18], [19]. The CP based 

approaches uses the redundant information contained within the CP [10]. In this sense 

the bandwidth efficiency of the system is affected since the extra CP acts like a pilot 

signal. When the training signals are periodic, the CFO estimation based ML criterion 

can be achieved using correlation operations [11], [12]. As a result, the training symbols 

are not required to be known and can be used to transmit system configuration 

information. In [11], two identical OFDM symbols are used with an estimation range of 

one subcarrier spacing. In [12], one training OFDM symbol with two identical parts, 

where the estimation range is two subcarrier spacing. In [20], an enhanced CFO 

estimation scheme was proposed to extend the estimation range to M subcarrier 

spacings using one OFDM symbol with M identical parts. The complexity of the 

scheme in [20] is approximately proportional to M. 

CFO estimation can also be achieved by the exploitation of the inherent structure 

of OFDM signals. This generally referred to as a blind approach. This approach 

provides solution to the carrier offset estimation problem without using reference 

symbols, pilot carriers, or excess CP. Blind methods have attracted increasing interest 

recently because of their high accuracy and bandwidth efficiency. In [21] and [22], the 

periodic structure of the guard interval in OFDM systems is exploited and CFO is 

estimated based upon the ML criterion. However, the performance deteriorates 

significantly when the length of the channel impulse response (CIR) is large. Channel 

side information can be available for CFO estimation in wireless systems; a lot of 

schemes have been proposed to take advantage of channel side information. Recently, 

virtual subcarriers and numerical techniques are using in CFO estimation. The virtual 

subcarrier (VSC) based algorithms transmit null symbols. known to the receiver. These 

VSCs do not waste any power. 

1.1 Statement of Problem 

This work is aimed at performance study of carrier frequency offset estimators 

in OFDM systems. 
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The dissertation presents the following work 

> Effect of CFO on the performance of OFDM system 

> CFO estimation technique for OFDM system using training sequences and their 

performance analysis. 

> CFO estimation technique for OFDM system using Numerical technique based 

on the Newton-Raphson method and their performance analysis. 

> CFO estimation technique for OFDM system using Null subcarriers and their 

performance analysis. 

1.2 Organization of the Report 

This report is organized in five chapters: 

In chapter 1, we summarize problem statement of the dissertation work and also 

given an overview of carrier frequency offset estimation problem in OFDM systems. 

In chapter 2, gives brief introduction to the OFDM systems and the effect of 

CFO on the performance of the OFDM systems. Then the CFO estimation using two 

identical training sequences is presented. Simulation results are also given. 

In chapter 3, the numerical approach to estimate the CFO for OFDM systems 

and simulation results are presented. 

In chapter 4, discusses reduced complexity CFO estimation technique for 

OFDM systems which use null subcarriers is presented. Simulation results are also 

given. 

Chapter 5, gives the conclusion of the dissertation work. 
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Chapter 2 

CFO Estimation using Training Sequences for OFDM Systems 

In this chapter OFDM system and system model in presence of CFO are described 

first. The impact of CFO on OFDM systems presented next. Maximum likelihood (ML) 

estimate of frequency offset using the repeated data symbols is discussed. Finally 

simulation results are presented. 

2.1. OFDM System 

Transmitter 
Input 
Data 	S/p 	 P/S 

IFFT Add CP 
conversion 	 conversion 

Channel 

AWGN 
Output 
Data 	P/S 	FFT 	 S/P 	Remove 

conversion 	 conversion 	CP 

Receiver 

Figure 1: Block diagram of an OFDM system 

The schematic diagram of Figure. l is a baseband equivalent representation of an 

OFDM system. The input binary data is first fed into a serial to parallel (S/P) converter. 

Each data stream then modulates the corresponding sub-carrier by MPSK or MQAM. 

The modulated data symbols are then transformed by the Inverse Fast Fourier 

Transform (IFFT). The parallel data are converted back to a serial data stream before 

being transmitted over the frequency selective channel. The received data corrupted by 

multipath fading and AWGN are converted back to parallel data after discarding the 

prefix, and applying Fast Fourier Transform (FFT) and demodulation. These parallel 

data again converted to serial data using parallel to serial (P/S) converter. 



OFDM modulation is accomplished by taking N-point IFFT of the symbol vector 

d = [do , d, , d2.........., dN_l ]T as 

S(nj = 	
dkeJ2~rnk/N' 1 ~ 	 n=—Ng,........,N-1 

1 N-I 	
(2.1) 

Where Ng is the length of the guard interval, 

And dk is the data symbol at the k" subcarrier. 

To avoid inter-symbol interference due to multipath effect, we insert cyclic prefix 

(a replica of the last several symbols of the block) in the beginning of the serial 

sequence after the parallel to serial conversion. This compensates the lost data due to 

multipath effect and simplifies the equalization at the receiver. 

At the receiver after removing CP, the received symbol corrupted by fading channel and 

AWGN is given by, 

L-1 
x(n) = I s(n — l)h(l) + z(n), 	n = 0,1.........,N-1 

	
(2.2) 

1=0 

Where h(l) is the gain of the Z'" tap in the Tapped Delay Model of the channel impulse 

response (CIR), 

And z(n) is an additive white Gaussian noise with zero mean and variance o-2 

After taking the N-point FFT of the received vector given by 

X = [X(0), X(1)........, X(N-1)]T 

Where X(0), X(1)........, X(N — 1) are the FFT ofx(0), x(1)........, x(N —1) . 

Therefore in the time domain the received vector is represented as 

x = [x(0), x(1)........, x(N — 1)]T 

In the frequency domain the received OFDM symbol can be expressed as 

X(k) = dk H(k) + Z(k) k = 0,1. ........, N —1 	 (2.3) 

Where H(k) is the channel frequency response at subcarrier k and it is given by 
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1 N-1 	_j2snk 

H(k) _ ~ h(n)e N 	 (2.4) 
V 1 n=0 

And Z(k) is the frequency response of the noise on the k`h subcarrier is given by 

Z(k) = 	I z(n)e-;z~nk 	

(2.5) 
V L n=0 

Then the received signal X(k) is expressed in the time domain as follows: 

N=1 	 j2,rnk 

n = 0,1........., N —1 	 (2.6) 
V1~ k=0 

2.2. OFDM model in the presence of CFO 

The discrete time OFDM signal model is 

1 N-1 
s(n) _ 	Y d e j2xnklN ' 	n = 0.........,N-1 

From equation (2.6) the OFDM signal at the receiver can be written as 

N-I 	 j21rnk j2vrn4JT 

x(n) =
1 
~I dk H(k)e N e N + z(n) , 	n = 0,........, N —1 

The above equation may also be written as 

1 N-1 
x(n) = 	I dk H(k)e'2 +2g )n +z(n) 	 (2.7) 

N k=0 

Where 0 = Af .T is the normalized CFO, 

Ts is the sampling interval and Ts = T 
N 

The above signal model can be written in a vector form, we have 

x PW Hd + Z 	 (2.8) 

Where P is phase shift due to the frequency offset and it is defined as 

P = diag [1,e'2'01....., ej2ncN-1)u1 , 
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And we can notice from above equation pp' = PHP = I 

H is a M x M diagonal matrix with diagonal elements being H(k), 

W is a NxM  matrix and it is defined from U. Where U is a NxN  IFFT matrix 

with partition 

U=[WV] 

Where V is a N x (N — M) matrix. 

l  1  ...  

1 e'2n 
	 '2a(N-1) 

N ... 	e 	N U=  

2,r(N-1)  

1" N "' 	e N NxN 

1 	1 	... 	j 
2,r 	 2n(M-1) 

_ 1 	l e~N ... 	of N 

W TAT 
2n(N-I) 	 .2~(N-1)(M-I) 

le N ...  e  N 
NxM 

1 	1 
2jrM 	 2,r (M +l ) 

V 1 eJ N 	e' N 

2n(N-I)M 	 27r(N-1)(M+I) 

e N e N 

1 
2r(N-1) 

e N 

j2~(N-I)2 

e  N Nx(N-M) 

We can notice that U is a unitary matrix hence WHY = 0 and WWH + VVH = I 

Where (.)H denotes conjugate transpose of a matrix 

Put d = Hd in equation (2.8), we get 

x=PWd+Z 
 

(2.9) 
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2.3. Impact of carrier frequency offset on OFDM system performance 

The amount of frequency mismatch between the received signal carrier and the 

local oscillator frequencies is called Frequency Offset. The principle disadvantage of 

OFDM is its sensitivity to frequency offset caused by the oscillator instabilities and/or 

Doppler shifts due to the movement of the mobile terminals. The presence of a CFO 

destroys the orthogonality among subcarriers, and the resulting inter-carrier interference 

(ICI) degrades the bit error rate (BER) severely. A very small amount of frequency 

offset can lead to significant degradation in system performance. To maintain signal to 

interference ratios of 20dB or greater for the OFDM carriers, offset must be limited to 

4% or less of the inter-carrier spacing [11]. 

There are two effects caused by frequency offset in OFDM systems; 

> Reduction of signal amplitude in the output of the filters matched to each of the 

carriers. 

Introduction of ICI from the other carriers which can cause loss of subcarrier 

orthogonality. 

From equation (2.6) the received signal in the presence of CFO can be expressed from 

1 N-1 	 j21rnk j2an4/T 

x(n)= —  - E dk H(k)e N e N ±z(n) 	 (2.10) 

Where AfT is the carrier frequency offset, 

T is the OFDM symbol period. 

The data sequence X(k) recovered by applying FFT to the received signal is given by 

N_1 	- j2;rnk 

X(k) _ 
I 
~> x(n)e N , 	k = 0,1, ........, N --1 	 (2.11) 

Substituting equation (2.10) in (2.11), we get 

	

1 N-1 I N-1 	 j2icnk j2nn/ff 	 j2,rnk 	1 N-1 	— j2,rnk 

X(k) — ~> ~ dk.H(k')e N e N e N+ ~ E z(n)e N 

	

1I 1 n=0 N 1 k'=0 	 1l 1 n=0 

W 



N-I 	 I N-1 27r (k ,+4f1.-k)n 
_ dk,H(k') —1 > e N 	+ Z(k) 	 (2.12) 

At k' = k the date sequence is given 

1 N-' j2,( )n X(k) = dk H(k)—Ze N 	+Z(k) 	 (2.13) 
N n=0 

From equation (2.13), X(k) may also be written as 

1 N—I J27r(Af?•)n N—I 	N—I J2T(k'+4ff—k)n 
X(k) = dk H(k) N Z e N 	+ dk.H(k') 	e N 	+ Z(k) 

n=0 	 k'=0 	 n=0 
k' #k 

(2.14) 

Simplifying the first term from above equation 

1 N—I l2irnAfJ 	 1 1— e'2'~'T 
dk H(k)—Ee N = dkH(k)— 	 j27rofr. 

N n=0 	N 1— e N 

j2rAff J2sr4JT j2;Of. 
= dkH(k) e 2 (e 2 —e 2 ) 

j 2;refl 	j 2TrAfT 	j 2 mW 
e 2N (e 2N —e 2N ) 

= dkH(k) 
sin(,cOfT) e 	N '> 	 (2 .15) 

Nsin(
ir4 

) 
N 

Simplifying the second term from equation (2.14) 

N-I 	 1 N-I j2,(k'+AfT-k)n 	N-I 	/ 	
1 (1 	I' 

 
dk'H (k ) N 	= k dk' H(k ) N 	2n(k'+41T-k) 

k'=0 	 n=0 	 k'=0  
k'mk 	 k'~k 	 (1—e 	N) 
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2ir(k'+°fT-k) 	_2, (k'+°JT-k) 	2sr(k'+AjT-k) 

	

N-I 
	le 	2 	(e 	2 	—e 	2 	) 

	

=I 	21r(k'+4(T-k) 	21r(k'+4(T-k) 	2vr(k'+4JT-k) 

	

k~
k 	 e 	2N 	( e 	2N 	— e 	2N 	) 

\ 

= > dk.H(k') 1 sin(i(k' +OJT — k)) ei,,( N' )(k'+°n-k) 

	

k O 	 N sin( -(k'+    AJT — k)) k*k'  

(2.16) 

Substituting equations (2.15) and (2.16) in (2.14), we get 

X(k) = dk H(k) sin( 	et,~err~ N'> + X dk,H(k') 1 sin(ic(k' +OfT — k)) eJn~ N 	k> + Z(k) 
Nsin( ir 	)k;xk 	N sin(--

N 
(k'+OJT —k)) 

(2.17) 

This may be written as 

X(k) = dkH(k) 
sin(7c4) e j' ( N~) +Ik +Z(k) 	 (2.18) 

Nsin( 	) 
N 

Where, Ik = 	dk,H(k') 	
sin(TC(k' + 0f7 — k)) ein( N ' )(k'+°fr-k) 

k'_o 	N sin( (k' + AJT — k)) k'xk N 

In equation (2.18) 

➢ The first component is the modulation value dk modified by the channel transfer 

function. This component experiences an amplitude reduction by the factor 

sin(7rAfT) and phase shift due to the frequency offset. 
Nsin( 	) 

N 

➢ The second term Ik is the ICI caused by the frequency offset. 

We can see that recovered data symbols will be equal to the actual data symbols, 

if and only if the CFO 41 is zero. 
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In order to evaluate the statistical properties of the ICI, some further assumptions are 

necessary. It is assumed that the modulation values have zero mean and are 

uncorrelated (i.e. E[dk ]=0 and E[dkdk.]=Idi2 Sk..k ), with this provision E[Ik ]=0,and 

N—I 	 2 	 1  
E [II k 2 ] — dI2 I E (I H(k')I2) 	

(sin (~rAJT )) 	2 	 (2.19) 
k'=o 	 (N.sin((,TIN).(k'—k+AfT))) 
k'xk 

The average channel gain, E (I H(k')IZ) = WIZ, is constant so above equation can be 

written as 

N—k-1 
E[II k I 2 ] _ IdI 2 .I H12 .(sin (gAfT)) 2 . 	 1 	2 	 (2.20) 

P=-k (N.sin ((;c/N).(p+Air))) 

The sum in above equation can be bounded for 4fT = 0. It consists of N —1 positive 

terms. The interval of the sum is contained within the longer interval 

—(N-1) <_ p _<(N-1) , its location dependent on k. Also note the following; the 

argument of the sum is periodic with period N, it is an even function of p, and it is 

even about p = N/2. Thus the N —1 terms of the sum are a subset of the N terms in 

the intervals — N/2 < p < 1 and 1 _< p <_ N/2 for every k. Consequently, 

N—k-3 1 	1 	 N/2  
2 j<2 	 2 

p= k (N. sin (7rp/N)) 	p=I (N. sin (TCp/N)) 
p~o I 

Observe that (sin (irp/N))2 >— (2p/N)2 for I pj _< N/2. Therefore, 

(2.21) 

N/2 	1 	 N/2 1 	1 10 1 
2~ 2 <2Z 	2 <—Z 2 =,r2 /12=0.882 

r=1 (Nsin (Trp / N)) 2 	r=i (2p) 	2 r=I p 

upper bounds the sum for small AfT . Numerically, we have determined that the sum in 

Eq.(2.20) is bounded by 0.5947 for 41T < 0.5 so that 

E[11k 1 2 ]  <_ 0.5947 Jd12 11112 .(sin JrAfT ) 2 ; 	 IEI <_ 0.5 	 (2.22) 
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upper bounds the variance of the inter-carrier interference for values of carrier 

frequency offset up to plus or minus one half the carrier spacing. 

Equation (2.22) may be used to give a lower bound for the SNR at the output of the 

DFT for the OFDM carriers in a channel with AWGN and frequency offset. Thus, 

z Jd12 IH12 sin (rAJT /  ~Afl 
SNR >  

{o.5947Jd2 IHi2 .(singAJT)Z +E[IZ(k)IZ]} 	
(2.23) 

It is easily established that Id12 IH12/E[IZ(k)I2 ] = Er /N o where, EE is the average 

received energy of the individual carriers and No /2 is the power spectral density of 

AWGN in the band pass transmission channel. Therefore, equation (2.23) may be more 

conveniently expressed as 

SNR >_ {Ec,/N o }.{sin (lrAfT)/,rAfT}2 /{1 +0.5947(E,/N,).(sin,rAfT)Z } 	(2.24) 

The simulation of the basic OFDM system performance with different values 

of CFO's at different values of SNR in AWGN channel is performed. SNR value of 

the subcarrier at the output of the DFT is calculated and its degradation effect due to 

increase in frequency offset value has been observed. Equation (2.24) which will give 

the lower bound for the SNR at the output of the DFT for the OFDM subcarrier in a 

channel with AWGN and CFO is plotted and compared with the practical OFDM 

system simulated. The simulated results are shown in section 2.5. 

2.4 CFO estimation using training sequences 

In [11], Moose proposed one of the earliest schemes to estimate the CFO. This 

method is a maximum likelihood (ML) estimate of frequency offset using the repeated 

data symbols (training sequence). This scheme was proposed by assuming that the 

frequency offset as well as the channel impulse response be constant for a period of two 
symbols. 
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The method uses two identical successive OFDM symbols to estimate the CFO. 

Here, the first OFDM symbol, or training symbol, is produced by doing FFT on a data 

sequence, dk with k = 0,1,..., N-1, and the second one by dk with 

k = N, N +1.....,  2N —1. Both sequences are identical, that is dk = dk+N for 

k=0,1,...,N-1. 

From equation (2.1) the first and second OFDM symbols are defined as 

1 N-' 
S~ (n) - ~I dkej2>rnk/N n= 0,1..........,N-1 (2.25) 

2N-1 
S2 (n) = 1 	dkd j21rnklN ' 

VLF' k=N 
n = N,N+1,.........,2N-1 

Above equation can be written as 

I N-1 j2xn(k+N)IN 
S2 (n) =  

1 N-1 — 	Idkej2snk/N' 	n=N,N+1..........,2N - 1 	(.'. d =dk+N) 
v1Y k=0 

(2.26) 

From equations (2.25) and (2.26) the 2N point OFDM symbol can be expressed as 

1 N-1 
s(n) _ 	I dke j27nklN , 	 ,1 , n 0 	, 2N —1 — 	..... (2.27) 

From equation (2.7) the OFDM signal at the receiver with 2N point sequence and in 

the absence of noise, can be written as 

1 N-i 	 j2;rnk j2,rnLf!' 

x(n) = 	dk 	 = H(k)e N e N , 	n = 0,1 . ............2N —1 	 (2.28) ~ 

The first and second OFDM received signals in the presence of CFO can be expressed 

as 

N-I 	 j2nnk j2nn4fr 

xi (n) ~1 X dk H(k)e N e N 

15 



1 2N-1 	 j2nrnk j2;rnAjT 

x2 (n) = = E dkH(k)e N e N 

For simplicity assume h(n) = 8(n) for AWGN channel. Then above equations can be 

written as 

N-I 	j2nnk j2vrn4(T 

x, (n) = ~1 Z dke N e N , n = 0,1, ........., N —1 	 (2.29) 
V 1Y k=0 

1 N-1 	 j27rnk j2,rn4ff 

N , 	n=N,N-1..........,2N-1 	 (2.30) 
'V 1Y k=0 

Then, at the receiver, after FFT, the first and second recovered sequences become 

1 N-1 1 N-1 	 j2'rnk' j2vrnLjP j2nnk 

X, (k) ~~~~ de N e. N e N 	 (2.31) 
'V 1 7 n=0 V 	k'=0 

1 2N-1 1 N-1 	 j22rnk' j2,rn4ff  j2rrnk 

X2(k) _ ~ 	dk'e ,v 
e N e N 

=0 

The above equation can be written as 

I N_I 1 N- I 	 j2ir(n+N)k' j2'r(n+N)A/T j2,r(n+N)k 

X, (k) 	~~ X dk .e N e 	N 	e 	N 
V 	n=0 V 	k'=0 

1 N-I 	N-I 	j2,rnk' j21rn4fT j2nnk 

N e N e N e12'~' , 	 (2.32)  ~ 	k 
N 1 n=0 N 1• k'=0 

From equation (2.31) and (2.32), we have 

X2(k)=X1 (k)e 2' 	 (2.33) 

e ;2' 1T = X2 (k) = X2 (k)X 1 (k) 
X, (k) 	1X1 (k)12 

By using maximum 'likelihood estimation technique the estimation of the CFO is 

defined as 

N-1 
Im(X2 (k)X*, (k)) 

Af = 1 tan-1 k=O 
2~cT 	N-1 I Re(X2 (k)X', (k)) 

k=0 

(2.34) 
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N-1 Z Im(X2  (k)X *i  (k)) 

2,rNtan
-' N° 	 (.0=Af•N) 	 (2.35) 

Re(XZ  (k)X', (k)) 
k=0 

From equation (2.33), we can notice that between the first and second FFT's, both 

the ICI and the sequence are altered in exactly the same way, by a phase shift 

proportional to frequency offset. Therefore it is possible to obtain the accurate estimates 

from equation (2.35) even when the offset is too large. 
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2.5 Simulation Results 

For the simulation of effect of CFO on OFDM systems in the MATLAB environment, 

the following parameters are used. 

➢ FFT size : N=256  

➢  Modulation scheme: 8-PSK 

➢ Channel: Flat Channel 

> Noise: AWGN 

> SNR: 11, 17, 23, and 29 dB 

➢ Frequency offset: 0 to 0.5 

Figure 2.2 shows the plot of SNR values at the output of the DFT for the OFDM 

subcarriers in a channel with AWGN and relative frequency offset. Figure also contains 

the theoretical lower bound values of SNR at the output of the DFT for the OFDM 

subcarriers with relative frequency offsets, which is given by equation (2.24). The graph 

is plotted for different SNR values of 11, 17, 23 and 29 dB varying the relative 

frequency offset value from 0 to 0.5. It can be observed from the plot that the practically 

obtained SNR values are above the theoretical lower bound SNR values. 

Figure 2.3 shows the simulation results for the estimate of relative frequency offset (i.e. 

è) obtained using two identical training sequences i.e. equation (2.35) verses actual 

value of frequency offset c for E~/No values of 5 and 17 dB. The simulation parameters 

that are considered while performing simulations in MATLAB environment are as 

follows; 

> FFT size : N = 256 

> Modulation scheme used: 8-PSK 

> Channel: Flat Channel 

> Noise: AWGN 

We observe from the plot that curve plotted using E,/N0 = 5 dB is varying more than the 

one plotted using E,/N0 = 17 dB. This tells us that as the E,/No value increases the 

accuracy of the estimation will be increased. 
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Figure 2.2. SNR versus relative frequency offset. 
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Chapter 3 

CFO Estimation using Numerical Technique for OFDM Systems 

This method is a blind maximum likelihood (ML) estimate of frequency offset 

using the numerical technique based on the Newton - Raphson method [23]. The 

scheme is characterized by low complexity and fast convergence while maintaining the 

estimation accuracy. 

The method uses an OFDM system with N subcarriers, with M of them 

carrying data and the rest N — M set to zero (virtual carriers). 

	r9*ACC

TRL

From equation (2.9) the OFDM signal at the receiver can be written  
Date .................««« 

x=PWd+z 
/~ T• ROOR`~~~ 

The likelihood function for 0 and d is then given by 

L(Ø, d) = (rcrz)N exp{—
a

z x(x—PWd)H (x—PWd)} 	 (3.1) 

To maximize the likelihood function, we are equivalently to minimize the score 

function 

S(Ø, J) = (x —PWd)H (x — PWd) 
	

(3.2) 

For minimizing above equation take the gradient of S(O,d) with respect to d and 

setting to zero, we get 

S($,dML) =XH (I—PWW'1P'')X 	 (3.3) 

From equations (3.1) and (3.3) the likelihood function can be written as 

L'(0) = 	12 N exp{— 2 x xH (I PWWHPH )X} 	 (3.4) 
(7T6 ) 

3.1 Newton - Raphson method 
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Newton - Raphson method is the best known method for finding successively 

better approximations to the roots of a real-valued function. The method can often 

converge remarkably quickly, especially if the iteration begins sufficiently near the 

desired root [24]. 

Given a function f(x) and its derivative f'(x), starting from an arbitrary initial guess 

value x0 , a better approximation of root is given by 

x — x — 
f (x) 

I — o 
f(x) 

(3.5) 

The process is repeated until a sufficiently accurate value is reached. The estimation at 

(k+l)th iteration step is 

xk+l = xk — ,(x) 	 (3.6) 
f (x) 

Using the above equation we can achieve the ML estimation of 0, it is given by 

a2  In L'(0)  ' x  a  In L'(0) 
_ — ao2 

	

(3.7) O(k+1) Ok 	
aY' 

Where 00  is initial guess value, 

Ok  estimation at k th iteration and 

Ok+I estimation at (k + 1) th iteration. 

The first derivative of log-likelihood function is 

alnL'(0) 1 aZ 
ao = 62 'ao 

Where Z = X
H PW W H PH X and it may also be written as 

N-I N-I 	 p  

z = L L X;m n • x Qmn .
e m_ 	 (3.8) 

m=0 n=0 
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Where Q, is the value of the m th row and n th column of matrix and it is given by 

Q=wW
H 
 

The first derivative of log-likelihood function is 

a In L'(0) _ . N-1 N-I 

2 'E1](m—n)'xm`'xn'Qmn  
ao 	6 m=0 n=O 

The second derivatives of the log-likelihood function is 

82 in L'(~) —1 N-I N-I 
a2,/ 	= Z 	(m — n)2'xm 'aCn'QmneJ(m-n)~ 
v Y' 	Cr m-0 n=O 

—1 .xHPQ(2)pHx (3.10) 

Where QW and Q(2) are calculated from matrix Q 

IQ"' ~mn = (m — n).[Q]mn 

And 

FQ(2) ]mn = (m — n)2 • [Q]mn 

Substituting equation (3.9) and (3.10) in equation (3.7), we get estimation of CFO 

-4 .xHPQ(')PHx 
(k+l) 	 (k) - a 

-I .xHPQ(2)PHx 

xHPQ(I)PHx  q3(k
) J' xHPQ(2)PH (3.11) 

From equation (3.1 I), we can notice that the complexity of the iteration 

procedure is very low, considering that vector x,Q(1) and Q(2) are constant for all the 

iteration steps. 
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Results obtained from the Newton-Raphson method may oscillate about the 

local maximum or minimum without converging on a root but converging on the local 

maximum or minimum. To overcome the problem we try multiple initial points, 

spanning the whole range of possible CFO values. 

Example: Considering the normalized CFO may range from 0 to 1, one possible choice 

is the set {0.1, 0.3, 0.5, 0.7, 0.9). 

Starting from the set of initial points, the algorithm iteratively calculates 

estimate values. The iteration procedure may results in two possible estimates. The 

likelihood of each estimate is then evaluated using equation (3.4) and the estimate with 

the maximum value of likelihood function is selected. 

Example: Consider normalized CFO 0.66 and SNR 10 dB. Table 1 shows the steps of 

iteration procedure. From the table we get 0.12475 as the local minima and 0.60473 as 

the estimated value of CFO. 

Table 1 

Iteration Procedure 

Iteration (k) % (k) 0Z(k) 03(k) ,!4  (k) ! (k) 

0 0.10000 0.30000 0.50000 0.70000 0.90000 

1 0.12639 0.11236 0.69280 0.62223 0.66285 

2 0.12476 0.12512 0.62021 0.60561 0.61255 

3 0.12475 0.12475 0.60543 0.60473 0.60491 

4 0.12475 0.12475 0.60473 0.60473 0.60473 

5 0.12475 0.12475 0.60473 0.60473 0.60473 

Likelihood 35.63580 35.63580 35.85420 35.85420 35.85420 

Figure 3.1 shows the flow chart for simulation of Newton-Raphson method for estimation of 

CFO for OFDM system. 
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Figure 3.1 Flow chart for simulation of Newton-Raphson method. 
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3.2 Simulation Results 

For the simulation of Newton-Raphson method in the MATLAB environment, the 
following parameters are used. 

> Number of subcarriers (FFT size) N=64 

> Number of data carrying subcarriers P=52 

➢ Number of null subcarriers N-P=12 

> Number of Monte Carlo runs=10000 

➢ Noise: AWGN 

> Channel h = [0.227 0.46 0.688 0.46 0.227]T  

Figure 3.2 shows the achieved normalized mean square error (MSE) using proposed 

numerical technique and the conventional ML method [25]. 

N N, 	 Z NMSE = — (q — 0) 
N, 1=1 

Where N, is the number of Monte Carlo trials, 

çb is the actual normalized CFO, 

And çb, is the estimated normalized CFO at the tth trial. 

For each SNR value, 104  values of CFO have been randomly selected in the 

range [0,1] and corresponding MSEs have been calculated. The technique preserves 

low complexity and fast convergence while maintaining the high estimation accuracy.. 
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Chapter 4 

CFO Estimation using virtual (null) subcarriers for OFDM Systems 

In this chapter CFO estimation using null subcarrier for OFDM system 

presented. Null subcarrier allocation for the reduced complexity CFO estimation is 

discussed next. Finally simulation results are presented. 

In OFDM system with N subcarriers, N information symbols are used to 

construct one OFDM symbol. Each of the N symbols is used to modulate a subcarrier 

and the N modulated subcarriers are added together to form an OFDM symbol. In the 

presence of virtual carriers (subcarriers with zero transmitted), only M out of N 

subcarriers are used to modulate information symbols (we assume that the first M 

carriers are used to modulate information symbol, while the last N — M carriers are 

virtual carriers). CFO estimation can also be obtained using virtual subcarriers [14]. 

The discrete time OFDM signal model is 

1 M-1 
s(n) __ 	dke;z~nxiN , 	n = 0,........,N-1 	 (4.1) 

From equation (2.8) the OFDM signal at the receiver can be written as 

x PWHd + Z  (4.2) 

The unknown parameters in (4.1) are 0 and d. Assume that the covariance matrix of z 

is a2 1, where a2 is the noise variance and I denotes the identity matrix. 

The likelihood function for 0 and d is then given by 

L(q, d) = ( 1 N exp{—
a  

x(x—PWd)H (x—PWd)} 	 (4.3) 

Thus the ML estimate for 0 and d are given by 

(5M, ,dA4 ) =arg max L(qS,d) 	 (4.4) 

To maximize the likelihood function, we are equivalently to minimize 

S(q5,d)=(x—PWd)H(x—PWd) 	 (4.5) 
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For minimizing above equation take the gradient of S(q,d) with respect to d and 

setting to zero, we get [26] 

A S(q,d) =W H P H (x—PWd) = 0 

From above we can solve for dML 

dML _ W HPHX 	 (4.6) 

Substituting equation (4.6) in equation (4.5), we get 

S(q$,d) = (x— PWWHPH x)H (x —PWWH PH x) 

_ ((I — PWWHPH )X)H (I _ PWWHPH )X 

= x' (I — PWWHPH )H (I — PWWHPH )X 

= x' (I — (PWWHPH )" — PWWH PH +(PWWHPH )H PWWHPH )x 

(4.7) 

Simplifying the term (PWWHPH)H 

(PWW H PH )' =(W H P H )H (PW)
H 

= PWWHPH 

Therefore equation (4.7) becomes 

S(c,dMG) xH (I—PWWHP'~ —PWWHPH +PWWHPH PWWHPH )X 

=xH (I-2PWWH PH +PWWH WWHPH )x 	(... ppH =PHP=I) 

=x'(I-2PWWHPH +PWWH(I—WH )pH )X (..WW' +WH =I) 

= XH (I-2PWWHPH +PWWH pH —PWWHWHPH )X 

S(O,dM/)=XH(I—PWWHPH)X 	 (.. WHV=0) 

(4.8) 

Since pp" = PH P = I, we can simplify equation (4.8) 
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S(0,dML) = x'~PPH (I —PWW`~PH )PPHx 

= xHP(PHP — PHPWWHPHP)PH X 

_ (PHx)H (I WWH )pH x 	(.-. PPH = PHP = I) 

= (pH x)HVVHpH x 	 (... (•.• WWH + VVH = I) ) 

= (XHPV)(XHPV)H 

Above equation can be written as 

S(O,dMl.) = 	1lxHPUk11 

	
(4.9) 

k=M 

Equation (4.9) gives the cost function to estimate the CFO for an OFDM system. 

4.1 Reduced complexity CFO estimation using null subcarriers 

The scheme uses only one training OFDM symbol with null subcarriers for 

CFO estimation and all odd subcarriers in the training OFDM symbol are imposed as 

null subcarriers. As a result, the training OFDM symbol consists of two identical 

components [14]. 

➢ The fractional part of the CFO (within the range of subcarriers spacing), which 

causes the loss of orthogonality among the subcarriers, to be estimated using 

simple correlation operation. 

➢ The integer part of the CFO, which results in a shift of the subcarrier indexes, is 

estimated using subcarrier at even positions. 

Consider an OFDM system with N subcarriers. In the technique, CFO estimation i's 

achieved using one OFDM symbol, where there are N null subcarriers and N P pilot 

tones with 

NZ + N p= N 	 (4.10) 

The set contains all the null subcarrier indexes is denoted by 

I' z = {a,, a2 ,......, aN } with a, <a2 < ......... < a 
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The set that contains all the pilot-tone indexes denoted by 

F, ={b,,b..........,b,, } with b, <bz <......<bN 
n 	 r 

The training OFDM symbol in the time domain is given by 

s(n) = 1 	d eJ2)rnk/N 
k 	 n=—Ng,........,N-1 	 (4.11) 

dk is the pilot symbol at the k th subcarrier. 

After sampling and removing the guard interval, the received signal is then given by 

x(n) = I r dkH(k)el(znk1N+2 	+ zn,TO)n x(n) 
	kero 	

l 	 ), 	n=0, 1,.....,N-1 

Vector Form 

P = diag( l,ejz~~ ......, eJzr(N-1)m )~ 

d =[dd ,db. ........,dbb ]T , 
v 

Z = [z(0), z(1). ......., z(N —1)]'" 

H = diag (H(b, ), H(b2 )........, 

Now the received signal can be written into the following vector 

x = [x(0), x(1)........, x(N —1)]r 

=PWd + Z 	 (4.12) 

Where W is an Nx N,, matrix with [W]nk = 	ej2n(n-1)6p/N 

And d = [d,, , dh. , ......, dhN ]T = Hd. 

Assume that the covariance matrix of z is cr2 I, where 62 is the noise variance and I 

denotes the identity matrix. 

The likelihood function for 0 and d is then given by 

L(q, d) =
(ir6z )N exp{— ~z x (x — PW Hd) (x — PWi)} 	 (4.13) 
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To maximize the likelihood function, we are equivalently to minimize 

S(q5,d) = (x—PWd)H (x—PWd) 	 (4.14) 

Taking the gradient of S(q, d) with respect to d and setting to zero, we get 

d m,, = W H P"x 	 (4.15) 

Substituting (4.15) in (4.14), we get estimation of 0 as 

S(q) = (PH X)H (I — WW H )PH x 

_ (pH x)H (1] V IV I H )P H X 

r€r, 

_IIv; H P H xJ2 	 (4.16) 

Where P =diag( 1,e~2' ........,e 2') 

And VT is N x 1 vector with the n th element given by  

Let all odd subcarriers are null subcarriers, and even subcarriers are pilot tones, we 

have, 

1 I —I 
v; v;' = 	 (4.17) 

;Er2 	 2 —I 1 

Where F2 { 1,3, . ......., N —1 } and N is assumed to be an even number. 

For convenience define the X vector as 

x 
X = I 	 (4.18) 

x2 

Where x, and x2 are (N / 2) x l vectors denoting half and the second-half parts of the 

received training OFDM symbol, respectively. 

Furthermore define P as 
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P 
H 
	O 

0 	e~"N~Y, 	 (4.19) 
temp 

Where 'temp — diag(l, e~Z>~ ........, 
eJ2vr(N-2)~ ) 

Substituting equation (4.17) and (4.19) in (4.16), we get 

S2 () _ (PHX)H  
icr2 

=J_( ' 1  + X2 X 2 — e~tcN¢XHx2 _e~nN~X2 X1) 	
(4.20) 

The closed form of solution can be achieved by minimizing equation (4.20) i.e., derivate 

equation (4.20) with respect to ~ 

d S(Y') = j - e-JTNOx1 x2 _ j 	n eJNO x2 x, 

By setting dS2 ( =0,  q5 is then obtained as 
dq$ 

	

~N arg(x;'xz )+ 	k=0,±1,±2,....... 	 (4.21) 

When k is an odd number, equation (4.21) is maximized rather than minimized. Hence, 

when q$ is limited in the range of [0,1), the closed-form solution to minimizing equation 

(4.21) is given by 

1 	H 	2k 	N  øk = zN
arg(x,xZ )+N , k=0,...9 	 (4.22) 

 

34 



The CFO estimation is very simple with all odd subcarriers are zeros. However, 

we must identify k to extend the estimation range. This can be achieved by using a 

reduced-complexity ML CFO estimation scheme, where no extra symbol is required, 

and k is identified using the even null subcarriers in the training OFDM symbols. 

In the scheme all odd subcarriers and some of the even subcarriers are null 

subcarriers, we have 

v1V H = E V iv, + I VV' V' 	 (4.23) 
i r2 	lEi2 	iErz 

ior2 

Substituting equation (4.23) in (4.16), we get 

S2 (~) _ (x) 	v;vH P H x+(P H x)H 	v;vi P`~x. 	 (4.24) 
;Er2  

aor' 

When there is no noise, and given that the tentative normalized CFO is the actual 

normalized CFO, the two terms in (4.24) are simultaneously equal to zero (thus, 

reaching the minima). We can minimize the two terms separately and the CFO 

estimation task is divided into two steps. 

> The fractional normalized CFO is identified by minimizing the first term of 

(4.24). 

> The integer normalized CFO is obtained by minimizing the second term of 

(4.24). 

As a result, in the first step, the task is equivalent to minimizing the metric given by 

(4.20). Hence, the solution to the fractional normalized CFO ~~ is given by (4.22). 

For convenience, define 

Pk - diag (i, e j2~~k 	e j2"tN-I) ) 

= diag(v2kP0) 
	

(4.25) 
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Where PO  diag(1 ej27r 	e j27r(N-1)¢b ) ° 	, 	, ...,  

By replacing P in the second term of (4.24) with t'k  , we have 

E(k) _ ( f' x)'  
;ErZ  
r$r2 

_ — 	I V +2kPk xl 	 (4.26) 
1EUZ  
;Or2 

For convenience, we define E;  as follows 

E;  = IvHPo XI 	 (4.27) 

In the second step, the integer normalized CFO is found using the following criterion 

k = arg min Z E,+2k k 
lEF2 
,ori 

(4.28) 

The fractional normalized CFO is first compensated, and E;  is then obtained 

using an FFT. Since both the fractional CFO compensation and FFT processing are 

available in the OFDM system, it follows that only extra adders are required in the 

second step to estimate the integer normalized CFO, which are trivial compared with 

multipliers and FFT. Consequently, the complexity of this scheme is very less and the 

estimation range is much larger. In this method the fractional part and integer part of 

normalized CFO are obtained separately, so this method is suboptimal. Furthermore, 

since only one training OFDM symbol is required, the transmission efficiency is high. 

4.2 Even Null Subcarrier Allocation 
For the reduced-complexity CFO estimation scheme even null subcarrier 

allocations at the even positions are critical to system performance. In the following, we 

propose a way to allocate them. 
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Assume that the actual normalized CFO is cui _ + 	, where 0o is the 

fractional part of the normalized CFO with — I <— 00 <1, and k is an integer with 

0 5 k <_ . Suppose that 0o is perfectly obtained in the first of CFO estimation. Then, 

0=¢o and 

v;"PP~x = v; Po PWd+vi PP z 

= vH 21Wd+n; 

di-2k + n; , 
	i-2k e r' p 

i — 2k E r, 	 (4.29) 

Where n, = vi PQ z is the additive white Gaussian noise term with zero mean and 

variance a2 . As a result, (4.27) can be written as follows 

2 	2 	~.7 a 	 ~7 	» 

Id̀ -2k I + I ni 1 +ui-2k ni +ui-n. E; = Inll' 
2 

(4.30) 

Where k = k , we have 

2 

Ei+2k — I Ei+2k — Z I ni+2k 
ier, 	ir.r' 	ier r 
,vr2 	rf<r, 	 ;fxrz 

(4.31) 

When k # k , we have 

22 	2 	, 
Er+2k — 	I I ni+2k I + 	(I di+2k-2k I + ni+2k I +d 1+2k-2i  +2k + +2k-2k n 1+2k) 

ierr  i+2k-2ker~  i+2k-2kerp 
7@r2 	;Er, 	 pert 

iv r2 	 iver2 
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2 

= I I ni+2k I2 + 	(I ~+2k-2k I + d i+2k-2k ni+2k + d(+2k-2k n* i+2k ) 
ier. 	i+2k-2k®r~, 
ier2 	ier, 

ior2 

(4.32) 

For the integer part of the normalized CFO estimation, if k ~ k is selected and from 

(4.28), (4.31) must be smaller than (4.32). Hence, we have 

2 	z 	2 
(l ui+2k-2k I < — > 	(di+2k-2k ni+2k + di+2k-2k n i+2k) + ~j (j ni+2k I — I ni+2k J ) 

+2k-2k ery 	 +2k-2k ero 	 ier~ 
ier, 	 ier, 	 i rZ 
i@ r2 	 'Or2 

(4.33) 

2 
When the SNR is high, 	(Ini+2k12 — k+2k1 ) is negligible and (4.33) is reduced to the 

ter. 

i r, 

following 

i+2k-2kErp 
iEr, 
ter, 

(d i+2k-2k ni+2k + di+2k-2k n i+2k ) (4.34) 

Where 

l_ 	 2 

i+2k-2kery 
ter. 
ittr2 

(4.35) 

The right part of (4.34) is a random variable with zero mean complex Gaussian 

distribution. Assume that the imaginary part and real part of the noise term are 

independent and identically distributed. The variance of the right part of (4.34) is then 

as follows: 

611,2 (k , k) = 262 
,42k-2kerp 
lEr. 
ier2 

2  
d i-2k-2k I = 26

2 r](k, k ) . (4.36) 
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From (4.34), the pair-wise error probability (k rather than k is selected) is as follows 

(o(k,k))2 

k) = Q q(kk k ) ~ e 2Qo" 2 (k,k) = e 4a' 	 (4.37) 6 a11 ( 	) 

1 °°_'z 
Where Q(x) = 2 f e 2 dt. 

0 

In the following, we try to find the best even null sub-carrier allocation criterion 

according to the following rule , 

min max p, (k -* k). 	 (4.38) 
kk 

From (4.38), it can be seen that the above rule is equivalent to the following 

max min r7(k -> k). 	 (4.39) 

Note that q(k, k) does not depend on the specific value of k and k . Instead, it depends 

on the difference k - k . For convenience, we define 

77(k) = q(k, 0) . 

Equation (4.37) indicates that the performance of the integer part of the 

normalized CFO estimation is mainly determined by small values of (k) among all 

possible k ~ 0. From (4.35), it can also be seen that q(k) relates to the number of 

summation terms and product of the channel frequency response and the training data. 

Since channel is not known, all we can control is the number of summation terms. As a 

result, we should try to make the number of summation terms in equation (4.35) as large 

as possible. To achieve this task, we can use a binary sequence c = [co ,c1 ......,cK _,]T to 

represent the null-subcarrier allocations at the even positions. Where K is the length of 

the sequence. In the binary sequence, `1' is used to denote a position where there is a 

pilot tone and `0' for null subcarrier. To make small q(k) as large as possible, the 

binary sequence should be designed according to the following rules [14]: 
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> The set of Hamming distances between the binary sequence and all possible 

cyclic shift versions constitutes the distance distribution of sequence. We 

should find a sequence with good distance distribution in the sense that the 

cyclic-shift versions with a small distance to the original binary one as few as 

possible. 

➢ The zeros in the binary sequence should be as far apart as possible to ensure 

frequency-domain diversity. 

We define the autocorrelation function of the binary sequence c as 

x-I 
R(r) = Y, (-1)Ck+Cmod(k+r,K) 

	

(4.40) 
k=0 

Where 0 < r <K —1 is an integer number and mod(i, j) is the remainder of i 

divided by j. 

When z ~ 0, R,, (r) is referred to as the out-of-face autocorrelation function. The 

Hamming distance between the sequence and its r cyclic shift versions is as follows: 

2 
	 (4.41) 

As a result for rule 1, the task is to find a binary sequence with the out-of-phase 

autocorrelation function as small as possible. For rule 2, the positions of zeros in the 

sequence with a small out-of-phase autocorrelation function are normally very random, 

which can be used to take advantage of frequency domain diversity. Hence, in the 

following, we only consider using rule 1 to find a proper sequence, which determines 

the way of null subcarrier allocations. 

For convenience, we define the minimum Hamming distance of a binary sequence 

by the minimum Hamming distance between the sequence and all its cyclic shift 

versions. When K is an odd number, the maximal minimum Hamming distance among 

all the binary sequences with length K is less than or equal to (K +1)/2.  When K is 

an even number, the maximal minimum Hamming distance among all the binary 

sequences with length K is less than or equal to K /2 with the exception of K =2.  For 



example, the m-sequence [27] is optimal in the sense that it can achieve the maximal 

minimum Hamming distance. However, such sequence only exists for K = 2"' —1, 

where m is a natural number. For practical OFDM systems with K = 2"' , there are no 

such optimal sequences in general. To deal with this issue, we append a zero at the end 

of a specific 	m -sequence. Since there are 2'" —1 cyclic shift versions of an m - 

sequence, we can generate 2' —1 such sequences with length 2". Among the 2" —1 

sequences, we select the best one in the sense of distribution of the Hamming distance, 

which is referred as the extended m -sequence. 

For m = 5 (K =32),  by computer search, we get the following extended m -sequence 

(in hexadecimal) 

D215D8F8. 

The minuimum Hamming distance of the above sequence is 14, which is close to 

K/2=16. 

When in = 6, the extended m-sequence is given by 

A4E2F28C20FD59BA. 

The minuimum Hamming distance of the above sequence is 30, which is close to 

K/2=32. 

Beside the proposed extended m-sequence, the almost autocorrelation sequence [28] 

proposed in can also be used. 

For K = 64, the almost-perfect autocorrelation sequence is given by 

0C6A01B2F3957E4D. 

The minimum Hamming distance of above sequence is 32. 

In the above discussion, we assume that the actual CFO value is in the range of 

the inverse of the sampling duration. As a result, the length of the binary sequence is 

required to be N / 2. When the oscillators at the transmitter and the receiver both have 

relatively high precision, the actual CFO may in the limited range. In this case, we only 

need to find a shorter sequence to achieve the CFO estimation task. 
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Conventionally, we can use one training OFDM symbol with M identical parts 

to estimate a CFO within the range of M subcarriers. For this case and using optimal 

ML CFO estimation, it is shown in [29] that the Cramer-Rao bound is given by 

var(b — 0) = z  3(SNR) 	2 	 (4.42) 
27r N (1-1/M ) 

Where SNR is defined by 

JHa SNR = N62  . 	 (4.43) 

In this case, when M is even, the null subcarriers in even positions can also be 
represented by a binary sequence. 

For example, for N = 64 and M = 32, the binary sequence (K = 32) is given by 

:111:111 

By using the reduced complexity CFO estimation scheme, we can also divide the sub-

carriers in the training OFDM symbol into N / M identical parts (in the sense of null 

subcarrier allocations). For each part, we allocate the even null sub-carriers based upon 

the same extended m-sequence or almost perfect autocorrelation sequence. 

For example, for N = 64 and M =32,  there= are two identical parts, and for each part, 

we can use the following almost perfect autocorrelation sequence (K = 16 ) 

Then, the overall even null subcarrier allocations for training OFDM symbol are as 

follows: 

20D720D7. 



4.3 Simulation results 

In this section, we simulate an OFDM system with 64 subcarriers. In the simulations, 

the performance measure is the normalized mean-square error (NMSE), which is 

defined by 

N Nr NMSE = — Z (q, — O)Z 	 (4.44) 
N, !=1 

Where N, is the number of Monte Carlo trials, 

0 is the actual normalized CFO, 

And 0, is the estimated normalized CFO at the tth trial. 

The CIR is given by 

5 

h(k) = EA,gr (kT, –z;  –to ) 	 (4.45) 
=o 

Where {A,} and {r1 } are attenuation and delays of the paths, 

to  is a timing phase which is chosen equal to 3T, and 

g(  t) is the impulse response of the raised-cosine rolloff filter with a rolloff factor of 

0.5 is given by 

II13t 
t  cos( 	) 

g(  t) = sin c( —) 4  T t2  
1– j6  T 

The 	normalized 	delays 	{z;  / T} 	are 	chosen 

(4.46) 

equal 	to 

{0, 0.054, 0.135, 0.621, 1.1351, and {A1 } are independent and Gaussian random 

variable with zero mean and variances (in decibels) {-3, 0,– 2,– 6,– 8,–I 0} . 

The SNR is defined as the received instantaneous signal power divided by the 

noise variance. However, the use of null subcarriers means that some sub channels may 

not be excited by the transmitted signal. Therefore, when the transmitted signal power is 

fixed, low instantaneous received signal power may not mean a poor instantaneous 

channel realization. Using the SNR definition given by (4.43), we cannot know whether 

a poor received signal power is induced by poor channel conditions or by poor 
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subcarrier allocation. To make the SNR independent of the null subcarrier allocation, 

we assume that the transmitted signal power is fixed. That is 

I 	N  dh Z  — = 	 i=1,2.........,Nn 	 (4.47) 

	

.... Nn 	_ 

In the simulations, the SNR is defined as 

N-1 

SNR = k=0 

N6 Z 
	 (4.48) 

We take the Cramer-Rao bound given by equation (4.42) as the baseline. The 

result of equation (4.42) with M=2 is denoted by Cramer Rao bound 1, which is the 

best performance achieved by the optmail ML CFO estimator using one training OFDM 

symbol with two identical parts. The result of equation (4.42) with M=N is denoted by 

Cramer Rao bound 2, which is the best performance that can be achieved by an optimal 

ML CFO estimator using one training OFDM symbol with any number of identical 

parts. 

Figure (4.1) shows the NMSE performance of the reduced complexity CFO 

estimator using periodic training OFDM symbol. The normalized CFOs in the 

simulations are 0, 0.01, 0.1, 0.2 and 0.4 respectively. From figure (4.1), it can be seen 

that when M=N=64 (one pilot tone is used), the performance is poor, due to the fact 

that pilot tone may be in deep fading. When more pilot tones are used, frequency-

domain diversity can be achieved, resulting in good performance. When M=N/2=32 

(two pilot tones are used), it can be seen that the performance is quite good at high SNR 

values (figure (4.2)). However there is performance degradation at low SNR values. 

When M=N/4=16 (four pilot tones are used), the performance approaches the CRB 1 for 

almost all SNR values (figure (4.3)). 
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Figure 4.1 NMSE performance of the reduced-complexity CFO estimation using one 

training OFDM symbol with identical components (M=64). 
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Figure 4.2 NMSE performance of the reduced-complexity CFO estimation using one 

training OFDM symbol with identical components (M=32). 
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Figure 4.3 NMSE performance of the reduced-complexity CFO estimation using one 

training OFDM symbol with identical components (M=16). 
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Chapter 5 

CONCLUSIONS 

The basic and most essential task that is to be performed in any digital communication 

system is synchronization, without which a reliable reception of transmitted data is 

quite impossible. Synchronization for any digital communication system can be viewed 

in two parts: Carrier frequency synchronization and Symbol timing synchronization. 

This dissertation work is aimed at performance study of Carrier Frequency Offset 

(CFO) estimation methods for OFDM systems using training sequences, numerical 

method and virtual subcarriers. The conclusions that are drawn from the previous 

discussions and simulation results are as follows 

➢ We have started with the introduction of OFDM system and need for estimation of 

carrier frequency offset in OFDM. The CFO causes serious problem in OFDM which 

destroys the orthogonality among subcarriers, thus resulting in inter carrier 

interference (ICI). A very small amount of frequency offset can lead to significant 

degradation in system performance. The CFO estimation is therefore a crucial point 

in the design of an OFDM system, 

➢ An algorithm for maximum likelihood estimate (MLE) of frequency offset using the 

DFT values of a repeated data symbol has been presented. Both the signal values and 

the ICI contribute coherently to the estimate the CFO therefore it is possible to obtain 

the accurate estimates even when the offset is too large. 

➢ We have investigated a numerical technique for blind ML estimation of CFO in 

OFDM systems based on Newton - Raphson method. The, scheme preserves low 

complexity and fast convergence while maintaining the estimation accuracy. 

➢ We have also looked at a reduced-complexity CFO estimator for OFDM 

through exploitation of nu]] subcarriers in one training OFDM symbol. By 

imposing all odd subcarriers as null subcarriers, the fractional normalized CFO 

can be estimated by simple correlation operations. The integer normalized CFO 

is achieved through the exploitation of even null subcarriers, which are 

allocated based on some specific sequences, such as the extended m-sequence 

and almost-perfect auto-correlation sequence. 



Scope of Future Work 

➢ In chapter 4, the estimation of integer CFO and fractional CFO are performed 

independently. If it is possible to combine the two processes together, it will 

simplify the system complexity and improve system efficiency. 

➢ CFO estimation using numerical techniques are also a topic of significant interest. 
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