
SIMULATED ANNEALING ALGORITHM FOR TRAVELLING
SALESMAN PROBLEM

A DISSERTATION
Submitted In powal fulfNIrnwl of the

isqui menu for the award of the 4g.
of

MASTER OF TECHNOLOGY
In

ELECTRONICS AND COMPUTER ENGINEERING
(With Specialization in Control and Guidance)

By

AVJIT KUMAR

r C&.os of I
3... .. o

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2010

CANDIDATE'S DECLARATION

hereby declare that the work, which is.presented in this dissertation report, titled
Simulated Annealing Algorithm for Travelling Salesman Problem", being
ubrnittad in .partial ful811ment of the requirements for the award of the dew>of

i Wait of Technology with specialization in Coned and Guidance, In me
)partrnent of Electronics and Computer Engineering, Indian In , III Ie of

Technology, Roorkee is an authentic record of my own work carried out tram July

0009 to June 2010, under guidance and supervision of Dr. R. Mf J'RA, Pro ssoF,

)apartment of Electronics and Computer Engineering, Indian InstituS of

'ethnology, Roorkee.

the results embodied in this dissertation have not submitted for the award of any other

degree or Diploma.

zags .48106 l.ta I
	$ 0 4401

'ace: Roorkee 	 AVAT KUMAR GUPTA

CERTIFICATE

Ibis is to certify that the statement made by the candidate is correct to the best of my.

mowledge and belief.

(Dr. It. MITRA)
Professor, E&C bepvbthnf.

Indian Institut, of Tochnotogy, RooSs.
Roorkee — 247 667, (INDIA)

Acknowledgement

With great sense of pleasure and privilege, I take this opportunity to express my deepest sense of

gratitude towards my supervisor and guide Dr. R Mitra for his valuable suggestions, sagacious

guidance, and scholarly advice to improve the quality of present work. His professionalism,

suggestions and his ways of thinking inspired me, and this inspiration guides me at every point

of my life. I consider myself extremely fortunate for having got the opportunity to learn and

work under his able supervision over the entire period of my association with him.

My sincere thanks to all faculty members of Control & Guidance for their constant

encouragement, caring words, constructive criticism and suggestions towards the successful

completion of this work. My sincere thanks to laboratory staff for letting me access the

computers and other resources at will, for completion of this work.

I would like to thank Mona Subramaniama and Mrs. Manju A. for their support in modeling the

system and the valuable suggestions that led me towards right path. I am very thankful to Atul,

Sharan, Rajesh, Vaibhav, Parag, Ajit,.Sadanand, Gulshan, Aryan, Ankit, Mrigank, Vivek for

providing their moral support and good company every time I needed, which always acted as a

strength for me at every point.

Most of all I am highly indebted to my parents ,uncle, aunty, sisters, brother-in law, Prashant,

Arushi, Samarth and all other family members and all other friends whose sincere prayers, best

wishes, moral support and encouragement was a constant source of assurance, guidance,

strength, and inspiration to me. Finally, I would like to extend my gratitude to all those persons

who directly or indirectly contributed towards this work.

Abstract

Sensitivity and Robustness is the key factor while designing the controller for nonlinear systems.

One of the performance objectives for controller design is to keep the error between the

controlled output and the set-point as small as possible. The control of many non-linear,

inherently unstable systems using conventional methods is both difficult to design and

marginally satisfactory in implementation. The introduction of optimization techniques in control

engineering that makes use of evolutionary computation and an implicit imprecision is successful

in counteracting these limitations. The field of computational intelligence has incorporated to

such systems with an objective to achieve higher optimality and satisfactory performance.

The main objective of this work is to design "Simulated Annealing Algorithm" for the well

known "Travelling Salesman Problem". In "Travelling Salesman Problem" the primary goal is to

reduce the cost (i.e. the distance travelled by the person to cover all the cities once and once and

return to their starting city). Basically, the aim is to achieve "Global Minima" in the total search

space given. In this algorithm, firstly a random route is selected and its cost is calculated then

onwards, according to "Metropolis Criteria" acceptance and rejection of route are done to
improve the cost.

For this purpose; the supporting theory of "Simulated Annealing Algorithm" and "Travelling

Salesman Problem" were discussed. After that, the mathematical analysis for the convergence of

the "Simulated Annealing Algorithm" was discussed. Then onward, the algorithm is

implemented for a small size "Travelling Salesman Problem" (i.e. 10 cities "Travelling Salesman

Problem"). Then, the size of the problem is increased in the small steps. After that a comparative

study of the "Simulated Annealing Algorithm" And "Tabu Search Algorithm" has been done.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 	 i . i ...iii

ABSTRACT...iv

LIST OF FIGURESvii

CHAPTER1: Introduction ...1
1.1 Motivation .. 1
1.2 Problem Statement ...:.......2
1.3 Travelling Salesman Problem and Combinatorial Optimization3
1.4 Methodology 3
1.5 Simulated Annealing ... 8
1.6 Overview of the Thesis ... 9

CHAPTER 2: Classical Simulated Annealing Algorithm ...10
2.1 Introduction ... 10
2.2 Local Optimization .. 1 1
2.3 Statistical Mechanics- A Physical Analogy ... 12
2.4 Classical Simulated Annealing .. 18

CHAPTER 3: Quantitative Analysis of Simulated Annealing Algorithm22
3.1 	Introduction 	... 22
3.2 	Mathematical 	Model 	... 24

3.2.1 	Asymptotic Convergence 	..25
3.2.2 	Annealing 	Schedule ... 29

3.3 	Analysis of Cost Function ..31

CHAPTER 4: Application of Simulated Annealing Algorithm ..35
4.1 Inverted Pendulum ...:.......... 35
4.2 Ball and Beam System ..37

4.2.1 Mechanical Model of Ball and Beam System ...38

v

4.3 Magnetic Levitation System ..41

CHAPTER 5: Simulation Results and Their Interpretation .:..44

CHAPTER 6: Conclusion and Future Prospective ..58
6.1 Conclusion ...58
6.1 Future Prospective ... 59

References.. 60

vi

LIST OF FIGURES

Figure

No.

Title Page

No.

2.1 Local Optimization Algorithm 12

2.2 Plateau Local Minima and Global Minimum for the Cost Function 13

2.3 Boltzmann's 	distribution 	curve 	for 	an 	energy 	function 	at 	various
Temperatures

15

2.4 General Metropolis Algorithm 16

2.5 Analogy between Physical System and Combinatorial Optimization 18

2.6 Simulated Annealing Algorithm 20

4.1 Structure of control Strategy for Ball & Beam system 37

4.2 Mechanical system of Ball and Beam 38

4.3 Flowchart of Inherited control algorithm for Ball and Beam System 40

5.1 Convergence Figure obtained by "Simulated Annealing Algorithm" for 10

Cities Travelling Salesman Problem (On X-axis "Number of iteration" And

on Y "Cost" and Cooling Rate is 0.97)

44

5.2 Route obtained by "Simulated Annealing Algorithm" for 	10 	Cities
Travelling Salesman Problem (X-axis represent the X-coordinate of the

City and Y-axis represent the Y-coordinate of the City and Cooling Rate is
0.97)

45

5.3 Convergence Figure obtained by "Simulated Annealing Algorithm" for 20

Cities Travelling Salesman Problem (On X-axis "Number of iteration" And
45

on Y "Cost" and Cooling Rate is 0.97)

5.4 Route obtained by "Simulated Annealing Algorithm" for 20 	Cities 46

Travelling Salesman Problem (X-axis represent the X-coordinate of the

City and Y-axis represent the Y-coordinate of the City and Cooling Rate is

0.97)

5.5 Convergence Figure obtained by "Simulated Annealing Algorithm" for 30 46

Cities Travelling Salesman Problem (On X-axis "Number of iteration" And

on Y "Cost" and Cooling Rate is 0.97)

5.6 Route obtained by "Simulated Annealing Algorithm" for 30 	Cities 47
Travelling Salesman Problem (X-axis represent the X-coordinate of the

City and Y-axis represent the Y-coordinate of the City and Cooling Rate is

0.97)

5.7 Convergence Figure obtained by "Simulated Annealing Algorithm" for 50 47

Cities Travelling Salesman Problem (On X-axis "Number of iteration" And

on Y "Cost" and Cooling Rate is 0.97)

5.8 Route obtained by "Simulated Annealing Algorithm" for 50 	Cities 48
Travelling Salesman Problem (X-axis represent the X-coordinate of the

City and Y-axis represent the Y-coordinate of the City and Cooling Rate is

0.97)

5.9 Convergence Figure obtained by "Simulated Annealing Algorithm" for 75 48
Cities Travelling Salesman Problem (On X-axis "Number of iteration" And

on Y "Cost" and Cooling Rate is 0.97)

5.10 Route obtained by "Simulated Annealing Algorithm" for 75 	Cities 49
Travelling Salesman Problem (X-axis represent the X-coordinate of the

City and Y-axis represent the Y-coordinate of the City and Cooling Rate is

0.97)

viii

5.11 Convergence Figure obtained by "Simulated Annealing Algorithm" for 442 49

Cities Travelling Salesman Problem (On X-axis "Number of iteration" And

on Y "Cost" and Cooling Rate is 0.97)

5.12 Route obtained by "Simulated Annealing Algorithm" for 442 Cities 50
Travelling Salesman Problem (X-axis represent the X-coordinate of the
City and Y-axis represent the Y-coordinate of the City and Cooling Rate is
0.97)

5.13 Convergence Figure obtained by "Simulated Annealing. Algorithm" for 535 50

Cities Travelling Salesman Problem (On X-axis "Number of iteration" And

on Y "Cost" and Cooling Rate is 0.97)

5.14 Route obtained by "Simulated Annealing Algorithm" for 535 Cities 51

Travelling Salesman Problem (X-axis represent the X-coordinate of the

City and Y-axis represent the Y-coordinate of the City and Cooling Rate is

0.97)

5.1.5 Convergence Figure obtained by "Tabu Search Algorithm" for 30 Cities 51

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y

"Cost")

5.16 Route obtained by "Tabu Search Algorithm" for 30 Cities Travelling 52

Salesman Problem (X-axis represent the X-coordinate of the City and Y-

axis represent the Y-coordinate of the City)

5.17 Convergence Figure obtained by "Tabu Search Algorithm" for 50 Cities 52

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y

"Cost")

5.18 Route obtained by "Tabu Search Algorithm" for 50 Cities Travelling 53

Salesman Problem (X-axis represent the X-coordinate of the City and Y-

axis represent the Y-coordinate of the City)

5.19 Convergence Figure obtained by "Tabu Search Algorithm" for 75 Cities 53
Travelling Salesman Problem (On X-axis "Number of iteration" And on Y

"Cost")

5.20 Route obtained by "Tabu Search Algorithm" for 75 Cities Travelling 54
Salesman Problem (X-axis represent the X-coordinate of the City and Y-

axis represent the Y-coordinate of the City)

5.21 Convergence Figure obtained by "Tabu Search Algorithm" for 442 Cities 54
Travelling Salesman Problem (On X-axis "Number of iteration" And on Y

"Cost")

5.22 Route obtained by "Tabu Search Algorithm" for 442 Cities Travelling 55

Salesman Problem (X-axis represent the X-coordinate of the City and Y-

axis represent the Y-coordinate of the City)

5.23 Convergence Figure obtained by "Tabu Search Algorithm" for 535 Cities 55

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y
"Cost")

5.24 Route obtained by "Tabu Search Algorithm" for 535 Cities Travelling 56

Salesman Problem (X-axis represent the X-coordinate of the City and Y-

axis represent the Y-coordinate of the City)

CHAPTER 1

INTRODUCTION

1.1. Motivation:

The problem based on vehicle routing basically involves finding a set of delivery routes from

one or several central depots to various demand points (e.g. consumers), in order to optimize a

kind of objective function (minimization of routing costs, or the sum of fixed and variable costs,

or the number of vehicles required, or the time consumed in following the route, etc.). There are

some constraints on the vehicle like maximum rout time constraints, capacity constraints. For

example, the problem arises when there is only a single vehicle of unlimited capacity, unit

demands, only the routing costs, and an objective function which minimizes total distance

travelled, is the famous Travelling Salesman Problem (TSP)[1].

Instead of minimizing the distance there may be several other type of objective function

notations such as time, cost, and number of vehicle required in the fleet which may be considered

equivalently. With several vehicles of common capacity, a single depot, known demands, and

same objective function as Travelling Salesman Problem (TSP), there is a standard vehicle
routing problem.

A huge amount of literature devoted only to Travelling Salesman Problem has made a good

impact. One has to simply consult [1] to be convinced that Travelling Salesman Problem is one

of the most fundamental and prominent, the most intensively investigated among all unsolved

classical combinatorial optimization problems. Although everybody can easily explain and

clearly conceptualize the Travelling Salesman Problem. It is, in fact the most difficult and first

combinatorial type of problem.

The work done on this problem is partially reflection of the fact that the Travelling Salesman

Problem encountered and represents a huge set of different kind of practical problems [1]. A

specific and representative example of such practical problem is the application of Travelling

Salesman Problem in the drilling holes on printed circuit board. The Travelling Salesman

1

Problem is the embedded component of most of the vehicle routing problem such as retail

distribution, mail and newspaper delivery, municipal waste collection, fuel oil delivery etc. It

also has some surprising application such as in robotics.

Motivated by extensive usability and applicability of "Travelling Salesman Problem" and its

intensive computation, the most important objective of this thesis devoted toward developing a

method to solve "Travelling Salesman Problem". The secondary objective of this thesis is to

analyze the performance of this method with respect to other existing method for solving

Travelling Salesman Problem. The third objective of this thesis is the computational study of

Travelling Salesman Problem via examination of the quality of its final solution.

1.2. The Problem Statement:

The Travelling Salesman Problem is stated as follows:

Given a set ofN cities coordinate by which we calculate the distance between any two cities, and

a salesman is required to visit each and every city once and only once, starting from any city and

returning to the city of departure; then "what is the shortest route, or tour, that he must choose in

order to minimize the total distance he travelled?" with the assumption that there exist a direct

straight path between any two cities. Instead of minimizing the distance there may be several

other type of objective function notations such as time, cost, and number of vehicle required in

the fleet which may be considered equivalently. Mathematically, it can be formulated as follows:

Given a set of cities vertex V = {v0 ,...., vN } and the distance, di,, from v; to v1 , what is the best

order cycle permutation, c = (v(1),..... a(N)) of V, that minimizes the cost function,

N-1

C(a) _ 	d[6(j),6(itl)] + u[6(N),_(1)] 	 (1.1)
i=1

It is necessary to note that this permutation is selected by all cyclic permutations; there are

2 	
such permutations, in the Travelling Salesman Problem with symmetric distance matrix.

2

1.3. Travelling Salesman Problem and Combinatorial Optimization:

Combinatorial optimization is a subject which consists of problems that are central to many

disciplines of science and technology engineering. Ongoing research in these areas has devoted

towards developing the efficient methodologies and techniques for finding (minimum or

maximum) the optimum values of a function of many independent variables. The function which
we have to optimize is, usually called cost function, objective function, represent a measure of

quantitative "goodness" of some complex systems. It is one of the important reason that the last

three generation of combinatorial mathematician and operations research analysts, including

computer scientist and engineers along with optimality control engineers, cumulatively have

devoted literally many man years to study combinatorial optimization and extensive work on

such problems.

Travelling Salesman Problem is one of the basic and most representative problem of all type of

combinatorial optimization problem in general, it is an embedded component of most of the

vehicle routing problems. It seems to be extremely interesting that how often the old method for

solving Travelling Salesman Problem have precipitated and generated new and general

techniques and methods in combinatorial optimization. The objective of this section is to

introduce the reader with the flavor and a good appreciation of its historical importance and to

highlight some key events.

From the earliest studies of discrete models, the Travelling Salesman Problem has been a major

stimulant to research on combinatorial optimization. The early studies of the Travelling

Salesman Problem pioneered the use of cutting plane techniques in integer programming and

were responsible for several important ideas associated with tree enumeration method including

coining the term "branch and bound". At that time, in the context of dynamic programming,

problem of partitioning and decomposition introduced that will later proved to be fruitful in other

applications of dynamics programming, and in accessing heuristic method of combinatorial

optimization. An isolated probabilistic study of the Travelling Salesman Problem in the plane has

become widely recognized as the seminal contribution to the probabilistic evaluation of heuristic

methods for combinatorial optimization.

3

There are so many contributions to combinatorial optimization throughout 1950's and 1960's,

for such problem classes as machine scheduling and production planning with setup cost, crew

scheduling, set covering, and facility location problem were extensions and generalizations of

these basic themes. Ongoing research work focused on the designing of optimization algorithms,

usually based upon dynamic programming recursions' or somewhat tailored versions of general

purpose integer programming methods, very often for special case problem in the problem class.

At the same time that these integer and dynamic programming methods were evolving,

combinatorial optimization was emerging and flourishing as a discipline in applied mathematics,

based, in the large part, on the widespread practical and combinatorial applications of network

flow theory and its generalizations such as nonbipartite matching and matroid optimization.

Indeed, it is easy to understand the importance of these landmark contributions in defining

combinatorial optimization as we know it today.

Although researchers were designing and applying heuristic (approximate) algorithms during the

1950's and 1960's for example, exchange heuristics for both the Travelling Salesman Problem

and facility location problem, optimization based methods remained at the forefront of the

academic activity. The heuristic algorithms developed at this time may have been progenitors of

the algorithms studied later, but their analysis was often of such a rudimentary nature that

heuristic did not capture the imagination and full acceptance of the academic community of this

era. Rather than statistical assessment or error bound analysis, limited empirical verification of

heuristics ruled the 1960's.

Two developments in the 1970's, namely the computation complexity theory and the evolution

of enhanced capabilities in mathematical programming, revitalized combinatorial optimization

and precipitated a new focus in its research. The familiar computation complexity theory has

shown that the Travelling Salesman Problem and nearly every other "difficult" combinatorial

optimization problem, the so called NP-complete (nondeterministic polynomial time complete)

class of problems, are all computationally equivalent; namely, each of those problems has eluded

any algorithmic design guaranteed to be more efficient than tree enumeration, and if one problem

could be solved by an algorithm that is polynomial in its problem size, then they all could. This

revelation suggested that algorithm possibilities for optimization methods were limited, and

motivated renewed interest to design and analyze effective heuristics. Again, the Travelling

4

Salesman Problem was at the forefront during this era. Worst case (i.e. performance guarantee)

analysis, statistical analysis, and probabilistic analysis of various heuristics for the Travelling

Salesman Problem typified this period of research and were among the first steps in the evolution

of interesting analytical approaches for evaluating heuristic methods. Indeed, the mere fact that

computational complexity theory embraced the "infamous" Travelling Salesman Problem

undoubtedly was instrumental in the theory's acceptance as a new paradigm in operation

research, computer science and engineering

Computation complexity theory has become pervasive, so much so that Garey and Johnson's

comprehensive monograph discusses more than 300 combinatorial applications (320 application

exactly), and the Travelling Salesman Problem is the first representative problem discussed.

Consequently, the Travelling Salesman Problem would appear to be both a source of inspiration

and a prime candidate for analysis by heuristic methods.

Cumulatively, this fertile decade of 1970's research has yielded much improved capabilities for

applying optimization methods to combinatorial problems, capabilities that tend to

counterbalance he trend, stimulated by computational complexity theory, towards heuristic

methods. As a consequence, heuristic methods provide excellent opportunities for the current

algorithmic developments for the Travelling Salesman Problem of the 1980's.

1.4. Methodology:

Currently, the search for faster heuristic methods for combinatorial optimization problems seems

to follow two different directions. On the one hand, he search for faster computation machinery

such as the FTTP, Pentium, and Quad core processor has received a substantial amount of

attention. On the other hand, there has been a considerable amount of effort devoted to the

development of better and efficient algorithms. The number of instances in which these

methodologies and algorithms thus developed to solve the Travelling Salesman Problem have

been used successfully in practical applications has been growing encouragingly over the past

years. These algorithms are classified, into two categories, namely exact and heuristic

(approximate) algorithms.

An example of such exact algorithm for solving the Travelling Salesman Problem is the branch

and bound algorithm. This method is generalized scheme for limiting the necessary enumeration

S

of the entire configuration space of the Travelling Salesman Problem, thus improving on the

exhaustive search technique. It accomplishes this by arranging the configuration space as a tree

and attempting to fmd the bounds by which entire branches of the configuration space may be

discarded from the search. Let us consider a configuration space of an N city Travelling

Salesman Problem, which may be represented by a number of binary state variables

corresponding o the presence of a tour edge (or the branch of the tour); each edge directly

connects city i to city j. From this configuration space, we can derive that there are N(N-

1)/2 such possible edges, and of course "only" (N- 1)!/2 combinations of the binary state

variables to map to the valid tours. It is important to note that, in this method, a tree is

constructed such that it branches in two directions at each node, depending on whether or

not a particular edge is considered part of the tour. As we descend through the tree, the

distance of the current incomplete tour grows as certain edges considered are included in

the tour. If a certain upper bound has already been established for the optimal tour length, then

an entire of the configuration space tree may be eliminated if the current incomplete tour

length already exceeds that bound. Equally important to know that as the algorithm

proceeds through the search tree, lower and upper bounds may be discovered as new

branches are traversed. Although this ability to prune the search tree is vital to the success of

the branch and bound algorithm, such expansion and pruning of the search tree can

continue endlessly.

Though most of these algorithms have aimed for efficiency and computational tractability,

the TSP is a NP-complete problem. In other words, the TSP is unlikely to be solvable

exactly by any algorithm or amount of computation . time when the problem size (the

number of cities in the TSP), N, is large. Because of the exponentially dependent nature

of the computation on N, the computing time in employing an exhaustive search in solving

the TSP for the exact solution is practically infeasible. Such infeasibility can be evidently

demonstrated in a simple example. Let us consider a computer that can be programmed to

enumerate all the possible tours for a set of N cities, keeping track of the shortest tour.

Suppose this computer enumerates and examines a tour in one microsecond. At this rate

the computer would solve a ten city problem in 0.18 seconds, which is not too bad. In a

fifteen city problem, the computational effort would require over twelve hours. But, a

twenty city problem would require nearly two thousand years. It is not too difficult to

6

render such an algorithm entirely impractical--only a small increase in the problem size

causes a nearly unbounded computation time.

Because of the impracticality in employing exact algorithms in solving the Travelling

Salesman Problem, there exists fortunately another algorithmic category that constitutes

quite a few practical heuristic (or approximate) algorithms, known as iterative improvement

algorithms, for finding nearly optimal solutions for the Travelling Salesman Problem and

other combinatorial optimization problems.

Iterative improvement starts with a feasible tour and seeks to improve the tour via a sequence of

interchanges. In other words, it begins by selecting an initial state in the space and

successively applying a set of rules for alternating the configuration so as to increase

the optimality of the current solution. Given a random starting solution, the algorithm

descends on the surface of the objective function until it terminates at a local minimum.

The local minimum occurs because none of the allowed transitions or moves in the

configuration space yield states with lower objective function. Thus, one application of this

algorithm yields what may be a fairly optimal solution. By repeating this procedure many

times, the probability of finding more highly optimal states is increased. The best-known

algorithms of this type are the edge (branch) exchange. In the general case, r edges in a

feasible tour are exchanged for r edges not in that solution as long as the result remains

a tour whose length, distance, or cost is less than that of the previous tour. Exchange

algorithms are referred to as r-opt algorithms where r is the number of edges exchanged at

each iteration.

In an r-opt algorithm, all exchanges of r edges are tested until there is no feasible exchange

that improves the current solution. This solution is then said to be r-optimal, In general, the

larger the value of r, the more likely it is that the final solution is optimal. Even for approximate

algorithms, the number of operations necessary to test all r exchanges unfortunately increases

rapidly as the number of cities increases. As a result, values of r = 2 and r = 3 are the ones

most commonly used.

Such heuristic algorithms, whose rate of growth of the computation time is a low order

polynomial in N, rather than exponential in N, have been observed to perform well. Among

7

these heuristic algorithms, a modified iterative improvement heuristic known as "Simulated

Annealing" Algorithm is selected to investigate the "Traveling Salesman Problem".

1.5. Simulated Annealing:

Annealing is the process of heating a solid and cooling it slowly so as to remove strain

and crystal imperfections. 	The Simulated Annealing process [2] [3] consists of first

"melting" the system being optimized at a high effective temperature, then lowering the

temperature by slow stages until the system "freezes" and no further changes occur. At

each temperature, the simulation must proceed long enough for the system to reach a steady

state. The sequence of temperatures attempted to reach to a steady-state equilibrium is

referred to as an annealing schedule. During this annealing process, the free energy of the

solid is minimized. The initial heating is necessary to avoid becoming trapped in a local

minimum. Virtually every function can be viewed as the free energy of some system and

thus studying and imitating how nature reaches a minimum during the annealing process

should yield optimization algorithms.

In 1982, Kirkpatrick, Gelatt & Vecchi [2] observed that there is an analogy between

combinatorial optimization problems such as the TSP and large physical systems of the kind

studied in statistical mechanics. Using the cost function in place of the energy function and

defining configurations by a set of energy states, it is possible, with the Metropolis

procedure [4] [5] that allows uphill transitions, to generate a population of configurations

of a given optimization problem at some effective temperature schedule. This temperature

schedule [6] is simply a control parameter in the same units as the cost function. This

procedure is highly inspired from "Markov Chain" [7].

Just what simulation, i.e. imitation, here means mathematically, 	along with its underlying

relation with statistical physics. The resulting method called "Simulated Annealing" [8] [9],

which is a heuristic combinatorial optimization technique that modifies the iterative

improvement method by allowing the possibility of uphill moves in the configuration space,

has become a remarkably powerful tool in solving global optimization problems in general

and the TSP in particular.

8

1.6. Overview of the Thesis:

In chapterl, the problem statement for "Travelling Salesman Problem" has been given and some

methodologies were also discussed. In chapter 2, theory related to "Simulated Annealing

Algorithm" was given in relation with combinatorial optimization. In chapter 3, the Analytical

Analysis of "Simulated Annealing Algorithm" along with its convergence mathematics was

provided. In chapter 4, some practical applications available at laboratory were discussed in brief

along with their "State Space Modeling". In chapter 5, simulation results obtained from

application of "Simulated Annealing Algorithm" as well as "Tabu Search Algorithm" on

"Travelling Salesman Problem" were given and in the last section a comparative analysis of

"Simulated Annealing Algorithm" and "Tabu Search Algorithm" has been provided for 30, 50,

75, 442, 535 cities data collected from "stsp_v61 from math work provided by Arvind Seshadri"

[10]. In the last chapter that is chapter 6, conclusion and future application of Simulated

annealing algorithm were given.

9

CHAPTER 2

CLASSICAL SIMULATED ANNEALING ALGORITHM

2.1. Introduction

As briefly introduced in the previous chapter, Simulated Annealing [2] and independently

[3] is one of the most powerful heuristic optimization techniques for solving difficult

combinatorial optimization problems which have been known to belong to the class of NP-

complete problems. This new approach was originally invented and developed by

physicists based on ideas from statistical mechanics and motivated by an analogy to the

behavior of physical systems in the presence of a heat bath. Because the number of

molecules in the physical system of interest is very large, experimental measurements of

the energy of every molecule in the system is practically impossible. Physicists were thus

forced to develop statistical methods to describe the probable internal behavior of molecules.

In its original form, the Simulated Annealing Algorithm is based on the analogy between

the simulation of the annealing of solids and the problem of solving large combinatorial

optimization problems, where the configurations actually are states (in an idealized model

of a physical system), and the cost function is the amount of (magnetic) energy in a state.

For this reason, the algorithm became known as "Simulated Annealing ". With the Metropolis

procedure, Simulated Annealing offers a mechanism for accepting increases in the

objective function in a controlled fashion. At each temperature setting, an increase in the tour

length is accepted with a certain probability while a decrease in the tour length is always

accepted. In this way, it is possible that accepting an increase will reveal a new configuration that

will avoid a local minimum or at least a bad local minimum. The effect of the method is that one

descends slowly. By controlling these probabilities, through the temperatures, many random

starting configurations are in essence simulated in a controlled fashion. An analogy similar to

this is well-known in statistical mechanics.

10

The non-physicist, however, can view it simply as an enhanced version of the familiar

technique of "iterative improvement," in which an initial configuration is repeatedly improved

by making small local alterations until no such alteration yields a better configuration.

Simulated Annealing randomizes this procedure in such a way that allows for occasional

"uphill moves," changes that worsen the configurations, in an attempt to reduce the
probability of getting stuck at a poor and locally optimal configuration. 	Since the
Simulated Annealing Algorithm is a generalization of "iterative improvement" and because

of its apparent ability to avoid poor local optima, it can readily be adapted in solving

new combinatorial optimization problems, thus, offering hope of obtaining significantly

better results.

Ever since Kirkpatrick [2] introduced the concepts of annealing with incorporation of the

Metropolis [4] procedure into the field of combinatorial optimization and applied it

successfully to the "Ising spin class" problem, much attention has been devoted to the

research of the theory and applications of Simulated Annealing. Important fields as diverse

as VLSI design [2], and pattern recognition [5] have been applying Simulated Annealing
with substantial success.

Computational results to date have been mixed. For further detailed examinations, an interested

reader is encouraged to refer to [2].

In order to fully appreciate the thrust that is underlying the Simulated Annealing Algorithm

as introduced in Section 2.4, it is important to understand Local Optimization which is

briefly reviewed in Section 2.2 and the birth of the Simulated Annealing Algorithm

which is discussed in Section 2.3.

2.2. Local Optimization

To gain a real appreciation of the Simulated Annealing Algorithm as will be described in

more detail in Section 2.3 and Section 2.4, one must first understand Local Optimization.

A combinatorial optimization problem can be specified by identifying a set of configurations

together with a "cost function" that assigns a numerical value to each configuration. An

optimal configuration is a configuration with the minimum possible cost (there may be more than

11

one such configuration). 	Given an arbitrary configuration to such a problem, Local

Optimization attempts to improve on that configuration by a series of incremental, local

changes. To define a Local Optimization algorithm, one first specifies a method for perturbing

configurations so as to obtain different ones. 	The set of configurations that can be

obtained in one such step from a given configuration i is called the neighborhood of i. The

algorithm then performs the simple loop shown in Figure 2.1 (with the specific methods for

choosing i and j left as implementation details).

Although i need not be a global optimal configuration when the loop is finally exited, it

will be locally optimal in that none of its neighbors has lower cost. The hope is that "locally

optimal" will be good enough. Because the locally optimal configuration is not always

sufficient as can be seen from Figure 2.2, the Simulated Annealing Algorithm may provide the

means to find both good locally optimal configurations and possibly a globally optimal

configuration. Hence, it is the topic of discussion of the next section and the following.

1. Get an initial configuration i.

2. While (there is an untested neighbor of i) do the following:

2.1 Let j be an untested neighbor of i.

2.2 If cost 0) < cost (i), set i =j.

3. Return i.

Figure 2.1: Local Optimization Algorithm.

2.3 Statistical Mechanics- A Physical Analogy

As will be seen in the next section, Simulated Annealing is the algorithmic counterpart

to a physical annealing process of statistical mechanics, using the well-known Metropolis

Algorithm as its inner loop. Statistical mechanics concerns itself with analyzing aggregate

properties of large numbers of atoms in liquids or solids. The behavior is characterized

12

by random numbers fluctuating about a most probable behavior, namely the average behavior

of the system at that temperature. An important question is: What happens to the

molecules in the system at extremely low temperatures, i.e. about zero degree? The low-

temperature state may be referred to as the ground state or the lowest energy state of the

system. Since low-temperature states are very rare, experiments that reveal the low-

Cost Function

CF 	 Plateau

Local Minima 	 1

Global Minima -►

Co Cigars to n,

Figure 2.2: Plateau Local Minima and Global Minimum for the Cost Function.

temperature state of a material are performed by a process referred to as annealing. In

condensed matter physics, annealing denotes a physical process in which a solid material

under study in a heat bath is first melted by increasing the temperature of the heat bath to a

maximum value at which all particles of the solid randomly arrange themselves in the

liquid phase; this melted material is then cooled slowly by gradually lowering the

temperature of the heat bath, with a long time spent at temperature near the freezing point.

13

It is important to note that the period of time at each temperature must be sufficiently long

to allow a thermal equilibrium to be achieved; otherwise, certain random fluctuations will

be frozen into the material and the true low-energy state or ground state energy will not be

reached. The process is like growing a crystal from a melt. To simulate the evolution of the

thennal equilibrium at any given temperature T, Metropolis [4] introduced a Monte Carlo

method, a simple algorithm that can be used both to generate sequences of internal

configurations or states and to provide an efficient simulation of collections of atoms in

order to examine the behavior of gases in the presence of an external heat bath at a fixed

temperature (here the energies of the individual gas molecules are presumed to jump.

randomly from level to level in line with the computed probabilities). In each step of this

algorithm, a randomly generated atom is given a small displacement, and the resulting

change, AE, in the energy of the system between the current configuration and the

perturbed configuration is computed. If AE < 0, the displacement is accepted, and the

configuration with the displaced atom is used as the starting point of the next step. The case

AE > 0 is treated probabilistically: the probability that the configuration is accepted is P (AE)

=exp(—E/K HT). This acceptance rule of the new configurations is known as the Metropolis

criterion. 	Random numbers uniformly distributed in the interval (0,I) are a convenient

means of implementing the random part of the algorithm. One such number is selected

and compared with P(AE); if this random number is less than P(AE), then the new

configuration is retained for the next step; otherwise, the original configuration is used to

start the next step. By repeating the basic step many times and using the above acceptance

criterion, one simulates the thermal motion of the atoms of a solid in thermal contact with

a heat bath at each temperature T, thus allowing the solid to reach thermal equilibrium. This

choice of P (AE) has the consequence that the system in a given state i with energy E(i) evolve

into the Boltzmann distribution.

PT (i) = exp(—E(i) / KBT) / Z(T) 	 (2.1)

Where

Z(7') is a normalization factor, known as the partition function,

14

T is the temperature,

KB is the Boltzmann constant,

i is a configuration of molecules in a system,

E(i) is the energy of configuration i,

exp(—E / K BT) is known as the Boltzmann factor,

and, PT (i) is its probability.

Figure 2.3: Boltzmann',s distribution curve for an energy function at various Temperatures

Note that, as the temperature decreases, the Boltzmann distribution concentrates on states

with the lowest energy, and finally when the temperature approaches zero, only the

minimum energy states have a non-zero probability of occurrence.

In statistical mechanics, this Monte Carlo method, which is the Metropolis Algorithm,

is a well-known method used to estimate averages or integrals by means of random

sampling techniques. The general structure of the Metropolis Algorithm is summarized in

Figure 2.4.

It is important to note that a decrease (downhill) in the change of energy is always accepted

while an increase (uphill) in the change of energy is accepted probabilistically. After many

15

iterations of the Metropolis Algorithm, it is expected that the configuration of atoms would vary

according to its stationary probability distribution.

The type of acceptance probability used for uphill moves in the Metropolis Algorithm

may be used in the Simulated Annealing Algorithm. The AE of the Metropolis Algorithm is

replaced by the change in the value of the objective function and the quantity KsT is replaced

by the dimensionless version of the temperature, T. Given a. sufficiently low temperature,

the distribution of configurations of the optimization problem will converge to a

Boltzmann distribution that sufficiently favors lower objective function states (the optimal

states). The probability of accepting any uphill moves approaches zero as the temperature

approaches zero. As a result, approaching thermal equilibrium requires an unacceptably large

number of steps in the algorithm.

1. Generate an initial state i of the system.
2. Set the initial Temperature T> 0.
3. While (" Not yet frozen") do the following:

3.1 While ("Not in thermal equilibrium") do the following:
3.1.1 Perturb atom from state i to state j.
3.1.2 Compute AE = Energy (j) — Energy (i)
3.1.3 AE <-0 	 * Decrease energy transition

Then set i=j.
3.1.4 AE > 0 	 * Increase energy transition

Then set i=j with probability = exp(—E / K5T)

3.2 Set T = Update (T) 	* Reduce Temperature
4. Return i 	 *Return best state

Figure 2.4: General Metropolis Algorithm

The general approach of Simulated Annealing is to let the algorithm spend a sufficient

Amount of time at a higher temperature, and is then slowly lowering the temperature by

small incremental steps. The process is then repeated until a sufficiently low temperature has

been obtained, i.e. T = 0. This is faster than simply setting the temperature initially to a low

16

value and waiting for configurations of substances to reach thermal equilibrium. Annealing

may be considered as the process of cooling slowly enough so that phase transitions are

allowed to occur at their corresponding critical temperatures. Thus, to obtain pure crystalline

systems, the cooling phase of the annealing process must proceed slowly while the system

freezes.

However, it is well known [2] that if the cooling is too rapid, i.e. if the solid or crystal

structure is not allowed to reach thermal equilibrium for each temperature value, defects and

widespread irregularities or non-equilibrium states can be 'frozen or locked into the solid,

and meta stable amorphous structures corresponding to glasses can result rather than the low

energy crystalline lattice structure. Furthermore, this process is known in condensed matter

physics as "rapid quenching"; the temperature of the heat bath is lowered instantaneously,

which results in a freezing of the particles in the solid into one of the meta stable amorphous

structures. The resulting energy level would be much higher than it would be in a perfectly

structured crystal. 	This "rapid quenching" process can be viewed as analogous to Local

Optimization. When crystals are grown in practice, the danger of bad "local optima" is

avoided because the temperature is lowered in a much more gradual way, by a process that

Kirkpatrick calls "careful annealing". In this process, the temperature descends slowly

through a series of levels, each held long enough for the crystal melt to reach

"equilibrium" at that temperature. 	As long as the temperature is nonzero, uphill moves

remain possible. By keeping the temperature from getting too far ahead of the current

equilibrium energy level, we can hope to avoid local optima until we are relatively close to

the ground state.

The correspondent analogy we are seeking now presents itself. Each feasible configuration of

the combinatorial optimization problem or each feasible tour of the TSP corresponds to a

state of the system; the configuration space of . the combinatorial optimization problem or

the permutation space of the TSP corresponds to the state space of the system; the cost or

objective function corresponds to the energy function; the objective value associated with

each feasible tour corresponds to the energy value associated with each state of that system;

the optimal configuration or tour associated with the optimal cost value corresponds to the

ground state associated with the lowest energy value of the state of the physical system. The

17

analogy is summarized in Figure 2.5.

Physical System Optimization Problem Travelling Salesman

State Feasible Configuration Feasible Tour

State Space Configuration Space Permutation Space

Ground State Optimal Configuration Optimal Tour

Energy Function Cost Function Cost Function

Energy Cost Cost

Rapid Quenching Local Optimization Local Optimization

Careful Annealing Simulated Annealing Simulated Annealing

Figure 2.5: Analogy between Physical System and Combinatorial Optimization

2.4 Classical Simulated Annealing

As was discussed in Section 2.2 and illustrated by Figure 2.2, the difficulty with Local

Optimization is that it has no way to "back out" of the unattractive local optima because it

never moves to a new configuration unless the direction is "downhill," i.e. to a better value

of the cost function, 	Simulated Annealing is an approach that attempts to avoid the

entrapment in poor local optima by allowing an occasional "uphill" move. This is done under

the influence of a random number generator and an annealing schedule. The attractiveness of

using the Simulated Annealing approach for combinatorial optimization problems is that

transitions away from a local optimum are always possible when the temperature is

nonzero. As pointed out by Kirkpatrick [2], the temperature is merely a control parameter;

this parameter controls the probability of accepting a tour length such, it is expressed

in the same units as the objective function. 	In implementing the approach, any

improvement procedure could be used.

As was seen, the Metropolis Algorithm can also be used to generate sequences of

is

configurations of a combinatorial optimization problem. In that case, the configurations

assume the role of the states of a solid while . the cost function C and the control parameter

called the annealing schedule, T, take the roles of energy and the product of temperature and

Boltzmann's Constant, respectively. The Simulated Annealing Algorithm can now be viewed as

a sequence of Metropolis Algorithms evaluated at each value of the decreasing Sequence of

annealing schedule, which is defined to beT = {t„tz ,...,t,,}, where t j > t2 >> t„_1 > t„ . It can thus

be described as follows. Initially the annealing schedule has given a high value, and a

sequence of configurations of the combinatorial optimization problem is generated. As in

the iterative improvement algorithm, a generation mechanism is defined, so that, given a

configuration i, another configuration j can be obtained by choosing at random a

configuration from the neighborhood of i. The latter corresponds to the small perturbation in

the Metropolis Algorithm. Let AC(i, j) = C(j) — C(i) , then the probability for configuration j

to •be the next configuration in the sequence is given by I if AC(i, j) —< 0 , and by

exp(—OC(i, j) / T) , if AC(i, j) > 0 (Metropolis Criteria). Thus, there is a non-zero probability of

continuing with a configuration with higher cost than the current configuration. This process

is continued 	until equilibrium 	is reached, i.e. until the probability distribution of the

configuration approaches the Boltzmann distribution, now given by

Pr {configuration = i} = q, (T) = exp(—C(i) / T) / Q(T) ,

Where Q(T) is the normalization constant depending on the annealing schedule T, which is

equivalent to partition function Z(T).

The probability distribution curve for the cost function is analogous to Figure 2.3 with E(i) is

replaced by C(i).

The annealing schedule T is then lowered in incremental steps, with the system being

allowed to approach equilibrium for each step. The algorithm is terminated for some small

value of T, at which virtually no further deteriorations or increases in cost are accepted.

The final `frozen' configuration is then taken as the optimal configuration of the problem under

consideration. The main steps in the Simulated Annealing Algorithm are outlined in Figure

2.6.

19

20 lot
1. Generate an initial random configuration i. 	Z ^ly no :................

2. Set the initial temperature 	T > 0. 	 `
3. While (not yet "frozen") 	do the following: 	,l r ROORK~~

3.1. While ("inner loop iteration" not yet satisfied) do the following:
3.1.1. Select the random neighbor j from configuration i.
3.1.2. Compute AC(i, j) Cost(j) — Cost(i);

	

3.1.3. If AC(i, j) s 0 	 ' Downhill transition
Then i=j.

	

3.1.4 If LC(i, j) >0 	 * Uphill Transition.
Then set i = j with probability = exp(—AC(i; j) I T)

	

3.2. Set T = Update (T) 	 * Reduce the Temperature
4. Return i. 	 * Return Best Configuration

Figure 2.6: Simulated Annealing Algorithm

Thus, as with iterative improvement, we have again a generally applicable approximation
algorithm: once configurations, a cost function and a generation mechanism or, equivalently, a
neighborhood structure) are defined, a combinatorial optimization problem can be solved
along the lines given by the description of the Simulated Annealing Algorithm. The heart of
this procedure is the loop at Step 3.1. Note that the acceptance criterion is implemented by
drawing random numbers from a uniform distribution on (0,1) and comparing these with
exp(—AC(i, j)/ T). Note also that exp(-AC(i, j)/T) will be a number in the interval (0,1)

20

xii

when A C and T are positive, and so can rightfully be interpreted as a probability. Note also

how this probability depends on A C and T. The probability that an uphill move of size 0 C will

be accepted diminishes as the temperature declines, and, for a fixed temperature T, small

uphill moves have higher probabilities of acceptance than larger ones. 	This particular

method of operation is motivated by a physical analogy of the physics of crystal growth
described in the last section.

The main difference between the Simulated Annealing Algorithm and the Metropolis Algorithm

is that the Simulated Annealing Algorithm iterates with variable temperature while the

Metropolis Algorithm iterates with a constant temperature. As the temperature is slowly

decreased to zero or annealed, the system approaches to steady state equilibrium. This

implies that the cost function should converge to a global minimum. It is worthy to emphasize

that the cooling or annealing process should be done slowly; otherwise, the system can get

stuck at a local minimum.

Ever since Kirkpatrick had recognized the physical analogy between statistical mechanics

and combinatorial optimization, the Simulated Annealing Algorithm has been important in

many disciplines. Not only has it been successfully applied in many important fields of

science and engineering but also it has been one of the major stimulants of research in

the academic and industrial communities. The force that makes the Simulated Annealing

Algorithm powerful is its inherent ability to avoid and/or to escape from being entrapped at

local minima, which are so many for a medium-size combinatorial optimization problem in

general and the TSP in particular.

In this chapter, the underlying motivation and historical development of the Simulated

Annealing Algorithm has been covered. To provide some useful results for the subsequent

chapters, a mathematical model and a quantitative analysis of the Simulated Annealing

Algorithm are studied in the next chapter.

21

xlt

CHAPTER 3

QUANTITAIVE ANALYSIS OF SIMULATED ANNEALING
ALGORITHM

3.1 Introduction

In Chapter 1, a brief description of the Simulated Annealing was introduced. In Chapter 2, the

origin and the motivation of Simulated Annealing were examined in detail and the Algorithm

was outlined. In this chapter, certain key mathematical concepts which are the underlying

foundation of Simulated Annealing will be investigated.

The Simulated Annealing Algorithm can be modeled mathematically by using concepts of

the theory of Markov chains [7]. Since a detailed analysis of these Markov chains is beyond the

scope of this thesis, they are extensively discussed and proved by a number of authors [7]

that under certain conditions, the algorithm converges asymptotically to an optimal

solution. 	Thus, asymptotically, the algorithm is an optimization algorithm. 	In practical

applications, however, asymptoticity is never attained and thus convergence to an optimal

solution is no longer guaranteed. Consequently, in practice, the algorithm is an approximate

algorithm.

The performance analysis of an approximate algorithm concentrates on following two quantities:

*The quality of the final solution obtained by the algorithm, i.e. the difference in cost value

between the final solution and a globally minimal configuration;

*and, the running time required by the algorithm.

For the Simulated Annealing Algorithm, these quantities depend on the problem instance as well

as the annealing schedules.

Traditionally, three different types of performance analysis are distinguished, namely worst-
case analysis, average-case analysis, and empirical analysis. The worst-case analysis is

concerned with upper bounds on quality of the final solutions, i.e. how far from optimal the

22

xii

constructed tour can be, while the average-case analysis is focused on the expected values of

quality of the final solutions and running times for a given probability distribution of the

problem instances. Empirical analysis here means the analysis originating in or based

on computational experience. In other words, solving many different instances of the TSP

with different annealing schedules and drawing conclusions from the results, with respect to

both quality of solutions and running time. In this way, the effects of the annealing

schedules on the algorithm can be analyzed. It is interesting---to . analyze these effects

because, even for a fixed instance, the computation time and the quality of the final solution

are random variables, due to the probabilistic nature of the algorithm. All three approaches

are attempts to provide the information that will help in answering the question 'How well

will the algorithm perform (how near to optimal will be the tours it constructs) on the

problem instances.' Each approach has its advantages and its drawbacks.

Worst--.ase analysis can provide guarantees that hold for individual, instances and does not

involve the assumption of any probability distribution. The drawback here is that, since the

guarantee must hold for all instances, even ones that may be quite atypical, there may be a

considerable discrepancy in the behavior of an algorithm. Empirical analysis can be most

appropriate if the problem instances on which it is based are similar to the problem of interest.

It may be quite misleading if care is not taken in the choice of test problems, or if the test

problems chosen have very different characteristics from those at hand. Average- case (or

average ensemble) analysis can tell us a lot, especially when we will be applying the

algorithm to many instances having similar characteristics. However, by its nature, this type of

analysis must make assumptions about the probability distribution on the class of instances, and

if the assumptions are not appropriate then the results of the analysis may not be germane to the

instances at hand.

A final problem with worst case and average case analysis of heuristics comes from the rigorous

nature of both approaches. Analyzing a heuristic in either way can be challenging mathematical

task. Heuristics that yields nice probabilistic bounds may be inappropriate for worst case

analysis, and the heuristics that behaves well in worst. case analysis are often exceedingly

difficult to analyze probabilistically. In addition, many heuristics do not seem to be susceptible to

either type of analysis.

When studying the simulated annealing algorithm, an additional probabilistic aspect is added to

23

xii

the above classification. Besides the probability distribution over the set of problem instances,

there is also a probability distribution over the set of possible solution for a given problem. Thus,

in the average case analysis, the average can be referred to as the average of a set of solutions of
a given problem instance.

In this chapter, a combination of both the average case analysis (average ensemble) for the set of

solution for the given problem instance and empirical analysis is grouped as "semi-empirical"

average case analysis will be investigated for two representative instances of the Travelling

Salesman Problem. Using these instances to present a "semi-empirical" average case analysis of

the algorithm by running it number of times, it is possible to reproduce the observed behavior by

using standard technique from statistical physics and some assumptions on configuration density.

Presently a systematic investigation of the typical behavior and the average case performance

analysis of Simulated Annealing Algorithm remain as an open research problem.

In section 3.2, the core mathematical model of Simulated Annealing Algorithm based on Markov

chains is represented and discussed. In this section, the salient features of annealing schedule

which will be useful in computation study are also highlighted. And, the analysis of the cost

function is presented in section 3.3.

3.2 Mathematical Model:

A combinatorial optimization problem can be characterized by configuration space P1, denoting

the set of all possible configuration i, and the cost function C: 1R—>R, which assigns a real

number C(i) to each configuration i. C is assumed to be defined such that the lower value of C,

better the corresponding configuration, with respect to Optimization criteria. This can be done

without the loss of the generality. The objective is to find the optimal configuration i* for which

C(i*) = Cmi , = min {C(i) I i e P1) 	 3.1

Where C denotes the minimum cost.

To apply the Simulated Annealing Algorithm, a mechanism known as neighborhood structure or

24

the perturbation function is used o generate a new configuration, i.e. a neighborhood of i, by

small perturbation. A neighborhood j defined as the set of configurations that can be reached

from configuration i by a single perturbation. The Simulated Annealing algorithm starts off with

a given initial configuration and continuously tries to transform a current configuration into one

of its neighbor by applying a perturbation mechanism and an acceptance criterion. The

acceptance criterion allow for deteriorations in the cost function, thus enabling the algorithm to

escape from local minima.

3.2.1 Asymptotic Convergence:

As mentioned in the last section, the Simulated Annealing Algorithm can be formulated as a

sequence of Markov chains, each Markov chain being a sequence of trials whose outcomes

X1,X2, X3...... satisfy the following two properties:

(1) Each outcomes belongs to a finite set of outcomes {1,2,3,...,N} called the configuration

space '3i of the system; if the outcome of the k`" trial is i, then the system is said to be in

state i, at time k or at the k'5 step.

(2) The outcome of any trial depends at most of the immediately preceding trial and not upon

any other previous outcome; i.e. the outcome is only dependent on the outcome of

previous trial, with each pair of states or configurations (i,j) there is given the probability

P. such that j occurs immediately after i occurs.

Such a stochastic process is known as (Finite) Markov chain. The numbers P is called the

transition probabilities that can be arranged into a Transition matrix P below.

P I 	...
P =

P 	...

called the transition matrix.

Thus, with each configuration i, there corresponds the I' row (I ,P.,....,P,,,) of the transition

25

matrix P; if the system is in configuration i, then this row vector represents the probabilities of all

possible outcomes of the next trial and so it is the probability vector, whose row sum is always

equals to one.

Note that the outcomes of the trials here are the configuration. For example, the outcome of the

given trial is perturbed configuration j while the outcome of the previous trial is the current

configuration i. So, Markov chain is described by means of a set of conditional probabilities

.P,, (k—i, k) for each pair of outcomes (i,j); P,(k—1, k) is the probability that the outcome of the

k'5 trial is j, given that the outcome of the (k-1)' trial is i. Let a. (k) denote the probability of

outcome i at the k" trial, then a, (k) is obtained by solving the recursive relation:

a, (k) _ 	ar (k —1).P; (k —1, k) , k= 1,2,..., 	 (3.2)

where the sum is taken over all possible outcomes.

Let X(k) denotes the outcome of the k'" trial. Then,

1 (k-1, k)=Pr {X(k)= jI X(k —1)=i} 	 (3.3)

And

a,(k)= P.{X(k)=i}
	

(3.4)

If the conditional probabilities depend on k, the corresponding Markov chain is called

homogeneous, otherwise it is called inhomogeneous.

In the case of Simulated Annealing Algorithm, the conditional probability Pr (k — 1, k) denotes the

probability that the k" transition is from configuration i to configuration j. Thus, X (k) is the

configuration obtained after k transitions. In this view, P. (k —1, k) is the transition probability

and the I lxi I matrix P(k-1,k) the transition matrix.

The transition probabilities depend on the value of the annealing schedule T. Thus, if T is kept

constant, the corresponding Markov chain is homogeneous, and its transition probabilities, i.e.

the probability that a trial transforms configuration i into configuration j, is defined as:

26

Au.(T)G(T) 	if i~ j

	

Aik (T) Gtk (T) if t = j 	
(3.5)

kell2,k#i

Where

• P. (T) denotes the transition probabilities.

• G(T) denotes the generation probability, i.e. the probability of generating configuration j

from configuration i. 	 -

• 4(T) denotes the acceptance probability, i.e. the probability of accepting configuration j

given the configuration i and j.

• And T is the Annealing schedule.

Each transition probability is defined as a product of following two probabilities: the generation

probability G, (T) of generating configuration j from configuration i, and the acceptance

probability A,,, (T) of accepting configuration j, once it has been generated from configuration i.

The corresponding matrix G(T) and A(T) are called the generation and acceptance matrices,

respectively. As a result of definition in equation 3.5, P(T) is stochastic matrix, i.e.

Vi:Y j P,;(T)=1.

• A homogeneous algorithm: The algorithm is described by the sequence of homogeneous

Markov chains. Each Markov chain is generated at a fixed value of T and T is decreased

in between the subsequent Markov chains, and

• An inhomogeneous algorithm: The algorithm is described by a single inhomogeneous

Markov chain. The value of T is decreased in between the subsequent transitions.

The Simulated Annealing Algorithm obtains a global minimum if after a large number of

transitions, K, i.e. K - re, the following relation holds:

27

PT {X (K) E opt} = 1, 	 (3.6)

Where Pr is the set of globally minimal configurations.

Equation (3.6) can be proved under a number of conditions on probabilities G. (T) and Al (T) ;

asymptotically; i.e. for infinitely long Markov chains and T -3 0, the algorithm finds an optimal

configuration with probability equal to one. Let X(K) denotes outcome of the k`" trial of a

Markov chain; i.e. under the condition that the Markov chain is irreducible, periodic and

recurrent, there exist a unique equilibrium distribution given by I 'A vector q(T). The component

qi(T) denotes the probability that the configuration i will be found after infinite number of trials

and are given by the following expression:

q, (T) = urn .F.{X (k) = i / T} = lim([Pk (T)]T a)i k o

Where a denotes the initial probability distribution of the configuration and P(T) is the transition

matrix, whose entries are given by P, (T) . Under certain additional conditions on the

probabilities G,, (T) and 4(T), the algorithm converges to T -> 0 to a uniform distribution on the

set of optimal configuration, i.e,

lim(lim PT {X(k) = i / T}) = lim gl (T) = Tr;
T-0 k- co 	 (3.8)

_ 191opt I-1 	if i E .opt

- 1 ~i 0 	elsewhere. 	 (3.9)

Where I .,,, denotes the se of optimal configurations.

Here, we apply he standard form of the Simulated Annealing algorithm, i.e. the perturbation

probability G(T) is chosen independent of T and uniformly over the neighborhood of a given

configuration i. the acceptance probability is chosen as

28

exp(—AC, IT) ifiC >0
1 	if OCR <_ 0
	

(3.10)

Where OCR = CO) — C(i). For his choice of components of the equilibrium distribution take the

form

q. (T) =
exp { [C.in — C(l)] / T}

Iexp{[C.in —C(i)]/T}
JE9I

(3.11)

The above result is extremely useful when the cost function is analyzed.

3.2.2. Annealing Schedule:

As mentioned previously, the performance of the Simulated Annealing Algorithm is a function

of the annealing schedules. Hence, it is common that one resorts to an implementation of the

Simulated Annealing Algorithm in which a sequence of Markov chains of finite length is

generated at decreasing values of the annealing schedule. Optimization is begun at a starting

value of the temperature To and continues by repeatedly generating Markov chains for

decreasing values of T, until T approaches 0. This procedure is governed by the annealing

schedule. 	Generally, the parameters used in studying the performance of the Simulated

Annealing Algorithm are

(1) The length L of the individual Markov chains

(2) The stopping criteria for terminating the algorithm

(3) The start value T. of the Annealing schedule

(4) The decrement functions of the annealing schedule.

The salient features of these parameters are summarized here.

29

(1) Markov chain length L: All Markov chains are chosen equally long. In practice, the

number of cities in the TSP tour or the number of runs of the algorithm is taken to be

equal to the length of Markov chains.

(2) Stopping Criteria: There are many criteria for terminating the Simulated Annealing

Algorithm presently existed. Here, the algorithm terminates at a certain maximum
number of iterations arbitrarily set by the user.

(3) Starting Value To : The purpose of the starting temperature value is to begin the thermal

system at a high temperature. There are many variations of the annealing schedules. This

starting value is as high as 2000 and as low as 20.

(4) Annealing Schedule T: The performance of Simulated Annealing Algorithm is a function

of annealing schedule. Because of this dependence, the following two well known

annealing schedules which proves to provide good solutions to the TSP by varying the

parameter c and d, i.e. 0.9 < c < 0.99 and 5 <d <30.

Tk+l =CI; k = 0,1, 2, ..., max iteration 	 (3.12)

And

Tk = d / log k; k = 2,3,4,..., max iteration 	 (3.13)

Note that as a consequence of the asymptotic convergence of the Simulated Annealing

Algorithm, it is intuitively clear that the slower the "cooling" is carried out, the larger the

probability that the final configuration is close to an optimal configuration. Thus, the deviation

of the fmal configuration from an optimal configuration can be made as small as desired by

investing more computational effort. The literature has not elaborated on the probabilistic

dependence on the parameters of the annealing schedule. In this chapter semi-empirical results

on this topic are represented. 	A more theoretical treatment is still considered as an open

research topic.

30

3.3. Analysis of Cost Function:

In this section, some quantitative aspects of the Simulated Annealing Algorithm are discussed.

The discussion is based on an extensive set of numerical data obtained by applying the

algorithm to a specific instance of the Traveling Salesman Problem. The behavior of the

Simulated Annealing Algorithm is analyzed. In this section, an analytical approach to derive

the expectation and the variance of the cost function in terms of the annealing schedule is

analyzed. The discussion is based on an average-case performance analysis.

To model the behavior of the Simulated Annealing Algorithm, an analytical approach to

calculate the expectation (C)T and the variance ° 2T of the cost function is discussed. Let X

denotes the outcome of a given trial; the (Cy7. and 62 T are defined as

(C)T =~PT {X =i/T}C(i)
IEIR

And

(3.14)

6ZT = j PT {A = l / l } [C(l) — (C)T]2 	 (3.15)
i9I

In equilibrium we obtain, using equation 3.7 and 3.11,

I exp { [Cmj„ — Qi)] / T}C(l)

(C)T =>q1(T)C(i) = ;E~t
exp { [Cm 	C (J)~ } 	 (3.16) l T —

jEtt

And

exp {[Cmin — C(i)] / T} [C(i) — (C)7.]2

Q.
2T = I q,(T)[C(i)—\

/

CM

\

T}2 = 	
exp Cmm . —C(J)] lT} 	 (3.17)

p~~
je91

Next the configuration density w(C) is defined as

31

w(C)dC = l l ~ {i E i. I C _< C(i) < C+ dC} 	 (3.18)

Then in case of Simulated Annealing Algorithm employing the acceptance probability of

equation 3.10, the equilibrium configuration density)(C, T) at a given value of T is given by

S2(C,T)dC= +

J

~a(C)exp[(Cm;n -C)/T]dC

1r / \ 1~ (!-~ /~ 	 (3.19)
w) exY[lCmin — 1.) / T]dl

Clearly, 1(C, T) is the equivalent of the stationary distribution q(T) given by equation 3.11. As

indicated by the notation "equilibrium", f2(C,T) is the configuration density in equilibrium

when applying the Simulated Annealing Algorithm. Thus, one obtains

(C)7. = f Cc (C',T)dC' 	 (3.20)

And.

= 5[c' -(C) 2 K2(C,T)dC 	 (3.21)

"Given an analytical expression for the configuration density o. (C) , it is possible to evaluate the

integral of the equations 3.19, 3.20, 3.21. To estimate a(C) for a given combinatorial

optimization problem is in most cases very hard. Indeed, w(C) may vary drastically for different

specific problem instances, especially for C values close to C,,,,.

The average Cost C and the standard deviation 6(T) of the cost as a function of the annealing

schedule T when applying the Simulated Annealing Algorithm to an instance of the TSP are the

following expressions,

32

_ 	L

C(T)=L'~C,(T) 	
(3.22)

i=1

And

L 	 1/2

` 6 T) = {L-1 I [C1 (T) — C T̀)]2 } 	 (3.23)
 i=1

Where the average is taken over the values of cost function C,. (T) , for i = 1......L, of the Markov

chains generated at a given value of annealing schedule T. From the above relations, the

behavior of Simulated Annealing Algorithm is observed for many problem instances [2].

Furthermore, some characteristic feature of the expectation (C)r. and the variance (T I of the

cost function can be deduced. For large value of T, the average and standard deviation of the cost

are about constant and are equal to C(oo) and 6(c0) . This behavior is directly obtained from

Equations 3.16 and 3.17, or equations 3.18-3.21, namely

\C>m T m (C) 	= j-- C(i)T 	tI 	 (3.24)

And

a2 = i1T11 a 	1 1IC(t) — \C)-12 	 (3.25)
iE~II

Note that the more detailed estimate of the average case performance of the Simulated Annealing

Algorithm can only be deduced from rigorous performance analysis which takes into account the

detailed structure of the optimization problem at hand. Presently, such a theoretical average case

performance analysis remains to be as an open research problem.

The average case performance of the Simulated Annealing Algorithm is discussed by analyzing

the expectation and the variance of the cost function as a function of annealing schedule for a

certain instance of the Traveling Salesman Problem; the results can be summarized as follows:

• The performance of the Simulated Annealing Algorithm depends strongly on the chosen

33

annealing schedule; this is especially true for the quality of solution obtained by the

algorithm.

• With a properly chosen annealing schedule, near optimal solution may be obtained.

In this chapter, certain key mathematical concept which is underlying foundation of Simulated

Annealing Algorithm was examined.

34

[i F-11 I 	!

APPLICATION OF SIMULATED ANNEALING ALGORITHM

In order to assess the performance of the optimization algorithms, various control engineering

problems were considered. Some of the practical applications used are:

• Inverted Pendulum

• Ball and Beam System

• Magnetic Levitation System

4.1. Inverted Pendulum:

The inverted pendulum control problem [11] is usually presented as a pole balancing task. The

system to be controlled consists of a cart and a rigid pole hinged to the top of the cart. The cart

can move left or, right on a one-dimensional bounded track, whereas the pole can swing in the

vertical plane determined by the track. The linear system equations around 0 = 7t in the state

space are given by equation 5.1 and 5.2.

The state of the system is defined by values of four system variables:

• X , denotes the cart position

• x , denotes the cart velocity

0, denotes the pendulum angle of the pendulum pole

• 0 ,denotes the angular velocity of the pendulum pole

35

T
x

0 x
8 	0

0

1
—(I + m12)b

I(M + m) + Mm12
0

—mlb

0
m2gh

I(M+m)+Mm12
0

mgl (M + m)

I
x

0 x
10
0 8

I(M+m)+Mm!2 I(M+m)+Mml2

Here, the controlling action is applied to the system to prevent the pendulum pole from falling

from the specified position and at the same time to keep the cart within the specified limits of

position.

0
(I+m12)

I(M+m)+Mm12
+1 	 Iu

0
ml 	 (5.1)

I(M+m)+Mm12

x
1 0 0 	rol

y 0 0 i 0 B + O u
(5.2)

9

36

Where;

M = Mass of the cart = 0.5 kg

m = Mass of the pendulum = 0.2 kg

b = Friction of the call = 0.1 N/m/sec

I = Inertia of the pendulum = 0.006 kern'

l= Length of the pendulum's center of mass

F = Force applied to the cart

4.2. Ball and Beam System:

The ball-beam system [12] is a frequently encountered example of nonlinear dynamical system.

While the ideal system is indeed nonlinear, its practical implementation has additional non-

linearity's, including: dead zone, backlash introduced by the DC motor and gearbox, discrete

position sensing and uneven rolling surface.

The motion of the motor's shaft is governed by IPM100 intelligent drive. This is a high

precision, fully digital servo drive with embedded intelligence and 100W power amplifier

suitable for brushless/brush motors. Based on feedback information from sensors, it computes

and then applies appropriate PWM modulated voltage to the motor windings in such a way that a

sufficient torque moves the motor shaft according the programmed control algorithm. This

embedded intelligence provides a true real-time control performance independent of any delays

caused by Personal Computer's non-real time Operating System.

37

Figure: 4.1. Structure of control Strategy for Ball & Beam system

The closed loop control strategy employed for the application is given in Figure- 4.1. The DC

motor provides actuation of the beam via a gear. The PID control algorithm inside IPM100

intelligent drive is employed in an inner control loop as a motor position controller. The PID

gains are tuned in such a way that the motor exhibits a fast response without overshoot.

4.2.1. Mechanical Model of Ball and Beam System:

The rough figure of mechanical model of Ball & Beam system is shown in figure 4.2.

Figure: 4.2. Mechanical system of Ball and Beam

38

For the given system gear ratio is 107:25.

Let the angle between the line that connects the joint of the lever arm with the center of the gear,

and the horizontal line be 0 (there should be some boundaries on its range so that it can teach the

safe maximum and minimum limits); the distance between the center of the gear and the joint of

the lever arm be d, and the length of the beam be L. Then the beam angle a can be expressed in

terms of the rotation angle of the gear 0 according to the following equation:

a= a9
L (4.3)

In turn, as it has just been noted above, the angle 0 is connected with the rotational angle of

motor shaft through reduction gear ratio n=4.28. The controller design task is to keep the

position of the ball r equal to the specified target position by properly manipulating the gear

angle 0.

The dynamics of the ball is subjected to the gravity, inertial and centrifugal forces. The ball

linear acceleration along the beam is given by the following simple equation [8]:

R2 + nz r+nagsina— mr(a)z =0
(4.4)

Where

g denotes the Gravitational acceleration

m denotes the mass of the ball

7 denotes the moment of inertia of the ball

r denotes the position of the ball along the beam

R denotes the radius of the ball

39

In this, some assumptions are taken into consideration that the ball moves without slipping and
friction between the ball and beam is negligible.

SPECI FYTARG ETPOSITI ON
OF THE BALL

Xds

NSI
YES 	 P NSI SSfBLE ~ 	

I DETHE

RANGE?
NO

READ CURRENT
A CTU AL POSITI ON 	 idea

FROM FEEDBACK
areal

~'xdes — area!

COMPVTETHECONTROL
ACTION

AMPUFYAND(MODULATE
THECONTROLSIGNAL

7J 	V
THE SYSTEM N40VESTHE
BALLTO THE SPECIFIED

TARGETPOSITION

SERVO SAMPLE RATE

Figure: 4.3: Flowchart of Inherited control algorithm for Ball and Beam System

40

4.3. Magnetic Levitation System:

Magnetic Levitation System [13] works on principle of Electromagnetic Induction to control
position of ball at required position. When current go through the winding, electromagnetic force

F will be generated. By controlling the current in the electromagnet winding to balance the steel

ball gravity force mg by magnetic force, the steel ball will be levitated in. the air. Closed loop

control is required for the stability and anti-interference. The distance x from the steel ball to

electric magnet is detected by sensor system composed of light source and light sensor. To

enhance the performance, the speed of the distance variance can also be considered. The control

current is the input for magnetic levitation control object.

In system modeling, the input is control current of the electromagnet, the influence of inductance

is not considered. Assume the power amplifier output current is strictly linear with input voltage

without delay.

The system can be described by following equation:

m d2Z = ki (i—i°)+kk (x—x°) = 2Ki° i— 2K3 °Z x
dt 	 x° 	x° 	 (4.5)

After taking Laplace Transform:

2 _ 2Ki0 	2Ki02
x(S)S 	z i(s)— 	3 x(S)

mx° 	mx° 	 (4.6)

i 2 o
From boundary equation m

g__
—K(x Z) , the system open loop transfer function is:

0

—1
i(s) 	As2 — B 	 (4.7)

41

Define the input variable as the input voltage of the power amplifier U,„ , output variable as a

output voltage Uo„, reflecting x (the voltage output of the process circuit at the back of the

sensor), the system control object model can be expressed as:

G(s) = Uout = K x(s) _ —(Ks /Ka)
U;n 	Kai(s) 	As2 —B 	 (4.8)

z A=-0 2g 	 (4.9)

l B= o xo 	 (4.10)

The open loop system characteristic equation is:

As2—B=O 	 (411)

The system open loop pole is: S — ± B — ±gA

Then, the system state variables are: xI — Uour , X2 — Uout and the system state equations as

follows:

0 ri 	 0
[2g2 J 	0 (XJ+

_ 2g Ks Uin (4 12)
xo 	io .KQ

42

y =[1 0]1x2J_xt
	

(4.13)

There is an open loop pole at the right plane, by stability criterion; stable system should have all

the open loop poles on the left plane. Therefore the GML system is essentially unstable.

In fact, the inductance of the coil will prevent the current from changing too fast; this effect

cannot be ignored. Thus the current model is slightly different from the real case. To analyze the

system accurately, voltage control model is also important. For real system, parameters are given

as follows:

m = 22g, xQ =20.0 mm, Iron core Diameter = 22 mm, Enameled wire diameter = 0.8 mm,

R = 13.8 S1, r = 12.5 mm (radius of the ball), N= 2450 circles, K= 2.3142e-004Nm/A2 ,

f=0.6105 A, K,=0.25.

Therefore, the transfer function of the system is given by:

G0 (s) =
77.8421

0.0311s2 —30.5250 	 (4.14)

43

CHAPTER 5

SIMULATION RESULTS AND THEIR INTERPRETATION

In this chapter, results were discussed for implementation of "Simulated Annealing Algorithm"

on "Travelling Salesman Problem" for a specific number of cities at a time. After that, for

comparison results obtained from "Tabu Search" on "Travelling Salesman Problem" were

discussed.

Simulation results obtained for 10, 20, 30, 50, 75, 442, 535 cities "Travelling Salesman Problem"

by "Simulated Annealing Algorithm" and 30, 50, 75, 442, 535 cities "Travelling Salesman

Problem" by "Tabu Search Algorithm" is as follows:

Figure 5.1: Convergence Figure obtained by "Simulated Annealing Algorithm" for 10 Cities

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling

Rate is 0.97)

44

0

0

0

0

0

0

0

0

0

Figure 5.2: Route obtained by "Simulated Annealing Algorithm" for 10 Cities Travelling

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97)

convergence figure

Figure 5.3: Convergence Figure obtained by "Simulated Annealing Algorithm" for 20 Cities

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling
Rate is 0.97)

45

20cilyprobIomTSP

Figure 5.4: Route obtained by "Simulated Annealing Algorithm" for 20 Cities Travelling

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97)

as

zao

300

300

V~O 100 200 300 400 500 600

Figure 5.5: Convergence Figure obtained by "Simulated Annealing Algorithm" for 30 Cities

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling
Rate is 0.97)

46

30cityproblemTSP

10

10

0

10

i0

0
finelcost 423.7406

On 111 on an nn rn Gn 7n an

Figure 5.6: Route obtained by "Simulated Annealing Algorithm" for 30 Cities Travelling

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97)

convergence figure
iuu

00

500

no

!oo

to

300

0 	100 	200 	300 	400 	600 	600

Figure 5.7: Convergence Figure obtained by "Simulated Annealing Algorithm" for 50 Cities

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling

Rate is 0.97)

47

50cityprobfem7SP

70

60

50

40

30

0

nelcast 449.643

0 	1n 	7n 	9n 	4n 	M 	nn 	71

Figure 5.8: Route obtained by "Simulated Annealing Algorithm" for 50 Cities Travelling

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97)

convergence figure
300D

2600

2000

1500

1000

sos
0 iuu 	200 	30u 	400 	600 	600

Figure 5.9: Convergence Figure obtained by "Simulated Annealing Algorithm" for 75 Cities

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling
Rate is 0.97)

48

Figure 5.10: Route obtained by "Simulated Annealing Algorithm" for 75 Cities Travelling

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97)

Figure 5.11: Convergence Figure obtained by "Simulated Annealing Algorithm" for 442 Cities

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling

Rate is 0.97)

49

Figure 5.12: Route obtained by "Simulated Annealing Algorithm" for 442 Cities Travelling

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97)

,1o' 	 marevnce rears

3.5

3

2.5

2

1S

OS

❑ tf91 	 mkt 	 ?Nt 	 erm 	 VN 	 r;n

Figure 5.13: Convergence Figure obtained by "Simulated Annealing Algorithm" for 535 Cities

Travelling Salesman Problem (On X-axis "Number of iteration" And on Y "Cost" and Cooling

Rate is 0.97)

50

Figure 5.14: Route obtained by "Simulated Annealing Algorithm" for 535 Cities Travelling

Salesman Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-

coordinate of the City and Cooling Rate is 0.97)

convergence figure

ao

300

300

300

700

300

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.15: Convergence Figure obtained by "Tabu Search Algorithm" for 30 Cities Travelling

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost")

51

30cityprohlemTSP
10

9

B

7

6

5

4

3

2

noofroutesearch 2000 and cost 483.1963

to 7n an en sn Fn 7n an an v

Figure 5.16: Route obtained by "Tabu Search Algorithm" for 30 Cities Travelling Salesman

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of

the City)

convergence figure
1600

1400

1200

1000

800

600

400 	
200 400 600 800 1000 1200 1400 1600 1800 20

Figure 5.17: Convergence Figure obtained by "Tabu Search Algorithm" for 50 Cities Travelling

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost")

52

50cityproblernTSP
80

70

60

50

40

30

20

10
oofroutesearch 2000 and cost 469.6034

0 1
	10 	20 	30 	40 	50 	60 	7C

Figure 5.18: Route obtained by "Tabu Search Algorithm" for 50 Cities Travelling Salesman

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of
the City)

convergence figure
2400

2200

2000

1800

1600

1400

1200

1000

600

600
200 400 000 Inn lnnn 1200 14110 15011 Tann 201

Figure 5.19: Convergence Figure obtained by "Tabu Search Algorithm" for 75 Cities Travelling

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost")

53

75cityprobleerTSP

70

60

50

40

30

20

10

0

2000 end cost

0 	10 	20 	30 	40 	50 	60 	70

Figure 5.20: Route obtained by "Tabu Search Algorithm" for 75 Cities Travelling Salesman

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of

the City)

(105 	 convergence figure

in 	9-la 	1nnn 	icon
	

10

Figure 5.21: Convergence Figure obtained by "Tabu Search Algorithm" for 442 Cities Travelling

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost")

54

442citypreblemTSP •

0

Figure 5.22: Route obtained by `Tabu Search Algorithm" for 442 Cities Travelling Salesman

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of

the City)

: 104 	 convergence figure

3.5

3

2.5

2

1.5

1

500 	1000 	1600 	2000 	2600 	3000 	3500

Figure 5.23: Convergence Figure obtained by "Tabu Search Algorithm" for 535 Cities TraveIIing

Salesman Problem (On X-axis "Number of iteration" And on Y "Cost")

55

535cityproblemTSP
200

150

100

50

0

-50

-100

-150

-200
40 	-20 	0 	20 	40 	60 	80

Figure 5.24: Route obtained by "Tabu Search Algorithm" for 535 Cities Travelling Salesman

Problem (X-axis represent the X-coordinate of the City and Y-axis represent the Y-coordinate of -

the City)

Comparison of "Simulated Annealing Algorithm" and "Tabu Search Algorithm" for "Travelling

Salesman Problem" [6] is given the table:

Number of Cities Cost obtained from Simulated

Annealing Algorithm

Cost obtained from Tabu Search

Algorithm

30 423.7406 483.1963

50 449.643 469.6034

75 558.9072 624.0014

442 52362.4514 139717.2186

535 2042.7898 7129.4931

Table 5.1: Comparison of Cost function value obtained from SA and TS

56

From the above Table 5.1, there is clear idea obtained that the performance of "Simulated

Annealing Algorithm" is better than "Tabu Search Algorithm" for "Travelling Salesman

Problem". For large problem size of "Travelling Salesman Problem" performance of "Simulated

Annealing Algorithm" is much better than "Tabu Search".

57

CHAPTER 6

CONCLUSION AND FUTURE PROSPECTIVE

6.1. Conclusion:

As given in chapter 1, "Travelling Salesman Problem", is a classical combinatorial optimization

class of problem. In combinatorial class of problem the objective function has to be maximized

or minimized according to the requirement. Here, the minimization type of problem has taken

into account. In "Travelling Salesman Problem", the objective function is to minimize the

roundtrip distance with the constraint that every city (represented by a point in the graph) must

be travelled by a person (salesman) once and only once and return to their starting city.

Here, some assumption has been taken into consideration, that there a direct path from one city

to the other cities has been existed and path is straight line path. One more consideration is taken

into consideration, that all path existed in the system are "two way path".

From the previous study, a clear idea has been gained that for a large size "Travelling Salesman

Problem" "Simulated Annealing Algorithm" is much more effective in finding the minimum

roundtrip distance (i.e. cost) for given data than "Tabu Search Algorithm". This advantage is

obtained from the fact that "Simulated Annealing Algorithm" accepts the "Uphill moves". Due

to this fact, the ability of escaping from a local minimum with some probabilistic nature has been

added to enhance the performance of "Simulated Annealing Algorithm" that may lead to find

"Global Minima" for the given data. This kind of attribute is not present in "Tabu Search

Algorithm" (i.e. it will not accepts the uphill moves), therefore, there are great chances that it

will stuck in the "Bad Local Minima" and this will rarely converge toward the "Global
minimization".

For very large size of "Travelling Salesman Problem" the convergence of the problem is very

slow and it takes a large span of time due to extensive computation. This drawback has been

58

compensated with the performance obtained from "Simulated Annealing Algorithm" as

compared to "Tabu Search Algorithm".

6.2. Future Prospective:

There are basically two streams for future improvement.

1. The convergence of the algorithm can be made fast by parallel implementation of the
algorithm.

2. The assumption that all existed path from a city to other cities are two way and lies in the

straight line can be left.

And further, these two will accommodate into a single problem.

59

REFERENCES
it

JOnger, Gerard Remelt and Giovanni RinaMi, "The Traveling Salesman
 chapter 4, M.O. Ball et al., Eds., Handbooks in OR & MS, VoL 7, Elsevier PUWlWJLI

Science, 1995.
S. Kirkpatrick, C. D. Gelatt, Jr., M. P -Vi 	Optimization by Simulated Annealing ",

60mav 1983.
lynamical Approach to the Traveling
" Journal of Optimization Theory and

and Augusta H. Teller, "Equations of State
calculation by Fast Computing Machitll ", The Journal of Chemical Physics, Vol. 21, No. 6,

.ifljj'r Dimald Geman "Stochastic Relaxation, Gibb's Distribution and
Bayesian's Restoraf of Images", IEEE Transactions on Pattern Analysis and Machine

- telligence, Vol. 6. No. 6, Nov 1984.
law Malek, Mohan Guruswamy, Mihir Pandya, and Howard Owens, "Serial and

Annealing and Tabu Search Algorithms for the Travelling Salesman
Vol. 21, pp. 59-84, 1989.

t►doate Carlo Revolution," Journal ofBull. Amer. Math.

MasàSffltWa. Hironori Yamauchi, and Hidekazu Ten!, "Hybrid Architecture of
Genetic AlgoYtIiii and Simulated Annealing," Engineering Letters., 16:3, EL 16331,

," A distributed implementation 'aU 	,
ann 	 salesman problem^, Journal of Parallel Computing, vol 10,

nu 3, pp.34JiS, North- Holland, 1989.

I Aravind Seshadri, "Simulated Annealing Algorithm for Travelling Salesman Problem",
Matlab Central.

dab Manual, "Inverted Pendulum" Googol Tech.
60

Science, Volume 220, Number 4598, per;
V. Cerny, Communicated by S. E. 	4
Salle 	- An Efficient EfticientSuài

45, no 1, pp. 41-51, 191
Nicholas Metropolis, Arianna W. Remblutl

"x E;

BA and Bwgql " Googol Tech.
'MqIIet1V Lcvkation System" Googol Tech.

61

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

