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ABSTRACT 

This work is intended to polarimetric analysis of PALSAR image in order to extract 

polarimetric SAR observables by means of SAR image processing techniques and 

classification algorithms. The polarimetric SAR observables possess useful intrinsic 

information, what makes SAR data (here PALSAR) useful for classification. 

In the first part of the thesis, the basic concepts of radar polarimetry and state of the 

art of its application to remote sensing have been discussed with the aim to define established 

knowledge and possible future development of research. 

The second section of the thesis consists of experimental part, which pursues two 

tasks. In order to accomplish first task, target decomposition theorems have been applied for 

extracting all relevant polarimetric parameters. The target decomposition theorems laid down 

the basis of classification, which is the second task of our experimental work. The purpose of 

this task is to evaluate possible differences between various SAR observables by performing 

classification. In this context various classification algorithms have been proposed namely, 

Parallelepiped, Minimum distance, Maximum likelihood and Decision tree classification. The 

effect of filtering and ensemble averaging on classification has also been evaluated. The SAR 

observables have been compared by accuracy estimate related to each classification 

algorithm. The accuracy estimate plays an important role in giving insight to usefulness of 

SAR observables by providing error in classification. The research work reaches its goal by 

comparing classification techniques by accuracy estimate as a key feature. The decision tree 

classifier is found to be best in terms of overall accuracy. 
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CHAPTER 1. INTRODUCTION 

1.1 Brief review 

Quantitative assessment of land cover is required for every country in order to make proper 

planning against earth surface alteration, since land cover change is related to global change due 

to its interaction with climate, eco system process, bio-geochemical cycles, biodiversity and 

human activity. This information also assists in monitoring the dynamics of land use resulting 

out of changing demands of increasing population. Remote sensing plays an important role in 
classification. 

Remote sensing is broadly defined as collecting and interpreting information about a 

target without being in physical contact with the object [1]. Based on the wavelength in which 

the system works, remote sensing is categorized into two different groups, i.e., optical and 

microwave. Optical remote sensing uses visible and infrared waves while microwave remote 
sensing uses radio waves. 

As a microwave remote sensing RADAR (Radio Detection And Ranging) sends out 

electromagnetic pulses to detect targets which are ordinarily invisible to human eye due to 

darkness, fog, or far distance. The conventional radar systems were direct aperture radars. The 

information about the target was taken in the form of magnitude only and any information on 

phase was ignored because they used single fixed polarisation antenna for both transmission and 

reception. In those systems, for each resolution cell single backscattering coefficient was 

measured using a specific combination of transmit and receive polarization states in order to 

measure radar echo. Therefore target detection and identification was not possible because of 

the poor separability of different characteristic scatters at the ground [2]. The development of 

SAR sensors was a breakthrough in this field. SAR sensor being a polarization sensitive device 

considers full vector nature of electromagnetic wave. 

A Synthetic Aperture Radar (SAR) system illuminates a scene with microwaves and 

records both the amplitude and the phase of the back-scattered radiation, making it a coherent 

imaging process. The received signal is sampled and converted into a digital image. The advent 

of SAR sensors lead to the concept of radar polarimetry. Radar Polarimetry is the merging of 

the technological concept of radar (radio detection and ranging) and of the fundamental 
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property of transverse nature of electromagnetic waves. It is the science of acquiring, 

processing and analyzing the polarization state of an EM field [3]. 

Fully polarimetric SAR acquires four channels to obtain the complete scattering 

matrix, wherein the signal is transmitted in two orthogonal polarizations and received at two 

orthogonal polarizations. With Polarimetric radars it has become possible to extract more 

information available than conventional radars due to the preservation of phase term. The 

incorporation of coherent polarimetric phase and amplitude into radar signal and image 

processing promises to bring about further improvements in monitoring capabilities in SAR 

image analysis. The phase information, along with the conventional magnitude data, can be 

used to study the scattering mechanisms and resolve the ambiguities about the source of 

scattering [3]. This unique characteristic of polarimetric imaging radar makes it a powerful tool 

for land cover classification. The possible reasons which make polarimetric SAR a useful tool 

to characterize various targets of ecosystem for classification are mentioned below: 

• SAR being an active sensor is a day light acquisition system (unlike optical 

sensors). 

• Most of the radar sensors exhibit all weather capability. It can be seen that 

atmospheric characteristics such as cloud, light rain, haze, and smoke has little 

effect on the capability of RADAR data acquisition system as attenuation of 

atmosphere is negligible for wavelengths 2> 3 cm [4]. 

• SAR is not only sensitive to the dielectric, physical and geometric properties of 

various land cover types, but is also sensitive to the relative proportion and 

distribution of various scatterers within an area-extended target. 

• SAR not only provides ground surface information but can also be used for 

obtaining information beneath the ground (for certain moisture value and ground 

density) due to its capability to penetrate into soil and vegetation canopy. 

Classification is an important step towards the retrieval of bio-geophysical 

parameters and a classification scheme directly based on polarimetric SAR data is useful to 

understand the characteristics of the Earth surface, particularly for the physical assessment of 

scatterers. Thus Polarimetric SAR images are widely used for terrain classification as they can 

extract geometrical properties (size, shape, orientation distribution and spatial arrangement of 
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objects) and physical information about the target like symmetry, non symmetry or irregularity 

of the target [5]. 
The present work is dedicated to the task of terrain classification of polarimetric 

PALSAR (Phased Array L- band Synthetic Aperture Radar) data by using various 

classification techniques. Classification of SAR images is required for various environmental 

and socioeconomic applications like agriculture monitoring, flood mapping, oil spill detection 

etc. Classification of image is done to identify different spectral classes present in it and their 

relation to some specific ground cover type. Classifying remotely sensed data into a thematic 

map is very challenging because it depends upon many factors, such as the complexity of the 

landscape in a study area, selected remotely sensed data. Also image processing and 

classification approaches, may affect the success of a classification. 

1.2 State of the art 

Polarimetry deals with the full vector nature of polarized (vector) electromagnetic waves 

throughout the frequency spectrum from Ultra-Low-Frequencies (ULF) to above the Far-Ultra-

Violet (FUV). Where there are abrupt or gradual changes in the index of refraction (or 

permittivity, magnetic permeability, and conductivity), the polarization state of a narrow-band 

(single-frequency) wave is transformed, and the electromagnetic "vector wcrve" is re-polarized. 

When the wave passes through a medium of changing index of refraction, or when it strikes an 

object such as a radar target and/or a scattering surface and it is reflected; then, characteristic 

information about the reflectivity, shape and orientation of the reflecting body can be obtained 

by implementing 'polarization control" [6,7]. The time-varying nature of the electric field 

vector generally forms an ellipse in a plane transverse to propagation. It plays an essential role 

in the interaction of electromagnetic "vector waves" with material bodies and the propagation 

medium. This polarization transformation behaviour, expressed in terms of the "polarization 

ellipse", is named "ellipsometry" in optical sensing and imaging, it is denoted "polarimetry" in 

radar and lidar—ladar sensing and imaging. The word "Polarimetry" has ancient Greek meaning 

of "measuring orientation and object shape" [8]. 

Ellipsometry started a new era in the 1940s with the significant advent of optical 

polarization phase control devices and the associated development of mathematical 

ellipsometry. Initial work on radar polarimetry is attributed to Sinclair [9], after whom the 

scattering matrix was named. The entries of this matrix represent backscattering for the four 

combinations of transmitted-received polarizations in an orthogonal basis and this matrix 
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depends upon the coordinate system, wavelength, target's shape, target's conductivity and 

target's aspect direction. The contribution of Deschamps [10] is also worth mentioning, who 

demonstrated geometrically the polarization property of electromagnetic wave. 

Later an important pioneering work was done by Kennaugh [11], who demonstrated that 

there exist radar polarization states for which the radar receives minimum/maximum power. 

After four year of his research Graves introduced the concept of power scattering matrix for 

determining density of scattering field [12]. He also introduced the concept of directional Jones 

vector, which is widely used in polarimetry. The min/max polarization state theory of Kennaugh 

was extended primarily by Huynen, who introduced the "polarization fork" concept. It was the 

first generalization of the decomposition techniques which renewed the interest of the remote 

sensing community in radar polarimetry. 

On the basis of work done by Sinclair and Kennaugh, Copeland [13] proposed a method 

of classification of radar targets by using polarization properties. After the important 

contribution of Huynen in radar polarimetry, Ioannidis [14] proposed a method to improve radar 

detection capability by discriminating radar target and clutter using polarization. An excellent 

contribution was made in the 1980s by Boerner and his co-workers in which, they showed the 

importance of polarization properties of scattering radiation with respect to inverse scattering 

and target identification [15, 16]. 

Since the 1980's, radar polarimetry, i.e., the utilization of complete electromagnetic 

vector wave information, has been gaining more and more recognition from many researchers. 

Since then radar polarimetry is used in conjunction with remote sensing and other fields and 

splendid results were achieved. Cloud and Pottier [17,18] gave important contribution in the 

field of target decomposition by introducing the concept of Anisotropy , alpha (a ) and beta 

( ).Cloude and Pottier's parameters have become the standard tools for target characterization 

and have been used as the basis for the development of new classification methods introduced 

for the analysis of polarimetric data. Many approaches for unsupervised classification have been 

proposed notably by Pottier [19], Lee et al. [20, 21, 22], Ferro-Famil et al. [23, 24], 

Ouarzeddine et al. [25], Fang et al. [26], Park et al. [27], Praks et al. [28]. The comparison of 

classification performance by dual and fully polarized antenna was done by Lee et al. [29], in 

which they drew conclusion that fully polarimetric data performs better than dual polarized 

data. 

Freeman [30] introduced the concept of three component scattering model, which have 

constantly been used as basis for classification. Based on the decomposition model proposed by 
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technique to classify PALSAR data through SAR observables obtained by target decomposition 

techniques. We also proposed decision tree classification based on the knowledge acquired by 

back-scattering coefficient. Decision rules are intended to be made on the basis of 

backscattering coefficient as information bearing feature. In order to compare the results of each 

classification technique extensively is required to be done. 

Radar waves can interfere constructively or destructively to produce light and dark pixels 

known as speckle noise. Speckle noise is commonly observed in almost all SAR images. 
Speckle reduction affects the performance of classification. In this context effect of filtering on 

classification is proposed to be evaluated. Ensemble averaging also has a significant effect on 

classification performance. In this context, three D decomposition method is proposed to be 

used to see the effect of filtering and ensemble averaging. 

1.4 Motivation and scope 

Nearly every aspect of our lives is tied into the ground cover that surrounds us. Farms feed us, 

forests provide us with oxygen and building materials, rivers and lakes yield fresh water to 

drink, and cities shelter us. Each of these land covers has its own importance in the life of all 

living creature .When land covers change; our health, economy, and environment can all be 

affected. The detailed description of land cover change on earth can be obtained through 

appropriate terrain classification. Remote sensing plays an important role in terrain 

classification. Various classification algorithms have already been proposed, but further 

improvement is required. The limitation of these classification algorithms is that they 

necessitate prior information about study area. The aforementioned reasons were the driving 

force behind captivating the assignment of land cover classification. The motivation behind 

taking up the task of terrain classification through PALSAR data is to explore the maximum 

utilization of this polarimetric data in order to reduce the need of prior information. 

The scope of this thesis is land cover classification using SAR image by rigorous 

polarimetric analysis. The scope lies in answering the questions: 

1. How accurately can land cover classification be performed using SAR imagery? 

ii. Which classification algorithm can extract more physical information from SAR 

images? 

iii. What are the challenges and limitations? 
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The answer to these questions is worthwhile considering recent advancement in radar 

polarimetry and SAR technology, data analysis and processing techniques. 

1.5 Aim and objective of the thesis 

1.5.1 Aim 

The aim of this dissertation work is to generate a land cover classification map by using various 

classification techniques and compare their results by using polarimetric PALSAR data. The 

present work is focused on the maximum utilization of polarimetric data in order to reduce the 

need of prior knowledge about the study area to be taken for classification. In this study we are 

planning to express polarimetric data in different ways in order to see substantial differences 

among a number of polarimetric observables in terms of the information they contain. The goal 

of this study is to suggest appropriate classification technique for land cover classification. The 

classification map so generated can be used in future to detect land cover change in particular 

build up land. 

1.5.2 Objective 

The objective of this thesis is to study polarimetric analysis of PALSAR images for land cover 

classification. The objectives of thesis are as follows: 

• Study various polarimetric methods for terrain classification. 

• Study the role of window size on classification. 

• Study the effect of filtering on SAR images for flat terrain like-Roorkee. 

• Apply various supervised classification techniques (Parallelepiped, Minimum distance, 

and Maximum likelihood) on PALSAR data in order to identify and map various land 

cover types. 

• Quantify the relationship between backscatter and various land cover types and obtain 

land cover map using backscatter as information bearing feature. 

• Perform accuracy assessments on the different classifications to determine the best 

approach and to quantify the expected level of accuracy. 

• Critical comparison of all applied classification techniques. 
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Thus the overall objective is to distinguish the effect of each classifier on classification 

of a mixture of land cover types and put forward the appropriate method that classifies all the 

land cover types having satisfactory classification accuracy. 

1.6 Organization of the thesis 

The thesis consists of six chapters. In chapter 2 basics of radar polarimetry i.e. basic wave and 

scattering concepts are discussed. This chapter includes mathematical formulation of basic 

scattering matrices, theoretical concept target decomposition theorems and classification 

techniques. 

In chapter 3, the4escription of test site, along with the description of used SAR data and 

software is presented. This chapter also includes the methodology used for SAR data pre-

processing, target decomposition theorems and land cover classification. 

In chapter 4 the results of all the methods discussed in chapter 2 are shown. The results 

of all the classification techniques are shown by confusion matrix. Effect of averaging window 

on decomposition is also presented in this chapter using 3 D decomposition. 

In chapter 5 advantages and disadvantages of each classification techniques and their 

limitation is discussed. 

Chapter 6 summarizes the obtained results by concluding remarks. 
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CHAPTER 2. RADAR POLARIMETRY BACKGROUND 

In this chapter basic polarimetry concepts are discussed in brief There are two main conceptual 

formalisms in polarimetry. The first one is a real space formalisms based on the Stokes Vector 

for the description of the polarimetric properties of waves and on the Mueller matrix, (in 

backscattering also known as Kennaugh matrix) for the polarimetric description of the scatterer. 

The second one is a complex space formalism based on the Jones vector for the analysis of 

wave polarization and on the covariance or coherency matrix for the description of the 

scattering process. Both formalisms are equivalent and can be changed unambiguously into 

another one. Since the processing of SAR data is done in complex domain therefore in this 

study complex domain formalism is chosen. Starting with polarization, which is the basis of 

radar polarimetry, mathematical formulation of all the matrices describing various scattering 

phenomenon are discussed in brief Target decomposition theorems and various classification 

approaches used in dissertation are discussed in detail. 

2.1 Polarimetry basics 

2.1.1 Polarization 

Concerning an EM monochromatic plane wave, the polarization describes the orientation of the 

electric field vector, in the plane perpendicular to the direction of propagation, as a function of 

time. At a fixed time the electric field is composed of two orthogonal sinusoidal waves with, in 

general, different amplitudes and phases at the origin. A plane electromagnetic wave is fully 

characterized by the parameters (magnitude, phase, and direction) of its electric vector E(r, t) 
given by 

E(r,t)= Ex.i+EyS,=(ax.exp(ja,t ).i + ay. exp(igy  )j)).exp( j(cot — kz) 	(2.1) 

The tip of electric field vector forms an ellipse called polarization ellipse shown in 

figure-2.1. The polarization state also called Jones vector, is related to the shape and orientation 

of the ellipse together with the rotation sense of the field vector when looking along the 
direction of propagation [46]. 
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Figure - 2.1: Polarization ellipse[45] 

There are two parameters which define the polarization state. They are described as 

follows: 

• The orientation angle 1 defined as the angle between the major axis of the ellipse and 

the x- axis, expresses the inclination of the ellipse and is limited between 0° and 180°. 

• The tilt angle t , defined as the ratio between two minor semi-axes of the ellipse (a, and 

b axis), describes the shape of the ellipse. 

tan r =± b 	 (2.2) 
a 

The polarisation sense; given by the sign of ti (the positive value applies for right-handed 

polarizations) 

There are three types of polarizations : linear , circular and elliptical depending on the 

values of above parameters. They are summerized in following table: 

Table -2.1 

Polarization descriptors for characteristic polarization states 

Horizontal Vertical Linear 45° Linear 

135° 

Left 

circular 

Right 

circular 

Orientation (1) 90 0 45 135 0 to 180 0 to 180 

Tilt angle t 0 0 0 0 45 -45 

Complex ratio p 0 Go 1 -1 i -i 
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2.1.2 Characterization of polarization state 

2.1.2.1 Jones vector 

Jones vector Ex  may be defined as 

Exl rlexP(i81= E  11 
Ex=[Ey 	ylexP(.18  y) 

where p is called polarization ratio, defined by [47] 

EY 1E  P =— = —)'— exP(/{8,, gn,}) 
Ex lExl 

2.1.2.2 Stokes vector 

For a quasi monochromatic wave the Stokes vector formulation is used, which is defined by 

e2 

e2  sin 20 cos 2z 
e2  cos 20 sin 2z 

e2  sin 2r 

(2.5) 

go  is the total intensity, g1  is the difference of the intensities in both polarizations, 

while g2  and g3  contain the phase information [6]. These four parameters are not independent 

for a fully polarized wave, since in that case the following identity holds: 
2 	2 	2 	2 

g0 = gl g2 g3 

2.1.3 Characterization of partially polarized wave 

2.1.3.1 Coherency matrix 

To advance the analysis of partially polarized waves, the concept of a wave coherency matrix 

was introduced by BORN & WOLF 1985. This matrix is defined, using the outer product of the 

corresponding Jones vector averaged over a coherency time [46]. 

(2.3) 

(2.4) 

g0 

gi 
g = 

g2 

g3 

(2.6) 

[J]=(E(E* )r ) ,  (EHEH*) (EHEV*) 

(EVE„*) (EVE;) 4:1 
(2.7) 
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2.1.3.2 Stokes vector 

A partially polarized wave can also be characterized by the four time-averaged Stokes 

parameters of Equation (2.8), since they are simply related to the elements of the coherency 

matrix by 

JHH J41, 

J i„, —J, 
+ .1" 

i(J „, — 

The partially polarized wave is expressed in terms of the 'degree of coherency and the 

`degree of polarization' DP  [6].Degree of polarization is defined as the ratio of the completely 

polarized power to the total power and can be written as 

D  _ 1  4(det(J)) 	Aigi2 
+ g22 

+ g32 
(2.9) 

P 	(tarce(J))2 	g0 

And the degree of coherency can be written as 

,u,=11. exP(ifin,,,) 	ijmnr  
✓1,1 m t n m 

(2.10) 

where, DP  =0: for totally depolarized and DP  =1: for fully polarized waves, respectively. 

2.1.4 Mathematical representation of target scattering 

2.1.4.1 Sinclair matrix 

If the target is deterministic and time-invariant, then this target can be characterised by a 2 x 2 

coherent scattering matrix [S], also known as the Sinclair matrix for the back scatter case and 

Jones matrix for the forward scatter case. The normalized scattering matrix [S(HV)J is the 
orthogonal linear polarization basis (1W) is given by, 

Es  (HV) = [S(HV]ET  (HV) 	 (2.11) 

where Es  (HV) and ET  (HV) denote incident and scattered fields, respectively, and 

g = (2.8) 
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[S (HV)]= [S
S 

HH S HV1 	 (2.12) 
u/  Sy, 

For mono static case Sin, S  HV • 

2.1.4.2 Kennaugh matrix 

In radar application BSA convention is used and the Stokes vector of the backscattered wave is 

related to the incident-wave Stokes vector through the Kennaugh matrix by [47] [48] 
gT 	[K]g S (2.13) 

The 4x4 Kennaugh matrix is defined in terms of Sinclair matrix as follows 

[K] = 2[A]" .[W].[A]-1  (2.14) 

where [W] = [S] 	[S]#  is a standard tensorial Kronecker Matrix product. 

and 

1 	0 	0 	1 
1 	0 	0 	—1 

[A] = 
0 	1 	1 	0 

(2.15) 

0 	 j 	—j 	0 _ 

2.1.4.3 Muller matrix 

In optical or transmission polarimetry, the FSA convention is used and the Stokes vector of the 

scattered wave is related to the incident-wave Stokes vector through the Mueller matrix [M] by 
[48] 

gT [m]gS 	 (2.16) 

Muller matrix is related to Kennaugh matrix by 

[M] = diag[1 1 1 —1].[K] 	 (2.17) 

2.1.4.4 Coherency and covariance matrices 

The 4X4 polarimetric covariance matrix [C] is ensemble average of outer product of the 4 

dimensional lexicographic scattering vectors with its conjugate transpose [49]. 
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{c1,-_-(g.g*) 

where g is called lexicographic scattering vector defined by 

5  = [SHH 	W SHV SVH S  IT 

and covariance matrix 

(Is,„,I 	(sffils*,„) (s,„,s,H) 

(S S*HH) (IS HvI 2 ) (SHV SVH) 

(ss;„,) (s„„s*,„) (Nil) „ 
_(s,„s*,„,) (s„,,s;) (sv,,s;,) 

(2.18) 

(2.19) 

(S HvS; 

(s s;v ) 
(lS,12  

(2.20) [c],  

where <...> indicates spatial averaging, assuming homogeneity of the random scattering 

medium. 
The 4X4 polarimetric coherency matrix [T] is ensemble average of outer product of the 

4 dimensional Pauli scattering vectors with its conjugate transpose. 

[c] ,(1.k*). 

(1k012) ( kok;) (kok;) (kok;) 

ilc;> ( lk 'I') ( 1clc i *2 ) (k,k;) 

(k 214) (151c;) (11c20 (15lcs3 ) 

_(k 314) (1c-  31(;) 	c3lc*2 ) (11c3 1 2 ) 

(2.21) 

where k is Pauli scattering vector , defined by 

= [S„ + Sw , S„ — SVV , S„ + S„, j(S„ — ST/H  )]T 	 (2.22) 

Both the above matrices are hermitian positive semi definite and have the same eigen values. 
The coherency matrix is closely related to the physical and geometric properties of the 
scattering process, and thus allows better and direct physical interpretation. The covariance 
matrix is directly related to the system measurable. 

Due to ensemble averaging needed for the formation of coherency and covariance 
matrices resolution is reduced. Low resolution is not a problem with distributed scatterers 
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because this loss is compensated by reduced speckle noise due to multilooking, but for point 

scatterers loss of resolution is very critical. This trade-off between high resolution required for 

point scatterers and reduced speckle noise over distributed scatterers can be resolved by 
applying an adaptive polarimetric speckle filter instead of other filters [43] for the formation of 

the coherency (or covariance) matrix, which was first introduced by J.-S. Lee [38]. MAP filter 

can also perform well in this situation [42]. Such filters perform a multilooking filtering process 

on distributed scatterers, leading to a matrix with rank greater than one, while point scatterers or 

edges remain unfiltered leading thus, as expected, to a rank one matrix. 

2.2 Target decomposition theorem 

The decomposition in radar polarimetry provides a way for interpretation and optimum 

utilization of polarimetric scattering data by expressing the average mechanisms as the sum of 

independent elements. This leads to association of physical mechanism with each independent 

component having physical constraints such as the average target being invariant to changes in 

wave polarization basis. [16]. Thus, any decomposition technique manipulates the scattering 

matrix elements with the objective to provide more descriptive and discriminative target 

parameters, which have influential significance in various applications of radar polarimetry 

[17]. 

Target Decomposition theorems were first formalized by J.R. Huynen but have their 

origin in the research work of Chandrasekhar on light scattering by small anisotropic particles 

[16]. Since this original work, there have been several other proposed decompositions. At 

present, two theories of target decomposition can be distinguished: coherent target 

decomposition (CTD) and incoherent target decomposition (ICTD). 

2.2.1 Coherent target decomposition (CTD) 

CTD deals with decomposition of scattering matrix, which characterizes the scattering process 

from the target itself. This can happen only when incident and scattering waves are fully 

polarized. Consequently, CTD can only be employed to study coherent targets or point targets. 

2.2.1.1 Pauli decomposition 

The most common known and applied coherent decomposition is Pauli decomposition. The 

Pauli decomposition expresses the measured scattering matrix [S] in the so-called Pauli basis 
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[20]. The vectorization of [S] carried out by using the Pauli matrices basis set, leads to the Pauli 

scattering vector or Pauli feature vector f 

or the bi-static case with the explicit form 

fc4P =[ko ,k i ,k3 ,k4 jr 	NH  Sw  ,S Hit  Sw  ,S Hv  SpH  f(S H y S HAT 
	

(2.23) 

In backscattering scenario, the target scattering matrix is symmetric if the medium 

between radar and target does not exhibit Faraday rotation. In this case the above scattering 

vector is reduced to three-component scattering vector due to presence of redundancy in one of 

the elements of the target vector. Consequently the Pauli scattering vector is given by 

(2.24) 

The advantage of using the Pauli matrix basis lies in the straightforward physical 

interpretation of the Pauli matrices in terms of elementary scattering mechanisms as well as 

relative polarization plane preservation. 

(a) 	 (b) 

Figure-2.2: Sketch of scattering mechanisms; (a) odd-bounce scattering, (b) even 

bounce scattering [53] 

• 	The first Pauli matrix can be interpreted as the scattering matrix of an isotropic "odd"- 

bounce scatter. Such scatterers are characterized by SHH  = Sw  and SHY  = g vll = 0  • 

Spheres, flat surfaces or trihedral corner reflectors represent this type of scattering. 

• The second Pauli matrix is also diagonal but generates a r phase difference between the 

diagonal elements. It indicates isotropic "even"-bounce scattering which is 

characterized by SHH  = —Sr, and SHY  = SvH  = 0 .Dihedral corner reflectors oriented 

at 0 0 represent this type of scattering behavior , in which reflected wave is mirrored 

version of incident wave. 
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• The third Pauli matrix can be interpreted as the scattering matrix of an isotropic "even"-

bounce scattering objects with a relative orientation of 7r/4 with respect to the 

horizontal, because it may be obtained from the second Pauli matrix by rotation of the 

reference basis by 7C /4. From a qualitative point of view, the scattering mechanism 

represented by is represented by those scattering objects that are able to return the 

orthogonal polarization, from which, one of the best examples is the volume scattering 

produced by the forest canopy. 

(a) 	 (b) 
	

(c) 

(d) 
	

(e) 
	

(f) 

Figure 2.3: Types of theoretical scatterers defined by Pauli;(a)sphere,(b)flat square 

plate,(c)dihedral corner reflector, trihedral with (d) quarter circular sides,(e) 

triangular sides ,(f) square sides. 

2.2.2 Incoherent target decomposition (ICTD) 

The CTD approach shows inability in decomposing distributed targets. This type of scatterers 

can only be characterized, statistically, due to the presence of speckle noise. To reduce speckle 

noise only second order polarimetric representations are required to analyze distributed 

scatterers. These second order descriptors are the 3x3, Hermitian average covariance and the 

coherency matrices. ICTD deals with decomposition of these matrices. These matrices 

characterize the scattering process from distributed targets. Consequently, ICTD also deals with 

partial polarized case. 
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2.2.2.1 Eigen value decomposition 

The eigenvector decomposition states that the target coherency written in the form: 

<[T] >= [U 3 ][E][U 3 ]-1 	 (2.25) 

The 3x3 real diagonal matrix [E] contains the eigen values of < [T] > is a 3x3 diagonal matrix 

with non-negative real elements, 2, > 22  > 

[E] = 

23  > 0 . 

Al 	0 	0 
o 22 	0 
o 0 	23  

(2.26) 

The 3x3 unitary matrix [U3 ] , contains the eigenvector u, for i= 1, 2, 3 of < [T] > 

[U3] =u2 (2.27) 

Where 

= 	u12 	u,31=[cosa, 	sin a, cos fi;e 	sin a, cos /3, (2.28) 

The eigenvector approach leads to diagonalization of coherency matrix [fi of a 

distributed scatterer by decomposing it into the non-coherent sum of three independent 

coherency matrices [52]. Equivalently, we can express coherency matrix as linear combination 

of outer products of eigenvectors. 

[T] 	 [Ti ] + [T 2 ] + [T3 ] 	 (2.29) 

This decomposition has the intrinsic characteristics of every eigen value decomposition, 

namely: 

i. The decomposition is basis invariant, i.e. the same result can be obtained for any basis 

that can be employed in polarization definition. 

ii. The three scattering mechanisms are statistically independent. 

iii. The eigenvalues are the weights of decomposition, so they indicate which scattering 

mechanism is dominant one, and quantify in what proportion they dominate. 

The eigenvalues and the eigenvectors are considered as the primary parameters of the 

eigen decomposition of < [T] >. In order to simplify the analysis of the physical information 
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provided by this eigen decomposition, three secondary parameters are defined as a function of 

the eigenvalues and the eigenvectors of < [T] >. 

2.2.2.1.1 Parameters derived from eigen values 

a) Entropy 
It is the measure of randomness of scattering, which can also be interpreted as degree of 

statistical disorder and can be defined by 
3 A,

' H =-1p, log„ p, 	 = 3 	 (2.30) 

,=. 

where n=3 , for backscatter and n=4 , for bi-static problems. p, is the probability of each 

eigenvalue 2, (in the Von Neumann sense). It represents the relative importance of this 

eigenvalue with respect to the total scattered power. It expresses the number of effective 

scattering processes occurring [17]. 

• H = 0, indicates a rank 1 [T] matrix with only one nonzero eigenvalue, i.e. 22 = = 0. 

This corresponds to pure target and implies a non-depolarizing scattering process 

described by a single scattering matrix. 

• H = 1, indicates the presence of three equal nonzero eigenvalues, i.e. 2 = 22  = i13  . It 

characterizes a random noise scattering process, which depolarizes completely the 

incident wave regardless of its polarization. 

However, most distributed natural scatterers (partial targets) lie in between these two 

extreme cases, having intermediate entropy values with non-zero and non-equal eigenvalues 

[18]. 

b) Anisotropy 
It can be defined as the normalized difference between the appearance probabilities of the 

second and the third scattering component 

/12 /13  A = 

22 ± 

(2.31) 

1=1 
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From a practical point of view, the anisotropy can be employed as a source of 

discrimination only when H>0.7. The reason is that for lower entropies, the second and third 

eigenvalues are highly affected by noise. Consequently, the anisotropy is also very noisy [52]. 

• A = 0, implies azimuthal symmetry and represents the appearance of two equally strong 

scattering mechanisms. 

• A =1, implies asymmetric depolarization situation and represents t. • - 	e of only one 

strong secondary scattering process. 	 G 	
L kbo 

cy  
z• ACC Na.. 	 

Date 

	

They are four angles used to define eigenvector. Among them • 081 'R00% 	ase terms 

without any straightforward interpretation. Only a and 13 give useful interpretation of scattering 

mechanisms present in the target. All possible target vectors can be mapped into (a, (3) pairs by 

using the following effective range of validity of angles [53]: 

0°_..a 5.90° 	 0° 	360° 
	

(2.32) 

The parameter a is an indicator of type of scattering and is called scattering mechanism. 

In the general case it is often better to form a weighted average of the a parameters from the 

eigenvectors to obtain an average scattering mechanism Such an average has been used for the 

interpretation of scattering by random particle volumes [54]. 
3 

=Ect,p,, where a, = arccos(I 
	

(2.33) 

a =0* 
	 a =45° 	 fl =90° 

Isotropic surface 	Dipole 

Anisotropic surface 	Anisotropic dihedrals 

Figure — 2.4: Schematic representation of the range of a 

Mean roll angle a possesses useful polarimetric scattering characteristics especially 

applicable to rough surface scattering [52]: 

2.2.2.1.2 Parameters derived from eigen vectors 

Isotropic dihedral 
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• a=0: The scattering corresponds to single-bounce scattering produced by a rough 

surface (isotropic surface scattering). 

• a=e4 : The scattering mechanism corresponds to volume scattering (dipole like 

scattering). 

• ot=e2: The scattering mechanism is due to double-bounce scattering (dihedral / helix 

type scattering). 
The parameter 13 is just the physical orientation of the object about the line of sight [22]. 

# 	 lu = /3, , where /3, = arctan '31 	 (2.34) 
ju,21, 

The eigen decomposition of the coherency matrix is also referred as the H/A/a 

decomposition. 

2.2.2.2 Model based decomposition 

2.2.2.2.1 Three component scattering model 

FREEMAN developed from 1992 to 1998 a three-component scattering model suited for 

classification and inversion of air- and space-borne polarimetric SAR image data. The Freeman 

decomposition models the covariance matrix as the contribution of three scattering mechanisms 

[30]: 

• Volume scattering: Modelled by a set of randomly oriented dipoles. 

• Double-bounce scattering: Modelled by scattering from a dihedral corner reflector. 

• Single-bounce scattering: Modelled by a first-order Bragg surface scatterer. 

Canopy layer 
	 Double bounce 

	Rough surface 

Figure- 2.5: Sketch of three scattering mechanisms used in the model [30] 
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Assuming the three processes to be independent from one another, each contributes to 

the total observed coherency matrix [T] as 

[T] = [Ts ] + [T]+ [Tv ] 	 (2.35) 

where, [Ts  ], [TD  ] and [Tv ] are the coherency matrices for the surface, dihedral and 

volume scattering respectively. 

a) Surface Scattering Contribution 

[Ts]= fs 

,o2  
/3 
0 

1 
0 

0 
ol 

0 
(2.36) 

b) Dihedral Scattering Contribution 
In this case, the scattering is completely described by the Fresnel reflection coefficients of each 

reflection plane. 

For example, the scattering matrix of a soil-trunk dihedral interaction is obtained as 

[TD  - fD 

a2 
-a 
0 

-a 
1 
0 

0 
0 
0 

(2.37) 

c) Volume scattering 
For volume scattering, it is assumed that the radar return is from a cloud of randomly oriented, 

very thin, cylinder-like scatterers. 

1 0 0 

[Tfr-]= .fy 0 S 0 
	

(2.38) 
0 0 5 

where, fv  is the backscattering amplitude and S depends upon the shape and the dielectric 

constant of the scatter. It value between 0 and 0.5, where the value 0 correspondences to spheres 

and 0.5 to dipoles. 

The Freeman decomposition presents 5 independent parameters {f, fd, f, a, /31 and only 

4 equations. Consequently, some hypothesis must be considered in order to find the values of 

tfv'fif.s.' 161) * 

• If fs  # > La ---> # =1 : Dominant Surface Scattering 
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• If ff < fDa -+ a = —1: Dominant Dihedral Scattering 

The scattering powers corresponding to surface, double and volume scattering 

component is given by 

Ps = 	+ 02 ) 

PD = fD(1± 1a 1 2  

Pv =8*  iv 13  

Merits: 

• Simplicity 

• Easy to implement 

• Suitable for decomposing natural targets 

Demerits: 

• Unable to decompose man-made targets (e.g. urban area) 

(2.39) 

(2.40) 

(2.41) 

2.2.2.2.2 Four component scattering model 

The four component scattering model is proposed by Yamaguchi, which decomposes 

covariance matrix [31] or coherency matrix [32] into four scattering components namely 

surface, double, volume and helix scattering components. 

[C] = [Cs ] + [CD ] + [Cy] + [Cc ] 
	

(2.42) 

where, [C s ] , [C D ] ,[Cv ] and [Cc ] are the covariance matrices for the surface, dihedral, volume 

and helix scattering respectively(see figure-2.6). 

Surface Double-bounce 	Volume 	Helix scattering 

Figure -2.6: Sketch of four scattering mechanisms used in the model [31] 
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Unlike three component scattering model, this model deals with non-symmetric cases 

<SHHSH*  V ›* 0 and< S S v 	0 . This condition introduces fourth term, called Helix 

scattering component, which is essentially caused by the scattering matrix of helices (or 

equivalently, left or right circular polarization states). It is relevant for the complicated shapes 

of man-made structures, which are predominant in urban areas [31]. Single bounce and double 

bounce have same interpretation as in three component scattering model. The volume scattering 

components is modified by change of probability density function for associated characteristic 

angle distribution, which is responsible for scattering from vegetated areas, especially by trunk 

and tree branches. The choice between symmetric and asymmetric cases is made 

by101ogio  ISHH12)/(1Sw12) . The power scattering matrices for single, double, volume and helix 

scattering component is given by 

Ps = fs( 1 +012 ) (2.43) 

PD = L(1 + la12 ) (2.44) 

Pv (2.45) 

Pc — fc (2.46) 

2.2.2.2.3 Modified four component scattering model 

Yamaguchi introduced the modified four component scattering model in 2008. This model 

removes negative powers produced in image analysis of previous models [31] [32]. This 

negative power is inconsistent with physical conditions. Therefore, previous decomposition 

model was modified to produce all positive powers [33]. 

2.3 Classification schemes 

Quantitative assessment of land cover is required for every country in order to make proper 

planning against earth surface alteration, since land cover change is related to global change due 

to its interaction with climate, eco system process, bio-geochemical cycles, biodiversity and 

human activity. Classification of SAR images is important for environmental and 

socioeconomic applications like agriculture monitoring, flood mapping, oil spill detection etc. 

Remote sensing plays an important role in land cover classification due to availability of various 

SAR images through ENVISAT, ALOS PALSAR, and RADARSAT etc. 
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Classification is the task in which set of given data elements (pixels) are assigned to 

some classes such that cost of assigning data elements is minimum [55]. The intent of the 

classification process is to categorize all pixels in image into one of several land cover classes, 

or "themes". This categorized data may then be used to produce thematic maps of the land cover 

present in an image. Land cover classification through remotely sensed data is very challenging 

because more or less classification is related to various factors like selected remotely sensed 

data, image processing , classification approaches etc. The major steps of classification are as 

follows [56]: 

i. Determination of suitable classification system. 

ii. Image pre-processing and feature extraction. 

iii. Selection of training samples. 

iv. Selection of suitable classification approach. 

v. Post classification and accuracy assessment. 

There are two main types of classification techniques: supervised and unsupervised. 

Supervised methods require the user to collect samples to "train" or teach the classifier to 

determine the decision boundaries in feature space, and such decision boundaries are 

significantly affected by the properties and the size of the samples used to train the classifier. 

On the other hand, unsupervised classifiers "learn" the characteristics of each class (and 

possibly even the number of classes directly from the input data. 

2.3.1 Supervised classification 

Supervised classification involves using a priori knowledge of data to "train" computer 

software to identifr categories in an image [57]. The supervised approach to pixel labeling 

requires the user to select representative training data for each of a predefined number of classes 

[58]. It is assumed that the classification (the definition of the groups and their characteristics) 

has been defined before any previously unknown objects were identified. The supervised 

classification is carried out in following steps: 

i. Decide the set of ground cover types into which image is to be segmented. These are 

called information class. The information classes are determined by ground truth survey, 

maps or personal experience, 

ii. Chose representative pixels on image from each of the desired set of classes. These 

pixels are called training samples. 
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iii. Estimate the statistical parameters for each required class using training samples. 

iv. Select proper decision rule for classification. 

v. Select the classifier, which classify every pixel in the image into one of the desired 

ground cover types (information class). 

The main supervised classification techniques are defined below: 

2.3.1.1 Parallelepiped classification 

It uses simple decision rule for classifying remotely sensed data. It characterizes each class by 

range of expected values on each band. The range is defined by maximum and minimum pixel 

value in given class or alternatively by a certain number of standard deviations on either side of 

mean of training data for a given class as illustrated in figure-2.6. These decision boundaries 

form n- dimensional parallelepiped. If a pixel value lies above the low threshold and below the 

high threshold for all n- bands being classified, it is assigned to that class. If the pixel value falls 

in multiple classes, pixel is assigned to the last class matched or to overlap class. If the pixel 

does not fall within any of the parallelepiped classes it is designated as unclassified or null class 

[56] [58]. 

0 

LL 

Data elements 
(pixels) 

Feature 1 

Figure-2.6: Illustration of parallelepiped classification with parallelepipeds bound 

maximum and minimum value of data elements. 
Merits: 

a. Technique is very simple. 

b. Easy to implement. 

Demerits: 
a. Performance is very poor. 
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b. For correlated data there can be overlap of the parallelepipeds since their sides are 

parallel to the spectral axes. Consequently there is some data that cannot be separated 

(ref. figure-2.7) [58]. 

  

Class 1 

  

LL 

Region of inseparability 

Feature 1 

Figure-2.7: Parallelepiped classification for correlated data showing region of 

inseparability. 

2.3.1.2 Minimum distance classification 

With this classifier, mean vector of each class is calculated from training data. The decision rule 

adopted by the Minimum distance classifier to determine a pixel's label is the minimum 

distance between the pixel and the class centres (mean), measured either by the Euclidean 

distance or the Mahalanobis generalized distance. Classification is then performed by placing a 

pixel in the class of the nearest mean [58]. This is illustrated in figure-2.8 in which data pixel 'a' 

is closest to class 3, hence classified as class 3. 

3 

IL 

Feature 1 

Figure-2.8: An example of minimum distance classification. 
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Merits: 
a. Mathematically simple and computationally efficient technique. 

b. Provides better accuracies than the maximum likelihood procedure in the case when the 

number of training samples is limited. 

Demerits: 
a. By characterizing each class by its mean band reflectance only, it has no knowledge of 

the fact that some classes are inherently more variable than others, which in turn can 

lead to misclassification. 

2.3.1.3 Maximum likelihood classification 

Maximum Likelihood Classification is one of the most widely used methods in classifying 

remotely sensed data. The MLC procedure is based on Bayesian probability theory. This 

classification is based on probability density function associated with a particular training site. 

Decision rule is to calculate mean and standard deviation of each training set and derive 

probability density function from mean and standard deviation for computing probability of 

each pixel belonging to each class. The classifier then assigns pixel to the class for which the 

probability is the highest [58]. 

Merits: 

a. Yields higher accuracies than other hard classifiers. 

Demerits: 
a. Computationally intensive and time consuming technique. 

b. Each data sample has to be tested against all classes in a classification, which leads to, a 

relative degree of inefficiency. 

c. With a fixed relatively small size training set the classification accuracy may actually 

decrease when the number of features is increased. 

2.3.2 Unsupervised classification 

Unsupervised classification is the process in which clusters are generated automatically based 

on natural grouping found in data. This is because this technique is commonly referred to as 

clustering. Unlike supervised classifier, it does not require the selection of training data in order 

to train the classifier. This classifier operates independently and does not require intervention of 

user. Therefore sometimes it may happen that results are unaccepted on the basis of failure of 

user's expectations. The steps carried by unsupervised classifier are as follows [56]: 
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Reassign 
cluster? 

Number of clusters K 

Cluster centroid 
calculation  

Distance from unknown 
pixel to centiiod 

Grouping lased on 
minim-tun distance 

i. Classify image into number of clusters or group. 

ii. Indentify clusters and assign name to each group. 

iii. Merge classes (if required). 

iv. Post classification and accuracy assessment. 
Unsupervised classification is of two types: K — mean and ISO data. 

2.3.2.1 K-mean 

K-Means unsupervised classification algorithm (see- figure-2.9) first assigns arbitrarily initial 

K- cluster vectors. The input cluster vectors are then iteratively assigned to closest cluster 

according to the square of the Euclidean distance from the clusters (as in minimum distance 

technique). Each iteration recalculates mean (centroid) of each cluster and reclassifies pixels 

with respect to the new means. All pixels are classified to the nearest class unless a standard 

deviation or distance threshold is specified, in which case some pixels may be unclassified if 

they do not meet the selected criteria. This process is repeated until no more "change" in the 

value of, the means or the maximum number of iterations is reached. The "change" can be 

defined either by measuring the distances the mean cluster vector have changed from one 

iteration to another or by the percentage of pixels that have changed between iterations [59]. 

CStart  

Figure - 2.9: K-mean algorithm 
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Merits: 
a. With a large number of variables, K-Means may be computationally faster than 

hierarchical clustering (if K is small). 

b. K-Means may produce tighter clusters than hierarchical clustering, especially if the 

clusters are globular. 

Demerits [601: 

a. K- mean is very sensitive to initial starting value of cluster centre. 

b. K-means assumes that the number of clusters is known a priori, which is not true for real 

world situation. 

c. Does not work well with non-globular clusters. 

2.3.2.2 ISODATA 

The iterative self organizing data (ISODATA) algorithm represents a comprehensive set of 

heuristic (rule of thumb) procedures that have been incorporated into an iterative classification 

algorithm. ISODATA is a nearest-centroid, non-hierarchical, clustering algorithm. It performs 

in the same manner as K-mean but with further refinements by splitting and merging of clusters 

[61]. Iterative class splitting, merging, and deleting are done based on input threshold 

parameters. Clusters are merged if either the number of members (pixel) in a cluster is less than 

a certain threshold or if the centers of two clusters are closer than a certain threshold. Clusters 

are split into two different clusters if the cluster standard deviation exceeds a predefined value 

and the number of members (pixels) is twice the threshold for the minimum number of 

members. 

Merits: 
a. More robust. 

b. User specific. 

c. ISODATA is self-organizing because it requires relatively little human input. 

d. Clustering is not geographically biased to the top or bottom pixels, since it is iterative. 

Demerits: 
a. The clustering process is time-consuming, because it can repeat many times. 

2.3.3 Non — parametric classifiers 

The classifiers which do not involve estimation of statistical parameters before classification are 

referred to as non parametric classifiers [56]. Decision trees, artificial neural networks, or 
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support vector machines, are nonparametric and require that training data sets are large enough 

to represent the characteristics of each class. 

2.3.3.1 Decision tree classifier 

Decision tree classification, a machine learning algorithm, is a knowledge based data mining 

technique. It is an efficient tool for land cover classification. It is a hierarchal top- down 

approach, in which a decision rules defined by combination of several features and a set of 

linear discriminate functions are applied at each test node, where a binary decision is made for 

splitting a complex decision into several simpler decisions in order to separate either one class 

or some of the classes from remaining classes [62]. In this approach, feature of data (i.e. bands) 

are predictor variables whereas the class to be mapped is referred to as target variable [63]. 

Figure-2.10. Decision tree classification technique. 

A tree generally consists of a root node, a number of non terminal nodes or decision stages and 

a number of terminal nodes (final classifications). It performs binary recursive partitioning to 

assign automatically maximum information carrying feature for the classification and rejects 

remaining features at that intermediate stage, thereby increases computational efficiency [64]. 

The main issues in this approach are [65]: 

• Choice of splitting criterion; 

• Stopping rules ; 

• Labeling the terminal nodes. 
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Merits: 
a. This method is easier to interpret and understand the relation between the inputs and 

outputs. 

b. It can differentiate classes with similar spectral feature. 

Demerits: 
a. It requires large number of training data, which is time consuming task. 

2.4 Accuracy assessment 

The most common way of evaluating the effectiveness of classification of remotely sensed data 

is preparation of so-called error matrix also known as confusion matrix or contingency matrix 

[66]. The columns in a confusion matrix represent test data, while rows represent the labels 

assigned by the classifier. The main diagonal of the matrix lists the correctly classified pixels. 

There are several measures of agreement derived from error matrix. They are described as 

follows: 

2.4.1 Kappa coefficient 

The calculations of kappa coefficient takes into account all of the elements of the error matrix, 

not just the diagonals of the matrix. This has the effect of taking into account chance agreement 

in the classification [66]. The resulting Kappa measure compensates for chance agreement in 

the classification and provides a measure of how much better the classification performed in 

comparison to the probability of random assigning of pixels to their correct categories. It is 

defined as 

 

NE x„ - E * x, 
= 	  r 

N 2  — x, *x, 
(2.47) 

where, 

i=1 

N = total no. of observations 

r = the no. of rows in error matrix 

x,i  =the no. of observations in row i and column i 

x,+=the marginal totals of row i 

x+,=the marginal totals of column i 
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Kappa ranges from 0 to 1. The higher the value of kappa, the better will be the 

performance of classification [67]. 

2.4.2 Overall accuracy 

The overall accuracy is computed by dividing the total of correctly assigned pixels (i.e. the sum 

of the major diagonal), by the total number of pixels in the error matrix. 

2.4.3 Producer's accuracy 

The producer's accuracy is a measure indicating the probability that the classifier has labelled 

an image pixel into Class. The producer's accuracy is calculated by dividing the entry (i, i) by 

the sum of column i. Thus, the producer's accuracy tells us the proportion of pixels in the test 

data set that are correctly recognized by the classifier. It includes the error of omission which 

refers to the proportion of observed features on the ground that are not classified in the map 

[66]. The more errors of omission exist, the lower the producer's accuracy. 

Producer's accuracy = 100% - error of omission (%) 	 (2.48) 

2.4.4 User's accuracy 

The total number of 'correct pixels' in a category is divided by the total number of pixels 

classified in that category, then this result gives a measure of the commissions. This measure, 

the user's accuracy (UA), is indicative of the probability that a pixel on the image actually 

represents that category on the ground [67]. User accuracy, or reliability, is actually the 

equivalent of percentage correct for an individual category and is calculated as 

User's accuracy = 100% - error on commission (%) 	 (2.49) 
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CHAPTER 3. METHODOLOGY 

In this chapter methodology adopted for polarimetric analysis of SAR images for land cover 

classification is discussed. Starting with the discussion of study site used in our dissertation 

work, we have discussed about the SAR images used for land cover classification. Target 

decomposition theorems which form the basis for classification are discussed next followed by 

various classification techniques. 

3.1 Materials used 

3.1.1 Study area 

The study area has centre latitude 29.61380°  and longitude 78.0086730°. It is shown on map in 
figure -3.1. It covers Roorkee, Laksar, Bijnor regions. 

Figure-3.1: Location of study area 

Roorkee, a city in the state of Uttarakhand within India is located at 29° 51' N, 77° 53' E 

on the south bank of Solani River. The Upper Ganga Canal which runs from north to south adds 

beauty to the city and divides the city in two distinct parts. Laksar is one of the three tehsils in 

Haridwar district in the state of Uttarkhand. Bijnor is a small town in the state of Uttar Pradesh. 
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This study area is chosen for its varied landscapes: water (source: Ganga canal, river Ganges), 

urban (source: Roorkee, Laksar, Bijnor), tall vegetation (source: dense tree cover in city 

Roorkee), bare soil, short vegetation (source: crop land and grass land). 

3.1.2 Data sets used 

Advanced Land Observatory Satellite (ALOS) PALSAR polarimetric data taken on date 6th 

April 2009 was used in the study. The data has four different modes: RH, HV, VH and VV 

polarization (ref. table-3.1). The ALOS PALSAR product is level 1.1 data in VEXCEL format, 

which is single look complex data on slant range. The product has single number of looks on 

range and azimuth. The default off nadir angle for polarimetric acquisition mode is 21.5°. The 

product has resolution on ground of 30m (range) x 20 m (azimuth) [68] .The product description 

is given in table-3.2 and table 3.3. 

Table -3.1 

Polarization description of polarimetric data 

Polarization Explanation 

• Horizontally polarized transmission 
1111 

• Horizontally polarized reception only 

• Horizontally polarized transmission 
HV 

• Vertically polarized reception only 

• Vertically polarized transmission 
VIA 

• Horizontally polarized reception only 

• Vertically polarized transmission 
VV 

• Vertically polarized reception only 
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Table- 3.2 

File description of ALOS PALSAR L-1.1 data sets 

File extension Numbers Description 

_.slc 4 Single look complex image files for each polarization 

_.par 4 Parameter files for all polarizations 

_.meta 1 Meta file containing general information about product 

Table-3.3 

Product description 

Source ALOS 

Sensor PALSAR 

Instrument mode PLR (Polarimetric)(HH,HV,VH,VV) 

Product L-1.1 

Product type Single look complex (SLC) 

Pixel spacing 9.368514 (m) 

Bytes per pixel 8 

PRF 1.93 GHz 

Look angle 21.5°  

Incidence angle 24°  

Range resolution 11.094462(m) 

Azimuth resolution 4.892375(m) 
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3.1.3 Software used 

In the whole study three software were used: 

• ENVI 4.3 - Environment for Visualizing Images (ENVI) was for processing SAR 

images. 

• SARSCAPE 4.1- SARSCAPE data analysis module allows image processing with 

ENVI. This software perfectly complements ENVI's functionality for analyzing and 

visualizing remote sensing data of any kind. 

• MATLAB 2007- This software was used for developing algorithms of various 

decompositions and for plotting various graphs. 

3.2 Pre-classification technique: a general overview 

Before actually performing decomposition and classification some pre-processing of SAR 

image is required due to several reasons. There is no particular chain of procedure for pre-

processing, but following procedures are required before classification: 

3.2.1 Data import 

As mentioned earlier, the data provided by ERSDAC is single look slant range fully 

polarimetric complex data (HH, HV, VH, and VV). Since this is already focused; therefore it is 

just imported through SARSCAPE using ENVI-4.3 software. This provides four -slc (single 

look complex files (HH.slc, HV.slc, VH.slc and VV.s1c). 

3.2.2 Polarimetric calibration 

Polarimetric calibration minimizes the impact of non ideal behavior of a full-polarimetric SAR 

acquisition system in order to obtain an estimate of the scattering matrix of the imaged objects 

as accurate as possible from their available measurement. 

3.2.3 Speckle filtering 

Speckle noise is generated due to coherent interference of electromagnetic waves reflected from 

many randomly distributed elementary scatterers within a resolution cell. Speckle has the 

characteristics of a random multiplicative noise (defined below) in the sense that as the average 
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grey level of a local area increases, the noise level increases [69]. Speckle removal is required 

in order to improve classification results. Two procedures can be adopted for speckle reduction: 

3.2.3.1 Multilooking 

Radar speckle can be suppressed by averaging several looks (images) to reduce the noise 

variance. This procedure is called multilook processing. Multiple looks are generated by 

averaging azimuth or range resolution cell. The goal of multilooking is to obtain approximately 

squared pixels. In order to avoid oversampling effect in geocoding, multillooked image should 

have same spatial resolution as recommended for geocoded product. Numbers of looks are 

calculated by following procedure: 

Ground range resolution = pixel spacing range  
sin(incidence angle) 

From table 3.2 after putting value in above equation ground range resolution is obtained 

as 23.0145 m. 

Number of looks 	  Ground range resolution cz 
line spacing (azimuth) 

In our case multi-look factor is obtained as 7 [70]. 

(3.2) 

3.2.3.2 Filtering 

The second method of speckle suppression uses filtering methods, which fall into two main 

categories, namely, adaptive and non-adaptive filters. Adaptive filters use weights that are 

dependent on the degree of speckle in the image, whereas non-adaptive filters use the same set 

of weights over the entire image. A speckle suppression filter is expected to filter the 

homogeneous areas with reasonable speckle reduction capability, retain edges, and 

preserve features (linear features and point features) [38]. 
In this study Wishart Gamma map filter is used. It is a polarimetric filter which is 

suitable for polarimetric data. It performs well in the presence of regular texture and moderate 

relief The filter operates under the assumption of target reciprocity (i.e. HV----VH) [70]. Thus 

only three filtered images are produced (HIT, HV, VV). 

(3.1) 
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The output speckle filtered Covariance Matrix terms (SHH  .SHH  ,SW .Sw*  

SHv .SH*  v , Re {SHH  .SW } , Im {Sm., 	, Re {Siff/  .SH*  v} , Im {SHH  .SH1,} , Re {Sw  .4v} , Im {Sw  .SH* v  } 

contains all the polarimetric information required for further computation. 

Import data 

     

        

        

        

        

        

        

Polaiimcnic calibration 

     

        

        

        

Polarimeiric filtering 
(Writhart Gamma I'Jztp) 

     

     

  

DEM extraction. through 
GTOP030 

     

        

        

        

        

Mu-looking 

     

        

        

        

        

Geo-coding & 
Radiometric calibration 

     

        

Final image for further 
processing 

     

Figure -3.2: Flow chart for pre-classification procedure 

3.2.4 DEM extraction 

It is digital representation of ground surface topography or terrain. In this study digital elevation 

model (DEM) was extracted by technique GTOP030. It is a global digital elevation model 

(DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 km). Datum selected 

was WGS-84. 

3.2.5 Geocoding and radiometric calibration 

Geocoding is the process of transforming remote sensing image from slant range projection to a 

cartographic reference system considering ellipsoidal height or a Digital Elevation Model. Here 

in this study UTM global is chosen as cartographic reference system with WGS-84 as datum. 
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The radiometric calibration, which is performed during the geocoding, is based on the 

exploitation of the radar equation. 

3.3 Used target decomposition methods 

Target decomposition forms the basis of classification procedure. The decomposition theorems 

manipulate the scattering matrix elements in order to provide more elaborated and descriptive 

polarimetric observables, which can be used further for classification. 

In the following sections we have presented three decomposition methods. In sec- 3.3.3 

three D decomposition technique is discussed, which can be used further for studying the effect 

of window size and filtering. Two other decomposition techniques are presented in the 

following sections -3.3.1 and 3.3.2. They are discussed below: 

3.3.1 Pauli decomposition 

The method discussed in section-2.2.1.1. is presented here. The procedure to obtain Pauli 

decomposed image is described below (also refer figure- 3.3): 

PALSAR L-1.1 polarimetric 
SLC data (HH,HV,VH,VV) 

Import through SARSCAPE 

Polarimetric calibration 

Pauli decomposition 
(HH-VV,FIV+VH,HH+VV) 

DEM extraction through 
GTOP030 

Geocoding and 
radiometric calibration 

Pauli RG13 , R(HH-VV), 
G(11V+VH),13(11H+VV)  

Figure -3.3: Flow chart of Pauli decomposition 
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The PALSAR data sets were first imported through software SARSCAPE using ENVI 

4.3. These —slc (single look complex) files were calibrated using defined polarimetric 

calibration matrices. Then Pauli decomposition was performed on calibrated data using 

SARSCAPE. Three files were generated as a result of decomposition corresponding to HH-VV, 

HV+VH, HH+VV representing even-bounce scattering, scattering from 45°  tilted dihedral and 

odd- bounce scattering respectively. The digital elevation model was extracted using technique 

GTOP030 for terrain correction prior to geocoding. Then nearest neighbor resampling method 

was applied to data for radiometric calibration. These geocoded and radiometrically calibrated 

files were used to produce final RGB decomposed image taking HH-VV as red, HV+VH as 

green and HH+VV as blue. 

3.3.2 Eigenlalue decomposition 

The eigen value decomposition has already been discussed in section-2.2.2.2. The procedure 

adopted for eigen value decomposition is described in figure-3.4. 

[PALSAR L-1.1 polarimetric 
SLC data (HILHV,Vil,VV) 

Import through SARSCAPE 

Polarimetric calibration 

Filtering using 
Boxcar filter 

IcE  Eigen value 1 ecomposition 
ntropy , Alpha, Anisotropy) 

DEM extraction through 
GTOP03 0 

Geoco ding and 
radiometric calibration 

Colour mapped images of 
Entropy , Alpha, Anisotropy 

Figure- 3.4: Flow chart of eigen value decomposition 
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The PALSAR data sets were first imported through software SARSCAPE using ENVI 4.3. 

These —slc (single look complex) files were calibrated using defined polarimetric calibration 

matrices. For speckle suppression box-filter was used. This is a non- adaptive filter. Only this 

preprocessing step is required for the decomposition. The eigen value decomposition was 

performed on filtered data, as a result of which three files (entropy {eq-2.30}, alpha {eq-2.33} 

and anisotropy {eq-2.31}) were generated. The description of these parameters is given in 

sections 2.2.2.1.1 and 2.2.2.1.2. The digital elevation model was extracted using technique 

GTOP030 for terrain correction prior to geocoding. Then nearest neighbor re-sampling method 

was applied to data for radiometric calibration. After geocoding color coded images of all three 

images were obtained. 

3.3.3 Three D decomposition 

The three D decomposition method (see section 2.2.2.2.1) is discussed in following section. We 

are using this technique to study the effect of ensemble averaging on classification and filtering 

on flat terrain. Therefore we are adopting two procedures for performing three D decomposition 

(a) Without polarimetric filtering 
The data were first imported through software SARSCAPE using ENVI 4.3 in order to obtain 

SLC files. These are complex files containing both real and imaginary part. Since we do not 

want to lose phase information after multilooking (which produces intensity data), we adopted 

method for pre-processing shown in figure-3.5.After importing data sets through SARSCAPE, 

they were converted into mod-phase form. It generated two files for each polarization. In order 

to improve radiometric resolution, each mod — phase file was multilooked by factor 7. Each 

multilooked mod- phase file was geocoded using DEM file extracted by GTOP030 technique. 

The geocoded mod — phase files were combined together to obtain complex files. Then these 

files were calibrated using defined polarimetric calibration matrices in order to obtain scattering 

terms as accurate as possible. 

After pre- processing image of size 400x400 was obtained by resizing whole image in 

order to crop Roorkee region only. This data was converted into ASCII in order to be processed 

through MATLAB. A MATLAB code was written for 3 D decomposition based on the 

algorithm [21] (see Appendix-B.1 (a)). The results of MATLAB code were saved in -.dat file 

format so that they can be further processed through software ENVI 4.3. As a result of 3 D 

decomposition three images Pd, Pv and Ps were obtained corresponding to double bounce 

scattering, volume scattering and single bounce scattering respectively (see eqs. 2.39, 2.40 and 
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2.41). Then co-registration of these images was done by image to image registration using the 

original resized image as base image Input image was warped using one degree polynomial and 

nearest neighbor resampling technique. This whole process was repeated using different 

window size (3x3, 5x5, 7x7, 9x9, 1 lx11, 15x15) while formulation of covariance matrix terms 

in MATLAB code. 

 

PALSARL-1.1 polarimetric 
SLC data(HH,}1V,VILVV) 

   

        

        

 

Data imported through 
SARS CAPE 

   

        

        

        

 

Convert SLC into mod-phase 

   

        

        

      

DEM extraction through 
GTOP030 

      

 

Multi-looking 
(each mod phase file) 

 

    

 

.1‹ 

    

     

     

     

 

Geocoding (each 
mod —phase multi-looked file) 

   

        

        

 

Convert into complex 

Polarimetric calibration.  

   

Figure-3.5: Flow chart of data pre-processing before 3-D decomposition (without 
polarimetric filtering) 

(b) 	With polarimetric filtering 

The data sets were first imported through SARSCAPE using ENVI 4.3.The SLC data so 

obtained were given as input to Wishart Gamma Map filter, which is a polarimetric filter. The 

size of processing window is another important factor for decomposition of SAR images. For 
very large processing window, resolution of image is very low due to amalgamation of various 
textural features. On the other hand, for very small processing window second order statistics 

do follow by second order statistics. So for our site we chose 5x5 processing window. Due to 
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different resolution in range and azimuth direction multilooking (with multi-look factor 7) was 

performed to improve the radiometric resolution. Then these images were geocoded and 

radiometrically calibrated. Geocoding was done using DEM file extracted through technique 

GTOP030 for terrain correction and radiometric calibration was done using nearest neighbor 

technique. 

After this preprocessing (see figure-3.6), images were resized in order to obtain images 

of size 400x400 containing region Roorkee only. These files were converted into ASCII form so 

that they can further be processes using MATLAB. A MATLAB code was written for 3 D 

decomposition proposed by Freeman et. al. [23] (see- Appendix-B-1 (b)) and resultant images 

of Pd , 13, and P, were saved in .dat format. These files Pd, Pv  and P, were imported into ENVI 

4.3. Then co-registration of these images was done by image to image registration using the 

original resized image as base image Input image was warped using one degree polynomial and 

nearest neighbor resampling technique. Then decomposed image was obtained by taking Pd as 

red , P, as blue and Pv  as green. 

PAL SAR L-1.1 polarimetric 
SLC data (HKEV,VH,VV) 

Data imported through 
SARSCAPE 

Polarimetric filtering 
(Wishart Gamma Map) DEM extraction through 

GTOP03 0 

Multilooking 

V 

Geocodmg & 
Radiometric calibration 

Figure-3.6. Flow chart of data pre-processing before 3-D decomposition (with polarimetric 
filtering) 

44 



3.4 Classification techniques adopted 

In the following sections the classification techniques are discussed. In section- 3.4.1, the 

decision tree classification algorithm is proposed. This classification algorithm is based on the 

knowledge acquired by backscattering coefficients. In the rest of the sections three supervised 

classification algorithms (Parallelepiped, Minimum distance, and Maximum likelihood) are 

applied over polarimetric observables obtained by decomposition techniques. The classification 

tests based on the parameters obtained by three D decomposition are applied over resized image 

of region Roorkee of size 400 x 400 (sec-3.4.2). This classification is used for studying the 

effect of window size on classification. Through this technique we are also trying to see the 

effect of filtering over filtering over flat terrain like Roorkee. Rest of the two classification tests 

based on Pauli decomposition and Eigen value decomposition are performed over whole data. 

3.4.1 Decision tree classification 

Decision rule 

Decision tree approach requires thorough knowledge of information bearing features and their 

physical understanding. It is already known that backscattering is function of the 

electromagnetic wave parameters such as wave frequency, its polarization and its incidence 

angle and it depends on the target characteristics such as surface geometry and dielectric 

characteristics of the medium. Our objective is to extract physical information from 

backscattering behavior of various objects. The analysis is based on polarized backscattering 

coefficients measured at HH-,VV-,HV-, RR-(circular copular), RL- (circular cross polar),45C- 
„.. 

(45° co-polar) , 45X- (45° cross polar) and cross-pol ratios a°  HI/ /6°N' 	
_. 

and 	RW1 	. These 
standard polarimetric features act as our information bearing features. 

Extensive ground truth survey was performed over the whole region. Around 211 

Ground truth points (GCP) were collected for training and 840 for testing the accuracy of 

classification map. Table 3.4 presents the training and control samples number made with the 

ground truth data. Based on ground truth information five classes were identified: water 

(includes wetland also), urban, short vegetation (cropland, grass land, shrubs etc.), tall 

vegetation and bare soil surface. Then in order to obtain decision rule rigorous experiment was 

done over whole 211 training ROI's. Since each class represents specific scattering property so 

decision boundaries are made based on knowledge acquired experimentally by the analysis of 

scattering behavior of each surface types. For each aforementioned class backscattering 
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coefficients described above were calculated. Then based on the experimental procedure and 

previous research validation decision rule for classifying each land cover type was decided. 

Table -3.4 

Ground trouth survey points 

Sort Training Test sample 

Water 64 302 

Tall vegetation 19 70 

Urban 67 265 

Short vegetation 37 137 

Bare soil 24 66 

Data pre-processing for decision tree classification technique was same as described in 

fig 3.5. Above mentioned-all polarized backscatter coefficients were calculated for each class 

like urban, water, short vegetation, tall vegetation and bare soil covered by GCPs. Decision tree 

was implemented by ENVI 4.3 software. 

Classification scheme 

The classification scheme for ALOS-PALSAR data is shown in figure-3.7.Our 

classification scheme is very much inspired by [71, 72, 76].The algorithm starts with 

discrimination between water and other classes. Based on empirical evidence and experimental 

validation, decision boundaries are created. Water bodies can be separated from other classes on 

the basis of 6.H, and 0-0 x3, . For our site 47°Hv  is less than -30 db and eiy  is less than -25 db. All 

the areas with a°, less than -18 db [73] and 6.m, icr°v, greater than -11 db [74] are classified 

as tall vegetation. But similar scattering behavior is represented by both forest and urban area 

due to their geometrical structure, so they are separated on the basis of cross pol ratio of circular 

polarization which is negative for urban and positive for tall vegetation. It has been verified that 

for bare soil, o-°„,, is appreciably less than o' Rz, [75] and u' HH  < o'v, (which is the case of 

surface scattering) [71] .In our site, o-° RR  /o-° R,, is less than -12db and cy°, is less than -25 db 

46 



—t— > 11(db) 

> —1 8(db) 

Bare soil 

for bare soil surface. This allows the segregation of bare soil surface from other classes. As we 

already know that for vegetationa°Hv 	is less than -11 db. Also we have found that 0-0 is 

greater than -18 db for short vegetation. The pixels that do not satisfy above criteria are termed 

as unclassified. 

d'av  <-30(db) 

Ci°457c  <-25(db) 

    

  

Water 

    

      

      

10 (db) 
c ° 
cr° „ < — 27 (db ) 

" 	 < (db ) 
o-  ° 

  

	 0(db) 
,„ 

  

      

      

Tall vegetation 

 

Urban 

       

Unclassified 

 

Short vegetation 

Figure-3.7: Algorithm for decision tree classification 

The result of classification algorithm was calculated using confusion matrix (or error 

matrix), which compares the classification result with ground truth information and reports 

overall accuracy, kappa coefficient, producer accuracy and user accuracy. 

3.4.2 Classification based on 3 D decomposition 

The decomposed image obtained as a result of 3 D decomposition from sec -3.2.3 (b) was used 
for classification here. 

Extensive ground truth survey was performed over the whole region. Around 133 

Ground truth points (GCP) were collected for training and 726 for testing the accuracy of 
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classification map shown in table- 3.5. Based on ground truth survey three classes were defined: 

water (includes wetland also), urban, vegetation 

Table 3.5 

Ground truth survey points for region Roorkee 

Sort Training sample Test sample 

Water 51 272 

Urban 44 304 

Vegetation 38 150 

We used three supervised classification techniques: minimum distance, parallelepiped 

and maximum likelihood. We trained these classifiers through 133 ROPs. The result of 

classification algorithm was calculated using confusion matrix (or error matrix), which 

compares the classification result with ground truth information and reports overall accuracy, 

kappa coefficient, producer accuracy and user accuracy. We repeated this procedure for all 

decomposed images obtained by taking various window sizes in formulation of covariance 

matrix terms while writing MATLAB code. Then the effect of window size on all the 

classifications was also seen. 

3.4.3 Classification based on Pauli decomposition 

The decomposed image obtained as a result of Pauli decomposition from sec -3.2.1 was used for 

classification here. We used the same ground truth survey points for training and testing control 

points as in table-3.4. We classified decomposed image by three supervised classification 

techniques: minimum distance, parallelepiped and maximum likelihood. The classification 

result was obtained for each classification technique by generating confusion matrix in order to 

determine the agreement between the selected reference ground controls points (840 ROI's) and 

classified data. 
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3.4.4 Classification based on Eigen value decomposition 

This classification procedure is based on the parameters obtained by eigen value decomposition 

as discussed in section 3.3.2.We performed two sets of classification tests: first by taking 

entropy and alpha as input to classifier and then by taking entropy, alpha and anisotropy. Three 

supervised classification techniques: minimum distance, parallelepiped and maximum 

likelihood were applied to each decomposed image. In order to train these classifiers we use 211 

ground truth points (GCP's) as shown in table- 3.4. The classification map so obtained was 

compared with 840 GCP's by calculating confusion matrix which reports overall accuracy, 

kappa coefficient, producer accuracy and user accuracy as an indicator of classification result. 

3.4.5 Classification by combining intensities of various polarizations 

This classification technique is very much inspired by [77],[78].The data pre-processing was 

performed in the same manner as shown in fig- 3.5 of sec -3.2.3(b).The same procedure was 

adopted for circularly polarized images. Thus we obtained six intensity images: HH, HV, VV, 

LL, LR and RR. Images were obtained in following manner: 
1. Form images by combining pair of intensities (HH-HV, HH-VV, HV-VV, LL-RR, LL-

LR, and LR-RR). 

2. Form images by combining set of three intensities (HH-HV-VV, and LL-LR-RR). 

3. Form image by combining set of four intensities (HH-HV-VV-LL) 

4. Form image by combining of five intensities (HH-HV-VV-LL-LR). 

5. Form image by combining set of all six intensities (HH-HV-VV-LL-LR-RR). 

In order to train the classifier we used 211 ground control points as in table -3.4. The 

above images were classified by ML classifier and minimum distance classifier, we performed 

post classification by using 840 GCP's in order to calculate confusion matrix. 
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Decomposition results 

4.1.1 Results of three D decomposition 

The results of three D decomposition discussed in section-3.3.3 are presented in following 

sections. 

4.1.1.1 Without polarimetric filtering 

(b) 
	

(c) 
	

(d) 
	

(e) 

Figure 4.1.(a) Toposheet Roorkee, (b) Decomposed image with Pd (red), Pv (green), Ps 

(blue) using 15x15 averaging window, (c) Pd (d) Pv (e) Ps. 

The results of three D decomposition as discussed in sec-3.3.3 (a) are shown in figure 4.1. The 

colour coded decomposed image was obtained by taking Pd as red, Pv as gree),and Ps as 
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blue.the decomposed image shows that in urban area (1 in toposheet) most of the region shows 

volumetric scattering , only some part shows a mixture of double —bounce and single bounce. 

There are also some white pixels in the image which reveals the amalgamation of all three 

scattering mechanisms. 
The black pixels shows specular scattering. In this image of region Roorkee specular 

scattering is obatined by Ganga canal (2 in toposheet), grass land (mostly wet:3 in topsheet) 

ahead of main building of Indian institute of technology Roorkee and in cantonment area(4:in 

toposheet). 
The river which crosses solani acquiduct (5: in toposheet) shows single bounce 

scattering with a some double bounce because this river is dried in its most of the course in 

month April. Rest of the part which is short vegetation (including cropland ,grass land, shrubs 

etc.:6 in topsheet) shows a mixture of double bounce scattering and single bounce scattering. 

Only some part shows volume scattering. 

4.1.1.2 With polarimetric filtering 

(a) 
	

(b) 
	

(c) 
	

(d) 

Figure 4.2.(a) Decomposed image with Pd(red), Pv(green), Ps(blue) using 5x5 averaging 

window, (b) Pa  ,(c) Ps, (d) Pv. 

The results of three D decomposition discussed in section-3.3.3 (b) are shown in figure-4.2. The 

covariance terms produced as a result of polarimetric filtering were used in developing 

algorithm. The MATLAB code of this algorithm produces three images Pd , Ps and Pv. For 

refemce with toposheet refer figure-4.1(a).As seen in figre -4.2(a) most of the region appears 

green which shows volume scattering. In urban area small amount of double bounce and single 

bounce components appears. In urban area white colour appears due to presence of all three 

componets.In decomposed image black colour appears due to specular scattering either from 

water or wet grass land. In figure-4.2 (b) and (c) most of the part appears black due to some 

constraints of Wisharat Gamma map polarimetric filter. 
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The filter does not perform well since Roorkee is a flat terrain. The decomposition 

results show that filtering does not improve decomposition results, rather degrades the results 

by not preserving linear features of terrain. 

4.1.2 	Results of Pauli decomposition 

The results of Pauli decomposition discussed in section 2.2.1.1 (also ref. figure-3.3) are shown 

in figure 4.3. Figure-4.3(a) is color coded decomposed image by taking HEI-W as red channel, 

2HV as green channel and HH+W as blue channel. Figure-4.3(b) (highlighted part of figure 

4.2(a)) is resized image of region Roorkee of size 400x400 for clear elaboration of results. 

Bare soil surface appears blue in image which indicate that the third polarimetric clannel 

HH+VV has larger magnitude than others. This is the case of single bounce scattering.River 

channel , wet grass land appears black due to specular scattering from the surfcae. 

Figure 4.3. (a) Colour coded pauli decomposed image having HH-W(red) , 2HV(green), 

HH+W(blue), (b) decomposed image of region Roorkee of size 400x400. 

Green colour is shown by classes "urban" and "tall vegetation". This indicates dominant 

HV component which is the characteristics of vegetated fields, but due to structural similarity 

some part of urban area shows same characteristics as tall vegetation. 
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(d) (e) (f) 

(a) 

Over some part of urban area dominant colour is pink and white.Pink colour shows 

combination of single bounce (blue) and double bounce scatterinng (red).White pixels 

correspond to equal amplitude over all polarimetric channels. 

The class "short vegetation" does not show any specific scattering type. In most of the 

part it shows single bounce scattering (blue). Some double bounce also appears in this region. 

The advantage of this decomposition lies in the fact that it can clearly distinguishes 

natural targets, roads and even railway track, which reamins invisible in almost all 

decompositions. The drawback of this decomposition is that it can not distinguish man made 

targets well. 

4.1.3 	Results of eigen value decomposition 

Figure -4.4:Images of eigen value parameters:(a) & (d) Entropy image with (d) of region 
Roorkee, (b) & (e) Alpha image with (e) of region Roorkee , (c) & (f) Anisotropy image 

with (f) of region Roorkee. 
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In figure-4.4 images of parameters obtained by eigen value decomposition (ref. figure-3.4) are 

shown. In entropy image (eq-2.30) it is clearly seen that many features have high entropy so 

they have reduced polarimetric information. Tall vegetation and urban area shows high entropy 

ranges from 0.6 to 1. This high value of entropy indicates the superposition of three scattering 

mechanisms. The Bare surface and river show low entropy ranging from 0 to 0.4.Short 

vegetation shows medium entropy ranging from 0.5 to 0.6. 

The averaged alpha (eq. 2.33) image is shown in figure-4.4(b). This alpha image depicts 

the scattering mechanisms. The high alpha values ranging from 55° up to 90° indicate dominant 

dihedral scattering. Urban area and tall vegetation fall within this range. River and bare surface 

have low value of alpha (below 350), which indicate anisotropic surface scattering. The areas 

having short vegetation have alpha value around 40°. 

The anisotropy eq. (2.31) varies over its whole definition range from 0 to 1, from low 

values over high roughness areas for which the presence of secondary scattering effects is 

expected, to high values over small roughness areas for which the scattering process becomes 

quasi-deterministic. High anisotropy values indicate the presence of two main scattering 

mechanisms, while low anisotropy values indicate three scattering mechanisms. 

4.2 Effect of ensemble averaging on classification 

The size of processing window or the number of averaging window is one of the important 

factor for accurate decomposition and hence classification of SAR images. Analyzing 

classification behavior based on the selection of processing window size is one of the major 

issues; therefore in this section the effect of window size or ensemble averaging on 

decomposition and various classification techniques for land cover classification was studied. 

For very large processing window, resolution of image is very low due to amalgamation of 

various textural features. On the other hand, for very small processing window second order 

statistics do not abide by averaged quantities of coherency matrix used in decomposition [79]. 

Our work is focused on varying the size of processing window and visualizing its effect on 
classification by calculating overall classification accuracy. 
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Figure-4.23: Accuracy estimation of classification tests based on three D decomposition: 

(a) Parallelepiped, (b) Minimum distance, (c) Maximum Likelihood. 
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Figure-4.24: Kappa coefficient estimation of classification tests based on three D 

decomposition related to, (a) Parallelepiped, (b) Minimum distance, (c) Maximum 

Likelihood. 

Overall accuracy is consistently high for averaging window 15x15 for all the 

classification techniques (ref. tables A-10, A-11 and A-12 of appendix-A). For minimum 

distance and parallelepiped classifiers overall accuracy increases monotonically, while for 

maximum likelihood classifier the classification accuracy rapidly increase at smaller window 

size and then becomes constant. The results verified previous works by Alberga [80] and 

Hodgson [81].Thus it is concluded that for ALOS PALSAR data 15x15 window size is suitable 

for classification. 
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4.3 Classification results 

4.3.1 Results of decision tree classifier 

(a) 
	

(b) 
Figure - 4.7: (a) Classification map based on decision tree classifier of test site, (b) Resized 

image showing region Roorkee (water-blue, urban-pink, baresoil-red, short vegetation-

green, tall vegetation-cyan) 

According to the classification scheme as described in section-3.4.1 (figure-3.7), the algorithm 

developed by ENVI 4.3 was run on pixel by pixel basis. The result of this classification scheme 

is shown in figure - 4.7(a) and 4.7(b) in which classification result can clearly be visualized. 

These figures show that most of the pixels belonging to specific field are classified as same 

category. We observe very coherent result for each of the individual fields. 

The result of classification algorithm is calculated using confusion matrix (or error 

matrix), which compares the classification result with ground truth information and reports 

overall accuracy, kappa coefficient, producer accuracy and user accuracy. The confusion matrix 

for accuracy assessment is shown in table -4.1 (ref. table-3.4 for ROI' s). The results in terms of 

producer's accuracy and user's accuracy is given in table A-1 of appendix A. The overall 

classification accuracy is estimated as 88.0208%and kappa coefficient as 0.8313. The greatest 

error of commission occurs on short vegetation for which user accuracy is about 44.75 % 

because some of the pixels of class urban are misclassified as short vegetation as shown in table 

— 4.1. 
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Table -4.1 

Confusion matrix for decision tree classification 

Classes Water Tall veg. Urban Short veg. Bare soil Total 

Water 298 0 0 17 20 335 

Tall vegetation 0 67 2 0 0 69 

Urban 0 2 208 0 0 210 

Short vegetation 1 1 49 63 0 114 

Bare soil 0 0 0 0 40 40 

4.3.2 Results of classification based on three D decomposition 

The results of classification tests based on three D decomposition are shown in figure-4.8. The 

accuracy estimate and kappa coefficient estimate for all three classification algorithms 

(parallelepiped, minimum distance and maximum likelihood) are shown in figure-4.9 (ref.-

table- A-8,A-9 and A-10 for results using all window size). 

The classification results based on 3 D decomposition are acceptable because kappa 

coefficient which describes the perfectness of classification is greater than 0.4.ft is also worth 

mentioning it that kappa coefficient is greater than 0.75 for all the classification techniques, 

which shows excellent performance. The overall accuracy for all the classification tests is 

greater than 85%. 

Maximum likelihood classifier performs best with maximum overall accuracy of about 

99%. Maximum likelihood classifier performs best in classifying "water" and "vegetation" with 

100% producer's accuracy. "Urban" is classified with maximum 99.34% producer's accuracy 

by parallelepiped classifier. 
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(a) 

Note that the producer's accuracy for all the land cover type is greater than 32% (33.3% 

denotes perfect classification). 

=Water 	Urban mg Vegetation 

Figure - 4.8: Classification map based on 3 D decomposition (15x15- pixel averaging 

window): (a) Parallelepiped , (b) Minimum distance, (c) Maximum likelihood . 

Table —4.2 

Confusion matrix of classification based on three D decomposition (for 15x15 window size) 

Classification Water Urban Vegetation 

P.A. U.A. P.A. U.A. P.A. U.A. 

Parallelepiped 84.19 100.00 99.34 93.50 86.67 75.58 

Minimum distance 80.15 100.00 97.04 99.66 96.00 79.12 

Maximum likelihood 100 100 97.73 100 100 97.44 
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(a)  

(b)  

Figure-4.9: (a) Accuracy estimate, (b) Kappa coefficient estimate of classifications based 

on three D decomposition (15x15- pixel averaging window). 

4.3.3 Results of classification based on Pauli decomposition 

The classification map based on Pauli decomposition (ref. section-4.1.2) is shown in figure-

4.10. The accuracy estimate and kappa coefficient estimate for all three classification algorithms 

(parallelepiped, minimum distance and maximum likelihood) are shown in figure-4.11. The 

confusion matrix which exhibits producer's accuracy in percent for classification tests based on 

Pauli decomposition is shown in table-4.3. 

Maximum likelihood classifier gives maximum overall accuracy which is 71.54% 

while minimum classification accuracy is shown by Parallelepiped classifier. The kappa value is 

near 0.2 for parallelepiped classifier and greater than 0.4 for minimum distance and maximum 

likelihood classifiers. 
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(d) 
	

(e) 
	

(f) 

Figure - 4.8 : Classification map based on Pauli decomposition with (a) & (d) 

Parallelepiped with (d) resized image of region Roorkee, (b) & (e) Minimum distance with 

(e) resized image of region Roorkee , (c) & (f) Maximum likelihood with (f) resized image 

of region Roorkee. 

Some limits are shown by parallelepiped classifier in classifying classes "water" and 

"urban". This classification technique completely fails in recognizing training pixels related to 

classes "water" and classifies class "urban" with producer's accuracy 3.77% only because the 

class "tall vegetation" is misclassified. 

Maximum likelihood classifier identifies all the training pixels more accurately than 

others and classifies all land cover types with satisfactory performance indices, since each class 

61 



has producer's accuracy greater than 33.33%( table-A-4 of appendix). Minimum distance also 

shows almost same results. It classifies class "water" more accurately than maximum likelihood 

classifier, which somewhere is misclassified by maximum likelihood classifier (table-A-3 of 

app.). 

(a) 

1—i—itcaaiat-TiaTarett- (b) 

Figure -4.9: (a) Accuracy estimate and (b) Kappa coefficient estimate of classifications 
based on Pauli decomposition. 

Table -4.3 

Confusion matrix showing producer's accuracy in percent for classifications based on 

Pauli decomposition 

Classification Water Tall veg. Short veg. Urban Bare soil 

Parallelepiped 0 98.57 93.43 3.77 75.76 

Minimum distance 78.81 48.57 54.01 68.30 46.97 

Maximum likelihood 59.60 34.29 73.72 91.32 81.82 
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4.3.4 Results of classification based on eigen value decomposition 

The classification tests based on eigen value decomposition were performed in two series of 

experiments (ref. section-4.1.3). First series of experiment was performed using entropy (H) and 

alpha (a) as an input to classifier. The results of all three classification methods in terms of 

overall accuracy and kappa coefficient are shown in figure-4.13. The classification maps for this 

series of experiments are shown in figure-4.12. The confusion matrix is shown in table-4.4. 

IIII Water OE Urban IIII Tall vegetation 	Short vegetation ED Bare soil 

(a) 
	

(b) 
	

(c) 

(d) 
	

(e) 
	

(f) 

Figure -4.12 : Classification map based on eigen value decomposition (using parameters 

11/a): (a) & (d) Parallelepiped with (d) resized image of region Roorkee, (b) & (e) 

Minimum distance with (e) resized image of region Roorkee , (c) & (f) Maximum 

likelihood with (f) resized image of region Roorkee. 
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Table —4.4 

Confusion matrix showing producer's accuracy for classification tests based on Ma 

Classification Water Tall veg. Short veg. Urban Bare soil 

Parallelepiped 0 30.00 78.10 53.96 86.36 

Minimum distance 17.88 80.00 37.96 43.02 93.94 

Max. likelihood 11.26 55.71 52.55 56.98 93.94 

(a) 

(b) 

Figure — 4.13: (a) Accuracy estimate, and, (b) Kappa coefficient of classifications based 
on eigen value decomposition (using parameters Ma). 
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The second series of experiment was performed using all three eigen value parameters 

i.e. entropy (H) ,alpha (a) and anisotropy (A).Same procedure was adopted for this series and 

results of all the classifications in terms of overall accuracy and kappa coefficient are shown in 

figure 4.15. 

Water 	urban IIIII Tall vegetation MN Short vegetation 	Bare soil 

(d) 
	

(e) 
	

(f) 

Figure-4.14:Classification map based on eigen value decomposition (using parameters 

H/A/a) related to (a) & (d) Parallelepiped with (d) resized image of region Roorkee, (b) & 

(e) Minimum distance with (e) resized image of region Roorkee , (c) & (1) Maximum 

likelihood with (f) resized image of region Roorkee. 

In both the series of tests, overall accuracy remains low (around 40 %). The kappa 

coefficient, which is an indicator of performance of classification lies below 0.4 in all the cases. 

The classifications are not sensitive to additional anisotropy information. Rather, after including 

anisotropy as a parameter to classifiers, overall accuracy decreases slightly. 
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The parallelepiped classification based on parameters H and a fails to recognize "water" 

from training pixels. Class "water" is also poorly classified by minimum distance and 

maximum likelihood classifier with producer's accuracy of 17.88% and 11.26 % respectively. 

"Bare soil" is classified perfectly by all the classifiers. 

(a)  

(b)  

Figure — 4.15: (a) Accuracy estimate, and, (b) Kappa coefficient of classifications based on 

eigen value decomposition (using parameters H/AJa). 

The visual analysis of classification maps reveals the fact that class "water" is either 

poorly classified or inseparable from other classes. Class "urban" is well defined in 

parallelepiped classification for both series of tests. In minimum distance classification "urban" 

and "tall vegetation" classes are mingled with each other. 

For second series of test based on parameters H, A and a, parallelepiped classifier again 

performs poorly in classifying "water". The producer's accuracy for class water by 
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parallelepiped classification is only 0.33%.Class "bare soil" again classified correctly by all 

three classifiers. The confusion matrix for second series of tests is shown in table-4.5. 

Table —4.5 

Confusion matrix showing producer's accuracy for classification based on H/AJa 

Classification Water Tall veg. Short veg. Urban Bare soil 

Parallelepiped 0.33 20.00 69.34 56.98 90.91 

Minimum distance 17.88 80.00 37.96 43.02 92.42 

Maximum likelihood 11.92 45.71 46.72 55.09 87.08 

4.3.4.1 Results of classification of fused intensity images of various polarizations 

4.3.4.2 Parallelepiped classification 

The classification maps based on fusion of intensity images are shown in figure-4.16. 

Figure-4.17 is more elaborated version of figure -4.16, which is resized image of region Roorkee 

of size 400x400. The classification results in terms of overall accuracy and kappa coefficient are 

shown in figure-4.18. The overall accuracy for all the features greater than 40 % except the 

feature HH-VV for which the overall accuracy is about 20%. The kappa coefficient, which 

exhibits perfect classification performance for its value greater than 0.4, is less than 0.4 for most 

of the features except for the features LR-RR, LL-LR-RR, HH-HV-VV-LL-LR and HH-HV-
VV-LL-LR-RR. 

The parallelepiped classifier completely fails in recognizing class "water" from training 

pixels for all the features without any exception. The class "tall vegetation" is poorly classified 

for almost all the features except for the feature HH-HV for which the producer's accuracy is 

40%.The class "bare soil" is classified satisfactorily by almost all the features except HH-VV, in 

which "bare soil" is misclassified due to wrong pixel assignment. 

The classes "urban" and "short vegetation" show satisfactory classification performance. 

The feature HH-VV poorly classifies class "urban" with producer's accuracy of only 0.38%. 
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(d) 

(e) 
	

(0 
	

(g) 
	

(h) 

Figure -4.16: Classification map based on fusion of intensity image of various 

polarizations by parallelepiped classification : (a)11H-HV,(b) HH-VV,(c)HV-VV,(d)HH- 
HV-VV,(e)LL-LR,(1)LL-RR,(g)LR-RR,(h)LL-LR-RR,(i)HH-11V-VV-LL,(j)HEI-HV-VV- 

LL-LR,(k)HH-HV-VV-LL-LR-RR. 
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(d) 

(i) 
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(k) 

Figure -4.17: Classification map of resized images of region Roorkee based on fusion of 

intensity image of various polarizations by parallelepiped classification : (a)LIFI-HV, 

(b)H11-W,(c)HV-VV, (d)HH-HV-VV, (e)LL-LR, (f)LL-RR, (g)LR-RR, (h)LL-LR-RR, 
(i)l-M-HV-VV-LL,(j)11H-IIV-VV-LL-LR,(1011H-11V-W-LL-LR-RR. 
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(a) 

(b) 

Figure — 4.18: (a) Accuracy estimate, (b) Kappa coefficient related to 
parallelepiped classifications based on fusion of intensity images of various 

polarizations: (1)HH-HV, (2)111-1-W,(3)HV-VV, (4)HH-HV-W, (5)LL-LR, (6)LL-RR, 

(7)LR-RR, (8)LL-LR-RR, (9)HH-HV-W-LL,(10)1111-HV-W-LL-LR,(11)HH-HV-VV- 
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Table -4.6 
Confusion matrix showing producer's accuracy for parallelepiped classification based on 

fusion of intensity images 

Features Water Urban Short veg. Tall veg. Bare soil 

HH-HV N.S. 64.91 99.27 40.00 74.24 

HH-VV N.S. 0.38 99.27 0.00 83.33 

HV-VV N.S. 74.34 99.27 15.71 83.33 

LL-LR N.S. 90.57 97.81 5.71 92.42 

LL-RR N.S. 90.19 100 37.14 0.00 

LR-RR N.S. 96.23 97.81 8.57 92.42 

HH-HV-VV N.S. 76.23 99.27 12.86 83.33 

LL-LR-RR N.S. 99.25 97.81 5.71 92.42 

fill-HV-VV-LL N.S. 90.57 99.27 8.57 83.33 

HH-HV-VV-LL-LR N.S. 92.83 97.81 1.43 92.42 

HH-HV-VV-LL-LR-RR N.S. 96.98 97.81 1.43 92.42 

N.S.- not significant 

4.3.4.3 Minimum distance classification 

The classification maps based on fused intensity images by minimum distance classifier are 
shown in figure-4.19.The classification results in terms of overall accuracy and kappa 
coefficient are shown in figure-4.21.The classification results for minimum distance classifier 
are better than parallelepiped classifier. For almost all of the features the overall accuracy is 
greater than 70%, which is quiet satisfactory. The kappa coefficient is greater than 0.4 for all the 
features, which also exhibits good classification performance. The maximum overall accuracy 
of about 76% is obtained by feature HH-HV-VV-LL. 

The class "water" is misclassified by features LL-LR, LL-LR-RR and LR-RR. These 
features recognize this class incorrectly from training pixels. This class is accurately classified 
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by features HH-VV and HV-VV. The class "water" has maximum producer's accuracy of about 

92% for feature HV-VV. 

The class "urban" is best classified by feature LL-RR having producer's accuracy of 
93.21%. This class is misclassified by features HH-HV-VV-LL, HH-HV-VV-LL-LR and HH-

HV-VV-LL-LR-RR. 

The class "short vegetation" has maximum producer's accuracy by feature HH-HV. The 

feature LL-RR causes very low producer's accuracy (37.96%) for this class. 

The minimum distance classifier does not perfectly distinguish classes "bare soil" and 

"tall vegetation" by training pixels. The producer's accuracy for these classes is very low as 

compared to other classes. 

Table -4.7 which is shown below gives a general overview about classification results. 

The values in the table exhibit producer's accuracy for each class classified by taking one of the 

eleven features as input to minimum distance classifier. 

Table -4.7 

Confusion matrix showing producer's accuracy for minimum distance classification based 

on fusion of intensity images 

Features Water Urban Short veg. Tall veg. Bare soil 

HH-HV 89.74 52.83 91.97 12.86 54.55 

HH-VV 91.39 48.68 86.86 12.86 57.58 

HV-VV 92.05 67.17 77.37 37.14 45.45 

LL-LR 86.42 83.40 55.47 30.00 22.73 

LL-RR 81.79 93.21 37.96 24.29 15.15 

LR-RR 87.09 88.68 56.20 28.57 22.73 

HH-HV-VV 90.7 75.09 85.40 12.86 39.39 

LL-LR-RR 87.09 88.68 56.20 28.57 22.73 

HH-HV-VV-LL 90.07 87.17 84.67 12.86 25.67 

HH-HV-VV-LL-LR 91.59 86.42 81.75 12.86 13.64 

HH-HV-VV-LL-LR-RR 89.74 88.68 79.56 15.71 12.12 
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Figure -4.19 : Classification map based on fusion of intensity image of various 
polarizations by Minimum distance classification : (a)IIH-HV,(b) 11H-VV,(c)HV- 
VV,(d)HH-HV-VV,(e)LL-LR,(OLL-R1t,(g)LR-RR,(h)LL-LR-RR,(i)HH-HV-VV- 

LL,(OHH-HV-VV-LL-LR,(1)HH-HV-VV-LL-LR-R11. 
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Figure -4.20: Classification map of resized images of region Roorkee based on fusion of 
intensity image of various polarizations by Minimum distance classification : (a)HH- 

HV,(b)ITH-VV,(c)HV-VV,(d)HH-HV-VV,(e)LL-LR,(OLL-RR,(g)LR-RR,(h)LL-LR-RR, 
(i) HH-1-1V-VV-LL, WITH-HV-VV-LL-LR,(k)HH-HV-VV-LL-LR-RR. 
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Figure — 4.21: (a) Accuracy estimate, (b) Kappa coefficient related to minimum 

distance classifications based on fusion of intensity images of various polarizations:(1)HH-

HV, (2)HH-VV,(3)HV-VV, (4)HH-HV-VV, (5)LL-LR, (6)LL-RR, (7)LR-RR, (8)LL-LR-

RR, (9)H11-HV-VV-LL,(10)HH-HV-VV-LL-LR,(11)1M-HV-VV-LL-LR-RR. 

4.3.4.4 Maximum likelihood classification 

The classification maps based on fused intensity images related to maximum likelihood 

classifier are shown in figure-4.22.The classification results in terms of overall accuracy and 

kappa coefficient are shown in figure-4.24 (ref. table-A-12). The classification results in terms 

of overall accuracy and kappa coefficient are better than minimum distance classification. For 

almost all of the features the overall accuracy is greater than 70%, except for feature LL-RR 

which has minimum overall accuracy of about 57%. The kappa coefficient is greater than 0.4 
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for all the features even for feature LL-RR. The maximum overall accuracy of about 86% is 

obtained by feature 1-11-1-HV-VV. 

Water 11111.1rban NMI Tall vegetation 	Short vegetation I= Bare soil 
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(c) 
	

(d) 

(k) 

Figure -4.22 : Classification map based on fusion of intensity image of various 

polarizations by Maximum likelihood classification : (a)HH-HV,(b) HH-VV,(c)11V- 

VV,(d)HH-11V-VV,(e)L1,-LR,(f)LL-RR,(g)LR-RR,(h)LL-LR-RR,(i)HH-HV-VV- 

LL,(01-1H-HV-VV-LL-LR,(k)HH-HV-VV-LL-LR-RR. 

Table -4.8 
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Confusion matrix showing producer's accuracy for maximum likelihood classification 

based on fusion of intensity images 

Features Water Urban Short veg. Tall veg. Bare soil 

HH-HV 90.07 75.09 86.13 4.29 80.30 

H11-VV 97.68 90.94 82.48 27.14 90.91 

HV-VV 95.36 82.64 87.59 35.71 89.39 

LL-LR 72.85 91.70 81.02 51.43 87.88 

LL-RR 32.12 95.09 67.88 31.43 30.30 

LR-RR 7285 96.23 78.10 64.29 90.91 

H1-1-11V-VV 96.36 90.94 85.40 20.00 90.91 

LL-LR-RR 72.85 96.60 78.83 54.29 89.29 

HH-HV-VV-LL 92.72 92.83 85.40 21.43 90.91 

HH-HV-VV-LL-LR 91.39 92.83 81.02 41.43 89.39 

HH-HV-VV-LL-LR-RR 89.40 95.85 81.75 31.43 92.42 

The class "water" is misclassified by features LL-LR, LL-LR-RR and LR-RR, just like 

minimum distance classification. The producer's accuracy is maximum for class 'water" in 

feature HH-VV. 

The class "urban" is best classified by feature LL-LR-RR having producer's accuracy of 

96.60%. This class is misclassified by features 1-IH-HV-VV-LL, HH-HV-VV-LL-LR and HH-

HV-VV-LL-LR-RR. 

The class "short vegetation" has maximum producer's accuracy by feature HV-VV. The 

maximum likelihood classifier does not perfectly distinguish class "tall vegetation" using 

feature HH-HV for which the producer's accuracy is only 4.29 %. The producer's accuracy for 

this class is below satisfactory level (< 33.33%) for various features, namely HH-HV, HH-VV, 
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HV-VV, HH-HV-VV, LL-RR, HH-HV-VV-LL and HH-HV-VV-LL-LR-RR. The maximum 
producer's accuracy for this class is obtained by feature LR-RR. 

The maximum likelihood classifier fails to recognize class "bare soil" from its training 
pixels for feature LL-RR. The producer's accuracy for this feature is only 30.30%. 

11111 Water 	Urban 	Tan vegetation 	Short vegetation ED Bare soil 

(a) 
	

(b) 
	

(c) 
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(e) 	 (f) 
	

(g) 
	

(h) 

(i) 
	

) 
	

(k) 
Figure -4.23: Classification map of resized images of region Roorkee based on 

fusion of intensity image of various polarizations by Maximum likelihood classification : 

(a)HH-HV, (b)HH-VV,(c)HV-VV, (d)HH-HV-VV, (e)LL-LR, (f)LL-RR, (g)LR-RR, 
(h)LL-LR-RR, (i)HH-HV-VV-LL,WHH-HV-VV-LL-LR,(k)H11-1IV-VV-LL-LR-RR. 
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Figure-4.24: (a) Accuracy estimate, (b) Kappa coefficient related to maximum likelihood 

classifications based on fusion of intensity images of various polarizations: (1)HH-HV, 
(2)1111-VV,(3)HV-VV, (4)HH-HV-VV, (5)LL-LR, (6)LL-RR, (7)LR-RR, (8)LL-LR-RR, 

(9)1III-HV-VV-LL,(10)1111-HV-VV-LL-LR,(11)HH-HV-VV-LL-LR-RR. 
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CHAPTER 5. COMPARISON OF RESULTS 

The results are summarized in table-5.1 giving general overview of results discussed in previous 

chapter. Since all the classifications were performed on single data set, therefore it is possible to 

compare all the results on common ground. The results indicate a trend that is reasonable to 

assume valid for similar data set. The results are compared in terms of overall accuracy and 

kappa coefficient of agreement. The classification is declared perfect if overall accuracy is 

greater than 33.33% and kappa coefficient is greater than 0.4. 

Two classification techniques were adopted: parametric and non — parametric. 

Parametric classification were performed over various polarimetric features (here: Pauli 

coefficient, H/A/ a 1-1/ a , and 11 backscattered intensities) using three supervised classification 

algorithms: parallelepiped, minimum distance and maximum likelihood. All the classification 

algorithms were performed using software ENVI. 

The results show that non- parametric classifier i.e. decision tree classifier performs best 

as compared to others. This is due to the fact that this classifier is implemented with thorough 

knowledge of data obtained by empirical evidence and experimental validation which does not 

require any prior assumption to be made. 

In non-parametric case, maximum likelihood classifier performs best as compared to 

minimum distance and parallelepiped classifiers. The possible reason is following: the 

maximum likelihood classifier is based on Bayesian probability theory which uses second order 

statistics unlike minimum distance and parallelepiped classifiers which adopt first order 

statistics. It also assumes that input data (training data) is normally distributed and independent. 

The classifications based on H/A/ a and H/a give worst results for all three classification 

algorithms. The possible reason of the poor result is the use of boxcar filter for speckle removal. 

The boxcar filter causes sharp edges to be blurred and transforms point scatterer to spread target 

due to over-filtering. 

The classification results also depend on choice of training data Sometimes it may 

happen that some ground cover types are not well recognized by the classifier and cause bad 
classification accuracy. 

Comparison between single pixel and averaged pixel shows that ensemble averaging of 

image pixels give improved classification result than single pixel. The classification accuracy 
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actually increases by increasing averaging window size. This means that PALSAR data is 

correlated and physical properties associated with data spread over neighbourhood pixel. 

Table-5.1 

Classification performance estimate in terms of overall accuracy and kappa coefficient 

Class. algo. 	-► Max. Likelihood Min. Distance Parallelepiped 

Pol. parameters 	4,  O.A (%) Kappa O.A (%) Kappa O.A (%) Kappa 

Pauli coefficients 71.5476 0.6203 66.4286 0.5469 30.5952 0.2075 

H/A/ a 40.000 0.2772 40.1190 0.2431 38.2143 0.2186 

H/ a 42.6190 0.2643 40.238 0.2444 39.0476 0.2325 

HH-HV 76.7857 0.6860 69.2857 0.5930 45.8333 0.3352 

HH-VV 86.6667 0.8153 67.9762 0.5772 22.8571 0.1196 

HV-VV 84.6429 0.7898 73.5714 0.6388 47.5000 0.3467 

LL-LR 79.5238 0.7235 70.7143 0.5832 52.2619 0.3976 

LL-RR 57.6190 0.4477 68.2143 0.5515 47.8571 0.3406 

LR-RR 81.7857 0.7357 72.6190 0.6084 54.2857 0.4209 

HH-HV-VV 86.0714 0.8071 74.1667 0.6441 47.8571 0.3499 

LL-LR-RR 85.4762 0.7997 72.6190 0.6084 55.0000 0.4279 

HH-HV-VV-LL 81.0714 0.7429 76.7857 0.6744 52.0238 0.3935 

HH-HV-VV-LL-LR 85.8330 0.8054 75.5952 0.6552 52.6190 0.4005 

HH-HV-VV-LL-LR-RR 85.5952 0.8015 75.4762 0.6527 53.9286 0.4152 

DECISION TREE O.A.- 88.0208% Kappa -0.8313 
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CHAPTER 6. CONCLUSIONS 

6.1 Concluding remarks 

This work started with the aim of gaining knowledge about SAR observables from PALSAR 

data. Therefore various classification algorithms were applied in order to see the possible 

differences among the SAR polarimetric observables in terms of amount of information they 

contain and their usefulness in classifying particular land cover type. The comparison among 

various classification techniques was done in terms of classification accuracy and kappa 

coefficient of agreement. 

The non- parametric classifier give better classification results as compared to 

parallelepiped, minimum distance and maximum likelihood classifiers. The decision tree 

classifier recognizes all land cover types more accurately from training pixel than 

parallelepiped, minimum distance and maximum likelihood classifiers. For latter the 

classification depends on choice of training data and classification statistics, which sometimes 

causes poor result to occur. The bad performance of parametric classifiers occurs due to two 

reasons: when some land cover types are not recognized by the classifier or when wrong 

statistical parameters are given to classifier. 

Thus in spite of using supervised classification algorithms (parallelepiped, minimum 
distance, and maximum likelihood), we can refer the proposed classification algorithms based 

on decomposition method as semi-supervised. The reason of referring these methods as semi-

supervised is that segmentation of image was done by decomposition method (like 

unsupervised) and then class labeling was done by using training data (like supervised). 

It is also seen that the classification efficiency of parametric classifiers is improved by 

ensemble averaging of image pixels. Larger window size produces better classification accuracy 
than smaller window size. 

The effect of filtering was also seen by performing three D decomposition by using two 

data: non-filtered but multilooked and polarimetric filtered multilooked. It has been verified that 

polarimetric filtering is not fully capable of preserving linear features of flat terrain like 

Roorkee. 
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6.2 Future scope 

Possible future research could include replicating the whole study by writing own codes 

for all classification algorithms because in this whole study the inbuilt algorithms of software 

ENVI and SARSCAPE were used for supervised classification techniques. Some constraints 

were found in eigen value decomposition method of inbuilt module of SARSCAPE; like it uses 

boxcar filter which loses some useful information about point scatterers due to over-filtering. It 

is expected that result may improve if all the classification algorithms are developed by own. 

Another suggestion for future research is in the area of speckle filtering. Some 

limitations were found in filtering module of SARSCAPE. For speckle reduction wavelet filters 

and curvelet filters will be much effective because of their capability of edge preservation. 

Future addition of this research will also involve collection of more ground truth survey points. 

The collected points would be used to increase both the number of training sample as well as 

number of points used for accuracy assessment. An increased number of training and testing 

ground truth sample points would improve classification accuracy. 
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APPENDIX 

A. Classification results 

A.1. Decision tree classification 
Overall accuracy=88.0208 

Kappa coefficient-0.8313 

Table — A-1 

Confusion matrix for decision tree classifier 

Classes P.A.(%) U.A.(%) Commission Ommission 

Water 99.67 88.96 11.04 0.33 

Urban 80.31 99.05 0.95 19.69 

Tall vegetation 95.71 97.10 2.09 4.29 

Short vegetation 78.75 55.26 44.75 21.25 

Bare soil 66.67 100.00 0 33.33 
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A.2. Classification based on Pauli decomposition 

A.2.1. Parallelepiped classification 

Overall accuracy 30.5952% 

Kappa coefficient =0.2075 

Table - A-2 

Confusion matrix for parallelepiped classification based on Pauli decomposition 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 0 0 0 100 

Tall vegetation 98.57 21 78.90 1.43 

Short vegetation 93.43 30.62 69.38 6.57 

Urban 3.77 100.00 0.0 96.23 

Bare soil 75.76 67.57 32.43 24.24 

A.2.2. Minimum distance classification 

Overall accuracy = 66.4286% 

Kappa coefficient = 0.5469 

Table - A-3 

Confusion matrix for minimum distance classification based on Pauli decomposition 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 78.81 79.33 20.67 21.19 

Tall vegetation 48.57 58.62 41.38 51.43 

Short vegetation 54.01 49.33 50.67 45.99 

Urban 68.30 78.02 21.98 31.70 

Bare soil 46.97 33.70 66.30 53.03 
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A.2.3. Maximum likelihood classification 

Overall accuracy = 71.5476% 

Kappa coefficient = 0.6203 

Table - A-4 

Confusion matrix for maximum likelihood classification based on Pauli decomposition 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 59.60 87.80 12.20 40.40 

Tall vegetation 34.29 58.54 41.46 65.71 

Short vegetation 73.72 49.03 50.97 26.28 

Urban 91.32 82.03 17.97 8.68 

Bare soil 81.82 62.07 37.93 18.18 

A.3. Classification based on eigen value decomposition 

A.3.1. Using H/A/Alpha as input to classifier 

A.3.1.1. Parallelepiped classification 

Overall accuracy = 38.2143% 

Kappa coefficient = 0.2186 

Table - A-5 

Confusion matrix for parallelepiped classification based on H/A/Alpha 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 0.33 50.00 50.00 99.67 

Tall vegetation 20.00 21.21 78.79 80.00 

Short vegetation 69.34 34.30 65.70 30.66 

Urban 56.98 56.98 58.17 43.02 

Bare soil 90.91 44.78 55.22 9.09 
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A.3.1.2. Minimum distance classification 

Overall accuracy= 40.1190% 

Kappa coefficient= 0.2431 

Table - A-6 

Confusion matrix for Minimum distance classification based on H/A/Alpha 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 17.88 35.53 64.47 82.12 

Tall vegetation 80.00 29.02 70.98 20.00 

Short vegetation 37.96 34.67 65.33 62.04 

Urban 43.02 50.67 49.33 56.98 

Bare soil 92.42 51.69 48.31 7.58 

A.3.1.3. Maximum likelihood classification 

Overall accuracy= 40% 

Kappa coefficient= 0.2772 

Table - A-7 

Confusion matrix for Maximum likelihood classification based on H/A/Alpha 

Classes RA.(%) U.A.(%) Commission (%) Ommission (%) 

Water 11.92 43.37 56.63 53.28 

Tall vegetation 45.71 22.22 77.78 54.29 

Short vegetation 46.72 37.43 62.57 53.28 

Urban 55.09 41.48 58.52 44.91 

Bare soil 87.88 64.44 35.56 12.12 
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A.3.2. Using H/Alpha as input to classifier 

A.3.1.1. Parallelepiped classification 

Overall accuracy = 39.0476% 

Kappa coefficient = 0.2325 

Table - A-8 

Confusion matrix for parallelepiped classification based on H/A/Alpha 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 0 0 0 100 

Tall vegetation 30 22.83 77.17 70 

Short vegetation 78.10 33.13 66.86 21.90 

Urban 52.96 42.81 57.19 46.04 

Bare soil 86.36 62.64 37.36 13.64 

A.3.1.2. Minimum distance classification 

Overall accuracy= 40.2381% 

Kappa coefficient= 0.2444 

Table - A-9 

Confusion matrix for Minimum distance classification based on H/A/Alpha 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 17.88 35.53 64.47 82.12 

Tall vegetation 80.00 29.02 70.98 20 

Short vegetation 37.96 34.67 65.33 62.04 

Urban 43.02 50.67 49.33 56.98 

Bare soil 93.94 51.67 48.33 6.06 
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A.3.1.3. Maximum likelihood classification 

Overall accuracy= 42.6190% 

Kappa coefficient= 0.2642 

Table - A-10 

Confusion matrix for Maximum likelihood classification based on H/A/Alpha 

Classes P.A.(%) U.A.(%) Commission (%) Ommission (%) 

Water 11.26 43.04 56.96 88.74 

Tall vegetation 55.71 26.53 73.47 44.29 

Short vegetation 52.55 38.92 61.08 47.45 

Urban 56.98 44.54 55.46 43.29 

Bare soil 93.94 68.89 31.11 6.06 

A.4. Classification based on three D decomposition 

A.4.1. Without filter 

A.4.1.1. Parallelepiped classification 

Table - A10 

Classification based on three D decomposition by parallelepiped classification 

Window 
size 

O.A. Kappa Water Urban Vegetation 

P.A. U.A. P.A. U.A. P.A. U.A. 

3x3 88.8430 0.8286 79.41 100.00 99.34 92.64 84.67 72.99 

5x5 89.1185 0.8338 78.31 100.00 99.34 94.08 88.00 75.00 

11x11 90.0826 0.8473 81.62 100.00 99.34 93.50 86.67 74.71 

15x15 91.0468 0.8615 84.19 100.00 99.34 93.50 86.67 75.58 
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A.4.1.2. Minimum distance classification 

Table - All 

Classification based on three D decomposition by minimum distance classification 

Window 
size 

O.A. Kappa Water Urban Vegetation 

P.A. U.A. P.A. U.A. P.A. U.A. 

3x3 88.9807 0.8353 75.74 100.00 96.71 99.66 97.33 76.04 

5x5 89.6694 0.8449 77.21 100.00 97.04 99.66 97.33 76.04 

11x11 89.6917 0.8464 77.21 100.00 97.04 99.66 96.67 78.80 

15x15 90.4959 0.8571 80.15 100.00 97.04 99.66 96.00 79.12 

A.4.1.3. Maximum likelihood classification 

Table - Al2 

Classification based on three D decomposition by maximum likelihood classification 

Window 
size 

O.A. Kappa Water Urban Vegetation 

P.A. U.A. P.A. U.A. P.A. U.A. 

3x3 38.3459 0.0000 100.00 38.35 0.00 0.00 0.00 0.00 

5x5 98.4962 0.9773 98.04 100.00 97.73 100.00 100.00 95.00 

11x11 99.2481 0.9886 100.00 100.00 97.73 100.00 100.00 97.44 

15x15 99.2481 0.9886 100.00 100.00 97.73 100.00 100.00 97.44 
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B. MATLAB CODES 

B.1. Three D decomposition 

(a) Without filtering 

%3 D freeman decomposition 

%% 

ck 

clear all; 

close all; 

%% Memmory Initialization 

S hh(400,400)=0; 

S hv(400,400)=0; 

S vh(400,400)=0; 

S vv(400,400)=0; 

alpha(400,400)=0; 

beta(400,400)=0; 

Fs(400,400)=0; 

Fd(400,400)=0; 

Fv(400,400)=0; 

%°/0 importing ASCII files 

path_l= importdata('E:\50003 wo fi I teri n g \resized asci \h.h_c .txt'); 

path_2= importdata('E:\50003\wo filterineAresized\ascii\hv_cal.txt'); 

path_3= importdata('E:\50003 \wo filtering1resizethaseii \vh_cal.txt'); 

path_4= importdata('E:\50003\wo filtering\resizedtascii\vv_cal.txt); 

for m= 1:1:400 

for n=1:1:400 

S hh(m,n)—path_1( m, 2*n-1 )+sqrt(-1)* path_1( m , 2*n); 

S_hv(m,n)=path_2(m , 2*n-1)+sqrt(-1) * path_2( m , 2*n); 

S vh(m,n)=path_3(m , 2* n-1)+sqrt(-1)* path_3( m , 2*n); 

Svv(m,n)=path_4( m, 2* n-1)+sqrt(-1)* path_4( m , 2*n); 

end 

end 
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'file reading done' 

%% Formulation of covariance terms 

hh = S_hh .* conj(S_hh); 

vv= S_vv .* conj(Svv); 

hv = S_hv .* conj(S_hv); 

vvC= conj(S_vv); 

hhvv= S hh .* vvC; 

%% Ensemble averaging 

HH = imfilter (hh, 15); 

VV = imfilter (vv, 15); 

HV = imfilter (hv, 15); 

HHVV = imfilter (hhvv, 15); 

re= real(RHVV); 

im= imag(HHVV); 

% CALCULATION OF TERMS Fs,Fd,Fv 

for i=1:400 

for j =1:400 

[i i];  
if re(i,j) >0 

alpha(i,j)=-1; 

Fs(i,j) = (alpha(i,j).^2).*(VV(i,j).^2 - 2.* alpha(i,j).*HHVV(i,j).*VV(i,j) + 

HHVV(i,j).^2)./(VV(i,j).*alpha(i,j).^2 - 2.*HHVV(i,j).*alpha(i,j) + HH(i,j)); 

Fd(i,j) = -(HHVV(i,j).^2 - HH(i,j).*VV(i,j))./(VV(i,j).*alpha(i,j).^2 - 2.*HHVV(i,j).*alpha(i,j) 

HH(i,j)); 

beta(i,j) = (HH(i,j) alpha(i,j).*HHVV(i,j))./(HHVV(i,j) - alpha(i,j).*VV(i,j)); 

else 

beta(i,j)=1; 

Fs(i,j) =-(HHVV(i,j).^2 - HH(i,j).*VV(i,j))./(VV(i,j).*beta(i,j).^2 - 2.*HHVV(i,j).*beta(i,j) + 

MI(ij)); 
Fd(i,j) --(beta(i,j).^2.*VV(i,j).^2 - 2.*beta(i,j).*HHVV(i,j).*VV(i,j) + 

HHVV(i,j).^2)./(VV(i,j).*beta(i,j).^2 - 2.*HHVV(i,j).*beta(i,j) + HH(i,j)); 
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alpha(i,j) =(HH(i,j) - beta(i,j).*HHVV(i,j))./(HHVV(i,j) - beta(i,j).*VV(i,j)) ; 

end 
end 

end 

ps= Fs .*(1 + abs (beta .* beta)); 
pd=Fd .*(1+ abs (alpha.*alpha)); 
pv=8.* HV; 

Ps= abs(ps); 
Pd= abs(pd); 

Pv= abs(pv); 

dlmwrite('3DPs.datt,Ps,'delim iter',' \f,'preei si on', '%.4i'); 
dlmwrite('313:Pd.dat',Pd,'del imiterVitVprecision', '%.4f); 
dlmwrite('3:D_Pv.daf,PvNel.imiters,'W;precision', '%.4f); 
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(b) With polarimetric filtering 

3 d decomposition with polarimetric filter 

etc 

clear all; 

close all; 

%% ASCII files import 

path_l= importdata('E:\50003\with pal filter\ re size \ asc \ poly_ I .txt'); 

path_2= importdatacE:\50003\with pol filter\resize\ascii\polv_2.txt'); 

path_3= importdata('E: \50003 \with pal filter\resize asc polv_3.txt'); 

path 4= importdataCE:150003\with pal filter\resizelascii \ polv_4.txt'); 

path_5= importdatacE: \50003 \with poi filter\resize\ascii\polv_5.txt'); 

path_6= importdatacE:\50003\with pal fi tier \resize \ asc \ poi v_6.txt'); 

path_7= importdataCE:150003\with pol filter\resize\ascii\polv 1.txt'); 

path_8= importdata(' E:150003\ with poi fi I ter \ resize \ascii \ pa Iv_8. txt'); 

path_9= importdata('E:\50003\with pol filter\resize\ascii \ poi v_9 .txt'); 

for m= 1:1:400 

for n=1:400 

hh_vv(m ,n)=path_4( m, n )+sqrt(-1)* path_5( m ,n); 

hh_hv(m, n)=path_6(m , n)+sqrt(-1) * path_7( m , n); 

vv_hv(m, n)=path_8(m , n)+sqrt(-1)* path_9( m ,n); 

end 

end 

'file reading done' 

% SPATIAL AVERAGING 

HH = path_l; 

VV = path_2; 

HV = path_3; 

HHVV = hh_vv; 

re= real(HHVV); 

im= imag(HHVV); 
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°A) CALCULATION OF TERMS Fs,Fd,Fv 

for i=1:400 

for j =1:400 

if re(i,j) >0 

alpha (i, j)=-1; 

Fs( i, j) (alpha(i,j)."2).*(VV(i,j).^2 - 2.* alpha(i,j).*HHVV(i, j).*VV(i,j) + 

HHVV(i,j).^2)./(VV(i, j).*alpha(i,j).^2 - 2.*HHVV(i ,j).*alpha(i,j) + HH(i,j)); 

Fd(i,j) = -(HHVV(i,j).^2 - HH(i, j).*VV(i, j))./(VV(i, j).*alpha(i ,j).^2 - 

2.*HHVV(i,j).*alpha(i,j) + HH(i,j)); 

beta(i,j) = (HH(i,j) - alpha(i,j).*HHVV(i,j))./(HHVV(i,j) - alpha(i,j).*VV(i,j)); 

else 

beta(i,j)-1; 

Fs(i,j) ---(HHVV(i,j).^2 - HH(i,j).*VV(i,j))./(VV(i,j).*beta(i,j).^2 - 2.*HHVV(i,j).*beta(i,j) + 

HH(i,j)); 
Fd(i,j) =(beta(i,j).^2.*VV(i,j).^2 - 2.*beta(i,j).*HHVV(i,j).*VV(i,j) + 

HHVV(i,j).^2)./(VV(i,j).*beta(i,j).^2 - 2.*HHVV(i,j).*beta(i,j) + HH(i,j)); 

alpha(i,j) =(HH(i,j) - beta(i,j).*HHVV(i,j))./(HHVV(i,j) - beta(i,j).*VV(i,j)) ; 

end 

end 

end 

ps = Fs .*(1 + abs (beta .* beta)); 

pd= Fd .*(1+ abs (alpha.*alpha)); 

pv=8.* HV; 

Ps= abs(ps); 

Pd= abs(pd); 

Pv= abs(pv); 

Ps(isnan(Ps))=0; 

Pd(isnan(Pd))=0; 

Pv(isnan(Pv))=0; 

dlmwrite('3D_Ps.dat',PsAlei im her', 1\e,'prec i sion', '%.4f); 

dlmwrite('3D_Pd.daf,PdAielimiter',V,1precisiont, 1%.4f); 

dlmwrite('3DPv.dat',Pv,VelimiterVAVprecision', '%.4f); 
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