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ABSTRACT 

In this dissertation work, QFT and H-infinity controllers were designed for a vehicle suspension 

system and their performance is compared and also with a standard PID controller. A suspension 

system works in uncertainties, which implies variation in plant parameters. Hence in designing 

controller for this system, sensitivity, which can be defined as variation in response affected due 

to change in parameters, and robustness analysis are primary issues. The performance objective 

for the controller design is to keep the error between the controlled output and the set-point as 

small as possible and sensitivity function reshaping is the main design tool utilized. 

In the Quantitative Feedback Theory (QFT) controller, which is a classical approach to design a 

controller suited for systems having large uncertainties by using feedback of measurable plant 

outputs to generate an acceptable response from a system with disturbance signals and plant 

uncertainties, measured displacement of the suspension system is used as a feedback. The QFT 

controller is based on reshaping of the loop-transmission function (product of plant and 

controller transferS function) on which sensitivity of the system depends. The QFT controller is 

implemented in MATLAB. 

The H-infinity (H~) controller, which is also a frequency response approach used to design a 

robust controller that can reshape the sensitivity function directly to achieve the desire 

performance objectives, is done by selection of suitable weight function. The controller is also 

implemented in MATLAB and it realizes the sensitivity reshaping. 

The QFT and H-infinity controllers outperform the trial and error method of PID. Simulation 

results have been included for all. 
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CHAPTER 1 	 Introduction 

Vibration Control is one of the major problems in control engineering. Vibrations can occur 

in modem control application such as automobile, air-planes, robotics, magnetic levitation 

and many more. Vibration can cause damage to parts and components used in automobiles, 

planes, machines etc. 

Performance of machines greatly suffer due to vibrations specially vibrations in automobiles 

is major cause of component damage and discomfort to driver discomfort and fatigue [1]. 

Suspension system plays a beneficial role in such cases. It is responsible for drive comfort 

and drive safety. 

Suspension systems are widely used to overcome the problem of vibration in automobiles. 

Control of Suspension system is a mature and fruitful area of research, development and 

manufacturing. The reduction in vehicle body displacement and time taken to return in its 

ideal position are the two main characteristics of Vibration control. The Idea of active 

suspension system is generated to achieve desire performance of the suspension system [2]. 

The design of active suspension systems requires a clear concept, related not only to the 

mechanics of the system but also to automatic control system. 

The dynamic equations of motion for a suspension system are non-linear. The system 

operates in unstructured environment and is always subjected to external disturbance from 

road unevenness. PID [8] controller is the most basic controller and widely used in industries. The 

PID controllers have some short comings and short comings are overcome by using QFT and 

H-infinity controllers. 

Parameters variation is the biggest problem in the control of the system. Quantitative 

Feedback Theory (QFT) is widely used to design robust controllers for the systems having 

parameters variation [10]. QFT is having some advantages over PID. Loop-shaping of 

controller is a problem associated with QFT method. H-infinity is also widely used to design 

a robust controller [17]. H-infinity control method is compared with QFT. 

Here we concentrate on general studies of the theory of vibration isolation including active 

control forces and their robustness with the variation in the system parameters. 
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1.1. 	History 

Lots of research and development in the field of control of suspension system and its 

performance is done in last few years. The basic reason behind this research is highly 

developed sensors and microcontrollers at low cost are available. However, the automotive 

engineers persevered to improve both ride and handling. 

Early motors cars used solid axle beams suspended from chassis rails with springs. These 

derived from horse-drawn carriage designs and were a function of what could be 

manufactured and maintain by black-smiths. One characteristic, their inter-leaf friction, was 

both a blessing and a burden: it helped the low-frequency behavior by providing a crude form 

of damping, but it created an uncomfortable response to sharp road inputs [2]. 

By 1960 random vibration had become a research topic primarily to problems associated with 

rough burning of rocket engines and fatigue of aircrafts parts due to turbulence excited 

vibrations. At about this time, optimal control techniques were being developed and applied 

and there began to be a clear convergence of ideas about techniques to optimize the dynamics 

of control systems and mathematical vibration systems. 

During the decade of the 1960s the ideas of active control for vibration isolation began to be 

widely proposed but the widespread practical implementation of these concepts has only later 

become practical. 

In 1980's, there was a considerable time lag between the early active suspension systems 

using no electronics and the surge of prototype and limited production systems which began 

to appear. 

It was apparent by the same time that electronic sensors and computers had reached a state 

such that sophisticated suspension systems were at least possible but the question of which 

type of actuator to use was difficult [3]. 

Automotive suspensions deal with large forces, velocities, and deflections- and there are 

questions about how to generate forces efficiently, reliably, and at acceptable financial and 

energy costs. By the 1990's there were commercially available automotive active 

suspensions. Such systems had some clear advantages over passive suspensions but also 

some disadvantages. 



In the late 90's and early 2000, the optimization theories were well developed and the 

application of these techniques was used to optimize the suspension system. It was almost 

universally assumed in the vibration community that only passive devices such as spring, 

dampers and extra masses would be used to design isolation systems while control engineers 

almost always thought of active actuating devices responding to sensed variables for their 

systems [4]. 

Suspension design engineers optimize the values of mass, spring, and damper values to 

achieve the isolation in vibration while control engineers work for the control techniques for 

the actuating devices to achieve the isolation in vibration. 

There are many attempts in recent years to sort out the essential and realizable functions 

which active suspensions with actuating devices can be expected to perform and there are a 

number of proposed versions of active suspensions which use different hardware 

configurations to reduce power, increase reliability and reduce cost. So it is not possible here 

to review the many hundreds of contribution to active vibration isolation over the past 50 

years. 

1.2. Problem Statement 

Suspension systems work in unstructured environment and are subjected to external 

disturbance (i.e. road disturbance). The prime objective of this dissertation work will focus on 

the development simple and optimal control technique, which can handle the variations in the 

parameters very effectively. 

The objectives of this work can be summarized as follows: 

1. To analysis of the suspension system dynamics and study of effect of parameter 

uncertainty. 

2. To design an optimal controller for the suspension system to achieve the desired 

performance. 

3. To implementation the developed controller over the suspension system and 

evaluate of its robustness. 

4. To provide comparisons of the developed controller to obtain the optimal control. 
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1.3. 	Organization of the dissertation work 

The report has been organized into 6 chapters. In this chapter, an introduction, historical 

perspective of suspension system, problem statement is presented. Chapter 2 contains the 

introduction about the suspension system, types, and its parts. Also, it includes the advanced 

development in the field of suspension systems. Chapter 3 contains passive suspension 

system dynamics and effect of the variation in its parameters. Chapter 4 consists of different 

control strategies for controlling the suspension system. These control strategies are PID, 

QFT and H-infinity. Chapter 5 presents the MATLAB simulation results for the passive 

system and for the active system with different control strategies. Chapter 6 presents the 

conclusion of the study and suggestions are given for further study of this subject. 
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CHAPTER 2 	 Suspension Systems 

2.1. 	Introduction 

This chapter includes the description of the Suspension system and its types, its necessity in 

the automobile or vehicle. This chapter contains the description of its important parts such as 

spring, damper and sensors, and also includes advanced development in the field of 

suspension systems. 

2.2. 	Quarter Car Suspension System 

2.2.1 Structure 

The single mass-spring-damper model described is single degree of freedom because we 

assumed that the mass moves up and down. But if we are talking about the suspension system 

which also consists of mass-spring and damper then we say that the suspension system is 

more complex. The system involves more masses, springs and dampers. The number- of 

springs and dampers depend upon their arrangement in the system. 

Here, we consider system with two masses-springs and one damper. This suspension system 

is, with two degrees of freedom (2DOF) as two masses are involved and their movement can 

be in more than one direction. 

• L 

L 
L 

iiess) 

Fig.2.1. A Suspension System Model 
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The two different masses called as the sprung mass and the un-sprung mass. The sprung mass 

represents the mass of the car body and the un-sprung mass represents the mass of the vehicle 

wheel assembly. 

A spring and a damper placed in between the car body and the wheel represent a passive 

spring and a shock absorber. The second spring represents stiffness or compressibility of the 

pneumatic tyre. 

2.2.2. 	Necessity of the system 

The vehicle suspension system is responsible for driving comfort and safety as the suspension 

carries the vehicle body and transmits all force between the body and the road. The Driving 

Comfort and Safety can be explained here [1]: 

Driving Comfort- Driving comfort results from keeping the physiological stress that the 

vehicle occupants are subjected to by vibrations and noise down to as low as possible. 

The displacement/velocity/acceleration of the body is an obvious quantity for the motion and 

vibration of the car body and can be used for determining a quantitative value for driving 

comfort. 

Driving Safety- Driving safety is the result of a harmonious suspension design in terms of 

wheel suspension, springing, steering, and braking, and is reflected in an optimal dynamic 

behavior of the vehicle. 

Tyre load variation is an indicator for the road contact and can be used for determining a 

quantitative value for safety. 

So the main tasks of the suspension system are: 

1. To maximize the friction between the tyre and the road surface, 

2. To provide steering stability and safety with good handling, 

3. To ensure the comfort of the passengers. 
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2.2.3. 	Suspension's Types 

1. Passive Suspension System 

Fig.2.2. A Passive Suspension System Model 

The passive suspension system is shown in Fig. 2.2. The performances of the passive systems 

are highly system dependent as they are unable to adapt or re-tune to changing disturbances 

or structural characteristics over time. The fixed setting of a passive suspension system is 

always a compromise between comfort and safety for any given input set of road conditions 

and a specific stress. The semi-active or active suspension systems are used to solve this 

conflict [1]. 

2. Active Suspension System 

x,. 

Fig.2.3. Active Suspension System Model 
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The structure of active suspension system is shown in Fig. 2.3. Recently active system with 

various control methods and actuators technology has become a popular topic in vibration 

control and applied on many systems such as suspension system, precision machine platform, 

building structures, etc. The idea of active system is that desirable performance characteristics 

can be achieved through cooperating sensors, actuators and control techniques within 

mechanical structures. 

There is a little different semi-active and active suspension system that the mechanism of 

semi-active suspension systems is the adaptation of the damping and/or stiffness of the spring 

to the actual demands while active suspension systems provide an extra force input in 

addition to possible existing passive systems and therefore it needs more energy than semi-

active systems. Also they are expensive and complex. 

The design methodology for the active systems involves actuation concept, alternate control 

strategies, approach to solving the problem, controller hardware and software and sensors to 

be integrated effectively in the systems. The control strategies are to be discussed in the next 

chapters. 

2.3. 	Part Description 

2.3.1. Spring 

The spring carries the body mass and isolates the body from road disturbances and thus 

contributes to drive comfort. 

The springs mainly are of four types — Coil spring, Leaf Spring, Torsion Bar and Air spring. 

Coil spring is used commonly in today's suspension systems. 

Springs are great at absorbing energy, but not so good at dissipating it. That's why we need 

other structures like dampers. 

2.3.2. Dampers: Shock Absorbers 

Dampers are the devices which convert the kinetic energy of suspension into heat energy that 

can be dissipated. This conversion of energy is used to reduce the vibration of the suspension. 

The damper contributes to both driving safety and comfort. Its task is the damping body and 

wheel oscillations, where the avoidance of wheel oscillations directly refers to drive safety, as 

a non-bouncing wheel is the condition for transferring road-contact forces. 
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The Dampers are of different types such as Hydraulic, Pneumatic, Electric and Magneto 

Rheological fluid shock absorber. The working of a hydraulic damper is explained here 
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Fig.2.4. Coil Springs and Hydraulic Damper 

It works in two cycles — The Compression cycle - It occurs as the piston moves downward, 

compressing the hydraulic fluid in the chamber below the piston. This cycle controls the 

motion of the vehicle's un-sprung mass. The Extension cycle — It occurs as the piston moves 

toward the top of the pressure tube, compressing the fluid in the chamber above the piston. 

This cycle controls the sprung mass. 

Now, the Modern shock absorbers are velocity-sensitive. The faster the suspension moves, 

the more resistance the shock absorber provides. This enables system to control all the 

unwanted motions that can occur in a moving vehicle, including bounce, acceleration etc. 

2.3.3. Sensors 

Sensors are the important part of the suspension system. Slight changes in vibration serve as a 

leading indicator of worn bearings, misaligned mechanical components, and other issues in 

machinery, including industrial equipment. Very small accelerometers with very wide 

bandwidth are ideal for monitoring vibration in motors, fans, and compressors. 

2.4. 	Advanced Development in Suspension System Industry 

In the world of Automobile, suspension system is very useful and important. The Researchers 

and scientists always think about the advanced development in the suspension system and its 

parts. Here is some development in this field: 
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2.4.1. Sensors : MEMS Accelerometer 

An MEMS accelerometer is an instrument for measuring acceleration, detecting and 

measuring vibrations, or for measuring acceleration due to gravity (inclination). 

Accelerometers can be used to measure vibration on vehicles, machines, process control 

systems and safety installations. They can also be used to measure seismic activity, 

inclination, machine vibration, dynamic distance and speed with or without the influence of 

gravity. 

Fig.2.5. A Robokits MEMS Accelerometer a chip image and its Layout 

MEMS Technology 

MEMS stands for Microelectromechanical systems, a manufacturing technology that enables 

the development of electromechanical systems using batch fabrication techniques similar to 

those used in integrated circuit (IC) design. MEMS integrate mechanical elements, sensors, 

actuators and electronics on a silicon substrate using a process technology called micro 

fabrication. 

This combination of silicon-based microelectronics and micromachining technology allows 

the system to gather and process information, decide on a course of action, as well as control 

the surrounding environment, which in turn increases the affordability, functionality and 

performance of products using the system. Due to this increase in value, MEMS are expected 

to drive the development of "smart" products within the automobile, scientific, consumer 

goods, defense and medical industries. 
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How MEMS work: 

The sensors gather information by measuring mechanical, thermal, biological, chemical, 

magnetic and optical signals from the environment. The microelectronic ICs act as the 

decision-making piece of the system, by processing the information given by the sensors. 

Finally, the actuators help the system respond by moving, pumping, filtering or somehow 

controlling the surrounding environment to achieve its purpose. 

Working Principle of MEMS accelerometers 

There are many different ways to make an accelerometer. Some way to do it is by sensing 

changes in capacitance. Capacitive interfaces have several attractive features. In most 

micromachining technologies no or minimal additional processing is needed. They have 

excellent sensitivity and the transduction mechanism is intrinsically insensitive to 

temperature. Capacitive sensing is independent of the base material and relies on the variation 

of capacitance when the geometry of a capacitor is changing. Neglecting the fringing effect 

near the edges, the parallel-plate capacitance is: 

A 	1 
C0=E°Ed=EA (2.1) 

Where, A is the area of the electrodes, d the distance between them and the permittivity of the 

material separating them. 

A change in any of these parameters will be measured as a change of capacitance and 

variation of each of the three variables has been used in MEMS sensing. Typical MEMS 

accelerometer is composed of movable proof mass with plates that is attached through a 

mechanical suspension system to a reference frame, as shown in Fig.2.6. 

Movable plates and fixed outer plates represent capacitors. The deflection of proof mass is 

measured using the capacitance difference. The free-space (air) capacitances between the 

movable plate and two stationary outer plates Cl and C2 are functions of the corresponding 

displacements xl and x2: 

C1 =EA =—EAd+x =Co—AC,C2 = EA z=EA d 1x =CO+LC 	(2.2) 
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If the acceleration is zero, the capacitances C1 and C2 are equal because x1 = x2. The proof 

mass displacement x results due to acceleration. If x ~ 0, the capacitance difference is found 

to be 

C2 — C1=20C=2EA 
d2—x2 
	 (2.3) 

Measuring AC, one finds the displacement x by solving the nonlinear algebraic equation 

LCx 2 + xEA — i Cd2 = 0 
	

(2.4) 

This equation can be simplified. For small displacements, the term Cx2 is negligible. Thus, 

ACx z can be omitted. Then, from 

z d  DC x —AC=d- 
Ea  Co 

(2.5) 

one concludes that the displacement is approximately proportional to the capacitance 

difference AC. 

As one can see in the Fig.2.6, every sensor has a lot of capacitor sets. 

Fig.2.6. Accelerometer structure 
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All upper capacitors are wired parallel for an overall capacitance C1 and likewise all lower 

ones for overall capacitance C2, otherwise capacitance difference would be negligible to 

detect. Equation 2.5 now doesn't hold true just for one pair of capacitors, but for all system. 

Sensor's fixed plates are driven by 1MHz square waves with voltage amplitude Vo coming 

out of oscillator. Phases of the square waves that drives upper and lower fixed plates differs 

for 180. One can picture to himself this hole system as a simple voltage divider whose output 

goes forward through buffer and demodulator. First of all we are interested in voltage output 

V,, which is actually the voltage of the proof mass. It holds true that 

(Vx + V0)C1 + (VX — Vo)C2 = 0 	 (2.6) 

and if we use equations 2.2 and 2.5 we get for voltage output 

Vx = Vo
z+Ci 

CZ —Cl — V
o 	 (2.7) 

C 	d 

V,, is square wave with the right amplitude proportional to acceleration. We also can't just 

simply use this output signal, because it is weak and noisy. If we accelerate the sensor (a, > 

0), the voltage output V, changes proportional to alternating voltage input Vo (equation 2.7). 

To avoid signal attenuation, we read V,, with voltage follower (buffer), therefore signal Vy is 

actually Vx multiplied by 1. If we inverse the acceleration , signals V, and Vy get negative 

sign. Demodulator then gives us the sign of the acceleration, because it multiplies the input 

signal Vy with the square waves Vo coming from oscillator. 

O2 —1~ 

1.1NIHz o ciUatot 

180 i~: 

11 buffer 

c 	 ~=f 

'out ^ AC 
de u.ochilator 	—Ir 

Fig.2.7. Electric circuit that measures acceleration through capacitor changes 

For an ideal spring, according to Hook's law, the spring exhibit a restoring force Fs which is 

proportional to the displacement x. Thus, Fs = ksx, where ks is the spring constant. From 

Newton's second law of motion, neglecting the air friction (which is negligibly small), the 
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following differential equation results ma = md2  x/dt2= ksx . Thus, the acceleration, as a 

function of the displacement, is 

k a= —x m 

Then, making use of equation 2.7, the acceleration is found to be proportional to voltage 

output 

a=m Vx  
0 

(2.9) 

2.4.2. Damper 

Dampers are evolved over the time. Previously Pneumatic and Hydraulic dampers used in the 

suspension systems. Currently Electrical and MR dampers are used widely in the suspension 

systems. But in future Electronics dampers will take places of all its previous kinds. 

BMW is well known in the field of automobile has developed a damper based on Electronics 

Control. This Damper is called Electronic Damper Control (EDC). EDC is a processor ---

controlled wheel suspension system that adjusts the shock absorbers to changing road or 

driving conditions. EDC regulates damper forces electronically, adapting to road , load and 

driving conditions. 

Fig. 2.8. A BMW EDC 

When driving on good roads, the dampers are automatically set to "soft" and provide 

maximum ride comfort. when the car suddenly passes over a bump, the system 

automatically switches to "medium" or "hard" to insure optimum road-holding. 

(2.8) 
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The parameters considered when adjusting the dampers are road speed, load, transverse 

acceleration, acceleration in the direction of travel, and vertical acceleration of the 

vehicle. The system uses the following sensors for this purpose: 

• steering angle sensor 

• speed sensor on the final drive 

• vertical acceleration sensor on the front and rear axles 

The signal processor, control logics, hardware monitor, and power terminals for feeding 

an electric signal to the dampers are integrated in the control unit. Sensitive sensors 

constantly monitor all factors influencing the vehicle's behavior and occupants' comfort, 

including road conditions, load changes and vehicle speed. In a fraction of a second, the 

signals are analyzed by the EDC microprocessor and orders are sent to the actuators on 

the shock absorbers, which, with the help of magnetic valves, are variably adjusted to 

provide optimal suspension, 

Electronic Damper Control (EDC) reduces variations in wheel load, ensures tyres have 

excellent traction and counteracts bodyshell movement regardless of the weight your 

automobile may be carrying - and regardless of the state of the road's surface. Electronic 

Damper Control (EDC) can even help shorten braking distances. 
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CHAPTER 3 
	

Analysis of Suspension System 

	

3.1. 	Introduction 

In this chapter, an analysis is done to study the suspension system. Its equation of motion, 

transfer function and State-space model are derived. The Step responses and Frequency 

response are studied also studied in the chapter with simulating command in the MATLAB 

environment. This study also includes the effects of variation in its parameters. 

	

3.2. 	Dynamics of Quarter Car Suspension System (QCS) 

In this paper, we are considering a quarter car model with 2 DOF MIMO, as shown in Fig. 

3.1. The sprung mass, ms, represents the car chassis, while the un-sprung mass, m, and 

represents the wheel assembly. 

The spring, k5, and damper, c, represent a passive spring and shock absorber that are placed 

between the car body and the wheel assembly, while the spring, k1, serves to model the 

compressibility of the pneumatic tyre. 

The variables x,, xU, and x, are the car body deflection, the wheel deflection, and the road 

disturbance respectively. The force F, kN, applied between the sprung and un-sprung masses, 

is controlled by feedback and represents the active component of the suspension system. 

Controller 

r (Control Force) 

lfftu ss) 

Fig.3.l. Active Suspension System with a Controller 
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3.2.1. 	Equations of motion 

According to Newton's second law of motion: 

Inertia force of mass = Forces acting on the mass 

There are two masses so the equations are as follows: 

Motion's equation of sprung mass, ms: 

mszs = F — k5 (x — xu) — cs (xs — Xu) 
	

(3.1) 

Motion's equation of un-sprung mass, mu 

muzu = —F + ks(xs — xu) + cs(xs — xu) — kt (xu — Xr) (3.2) 

	

3.2.2. 	Transfer function of MIMO system 

The system is having 2 inputs called as the control force, F, and the road disturbance, xr, The 

car body deflection or vibrations of the system get affected when any of the inputs get 

changes. So this system is known as Multi Input Multi Output (MIMO). Where outputs of the 

system are used to be the car body deflection, x,, the wheel deflection, x„ or the suspension 

deflection, xs - x,,. 

The transfer function of the system can be derived after taking Laplace of the equations of 

motion, converting equations into frequency domain. The derivation of transfer function is 

easy to determine. Here I skipped few steps of derivation. 

The transfer function matrix can be shown here: 

 1 	+ kt) 	kt(cs + k s ) 	F[XVS]
xu = v 

~(Mu 
 —mS s2 	kt ( ss2 + css + ks )1 [xr j 	

(3.3) 

Where 

V = m5mus4 + (mscs + mucs)s3 + (ms(ks + kt ) + ksmu )s2 + cskt s + k skt 

The matrix of four transfer functions is shown as follows: 

G11 G12l 
[G21 6221 	

(3.4) 
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G11 and G12 are the transfer function of the car body deflection due to control input and road 

disturbance respectively and G21 and G22 are the transfer function of the wheel body 

deflection due to control input and road disturbance respectively. 

Now, only deflection in the car body is considered. So the required transfer functions are: 

G11 — F — Imu Dkt] keeping x,.= 0 	 (3.5) 

G12 = X~ = rkt(c ~+ks)] kee ping F = 0 	 (3.6) 

In the suspension system, the stiffness of the tire/wheel is very high. It could be high as much 

as k, = 190000 N/m [7] and even more. Because of high stiffness the movement in the wheel 

body is equal to the road disturbance. So in the calculation of the transfer function, k, might 

be neglected to keep the things easy. Hence after the neglecting the stiffness of tire, the 

transfer function can be reduced in the given form: 

G11 = = L 	keeping xr = 0 	 (3.7) 

G12 — xr = [m szs+c s+k I keeping F = 0 	 (3.8) 
r 	s 	s 	s 

Here from equation 3.8, we can say that the vibration of the car body due to road disturbances 

is dependent upon the three parameters such as sprung mass, ms , spring constant, ks and 

damper coefficient , cs But damper coefficient does not change frequently. Hence, effectively 

variation occurs in remaining two parameters sprung mass, m5, and spring constant, k5 only. 

the variation ranges of these two parameters are assumed [10] as: 

ks E [9600 22400] 	 (3.9) 

and 

ms E [240 450] 	 (3.10) 
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3.2.3. 	State-Space Model 

To transform the motion equation of the quarter car suspension model into state space model, 

the following variables are considered: 

x1 = XS ; 	xZ = xs; 	x3 = xu; 	x4 

A linear, time-invariant model of the quarter car suspension model is constructed from the 

equations of motion and parameter values. The inputs to the model are the road disturbance 

and actuator force respectively and the outputs are the car body deflection, acceleration and 

suspension deflection. Then the motion equations of the quarter car model for the active 

suspension can be written in state space form as follows: 

x= A.x + B.0 	 (3.11) 

with 

	

0 	1 	0 	0 

A= m m m. m,. 

	

0 	0 	0 	1 	 (3.12) 

	

k s 	c s 	k s — k i 	c s. 

m us  m us  m us  m us 

0  0 

0 1 
x 

	

B = 	s 	 = 	~ 
0 	0 	and U F 
k, 	—1 (3.13) 

m u  m 

19 



3.3. 	Time Response 

The system is having two inputs, the control force F and the road disturbance xr which are 

responsible for the vibrations in the system. Fig. 3.2 and Fig. 3.3 show the responses in the 

car body i.e. sprung mass. 

The MATLAB simulation software is used to show the open-loop performance (without any 

controller). MATLAB step command is run to see the response of unit step actuated control 

force input and unit step road disturbance input. 	

e

3.3.1. Step Response due to Force 	 ....

.....

10-t  Step Response 	 E~ 
12 

U.8 

0.4 

0.2 

0 G.__._..._....._.... _..__._._ 	 -- 	--..---.t..._.._.._..__.._._.._......_.._  
0 	S 	10 	15 

Time (sec) 

Fig.3.2. Step Response of sprung mass due to Actuator force 

In Fig. 3.2, shows the response in the car body, sprung mass, due to the actuating control 

force, F. It clear shown that the deflection of the car body is not high due to unit force 

applied. So the passenger of the vehicle feels fewer amounts of deflection. But the settling 

time for these oscillations is much as ac. So the system takes very much time to reach its 

steady state. 



3.3.2. 	Step Response due to Road disturbance input 

Step Response 

5 	 10 	 15 
Time (sec) 

Fig.3.3. Step Response of sprung mass due to road disturbance 

In Fig. 3.3, the deflection of the car body due to road disturbances is shown here. Let the road 

disturbance input is 10 cm (0.1 m) step input, then we can see that the car body oscillates for 

the long time (more than 10 secs) and the maximum deflection of the body is about 17.5 cm 

(0.175 m) which 75 % of the road disturbance. 

Step Response 

1 	2 	3 	Time (6ec) 	.... 	C 	7 	0 

0.16 

0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

U 
0 

o.1 

C .1 4 

CY .1 "2 

0.06 

Il .04 
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IJ 

Fig.3.4. Step Response with close view 
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The passenger of the vehicle will not feel good having this much oscillation in the system. 

The maximum overshoot and more settling time can be the factors of damages to the 

suspension. system. 

3.4. 	Frequency Response 

The frequency response of the system is Fig. 3.5. with input road disturbances and the control 

force, respectively. 

oaoe~ 

rrctp.::ac'{F.~:7t,^ua~e :GF.:i!:!:.".'>iif GG:':.('i Ids^.,i `: ~ 	 'fiiWi';•'!1PY.(i::: ~'k' I:' t1:~Jiq'iYCP(YG:1T 

S 

9 	 J  	 i s 	 fi 

FreQLffq (redrsx) 

Fig.3.5. Frequency Response of sprung mass due to both inputs 

The frequency response of the suspension system due to the road disturbance input is shown 

in the left of Fig. 3.5. The solid blue line shows the frequency response of the deflection of 

the car body. There are two peaks points i.e. resonance points, shown in the figure. The first 

point is due natural frequency of the car body, the sprung mass, vibrations and the second is 

due to natural frequency of the wheel mass, the un-sprung mass, vibrations. 
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3.5. 	Observations 

There are some observations based on the analysis of the suspension system, which are as 

follows: 

• The suspension system's equation has no roots with positive real parts, hence, all 

poles in the LHS of s-plane. These Left Half Plane poles make the system open-

loop stable. 

• The system is having two natural frequencies of sprung mass and un-sprung mass. 

• There is uncertainty in the parameters of the suspension system. 

• These uncertainties in the parameters of the suspension system could affect the 

comfort and the safety of the vehicle. 

• It may be necessary for the designer to retune the controller to achieve the desire 

performance regardless the parametric uncertainties. 

	

3.6. 	Problem Statements 

The following problems are associated with the system for a Controller Design Engineer to 

be solved are: 

> Design a Robust Controller for the system to achieve the desire performance 

regardless the parametric uncertainties. 

➢ Design a Robust Controller which reduces the peak amplitude at the resonance 

frequency. 
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CHAPTER 4 	 Control Strategies 

4.1. 	Introduction 

There are different controlling methods which can be applied to a system for achieving desire 

output. This chapter consists of different control strategies for controlling the suspension 

system. The PID, QFT and H-infinity are described in this chapter. Their basic concepts, 

working methods are given in this chapter. 

4.2. 	Control System Design Basics 

An active vibration control is a method that relies on the use of an external power source 

called actuator (e.g. a hydraulic piston, a piezoelectric device or an electric motor). The 

actuator will provide a force or displacement to the system based on the measurement of the 

response of the system using control systems. Let see the basics of Control system, in Fig. 4.1 

shows a feedback control system 

r 	e 1 	 u 	 I 	Y 

Fig.4.1. Control System for the Plant 

The reference signals are denoted by r, the input to the controlled system P is u, the output of 

the system is y. The loop is closed by feeding back the tracking error e = r - y to the controller 

G. 

There are different closed-loop transfer functions can be defined which play an important role 

in a controller design process. They are as follows: 

1) The Loop-transmission gain function, L: 

L = GP 
	

(4.1) 

2) The Sensitivity function, S: 

S = (1 + GP)-1  = (1 + L)-1 	 (4.2) 
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3) The Complementary sensitivity function, T: 

T = GP(1 + GP)-1  = L(1 + L)-1 	 (4.3) 

Now, we can see the role of these transfer functions with the help of following equations 

y=GP(r—y) 

= (1 + GP)-'GP r 

y = Tr 	 (4.4) 

and 

e =r—y 

= r — Tr = (1 — T)r 

e = Sr 	 (4.5) 

Equations 4.4 and 4.5 show that S and T are related to output of the system and error of 

between the signals. 

4.3. 	Proportional-Integral-Derivative (PID) Controller 

The PID name comprises the first letters of the 3 terms which make up with controller: P 

stands for the Proportional term in the controller, I stand for Integral term for the controller 

and D stands for Derivative term. PID controller's algorithms are mostly used in feedback 

loops. PID or 3-terms controllers are widely used in industry. PID controllers can be 

implemented in many forms. 

It is interesting to note that more than half of the industrial controllers in use today utilize 

PID control schemes. Below is a simple diagram of illustrating the schematic of the PID 

controller. Such set up is known as non interacting form or parallel form. 

Output 

Fig.4.2. PID controller Schematic 
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Proportional control 

Pterm = KK  x Error 	 (4.b) 

It uses proportion of the system error to control the system. In this action an offset is 

introduced in the system. 

Integral control 

	

'term = Ki x f Error. dt 	 (4.7) 

It is proportional to the amount of error in the system. In this action, the I-action will 

introduce a lag in the system. This will eliminate the offset that was introduced earlier on by 

the P-action. 

Derivative control 

Dter„t = Kd  x (d(Error))/dt 	 (4.8) 

It is proportional to the rate of change of the error. The D-action will introduce phase lead in 

the system. This will eliminate the lag in the system that was introduced by the I-action 

earlier on. 

4.3.1. PID control 

The three controllers when combined together can be represented by the following transfer 

function. 

Gc  (s) = K p  + Kd  s + K j  js) 	 (4.9) 

The above equation 4.9 can be expressed in the form: 

Ge(s) = Kd ((s+ar)(s+a2)) 	
(4.10) l 	s 	J 

which indicates that PID controller is similar to lag lead compensator, with one absent pole. It 



is not possible to realize the PID controller by passive RC network because of the pure 

integration term and one more zero than the pole in its transfer function . However, it may be 

realized by active electronic components, Hydraulic and Pneumatic components. 

Since, the PID controller is similar to lag lead compensator; its design may be undertaken by 

analytical methods when the mathematical model of the plant is available. If mathematical 

model of a plant can be derived then it is possible to apply various design techniques for 

F(s) 

R{s) 	+ 	G(s) = Itp+Kas+Kl/ 	PLANT 	C(s) 

Fig.4.3. Block Diagram of PID Controller controlling Plant 

determining parameters of controller that will meet the transient & steady.state specifications 

of closed loop system. However if the plant is so complicated that its mathematical model 

cannot be easily obtained, then an analytical approach to the design of PID control is not 

possible. Then we must resort to the experimental approach to the design of PID controllers. 

4.3.2. Selecting the PID controller coefficients 

The process of selecting controller parameters to meet given performance specifications is 

known as controller tuning. 

A) Manual Tuning: Manual tuning of PID control is surprisingly common. Basically, the 

manual tuning is a trial and error process. But there is a procedure for tuning systems 

when we have some knowledge of system models. A systematic design procedure is 

as follows: 

Step 1) Determine whether the priority for the closed-loop system is reference 

tracking or disturbance rejection. 

Step 2) Determine whether steady state accuracy is essential to the control systems 

performance. 

Step 3) Proportional control tuning: Introduce proportional action by increasing the 

value of proportional gain,Kp  , until the speed of response is acceptable. 
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Step 4) Integral control tuning: If steady state accuracy is considered important then 

introduce integral action into the controller by increasing the gain Ki . The integral 

gain should be increased so that an acceptable settle time is achieved. 

Step 5) Balancing the controller terms: Increase K1 may increase the overshoot, to 

compensate, decrease K p  also introduce Ka  term. A little fine tuning will be 

necessary to achieve acceptable time responses. 

B) Ziegler-Nichols (Z-N) tuning methods: Ziegler-Nichols proposed two tuning method 

First and Second. First method is associated with the over-damped response system 

and second method is associated with the under-damped response system. Here, the 

second method is discussed. 

For the system under study, Ziegler-Nichols tuning second method will be used. In 

this method, Ki = 0 (i.e. the integral time T1  will be set to infinity) and 

Kd  = 0 (i.e. the derivative time Td  to zero). This is used to get the initial PID setting of 

the system. 

Fig.4.4. A Sustained oscillation and its Period 

In this method, only the proportional control action will be used. The Kp  will be 

increased to a critical value K. at which the system output will exhibit sustained 

oscillations. In this method, if the system output does not exhibit the sustained 

oscillations hence this method does not apply. 
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The PID controller transfer function also can be written as: 

GC (s)=K(1+— +sTd ) 
STt 

(4.11) 

From Ziegler-Nichol's second method, the table suggesting tuning rule according to 

the formula is shown. From these we are able to estimate the parameters of K p , T1 

and Td. 

Table 4.1: Z-N PID Parameters 

Type 	of 

controller 

K p Tt T d . 

P 0.5K 00 0 

PI 0.45 Kcr (1/1.2) Per 0 

PID 0.6 K~1 0.5P, 0.125 Per 

Where PQr is the period of oscillation at critical value 

4.4. 	Quantitative Feedback Theory (QFT) 

4.4.1. A Brief Introduction 

QFT is a classical approach to design a controller and suited for the systems having large 

uncertainties. It uses feedback of measurable plant outputs to generate an acceptable response 

from a system in the face of disturbance signals and plant modeling uncertainty. 

The plant uncertainty can be represented as either parametric (or structured) uncertainty, 

which implies specific knowledge about the variation in plant parameters, or non-parametric 

(unstructured) where only information about the variation in the plant's gain is known. It can 
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also be represented by a mixture of these two uncertainties, describing the gain and parameter 

variations in the plant model. 

The QFT is a practical method for designing control systems by quantitatively mapping the 

design specifications to constraints on the loop transmission gain-phase shape. So this 

method takes into account quantitative information on the plant's variability, the robust 

performance requirements, control performance specifications, the expected disturbance 

amplitude, and attenuation requirements. The QFT technique is based on the classical idea of 

frequency-domain shaping of the open-loop transfer function. 

As shown in Fig. 4.5, it uses unity feedback, a cascade compensator G(s), to reduce the 

variations of the plant output due to plant parameter variations and disturbances. 

ter 	 D2  

Controller 	 Plasm 

R 	.t.. I 	i A LI A c 

Fig.4.5. Feedback Control System 

The feedback loop compensator is designed to ensure that the robustness and disturbance-

rejection requirements can be met. So QFT is a transparent frequency-domain design 

technique in that the tradeoff between compensator complexity and performance are readily 

visualized, while at the same time parametric uncertainty is also addressed. 

Usually a system plant is represented by its Transfer Function, after a process of system 

modelling and identification. As a result of experimental measurements the values of 

coefficients in the Transfer Function have a range of uncertainty. Therefore, in QFT every 

parameter of this function is included into an interval of possible values, and the system may 

be represented by a family of plants rather than by a standalone expression. 

P s— If <(s+zi) 
VZ E z 	z 	E 	 I t 	4.12 n~~s+pi) ~ 	1 i,min~ c,max~~ Pi 	IPj,min~ Pj,max J 	( 	1 
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where z; and p;  are zeros and poles of the plant respectively. Hence these QFT design are 

undertaken using a Nichols chart (NC). Because a whole set of plants rather than a single 

plant is considered, the magnitude and phase of the plants, at each frequency, yields a set of 

points on the Nichols chart, instead of a single point. 

A frequency analysis is performed for a finite number of representative frequencies and a set 

of `templates' are obtained in the NC diagram which encloses the behavior of the open loop 

system at each frequency. Plant uncertainty is represented by a magnitude-phase surface 

called the `plant template', whose size and shape at a given frequency is determined by the 

set of all possible values of the transfer function coefficients. Larger templates indicate 

greater uncertainty; to avoid unnecessary conservatism, the template is usually chosen to be 

the smallest convex polygon enclosing all of the points. 

In this, the uncertainty in the plant gain and phase is represented as a template on the Nichols 

chart. These templates are then used to define regions called bounds in the frequency domain, 

where the open loop frequency response must lie, in order to satisfy the performance and 

stability specifications, and the disturbance-rejection requirements for the entire plant set. 

These regions or bounds are as following: 

The Stability bounds are calculated using these templates and the phase 

margin. 

2. The performance bounds are derived using the templates and upper and 

lower limits on the frequency-domain response. 

3. The disturbance bounds are based on the templates and the upper limit 

only. 

The compensator is determined through a loop-shaping process using a Nichols chart that 

displays the phase and gain margins, stability bounds, performance bounds, and disturbance-

rejection bounds. The disturbance-rejection and tracking action of the compensator is based 

on keeping the loop-transfer gain above the disturbance and tracking bounds on the Nichols 

chart. 
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During the loop shaping process, modification of the poles and zeros of the compensator 

produces transparent results, enabling the designer to examine the trade-off between 

compensator complexity (order) and system performance. 

Therefore, this QFT can be considered as a natural extension of classical frequency- domain 

design, which offers a formal approach to handle the plant uncertainties. The test of any good 

control theory is that it links the amount of feedback with the amount of uncertainty in a 

quantitative fashion. For example, if no uncertainties or disturbances are present, the 

technique should automatically yield the result that no feedback is required at all. 

4.4.2. 	Basics of QFT 

To understand the Basics of the QFT technique, The basic concept of controller should be 

understood. The Basic concept of the controller is explained here [15]: 

disturbances 
D(s) 

R(s) 	 + 

Signal  

	

Controller 	 Plant 	 O(t)  Output 
dynamics 	s al 

Fig.4.6. A Basic Controller Concept 

For a desired input reference there should be a desired output. Hence the desired transfer 

function is 

Y(s) 

	

T(s) = R(S) 	 (4.13) 

As the sensitivity function is responsible for variation in response with the variation in the 

parameters. The sensitivity function is defined as: 

_ 	1 	1  
S 	

_ 
	 (4.14) 

	

1+G(s)P(s) 	1+L(s) 
 

So the sensitivity function is inversely proportional to the loop-transmission gain. The Loop-

shaping of the Loop-Transmission function is being done in the QFT technique to obtain the 

desire output from the plant. where the Loop-Transmission Function is given as 

L(S) = G(s)P(s) 	 (4.15) 
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4.4.3. Design Technique Procedure 

The QFT design approach consists of a number of distinct steps, which can be illustrated as 

follows [12]: 

1. Design specifications: The specification can be defined in the time-domain using 

familiar figures such as the rise time t,-, settling time is  and maximum peak overshoot 

Mp, or directly in the frequency domain. Simple poles and zeros can be added to 

represent the specifications more closely. Specifications on the tolerance of the 

closed-loop system response, and on the disturbance-attenuation requirements, can 

also be given in various forms, such as gain and phase margins, rejection of 

disturbances at different points, tracking bandwidth, etc. 

2. Choosing the frequency array: A frequency array must be chosen prior to the detailed 

design stage. This consists of different frequency points, at which the templates and 

various bounds are computed. There is no strict criterion for choosing the frequency 

array. These chosen frequency points are known as the trial frequencies. 

3. Representation of plant uncertainty and template computation: Typically, parametric 

uncertainty models are used to represent uncertainty in the low-to-medium frequency 

range, and non-parametric uncertainty in the high-frequency range. The plant 

uncertainty is represented by templates on the Nichols Chart, showing the variation of 

the system frequency response (gain and phase) over its operating range at each 

chosen frequency. 

4. Selection of the nominal plant model: The QFT method is based on point wise design 

at the trial frequencies. It is necessary to define one of the representative functions in 

the uncertainty set to be the nominal transfer function. 

5. Generation and integration of bounds: The specifications from Step 1 and the 

templates from Step 3 are used to generate bounds at the trial frequencies in the 

frequency-domain. The open-loop transfer-function in Fig. 4.5. is given by: 

L(s) = G(s)P(s) 	 (4.16) 
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where P(s) denotes the nominal transfer-function and G(s) the controller. The 

transfer function L(w) must lie on or above the bounds at each of the trial frequencies. 

Satisfaction of the bounds for the nominal plant ensures satisfaction of the 

specification for all plants described by the uncertainty. In general following 

specification are considered in QFT: 

• Robust stability margin 

L(jc,i) IC 
Ws 1+L(jw) I— 	 (4.17) 

• Robust tracking performance 

ITL(iw)I < I1+L(ju)1 	ITu(jw)I 	 (4.18) 

6. Loop shaping: The controller is designed via a loop-shaping process, in the Nichols 

plane. The composite bounds, evaluated at the trial frequencies and the characteristic 

of the nominal open-loop transfer function are plotted together. The design is 

performed by adding gains or dynamic elements to the nominal plant frequency 

response to change the shape of the open-loop transfer function i.e. the boundaries are 

satisfied at each of the trial frequencies. The Final controller is then simply the 

aggregate of these gain and dynamic elements. Loop shaping is carried out in the 

frequency domain, on the Nichols diagram, by utilizing classical control design 

techniques. One of the principal benefits of adopting this approach is that it is very 

transparent, and the compensation can be built up gradually so that the changes to the 

controller are clearly evident at each step. 

4.5. 	H-infinity method 

4.5.1. H-infinity Basics 

H-infinity optimization of control systems deals with the minimization of the peak value of 

certain closed-loop frequency response functions [19]. To clarify this, consider by way of 

example the basic SISO feedback system of Fig. 4.7 
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i 	 K(s) 	P(S) 

Fig.4.7. SISO Feedback loop 

The plant has transfer function P(s) and the compensator has the transfer function K(s). The 

signal v represents disturbance acting on the system and z is the control system output. Then 

S_ 1 

1+PK 
(4.19) 

the sensitivity function of the feedback system. As the name implies, the sensitivity function 

characterizes the sensitivity of the control system output to disturbances. For a system, 

ideally error should be equal to zero, so according to equation 4.5, it should be equal to zero. 

The problem is that of finding a compensator K that makes the closed-loop system stable and 

minimizes the peak value of the sensitivity function. This peak value is defined as 

1ISIIL = max~,ERIS(1w)I 	 (4.20) 

where R denotes the set of real numbers. Because for some functions the peak value may not 

be assumed for any finite frequency, we replace the maximum here and in the following by 

the supermum or least upper bound, so that 

IISIIc = SUPWERIS(JW)I 	 (4.21) 

The justification is that if the peak value IS II of the sensitivity function S is small, then the 

magnitude of S necessarily is small for all frequencies, so that disturbances are uniformly 

attenuated over all frequencies. Minimization of IISII is worst-case optimization, because it 

amounts to minimizing the effect on the output of the worst disturbance (namely, a harmonic 

disturbance at the frequency where ISI has its peak value). 

A little contemplation reveals that minimization of IISII. as it stands is not a useful design 

tool. The frequency response function of every physical plant and compensator decreases at 

high frequencies. This means that often the sensitivity S can be made small at low 

frequencies but eventually reaches the asymptotic value one for high frequencies. Just how 

35 



small S is at low frequencies is not reflected in the peak value but is of paramount importance 

for the control system performance. For this reason, it is customary to introduce a frequency 

dependent weighting function W and consider the minimization of 

IIWSIIc = SUPWERIW(Jw)S(Jw)I 	 (4.22) 

Characteristically, W is large at low frequencies but decreases at high frequencies. 

4.5.2. Design Procedure 

There is a general augmented plant model, which comprises the physical system model and 

the weighting functions that define the performance specification. The particular weighting 

functions are explained for different control design approaches in the following subsections 

[211. 

Fig.4.8. General control configuration 

The H e,,, design problem is cast into a general control configuration (Fig.4.8) and solved. P is 

the generalized plant and K is the controller. The signal w contains all external inputs, 

including disturbances, sensor noise and commands; the output z is an error signal; v equals 

to the vector of the system-measured outputs y and u is the control input. 

The stabilizing controller can be found by minimizing the H norm from the vector of inputs 

w to the vector of outputs z of the augmented plant P. The input—output mapping of the 

control system is 

 [W]
U 

 [PI1 

P21 P22i [
W]
u 
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By substituting it = K(s)v in equation , the closed-loop transfer function is given by the 

lower linear fractional transformation Fl (P, K) as 

	

T.. = F1(P, K) = P11 + P12 K(I — P22K)-1P21 	 (4.24) 

The H~control problem is formed by finding an admissible controller K, 

	

JJTZWJJ. = JJF1(P,K)JL = max(Fi(P,K)(jw)) S y 	 (4.25) 

where y equals to an H-infinity norm IITJI,, and for H-infinity controller synthesis [19] 

Y~ 1 ; 
	

(4.26) 

y is a constant and maximum stability margin. 

1IF1 (P, K) II is the transfer function between the error signals and external inputs. In 

H, control problems the objective is to minimize JJF1 (P, K)JJ~ 

The minimization of this function minimizes the sensitivity function S and complementary 

sensitivity function T. In further discussion, we will see how the minimization of this 

function minimizes the sensitivity (S) and complementary sensitivity (T) of the system. 

Here, the above procedure is described in more general. Let P is a Plant to be controlled and 

K is a controller. W i and W2 are the weight functions. 

Fig.4.9. Controller using H-infinity control theory 

Now, error signal outputs are: 

z1 = Wl (w - Pu) 	 (4.27) 
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z2 = W2 Pu 	 (4.28) 

y=w-Pu 	 (4.29) 

The input-output mapping of the control system is 

Zl W1 -W1P 
1 Z2 = 0 	W2P [ u ] 	 (4.30) 
Y 1 -P 

The closed-loop transfer function is given by the lower linear fractional transformation 

Fl (P, K) as 

F1(P,K) = (i)+ ( _W")Z 	K(1 + PK)-2 = (W'-') 	 (4.31) 

In controller design process, the objective is to minimize IIF1(P• K)II~ 

IIF1(P,K)II~ = i , - 1 
(4.32) 

Where S and T are sensitivity and complementary sensitivity function respectively. 

4.5.3. Selection of the Weight functions 

The performance of the H-Infinity controller is dependent basically on the selection of the 

weight function. There are different approaches to select these weight functions. One. 

approach [20] is given as: 

1) The performance weight function W1 is in the given form: 
S+MOiB 

W1 M(s+O&)B ) 

Where 

 

1.1)  Steady-state offset less than 0; 

	

1.2) 	Closed-loop bandwidth higher than (iJB 

	

1.3) 	Amplification of high-frequency noise less than a factor M; 

(4.33) 
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2) The second strategy to determining performance weight function is given here: 

_ ~7s+~ 
W1 	(s+fA) 	 (4.34) 

The parameter i , which is limited to 0 	< 1, is the high-frequency limited value 

of W, , serves to constrain the maximum resonance peak in the ideal frequency 

response. The parameter A> 0 gives the 0 dB crossing of W1 when is small. The 

parameter /. is suggested to be related to the steady-state error of the system. 

There is a different approach to determine the weight functions is suggested by [22] 

A) For performance weight function 

W _ s+a 
1 	(bs+0.02) 

Where 

(4.35) 

a) a influence the singular value characteristics of S (sensitivity function) and T 

(complementary sensitivity function). 

b) b influence the singular value characteristics of S. 

B) For robustness weight function 

(Ls+1)(O.5Ls+1) 
2 

Where 

a) L is a constant and influence system complementary sensitivity function. 

(4,36) 
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CHAPTER 5 
	

Simulation Results 

5.1. 	Introduction 

In this chapter, Simulations results are shown. There are different Simulation results applied 

with Passive system, PID controller system, QFT controller system and H-Infinity controller 

system. The Problem with the system and control theory is discussed based on the 

simulation results. All simulations are done with the help of latest version of MATLAB 

simulation software. 

5.2. Passive System Simulation 

The Passive system consists of different parts such as sprung mass, un-sprung mass, body 

spring, wheel spring and damper. The Passive system simulation is done with the parameters 

in Table 5.1: 

Table 5.1. Passive system's Parameters values 

ms  body mass (sprung) 290 kg 

m„ wheel mass (unsprung) 59 kg 

ks  spring constant (body) 16 182 N/m 

kt  spring constant (wheel) 190 000 N/m 

F control force (in kN) 

cs  damping 	ratio 	of 	the 

damper 

1000 Ns/m 

r Road disturbance (in m) 

xs  x„ body and wheel travel (in m) 

The simulation model of the quarter car suspension system is drawn with the help of its 

motion's equations. 



The simulation file is shown below: 

File F_dit Itiew aimulaikn Format Zook (jetp 

D l G& 	RRIi (a l -D —y l ► 	10.0 	Normal  

L 	time 

Clock To Wodapacel 

Is 

0 	fs 	x xs 2 1 II 
xs 
xs 3 

r = 3~ 
RD 

S jspensionsystern9 	 outputs 

ro a d_d isti 

Fig.5.1. Simulation Block 

There is clearly shown that the system is having two inputs such as Road disturbance and 
control force. Also there are different outputs taken to fulfill the simulation purpose they are 
such as sprung mass (car body mass) displacement and its velocity and acceleration and un-
sprung mass (wheel body mass) displacement and its velocity and its acceleration. The 

dissertation work results are discussed only with displacement of sprung mass. 

5.2.1. Step Response 

It can be seen from Fig.5.1. that the system response is affected due to two inputs i.e. 

actuating control force and road disturbance. Let see the effect of these two inputs in the 
system response 

Fig. 5.2 and Fig 5.3 show the system response due to both control force and road disturbance, 

respectively, 
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Step Response 
x  1 p 1 	 StepResp of Cer©odyDeflection due to Force 

0.5 	1 	1 .5 Time ec) 	2.5 	3 	35 	4 

Fig.5.2. Step Response of the system due to control force 

Step Response 

StepResp of Car 	due to Road Disturbance 

0.5 	1 	1 .5 Time (iec) 	2.5 	3 	3.5 	4 

Fig. 5.3. Step response of the system due to road disturbance 

Now, Fig. 5.2 shows that the system response due to force is required gain where the system 

response due to road disturbances is under-damped and its posses a overshoot and oscillation 
in its response. 

This Overshoot and oscillation are responsible for making ride uncomfortable and these are 

to be controlled for better ride and safety of the vehicle. 
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5.2.2. Frequency Response 

The frequency response of the system due to road disturbance is taken with bode MATLAB 
command. This response is shown in the below figure: 

Bode Diagram 

FreqResp CarBodyDeflection due to Road 
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1 
1 

1 	1 	1 	1 	1 	1 
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1 	1 	I 	1 

+ 	1 	1 	 + I 1 + 	I 	I 	1 	1 	! + I 1 	1 	I 	I 	v 

10 Frequency (rad/sec) 10-  

Fig.5.4. Frequency response (Bode plot) due to road disturbance inputs 

As shown in Fig. 5.4, There are two peak points i.e. resonance points, shown in the figure. 
The first point is due natural frequency of the car body, the sprung mass, vibrations and the 
second is due to natural frequency of the wheel mass, the un-sprung mass, vibrations. 

If resonance occurs in the system it can be very harmful — leading to eventual failure of the 
system. Consequently, one of the major step for vibration control is to predict when this type 
of resonance may occur and then to determine what steps to take to prevent it from occurring. 
As the amplitude plot shows, changing damping can significantly reduce the magnitude of the 
vibration. Also, the magnitude can be reduced if the natural frequency can be shifted away 
from the forcing frequency by changing the stiffness or mass of the system. 
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5.2.3. Effect of Parametric variation 

As we consider the variation in the parameters of the system, then there is effect of this 

variation on the response of the system. Let see the variation in the responses. 

Step Response 
StepResp due to Road Dist with all Paramter changes 

0.18 

0.16 

0.14 

- 0.12 

0.04 

0.02 

0 
0 

Fig.5.5. Variation in Step Response of the system 

Bode Diagram 
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Fig.5.6. Variation in Frequency response of the system 
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The Fig. 5.5. shows that there is a variation in the oscillation of the car body (sprung mass) 

due to its parametric uncertainties which are present in the spring constant and sprung mass. 

The Maximum Deflection and settling time both get affected due to this variation. As sprung 

mass increases the maximum deflection and settling time increases. Also, as spring constant 

increases the maximum deflection and settling time increases. In further section, the effect of 

individual parameter is discussed. 

Fig. 5.6 , shows that the parametric uncertainties are also responsible for the variation in the 

frequency response. Due to this variation, the maximum amplitude at the resonance 

frequency is varying accordingly. 

Variation in sprung mass ms keeping body spring constant 

We have seen the variation in both parameters simultaneously on the system response. Now 

let see the effect of uncertainties in individual parameter. So that we can conclude that which 

parameter variation is more affective for the system response. 

To see this effect on the system, we keep one parameter constant and vary the other 
parameter. 

Let start with the body spring constant, ks, which keep constant and change the value of 

sprung mass, ms. The following figures are showing mass variation effect for different values 

of spring constant. 

Step Response 

Vd~IMidfl In Deflection due ins ch"eo With k8 = 9600 
0.16 

`ems = 450 
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0.04 

0.02 

0 
1 	2 	T6ne(gee) 	4 	5 	6 

Fig.5.7. Variation in response due to changing mass ms with spring ks = 9600 
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Step Respome 

SlepResp ns changing constant ks-I 6200 
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Fig.5.8. Variation in response due to changing mass ms with spring ks = 16200 
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Fig.5.9. Variation in response due to changing mass ms with spring ks = 22500 

Variation in CarDef due to mass (ms) keeping spring (ks) constant 
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Fig.5.10. Maximum Deflection variation in mass ms with different spring ks 
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Variation in spring constant ks keeping sprung mass constant 

Now we change the sprung mass ms constant and vary the body spring ks constant. Let see 
the effect of variation in this parameter. 

Step Response 

Vori4tion due to k$ with ins = 240 
0.18 

0.16 

0.14 

0.12 
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0 F  

0.06 

0.04 

0.02 

0 
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*--ks 226400 
t---------t---------•---------`------- 

ks= MM 

0.5 	1 	1,f ( ) 2 	2.5 	3 	3.5 

Fig.5.1 1. Response of variation in spring ks with sprung mass ms = 240 
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Fig.5.12. Response with variation in spring ks and sprung mass ms = 300 
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variation in CarDef due to changing spring ks keeping mass ms constant 
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• 

1 11 1.6 16 1.8 2 22 2.d 2A 2, 

spring constant ks 	 x 104 

Fig.5.13. Max. Deflection with variation in spring ks and sprung mass ms 

5.2.4. Observations 

There are some observations based on the simulations of the suspension system. These are: 

1) Sprung mass and spring constant both parameters are equally affect the system 

dynamics, as changes in these parameters result in varying the damping of the system. 

2) The maximum deflection and oscillation are directly proportional to the sprung mass. 

As mass increases the maximum deflection of the car body i.e. sprung mass increases. 

3) Again, the maximum deflection and oscillation are directly proportional to the spring 

constant. As spring constant increases the maximum deflection increases. 

4) For the system with higher values of spring constant, the effect of variation in sprung 

mass is less. But the maximum deflection and oscillation are more as compare to the 

system with lower values of spring constant 

5) As both parameters change, the maximum deflection and oscillation changes. So the 

Drive comfort and drive safety are also affected due to this variation. As oscillation 

increases the drive comfort decrease. 

5.2.5. Problems 

The performance of the passive system is dependent on the system as they are unable to adapt 

or re-tune to changing parametric uncertainties over time. So we aim to design a robust 

controller which would give a desired performance and drive comfort as well. 
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5.3. PID Controller Simulation Results 

The Block diagram for the system with controller is shown below: 

Efe Edit ykwa Otnudation FQr'mat Ids tldp 

❑ I d ®a 1 1 IT) 	1 	x= ~ 	° F5 	Normal  

r L: 	time 	 CarDef_passive 

Cloven To Wodtspacel 	 D 	 xs t 	To Wodapaos4 

 

fs  xui 1' 
fs 	 xs 2 

RD 	 xs 3 
t xus 2 

road_dlstr 	 - 

	

3 	 outputs PID 
Suspension_system1 

To Wodapsc~2 

ref 

,a,,displaeement 

xs t _ 	 t Wat 	 fs 	xus_I 
xs~ 
xs~3 

r xus~ 
P{D_cuntroller 	 xus 3 

	

- - 	 pid_def 
Suspension_ ith PID 

To Wodfspaoe 

Ready 	 i—Ocr—e1 	— 	 ;afe45 

Fig.5.14. Simulink Block diagram for PID controller 
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Integrator 	Gain 

*+ kp  1 

Out1 
In1 Gain2 

du/dt kd 

Derivative Gain1 

Ready 	
(100%_.... r. , __. _ - __. I 	__.. r-ode45  

Fig.5.15. Simulink block of PID configuration (ideal) 
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5.3.1. Step Response 

Sul~system (mask) --- - 

r kp 

28 

ki 

140 

kd 

110 

QK 	Cancel I 	Apply 1 

Fig.5.16. PID parameters values obtained manually 

outputs with ks 16180 and ms 290 
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Fig.5.17. Suspension system output with PID controller 

A PID controller is design with the above mention parameters values, these values are 

obtained by manually tuning of the parameters of PB) controller. The Ideal configuration is 

used to implement it as shown in Fig.5.16. 



5.3.2. Effect of Parametric Variation 

Now Let see the effect of variation of the parameter on PID controller. The following figures 

show the output of the passive system and the PID controlled system with least and highest 

values of parametric uncertainty. 

outputs with ks 9600 and ms 240 
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controlled output 
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Fig.5.18. Step response with PID for ms 240 and ks 9600 

outputs with ks 22400 and ms 450 
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Fig.5.19. Step response with PID output forms 450 and ks 22400 
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Fig.5.20. PID controlled output with ks 16182 and varying ms 

The above figures show the output of P11) controller with different values of sprung mass ms 
and spring constant k,, which show that there are no big changes in the response. but for low 
values of k5  its shows a certain steady state error while for high values of ks  , it works fine. 

Fig. 5.20 shows output variation with the changes in sprung mass ms keeping spring constant 
ks. There is no big sprung mass variation on the system and the mass variation effect is 
suppressed by PID controller. That means the robustness of PID controller is exists. 

5.3.3. Observations 

The some observations and Problem based on the implementation of PID are as follows: 

1) P increases overshoot, D decreases overshoot and increase rise time, I increases settling 
time and overshoot. 

2) Different combination values of PH) parameter do not show the robustness behavior. 
3) PID control design involves only one requirement at a time either reference tracking or 

disturbance rejection. 
5.3.4. Problems 

The problem in the design of PID controller is that the manual tuning of PID parameters 
requires more time. 



5.4. QFT Controller Simulation Results 
5.4.1. QFT Design Technique 

There are simulations results shown as per the step of QFT technique discussed in Chapter 4. 

The simulation results of those steps are as follows: 
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Fig.5.21. Upper and Lower Bounds Generation 
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Robust Stability Bounds 
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Fig.5.23. Robust Stability Bounds 
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Fig.5.24. Robust Input Disturbance Rejection Bounds 
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Intersection of Bounds 
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Fig.5.25. Intersection of QFT Bounds 
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Fig.5.26. Loop-shaping Response 

Now, with the step by step simulation the QFT controller is generated. 
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The controller design specifications are assumed as follows: 

Maximum overshoot in %: Mp < 30 % 

Settling time, sec: Ts <2 secs 

The QFT controller is obtained as: 

G(s) _ (48250(s + 105)(s + 0.01))/((s + 48)(s + 40)) 

5.4.2. Step Response 

Fig. 5.27 shows that the QFT controller achieves the desired response with the specific 
parameters of the suspension system. 
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Fig.5.27. QFT controlled Step Response 
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Bode Diagram 
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Fig.5.28. QFT controller Frequency Response 

QFT controller also reduce the amplitude at resonance frequency as shown in Fig.5.28. The 

Robustness of the controller is to be checked when the parameters uncertainties occur in the 

system. 

5.4.3. Effect of Parametric Variation 

The parameters values are changed in the simulink block. The different results are obtained 

as such: 
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Fig.5.29. Step Response with ms=240 and ks=9600 
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Fig.5.30. Response with ms=450 and ks=22400 
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Fig.5.31. Response varying with sprung mass ms and ks = 16182 
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Fig.5.32. Response varying with sprung mass ms and ks = 9600 
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QFT controller is also robust controller and it performs well for the parametric uncertainties 

problem such as discussed problem. Fig. 5.31 and Fig. 5.32 show that the variation in sprung 

mass ms and for different spring constant ks 16182 and 9600, respectively. The sprung mass 

variation is suppressed well by QFT controller. The next section will discuss the comparison 

between PID controller and QFT controller. 

5.4.4. Observations 

The some observations and Problem based on the implementation of QFT are as follows: 

1. As we decrease the gain of QFT controller, produces the less control force 

because of this control strategy is less effective while as we increase the gain 

causes more oscillation in response and also un-stability in the system. 

2. As value of zero approaches to origin, the system behavior improves. While 

increase in value of poles causes the increase the overshoot of the response. 

5.4.5. Problems 

The problem with the implementation of QFT control is that it involves a good 

approach to choose the values of zeros-poles for the loop-shaping to achieve the 

desired performance. 
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5.5. Comparison between PID and QFT techniques 

The comparison between these two techniques is discussed in this section. The comparison is 
based on the technique methodology and Robustness. 

QFT and P1D outputs ks=16162 and ms=290 
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Fig.5.33. PID and QFT controlled step response 
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Fig.5.34. PID and QFT step response with ms = 240 and ks = 9600 
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Fig.5.35. Varying Max. deflection with sprung mass and ks = 9600 
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Fig.5.36. Varying Max. deflection with sprung mass and ks = 16182 
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Fig. 5.33 and Fig. 5.34 shows, the output of both controllers at different values of sprung 

mass as well spring constant. The outputs of both controllers are desirable. Fig. 5.35 and 

Fig. 5.36 shows, the mass affect for the particular value of spring constant on the 

maximum deflection of sprung body. The variation effect of sprung mass is faster in PID 

controller as compare to QFT controller. 

5.5.1. Conclusion of Comparative study: 

The study of PID and QFT controller is based on the simulation results. The following 

observations are: 

a) PID is a time-domain based controller design technique while QFT is a frequency-

domain based controller design technique. 

b) PID controller introduces one pole and two zeros in the forward path while in QFT 

controller technique, design trade-offs at each frequency are transparent between 

stability, performance, and controller complexity (order). 

c) In PID technique, the time taken to design controller is based on tuning of 

Proportional, Derivative and Integral Gains while QFT technique, the time taken for 

controller design can be reduced, and controllers can be redesigned to cope up with 

any changes in specifications and uncertainties. 

d) In PID technique, control design involves only one requirement at a time either 

reference tracking or disturbance rejection. while in QFT controller can meet many 

performance requirements simultaneously. 

e) QFT controller is more robust to a wide range of plant parameter variations than PID 

controller. 
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5.6. H-infinity Controller Simulation Results 

5.6.1. H-infinity controller 

Fig.5.37. Block Diagram for H-infinity synthesis 

After providing the suitable weight function MATLAB command hinfsyn synthesis H-infinity 

controller. The generated controller's numerator and denominator are given here 

Numerator = [-35.35 -9.50e4 - 1.32e7 -6.66e8 - 1.7elO s - 1.834e11] 

Denominator= [ 1 2.234e5 2.496e7 9.578e8 2.158e10 2.508e11 3.14e10} 

Once the H-infinity controller obtained, it can be placed with the system as shown in the 

following figure 

F 	 Sysu.n 
MU 

IL 
.+--- ref 

Fig.5.38. H-infinity controlled suspension system 

63 



5.6.2. Step Response 

The H-infinity output is shown in the following figure. The desired output is achieved with 
this controller. Fig 5.39 shows the suspension system with h-infinity respond very smoothly. 

Fig. 5.40 shows that-H-infinity attenuates the resonance frequency amplitude effectively. 
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Fig.5.39. H-infinity controlled output for the system 
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Bode Diagram 
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Fig.5.41. Sensitivity and Complementary Sensitivity Function Plot 

The frequency response of the sensitivity function and complementary sensitivity function is 

shown in Fig.5.41. The frequency response of the sensitivity plot suggests that the sensitivity 

S can be made small at low frequency but when frequency increases the value of S reaches to 

the highest value. Which also implies that the frequency response of the system and 

controller decrease at high frequencies. 

5.6.3. Effect of Parametric Variation 
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Fig. 5.42. Response with sprung mass variation for spring constant ks.= 9600 
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Step Response 
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Fig 5.43. Sprung mass variation effect for spring constant ks = 16182 

5.6.4. Observations 

The some observations based on the implementation of H-infinity are as follows: 

1) The higher value of A increase the rise time of the response. 

2) The higher value of causes the increment in the steady-state error. 

3) The lower the sensitivity function S, the better the performance 
4) The small value of T, uncertainties can be handled effectively. 

It is found from the previous work that there are no rules are given to choose the appropriate 

weight function for the system. Due to this finding an algorithm in H-infinity control design 
process is difficult. Trial and error method is used to find out the appropriate weight functions 

and to synthesize controller. So a systematic algorithm is proposed to this trial and error 

process of the weight function selection on the basis of these observations of the 
implementation: 
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Fig.5.44. A Designed algorithm for selection of Weight functions 
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Fig.5.45. Step Response from the Designed Algorithm 

Fig. 5.45. shows that the different weight functions are responsible for the different outputs. 
The performance of the controller depends upon the process how appropriate weight 
functions are chosen. In the above figure, the output is obtained from the designed algorithm 
is compared to the response obtain from the work [18]. The performance parameter ISE 
obtained is 0.0139 and 0.0287 respectively. 

5.6.5. Problems 

The some problems based on the implementation of H-infinity are as follows: 

1) There can be different combinations of weight functions occur. These different 
combinations produce different optimal controllers. So it is difficult to decide criteria 
to obtain optimal controller. 

2) As we know, S + T = 1; so there is a trade-off between a small sensitivity function S 
for good performance and a small complementary sensitivity function T for 
robustness. It is difficult to make both functions small simultaneously at the same 
frequency. 
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5.7. Comparison between H-infinity and QFT control techniques . 
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Fig.5.46. Step Response of system with QFT and H-inf controller 

Table 5.2. ISE values for QFT and H-inf controllers 

Spring Constant (ks) 
/Sprung Mass (ms) 

ISE 

240 300 450 

QFr  

9600 0.0174 0.0182 0.0202 

16182 0.0136 0.0144 0.0166 

22400 0.0123 0.0131 0.0154 

H-inf  

9600 0.0166 0.0175 0.0198 

16182 0.0132 0.0141 0.0165 

22400 0.0120 0.0129 0.0154 
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Fig.5.48. Comparison of Max Deflection with sprung mass ks = 12000 

H-infinity controller and QFT controller both are robust controller with parameters variation. 

Fig.5.47 and Fig.5.48 shows that maximum deflection of the car body with respect to changes 

in sprung mass for the different values of spring constants. The plots show that the both 
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controllers produce output within less error even in parameters variations. But the deflection 

amplitude is more than provided input (0.1) in case of H-infinity control. 

Also the ISE table 5.2 shows the obtained ISE value for different sprung mass and spring 

constant for QFT and H-infinity controllers. ISE values for H-infinity controllers at different 

combinations of sprung mass and spring constant are almost equal to ISE values for QFT 

controllers. Similarly, ISE values change for QFT with respect to the change in sprung mass 

for different spring constant nearly equals to ISE values change for H-infinity. This means H-

infinity designed controller handles uncertainties little better than QFT designed controller. 

QFT designed controller for the studied system is performs little better than H-infinity 

designed controller in terms of ride comfort. 

5.7.1. Conclusion of Comparative study 

The study of the QFT controller and H-Infinity controller is based on the simulation results. 

The following observations are: 

1) Both techniques are basically frequency domain techniques. Although, QFT requires 

whole plant set information in terms of its magnitude and phase along with parameter 

ranges. While in H-infinity requires only nominal plant and the uncertainties. 

2) In QFT, the design specifications are converted to the upper and lower bounds for the 

loop-transmission gain, while H-infinity, the design specification converted as its 

norms on the closed loop gain. 

3) H-infinity designed controllers are generally higher order compensators. Hence 

implementation is difficult and cost is high. While QFT designed controllers can be 

obtained with low order, which can be implemented easily and also cost is low. 

4) Both techniques involve difficulties in their methodology such as QFT involves the 

loop-shaping of loop-transmission gain by changing the values of zeros-poles. While 

H-infinity involves the selection of weight functions to achieve the desired 

performance and robustness in controller. 
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CHAPTER 6 	 Conclusion and Future work 

6.1. Conclusion 

Suspension system deals with road disturbance and variation in its parameters. The variation 

in the parameters of the system affects the comfort and the safety of the vehicle. It is 

necessary to reduce the effect of this variation. 

Sprung mass and spring constant are the two factors which affect the vehicle comfort and as 

sprung mass increases the amplitude of vibration also increase. Again, the maximum 

deflection and oscillation are directly proportional to the spring constant. As spring constant 

increases the maximum deflection increases. 

PID performs well for the system but it has difficulty with the proper tuning of its parameters. 

Also PID is not a robust controller for a wide range of variation. QFT is robust controller 

design technique for parametric uncertainties. On comparing between two controller design 

techniques, the simulation results with QFT prove more effective than PID. The difficulty 

with QFT is that it involves loop-shaping process of the loop-transmission function. 

H-infinity control design technique is also a robust controller design technique. It involves 

the minimization of sensitivity function and complementary sensitivity function directly. On 

comparison with QFT, the simulation results of H-infinity showed that both controllers can 

work effectively with the parameter variations. Moreover, the selection of weight functions is 

like a process of loop-shaping. 

Hence, the performance of the controller with QFT and H-infinity design techniques can be 

same. The choice is depends upon the control engineer. 

6.2 	Future Scope 

Application of various new optimization techniques opens a doorway to improve the 

performances. The performance of H-infinity controller can be further improved by the 

Application of new optimization techniques such as Genetic algorithm, Pattern search, in 

selecting the weight functions. 

The future research would include the controller complexity reduction using optimizing 

techniques. This will help in reducing the controller order while keeping intact the behavior 

of original controller. 

72 



References 

1. A Book on "Theory of Ground Vehicles" by J. Y. Wong, Prof. Carleton University, 

Canada, 4 h̀  Edition, John Willey & Sons Inc., NY 

2. M. Appleyard, P. E. Wellstead, "Active Suspension : some background ", IEEE 

Proceedings Control theory Application, March 1995, vol. 42, no.2, pages: 123-128 

3. D. Karnopp, "Active and Semi Active vibration isolation", Current Advances in 

Mechanical Design and Production, 6th  Cairo International MDP conference, Jan 1996, 

pages: 409-423 

4. Chi Z., He Y., Naterer G. F., "Design Optimization of vehicle suspensions with a quarter 

vehicle model", Transactions of the CSME, June 2008, vol. 32 no. 2, pages:297-312 

5. Matej Andrejasic, "MEMSAccelerometers", seminar on MEMS, University of Ljubljana, 

Dept. of Physics, March 2008 

6. A Book on "Modelling MEMS and NEMS" by John A. Pelesko, David H. Bernstein, 

Chapman & Hall Co. 

7. K. N. Anakwa, R. Dion, S. C. Jones, "Development and Control of a Prototype 

Pneumatic Active Suspension system", IEEE transactions on Education, Feb 2002, vol. 

45, no.1, pages:43-49 

8. S. Molueeswaran, "Development of Active Suspension systems for automobile using PID 
controller", Proceedings of the World Congress on Engineering, July 2008, vol. 2, 

pages:3-7 

9. S. Molueeswaran, S. Vijayarangan, "Analytical and Experimental studies on active 

suspension system of light passanger vehicle to improve ride comfort", ISSN, 

MECHANIKA, March 2007, vol. 2, pages:34-41 

10. Ali K. Sedigh, M. J. Yazadanpanah, "A QFT approach to robust control of automobile 

active suspension", 5th  ASIAN Control Conference, IEEE, Jan 2004, pages:604-6 10 

11. K. Takayuki, I. Jun, M. Konishi, "Positioning control of one link arm with parametric 
uncertainty using QFT method', SICE Annual Conference, Japan, August 2008, 

pages:3268-3271 

12. S. F. Wu, M. J. Grimble, S. G. Breslin, "Introduction to QFT for lateral robust flight 

control systems design", Elsevier Science Ltd., Control Engineering Practice 6, 1998, 

pages:805-828 

73 



13. Yu Jinying, K. Zhao, Jian Cao, "Application of one-degree of freedom QFT tracking 

controller to Hydraulic simulator design". IEEE conference, Japan, 2006, pages:545-548 

14. P. S. V. Nataraj and Mukesh D. Patil, "Robust control design for non-linear Magnetic 

Levitation System using QFT', IEEE conference, 2008 

15. A Book on "Quantitative Feedback Theory, Fundamental and Applications", by 

Constantine H. Houpis, Steven J. Rosmussen, 2' Edition, Marcel Dekker Inc, NY 

16. D. Wang, F. Wang, H Bai, "Design and Performance of QFT-H-infinity controller for 

Magnetic Bearing of High Speed motors", ICIEA IEEE conference 2009, pages:2624-

2629 

17. A. Kruczek, A. Stribrsky, H. Martin, "H-infinity controlled actuators in automotive active 

suspension system", Proceeding of 9th  Biennial ASME Conference on Engineering 

Systems Design and Analysis, Israel, July 7-9, 2008, pages: l -5 

18. C. Poussot, O. Sename, L. Dugard, "Multi-objective qLPV H-infinity control of a half 

vehicle", Mini conference on vehicle system dynamics, identification and anomalies, 

VSDIA, Hungry, HAL journals, October 2007 

19. K. Huibert, "Robust Control and H-infinity Optimization — Tutorial Paper", Automatica, 

vol. 29, no.2, pages:255-273 

20. R.W. Beaven, M.T. Wright and D.R. Seaward, "Weighting Functions Selection in the H-

infinity Design", Control Eng. Practice, Elseiver Science Ltd., 1996, vol. 4, no. 5, 

pages:625-623 

21. P. Rafal, M. Katja, A. Sinirnov, "H-infinity control of active magnetic suspension", 

Mechanical Systems and Signal Processing 24, Elsevier Science Ltd., 2010, pages:995- 

1 ei 

22. G. Cao, S. Fan, G. Xu, "The Characterstics analysis of Magnetic Bearing based on H-

infinity controller", Proceedings of the 5th  World Congress on Intelligent control and 

Automation, June 2004, pages:752-756 

74 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

