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Abstract 

Sensitivity and Robustness is the key factor while designing the controller for nonlinear systems. 

One of the performance objectives for controller design is to keep the error between the 

controlled output and the set-point as small as possible. The control of many non-linear, 

inherently unstable systems using conventional methods is both difficult to design and 

marginally satisfactory in implementation. The introduction of optimization techniques in control 

engineering that makes use of evolutionary computation and an implicit imprecision is successful 

in counteracting these limitations. The field of computational intelligence has incorporated to 

such systems with an objective to achieve higher optimality and satisfactory performance. 

The main objective of this work is to design "Simulated Annealing Algorithm" for the well 

known "Travelling Salesman Problem". In "Travelling Salesman Problem" the primary goal is to 

reduce the cost (i.e. the distance travelled by the person to cover all the cities once and once and 

return to their starting city). Basically, the aim is to achieve "Global Minima" in the total search 

space given. In this algorithm, firstly a random route is selected and its cost is calculated then 

onwards, according to "Metropolis Criteria" acceptance and rejection of route are done to 
improve the cost. 

For this purpose; the supporting theory of "Simulated Annealing Algorithm" and "Travelling 

Salesman Problem" were discussed. After that, the mathematical analysis for the convergence of 

the "Simulated Annealing Algorithm" was discussed. Then onward, the algorithm is 

implemented for a small size "Travelling Salesman Problem" (i.e. 10 cities "Travelling Salesman 

Problem"). Then, the size of the problem is increased in the small steps. After that a comparative 

study of the "Simulated Annealing Algorithm" And "Tabu Search Algorithm" has been done. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation: 

The problem based on vehicle routing basically involves finding a set of delivery routes from 

one or several central depots to various demand points (e.g. consumers), in order to optimize a 

kind of objective function (minimization of routing costs, or the sum of fixed and variable costs, 

or the number of vehicles required, or the time consumed in following the route, etc.). There are 

some constraints on the vehicle like maximum rout time constraints, capacity constraints. For 

example, the problem arises when there is only a single vehicle of unlimited capacity, unit 

demands, only the routing costs, and an objective function which minimizes total distance 

travelled, is the famous Travelling Salesman Problem (TSP)[1]. 

Instead of minimizing the distance there may be several other type of objective function 

notations such as time, cost, and number of vehicle required in the fleet which may be considered 

equivalently. With several vehicles of common capacity, a single depot, known demands, and 

same objective function as Travelling Salesman Problem (TSP), there is a standard vehicle 
routing problem. 

A huge amount of literature devoted only to Travelling Salesman Problem has made a good 

impact. One has to simply consult [1] to be convinced that Travelling Salesman Problem is one 

of the most fundamental and prominent, the most intensively investigated among all unsolved 

classical combinatorial optimization problems. Although everybody can easily explain and 

clearly conceptualize the Travelling Salesman Problem. It is, in fact the most difficult and first 

combinatorial type of problem. 

The work done on this problem is partially reflection of the fact that the Travelling Salesman 

Problem encountered and represents a huge set of different kind of practical problems [1]. A 

specific and representative example of such practical problem is the application of Travelling 

Salesman Problem in the drilling holes on printed circuit board. The Travelling Salesman 
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Problem is the embedded component of most of the vehicle routing problem such as retail 

distribution, mail and newspaper delivery, municipal waste collection, fuel oil delivery etc. It 

also has some surprising application such as in robotics. 

Motivated by extensive usability and applicability of "Travelling Salesman Problem" and its 

intensive computation, the most important objective of this thesis devoted toward developing a 

method to solve "Travelling Salesman Problem". The secondary objective of this thesis is to 

analyze the performance of this method with respect to other existing method for solving 

Travelling Salesman Problem. The third objective of this thesis is the computational study of 

Travelling Salesman Problem via examination of the quality of its final solution. 

1.2. The Problem Statement: 

The Travelling Salesman Problem is stated as follows: 

Given a set ofN cities coordinate by which we calculate the distance between any two cities, and 

a salesman is required to visit each and every city once and only once, starting from any city and 

returning to the city of departure; then "what is the shortest route, or tour, that he must choose in 

order to minimize the total distance he travelled?" with the assumption that there exist a direct 

straight path between any two cities. Instead of minimizing the distance there may be several 

other type of objective function notations such as time, cost, and number of vehicle required in 

the fleet which may be considered equivalently. Mathematically, it can be formulated as follows: 

Given a set of cities vertex V = {v0 ,...., vN  } and the distance, di,, from v;  to v1 , what is the best 

order cycle permutation, c = (v(1),..... a(N)) of V, that minimizes the cost function, 

N-1 

C(a) _ 	d[6(j),6(itl)] + u[6(N),_(1)] 	 (1.1) 
i=1 

It is necessary to note that this permutation is selected by all cyclic permutations; there are 

2 	
such permutations, in the Travelling Salesman Problem with symmetric distance matrix. 
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1.3. Travelling Salesman Problem and Combinatorial Optimization: 

Combinatorial optimization is a subject which consists of problems that are central to many 

disciplines of science and technology engineering. Ongoing research in these areas has devoted 

towards developing the efficient methodologies and techniques for finding (minimum or 

maximum) the optimum values of a function of many independent variables. The function which 
we have to optimize is, usually called cost function, objective function, represent a measure of 

quantitative "goodness" of some complex systems. It is one of the important reason that the last 

three generation of combinatorial mathematician and operations research analysts, including 

computer scientist and engineers along with optimality control engineers, cumulatively have 

devoted literally many man years to study combinatorial optimization and extensive work on 

such problems. 

Travelling Salesman Problem is one of the basic and most representative problem of all type of 

combinatorial optimization problem in general, it is an embedded component of most of the 

vehicle routing problems. It seems to be extremely interesting that how often the old method for 

solving Travelling Salesman Problem have precipitated and generated new and general 

techniques and methods in combinatorial optimization. The objective of this section is to 

introduce the reader with the flavor and a good appreciation of its historical importance and to 

highlight some key events. 

From the earliest studies of discrete models, the Travelling Salesman Problem has been a major 

stimulant to research on combinatorial optimization. The early studies of the Travelling 

Salesman Problem pioneered the use of cutting plane techniques in integer programming and 

were responsible for several important ideas associated with tree enumeration method including 

coining the term "branch and bound". At that time, in the context of dynamic programming, 

problem of partitioning and decomposition introduced that will later proved to be fruitful in other 

applications of dynamics programming, and in accessing heuristic method of combinatorial 

optimization. An isolated probabilistic study of the Travelling Salesman Problem in the plane has 

become widely recognized as the seminal contribution to the probabilistic evaluation of heuristic 

methods for combinatorial optimization. 
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There are so many contributions to combinatorial optimization throughout 1950's and 1960's, 

for such problem classes as machine scheduling and production planning with setup cost, crew 

scheduling, set covering, and facility location problem were extensions and generalizations of 

these basic themes. Ongoing research work focused on the designing of optimization algorithms, 

usually based upon dynamic programming recursions' or somewhat tailored versions of general 

purpose integer programming methods, very often for special case problem in the problem class. 

At the same time that these integer and dynamic programming methods were evolving, 

combinatorial optimization was emerging and flourishing as a discipline in applied mathematics, 

based, in the large part, on the widespread practical and combinatorial applications of network 

flow theory and its generalizations such as nonbipartite matching and matroid optimization. 

Indeed, it is easy to understand the importance of these landmark contributions in defining 

combinatorial optimization as we know it today. 

Although researchers were designing and applying heuristic (approximate) algorithms during the 

1950's and 1960's for example, exchange heuristics for both the Travelling Salesman Problem 

and facility location problem, optimization based methods remained at the forefront of the 

academic activity. The heuristic algorithms developed at this time may have been progenitors of 

the algorithms studied later, but their analysis was often of such a rudimentary nature that 

heuristic did not capture the imagination and full acceptance of the academic community of this 

era. Rather than statistical assessment or error bound analysis, limited empirical verification of 

heuristics ruled the 1960's. 

Two developments in the 1970's, namely the computation complexity theory and the evolution 

of enhanced capabilities in mathematical programming, revitalized combinatorial optimization 

and precipitated a new focus in its research. The familiar computation complexity theory has 

shown that the Travelling Salesman Problem and nearly every other "difficult" combinatorial 

optimization problem, the so called NP-complete (nondeterministic polynomial time complete) 

class of problems, are all computationally equivalent; namely, each of those problems has eluded 

any algorithmic design guaranteed to be more efficient than tree enumeration, and if one problem 

could be solved by an algorithm that is polynomial in its problem size, then they all could. This 

revelation suggested that algorithm possibilities for optimization methods were limited, and 

motivated renewed interest to design and analyze effective heuristics. Again, the Travelling 
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Salesman Problem was at the forefront during this era. Worst case (i.e. performance guarantee) 

analysis, statistical analysis, and probabilistic analysis of various heuristics for the Travelling 

Salesman Problem typified this period of research and were among the first steps in the evolution 

of interesting analytical approaches for evaluating heuristic methods. Indeed, the mere fact that 

computational complexity theory embraced the "infamous" Travelling Salesman Problem 

undoubtedly was instrumental in the theory's acceptance as a new paradigm in operation 

research, computer science and engineering 

Computation complexity theory has become pervasive, so much so that Garey and Johnson's 

comprehensive monograph discusses more than 300 combinatorial applications (320 application 

exactly), and the Travelling Salesman Problem is the first representative problem discussed. 

Consequently, the Travelling Salesman Problem would appear to be both a source of inspiration 

and a prime candidate for analysis by heuristic methods. 

Cumulatively, this fertile decade of 1970's research has yielded much improved capabilities for 

applying optimization methods to combinatorial problems, capabilities that tend to 

counterbalance he trend, stimulated by computational complexity theory, towards heuristic 

methods. As a consequence, heuristic methods provide excellent opportunities for the current 

algorithmic developments for the Travelling Salesman Problem of the 1980's. 

1.4. Methodology: 

Currently, the search for faster heuristic methods for combinatorial optimization problems seems 

to follow two different directions. On the one hand, he search for faster computation machinery 

such as the FTTP, Pentium, and Quad core processor has received a substantial amount of 

attention. On the other hand, there has been a considerable amount of effort devoted to the 

development of better and efficient algorithms. The number of instances in which these 

methodologies and algorithms thus developed to solve the Travelling Salesman Problem have 

been used successfully in practical applications has been growing encouragingly over the past 

years. These algorithms are classified, into two categories, namely exact and heuristic 

(approximate) algorithms. 

An example of such exact algorithm for solving the Travelling Salesman Problem is the branch 

and bound algorithm. This method is generalized scheme for limiting the necessary enumeration 
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of the entire configuration space of the Travelling Salesman Problem, thus improving on the 

exhaustive search technique. It accomplishes this by arranging the configuration space as a tree 

and attempting to fmd the bounds by which entire branches of the configuration space may be 

discarded from the search. Let us consider a configuration space of an N city Travelling 

Salesman Problem, which may be represented by a number of binary state variables 

corresponding o the presence of a tour edge (or the branch of the tour); each edge directly 

connects city i to city j. From this configuration space, we can derive that there are N(N-

1)/2 such possible edges, and of course "only" (N- 1)!/2 combinations of the binary state 

variables to map to the valid tours. It is important to note that, in this method, a tree is 

constructed such that it branches in two directions at each node, depending on whether or 

not a particular edge is considered part of the tour. As we descend through the tree, the 

distance of the current incomplete tour grows as certain edges considered are included in 

the tour. If a certain upper bound has already been established for the optimal tour length, then 

an entire of the configuration space tree may be eliminated if the current incomplete tour 

length already exceeds that bound. Equally important to know that as the algorithm 

proceeds through the search tree, lower and upper bounds may be discovered as new 

branches are traversed. Although this ability to prune the search tree is vital to the success of 

the branch and bound algorithm, such expansion and pruning of the search tree can 

continue endlessly. 

Though most of these algorithms have aimed for efficiency and computational tractability, 

the TSP is a NP-complete problem. In other words, the TSP is unlikely to be solvable 

exactly by any algorithm or amount of computation . time when the problem size (the 

number of cities in the TSP), N, is large. Because of the exponentially dependent nature 

of the computation on N, the computing time in employing an exhaustive search in solving 

the TSP for the exact solution is practically infeasible. Such infeasibility can be evidently 

demonstrated in a simple example. Let us consider a computer that can be programmed to 

enumerate all the possible tours for a set of N cities, keeping track of the shortest tour. 

Suppose this computer enumerates and examines a tour in one microsecond. At this rate 

the computer would solve a ten city problem in 0.18 seconds, which is not too bad. In a 

fifteen city problem, the computational effort would require over twelve hours. But, a 

twenty city problem would require nearly two thousand years. It is not too difficult to 
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render such an algorithm entirely impractical--only a small increase in the problem size 

causes a nearly unbounded computation time. 

Because of the impracticality in employing exact algorithms in solving the Travelling 

Salesman Problem, there exists fortunately another algorithmic category that constitutes 

quite a few practical heuristic (or approximate) algorithms, known as iterative improvement 

algorithms, for finding nearly optimal solutions for the Travelling Salesman Problem and 

other combinatorial optimization problems. 

Iterative improvement starts with a feasible tour and seeks to improve the tour via a sequence of 

interchanges. In other words, it begins by selecting an initial state in the space and 

successively applying a set of rules for alternating the configuration so as to increase 

the optimality of the current solution. Given a random starting solution, the algorithm 

descends on the surface of the objective function until it terminates at a local minimum. 

The local minimum occurs because none of the allowed transitions or moves in the 

configuration space yield states with lower objective function. Thus, one application of this 

algorithm yields what may be a fairly optimal solution. By repeating this procedure many 

times, the probability of finding more highly optimal states is increased. The best-known 

algorithms of this type are the edge (branch) exchange. In the general case, r edges in a 

feasible tour are exchanged for r edges not in that solution as long as the result remains 

a tour whose length, distance, or cost is less than that of the previous tour. Exchange 

algorithms are referred to as r-opt algorithms where r is the number of edges exchanged at 

each iteration. 

In an r-opt algorithm, all exchanges of r edges are tested until there is no feasible exchange 

that improves the current solution. This solution is then said to be r-optimal, In general, the 

larger the value of r, the more likely it is that the final solution is optimal. Even for approximate 

algorithms, the number of operations necessary to test all r exchanges unfortunately increases 

rapidly as the number of cities increases. As a result, values of r = 2 and r = 3 are the ones 

most commonly used. 

Such heuristic algorithms, whose rate of growth of the computation time is a low order 

polynomial in N, rather than exponential in N, have been observed to perform well. Among 
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these heuristic algorithms, a modified iterative improvement heuristic known as "Simulated 

Annealing" Algorithm is selected to investigate the "Traveling Salesman Problem". 

1.5. Simulated Annealing: 

Annealing is the process of heating a solid and cooling it slowly so as to remove strain 

and crystal imperfections. 	The Simulated Annealing process [2] [3] consists of first 

"melting" the system being optimized at a high effective temperature, then lowering the 

temperature by slow stages until the system "freezes" and no further changes occur. At 

each temperature, the simulation must proceed long enough for the system to reach a steady 

state. The sequence of temperatures attempted to reach to a steady-state equilibrium is 

referred to as an annealing schedule. During this annealing process, the free energy of the 

solid is minimized. The initial heating is necessary to avoid becoming trapped in a local 

minimum. Virtually every function can be viewed as the free energy of some system and 

thus studying and imitating how nature reaches a minimum during the annealing process 

should yield optimization algorithms. 

In 1982, Kirkpatrick, Gelatt & Vecchi [2] observed that there is an analogy between 

combinatorial optimization problems such as the TSP and large physical systems of the kind 

studied in statistical mechanics. Using the cost function in place of the energy function and 

defining configurations by a set of energy states, it is possible, with the Metropolis 

procedure [4] [5] that allows uphill transitions, to generate a population of configurations 

of a given optimization problem at some effective temperature schedule. This temperature 

schedule [6] is simply a control parameter in the same units as the cost function. This 

procedure is highly inspired from "Markov Chain" [7]. 

Just what simulation, i.e. imitation, here means mathematically, 	along with its underlying 

relation with statistical physics. The resulting method called "Simulated Annealing" [8] [9], 

which is a heuristic combinatorial optimization technique that modifies the iterative 

improvement method by allowing the possibility of uphill moves in the configuration space, 

has become a remarkably powerful tool in solving global optimization problems in general 

and the TSP in particular. 
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1.6. Overview of the Thesis: 

In chapterl, the problem statement for "Travelling Salesman Problem" has been given and some 

methodologies were also discussed. In chapter 2, theory related to "Simulated Annealing 

Algorithm" was given in relation with combinatorial optimization. In chapter 3, the Analytical 

Analysis of "Simulated Annealing Algorithm" along with its convergence mathematics was 

provided. In chapter 4, some practical applications available at laboratory were discussed in brief 

along with their "State Space Modeling". In chapter 5, simulation results obtained from 

application of "Simulated Annealing Algorithm" as well as "Tabu Search Algorithm" on 

"Travelling Salesman Problem" were given and in the last section a comparative analysis of 

"Simulated Annealing Algorithm" and "Tabu Search Algorithm" has been provided for 30, 50, 

75, 442, 535 cities data collected from "stsp_v61 from math work provided by Arvind Seshadri" 

[10]. In the last chapter that is chapter 6, conclusion and future application of Simulated 

annealing algorithm were given. 
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CHAPTER 2 

CLASSICAL SIMULATED ANNEALING ALGORITHM 

2.1. Introduction 

As briefly introduced in the previous chapter, Simulated Annealing [2] and independently 

[3] is one of the most powerful heuristic optimization techniques for solving difficult 

combinatorial optimization problems which have been known to belong to the class of NP-

complete problems. This new approach was originally invented and developed by 

physicists based on ideas from statistical mechanics and motivated by an analogy to the 

behavior of physical systems in the presence of a heat bath. Because the number of 

molecules in the physical system of interest is very large, experimental measurements of 

the energy of every molecule in the system is practically impossible. Physicists were thus 

forced to develop statistical methods to describe the probable internal behavior of molecules. 

In its original form, the Simulated Annealing Algorithm is based on the analogy between 

the simulation of the annealing of solids and the problem of solving large combinatorial 

optimization problems, where the configurations actually are states (in an idealized model 

of a physical system), and the cost function is the amount of (magnetic) energy in a state. 

For this reason, the algorithm became known as "Simulated Annealing ". With the Metropolis 

procedure, Simulated Annealing offers a mechanism for accepting increases in the 

objective function in a controlled fashion. At each temperature setting, an increase in the tour 

length is accepted with a certain probability while a decrease in the tour length is always 

accepted. In this way, it is possible that accepting an increase will reveal a new configuration that 

will avoid a local minimum or at least a bad local minimum. The effect of the method is that one 

descends slowly. By controlling these probabilities, through the temperatures, many random 

starting configurations are in essence simulated in a controlled fashion. An analogy similar to 

this is well-known in statistical mechanics. 
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The non-physicist, however, can view it simply as an enhanced version of the familiar 

technique of "iterative improvement," in which an initial configuration is repeatedly improved 

by making small local alterations until no such alteration yields a better configuration. 

Simulated Annealing randomizes this procedure in such a way that allows for occasional 

"uphill moves," changes that worsen the configurations, in an attempt to reduce the 
probability of getting stuck at a poor and locally optimal configuration. 	Since the 
Simulated Annealing Algorithm is a generalization of "iterative improvement" and because 

of its apparent ability to avoid poor local optima, it can readily be adapted in solving 

new combinatorial optimization problems, thus, offering hope of obtaining significantly 

better results. 

Ever since Kirkpatrick [2] introduced the concepts of annealing with incorporation of the 

Metropolis [4] procedure into the field of combinatorial optimization and applied it 

successfully to the "Ising spin class" problem, much attention has been devoted to the 

research of the theory and applications of Simulated Annealing. Important fields as diverse 

as VLSI design [2], and pattern recognition [5] have been applying Simulated Annealing 
with substantial success. 

Computational results to date have been mixed. For further detailed examinations, an interested 

reader is encouraged to refer to [2]. 

In order to fully appreciate the thrust that is underlying the Simulated Annealing Algorithm 

as introduced in Section 2.4, it is important to understand Local Optimization which is 

briefly reviewed in Section 2.2 and the birth of the Simulated Annealing Algorithm 

which is discussed in Section 2.3. 

2.2. Local Optimization 

To gain a real appreciation of the Simulated Annealing Algorithm as will be described in 

more detail in Section 2.3 and Section 2.4, one must first understand Local Optimization. 

A combinatorial optimization problem can be specified by identifying a set of configurations 

together with a "cost function" that assigns a numerical value to each configuration. An 

optimal configuration is a configuration with the minimum possible cost (there may be more than 
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one such configuration). 	Given an arbitrary configuration to such a problem, Local 

Optimization attempts to improve on that configuration by a series of incremental, local 

changes. To define a Local Optimization algorithm, one first specifies a method for perturbing 

configurations so as to obtain different ones. 	The set of configurations that can be 

obtained in one such step from a given configuration i is called the neighborhood of i. The 

algorithm then performs the simple loop shown in Figure 2.1 (with the specific methods for 

choosing i and j left as implementation details). 

Although i need not be a global optimal configuration when the loop is finally exited, it 

will be locally optimal in that none of its neighbors has lower cost. The hope is that "locally 

optimal" will be good enough. Because the locally optimal configuration is not always 

sufficient as can be seen from Figure 2.2, the Simulated Annealing Algorithm may provide the 

means to find both good locally optimal configurations and possibly a globally optimal 

configuration. Hence, it is the topic of discussion of the next section and the following. 

1. Get an initial configuration i. 

2. While (there is an untested neighbor of i) do the following: 

2.1 Let j be an untested neighbor of i. 

2.2 If cost 0) < cost (i), set i =j. 

3. Return i. 

Figure 2.1: Local Optimization Algorithm. 

2.3 Statistical Mechanics- A Physical Analogy 

As will be seen in the next section, Simulated Annealing is the algorithmic counterpart 

to a physical annealing process of statistical mechanics, using the well-known Metropolis 

Algorithm as its inner loop. Statistical mechanics concerns itself with analyzing aggregate 

properties of large numbers of atoms in liquids or solids. The behavior is characterized 
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by random numbers fluctuating about a most probable behavior, namely the average behavior 

of the system at that temperature. An important question is: What happens to the 

molecules in the system at extremely low temperatures, i.e. about zero degree? The low-

temperature state may be referred to as the ground state or the lowest energy state of the 

system. Since low-temperature states are very rare, experiments that reveal the low- 

Cost Function 

CF 	 Plateau 

Local Minima 	 1 

Global Minima -► 

Co Cigars to n, 

Figure 2.2: Plateau Local Minima and Global Minimum for the Cost Function. 

temperature state of a material are performed by a process referred to as annealing. In 

condensed matter physics, annealing denotes a physical process in which a solid material 

under study in a heat bath is first melted by increasing the temperature of the heat bath to a 

maximum value at which all particles of the solid randomly arrange themselves in the 

liquid phase; this melted material is then cooled slowly by gradually lowering the 

temperature of the heat bath, with a long time spent at temperature near the freezing point. 
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It is important to note that the period of time at each temperature must be sufficiently long 

to allow a thermal equilibrium to be achieved; otherwise, certain random fluctuations will 

be frozen into the material and the true low-energy state or ground state energy will not be 

reached. The process is like growing a crystal from a melt. To simulate the evolution of the 

thennal equilibrium at any given temperature T, Metropolis [4] introduced a Monte Carlo 

method, a simple algorithm that can be used both to generate sequences of internal 

configurations or states and to provide an efficient simulation of collections of atoms in 

order to examine the behavior of gases in the presence of an external heat bath at a fixed 

temperature (here the energies of the individual gas molecules are presumed to jump. 

randomly from level to level in line with the computed probabilities). In each step of this 

algorithm, a randomly generated atom is given a small displacement, and the resulting 

change, AE, in the energy of the system between the current configuration and the 

perturbed configuration is computed. If AE < 0, the displacement is accepted, and the 

configuration with the displaced atom is used as the starting point of the next step. The case 

AE > 0 is treated probabilistically: the probability that the configuration is accepted is P (AE) 

=exp(—E/K HT). This acceptance rule of the new configurations is known as the Metropolis 

criterion. 	Random numbers uniformly distributed in the interval (0,I) are a convenient 

means of implementing the random part of the algorithm. One such number is selected 

and compared with P(AE); if this random number is less than P(AE), then the new 

configuration is retained for the next step; otherwise, the original configuration is used to 

start the next step. By repeating the basic step many times and using the above acceptance 

criterion, one simulates the thermal motion of the atoms of a solid in thermal contact with 

a heat bath at each temperature T, thus allowing the solid to reach thermal equilibrium. This 

choice of P (AE) has the consequence that the system in a given state i with energy E(i) evolve 

into the Boltzmann distribution. 

PT  (i) = exp(—E(i) / KBT) / Z(T) 	 (2.1) 

Where 

Z(7') is a normalization factor, known as the partition function, 

14 



T is the temperature, 

KB  is the Boltzmann constant, 

i is a configuration of molecules in a system, 

E(i) is the energy of configuration i, 

exp(—E / K BT) is known as the Boltzmann factor, 

and, PT  (i) is its probability. 

Figure 2.3: Boltzmann',s distribution curve for an energy function at various Temperatures 

Note that, as the temperature decreases, the Boltzmann distribution concentrates on states 

with the lowest energy, and finally when the temperature approaches zero, only the 

minimum energy states have a non-zero probability of occurrence. 

In statistical mechanics, this Monte Carlo method, which is the Metropolis Algorithm, 

is a well-known method used to estimate averages or integrals by means of random 

sampling techniques. The general structure of the Metropolis Algorithm is summarized in 

Figure 2.4. 

It is important to note that a decrease (downhill) in the change of energy is always accepted 

while an increase (uphill) in the change of energy is accepted probabilistically. After many 
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iterations of the Metropolis Algorithm, it is expected that the configuration of atoms would vary 

according to its stationary probability distribution. 

The type of acceptance probability used for uphill moves in the Metropolis Algorithm 

may be used in the Simulated Annealing Algorithm. The AE of the Metropolis Algorithm is 

replaced by the change in the value of the objective function and the quantity KsT is replaced 

by the dimensionless version of the temperature, T. Given a. sufficiently low temperature, 

the distribution of configurations of the optimization problem will converge to a 

Boltzmann distribution that sufficiently favors lower objective function states (the optimal 

states). The probability of accepting any uphill moves approaches zero as the temperature 

approaches zero. As a result, approaching thermal equilibrium requires an unacceptably large 

number of steps in the algorithm. 

1. Generate an initial state i of the system. 
2. Set the initial Temperature T> 0. 
3. While (" Not yet frozen") do the following: 

3.1 While ("Not in thermal equilibrium") do the following: 
3.1.1 Perturb atom from state i to state j. 
3.1.2 Compute AE = Energy (j) — Energy (i) 
3.1.3 AE <-0 	 * Decrease energy transition 

Then set i=j. 
3.1.4 AE > 0 	 * Increase energy transition 

Then set i=j with probability = exp(—E / K5T ) 

3.2 Set T = Update (T) 	* Reduce Temperature 
4. Return i 	 *Return best state 

Figure 2.4: General Metropolis Algorithm 

The general approach of Simulated Annealing is to let the algorithm spend a sufficient 

Amount of time at a higher temperature, and is then slowly lowering the temperature by 

small incremental steps. The process is then repeated until a sufficiently low temperature has 

been obtained, i.e. T = 0. This is faster than simply setting the temperature initially to a low 
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value and waiting for configurations of substances to reach thermal equilibrium. Annealing 

may be considered as the process of cooling slowly enough so that phase transitions are 

allowed to occur at their corresponding critical temperatures. Thus, to obtain pure crystalline 

systems, the cooling phase of the annealing process must proceed slowly while the system 

freezes. 

However, it is well known [2] that if the cooling is too rapid, i.e. if the solid or crystal 

structure is not allowed to reach thermal equilibrium for each temperature value, defects and 

widespread irregularities or non-equilibrium states can be 'frozen or locked into the solid, 

and meta stable amorphous structures corresponding to glasses can result rather than the low 

energy crystalline lattice structure. Furthermore, this process is known in condensed matter 

physics as "rapid quenching"; the temperature of the heat bath is lowered instantaneously, 

which results in a freezing of the particles in the solid into one of the meta stable amorphous 

structures. The resulting energy level would be much higher than it would be in a perfectly 

structured crystal. 	This "rapid quenching" process can be viewed as analogous to Local 

Optimization. When crystals are grown in practice, the danger of bad "local optima" is 

avoided because the temperature is lowered in a much more gradual way, by a process that 

Kirkpatrick calls "careful annealing". In this process, the temperature descends slowly 

through a series of levels, each held long enough for the crystal melt to reach 

"equilibrium" at that temperature. 	As long as the temperature is nonzero, uphill moves 

remain possible. By keeping the temperature from getting too far ahead of the current 

equilibrium energy level, we can hope to avoid local optima until we are relatively close to 

the ground state. 

The correspondent analogy we are seeking now presents itself. Each feasible configuration of 

the combinatorial optimization problem or each feasible tour of the TSP corresponds to a 

state of the system; the configuration space of .  the combinatorial optimization problem or 

the permutation space of the TSP corresponds to the state space of the system; the cost or 

objective function corresponds to the energy function; the objective value associated with 

each feasible tour corresponds to the energy value associated with each state of that system; 

the optimal configuration or tour associated with the optimal cost value corresponds to the 

ground state associated with the lowest energy value of the state of the physical system. The 
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analogy is summarized in Figure 2.5. 

Physical System Optimization Problem Travelling Salesman 

State Feasible Configuration Feasible Tour 

State Space Configuration Space Permutation Space 

Ground State Optimal Configuration Optimal Tour 

Energy Function Cost Function Cost Function 

Energy Cost Cost 

Rapid Quenching Local Optimization Local Optimization 

Careful Annealing Simulated Annealing Simulated Annealing 

Figure 2.5: Analogy between Physical System and Combinatorial Optimization 

2.4 Classical Simulated Annealing 

As was discussed in Section 2.2 and illustrated by Figure 2.2, the difficulty with Local 

Optimization is that it has no way to "back out" of the unattractive local optima because it 

never moves to a new configuration unless the direction is "downhill," i.e. to a better value 

of the cost function, 	Simulated Annealing is an approach that attempts to avoid the 

entrapment in poor local optima by allowing an occasional "uphill" move. This is done under 

the influence of a random number generator and an annealing schedule. The attractiveness of 

using the Simulated Annealing approach for combinatorial optimization problems is that 

transitions away from a local optimum are always possible when the temperature is 

nonzero. As pointed out by Kirkpatrick [2], the temperature is merely a control parameter; 

this parameter controls the probability of accepting a tour length such, it is expressed 

in the same units as the objective function. 	In implementing the approach, any 

improvement procedure could be used. 

As was seen, the Metropolis Algorithm can also be used to generate sequences of 
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configurations of a combinatorial optimization problem. In that case, the configurations 

assume the role of the states of a solid while . the cost function C and the control parameter 

called the annealing schedule, T, take the roles of energy and the product of temperature and 

Boltzmann's Constant, respectively. The Simulated Annealing Algorithm can now be viewed as 

a sequence of Metropolis Algorithms evaluated at each value of the decreasing Sequence of 

annealing schedule, which is defined to beT = {t„tz ,...,t,,}, where t j  > t2  > ....> t„_1  > t„ . It can thus 

be described as follows. Initially the annealing schedule has given a high value, and a 

sequence of configurations of the combinatorial optimization problem is generated. As in 

the iterative improvement algorithm, a generation mechanism is defined, so that, given a 

configuration i, another configuration j can be obtained by choosing at random a 

configuration from the neighborhood of i. The latter corresponds to the small perturbation in 

the Metropolis Algorithm. Let AC(i, j) = C(j) — C(i) , then the probability for configuration j 

to •be the next configuration in the sequence is given by I if AC(i, j) —< 0 , and by 

exp(—OC(i, j) / T) , if AC(i, j) > 0 (Metropolis Criteria). Thus, there is a non-zero probability of 

continuing with a configuration with higher cost than the current configuration. This process 

is continued 	until equilibrium 	is reached, i.e. until the probability distribution of the 

configuration approaches the Boltzmann distribution, now given by 

Pr  {configuration = i} = q, (T) = exp(—C(i) / T) / Q(T) , 

Where Q(T) is the normalization constant depending on the annealing schedule T, which is 

equivalent to partition function Z(T). 

The probability distribution curve for the cost function is analogous to Figure 2.3 with E(i) is 

replaced by C(i). 

The annealing schedule T is then lowered in incremental steps, with the system being 

allowed to approach equilibrium for each step. The algorithm is terminated for some small 

value of T, at which virtually no further deteriorations or increases in cost are accepted. 

The final `frozen' configuration is then taken as the optimal configuration of the problem under 

consideration. The main steps in the Simulated Annealing Algorithm are outlined in Figure 

2.6. 
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1. Generate an initial random configuration i. 	Z ^ly no :................ 

2. Set the initial temperature 	T > 0. 	 ` .................... 
3. While (not yet "frozen") 	do the following: 	,l r ROORK~~ 

3.1. While ("inner loop iteration" not yet satisfied) do the following: 
3.1.1. Select the random neighbor j from configuration i. 
3.1.2. Compute AC(i, j) Cost(j) — Cost(i); 

	

3.1.3. If AC(i, j) s 0 	 ' Downhill transition 
Then i=j. 

	

3.1.4 If LC(i, j) >0 	 * Uphill Transition. 
Then set i = j with probability = exp(—AC(i; j) I T) 

	

3.2. Set T = Update (T) 	 * Reduce the Temperature 
4. Return i. 	 * Return Best Configuration 

Figure 2.6: Simulated Annealing Algorithm 

Thus, as with iterative improvement, we have again a generally applicable approximation 
algorithm: once configurations, a cost function and a generation mechanism or, equivalently, a 
neighborhood structure) are defined, a combinatorial optimization problem can be solved 
along the lines given by the description of the Simulated Annealing Algorithm. The heart of 
this procedure is the loop at Step 3.1. Note that the acceptance criterion is implemented by 
drawing random numbers from a uniform distribution on (0,1) and comparing these with 
exp(—AC(i, j)/ T). Note also that exp(-AC(i, j)/T) will be a number in the interval (0,1) 
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when A C and T are positive, and so can rightfully be interpreted as a probability. Note also 

how this probability depends on A C and T. The probability that an uphill move of size 0 C will 

be accepted diminishes as the temperature declines, and, for a fixed temperature T, small 

uphill moves have higher probabilities of acceptance than larger ones. 	This particular 

method of operation is motivated by a physical analogy of the physics of crystal growth 
described in the last section. 

The main difference between the Simulated Annealing Algorithm and the Metropolis Algorithm 

is that the Simulated Annealing Algorithm iterates with variable temperature while the 

Metropolis Algorithm iterates with a constant temperature. As the temperature is slowly 

decreased to zero or annealed, the system approaches to steady state equilibrium. This 

implies that the cost function should converge to a global minimum. It is worthy to emphasize 

that the cooling or annealing process should be done slowly; otherwise, the system can get 

stuck at a local minimum. 

Ever since Kirkpatrick had recognized the physical analogy between statistical mechanics 

and combinatorial optimization, the Simulated Annealing Algorithm has been important in 

many disciplines. Not only has it been successfully applied in many important fields of 

science and engineering but also it has been one of the major stimulants of research in 

the academic and industrial communities. The force that makes the Simulated Annealing 

Algorithm powerful is its inherent ability to avoid and/or to escape from being entrapped at 

local minima, which are so many for a medium-size combinatorial optimization problem in 

general and the TSP in particular. 

In this chapter, the underlying motivation and historical development of the Simulated 

Annealing Algorithm has been covered. To provide some useful results for the subsequent 

chapters, a mathematical model and a quantitative analysis of the Simulated Annealing 

Algorithm are studied in the next chapter. 
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CHAPTER 3 

QUANTITAIVE ANALYSIS OF SIMULATED ANNEALING 
ALGORITHM 

3.1 Introduction 

In Chapter 1, a brief description of the Simulated Annealing was introduced. In Chapter 2, the 

origin and the motivation of Simulated Annealing were examined in detail and the Algorithm 

was outlined. In this chapter, certain key mathematical concepts which are the underlying 

foundation of Simulated Annealing will be investigated. 

The Simulated Annealing Algorithm can be modeled mathematically by using concepts of 

the theory of Markov chains [7]. Since a detailed analysis of these Markov chains is beyond the 

scope of this thesis, they are extensively discussed and proved by a number of authors [7] 

that under certain conditions, the algorithm converges asymptotically to an optimal 

solution. 	Thus, asymptotically, the algorithm is an optimization algorithm. 	In practical 

applications, however, asymptoticity is never attained and thus convergence to an optimal 

solution is no longer guaranteed. Consequently, in practice, the algorithm is an approximate 

algorithm. 

The performance analysis of an approximate algorithm concentrates on following two quantities: 

*The quality of the final solution obtained by the algorithm, i.e. the difference in cost value 

between the final solution and a globally minimal configuration; 

*and, the running time required by the algorithm. 

For the Simulated Annealing Algorithm, these quantities depend on the problem instance as well 

as the annealing schedules. 

Traditionally, three different types of performance analysis are distinguished, namely worst-
case analysis, average-case analysis, and empirical analysis. The worst-case analysis is 

concerned with upper bounds on quality of the final solutions, i.e. how far from optimal the 
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constructed tour can be, while the average-case analysis is focused on the expected values of 

quality of the final solutions and running times for a given probability distribution of the 

problem instances. Empirical analysis here means the analysis originating in or based 

on computational experience. In other words, solving many different instances of the TSP 

with different annealing schedules and drawing conclusions from the results, with respect to 

both quality of solutions and running time. In this way, the effects of the annealing 

schedules on the algorithm can be analyzed. It is interesting---to . analyze these effects 

because, even for a fixed instance, the computation time and the quality of the final solution 

are random variables, due to the probabilistic nature of the algorithm. All three approaches 

are attempts to provide the information that will help in answering the question 'How well 

will the algorithm perform (how near to optimal will be the tours it constructs) on the 

problem instances.' Each approach has its advantages and its drawbacks. 

Worst--.ase analysis can provide guarantees that hold for individual, instances and does not 

involve the assumption of any probability distribution. The drawback here is that, since the 

guarantee must hold for all instances, even ones that may be quite atypical, there may be a 

considerable discrepancy in the behavior of an algorithm. Empirical analysis can be most 

appropriate if the problem instances on which it is based are similar to the problem of interest. 

It may be quite misleading if care is not taken in the choice of test problems, or if the test 

problems chosen have very different characteristics from those at hand. Average- case (or 

average ensemble) analysis can tell us a lot, especially when we will be applying the 

algorithm to many instances having similar characteristics. However, by its nature, this type of 

analysis must make assumptions about the probability distribution on the class of instances, and 

if the assumptions are not appropriate then the results of the analysis may not be germane to the 

instances at hand. 

A final problem with worst case and average case analysis of heuristics comes from the rigorous 

nature of both approaches. Analyzing a heuristic in either way can be challenging mathematical 

task. Heuristics that yields nice probabilistic bounds may be inappropriate for worst case 

analysis, and the heuristics that behaves well in worst. case analysis are often exceedingly 

difficult to analyze probabilistically. In addition, many heuristics do not seem to be susceptible to 

either type of analysis. 

When studying the simulated annealing algorithm, an additional probabilistic aspect is added to 
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the above classification. Besides the probability distribution over the set of problem instances, 

there is also a probability distribution over the set of possible solution for a given problem. Thus, 

in the average case analysis, the average can be referred to as the average of a set of solutions of 
a given problem instance. 

In this chapter, a combination of both the average case analysis (average ensemble) for the set of 

solution for the given problem instance and empirical analysis is grouped as "semi-empirical" 

average case analysis will be investigated for two representative instances of the Travelling 

Salesman Problem. Using these instances to present a "semi-empirical" average case analysis of 

the algorithm by running it number of times, it is possible to reproduce the observed behavior by 

using standard technique from statistical physics and some assumptions on configuration density. 

Presently a systematic investigation of the typical behavior and the average case performance 

analysis of Simulated Annealing Algorithm remain as an open research problem. 

In section 3.2, the core mathematical model of Simulated Annealing Algorithm based on Markov 

chains is represented and discussed. In this section, the salient features of annealing schedule 

which will be useful in computation study are also highlighted. And, the analysis of the cost 

function is presented in section 3.3. 

3.2 Mathematical Model: 

A combinatorial optimization problem can be characterized by configuration space P1, denoting 

the set of all possible configuration i, and the cost function C: 1R—>R, which assigns a real 

number C(i) to each configuration i. C is assumed to be defined such that the lower value of C, 

better the corresponding configuration, with respect to Optimization criteria. This can be done 

without the loss of the generality. The objective is to find the optimal configuration i* for which 

C(i*) = Cmi , = min {C(i) I i e P1) 	 3.1 

Where C  denotes the minimum cost. 

To apply the Simulated Annealing Algorithm, a mechanism known as neighborhood structure or 
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the perturbation function is used o generate a new configuration, i.e. a neighborhood of i, by 

small perturbation. A neighborhood j defined as the set of configurations that can be reached 

from configuration i by a single perturbation. The Simulated Annealing algorithm starts off with 

a given initial configuration and continuously tries to transform a current configuration into one 

of its neighbor by applying a perturbation mechanism and an acceptance criterion. The 

acceptance criterion allow for deteriorations in the cost function, thus enabling the algorithm to 

escape from local minima. 

3.2.1 Asymptotic Convergence: 

As mentioned in the last section, the Simulated Annealing Algorithm can be formulated as a 

sequence of Markov chains, each Markov chain being a sequence of trials whose outcomes 

X1,X2, X3...... satisfy the following two properties: 

(1) Each outcomes belongs to a finite set of outcomes {1,2,3,...,N} called the configuration 

space '3i of the system; if the outcome of the k`" trial is i, then the system is said to be in 

state i, at time k or at the k'5  step. 

(2) The outcome of any trial depends at most of the immediately preceding trial and not upon 

any other previous outcome; i.e. the outcome is only dependent on the outcome of 

previous trial, with each pair of states or configurations (i,j) there is given the probability 

P. such that j occurs immediately after i occurs. 

Such a stochastic process is known as (Finite) Markov chain. The numbers P is called the 

transition probabilities that can be arranged into a Transition matrix P below. 

P I 	... 
P = 

P 	... 

called the transition matrix. 

Thus, with each configuration i, there corresponds the I' row (I ,P.,....,P,,,) of the transition 
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matrix P; if the system is in configuration i, then this row vector represents the probabilities of all 

possible outcomes of the next trial and so it is the probability vector, whose row sum is always 

equals to one. 

Note that the outcomes of the trials here are the configuration. For example, the outcome of the 

given trial is perturbed configuration j while the outcome of the previous trial is the current 

configuration i. So, Markov chain is described by means of a set of conditional probabilities 

.P,, (k—i, k) for each pair of outcomes (i,j); P,(k—1, k) is the probability that the outcome of the 

k'5  trial is j, given that the outcome of the (k-1)' trial is i. Let a. (k) denote the probability of 

outcome i at the k" trial, then a, (k) is obtained by solving the recursive relation: 

a, (k) _ 	ar  (k —1).P;  ( k —1, k) , k= 1,2,..., 	 (3.2) 

where the sum is taken over all possible outcomes. 

Let X(k) denotes the outcome of the k'" trial. Then, 

1 (k-1, k)=Pr {X(k)= jI X(k —1)=i} 	 (3.3) 

And 

a,(k)= P.{X(k)=i} 
	

(3.4) 

If the conditional probabilities depend on k, the corresponding Markov chain is called 

homogeneous, otherwise it is called inhomogeneous. 

In the case of Simulated Annealing Algorithm, the conditional probability Pr  (k — 1, k) denotes the 

probability that the k" transition is from configuration i to configuration j. Thus, X (k) is the 

configuration obtained after k transitions. In this view, P. (k —1, k) is the transition probability 

and the I lxi I matrix P(k-1,k) the transition matrix. 

The transition probabilities depend on the value of the annealing schedule T. Thus, if T is kept 

constant, the corresponding Markov chain is homogeneous, and its transition probabilities, i.e. 

the probability that a trial transforms configuration i into configuration j, is defined as: 
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Au.(T)G(T) 	if i~ j 

	

Aik (T) Gtk (T) if t = j 	
(3.5) 

kell2,k#i 

Where 

• P. (T) denotes the transition probabilities. 

• G(T) denotes the generation probability, i.e. the probability of generating configuration j 

from configuration i. 	 - 

• 4(T) denotes the acceptance probability, i.e. the probability of accepting configuration j 

given the configuration i and j. 

• And T is the Annealing schedule. 

Each transition probability is defined as a product of following two probabilities: the generation 

probability G, (T) of generating configuration j from configuration i, and the acceptance 

probability A,,, (T) of accepting configuration j, once it has been generated from configuration i. 

The corresponding matrix G(T) and A(T) are called the generation and acceptance matrices, 

respectively. As a result of definition in equation 3.5, P(T) is stochastic matrix, i.e. 

Vi:Y j P,;(T)=1. 

• A homogeneous algorithm: The algorithm is described by the sequence of homogeneous 

Markov chains. Each Markov chain is generated at a fixed value of T and T is decreased 

in between the subsequent Markov chains, and 

• An inhomogeneous algorithm: The algorithm is described by a single inhomogeneous 

Markov chain. The value of T is decreased in between the subsequent transitions. 

The Simulated Annealing Algorithm obtains a global minimum if after a large number of 

transitions, K, i.e. K - re, the following relation holds: 
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PT {X (K) E opt} = 1, 	 (3.6) 

Where Pr is the set of globally minimal configurations. 

Equation (3.6) can be proved under a number of conditions on probabilities G. (T) and Al (T) ; 

asymptotically; i.e. for infinitely long Markov chains and T -3 0, the algorithm finds an optimal 

configuration with probability equal to one. Let X(K) denotes outcome of the k`" trial of a 

Markov chain; i.e. under the condition that the Markov chain is irreducible, periodic and 

recurrent, there exist a unique equilibrium distribution given by I 'A vector q(T). The component 

qi(T) denotes the probability that the configuration i will be found after infinite number of trials 

and are given by the following expression: 

q, (T) = urn .F.{X (k) = i / T} = lim([Pk (T)]T a)i k o 

Where a denotes the initial probability distribution of the configuration and P(T) is the transition 

matrix, whose entries are given by P, (T) . Under certain additional conditions on the 

probabilities G,, (T) and 4(T), the algorithm converges to T -> 0 to a uniform distribution on the 

set of optimal configuration, i.e, 

lim(lim PT {X(k) = i / T}) = lim gl (T) = Tr; 
T-0 k- co 	 (3.8) 

_ 191opt I-1 	if i E .opt 

- 1 ~i 0 	elsewhere. 	 (3.9) 

Where I .,,, denotes the se of optimal configurations. 

Here, we apply he standard form of the Simulated Annealing algorithm, i.e. the perturbation 

probability G(T) is chosen independent of T and uniformly over the neighborhood of a given 

configuration i. the acceptance probability is chosen as 
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exp(—AC, IT) ifiC >0 
1 	if OCR  <_ 0 
	

(3.10) 

Where OCR = CO) — C(i). For his choice of components of the equilibrium distribution take the 

form 

q. (T) = 
exp { [C.in  — C(l)] / T} 

Iexp{[C.in  —C(i)]/T} 
JE9I 

(3.11) 

The above result is extremely useful when the cost function is analyzed. 

3.2.2. Annealing Schedule: 

As mentioned previously, the performance of the Simulated Annealing Algorithm is a function 

of the annealing schedules. Hence, it is common that one resorts to an implementation of the 

Simulated Annealing Algorithm in which a sequence of Markov chains of finite length is 

generated at decreasing values of the annealing schedule. Optimization is begun at a starting 

value of the temperature To  and continues by repeatedly generating Markov chains for 

decreasing values of T, until T approaches 0. This procedure is governed by the annealing 

schedule. 	Generally, the parameters used in studying the performance of the Simulated 

Annealing Algorithm are 

(1) The length L of the individual Markov chains 

(2) The stopping criteria for terminating the algorithm 

(3) The start value T. of the Annealing schedule 

(4) The decrement functions of the annealing schedule. 

The salient features of these parameters are summarized here. 
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(1) Markov chain length L: All Markov chains are chosen equally long. In practice, the 

number of cities in the TSP tour or the number of runs of the algorithm is taken to be 

equal to the length of Markov chains. 

(2) Stopping Criteria: There are many criteria for terminating the Simulated Annealing 

Algorithm presently existed. Here, the algorithm terminates at a certain maximum 
number of iterations arbitrarily set by the user. 

(3) Starting Value To  : The purpose of the starting temperature value is to begin the thermal 

system at a high temperature. There are many variations of the annealing schedules. This 

starting value is as high as 2000 and as low as 20. 

(4) Annealing Schedule T: The performance of Simulated Annealing Algorithm is a function 

of annealing schedule. Because of this dependence, the following two well known 

annealing schedules which proves to provide good solutions to the TSP by varying the 

parameter c and d, i.e. 0.9 < c < 0.99 and 5 <d <30. 

Tk+l =CI;  k = 0,1, 2, ..., max iteration 	 (3.12) 

And 

Tk  = d / log k; k = 2,3,4,..., max iteration 	 (3.13) 

Note that as a consequence of the asymptotic convergence of the Simulated Annealing 

Algorithm, it is intuitively clear that the slower the "cooling" is carried out, the larger the 

probability that the final configuration is close to an optimal configuration. Thus, the deviation 

of the fmal configuration from an optimal configuration can be made as small as desired by 

investing more computational effort. The literature has not elaborated on the probabilistic 

dependence on the parameters of the annealing schedule. In this chapter semi-empirical results 

on this topic are represented. 	A more theoretical treatment is still considered as an open 

research topic. 
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3.3. Analysis of Cost Function: 

In this section, some quantitative aspects of the Simulated Annealing Algorithm are discussed. 

The discussion is based on an extensive set of numerical data obtained by applying the 

algorithm to a specific instance of the Traveling Salesman Problem. The behavior of the 

Simulated Annealing Algorithm is analyzed. In this section, an analytical approach to derive 

the expectation and the variance of the cost function in terms of the annealing schedule is 

analyzed. The discussion is based on an average-case performance analysis. 

To model the behavior of the Simulated Annealing Algorithm, an analytical approach to 

calculate the expectation ( C )T and the variance ° 2T of the cost function is discussed. Let X 

denotes the outcome of a given trial; the (Cy7. and 62 T are defined as 

(C)T =~PT {X =i/T}C(i) 
IEIR 

And 

(3.14) 

6ZT = j PT {A = l / l } [C(l) — (C)T ]2 	 (3.15) 
i9I 

In equilibrium we obtain, using equation 3.7 and 3.11, 

I exp { [Cmj„ — Qi)] / T}C(l) 

(C)T =>q1(T)C(i) = ;E~t 
exp { [Cm 	C (J)~ } 	 (3.16) l T —  

jEtt 

And 

exp {[Cmin — C(i)] / T} [C(i) — (C)7. ]2 

Q.
2T = I q,(T)[C(i)—\

/ 

CM

\ 

T}2 = 	
exp Cmm . —C( J) ] lT} 	 (3.17) 

p~~  
je91 

Next the configuration density w(C) is defined as 
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w(C)dC = l l ~ {i E i. I C _< C(i) < C+ dC} 	 (3.18) 

Then in case of Simulated Annealing Algorithm employing the acceptance probability of 

equation 3.10, the equilibrium configuration density )(C, T) at a given value of T is given by 

S2(C,T)dC= + 

J

~a(C)exp[(Cm;n -C)/T]dC 

1r / \ 1~ (!-~ /~ 	 (3.19) 
w 	) exY[lCmin — 1. ) / T]dl 

Clearly, 1(C, T) is the equivalent of the stationary distribution q(T) given by equation 3.11. As 

indicated by the notation "equilibrium", f2(C,T) is the configuration density in equilibrium 

when applying the Simulated Annealing Algorithm. Thus, one obtains 

(C)7. = f Cc (C',T)dC' 	 (3.20) 

And. 

= 5[c' -(C) 2 K2(C,T)dC 	 (3.21) 

"Given an analytical expression for the configuration density o. (C) , it is possible to evaluate the 

integral of the equations 3.19, 3.20, 3.21. To estimate a(C) for a given combinatorial 

optimization problem is in most cases very hard. Indeed, w(C) may vary drastically for different 

specific problem instances, especially for C values close to C,,,,. 

The average Cost C and the standard deviation 6(T) of the cost as a function of the annealing 

schedule T when applying the Simulated Annealing Algorithm to an instance of the TSP are the 

following expressions, 
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_ 	L 

C(T)=L'~C,(T) 	
(3.22) 

i=1 

And 

L 	 1/2 

` 6 T) = {L-1   I [C1 (T) — C T̀ )]2 } 	 (3.23) 
 i=1 

Where the average is taken over the values of cost function C,. (T) , for i = 1......L, of the Markov 

chains generated at a given value of annealing schedule T. From the above relations, the 

behavior of Simulated Annealing Algorithm is observed for many problem instances [2]. 

Furthermore, some characteristic feature of the expectation (C)r. and the variance (T I of the 

cost function can be deduced. For large value of T, the average and standard deviation of the cost 

are about constant and are equal to C(oo) and 6(c0) . This behavior is directly obtained from 

Equations 3.16 and 3.17, or equations 3.18-3.21, namely 

\C>m T m (C) 	= j-- C(i)T 	tI 	 (3.24) 

And 

a2 = i1T11 a 	1 1IC(t) — \C)-12 	 (3.25) 
iE~II 

Note that the more detailed estimate of the average case performance of the Simulated Annealing 

Algorithm can only be deduced from rigorous performance analysis which takes into account the 

detailed structure of the optimization problem at hand. Presently, such a theoretical average case 

performance analysis remains to be as an open research problem. 

The average case performance of the Simulated Annealing Algorithm is discussed by analyzing 

the expectation and the variance of the cost function as a function of annealing schedule for a 

certain instance of the Traveling Salesman Problem; the results can be summarized as follows: 

• The performance of the Simulated Annealing Algorithm depends strongly on the chosen 
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annealing schedule; this is especially true for the quality of solution obtained by the 

algorithm. 

• With a properly chosen annealing schedule, near optimal solution may be obtained. 

In this chapter, certain key mathematical concept which is underlying foundation of Simulated 

Annealing Algorithm was examined. 
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APPLICATION OF SIMULATED ANNEALING ALGORITHM 

In order to assess the performance of the optimization algorithms, various control engineering 

problems were considered. Some of the practical applications used are: 

• Inverted Pendulum 

• Ball and Beam System 

• Magnetic Levitation System 

4.1. Inverted Pendulum: 

The inverted pendulum control problem [11] is usually presented as a pole balancing task. The 

system to be controlled consists of a cart and a rigid pole hinged to the top of the cart. The cart 

can move left or, right on a one-dimensional bounded track, whereas the pole can swing in the 

vertical plane determined by the track. The linear system equations around 0 = 7t in the state 

space are given by equation 5.1 and 5.2. 

The state of the system is defined by values of four system variables: 

• X , denotes the cart position 

• x , denotes the cart velocity 

0, denotes the pendulum angle of the pendulum pole 

• 0  ,denotes the angular velocity of the pendulum pole 
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Here, the controlling action is applied to the system to prevent the pendulum pole from falling 

from the specified position and at the same time to keep the cart within the specified limits of 

position. 

0 
(I+m12 )  

I(M+m)+Mm12  
+1 	 Iu 

0 
ml 	 (5.1) 

I(M+m)+Mm12  

x 
1 0 0 	rol  

y  0 0 i 0 B + O u  
(5.2) 

9 
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Where; 

M = Mass of the cart = 0.5 kg 

m = Mass of the pendulum = 0.2 kg 

b = Friction of the call = 0.1 N/m/sec 

I = Inertia of the pendulum = 0.006 kern' 

l= Length of the pendulum's center of mass 

F = Force applied to the cart 

4.2. Ball and Beam System: 

The ball-beam system [12] is a frequently encountered example of nonlinear dynamical system. 

While the ideal system is indeed nonlinear, its practical implementation has additional non-

linearity's, including: dead zone, backlash introduced by the DC motor and gearbox, discrete 

position sensing and uneven rolling surface. 

The motion of the motor's shaft is governed by IPM100 intelligent drive. This is a high 

precision, fully digital servo drive with embedded intelligence and 100W power amplifier 

suitable for brushless/brush motors. Based on feedback information from sensors, it computes 

and then applies appropriate PWM modulated voltage to the motor windings in such a way that a 

sufficient torque moves the motor shaft according the programmed control algorithm. This 

embedded intelligence provides a true real-time control performance independent of any delays 

caused by Personal Computer's non-real time Operating System. 
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Figure: 4.1. Structure of control Strategy for Ball & Beam system 

The closed loop control strategy employed for the application is given in Figure- 4.1. The DC 

motor provides actuation of the beam via a gear. The PID control algorithm inside IPM100 

intelligent drive is employed in an inner control loop as a motor position controller. The PID 

gains are tuned in such a way that the motor exhibits a fast response without overshoot. 

4.2.1. Mechanical Model of Ball and Beam System: 

The rough figure of mechanical model of Ball & Beam system is shown in figure 4.2. 

Figure: 4.2. Mechanical system of Ball and Beam 
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For the given system gear ratio is 107:25. 

Let the angle between the line that connects the joint of the lever arm with the center of the gear, 

and the horizontal line be 0 (there should be some boundaries on its range so that it can teach the 

safe maximum and minimum limits); the distance between the center of the gear and the joint of 

the lever arm be d, and the length of the beam be L. Then the beam angle a can be expressed in 

terms of the rotation angle of the gear 0 according to the following equation: 

a=  a9 
L (4.3) 

In turn, as it has just been noted above, the angle 0 is connected with the rotational angle of 

motor shaft through reduction gear ratio n=4.28. The controller design task is to keep the 

position of the ball r equal to the specified target position by properly manipulating the gear 

angle 0. 

The dynamics of the ball is subjected to the gravity, inertial and centrifugal forces. The ball 

linear acceleration along the beam is given by the following simple equation [8]: 

R2  + nz r+nagsina— mr(a)z =0 
(4.4) 

Where 

g denotes the Gravitational acceleration 

m denotes the mass of the ball 

7 denotes the moment of inertia of the ball 

r denotes the position of the ball along the beam 

R denotes the radius of the ball 
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In this, some assumptions are taken into consideration that the ball moves without slipping and 
friction between the ball and beam is negligible. 

SPECI FYTARG ETPOSITI ON 
OF THE BALL 

Xds 

NSI 
YES 	 P NSI SSfBLE ~ 	

I DETHE 

RANGE? 
NO 

READ CURRENT 
A CTU AL POSITI ON 	 idea 

FROM FEEDBACK 
areal 

~'xdes — area! 

COMPVTETHECONTROL 
ACTION 

AMPUFYAND(MODULATE 
THECONTROLSIGNAL 

7J 	V 
THE SYSTEM N40VESTHE 
BALLTO THE SPECIFIED 

TARGETPOSITION 

SERVO SAMPLE RATE 

Figure: 4.3: Flowchart of Inherited control algorithm for Ball and Beam System 
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4.3. Magnetic Levitation System: 

Magnetic Levitation System [13] works on principle of Electromagnetic Induction to control 
position of ball at required position. When current go through the winding, electromagnetic force 

F will be generated. By controlling the current in the electromagnet winding to balance the steel 

ball gravity force mg by magnetic force, the steel ball will be levitated in. the air. Closed loop 

control is required for the stability and anti-interference. The distance x from the steel ball to 

electric magnet is detected by sensor system composed of light source and light sensor. To 

enhance the performance, the speed of the distance variance can also be considered. The control 

current is the input for magnetic levitation control object. 

In system modeling, the input is control current of the electromagnet, the influence of inductance 

is not considered. Assume the power amplifier output current is strictly linear with input voltage 

without delay. 

The system can be described by following equation: 

m d2Z  = ki (i—i° )+kk (x—x° ) = 2Ki°  i— 2K3 °Z  x 
dt 	 x° 	x° 	 (4.5) 

After taking Laplace Transform: 

2  _ 2Ki0 	2Ki02  
x(S)S 	z  i(s)— 	3  x(S) 

mx° 	mx° 	 (4.6) 

i 2  o  
From boundary equation m

g__ 
—K( x  Z )  , the system open loop transfer function is: 

0 

—1  
i(s) 	As2  — B 	 (4.7) 
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Define the input variable as the input voltage of the power amplifier U,„ , output variable as a 

output voltage Uo„, reflecting x (the voltage output of the process circuit at the back of the 

sensor), the system control object model can be expressed as: 

G( s ) =  Uout  =  K x(s)  _ —( Ks /Ka) 
U;n 	Kai(s) 	As2  —B 	 (4.8) 

z A=-0  2g 	 (4.9) 

l B= o xo 	 (4.10) 

The open loop system characteristic equation is: 

As2—B=O 	 (411) 

The system open loop pole is: S  — ± B — ±gA  

Then, the system state variables are: xI — Uour , X2 — Uout and the system state equations as 

follows: 

0 ri 	 0 
[2g2 J 	0 (XJ+   

_ 2g Ks Uin (4 12) 
xo 	io  .KQ  

42 



y =[1  0]1x2J_xt 
	

(4.13) 

There is an open loop pole at the right plane, by stability criterion; stable system should have all 

the open loop poles on the left plane. Therefore the GML system is essentially unstable. 

In fact, the inductance of the coil will prevent the current from changing too fast; this effect 

cannot be ignored. Thus the current model is slightly different from the real case. To analyze the 

system accurately, voltage control model is also important. For real system, parameters are given 

as follows: 

m = 22g, xQ =20.0 mm, Iron core Diameter = 22 mm, Enameled wire diameter = 0.8 mm, 

R = 13.8 S1, r = 12.5 mm (radius of the ball), N= 2450 circles, K= 2.3142e-004Nm/A2 , 

f=0.6105 A, K,=0.25. 

Therefore, the transfer function of the system is given by: 

G0  (s) = 
77.8421 

0.0311s2  —30.5250 	 (4.14) 
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CHAPTER 5 

SIMULATION RESULTS AND THEIR INTERPRETATION 

In this chapter, results were discussed for implementation of "Simulated Annealing Algorithm" 

on "Travelling Salesman Problem" for a specific number of cities at a time. After that, for 

comparison results obtained from "Tabu Search" on "Travelling Salesman Problem" were 

discussed. 

Simulation results obtained for 10, 20, 30, 50, 75, 442, 535 cities "Travelling Salesman Problem" 

by "Simulated Annealing Algorithm" and 30, 50, 75, 442, 535 cities "Travelling Salesman 

Problem" by "Tabu Search Algorithm" is as follows: 

Figure 5.1: Convergence Figure obtained by "Simulated Annealing Algorithm" for 10 Cities 

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling 

Rate is 0.97) 
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Figure 5.2: Route obtained by "Simulated Annealing Algorithm" for 10 Cities Travelling 

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97) 

convergence figure 

Figure 5.3: Convergence Figure obtained by "Simulated Annealing Algorithm" for 20 Cities 

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling 
Rate is 0.97) 
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Figure 5.4: Route obtained by "Simulated Annealing Algorithm" for 20 Cities Travelling 

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97) 
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Figure 5.5: Convergence Figure obtained by "Simulated Annealing Algorithm" for 30 Cities 

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling 
Rate is 0.97) 
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Figure 5.6: Route obtained by "Simulated Annealing Algorithm" for 30 Cities Travelling 

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97) 
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Figure 5.7: Convergence Figure obtained by "Simulated Annealing Algorithm" for 50 Cities 

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling 

Rate is 0.97) 
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Figure 5.8: Route obtained by "Simulated Annealing Algorithm" for 50 Cities Travelling 

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97) 
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Figure 5.9: Convergence Figure obtained by "Simulated Annealing Algorithm" for 75 Cities 

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling 
Rate is 0.97) 
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Figure 5.10: Route obtained by "Simulated Annealing Algorithm" for 75 Cities Travelling 

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97) 

Figure 5.11: Convergence Figure obtained by "Simulated Annealing Algorithm" for 442 Cities 

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling 

Rate is 0.97) 
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Figure 5.12: Route obtained by "Simulated Annealing Algorithm" for 442 Cities Travelling 

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97) 
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Figure 5.13: Convergence Figure obtained by "Simulated Annealing Algorithm" for 535 Cities 

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling 

Rate is 0.97) 
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Figure 5.14: Route obtained by "Simulated Annealing Algorithm" for 535 Cities Travelling 

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97) 
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Figure 5.15: Convergence Figure obtained by "Tabu Search Algorithm" for 30 Cities Travelling 

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost") 
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Figure 5.16: Route obtained by "Tabu Search Algorithm" for 30 Cities Travelling Salesman 

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of 

the City) 
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Figure 5.17: Convergence Figure obtained by "Tabu Search Algorithm" for 50 Cities Travelling 

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost") 
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Figure 5.18: Route obtained by "Tabu Search Algorithm" for 50 Cities Travelling Salesman 

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of 
the City) 
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Figure 5.19: Convergence Figure obtained by "Tabu Search Algorithm" for 75 Cities Travelling 

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost") 
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Figure 5.20: Route obtained by "Tabu Search Algorithm" for 75 Cities Travelling Salesman 

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of 

the City) 
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Figure 5.21: Convergence Figure obtained by "Tabu Search Algorithm" for 442 Cities Travelling 

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost") 
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Figure 5.22: Route obtained by `Tabu Search Algorithm" for 442 Cities Travelling Salesman 

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of 

the City) 
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Figure 5.23: Convergence Figure obtained by "Tabu Search Algorithm" for 535 Cities TraveIIing 

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost") 
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Figure 5.24: Route obtained by "Tabu Search Algorithm" for 535 Cities Travelling Salesman 

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of -

the City) 

Comparison of "Simulated Annealing Algorithm" and "Tabu Search Algorithm" for "Travelling 

Salesman Problem" [6] is given the table: 

Number of Cities Cost obtained from Simulated 

Annealing Algorithm 

Cost obtained from Tabu Search 

Algorithm 

30 423.7406 483.1963 

50 449.643 469.6034 

75 558.9072 624.0014 

442 52362.4514 139717.2186 

535 2042.7898 7129.4931 

Table 5.1: Comparison of Cost function value obtained from SA and TS 
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From the above Table 5.1, there is clear idea obtained that the performance of "Simulated 

Annealing Algorithm" is better than "Tabu Search Algorithm" for "Travelling Salesman 

Problem". For large problem size of "Travelling Salesman Problem" performance of "Simulated 

Annealing Algorithm" is much better than "Tabu Search". 
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CHAPTER 6 

CONCLUSION AND FUTURE PROSPECTIVE 

6.1. Conclusion: 

As given in chapter 1, "Travelling Salesman Problem", is a classical combinatorial optimization 

class of problem. In combinatorial class of problem the objective function has to be maximized 

or minimized according to the requirement. Here, the minimization type of problem has taken 

into account. In "Travelling Salesman Problem", the objective function is to minimize the 

roundtrip distance with the constraint that every city (represented by a point in the graph) must 

be travelled by a person (salesman) once and only once and return to their starting city. 

Here, some assumption has been taken into consideration, that there a direct path from one city 

to the other cities has been existed and path is straight line path. One more consideration is taken 

into consideration, that all path existed in the system are "two way path". 

From the previous study, a clear idea has been gained that for a large size "Travelling Salesman 

Problem" "Simulated Annealing Algorithm" is much more effective in finding the minimum 

roundtrip distance (i.e. cost) for given data than "Tabu Search Algorithm". This advantage is 

obtained from the fact that "Simulated Annealing Algorithm" accepts the "Uphill moves". Due 

to this fact, the ability of escaping from a local minimum with some probabilistic nature has been 

added to enhance the performance of "Simulated Annealing Algorithm" that may lead to find 

"Global Minima" for the given data. This kind of attribute is not present in "Tabu Search 

Algorithm" (i.e. it will not accepts the uphill moves), therefore, there are great chances that it 

will stuck in the "Bad Local Minima" and this will rarely converge toward the "Global 
minimization". 

For very large size of "Travelling Salesman Problem" the convergence of the problem is very 

slow and it takes a large span of time due to extensive computation. This drawback has been 
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compensated with the performance obtained from "Simulated Annealing Algorithm" as 

compared to "Tabu Search Algorithm". 

6.2. Future Prospective: 

There are basically two streams for future improvement. 

1. The convergence of the algorithm can be made fast by parallel implementation of the 
algorithm. 

2. The assumption that all existed path from a city to other cities are two way and lies in the 

straight line can be left. 

And further, these two will accommodate into a single problem. 
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