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ABSTRACT 

Many problems in signal processing requires the estimation of the state that changes 

over time using a sequence of noisy measurements made on the system. In reality most 

of the applications involve non-linear and non-Gaussian features. Estimating the state 

of the system in nonlinear non Gaussian environment is highly intractable. This 

includes the classical problem, of target tracking in wireless sensor network. In this 

report binary sensor networks are considered as a special case of wireless sensor 

networks for tracking the target. Unlike sensors considered in traditional tracking 

approaches, binary sensors provide only one bit of data indicating presence or absence 

of a target in the sensing range. The signals that reach the fusion center of these 

networks are therefore binary signals embedded in noise, and they pose challenging 

problems for recovering the sensed information by the sensors. 

Particle filtering algorithm provides a numerical solution to the non-tractable 

recursive Bayesian estimation problem in case of non-linear and non-Gaussian systems 

like target tracking in binary sensor networks. 

In this dissertation work, we have used the state space approach for deriving the 

particle filtering algorithm for non linear estimation problem. Various versions of 

particle filtering algorithms have been used for estimating the state of the system and 

have shown that the choice of auxiliary particle filter gives reasonably good results as 

compared to other particle filters when the process noise is equal to greater than the 

measurement noise. 

Two particle filtering algorithms have been considered for processing of the 

binary data at the fusion center namely, auxiliary particle filtering and cost reference 

particle filtering. Unlike auxiliary particle filtering (APF), cost-reference particle 

filtering does not rely on any probabilistic assumptions about the dynamic system. 

Finally, the imperfect nature of the wireless communication channel between sensors 

and the fusion center is incorporated in the particle filter tracking algorithm known as 

channel aware particle filtering. For simulation MATLAB is used and it is 

demonstrated through simulation results that APF outperforms the cost reference 

particle filtering considerably in the presence of fading environment. 
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Chapter 1 

INTRODUCTION 

In many application areas which include signal processing,' statistics, communications, 

and econometrics, it is required to estimate the state of the system from a noisy 

measurements made on the system. Many practical applications which involve non-

linear and non-Gaussian features namely, localization of robots, estimating noisy 

digital communications signals, image processing, land vehicle navigation and aircraft 

tracking using radar measurements etc., requires the estimation of the state which is 

highly intractable [1], [2], [3]. This includes the classical problem, in signal processing 

literature, of target tracking. Target tracking is an important element of surveillance, 

guidance, or obstacle avoidance systems, whose role is to determine the position, and 

movement of targets. The problem of target tracking in wireless sensor networks 

(WSN) is a typical nonlinear sequential estimation problem. The tracking problem is 

sometimes referred to as target motion analysis and its objective is to track the 

kinematics of a moving target using the noise corrupted measurements. The 

fundamental building block for recursively estimating the target state of a tracking 

system is a filter [3]. Bayesian filtering is the most commonly used framework for 

tracking applications. In Bayesian filtering, the tracking algorithm recursively 

calculates the belief in the state based on the observations, namely the posterior 

distribution. It is known that Kalman filter provides an optimal solution to the Bayesian 

sequential problem for linear/Gaussian systems. For nonlinear problems Kalman filter 

cannot provide the optimal solution. 

In nonlinear case, the most common approach is extended Kalman filter (EKF) 

[2], which approximate the model by linearized version of it using Taylor series 

expansion and then use the optimal Kalman filter with this approximate model. This 

filter works well for weekly nonlinear system. For systems with high degree of non 

linearity further terms in Taylor series should be considered, which results in additional 

computational complexity [2]. The EKF assumes the Gaussian nature which is not 

always satisfied with the real systems. Real systems commonly include non-linear and 

non-Gaussian elements as well as high dimensionality. Numerical integration [1], [3] is 
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another approach that could be used in non-linear, non-Gaussian cases but it is 

computationally too expensive to be used in practical applications. 

Although the idea of Monte Carlo simulation [3] originated in the late 1940s, its 

popularity in the field of filtering started in 1993[4]. Roughly speaking, Monte Carlo 

technique [1], [6] is a kind of stochastic sampling approach aiming to tackle the 

complex systems which are analytically intractable. The power of Monte Carlo 

methods is that they can approximate the solutions of difficult numerical integration 

problems [3]. These methods fall into two categories, namely, Markov chain Monte 

Carlo (MCMC) methods for batch signal processing and sequential Monte Carlo 

(SMC) methods for adaptive signal processing. One of the attractive merits of the 

sequential Monte Carlo approaches lies in the fact that they allow on-line estimation by 

combining the powerful Monte Carlo sampling methods with Bayesian inference at an 

expense of reasonable computational cost. Sequential Monte Carlo methods found 

limited use in the past, except for the last decade, primarily due to their very high 

computational complexity and the lack of adequate computing resources of the time. 

The fast advances of computers in the recent years and outstanding potential of particle 

filters  have made them a very active area of research. In particular, the sequential 

Monte Carlo approach has been used in parameter estimation and state estimation. This 

SMC approach is known variously as particle filtering [2], [3], [5] boot strap filtering, 

the condensation algorithm, interacting particle approximations and survival of the 

fittest. 

Particle filtering is an emerging and powerful methodology particularly useful 

in dealing with non linear and non-Gaussian problems based on the concept of 

sequential importance sampling and Bayesian theory [2], [3]. Particle filters are 

sequential Monte Carlo methods which can be applied to any state space model and 

which generalizes the Kalman filtering methods. The basic idea of particle filter is to 

use a number of independent random variables called particles, sampled directly from 

the state space, to represent the posterior probability, and update the posterior by 

involving the new observations; the "particle system" is properly located, weighted, 

and propagated recursively according to the Bayesian rule [1], [2], [3]. Particle filtering 

methods have the potential to use the increasing computational power available in 

today's technological market to push filtering theory beyond its challenges. 
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Particle filters have found application in many areas such as channel 

equalization, estimation and coding, wireless channel tracking, artificial intelligence, 

speech enhancement, speech recognition and machine learning, tracking in WSN, land 

vehicle navigation applications, GPS/INS integration etc. Some of these applications 

are briefly explained below. 

Speech Enhancement and Recognition: 

With the advent of ubiquitous computing, a significant trend in human-computer 

interaction is the use of a range of multimodal sensors and processing technologies to 

observe the user's environment. These allow users to communicate and interact 

naturally, both with computers and other users. Some of the applications are advanced 

computing environments, instrumented meeting rooms and seminar halls facilitating 

remote collaboration. The solution to the problem of distant speech acquisition in 

multiparty meetings, using multiple microphones and cameras is particle filtering. 

Speech Enhancement and Recognition in Meetings with an Audio-Visual Sensor Array 

is presented in [17]. 

Land vehicle navigation application: 

To provide an accurate positioning, the land vehicle navigation applications are based 

on global positioning system (GPS). However, the GPS is not always an ideal vehicle 

positioning system in urban areas because the satellite coverage may be poor due to 

multipath reflections caused by high buildings, tunnels etc. Therefore, the GPS based 

systems are enhanced with a set of dead-reckoning (DR) sensors. The addition of a 

digital road map allows locating the vehicle continuously and helps the driver to get the 

best path. A hybrid filter is used for solving the fusion problem of the GPS, odometer, 

and digital road map measurements in the presence of GPS outages. A Hybrid Particle 

Approach for GNSS applications With Partial GPS outages is presented in [18]. 

Target tracking in WSN: 

The objective of tracking in WSN is to recursively estimate the target state based on the 

received local sensor data, which is a highly nonlinear problem. So the best solution for 

tracking the target in WSN is Particle Filter. In [15], Target tracking by particle 
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filtering in binary sensor networks is presented; however wireless channel 

imperfections have not been considered as part of the tracking problem. In a target 

tracking scenario where a large number of wireless sensors are deployed in a particular 

area, we cannot always guarantee a line-of-sight between sensors and the fusion center. 

So we have to consider the channel imperfections between the sensors and the fusion 

center. Incorporating the imperfect nature of the wireless communication channels 

between sensors and the fusion center in the tracking algorithm is called as channel 

aware particle filtering [16]. 

1.1 Wireless Sensor Networks 

Wireless sensor networks (WSN) [8]; [9] have gained worldwide attention in recent 

years, particularly with the proliferation in Micro-El ectro-Mechani cal Systems 

(MEMS) technology which has facilitated the development of smart sensors. Their use 

may span a vast range of fields, and their effectiveness is already being felt both in 

commercial and military applications as well as in the further development of science 

and engineering. Wireless sensor networks typically have little or no infrastructure. It 

basically consists of a number of sensor nodes (few tens to thousands) and a fusion 

centre. The sensor nodes will sense and measure signals that provide information about 

an event or events of interest based on some local decision process and send this 

information to the fusion centre. The fusion centre combines the received information 

to obtain estimates about the observed phenomenon. These sensor nodes are low power 

devices equipped with one or more sensors, a processor, memory, a power supply, a 

radio, and an actuator. Since the sensor nodes have limited memory and are typically 

deployed in difficult-to-access locations, a radio is implemented for wireless 

communication to transfer the data to a base station (e.g., -a laptop, a personal handheld 

device, or an access point to a fixed infrastructure). Battery is the main power source in 

a sensor node. Secondary power supply that harvests power from the environment such 

as solar panels may be added to the node depending on the appropriateness of the 

environment where the sensor will be deployed. Depending on the application and the 

type of sensors used, actuators may be incorporated in the sensors. 

One of the most important constraints on sensor nodes is the low power 

consumption requirement [10], [11]. Sensor nodes carry limited, generally 

El 



irreplaceable, power sources. Therefore, while traditional networks aim to achieve high 

quality of service (QoS) provisions, sensor network protocols must focus primarily on 

power conservation. They must have inbuilt trade-off mechanisms that give the end 

user the option of prolonging network lifetime at the cost of lower throughput or higher 

transmission delay. 

Current WSNs [8] are deployed on land, underground, and underwater. 

Depending on the environment, a sensor network has different challenges and 

constraints. There are five types of WSNs: terrestrial WSN, underground WSN, 

underwater WSN, multi-media WSN, and mobile WSN. 

Mobile WSNs: Mobile WSNs consist of a collection of sensor nodes that can 

move on their own and interact with the physical environment. In military surveillance 

and tracking, mobile sensor nodes can collaborate and make decisions based on the 

target. 

1.1.1 Applications 

Sensor network applications [8] can be classified into two categories: monitoring and 

tracking (see Fig.1.1). Monitoring applications include indoor/outdoor environmental 

monitoring, health and wellness monitoring, power monitoring, inventory location 

monitoring, factory and process automation, and seismic and structural monitoring. 

Tracking applications include tracking objects, animals, humans, and vehicles. While 

there are many different applications, below a few applications are given that have been 

deployed and tested in the real environment. 



Fig.1.1. Overview of sensor applications. 

1.2 Statement of the Problem 

The problem studied in this work considers the target tracking in a binary sensor 

network by using particle filtering approach. For this purpose, we explore the 

feasibility of using particle filtering approach for target tracking by formulating it as a 

state space model i.e., state and observation equations. The tracking is based on the 

SMC methods for computing the a posteriori probabilities of unknown state vector. 

This dissertation presents the following work: 

1. Study of Particle filters and its application to target tracking in binary sensor 

networks in the presence of AWGN noise or Mixture noise. 

2. Application of Particle filtering for target tracking in binary sensor networks in 

the presence of fading channel. 

3. Study of Posterior Cramer-Rao Bounds for discrete time nonlinear filtering and 

its application to target tracking scenario in binary sensor networks. 
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1.3 Organization of the Report 

This report is organized in five chapters: 

In chapter 1, the overview of particle filters and its tracking applications 

followed by the overview of wireless sensor networks and its applications are 

presented. Finally the statement of problem of the dissertation work is summarized. 

In chapter 2, an overview of recursive Bayesian approach to the estimation of 

the system state using noisy measurements made on the system is described first. The 

optimal filtering technique namely Kalman filter, for the linear system and Gaussian 

noise is summarized. A detailed derivation of sequential importance sampling (SIS), 

which is the basis for the particle filtering technique is presented. The degeneracy 

phenomenon, resampling and choice of sampling density in particle filter are 

emphasized. Various versions of particle filters are also presented. Comparisons of 

various versions of particle filters are done based on the simulation results. 

In chapter 3, Binary sensor network model is described by considering it as a 

special case of wireless sensor networks for tracking the. target within a sensor field 

monitored by a sensor network. The particle filtering approach for tracking the target in 

binary sensor networks is described. The simulation results are presented by 

considering both AWGN and mixture noise channels. A detailed derivation of Posterior 

Cramer-Rao Bounds (PCRB) for discrete time nonlinear filtering is presented. The 

simulation results of PCRB for channel unaware particle filters are also presented. 

In chapter 4, the channel aware particle filtering approach for tracking the target 

in binary sensor networks is described. Simulation results are presented by considering 

the fading channels between the sensors and the fusion center. 

Chapter 5 concludes the report with suggestions for future work. 
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Chapter 2 

SEQUENTIAL MONTE CARLO METHODS FOR 

BAYESIAN FILTERING 

In this chapter, an overview of recursive Bayesian approach to the estimation of the 

system state using noisy measurements made on the system is described first. The 

concept of Monte Carlo sampling for solving the intractable integrals is discussed. A 

detailed derivation of sequential importance sampling (SIS), which is the basis for the 

particle filtering technique is presented. The degeneracy phenomenon in particle filter 

and the concept of resampling in particle filter is described next The choice of 

sampling density with emphasis on the Gaussian optimal importance function is 

discussed. Various versions of particle filters like sampling importance resampling 

(SIR) filter, auxiliary particle filter (APF), regularized particle filter (RPF), Markov 

Chain Monte Carlo (MCMC) particle filters are also presented. Finally the simulation 

results for a nonlinear system are presented. 

2.1 Recursive Bayesian Estimation 

Bayesian theory is a branch of probability theory that helps to model the uncertainty 

about the world and the outcomes of interest by incorporating prior knowledge and 

observational evidence. Bayesian analysis, interpreting the probability as a conditional 

measure, is one of the popular methods in many cases. 

In Bayesian reference, all uncertainties (including states, parameters, which are 

either time-varying or fixed but unknown, priors) are treated as random variables. The 

inference is performed with in the Bayesian framework given all of available 

information. The objective of Bayesian inference is to use the priors and causal 

knowledge, quantitatively and qualitatively, to infer the conditional probability, given 

finite observations. There are usually three levels of the probabilistic reasoning in 

Bayesian analysis. Starting with model selection given the data and assumed priors; 

estimate the parameters to fit the data given the model and priors; and update the hyper 



parameters of the prior. There are three types of intractable problems inherently related 

to the evaluation of a posteriori density p(x/y) [1]. 

• Normalization: Given the priorp(x) and likelihood p(ylx), the posterior p(x/y) 

is obtained by the product of prior and likelihood -divided by a normalizing 

factor The expression for the posterior p(x/y) is given by 

P(x / Y) = P(Y / x)P(x) 
fp(y / x) p(x)dx 

x 

(2.1) 

• Marginalization: Given the posterior p (x, z / y) , the marginal posterior p(x/y) 

is calculated by 

P(x / Y) = f P(x, z / Y)dz 	 (2.2) 
z 

• Expectation: Given the conditional pdf p(x/y), the expectation of the function 

f(x) can be calculated as 

EP(x,Y)[f(x)]= f f(x)P(x/y)dx 	 (2.3) 
x 

where x, y and z are random variables in equations (2.1), (2.2) and (2.3). 

For many problems in communications and signal processing, an estimate is 

required every time a measurement is received. In this case, a recursive filter is a 

convenient solution. A recursive filtering approach means that received data is 

processed sequentially rather than as a batch so that it is not necessary to store the 

complete data set or to reprocess existing data if a new measurement becomes 

available. State space model [2], [5], which is used in such situations is essentially a 

notational convenience used for estimation and control problems. State space model 

comprises of two models namely system model and measurement model. The system 

model describes about the evolution of the state with time and measurement model 

relates the noisy measurements to the state. The generalized form of state space model 

is given by [2]. 
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System equation 

Xk = fk (Xk-1, Vk-1) 	 (2.4) 

where fk : 9I"- x 	--> ~JI"r is a possibly nonlinear evolution function. 

nX and n, are the dimensions of the state and process noise respectively. 

Xk e 93"x is state vector. 

V k _l E R3'° is an i.i.d process noise. 

Measurement equation: 

Zk = hk(Xk,nk) 	 (2.5) 

where hk : JI"x x ¶fl' - ¶fl is a possibly nonlinear measurement function. 

nx and n, are the dimensions of the state and measurement noise respectively . 

n k E 9l"^ is an i.i.d measurement noise. 

From the Bayesian perspective of dynamic state estimation, it is required to construct a 

posterior probability density function (pdf) of the state P(Xk /z I:k ) based on all the 

available observations zl:k up to time k. It is assumed that the initial pdf 

p(xo / zo) = p(xo ) of the state vector, which is also known as the prior, is available. 

Then the pdf p(xk / Z I: k ) may be obtained recursively in two stages: prediction and 

update. Two assumptions are used to derive the recursive Bayesian filter [1]. 

(i) The states follow a first-order Markov process i.e., 

P(Xk / XO:k-I) = P(Xk / xk-l) 	 (2.6) 

(ii) The observations are independent of the given states. 
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2.1.1 Prediction Stage 

The prediction stage uses the system model to predict the state pdf forward from one 

measurement time to next. Since the state is usually subject to unknown disturbances 

(modeled as random noise), prediction generally translates, deforms, and spreads the 

state pdf. Specifically, given the pdf p(xk_1 / zl:k_I) which is already available at time 

k-1, this stage involves the calculation of the pdf P(X k  / zl:k_I) . 

P(Xk / Z l:k-1) ' fP(Xk'Xk-J)P(Xk-11Z1:k-1)dXk-1 	 (2.7) 

The equation (2.7) is known as the Chapman-Kolmogorov (CK) equation [3]. 

2.1.2 Update Stage 

The update stage involves modification of the prediction pdf based on the latest 

measurement available at that time. Specifically, given the measurement p(z k ) 

available at time k then it is used to update the prior via Baye's rule [3]. 

P(X k  / zl:k) = P(X k  Z1: k) / P(z,:k ) 

-[P( Z k /X k ,Z l:k-I)P(Xk ,Z1:k-1)] / [ P(Z k 1  Z I:k- I)P( Z1:k-I)] 

= P(Z k / X k)P( Xk / Z l:k-1) / P( Zk / Z l:k-1) 	 (2.8) 

where the normalizing constant is given by 

P( Zk / Z l:k-1) - j P(Zk / Xk)P( Xk / ZI:k-I )dXk 	 (2.9) 

The normalizing constant depends on the likelihood function P(Z k  /xk ) defined by the 

measurement model and the known statistics of observation noise nk  . In the update 

stage, the measurement Z k  is used to modify the prior density to obtain the required 

posterior density of the current state. 
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The recursive relations described above are easily solved for linear/Gaussian 

systems. In case the system is nonlinear/non-Gaussian in nature, the integrals are not 

tractable. In such cases, the approximate solution is provided by several non-linear 

filters. 

2.2 Monte Carlo Sampling 

Monte Carlo [MC] methods [1] are commonly used for approximation of intractable 

integrals and rely on the ability to draw a random sample from the required probability 

distribution Monte Carlo methods use statistical sampling and estimation techniques to 

evaluate the solutions to mathematical problems. Monte Carlo techniques have 

attracted lot of attention and have been developed in many areas. Monte Carlo methods 

have three categories: (i) Monte Carlo sampling, which is devoted to developing 

efficient sampling technique for estimation; (ii) Monte Carlo calculation, which is 

aimed to design various random or pseudo-random number generators; and (iii) Monte 

Carlo optimization, which is devoted to applying the Monte Carlo idea to optimize 

some non differentiable functions. In the following only Monte Carlo sampling [4] is 

discussed. 

Consider the multidimensional integral I = f g(x)dx , where x E R'- .Monte 

Carlo methods for numerical integration factorize g(x) = ir(x) f (x) in such a way that 

7r(x) is interpreted as a probability density satisfying ir(x) > 0 and J7r(x)dx = 1, f (x) is 

an integrable function in a measurable space. The assumption is that it is possible to 

draw N samples {x'; i =1,....N} distributed according to ,r(x) . Then the pdf Jr(x) can be 

approximated as [4] 

The Monte Carlo estimate of the integral 

1= J f (x)7r(x)dx 	 (2.11) 
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is the sample mean 

1 N  
IN  (2.12) 

By taking large number of samples, the estimate converges to its true value. The 

variance of the estimate is inversely proportional to number of samples. There are 

several issues which are of concern in Monte Carlo sampling [I] 

• Consistency: An estimator is consistent if the estimator converges to the true 

value almost surely as the number of observations approaches infinity. 

• Unbiasedness: An estimator is unbiased if its expected value is equal to the true 

value. 

• Efficiency: An estimator is efficient if it produces the smallest error covariance 

matrix among all unbiased estimators, it is also regarded optimally using the 

information in the measurements. A well-known efficiency criterion is the 

Cramer-Rao bound. 

• Robustness: An estimator is robust if it is insensitive to the gross measurement 

errors and the uncertainties of the model. 

• Minimal variance: Variance reduction is the central issue of various Monte 

Carlo approximation methods, most improvement techniques are variance 

reduction oriented. 

In Bayesian estimation context, density n(x) is the posterior density. It is not possible 

to sample effectively from the posterior distribution, being multivariate, nonstandard, 

and only known up to proportionality constant. A possible solution is to apply the 

importance sampling method. 

2.2.1 Importance Sampling 

Ideally the samples are generated from the density ,r(x) and the integral I is evaluated 

N 
by using I N  = 1  E f (x') . If the samples are easily generated from a density q(x), 

N ;=, 

which is similar to rc(x) , then a correct weighting of the sample set still makes the 
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Monte Carlo estimation possible. The pdf q(x) is referred to as importance or proposal 

density [3], [5]. Its similarity to r(x) is interpreted by 

Tr(X)>0= q(x)>Q 	VXER"' 	 (2.13) 

This means that q(x) and ,r(x) has same support. The equation (2.13) is necessary for 

the importance sampling theory to hold and, if valid, the integral I is written as 

I = ff (x)ir(x)dx = 5f (x) g~x) q( x)dx 
q( x ) 

provided that 7r(x) is upper bounded. A Monte Carlo estimate of I is computed by 
q(x) 

generating N>>1 independent samples {x';i =1,....N} distributed according to q(x) and 

forming the weighted sum: 

1 N 
IN = N f(x')w(x') 	 (2.15) 

where, 

q( 1) 	
i=I........,N 	 (2.16) 

are the importance weights[3]. If normalizing factor of the desired density ;r(x) is 

unknown, then normalization of the importance weights is carried out. Then the 

estimate of the integral IN is given by 

N 

N f (xr)w(xl) N 

IN = 	1 N 	= E f(x
i )w(x i

) 
r-I 

N j_, 

(2.17) 

where, the normalized importance weights are given by 

14 



xw( ') = w(X!) 	i =1,., N 1  N (2.18) 

This technique is used in the Bayesian framework, where 'r(x) is the posterior density. 

2.3 Particle Filtering 

Sequential Monte Carlo methods have found limited use in the past, except for the last 

decade, primarily due to their very high computational complexity and the lack of 

adequate computing resources. The fast advances of computers in the recent years and 

outstanding potential of particle filters have made them a very active area of research 

recently. Particle filter [1], [3], [4], [5] is a sequential Monte Carlo methodology based 

on the recursive computation of probability distributions. The basic idea of particle 

filter is to use a number of independent random variables called particles, sampled 

directly from the state space, to represent the posterior probability, and update the 

posterior by involving the new observations; the "particle system" is properly located, 

weighted, and propagated recursively according to the Bayesian rule. Particle filters are 

sequential Monte Carlo methods which can be applied to any state space model and 

which generalizes the Kaman filtering methods. The advantage of particle filtering over 

other methods is in that the exploited approximation does not involve linearization's 

around current estimates but rather approximations in the representation of the desired 

distributions by discrete random measures. Particle filter is best suited for nonlinear 

state-space models and non-Gaussian noises. Particle filters have found application in 

many areas such as channel equalization, estimation and coding, wireless channel 

tracking, artificial intelligence, speech enhancement, speech recognition and machine 

learning etc. 

2.3.1 Sequential Importance Sampling (SIS) 

In order to make Bayesian importance sampling more practical, it will be convenient to 

calculate the particle weights recursively. The sequential importance sampling (SIS) 

[2], [3], [4] algorithm is a Monte Carlo (MC) method that forms-.the basis for most 

sequential MC filters developed over the past decades. It is a technique for 
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implementing a recursive Bayesian filter by MC simulations. The key idea is to 

represent the required posterior density function by a set of random samples with 

associated weights and to compute estimates based on these samples and weights. As 

the number of samples becomes very large, this MC characterization becomes an 

equivalent representation to the usual functional description of the posterior pdf, and 

the SIS filter approaches the optimal Bayesian estimate. 

Let {xo:k , wk }N' denote a random measure that characterizes the posterior pdf 

p(xo:k / zl:k ) . Where, {xo k , i = 0....., Nj is a set of sample points with associated 

weights {w;r , i =1....., NJ and XO:k = ~x j = 0.....,k} is the set of all states up to time k. 

The weights are normalized such that Z ivk =1 . By SIS algorithm, the set {XO k , wk }Ni 
1 

is recursively computed from the set {XO:k-1, Wk-1 }N when a new measurement zk is 
r-I 

available at time k. Specifically, suppose at time k —1 the posterior pdf p(XO:k-1 / zl:k-, ) 

is approximated by a random measure {xo k _,, wk 1}N' , 	 g 
then SIS algorithm builds a 

random measure by appending newly generated particles xk to the xo:k _, and updating 

the weights ww to form { Xo.k , wk} N', that properly represent the posterior PP  (XO:k / zl:k ) 

Then, the posterior density at time k is approximated as [2] 

P(XO:k /Z l:k) 	wk 1 ( X O:k -XO:k) 
	

(2.19), 

The above equation represents the discrete weighted approximation to the true 

posterior, P(XO:k / zl:k ) . The weights can be chosen using the principle of importance 

sampling. If the samples xo:k were drawn from an importance density q(xo:k / z l:k ) , the 

weights are given by 

wi cc P(X O:k / Zl:k ) 

k 	q(x'0:k /Zl:k) 
(2.20) 
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At each iteration by using the approximated p(xo:k _l  / Z I:k _I ) , and with a new set of 

samples; the pdf p(X O.k  / z I:k ) is calculated. The importance density q(xo:k  / z l _k ) is 

factorized as 

q(x0:k /Zl:k)= 
g(x0:k>ZI:k)  

q( Z 1:k ) 

g( X k /xo:k-I , Z 1 )q( x0:k-1 ,Z l:k) 

q(Zl:k ) 

q( xk / X O:k-I I Z l:k )q( Z k / X o:k-1 , Z I:k-I )q( xo:k-I , 

q( Zk / Z l:k-1 )q( Z l:k-1 ) 

q(xk /xo:k-I ,Z l:k)q( Z k /Z i:k-i)q( x0:k-1 ,Z I:k-1) 

q(Zk /Z 1:k-1)q( Z I:k-1) 

— q( xk / xo:k-I , Z1:k )q( x0:k-1 / Z l:k-I ) 

q( x0:k / Z l:k) = q( xk / XO:k-1 , Z l:k)q( xo:k-1 / Z I:k-1) 
	

(2.21) 

By the equation (2.21), the samples xa.k  — q(xo,k  /z l:k ) are obtained by augmenting each 

of the existing samples xo:k-1 — R'(x0:k-1 / ZIk_I) with the-  new state xk - q(xk / X O:k-i , Z i:k ) 

The pdf p(xo:k  / z l .k ) is expressed as 

P(x o:k /ZL:k) - P(xO:k,Ll:k)  

P( Z I:k ) 

_  P( Z k / X O:k Z l:k-l)P(xo:k , 

P( Z k / Z I:k-1 )P( Z I:k-1 ) 

_  P(Z k /X O:k ,Z l:k-I)P(Xk /X O:k-I ,Z I:k-I)P(Xo:k-l ,Z I:k-1) 

P( Z k / Z 1_k -1 )P( Z l:k-1) 

_  P(Z k / X o:k ,  Z tk-I )P(xk / X O:k-1 I Z I:k-1)P(XO:k-1 / Z l:k-1 ) 

P( Z k / Z l:k-1) 
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P(Zk / X k)P( X k / X k-1)P( XG:k-1 / Z l:k-1) 

P(Zk / Z l:k-1) 

P@XO:k / Z l:k) OC  P( Zk / Xk)P( Xk / Xk-1)P( XO:k-1 / Zl:k—f) 	 (2.22) 

where p(zk  /zl.k __l ) is a normalized constant. Now substituting the equations (2.12) 

and (2.22) in equation (2.20), then 

	

i 	P(Zk  /Xk)p(Xik /X' k—l)P( X'O:k—I /  Z l:k-1) 

	

wk 	q(X'k / X' O:k—1 I Z1:k)q(Xi o:k-1 / Z  :k—I ) 

	

r 	r  = 	P(Zk / X'  )P(X'k / X/k-1) 
Wk Wk_1 	i i 

R(X k / X  O:k—1 1Z l:k) 
(2.23) 

Furthermore, if q(xk /Xo.k_1,Zl:k)=q(Xk /X k _1 ,Zk ), then the importance density becomes 

only dependent on xk _, and zk  This is particularly useful in the common case when 

only a filtered estimate of p(xk  /z1 .k ) is required for each time step. In such situations,-

only xk need to be stored and the path xo,k _l  , the history of observations Z 1:k _l  can be 

discarded. Then the modified weight is given by 

W` oc Wr- 
P(Zk  / Xki)P(Xk /x_1) 	 (2.24) k 	k 1 	/ i

xk l Xi q( 	k-1 I Zk ) 

The posterior filtered density P(X k  /zl:k ) is given by 

P(X k /ZI:k) LWkU (X k  — Xk) 	 (2.25) 
i=1 

Thus the SIS algorithm consists of recursive propagation of weights and 

samples as each measurement is received sequentially. A pseudo-code description of 

the SIS algorithm is given'by algorithm 2.1 [2], [3]. 

Algorithm 2.1: SIS Particle filter 
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~r r 
xk Wk Ji-1 J = ~JIS 

L
S
( 

Xk_~, 1vk_I J 	Zk 

• FOR i=1:N 

➢ Draw xk — q(x' / xk-1, Zk ) 
➢ Assign each particle with the importance weight up to a normalizing 

constant according to 

P( Zk / xk)P( xk /x'kl )  Wk = Wk _ r 
q( X k / X k-1 ,zk) 

• END FOR 

• Calculate the total weight: t=SUM[f wklN'11 

• FOR i=1:N,, 

> Normalize the weights: w;, = 

• END FOR 

2.3.2 Degeneracy Phenomenon and Resampling in Particle Filters 

In particle filters, the posterior probability is represented by a set of randomly chosen 

weighted samples drawn from an importance density. However a common problem 

with the sequential importance sampling is that after a few iterations, most particles 

will have negligible weight. It means that the weight is concentrated on certain particles 

only. This problem is called degeneracy problem [2], [3].The variance of the 

importance weights increases over time, and thus it is impossible to avoid the 

degeneracy problem. Effectively a large computational effect is devoted to updating 

particles whose contribution to approximate the posterior pdf is almost zero. A suitable 

measure of degeneracy of the algorithm is the effective sample size (Nd ) given by 

N-  eff 1+Var(wk') 
	 (2.26) 
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Where, Wk' = p(X / z,.k ) / q(Xk / Xk_ I , zk ) .Thus the effective sample size cannot be 

evaluated exactly, an estimate is calculated instead which is given by 
G~~TRAL trek l . 	-9 

N ff = N. 	 ACCNo .................< 	(2.27)  
(w')2 Dote .................... 

~~ T• ROOFZ~~~ 
The small NEB. , the severe will be the degeneracy. The are t ree basic measures to 

mitigate the degeneracy problem in particle filters, (1) by increasing the number of 

samples Ns, (2) resampling. (3) by good choice of importance density. The simplest 

method to mitigate the degeneracy effect is to use a very large N8. however it will 

increase the computational load on the system, which is often impractical. 

Resampling 

Effects of degeneracy in particle filter are reduced by using resampling [3], [6], 

[7] where the particles having small weights are eliminated and the particles with large 

weights are replicated. 

11N 
V k 11=1 

{xk,1/N} 1 

Figure 2.1 Particle resampling 
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The resampling stage is depicted in the above Fig.2.1. At every step the effective 

particle size is calculated. The calculated effective size is compared with the predefined 

threshold, based on that the resampling step will be carried out. The resampling stage 

involves drawing of N samples from the aposterior pdf with replacement. All the 

particles after resampling have the same weight 1/N. By this, the particles having large 

weight are repeated and particles having less weight are eliminated. Thus the samples 

are concentrated in the region of interest. From Fig.2.l, it may be seen that the 

diameters of the circles are proportional to the weights of the particles and after 

resampling all the particles are having the same weight. 

Resampling involves a mapping of random measure {xk,wk} into a random 

measure {x,1/N} with uniform weights. The set of random samples {x}''  is 

generated by resampling (with replacement) N times from an approximate discrete 

representation of p(xk /z,;k ) with the probability p{Xk = xk} = wk The resulting 

sample is an i.i.d sample from the a posterior density p(xk /z,:k ), and hence new 

weights are uniform.. The selection of new samples is schematically shown in the 

Fig.2.2 [3]. 

csw 

0 

j 

n 

Figure 2.2 The process of resampling 
1 
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In Fig.2.2, the acronym CSW stands for the cumulative sum of weights of the 

random measure{xk,wk ,and random variable u; ,i =1,....,N is uniformly distributed in 

the interval [0,1 ]. From Fig.22, the main idea in the process of resampling is to select 

the new particles by comparing an ordered set of uniformly distributed random 

numbers u;  , i =1....., N lies in the interval [0,1] with the cumulative sum of the 

normalized weights. It may be seen that from Fig.2.2, uniform random variable u;  maps 

into indexj and the corresponding particle xk has a good chance of being selected and 

multiplied because of its high value of wk .This technique is mainly used in systematic 

resampling [3], [6], [7] and residual resampling [6], [7], which are given by algorithm 

2.2 and 2.3. 

Algorithm 2.2: Systematic resampling [6], [7] 

• Generate N uniform random numbers 

• Obtain the N ordered random numbers Uk  

Uk = 
( k-1)+u -  N 

• Allocate the n;  copies of the particle x, to the new distribution 

n;  = the number of Uk  E 	w. , wr  

Algorithm 2.3: Residual resampling [6], [7] 

• Allocate n,' = LNw;  J copies of the particle x;  to the new distribution 
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• Additionally, resample m = N - Z n,' particles from {x, } by making n, copies 

of particle x; where the probability for selecting x, is proportional to 

= Nwi — n,' using systematic resampling. 

Now, the generic particle filter algorithm is given by algorithm 2.4. 

Algorithm 2.4: Generic particle filter [2, 3] 

~x
7 	i N 	r 	i

{Xk-1'Wk-' 
N 

k , w,IN~ = PF 
	

i ' ,Z k 

• 	FOR i=1:N, 

> Dranv xk ^- q(x/ x'_1 ,z ) k 

➢ 	Assign each particle with the importance weight up to a normalizing 
constant according to 

p(; / Xk )P(Xk /x 
wk = wk-1 	i 

q( x /xj,zk)  

• 	END FOR 

• 	Calculate the total weight: t=SUM[{wk} N', ] 

• 	FOR i=1:N,. 

➢ 	Normalize the weights: wk = 

• 	END FOR 

• 	Calculate effective sample size NN, by 

1 Neff =N, 

(wk~2 

• IF N~~~ < N,. 
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> Resample using systematic resampling or residual resampling. 

• END IF 

The general particle filtering algorithm 2.4 may be represented by Fig.2.3 [1]. 

particle cloud 

{X n@) 

correction 

• _ b 

resMITling 

prediction 

Figure 2.3 An illustration of generic Particle filter with importance sampling and 

resampling 

From Fig.2.3, it is seen that the particles are modified by the importance density 

function. The higher the probability, the denser the particles are concentrated. The 

circle diameters are proportional to the weights of the particles. The effective size of all 

the particles is calculated. If the effective size is less than the predefined threshold, then 

the resampling step is carried out (i.e., the larger particles are repeated and the smaller 

particles are neglected). After resampling, the weights of all particles are same. Now 

these particles constitute the new set of particles. Then the whole procedure (Generic 

particle filter algorithm 2.4) is repeated with these new set of samples. 

Although the resampling step reduces •the effects of the degeneracy problem, it 

introduces other problems. First, it limits the opportunity to parallelize the 

implementation since all the particles must be combined. Second, the particles that 

have high weights are statistically selected many times, this lead to a loss of diversity 
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among the particles as the resultant sample will contain many repeated points. This 

problem is known as sample impoverishment [1], [3]. There are techniques namely 

Markov chain Monte Carlo (MCMC) [4], regularization [3] method to reduce the effect 

of sample impoverishment. 

The sequential importance sampling algorithm is common for all types of 

particle filters. There are other versions of particle filters [2], [3], namely (1) sampling 

importance resampling (SIR) filter; (2) auxiliary sampling importance resampling 

(ASIR) filter; (3)regularized particle filter (RPF). 

2.3.3 Choice of Importance Density 

The choice of the sampling density affects the quality of the state estimate significantly 

[2], [3]. However there are number of choices for the sampling density. The sampling 

density must fulfill a criterion to ensure convergence of the estimates as number of 

samples NS  becomes large. Further, the shape of the sampling density must be as close 

to the true filtering pdf as possible and it should guarantee a minimum variance. The 

sampling density should also be as simple with respect to the weights evaluation as 

possible. 

Optimal Sampling Density 

If sampling density is chosen to minimize the variance of weights [2,3] so that effective 

sample size is maximized, then it is said to be optimal sampling density. This sampling 

density will assume the form 

q(Xk /X k_1 ,Z k)o,, = P(Xk /X k -1I Zk) 

_  P( Z k ,X k ,X k-i) 

P(
/  
Z k , X k-1 ) 

p(zk / Xk , X  ki-1)P( Xk I Xk-1) 
P(Zk / x_ )p(x_1 ) 
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g(xk / X k—i Z k )opr -  P(Zk / X  k , xk—I)P( xk I xk—I) 	 (2.28) 
P(zk /X _I) 	 l  

Substituting equation (2.28) in equation (2.24) we get 

Wk  oC Wk -IP(Z)E /x1) 

= Wk-1 JP(Z k / xk)P(xk / xk-I )dXk 	 (2.29) 

Interestingly, the weights do not depend on the current value of the state xk The above 

chosen optimal density has two limitations. It requires sampling from the pdf 

p(xk  / xk_ I , z k ) and the evolution of integral expression (2.29). Both of them cannot be 

done easily. When xk  belongs to a finite set, then the integral expression (2.29) become 

a sum, and sampling from the optimal importance density is possible. 

Prior Sampling Density 

This sampling density is frequently used due to its simplicity and easy weight 

computation. Here the current estimate zk  is ignored during drawing of samples and 

thus low quality estimates will be obtained. The prior sampling density takes the 

form [2], [3] as 

q( X k / X k -1 ,  Zk) = P(Xk / Xk-1 ) 	 (2.30) 

By substituting the equation (2.30) in the equation (2.21) we get 

Wk 	Wk—IP(Zk / xk) 	 (2.31) 

The equation (2.29) states that it is possible to calculate the importance weights before 

the particles are propagated to time k. The equation (2.31) states that this is not possible 

with the prior sampling density. 
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If the transitional prior p (xk /xk _1 ) is used as the importance density and is a 

much broader distribution than the likelihood, p (zk Jxk ) , then only a few particles will 

be assigned a high weight. Consequently, the particles will degenerate rapidly and the 

filter does not work. The particles should be in the right place (in the regions of high 

likelihood) by incorporating the current observation, then only efficient estimate is 

obtained through the particle filter algorithm. 

2.4 Sampling Importance Resampling (SIR) Filter 

The SIR algorithm can be easily obtained from SIS algorithm by considering the 

following [2]. 

• The importance density is chosen to be prior density 

q.(xk / Xk-1, Zk) = P(Xk /x_1)  

• The resampling step is carried out at every time index. 

By the choice of importance density as the prior density, the weights are given by ` 

Wk cc Wk-IP(Zk /x) 

However, considering the fact that the resampling step is carried out at every time 

index, the weight update is given by 

'Vk cc P(Zk /Xk) 
	

(2.32) 

The weights should be normalized before resampling step is carried out. The advantage 

of SIR over SIS is easy weight computation. The SIR filter algorithm 2.5 is presented 

in the following [2], [3]. 

Algorithm 2.5: SIR Particle filter 

C
jXk,Wk~I 1 ~=SIR[J X;k-I~Wk-1}f=~,Zk 
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• FOR i= l:N. 

> Draw xk — p(X k  / Xk-1) 

> Assign each particle with the importance weight up to a normalizing 
constant according to 

wk = P(Zk /X k) 

• END FOR 
, 

• Calculate the total weight: t=SURI[ {wk }N
-1  

• FOR i=1:N,. 

> Normalize the weights: wk = 

• END FOR 

• Resaniple using systematic resampling or residual resampling. 

2.5 Auxiliary Sampling Importance Resampling Filter 
The ASIR filter [2], [3], [ 19] was introduced by Pitt and Shephard as a variant of the 

standard SIR filter. This filter can be derived from the SIS framework by introducing 

an importance density q (xk , i/Z L:k ) , which samples the pair { x' , i i }M , where i' refers 

to the index of the particle at k-l. 

By applying Bayes' rule, the pdf p(X k , i/Z l:k ) can be expressed as follows: 

P (Xk,  1/ZI:k) GC P ( Z k / X  k ) P ( X  k ,! / Z l:k-1 ) 

_  p( Z k/ X k)P( X kl" Z l:k-I)P("Z l:k-1 

p (i, ZLk_I) P (ZI:k_I ). 

= p( Z k /Xk)P( Xk/ l,ZI:k-1)p( l/ Z I:k-I) 

= p(Zk/ Xk)p( Xk /Xk-I)wk-1 (2.33) 



The ASIR filter operates by obtaining a sample from the joint density p(xk , i/zl.k ) and 

then omitting the indices i in the pair (x k , i) to produce a sample x }M ` from the 
J-I 

marginalized density p (x k /z 1:k ) . The importance density used to draw the sample 

{ x k , i i }' is defined to satisfy the proportionality 
j-1 

q`xk , IZ I:k) c p( Zkl ,lk)p( xk/ Xk I)W 1 	 (2.34) 

where U k is some characterization of x k , given x k -1 

By writing 

q(xk>IIZI:k)=q(xkI"Z1:k)p(1/Z1:k ) 	 (2.35) 

and defining 

\XkI I,Z i:k/ -p( xklxk-1) (2.36) 

we have 

q (i/Z 1:k) CC p ( z k 111k) wk-I 	 (2.37) 

The sample { xk, i' } M is then assigned a weight proportional to the ratio of the right- 

hand side of (2.33) to (2.34) 

J 	1  
J p (7k / xk) p xk xk-1 	P

( 
Zk /x

) 
k 

ti1/k ~ 1Nk _1 	 = 

q( xk , J /z I. ) 	p(Zklf~k / 
(2.38) 

Compared with the SIR filter, the advantage of the ASIR filter is that it naturally 

generates points from the sample at k-1, which, conditioned on the current 

measurement, are most likely to be close to the true state. If the process noise is large, a 

single point does not characterize p(xk /xk_I ) well, and ASIR resamples based on a 

poor approximation of p (xk /xk_1 ) . In such scenarios, the use of -ASIR will degrade the 

performance. The ASIR filter algorithm 2.6 is presented in the following [2], [3]. 	- 
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Algorithm 2.6: ASIR Particle filter 

[{ i 	N 	r 
x ,Wk}i 	=ASIRJ j

( 
Xk_I,Wk_I }N 'zk 

• FOR i=1:N,, 

➢ Calculate 1u k 
> Assign each particle with the importance weight up to a normalizing 

constant according to ii' P(Zk / Ilk)w 1 

• END FOR 
N, • Calculate the total weight: t=SUM[{ivk }i_ ~ 

• FOR i =1: N,. 

➢ 	Normalize the weights: wk = t-'zvk 

• END FOR 

• Resample using systematic resampling or residual resampling. 

• FOR i=1:N,, 

> Draw xk P(Xk /xk_1 ) 

➢ Assign each particle with the importance weight up to a normalizing 
p( z k/ X k) constant according to wvk = 
p( zkl / tk ) 

• END FOR 
, 

• Calculate the total weight: t=SUM[{wk }
N 
 ._ 

• FOR i=1:N, 

➢ Normalize the weights: wk = 

• END FOR 
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2.6 Regularized Particle Filter: 

The RPF [2], [3] resamples from a continuous approximation of the posterior density 

p (x k /z 1;k ) which is given by 

N 
p(X k / Zk ) > wkKh (Xk _x) 

	
(2.39) 

where 

K,, (x) = 1 K 
~-1) 

 is the kernel density, h>0 is the kernel bandwidth. 
h° 	h 

The optimal choice of the kernel is the Epanechnikov kernel, which is given by 

K f = 	2c„r2 (i — ~~XIIZ ) 	 if IIXI( <1 
P 	 (2.40) 

0 	 otherwise 

The regularization step which effectively jitters the resampled values is 

Xk =xk +h,~,,Dk 6 	 (2.41) 

The theoretical disadvantage of the RPF is that its samples are no longer guaranteed`to 

asymptotically approximate those from the posterior. The RPF filter algorithm 2.7`is 

presented in the following [2], [3]. 

Algorithm 2.7: Regularized Particle filter 

C
jX k ,Wk N J =RPF

L
1Xk-] ,wk-1 _~ Zk 

• FOR i=1:N 

➢ Draw xk - P(Xk /x 1 ) 
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➢ Assign each particle with the importance weight up to a normalizing 
constant according to 

= p(z k /xk) 

• END FOR 

• Calculate the total weight: t=SUM[{wk 
}N; ] 

• FOR i=1: Ns  

➢ Normalize the weights: wk 

• END FOR 

• Calculate Neff  

• IF N,yj  < N,,,r  

➢ Calculate the empirical covariance matrix Sk  of {xk, wk }
N,,
i _?  

➢ Compute Dk  such that Dk Dk" = Sk  

➢ Resample using systematic resampling or residual resampling. 

➢ FOR i =1: N, 

• Draw e' — K from the Epanechnikov/Gaussian kernel 

• X k  = X k + Z1,n, Dk  E 

➢ END FOR. 

• END IF. 

2.7 MCMC Move Step 
The MCMC move step [2], [3] is based on the Metropolis-Hastings algorithm. The key 

idea is that a resampled particle x is moved to a new state x. according to equation 

(2.41), only if u s a where u — U [0,1] and a is the acceptance. probability. Otherwise, 

the move will be rejected. 
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The desired density of the MCMC step is p (XO:k /zo:k) which can be expressed as 

P(XO:k/ZO:k) 
p(Zk/Xk)P(Xk/Xk-I) p( XO:k l/Zo:k-1) 	 (2.42) 

P(7kIZO;k-1J 

The Metropolis-Hastings acceptance probability is given by 

; 
P X 4:kIZO:k q(xk

;
/xk )I  

a = mm 	 (2.43) n 1, 
P(X O:kIZO:k)q(Xk lxk )f 

Let q(/xk) correspond to sampling according to (2.41). Since in this case q(/xk) is 

symmetric in its arguments, i.e., q (xk /xk) = q (xk /xk) , the substitution of (2.42) and 

(2.43) yields 

a min1 
P(Zk/x )P(xk /xk-I) 

= 
k 

, 
P (Lk /Xk ) P (xk /xk-1 ) 

(2.44) 

The theoretical advantage of the MCMC move particle filter over the RPF is that its 

samples are guaranteed to asymptotically approximate those from the posterior. In 

practical scenarios, both the RPF and the MCMC move PF perform better than the SIR 

in cases where sample impoverishment is severe; for example when the process noise is 

small. The MCMC move PF algorithm 2.8 is presented in the following [2], [3]. 	- 

Algorithm 2.8: MCMC move Particle filter 

[{xw} 	= MCMC P Xk_~, lvk _l }N~ }7k 
I i-I J 	i=1 

• FOR i=1:N,. 

➢ Draw xk ^' P( X k / X k-I ) 

> Assign each particle with the importance weight up to a normalizing 
constant according to 
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Wk = p(Z k  / Xk ) 

• END FOR 
r 	N, 

• Calculate the total weight: t=SUM
[
{wk } i-1  

• FOR i =1:N, 

> Normalize the weights: wk = t-' ivk 

• END FOR 

• Calculate New  

• IF Neff  < N,,,, 

N 
➢ Calculate the empirical covariance matrix Sk  of {Xk,Wk}!_t 

➢ Compute Dk  such that Dk  Dr = Sk  

Resample using systematic resampling or residual resampling. 

> FOR i=1:N,. 

■ Draw e' — K from the Epanechnikov/Gaussian kernel 

• Xk = X k  -F hen,Dk E 

■ Draw u — U[O,1 ] 

■ a =min 1 
p(Zk/ X k)p(xk / X k-1) 

, P(zk / Xk) p ( xk / X  k-1 ) 

■ If u_<a 
❖ Move is accepted 

•:• X k = X' 

■ end 

> END FOR. 

• END IF. 
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2.8 Simulation Results 

The following nonlinear state space model is considered for the simulation of 

various particle filters, which is given by [2] 

.Yk = fk (xk _ 1 , k) + vk _, 	 (2.45) 

x2 Zk = 2 0 + nk 	 (2.46) 

where 

fk (xk-1,k) = xk _1 + 25xz 1 
+8cos(1.2k) 	 (2.47) 

2 	1+xk _1 

From the state space model (2.45) & (2.46), the prior density p (xk /xk _1 ) and 

likelihood function p (zk /xk ) are respectively given by 

~(xklxk-1) ~(xk~Jk(xk-1~k),Qk-1 ) 	 (2.48) 

2 

p (z k /xk ) = N Z k ;- - Rk 	 (2.49) 

It is assumed that in equations (2.45) & (2.46), vk_1 and nk are zero mean Gaussian 

random variables with variances Qk_1 and Rk respectively. For the simulation of various 

particle filters in the MATLAB environment, the following parameters are used. 

➢ 	Noise variances are Qk_, =10 and Rk =1 respectively. 

➢ Number of states M=100 

➢ Number of particles N=10,100 

➢ Number of Monte Carlo runs= 100 

The samples {xk } N 1 and the corresponding weights {wk ~ N1 are generated using 

algorithm 2.8. The estimate of the state x, is calculated by using the set of samples 
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{xk}N~ and corresponding weights {wk}Nl , which is given by the sum of products of 

samples and corresponding weights. 

N 
_ 

xesr — 	xk wk 
i=1 

(2.50) 

To obtain the performance for state estimation, the Root Mean Square Error (RMSE) 

between the true state and estimated state is computed, which is given by 

M 
RMSE=F

M _t 
(2.51) 

The RMSEs are obtained by estimating the state xk over 100 Monte Carlo runs. 

Fig 2.4 shows 100 true values of the state xk as a function of time k with Q=10 

and R=1. Fig 2.5 shows the measurement process zk as a function of time k with Q=10 

and R=1. Figs 2.6 and Fig 2.7 show respectively the estimated state of various versions 

of particle filter for comparison with Q=10 (process noise) and R=l. In Fig 2.6, 10 

particles are used for estimating the state xk . The RMSE of ASIR filter is found to be 

5.9090 which is slightly low as compared to SIR, RPF and MCMC filters whose values 

are found to be 6.5143, 6.2187 and 5.9310 respectively. In Fig 2.7 100 particles are 

used for estimating the state xk . It may be noted here that there is a close similarity 

between the true states and estimated states by SIR, ASIR, RPF and MCMC filters. The 

RMSEs of ASIR, SIR, RPF and MCMC filters are found to be 5.0133, 5.0733, 5.1536, 

and 5.0752 respectively. It can be seen from the Fig2.6, that the SIR filter has high 

RMSE when 10 particles are used, whereas from Fig2.7, we can observe that by 

increasing the number of particles the RMSE performance of ASIR, SIR, RPF and 

MCMC filters are almost equal. So, to achieve smaller errors, we have to increase the 

number of particles. However if we increase the number of particles the computational 

complexity will increase. If we consider only the computational complexity, ASIR 

particle filter gives reasonably good results with less number of particles when 

compared to other particle filters. 

9 



Fig 2.8 shows 100 true values of the state xk  as a function of time k with Q=1 

and R=10. Fig 2.9 shows the measurement process zk  as a function of time k with Q=1 

and R=10. In Fig 2.10 & 2.11, the simulation is carried out by assuming Q=1 and R=10 

(process noise is small compared to measurement noise) in which the sample 

impoverishment is severe. The RMSEs of ASIR, SIR, RPF and MCMC filters are 

found to be 4.5212, 4.8813, 4.5837 and 4.7193 respectively for 10 particles and 

similarly for 100 particles the RMSEs are found to be 4.3927, 4.4690, 4.4155 and 

4.5170 respectively. Fig 2.12 shows 100 true values of the state xk  as a function of 

time k with Q=0.1 and R=10. Fig 2.13 shows the measurement process zk  as a function 

of time k with Q=0.I and R=10. In Fig 2.14 & 2.15, the simulation is carried out by 

using Q=0.1 and R=10 (process noise is too small compared to the measurement noise). 

In this case the RMSEs of ASIR, SIR, RPF and MCMC filters are found to be 5.3600, 

5.3145, 4.4396 and 3.9502 respectively for 10 particles and similarly for 100 particles 

the RMSEs are found to be 3.7252, 3.7784, 3.7679 and 3.6732 respectively. From 

figures 2.10 and 2.14 we can say that RPF and MCMC PFs give reasonably good 

results than ASIR and SIR particle filters, when the process noise is very small. From 

figures 2.11 and 2.15 we can say that by increasing the number of particles the RMSE 

performance of ASIR, SIR, RPF and MCMC filters are almost similar. For RPF and 

MCMC PF smaller errors can be achieved even with less number of particles. 

Similarly by comparing the RMSEs of RPF and MCMC PF we can say that MCMC PF 

gives reasonably good results as compared to RPF, because the samples of MCMC 

move particle filter are guaranteed to asymptotically approximate those from the 

posterior whereas the samples from RPF will not be guaranteed to approximate the 

posterior. So if we consider the computational complexity, MCMC Particle Filter is 

giving reasonably good results with less number of particles when compared to other 

Particle Filters, when the process noise is very small compared to measurement noise. 

Fig 2.16 shows 100 true values of the state xk  as a function of time k with Q=1 

and R=1. Fig 2.17 shows the measurement process zk  as a function of time k with Q=1 

and R=1. In Fig 2.18 & 2.19, the simulation is carried out by taking Q=1 and R=1 

(process noise and measurement noise is equal). In this case the RMSEs of ASIR, SIR, 

RPF and MCMC filters are found to be 4.3267, 4.4594, 4.2441 and 4.5135 respectively 

37 



for 10 particles and similarly for 100 particles the RMSEs are found to be 3.5267, 

3.5073, 3.7470 and 3.7738 respectively. From figures 2.18 and 2.19 we can say that the 

RMSE performances of all the Particle Filters are almost similar and by increasing the 

number of particles we can achieve the smaller errors. 

Comparing all the simulations and by considering only computational 

complexity, we can conclude that, the choice of ASIR will give reasonably good results 

with less number of particles when compared to other Particle Filters, when the process 

noise is equal to or greater than the measurement noise. Similarly when the process 

noise is very small compared to the measurement noise where the sample 

impoverishment problem will be severe we can say that MCMC move particle filter 

will give reasonably good results compared to the other versions of particle filters. 
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Figure 2.4 True values of the state xk as a function of time k with Q=10 and R=1. 
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Figure 2.12 True values of the state xk as a function of time k with Q=0.1 and R=10. 
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Figure 2.13 Measurement process zk of the state xk as a function of time k with Q=0.1 

and R=10. 
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Figure 2.15 True and estimated values of the state xk as a function of time k for 100 

particles with Q=0.1 and R=10. 
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Figure 2.16 True values of the state xk as a function of time k with Q=1 and R=1. 
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Figure 2.17 Measurement process Zk of the state xk as a function of time k with Q=1 

and R=1. 
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Chapter 3 

TRACKING IN BINARY SENSOR NETWORKS 

In this chapter, binary sensor network (BSN) model is introduced first, by considering it as a 

special case of wireless sensor networks for tracking the target within a sensor field 

monitored by a sensor network. Unlike sensors considered in traditional tracking approaches, 

binary sensors provide only one bit of data indicating presence or absence of a target in the 

sensing range. They are incapable of producing any other information. The signals that reach 

the fusion center of these networks are therefore binary signals embedded in noise, and they 

pose challenging problems for recovering the sensed information by the sensors. The central 

unit uses a model for the target movement in the sensor field and estimates the target's 

trajectory, velocity, and power using the received data. The mathematical formulation of the 

tracking problem in binary sensor networks is described and two particle filtering algorithms 

are presented namely, auxiliary particle filtering (APF) and cost reference particle filtering 

(CRPF) for processing of the binary data. A detailed derivation of Posterior Cramer-Rao 

Bound (PCRB) for discrete time nonlinear filtering is presented. Finally the simulation results 

of APF, CRPF and PCRB are presented. 

3.1 Binary Sensor Networks 
Sensor networks have two major requirements. [12] 

• Efficient networking and energy-saving techniques are required, as the sensors have 

to communicate with one another or with a "base" to transmit readings or results.of 

the local computation. 

• The fusion center should be efficient in processing the information gathered by 

sensors. 

It is not practical to rely on sophisticated sensors with large power supply and communication 

demands. Simple, inexpensive individual devices deployed in large numbers are likely to be 

the source of the battlefield awareness in the future. For example [12], if the sensors-.are 

obtaining sound levels, instead of using the sophisticated sensors for detecting the absolute 

sound level (which may cause confusion between loud near objects and quieter close objects), 

the sensor may simply report whether the sound is getting louder or quieter. Similarly for the 

seismic sensor, an increase or decrease in intensity can be used. In these systems, using a 
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single bit of information allows for inexpensive sensing as well as minimal communication. 

This minimalist approach to extracting information from sensor networks lead to a binary 

model of sensor networks. Binary sensors [15] are the sensors that transmit only binary 
information about sensed events (the event is sensed or is not sensed). The signals that reach 

the fusion center of these networks are therefore binary signals embedded in noise, and they 

pose challenging problems for recovering the sensed information by the sensors. 

3.1.1 The Binary Sensor Network Model 
Binary sensor network [15] consists of sensors that measure the signal. Unlike sensors 

considered in traditional tracking approaches, binary sensors provide only one bit of data 

indicating presence or absence . of a target in the sensing range. They are incapable of 

producing any other information. If the level of the measured signal is above a predefined 

threshold, they report to the fusion center with a signal that identifies them; otherwise they 

are silent. The binary sensor network is shown in Fig 3.1. 

t3  S13  =O 

17  

Fig.3. 1. Binary sensor network with a target passing nearby 

In the Fig 3.1, a binary sensor is represented by the small circle and its range by the 

larger circle. When the target is outside the range of the sensor, the received signal is below 

the set threshold, and the sensor does not transmit anything. During the time when the target' 

is inside the range of the sensor, the received signal is above the threshold, and the sensor 

transmits a "one" to the fusion center. When at a given time the fusion center does not receive 



a signal from a particular sensor, this implies that the sensor transmits a "zero." The network 

consists of binary sensors that may be deployed randomly, deterministically, or both. In all 

cases, the fusion center is assumed to know the locations of all the sensors and that the 

locations remain fixed for all time. 

3.2 Mathematical formulation of tracking problem 
The objective of tracking is to recursively estimate the target state, i.e., the position 

and the velocity of the target, based on received local sensor data. The sensors are assumed to 

be stationary and the fusion center has perfect information about the locations of sensors. 

Now the tracking problem can be formulated [ 15] based on the target dynamic model and the 

measurement model. 

Target Dynamic Model: 
The movement of the target as described in [13] is its position (pt), velocity (vt), and 

acceleration (at). From the differential equations p, = v, and v = a, , the expressions for the 

position and velocity are given by 

Pr = Po + vot + ao  t 	 (3.1) 
2 

v, = vo  + aot 	 (3.2) 

If we substitute the sample period (TS ) in place of t, then the discrete time model for motion 

between two consecutive measurements is obtained. The general model [15] for the target 

movement is given by 

x, = G,x,_, + Gnu, 	 (3.3) 

Where x, = [x, ,, x2  ,, x, ,, x2  , ]' e 914  is the state vector which indicates the position and 

velocity of the target in a two dimensional Cartesian coordinate system. 

T2 1 0 	T. 0 0 2  
C  _ 1 	0 ' z 

TS and G = 	0 	are known matrices. 
" 0 0 	1 0 2 

0 0 	0 1 T 	0 
O7 

u, is 2 x I vector representing the state space noise process(acceleration), and it is 

assumed to be a Gaussian vector with a covariance matrix c„ =diag (o , 
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Measurement Model: 
The power measured by the n th sensor [14] is given by 

g., (x1 ) + v, 1 	 (3.4) 

Wdo 
~1 rr —1,11 +v,,, 	

n =1,2.....,N 

Where 

g„ (.) is a function that models the received signal power by the nth sensor and, 

vn , is noise process independent from u, and independent from noise samples of 

other sensors.. 

r„ E 912 is the position of the nth sensor. 

i t = [x1 , x21 ]T is the location of the target at time t. 

r —1, 11 denotes the Euclidean distance between r„ and 1,; 

yi is the emitted power of the target measured at a reference distance d0 ; 

a is an attenuation parameter that depends on the transmission medium and is 

considered to be known and the same for all sensors. 

v,,,, can be approximated well with a normal distribution, namely, v,,,, -- N(,uv ,o) where 

= a2 with .2 being the known power of the background measurement noise of one 

sample and o- = 2 o- /L , with L being the number of samples used to obtain the measured 

power. 

The nth sensor measures the received power [15] y,,, and compares it with the threshold 

y. If the measured value is below the threshold , it does not transmit anything and if the 

measured power is greater than the threshold y , the sensor transmits its identification code to 

the fusion center. Therefore, the sensors in the network send signals to the fusion center only 

if the received power is greater than the sensor thresholds. The received signal from the nth 

sensor at the fusion center is given by 

 (3.5) 

where 

i 
(3.6) 

0 	if Y,,,, < y 
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s,,, is the observation noise and is modelled as AWGN with zero mean and varianceo-E . 

Q„ is a known attenuation coefficient associated with the n h̀  sensor. 

In summary, the measurements made by the sensors are complete and are modelled by (3.4). 

The sensors, however, always transmit binary signals constructed according to (3.6), and the 

fusion center receives them as quantified by (3.5). Now the objective is to track the evolving 

state x = (xo , x,,....., x,) using the observations z,., =(Z1,1:0"** ...ZN,I:,) , that is, the 

observations up to time instant t of the first sensor, z,,,:, , the second sensor, Z21,, , as well as 

the remaining N-2 sensors, Z3 ,1:,,......ZN ,,., . Therefore by the use of the observationsz,:,, the 

state vector xo:t  can be estimated by the particle filter. The APF uses probabilistic 

assumptions about all the noise processes in the model and about the prior of the states. The 

CRPF only needs knowledge of the first moments of the noise process. 

3.3 Particle Filtering approach for target tracking in Binary Sensor 

Networks 
In [15] two types of particle filters have been considered for tracking the target in binary 

sensor network, these are 

1) The auxiliary particle filter (APF) 

2) The cost-reference particle filter (CRPF). 

The two methods are sequential statistical signal processing procedures with distinct features 

but with similar algorithmic outline. Tracking algorithm based on APF is discussed in section 

-3.3.1 followed by the CRPF algorithm in section-3.3.2. 

3.3.1 APF Algorithm: [15], [19] 

According to the theory of particle filtering, aposterior distribution of x0.1 , p(xo,, / z,.,) , can 

be tracked by approximating it with a random measure ', which can be defined as 

na 
_ x, wm  } 	where m is an index and M being the number of particles. At every time 

nv=l 

instant t, the particle filter carries out the following operations: 

(1) Selection of most promising particle streams 

(2) Particle propagation 

(3) Computation of particle weights 

(4) State estimation. 
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The APF draw samples from an importance function which is as close as possible to the 

optimal one. The selection of most promising particles is carried out by sampling from a 

multinomial distribution where the number of possible outcomes is M and the probabilities 

of the respective outcomes are 17I, m = 1, 2, ...., M , and Recalling the equation (2.37), we 

have 

tii°' °C P fZ' /p~~l I w1_"1 	 (3.7) 

where p, is some parameter that characterizes x," given x; 

Since the noise samples s", in (3.5) are assumed independent, we have 

N p(z,/) 
= I p(Z",,/,u(m)) 	 (3.8) 

,i=1  

where p(Z",/ 1r;'" ) ), can be written as 

p(z,,/pi"'~) = p1 Z
n,e /sn" =0,u, '00)Y(S.., =o/,411)) 

,/s", =1,14m) )P(sn, = 1 /t4m) ) 

= p ( Zn , / sn' = o) (s1 = 

+P(zn,1sn, = 1 )Y(sn, =1/iu' ) 	 (3.9) 

where 

=N(Qns,,,,a,) 	 (3.10) 

and 

Y s = 1 lnri _ 	Y — g" (P,(-) ) — 
/ 

~"~v 	 3.11 ( n r 	/lU ) 	 l 	) 

Y(s", = 0/~.,,n,) = I —Q Y Sn f 1 	P, 	
(3.12) 

6y 

where Q(.) denotes the complement of the standard normal cumulative distribution function. 

At the beginning, the initial set of particles xo"') , m = 1,1,2,...., M , are drawn from a 

prior distribution 7r (xo ) , and the weights of the particles are set to l/M . Suppose now that at 
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time instant t-1, we have the random measure ,fir , _{x@")I , w;'I El  
. Then the steps of a 

particle filter recursion can be implemented as follows. 

1) Selection of Most Promising Particle Streams: For selection of the most promising 

particles, the conditional mean of xf"') given x(';) is used as a characterizing parameter of 

every stream, i.e. 

t (m) = E (x, /xl"_';) 	 (3.13) 

Now by applying conditional mean to equation (3.3), we have 
(m) = G,,x( I) 	 (3.14) 

From the above equation we can readily compute the conditional mean. This is followed by 
computation of the weights according to (3.7) and their normalization. Finally, a set of 

indices {im } are drawn from the probability mass function (pmf) represented by the 

normalized weights. 

2) New Particle Generation: The first two elements of the four-dimensional statex, 

represent the location of the target in a two-dimensional space, and the remaining elements 

are the components of the velocity in this space. That implies, that the generation of x, 

requires drawing only two dimensional random variables. The generation can be carried out 
by first, propagating the velocity components one step ahead using the joint distribution 

P (x l ,,, xz r /x~-I xz r-I ) or p (z, ,, x2.r /xl,,-I , x2_!_, , z,) and second, computing the locations 

according to 

x(m) 

 

=x" + 2` (xt"' ) + x('n,) ) 	 (3.15) I,! 	I.t-1 	I.! 	1,l-2 

 — 
_ x{r,,,) + 2, (.4 ) + (3.16) ,r   

The above equations are obtained from (3.3). 

3) Weight Computation: The newly generated particles are assigned weights according to . 

p (ZI

/xH 
 e 

wm 
c1 

P (Z' /) j 

53 



The likelihood terms of the numerator and denominator are calculated as in the APF using 

(3.8)—(3.13). 

4) State Estimation: Once the weights are normalized, one can use ,Y, to compute estimates 

of the unknown states. If the estimation is minimum mean square error (MMSE) estimation, 

then it can be obtained from 
M 

x1= E W'"X(m) 	 (3.17) 
m=1 

3.3.2 CRPF Algorithm 

The objective of CRPF [15], [20] is to estimate sequentially the evolution of the unknown 

state x0., from z,., without assumptions about the probability distributions of noise processes 

in the model. It is similar in structure to that of the APF because CRPF also uses the same 

discrete random measure. This random measure is composed of particles and costs associated 

to them, where the costs are user-defined. The random measure can be denoted by 

_ x0:1 ,C;ml }M , where xom~ has the same meaning as before and C("'1 are the associated 1  

costs to xo';) . It is clear that the costs will play the role of the weights in APF. With 

appropriate choices of the costs, the CRPF can be made equivalent to the APF or the standard 

particle filter. 

In general, the costs are updated according to 

CM m) = C( x( -)l zl:! ) 

= AC (X0:f 1/Z1:,-1)+AC(X,m)/Z1) 

	
(3.18) 

Where2 is a forgetting factor(O S 2 < 1), and AC(x/z,) is an incremental cost. Obviously, 

the value of Z controls how fast the state estimates can adapt to new values of the states. The 

incremental cost contributes to the total cost at time instant I and is a function of the particle 

value and the observation at that instant. A typical incremental cost has the form 

-Z ( m) Il y 

	
(3.19) 

Where z( m) is a function ofx,") , and q > 0. So, CRPF proceeds analogously to the APF; 

with the vector of observations ; , the discrete random measure at time instant t -1 
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- {xo;)1
,r' {" )  t 	, is updated to ~', _ {xH C(m) lM 	to reflect accurately the possible value 

.-I 	 m=3 

of the unknown state at time instant t, x, . The procedure has four steps: 

(1) Selection of most promising particle streams 

(2) Propagation of particles 

(3) Cost update 

(4) State estimation. 

The initialization of the method is carried out by randomly drawing initial particles from 

some probability density function (pdf) 7r(x0 ) whose support includes the space ofx,, . This 

method can be implemented as follows. 

1) Selection of Most Promising'Particle Streams: This step is reminiscent of the main idea 

of the APF, where resampling at time instant /-1 takes place by using measurements from 

time instant t . For CRPF, a risk function R (x; I~ /z,) is defined, which quantifies the quality 

of the particle x? given the next set of observations,z,. The incremental cost can be used as 

a risk function which is given by 

R(x`m1)/z,) = 0C (x(m) /z, ) 

with 

z(m) = h (y~m) ) 	 (3.20) 

y~ml =g(z~ m} )+µv 	 (3.21) 

X(m) GX 	 (3.22) 

where the elements of g(.) are defined by (3.4) and those of h(.) by (3.5) and (3.6), i.e., 

the elements of h(•) are given by 

l_ 
(-

(-,) — fill 	Yn > Y 

)jo 

Once the risks are computed, they are added to their costs at t —1 to obtain the predicted 

costs, i.e. C;m) = ~.C(xai_,/z,: ,_,)+R(x~ ?/z,) 	 (3.23) 
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The particles are then sorted according to their predicted costs C(') in descending order and 

the first L of the Al particles are replicated J = M/L times (where J is an integer). In other 

words, each of the surviving particles will have J children at time instantt. With this sorting 

scheme, the usage of functions and classical resampling methods are avoided and proceeded 

directly with removing "bad" particles without sacrificing the performance. 

2) Particle Propagation: For particle propagation a Gaussian proposal density can be used in 

a similar way as is done with APF, but without using the functional form of the Gaussian for 

computing the costs of the particles. Also, the use of a Gaussian is not strictly required, 

instead of that, any other density that is centered around the particle and that produces 

random variables with appropriate variance, like a uniform, or a Laplace, or a Cauchy density 

can be used. If the proposal density is Gaussian, then the velocities of the target can be drawn 

with mean z;'°;) _ z~;~ )~ x2'_, ] and with covariance matrix o, ,(i",)IZx2 , where the i,,, s denote 

indexes of sorted particles, and x('';) 's are surviving particles from step I .The variance, o'" 

is recursively updated by 

2,(i,) = t — 2 	2,(I ) 	I I x,i I) 
	•— X(t2) II, 

-̀z + 2(t-1) 

The locations are then obtained by (3.15) and (3.16). 

3) Cost Update: The cost update is performed by using (3.18). 

4) State Estimation: The state is estimated by using the particles and the associated costs. 

One way of carrying out the estimation is by creating a pmf from the costs. This can be done 

by defining a monotonically decreasing function rJ (.) that converts the set of costs into 

probability masses,r~") , which is given by 

7r(n~ ) cc 1 (C, m) ) c, 

One function that has worked well for different problems is 

I 
= 

(Cl("') —mmn(C,)+1/M) 

Once the,r "') , nz = 1, 2, ...., M are computed, the estimation of x, can be carried out readily. 
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3.4 Posterior Cramer Rao Bound 

In time invariant statistical models, a commonly used lower bound is the Cramer Rao Bound 

(CRB), given by the inverse of the Fisher information matrix. In the time varying systems we 

have considered, the estimated parameter vector is random and it corresponds to an 

underlying nonlinear, randomly driven model. Lower bounds for nonlinear dynamical 

systems have appeared in [22]. The continuous time case has received more emphasis as 

compared to discrete time case, which is of greater practical importance. In [21], a novel and 

simple derivation of the posterior CRB for the discrete time multidimensional non linear 

filtering problem that avoids any Gaussian assumptions is presented. In [15], this lower 

bound is extended for a frequently occurring case of nonlinear filtering, where the conditional 

distribution of the state one step ahead, given the current state, is singular but the 

implementation procedure for the computation of PCRB is not presented. So, we have done a 

detailed derivation of the implementation procedure for the computation of PCRB. 

Let x represent a vector of measured data and 0 be an r-dimensional estimated random 

parameter, let pa. B  (X, Q) be the joint probability density of the pair (x, O) and let g(x)be  a 

function of x which is an estimate of 0. The PCRB on the estimation error has the form 

P=°  E{[g(x)-01[g(x)-0]
T  >_.I ' 	 (3.23) 

Where J is the rxr (Fisher) information matrix with the elements 

a2  log  px d  (X, 0)  J.. _ E — 	 i, j =1, ........, r 	 (3.24) 

The inequality in (3.23) means that the difference P -- J -' is a positive semi definite matrix. 

Let V and A be operators of the first and second order partial derivatives respectively 

0 	a  
ao, 	ao r  

Using this notation, (3.24) can be written as 

J = E[—AO log p (X ,O)] 
	

(3.25) 
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Since pX B (X,O) = p,,0 (X / ®).p9 (0) , it can easily be seen that J can be decomposed into 

two additive parts: 

J=J„+J,, 

where J„ represents the information obtained from the data, and J,,represents the a priori 
information. 

J D = E {—zB log pX,o (X / O)} 	 (r x r) 

J,> = E I—AB log Pa (0)f 
	 (rxr) 

3.4.1 LOWER BOUND FOR THE NONLINEAR FILTERING PROBLEM 

Consider the nonlinear filtering problem [15] 

(3.26) 

z, -1?,(x~~v~~ 
	

(3.27) 

where 

x, is system state at time t; 

Z1 is the measurement process; 

w, and v, are independent white noise processes. 

f, and h, are nonlinear functions. 

The joint probability distribution of xo:, = (x0.........., x,) and z,_, = (z 1..........,z,) which is 

denoted by p, is given by 

P, = P(xo:,,z1,) — P(xo)l 1p(zJ/ xi )1 1p( xk / xk-E) 

	
(3.28) 

j=l 	 k=1 

Decompose xo., as x0., =[xo:,_,,x; ]7 and correspondingly the information matrix J(xQ,) 

can be decomposed into blocks as 
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`Q, 	Ei  
J(xo:,)= Bj C 

	

r 	r 

[El—A"11-  log  p
e 	xw -I 	

,1 
1 

ES —A"--' log P,} l 	X, 

E{ —A" logP,} zo -1 

E{-0X, logp,} 
(3.29) 

it can be easily shown that the mean square error of estimation of x, is lower bounded by 

the right lower block of J (xo:,)-1  and is given by J,-' 

where J, = C, 	 (3.30) 

Thus computation of the (rxr) matrix J, involves calculation of the inverse of the matrix. 

J(x0.,). Recursive relation for the computation of Fisher information matrix is necessary for 
reducing the complexity. 

The joint probability distribution of xo:,+l  = (x0.........., x,+l ) and zl:,+l = (z,,........., z,+l ) which 

is denoted by p,+l  is given by 

e 	 \ 
pl+l = P (x0:t+l Zl:,+l 

= P ( x0: r , z  l:t) -P (x,+i / XOa , L  1:t) .P (Z +1 / X,+1 , x0: r , Z  1:t ) 

= PI.P(x,+l/x,).P(Z,+l/x,+l) 

Let 

D,'1 =El—A 
logp(x,l/x,)} 

D '̀2 = E, {—QX,.1 logp(x,+,/x,)} 

D'21 = E1—A" log p(x,+,/x,)}  =[D,12 ]' 

.022  = E{—OX,+1 log p (x,+,/x,)J+E{—A"'  log p(z,+l /x,+l)} 

(3.31) 
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Using (3.31) and the above equations the posterior information matrix for xo:,,, can be 

written in block form as 

A, 	13, 	0 
.1(xo:1+1 ) = B

r, 	C, + D," D' 2  
0 
	D2' 	D22 

The information submatrix J,+, can be found as an inverse of the right lower submatrix of 

J(xo:r+1) 

r  _ D22  — [0 D21  ] A, 	13, 	0 
!+I - r 	L 	, 	B7' C, +D,11] 	D'Z 

=D,22 —D1 [C,+D,"_B( A,-'B,]'DI2 

Using equation (3.30) the above equation can be rewritten as 

Jr+1 = D -D,2 [ Jr +D,"]' D'2 	 (3.32) 

The above equation is the required recursive relation for the computation of information 

matrix and its inverse will give the lower bound. 

The initial information submatrix Jo  can be calculated from the a priori probability function 

p(x0 ) and is given by 

Ja  = E{—A logp(xo )} 
	

(3.33) 

Computation of the information submatrix, as described above will fails if the conditional 

distribution of x,+, given x, is singular. The state equation given by (3.3), which is used for 

the generation of the target movement, is singular so the above method cannot be used for 

computing the PCRB in this case. We next describe the method which can be used to-find 

PCRB in the above situation. 



3.4.2 LOWER BOUND FOR THE NONLINEAR FILTERING PROBLEM WHEN 

THE STATE EQUATION IS SINGULAR: 

Let 4, _ [v, 1,]' be the state vector 
T 

Where 1, = [x1 , x2 , j, ] and 

Vt = ["I,, x2,J J 

The state evolution as given by (3.3) can also be expressed in block vector notation [15] as 

v,+, = v, +Fu, 

I1+1 — I,+G(V,+I+V,) 
	

(3.34) 

Where 

T,  0 

T,. 	0 	 2 
F- 

—0 	T ' 	 G= 	0 	T ,.  
2 

0 	0 

The derivation involves the following lemma [21]. 

Lemma 1: Consider the problem of estimating a random vector x from an observation vector 

z. Let p (x, z) be the joint probability density of (x, z), and assume that information matrix 

J(x)=E{_ log p(x,z)} exists. Let, y = Mx , where M is a constant invertible matrix. 

Then, the probability density p (y, z) exists, and the corresponding information matrix for 

estimating y is given by 

J(y) = M -T J(x)M -I 
	

(3.35) 

Let p, denote the probability density of the triplet IV,,,, I,, zl;, ] and is given by 

p, 	p(Vo:, , Ir~Z1:1) — p(''o:r—I' V1 , 11,Zl:r) 	 (3.36) 

The information matrix that corresponds to the triplet [VO:,_,, V,,l,] can be written in block 

form as 
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At B, C, 
J(v0:,_1 ,vr ,lr )— B," D, E, 

C, E,' F r 	Er 	r 

where the blocks A,, 13,, .......F are obtained as expectations of the second-order derivatives of 

— log p, with respect vo:,_ i , v, and 1, . 

The information submatrix for the state vector t;, can be obtained as the inverse of the right-

lower submatrix off J (vo:,_,, v,, l,)' } , i.e., 

J, J, 
J, = J,2 

t J22 

rD, 
E' F — C, 

]IA,]-' [B,  
C' 

D, — B, A, 1Br E, _ B, A, ICr 	
(3.37) 

E,T — C,T A,-' 13, Fr — C," A, -'C, 

The probability density of the quartet [vo_,,1,, V,+,, z,+, ], denoted by p,+, is given by 
e 	 } 

Pr+E = P (~' o:,+1, l,, Z i:r+i ) 

= p(Vo:r>Ii , Zt:r).P(vr+l/vo:rsl, , z1:r).p(z, 1lvr+1,V0., , l,>z~:r~ 

= P, •P (v,+1 / ,) •p (z,+1 /vr+1, ,) 	 (3.38) 

Applying log on both sides we have 

— log p,+1 = —log P, — log(p(vr+1 / r )•p(z,+1/vr+1,T,))= — loge, — log Pr 
where 

A = P (vr+t /~,) .p (Zr+1 /vr+> > ~, 

The information matrix that corresponds to the quartet [vo:,,1,, V,+,, z,+1 I can be written in 

block form as 

A, B, - 	C, 	0 
B, D, + H' 	E, + H," 	H," 

J (V,J ,1,,>i+1)= Cr 	(E r+Hrrz)T 	F,+  H' 	Hi" 

l 0 	(H,u)T 	(1-l z')T 	H,3' 

where 

I1 =E{—,  log b, } 

H?2 =E{—A,, logP,} 

H,'2 =E{_Av', log b,} 

H,23 =E{—A"'  log P, } 
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H,'3 —E{—A' logy,} 

H13 =E{—A log,} (3.39) 



The information submatrix for IV,,1,, v,+, I then equals 

	

D, + H," 	E, + H:2 H:3 	B7. 
f 

J (v„ l t , v,+l) = (E, + H, 2 )T F + H 22 H 23 _ C[ A1 ' [B, C, 0] 

(
zl

r
13 )r 	(H

r 	r
23 )T 	H33 

l  

This can be rewritten using equation (3.37) as 

	

J11 + H
r
I1 	J

r
li + H

r
12 H13

1 r 	t 

J(r'rlt3v1+l)= (J,i2 +H1̀2)'' J 22 +H(2 Hs3 

	

(H, 3 )T 	(H` 3 )T 	H33 

Now using equation (3.34) we can write 

v, 	I 0 0 V1 	V, 

0 0 I 	1, A M, 1 , 
11+, 	G I G v,+1 	v,+l 

By using above lemma and equations (3.40) and (3.41) we can write, 

J(v,, Vr+151r+11 = Mr 7 J(Vt , ir , 

(3.40) 

(3.41) 

JII + H11 

=M,-7' (j12 ±J12)'  

(H13 )1 

J12 +H12 	1:1:3  t 	1 

~22 + H22 Hz3 M-1 
r 	t 	r 	r 

(H?)'   H33 
t 

(3.42) 

Let S,+, be the information matrix which is given by 

S,+I =J(vr, v,+1,1,+1 

this implies that 

	

S
Il 	l2 	13 

	

l+I 	s̀r+l 	`r+, 

S1+1 n `~ +11 St2 1 `S 3 +1 

	

`5,+1 

	

	2 

	

1 	`~ r+1 	 S̀e 1 

	

f,'' 	+ H,'' 	Jrl 2 + 11,12 	Hi 3 

M 7 , (Jt12 + H,2)T j22 + Hl2 H!3 M! 1 

	

(H,')7' 	(H? )' 	H' 3 

(3.43) 

The information submatrix for Iv,+1 ,1,+,] then equals 
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j
J1 	]z 

' 	', 
Ji+1 = 	

1 1 	,+1 
21 	zz 

	

Jl+1 	J, 21 

= 

	

[

S,221S,23
1 

_[S,21 
][S11 1 ]  EI2 	S'3 	 (3.4432 	~*33 	31 	1+1 	!+1 	 \ 	) 

5,+1 `'',+, ~,+1 

The above equation is the recursive relation for estimating the information matrix from which 

we can easily find the Posterior Cramer Rao Lower Bound of the state vector by taking its 
inverse. 

The obtained PCRBs do not have analytical expressions in closed form but they can be 

computed using Monte Carlo simulation methods. 

3.4.3 IMPLEMENTATION PROCEDURE FOR THE ESTIMATION OF PCRB: 

The variables which we have to compute for the estimation of PCRB are H,", H,' 2 , H,' 3 , 
H, 22, H(

3 and H,3 . 

Recalling the equations (3.39) we have 

P, = P (v,+/ , } •P (Z,+1 / V1+19 ~, ) 

H,'' = E{—A' Iog b,} = E{—A' log(P(v,+,/v,)•P(z,+,/v,+,, ,)}} 

=Ef-0 V; log (P(vl+,/v,))}+E$-0 V; log (p(zl+l/v,+,, ,))} 

=H" +H r,a 	r,b (3.45) 

From the state equation we can say that p (v,+, w,) is a Gaussian distribution with mean v, 

and variance Q. 

Q=E[(vl+, — v,)(v,+, — v, )' ]=E[(Fu,)(Fu,)T J 

=E[Fu,u,"F']=FE[u,uT]FT =FC„F'' 

H,'a = E{—Av; log(P(v,+lw,))} = E _A log k.exp~— (v,+l — v!)Q-' (v,+l ~'v,)T 
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EI_Av log(k)}+E 	 _v,)T )}  =QWI • 

Therefore fI'Q = 	_ (FC„FT )-' 	 (3.46) 

H,'e =E1-0 V' l og(p(z,+1w,+,, ,))} 

Note that the calculation of H,'h requires the exact knowledge of the observation likelihood 

function p (z,+, /v,+,, ,) and for most of the real world scenarios including this problem, 

H~1b does not have a closed form solution. However, similar to the nonlinear filtering 

problem, Monte Carlo techniques can again be applied to solve this problem. 

In the above equations the expectation is taken over P(4o:,+,,z,:,+,) - 

P (4 oa+i 3 z I:,+,) = P (4o:, , z.:,) P (v,+1/v, ) •P ( z,+1 / yr+, , 4 r ) 

H,1.h = RP(4,) {A' } 	 (3.47) 

Where A' E R5 x R5 and its elements are defined as 

A' =Er(W,+j/V,)-r(=d.j/V,+i,4,) 1—A"; log(P(Z,+,/v,+,,E,))} 	 (3.48) 

The outer integrations in (3.48) can be approximately evaluated by converting them into 

summations using Monte Carlo integration methodology. In order to do this a set of samples 

are generated from v,+, = p (v,+, /v,) with identical weights w +, = M-' 

where J = I........., M. Then, the above expectations can be approximated as follows. 

1 "' 
A' ---- 	E (Z,./~1 ){A; log (p (z,+1 /v,+ r))} (3.49) 

The final expectations with respect to p(,) in (3.47) can be obtained by averaging the 

above approximations over a number of Monte Carlo trials, i.e., over a number of sample 

tracks. 

A' ~— 1 ZE 	{0 V7 log(p(z,,/vf,, ,))} M 	p(Z,+I /Vi+1 •) 	v~ v~ 
J=~ 
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M 
— 1 J E 	O y~, P (z,+1 /v,+I , ) j}  

M 	n(z,.i /"r .k1) 	z 	v 

I 	 P( Ll+1/ y1+1 , ,)v y v vi P(Zl+1/v1+E ,4,) —©v,P(Zl+1/V1+l , ,)vv,P(Z1+1/ Vl+l 9 4,) E 
/ 	 (P(z1+1/Vr+1941))2 

In the above equation v" vT p (z,+l/`'/+1,r,) = 0 , so the above equation can be modified as 
follows 

M N I A1  
ry M i=1 1=1 o 	 P( z1 +1/ V l+1 ,4r) 

The expressions for partial derivative terms in the above equation is given as 

Vv,P(z,+l/v;+l , 4/)_ 	 P(zn,,+l/Sn,,+1)OvP(sn,,+1/v;+1, ) 
.i.,, ,+t E O, 2 )  

J 
— P ( z,, ,+l / sn,,+1 = O) vv, P (sn,,+l 	O/Vr+l, ~r ) 

= 1) vv, P (s ,+1 = 1/v1, , ) 

(3.50) 

(3.51) 

where 

_ 	_ 
	
[Q [rgn  (I) 'U 

'ii 

I 	
-kz 

e 2 dk 
2~ ax, l  

= 	I 	a 	°o 	_k2 

f e 2 dk 
27C ~x2 r 	i 

(3.52) 

In the above equation the partial differentiation can be done using Leibniz rule, which is 

given by 

d (a) 	db (a) r 	da (a) 	a 
da '°(a) f 

( x,a)dx = da f 
t
b(a),a)— da f (a(a),a)+ 

f(a) 
 as f (x,a)dx 	(3.53) 



z 

w 	_kZ 	

rY-Kn( iV )-E~vl 

Il 	O 	J 
'J 

a 	e 2dk=o— d Y
— S„ 	— f~v e- 	2 	+0 

A►., 	6y 

2 

~_ 	2 	 (3.54) 
6v I rn — 1, IIcx+2 

Similarly, 

Z 
r-K,, (Ii )-Nv 

J 
. 

e -zdk— 
ayrd0 (rn— Jl'2,) -__ 2 e = 	IIr — Ia+z 

aCz 1 r-K„ (';)-Nv 	 v n 	r , 

Substituting the equations (3.54) and (3.55) in (3.52) we have, 

° 	l - 	2 
a+2 e 

i 2yv II,1—l1l V , p (s,+1  = l/v,+,, ) = 	 2 
(Y-S, (i~ )-Nv ) Il 	 ~ 

ayrda (r„ 	
JI 

—x2,) - 2 

27x6„ rn —'II  a+2 e 

Similarly, 

(Y-S„(~i 

Il 	a" 	J ccyrd( —x,! ) - 2 

2766„ II — 
a+2 e 

VP(s,,,,+1 =Ow,+1,4,)= 	 z 
I  
Il 	o„ avid__( — X2 ,) _ 	z 

a+2 e 

(3.55) 

(3.56) 

(3.57) 

Substituting the equations (3.56) and (3.57) in (3.51) we have, 
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VY I P (z1,r+1 /v;'1, , r — 

(Y-K(l)-p,. 

+l 	ov 
ayrdo rn —xl , 	_ 	2 

e 
2~~Ilr~ —'e ll  

x 
(Y-g ('i)-Al 
Il 	Qv 	fl 

a l~r do rn — x2 1 	- 	2 e 
6lrn-1,

11u+2 

Q( 	) 

lP(zn.,+l/s><,,+, = 1) — P(z,+,/S~,r+, =o)} (3.58) 

Similarly, 

(
r _ .(?)_ . 	 [Tg,(   a, a.J 

a„ 	) 	o, 	J 
alVdo r~ — xt.r 	 aY~dn n — xz,r 	 1̀11 v'p(",,/v, r)= 	 a+2 Q 	2 	 a+2 e 	Z 	=1)- p(z,, ,+~/ Sn.r+l =o) 
2WaQ 11 II 	 27ra. 11'.. 	11 

(3.59) 

By substituting the equations (3.58) and (3.59) in (3.50) we can get H,1 . 

HlZ =EI-0' logPA I=E{—A" log(P(vr+l/v,)•P(z, ,/vr+l , r))} vi 

= E1-01~ log (p(v, ,/v,))}+EI—A log(p(z,+1/vr+i, r))} 

=E{—A log(p(z,+,/v,+,,4,))I 	 (3.60) 

Again we have to apply Monte Carlo techniques for solving H,'2 . The only difference in 

calculating H,12 is, the second partial derivative should be with respect to 1, . 

Y — gn( l l )—x J  
vl, P sn,l+1 = i/v+,,,)=   Q 	vl, 

v JJ 

I a 

2~c 
 e 

a.,  

kz 

zdk 

I 
2, 

a 
 e 2 dk 

a x 2.r rxA(1f-p. 

I 
z~r 

e z dk 
av r 	a.(I!) 	N. 

a,. 
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l 
-s~(I; J- c 

ado (rn _x1,,) 
v 

~r 

z 

2~I6v 	
Ika+2 e 

1 Yn 	1f 

Y_8„f 

l 
aV/dd (rn —x2• , ) 

a~ 	J 
- 	2 

2TCQv I ~Yn — if 

I a+2 e 

a 
d° e 

Ì\ a, 

2 

27tQ~
1lrn —lfIla 

(3.61) 

J 
V1,p(Sn•r+l 

__ 
O/ v1+i , , — 

Y 

a 	do (r —x1 1 ) _ 	
e 

2TG6v 1 	_ 	Ila+z 
Yn  

C

Y- 1
z 

ado (r,, —x21) 
— 	 e 

a 	JI 

 2 
2~o„ 1k —'el is+

2 

-~~  
a

~ a 

_  d0  e~ 

„ 

2 

2~c71krn —ltr 

(3.62) 

By using equations (3.61) and (3.62) we have, 

awdo (rte —x1, ) -Il 

2~~v ~Irn —/II 

e 

rY-8„{i }-ff~ ]2 

I` 	r avid o (r„ _x21 ) 	 / 	 __ 	 )} 
f 	 e 	(ZnJ+V J sn.t+l 	1) p (Z +1 /sn.1+1 	O)f o~,p(Z;,,+1/v;+, ,}= 	

IIYn-1flla
+Z 	 { 

a 
do  e  2 

—,f Ila 

(3.63) 



1r)-Jl 

a 	(rtt _'cz ze 	z 	1 prZ'~*'I 	=i p( z 'sr~`*' =0)1 (3.64) 
k i 

z 
2 1 

/r('~i+l~ ) 	
llf a+2 

e 
~~IIYn  

again by substituting the equations (3.63) and (3.64) in (3.50) we can get H,'2 

Similarly we can find the remaining variables H,'3 , H 2 , H'3 and H, 3 by using Monte 

Carlo methods. 

Hr Z =E{— ' log e,}=E{—l1~' log (p(v, ,/v,)-P(zr+,/v,r ,, ,))} 

=E{—d:' log(P(v,+,/v,))}+E{—A' log(p(z,+,/v,+,, ,))} 

=E{-0;` log(p(z,+,/v,+,, ,))} 	 (3.65) 

H,'3 = E{—L' log P,} = E{—A" log (p (v,+,/v,) p(z,+1/v,+>> ,))} 

= E —A ' log (P (vr+, /vr )) + E {-0V"i log (p (zr+, /v,+, r ))} 	 (3.66) 

H23 =E{_i 'log P,}=E{—A~` log (p(vr+,/v,)•p(z,+,/vr+,,4,))} 

=E{—' log (p(v,+, /v,))}+E{—A log (p(z,,./v,+>> r))} 

= E{—A` log (p(zr+,/v,+,, r))} 	 (3.67) 

H~3 =E{-0-1,1 1ogP,}= E —LY'' Iog(P(~'r+,/v,) P(Zr+1/vr+P4,))} 

=E{—A'* log (p(v,+,/v,))}+Ef A"': log(p(zr+, /vr+, r))} 	 (3.68) 
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3.5 SIMULATION RESULTS: 

For target tracking in binary sensor networks using particle filtering algorithm in 

MATLAB environment, the following parameters have been used in simulations. 

➢ Number of sensors in the network N =264 

➢ The sensors are deployed in a field with dimensions 800 x 500 m2  . 

> The attenuation parameter a =2.5 

➢ Reference power parameter xlr =5000 at reference distance d0 =1 m. 

> The sensing radius of the sensor is 25 m. 

➢ The threshold power y =2. 

➢ Covariance matrix of the state noise process ise„ = diag(0.05, 0.01) . 

➢ Mean and variance of the measurement noise in (2.4) is ,u, =1 & Crv =0.01. 

> The observation noise variance at the fusion center is 6E =0.0 1. 

> Sampling interval T̀ =1 sec. 

> Number of particles M = 1000. 

> The prior for the target's location and velocity is a Gaussian distribution with mean 

xo  = [0 0 0.01 0.01]T  and covariance matrix EE =diag {10,10, 0. 1, 0.11. 

> Initial particles of yi were drawn from a uniform distribution on[103 ,104  ] . 

> The cost function of the CRPF is defined using (3.18) and (3.19) with forgetting 

factor A. =0 and q =2. 

To obtain the performance of state estimation, the Root Mean Square Error (RMSE) between 

the true state and estimated state is computed, which is given by 

RMSE= 	 (3.69) 

The noise variance o-  and the parameters /3„ , unless otherwise stated, were chosen to yield 

signal-to-noise ratio (SNR) of 20 dB at the fusion center. For simulation, the deterministically 

deployed sensor network is considered. 
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0 

Steps carried out for the simulation of auxiliary particle filtering algorithm for target tracking 
in WSN are: 

1) Generate the target trajectory using the state equation (3.3) and the prior information. 

2) Generate sensor measurements using the measurement equation (3.4) and compare the 

measurements with the threshold using equation (3.6), to send binary information to 

the fusion center indicating the presence or absence of the target. 

3) Repeat step-2 for each and every sensor and at each time instant t. 

4) Generate the observations at the fusion center using equation (3.5) for each and every 

sensor and at each time instant t. 

5) Initially, generate the sequential Monte Carlo samples of the target state using prior 

distribution and set the weights of the particles to 1/M. 

6) Compute the characterizing parameter using equation (3.14) and compute the weights 

using equation (3.7). Now based on these weights select the most promising particle 

streams. 

7) Generate the new particles using equations (3.15) and (3.16). 

8) Calculate the weights of new generated particle streams and then estimate the target 

state using equation (3.17) 

9) Repeat steps from 6 to 8 for each and every time instant t. 

10) Compute the RMSE between the true state and the estimated state using equation 

(3.69). 

Steps from I to 9 are repeated for each independent trial and RMSE is averaged over all 
independent trials. 

Steps carried out for the simulation of cost reference particle filtering algorithm for target 
tracking in WSN are: 

1) Generate the target trajectory using the state equation (3.3) and the prior information. 

2) Generate sensor measurements using the measurement equation (3.4) and compare the 

measurements with the threshold using equation (3.6), to send binary information to 

the fusion center indicating the presence or absence of the target. 

3) Repeat step-2 for each and every sensor and at each time instant t. 

4) Generate the observations at the fusion center using equation (3.5) for each and every 

sensor and at each time instant t. 

5) Initially, generate the sequential Monte Carlo samples of the target state using, prior 

distribution and set the weights of the particles to 1/M. 
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3) Estimate the present state samples based on previous state samples using equation 

(3.22). 

4) Substitute the present state samples in equation (3.21) for getting the measurement 

information at the sensors. 

5) Take the decision at the sensors using equation (3.6) and estimate the observation 

information at the fusion center using equation (3.20). 

6) Compute the risk function using equations (3.19) and compute the costs using 

equation (3.18). Now based on these costs select the most promising particle streams 

and directly remove the bad particles. 

7) Generate the new particles using equations (3.15) and (3.16). 

8) Calculate the costs of new generated particle streams using equation (3.18) and then 

estimate the target state using equation (3.17) 

9) Repeat steps from 6 to 8 for each and every time instant t. 

10) Compute the RMSE between the true state and the estimated state using equation 

(3.69). 

Steps from 1 to 9 are repeated for each independent trial and RMSE is averaged over all 
independent trials. 

Steps carried out for the simulation of Posterior Cramer-Rao lower bound for target tracking 
in WSN are: 

1) Initially, generate the sequential Monte Carlo samples of the target state using prior 

distribution and set the weights of the particles to 1/M. 

2) Compute the equations (3.58) and (3.59) and substitute in equation (3.50). 

3) Now compute the integration term in equation (3.50) using Simpsons rule for the 

estimation of parameter H,. 

4) Similarly compute the parameter H; a using equation (3.46). 

5) Now substitute both H,,I  and H,'h in equation (3.45) for computing the parameter 

H". 

6) Similarly find the remaining variables H,12 , H ; 3 , H 2 , H23 and H 3  .by using 

equations (3.65), (3.66), (3.67) and (3.68). 

7) Calculate the information matrix using equations (3.43) and (3.44). 
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8) The diagonal elements of inverse of the information matrix will give the RMSEs of 
position, velocity and the target emitted power. 

Steps from I to 8 are repeated for each independent trial and RMSE is averaged over all 
independent trials. 

In Fig. 3.2, we can see the realization of a trajectory for the target and the obtained estimates 
using APF and CRPF, denoted by APF-bin, and CRPF-Bin, respectively. It can be seen that 
the algorithms track the target's trajectory closely. 

TRACKING PERFORMANCE OF PARTICLE FILTER 
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Fig3.2. A realization of a target trajectory and its estimates by APF and CRPF for 

deterministically deployed sensor network. 

In Fig. 3.3, we display the root mean square errors (RMSEs) of the location estimate of the 
target obtained by the APF and CRPF algorithms that use binary sensor measurements, 
denoted by APF-bin, and CRPF-Bin, respectively. From the fig.3.3 we can observe that the 

CRPF does not have much degraded performance with respect to the APF even though it 
does not use probabilistic information and we can also observe that the RMSEs of APF and 

CRPF are very close to PCRB. The RMSEs were obtained by averaging over 100 different 

realizations. 

74 



ERROR PERFORMANCE IN POSITION 
14 

12 

10 

8 
Lii 

mi 
6 

4 

2 

0 
0 

.....•... APF-Bin 
--•— CRPF-Bin 
--+-- PCRB-Bin 

Time 

Fig3.3 RMSEs of the location estimates of the target obtained by the APF and CRPF 

algorithms with binary measurements and its PCRB. 

In Fig. 3.4, the RMSEs of the constant parameter it are displayed for both APF and CRPF 

algorithms and its PCRB is also presented. 
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In Fig. 3.5, we display the root mean square errors (RMSEs) of the location estimate of the 

target obtained by the APF and CRPF algorithms by assuming the target emitted power as a 

known constant and as an unknown constant_ From this figure, we can observe that there is 

no significant degradation in performance even though the emitted power by the target is 

assumed to be unknown. Again the RMSEs were obtained by averaging over 100 different 
realizations. 
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Fig3.5. RMSEs of location estimates of the target obtained by the APF and CRPF algorithms 

by assuming the target emitted power as a known constant and as an unknown constant. 

We also performed the simulations by assuming the mixture noise processes. The state noise 

process is generated using a Gaussian mixture model and is given by 

0.6N(0,C,,1 )+0.4N(0,C" 2) 

with C,,, , = diag { 0.05, 0.02} and C112 = diag { 0.5, 0.2} . 

The transmission measurement noise using a Gaussian mixture model is as follows 

s„t — 0.5N(q,, a) + 0.5N(—p . o- ) 

with p = 0.1 and 6e =0.001 



Instead of the accurate pdf, the APF assumes a Gaussian pdf u, — N ( 0, C„) for generating 

new particles. Similarly APF assumed the measurement noise to be zero mean and with a 

variance of & = ,u, + o-£ = 0.0081. 

In Fig. 3.6, we plot the cumulative distribution functions of the RMSE of APF-Bin and 

CRPF-Bin. From the graph we can say that 85% of the times the RMSE accumulated by the 

CRPF-Bin is less than l2m while 53% of the times the RMSE accumulated by the APF-bin is 

less than 12m. Clearly CRPF-Bin outperforms the APF-Bin considerably in the presence of 
mixture noise. The RMSEs of 100 different trajectories were computed and summed over the 
entire time period. 
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Fig 3.6 CDF of the RMSEs of APF-Bin and CRPF-Bin. 
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Chapter 4 

TRACKING IN BINARY SENSOR NETWORKS USING 

CHANNEL AWARE PARTICLE FILTERING 

In this chapter, particle filtering  approach for target tracking in binary sensor network 

(BSN) is described, by considering the imperfect nature of the wireless communication 

channels between sensors and the fusion center. In a target tracking scenario where a large 

number of wireless sensors are deployed in a particular area, we cannot always guarantee a 

line of sight between sensors and the fusion center [16]. The signals that reach the fusion 

center of these networks will face challenging problems for recovering the sensed 

information by the sensors. The imperfect nature of the wireless communication channel 

between sensors and the fusion center is incorporated in the particle filter tracking algorithm 

known as channel aware particle filtering, which is an efficient tracking algorithm for 

recovering the target information based on the received information at the fusion center. The 

imperfect nature of the wireless communication channel between sensors and the fusion 

center is modelled as Rayleigh fading channel [26]. We consider phase coherent and phase 

noncoherent reception. Two particle filtering algorithms namely, auxiliary particle filtering 

(APF) and cost reference particle filtering (CRPF) are presented by considering the Rayleigh 

fading channel with coherent and noncoherent reception. Finally the simulation results of 

APF and CRPF are presented. 

4.1 Mathematical formulation of tracking problem 
The state and measurement equations as defined in previous chapter using equations (3.3) and 

(3.4) will remain same, whereas the information received at the fusion center which is 
defined by equation (3.5) will change and it involves the imperfect wireless channel between 

the sensor and fusion center. The modified observation equation [16] is given by 

 = 	`I- 	 ( ) f"n  ! 	r✓!n 12 	Sn t 	En  , 	 4.1 

where 

	

1 	if .v, > y 
sn , _ 

	

 
o 	if y < n,t y 

sn , is a zero mean complex Gaussian observation noise (1JV) with independent real and 



imaginary parts having identical variance o. i.e., E — (N (0, 2o- ) 

h,e'" denote the complex gain of the discrete time Rayleigh fading channel between 

nth sensor and the fusion center and it is assumed that the channel gain is stationary and 

ergodic. 

Now the objective is to track the evolving state XO:t = (xo, x„ ....., x~) using the observations 

r,.t = (r,,: , I ......rN ,,:,) , that is, the observations up to time instant t of the first sensor, r, ,, , the 

second sensor, rr,,:, , as well as the remaining N-2  sensors, r, I ......rN ,,;, . The observations 

are obtained by using equation (4.1). Therefore by the use of observations r,.t , the state vector 

X0:1 can be estimated by the particle filter. 

4.2 APF algorithm with coherent reception 

In coherent reception [25], the binary signalling is replaced by NRZ signalling so that the 

effect of the fading channel reduces to a real scalar multiplication [23]. i.e., (0, 1) is replaced 

by (-1, 1). The received measurement .,with the knowledge of the channel phase at the 

receiver can be expressed as 

=ReIr„,e_jO"11 = hnrs., +Re{e,,,,e-gym„~ } 	 (4.2) 

The noise term in the above equation is real WGN with variance o, 

i.e., Re{e,e-rm,1} 	iY°(o,at) 	 (4.3) 

After multiplying with the phase information, using equations (4.2) and (4.3) the observation 

equation can be rewritten as 

zn j = h„ fsn , + .V (0, o ) 	 (4.4) 

Let us assume that the channel has unit power, then the probability density function of 11,,,, is 

given as 

p(h„l)=2h„re_”" , 	h.,,?0 	 (4.5) 

The APF algorithm which is used for estimating the target state as described in the previous 

chapter will remains same except in evaluating the pdf p(zf( /x;") ). 

Recalling the equation (3.9) we have 
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p(Zn ,/X;ml ) = p(zn ,~Sn , =-1)P(sn , =-1~x'nr)
) 

+p (zn., / sn,, =1) P (s1 
=1/xm)) 	 (4.6) 

where 

P( s,,, — 	= 1 	
Y — gn (p(m) ) — fjv 	

(4.7) /P(n,) ) 	 l 
6„ 

P(sn , =—l/~c(-) ) —1—Q 
Y gn(pm) — f v 	

(4.8) 
Uv 

where Q(.) denotes the complement of the standard normal cumulative distribution function. 

For evaluating the above equation (4.6) we have to compute the conditional pdf p(zn ,/sn,,), 

which is given by 

p(zn ,/Sn ,)= j (zn ,~hSn ,)p(hn ,)dhn , 	 (4.9) 
0 

Substituting the equation (4.5) in the above equation (4.9) the conditional pdf p(zn ,/sn ,) in 

equation (4.9) simplifies to [24] 

Zn 2 	 «zn J 

p(.Znt/Sn,)— 	26E 
(1+26e) 

e 2v` 1+Snt 2TCazn ,e 2 Q(—azniSnt) 	 (4.10) 
2rc  

where a =1/(o-E 1 + 2cr ) . using equation (4.10) we have 

z~  1 

p(zn,/sn, =i)= 	2cre 	2 e z°~ + 2~razn ,e 2 Q(—azn,, ) 
2)c(1 +2;,)  

Z.z J 	 «zn J 
7, 	_2«E 	 z p(zn,IS 	

2o 
n
, =-1)= 2rc(1+26e)e 

	1— 2~azn ,e Q(az,,,) 

So finally by substituting the above equations in equation (4.6) and then following the same 

procedure as in APF we can estimate the target state. 
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4.3 APF algorithm with noncoherent reception 

In noncoherent reception [25], we employ the energy detection (ED) strategy at the fusion 

center and makes it possible to use sensor censoring, i.e., ON/OFF signalling at the sensors 

[24]. The sensor censoring enables WSN to save energy thereby increasing the network 

lifetime. The received signal from the nth sensor before ED at the fusion center is given by 

 

rn,  Sn, =0  (4.11) 
h e'0".' + s 	s =1 	

4.11 

	

n,, 	n,1 ~ 	n,! 

where £n , — N' (0, 2o-) , and hn ,e'o" 	 N'(0,1) 

After energy detection, the observation model at the fusion center for the nth sensor is given 

as 

	

Zn, =Irn,12 	 (4.12) 

where the notation I I indicates the magnitude of a complex number. 

The APF algorithm which is used for estimating the target state as described in the previous 

chapter will remains same except in evaluating the pdf p (zn , /x{") ) 

Recalling the equation (3.9) we have 

)=A(zn,,/s,,,, =0)P(s,,,, = 

+P(Zn,/SnJ —1)P(S,, —1/x(n')) 	 (4.13) 

where 

Y  gn f'r
m 

j — 	~v 

P ( S"" 1/11,m)/ — Ov 

Y — gn(p,n. /v 
P(Sf, =0/1i4"'1 )=1—Q 

6v 

where Q(.) denotes the complement of the standard normal cumulative distribution function. 

Again for evaluating the equation (4.13) we have to compute the conditional pdf p (z", /s,;,;) . 

81 
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Since 	is a Rayleigh distributed random variable, LIr]2 hasa gamma distribution with 

parameters k and a2 . From equation (4.12) we can say that z,,, is gamma distributed with 

shaping parameter k as 1 and scaling parameter cs2 as the variance of 

The equation defining the probability density function of a gamma-distributed random 

variable z, which is p(z,,,Is,,,), can be written as 

p(zf,/sf, = 0) = 2a e Za° , 	zn , >0 	 (4.14) 

ZnJ 

p
(z /s _ 1) = 	1 	e~1+zaL 	

z >0 	 (4.15) n,~ n,~ — 	1 + 2QE 	 ` 

So finally by substituting the above equations (4.14) and (4.15) in equation (4.13) and then 

following the same procedure as in APF we can estimate the target state. 

4.4 CRPF algorithm with coherent reception 

In coherent reception the observation model given in equation (4.4) will remains same. 

Recalling the observation equation (4.4) we have 

z,,, = h,s, + JIB' (0, 6E) 	 (4.16) 

where 

1 

if Y„~Y 
(4.17) 

From this observation information we have to estimate the target state. The CRPF algorithm 

which is used for estimating the target state as described in the previous chapter will remains 

same except in estimating the observation information which is used for calculating the 

cost function. 

Recalling the equations (3.20), (3.21) and (3.22) we have 

z(m) = h (y~mi) r (4.1 S) 

y`„zj 
=g(X~n~ l )+  u (4.19) 

= Gx x( ,) (4.20) 
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where the elements of g(.) are defined by (3.4) and those of h(.) by (4.16) and (4.17), i:e., 

the elements of h(.) are given by 

h 	E (h,,) , 	Yn,r > Y 	 (4.21) 
, Y 

Let us assume that the channel has unit power, then the probability. density function of h,, 
is given as 

p (h,,,,) = 2h,,,,e^"Z" , 	 h,,,, >_ 0 	 (4.22) 

we know that 

E (la,,,) 	Jh,,,,P (h,,,, )dh,,,, 	 (4.23) 
0 

By substituting the equation (4.22) in equation (4.23) we have 

E(h,,,) _ J2h,e-' dh, 	 (4.24) 
0 

Let h,, = x then the above equation (4.24) can be rewritten as 

E(h,,,) = f 'e-xdx 	 (4.25) 
0 

The Gamma function is defined as 

F(n) = f t"-'e-̀ dt 	 (4.26) 
0 

Comparing equations (4.25) and (4.26) we can say, E (h„ ,) is a gamma function with n=1.5. 

Therefore, 

E(h,,,)=['(1.5)= 	EI 	 (4.27) 

By substituting the above equation in (4.21), we get h(5) as 

y,1,, > Y 

— 2 , 	yn,, — Y 
	 (4.28) 
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The observation information '") can be estimated by substituting fhe above equation (4.28) 

in equation (4.18) for all the sensors. Now following the same procedure as in CRPF by using 

the above calculated observation information z;'") we can estimate the target state. 

4.5 CRPF algorithm with noncoherent reception 

In noncoherent reception the observation model given in equation (4.12) will remains saute. 

Recalling the observation equation (4.12) we have 

zn, =lrn,l2 	 (4.29) 

where the notation I. I indicates the magnitude of a complex number. 

From this observation information we have to estimate the target state. The CRPF algorithm 

which is used for estimating the target state as described in the previous chapter will remains 

same except in estimating the observation information z;m) which is used for calculating the 

cost function. 

Recalling the equations (3.20), (3.21) and (3.22) we have 

j'") =h(y~")) (4.30) 

Y~,n} = g(X(m)}+fj 	 (4.31) 

X(nn) = GX i(" 	 (4.32) 

where the elements of g(.) are defined by (3.4) and those of h(.) by (4.16), i.e., the 

elements of h(.) are given by 

h 
 (

yim } 1 = E (hn.' ' 	 Yn., ~ Y 	 (4.33) J 	0,  

using equation (4.27), we get h (J ) as 

h (y(,n}) = 	2 	 Yn.r Y 	 (4.34) 

0, 	 yn.1 Y 

The observation information r; ".) can be estimated by substituting the above equation (4.34) 

in equation (4.30) for all the sensors. The ED output of the estimated rlm) is 
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" (m)  ( ())2 	

(4.35) 

Now following the same procedure as in CRPF by using the above calculated ED observation 

information z(" )  we can estimate the target state. 

4.6 SIMULATION RESULTS: 

In simulations the channel aware particle filtering algorithm is applied for the same 

environment which is created in the previous chapter. So the parameters used in the 

simulations for targe tracking in binary sensor networks will remains same except in the 

creation of fading channel between sensors and the fusion centre. For cresting the fading 

channel in MATLAB environment, the following parameters have been used in simulations. 

➢ Variance of the Rayleigh fading Channel is unity. i.e., the fading channels between all 

the sensors and the fusion center have unit power. 

> The cost function of the CRPF is defined using (3.18) and (3.19) with forgetting 

factor A =0.2 5 and q =2. 

To obtain the performance of state estimation, the Root Mean Square Error (RMSE) between 

the true state and estimated state is computed, which is given by 

M 

RMSE = 1  2 (x — z)2  (4.36) 

For simulation, the deterministically deployed sensor network is considered. 

Steps carried out for the simulation of target state generation in a WSN and observation 
information generation at the fusion center are: 

1) Generate the target trajectory using the state equation (3.3) and the prior information. 

2) Generate sensor measurements using the measurement equation (3.4) and compare the 

measurements with the threshold using equation (3.6), to send binary information to 

the fusion center indicating the presence or absence of the target. 

3) The binary information should be in the form of NRZ signaling for coherent reception 

and it should be in the form of ON/OFF signaling for non coherent reception. 

4) Repeat step-2 for each and every sensor and at each time instant t. 
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5) Create Rayleigh fading channel by generating the fading coefficients between all the 

sensors and the fusion center. 

6) Generate the observations at the fusion center using equation (4.4) in the case of 

coherent reception or using equation (4.11) in the case of non coherent reception, for 

each and every sensor and at each time instant t. 

Steps carried out for the simulation of auxiliary channel aware particle filtering algorithm 
with coherent reception for target tracking in WSN are: 

7) Initially, generate the sequential Monte Carlo samples of the target state using prior 

distribution and set the weights of the particles to 1/M. 

8) Compute the characterizing parameter using equation (3.14). 

9) Estimate the pdf p(z,,,/s,) using equation'(4.10) and substitute this into equation 

(4.6) for estimating the pdf p(,1/m)). 

l0) Compute the weights using equation (3.7). Now based on these weights select the 

most promising particle streams. 

11) Generate the new particles- using equations (3.15) and (3.16). 

12) Calculate the weights of newly generated particle streams and then estimate the target 

state using equation (3.17) 

13) Repeat steps from 7 to 12 for each and every time instant t. 

14) Compute the RMSE between the true state and the estimated state using equation 

(4.36). 

Steps from 1 to 13 are repeated 'for each independent trial and RMSE is averaged 'over all 
independent trials. 

Steps carried out for the simulation of auxiliary channel aware particle filtering algorithm 
with noncoherent reception for target tracking in WSN are: 

7) Send the observations obtained at the fusion center through ED and the output of the 

ED can be computed using equation (4.12). 

8) Initially, generate the sequential Monte Carlo samples of the target state using prior 

distribution and set the weights of the particles to 1/M. 

9) Compute the characterizing parameter using equation (3.14). 
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10) Estimate the pdf p (zn /s„ ,) using equation (4.14) and (4.15). substitute  

into equation (4.13) for estimating the pdf p (z,,., ~xI"') ) 

11) Compute the weights using equation (3.7). Now based on these weights select the 

most promising particle streams. 

12) Generate the new particles using equations (3.15) and (3.16). 

13) Calculate the weights of newly generated particle streams and then estimate the target 

state using equation (3.17) 

14) Repeat steps from 7 to 13 for each and every time instant t. 

15) Compute the RMSE between the true state and the estimated state using equation 

(4.36). 

Steps from I to 14 are repeated for each independent trial and RMSE is averaged over all 
independent trials. 

Steps carried out for the simulation of cost reference channel aware particle filtering 
algorithm with coherent reception for target tracking in WSN are: 

7) Initially, generate the sequential Monte Carlo samples of the target state using prior 

distribution and set the weights of the particles to 1/M. 

8) Estimate the present state samples based on previous state samples using equation 

(4.20). 

9) Substitute the present state samples in equation (4.19) for getting the measurement 

information at the sensors. 

10) Take the decision at the sensors using equation (4.28) and estimate the observation 

information at the fusion center using equation (4.18). 

11) Compute the risk function using equations (3.19) and compute the costs using 

equation (3.23). Now based on these costs select the most promising particle streams 

and directly remove the bad particles. 

12) Generate the new particles using equations (3.15) and (3.16). 

13) Calculate the costs of new generated particle streams using equation (3.18) and ,then 

estimate the target state using equation (3.17) 

14) Repeat steps from 7 to 13 for each and every time instant t. 

15) Compute the RMSE between the true state and the estimated state using equation 

(4.36). 
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Steps from 1 to 14 are repeated for each independent trial and.RMSE is averaged over all 
independent trials. 

Steps carried out for the simulation of cost reference channel aware particle filtering 
algorithm with noncoherent reception for target tracking in WSN are: 

7) Send the observations obtained at the fusion center through ED and the output of the 

ED can be computed using equation (4.29). 

8) Initially, generate the sequential Monte Carlo samples of the target state using prior 

distribution and set the weights of the particles to I/M. 

9) Estimate present state samples based on previous state samples using equation (4.32). 

10) Substitute the present state samples in equation (4.31) for getting the measurement 

information at the sensors. 

11) Take the decision at the sensors using equation (4.34) and estimate the observation 

information at the fusion center using equation (4.30) and the output of the ED can be 

computed using equation (4.35). 

12) Compute the risk function using equations (3.19) and compute the costs using 

equation (3.23). Now based on these costs select the most promising particle streams 

and directly remove the bad particles. 

13) Generate the new particles using equations (3.15) and (3.16). 

14) Calculate the costs of new generated particle streams using equation (3.18) and then 

estimate the target state using equation (3.17) 

15) Repeat steps from 7 to 14 for each and every time instant t. 

16) Compute the RMSE between the true state and the estimated state using equation 

(4.36). 

Steps from 1 to 15 are repeated for each independent trial and RMSE is averaged over all 
independent trials. 

In Fig. 4„1, we display the root mean square errors (RMSEs) of the location estimate of the 

target obtained by the APF and CRPF algorithms with coherent and noncoherent reception 

that use binary sensor measurements, denoted by APF-coherent, APF-noncoherent, CRPF. 

coherent and CRPF-noncoherent, respectively. From Fig.4.1 we can observe that the APE has 

much better performance than CRPF regardless of the type of receiver. Similarly it can be 

seen that, APF with noncoherent reception does not have much degraded performance 
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compared to APF with coherent reception. The RMSEs were obtained by averaging over 100 
different realizations. 
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Fig4.1 RMSEs of the location estimates of the target obtained by the APF and CRPF 

algorithms with coherent and noncoherent reception. 

In Fig. 4.2, we plot the cumulative distribution functions of the RMSE of APF and CRPF 
algorithms with coherent reception and noncoherent reception. From the graph we can say 

that 95% of the times the RMSE accumulated by the APF-coherent is less than 6m while 86% 
of the times the RMSE accumulated by the APF-noncoherent is less than 6m. Similarly, the 

RM.SE accumulated by the CRPF-noncoherent is 90% of the times less than 12m while 55% 
of the times the RMSE accumulated by the CRPF-coherent is less than 12m.Clearly APF 
outperforms the CRPF considerably in the presence of fading channels. The RMSEs of 100 

different trajectories were computed and summed over the entire time period. 
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reception. 



Chapter 5 

CONCLUSIONS 

Many practical applications which involve non-linear non-Gaussian state-space models 

require the estimation of the state which is highly intractable. Some of the these 

applications are localization of robots, estimating noisy digital communications signals, 

image processing, land vehicle navigation and aircraft . tracking using radar 

measurements etc. The optimal solutions to these problems are often too 

computationally complex to implement by conventional signal processing methods. 

Particle filtering methods have become a very popular class of algorithms to solve these 

estimation problems numerically in an online manner, i.e. recursively as observations 

become available. 

Particle filters are sequential Monte Carlo methods which can be applied to any 

state space model which generalize the Kalman filtering methods. Particle filter uses 

the concept of sequential importance sampling (SIS) for the recursive computation of 

a posteriori pdf by drawing of samples from the importance density with corresponding 

importance weights. This dissertation work is aimed at the application of particle 

filtering for target tracking in a wireless sensor networks and a comparative study of 

various versions of particle filtering. The conclusions drawn based on the simulation 

results are as follows: 

Application of various versions of particle filtering for non linear estimation problem 

We have used the state space approach for deriving the particle filtering algorithm for 

non linear estimation problem. Comparing the simulation results and by considering 

only computational complexity, the choice of ASIR gives reasonably good results with 

less number of particles as compared to other Particle Filters, when the process noise is 

equal to or greater than the measurement noise. Similarly when the process noise is 

very small compared to the measurement noise the sample impoverishment problem 

will be severe and we conclude that MCMC move particle filter will give reasonably 

good results compared to the other versions of particle filters. 
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Particle Filtering for target tracking in binary sensor networks 

A detailed derivation and algorithm for evaluating Posterior Cramer-Rao Bound 

(PCRB) for target tracking in binary sensor networks (BSN) is given. Simulation 

results have shown that, the CRPF does not have much degraded performance as 

compared to APF even though it does not use probabilistic information and we can also 

observe that the RMSEs of APF and CRPF are very close to PCRB. From the 

simulations it can also be seen that there is no degradation in performance even though 

the emitted power by the target is assumed to be unknown. Considering the mixture 

noise model between the sensors and the fusion center, the simulation results have 

shown that, 85% of the times the RMSE accumulated by the CRPF-Bin is less than 

12m while 53% of the times the RMSE accumulated by the APF-bin is less than 12m. 

Clearly CRPF-Bin outperforms the APF-13in considerably in the presence of mixture 

noise. 

Channel aware particle filtering for target tracking in binary sensor networks 

The channel aware particle filtering approach is used for tracking the target in binary 

sensor networks by considering the fading channel between the sensors and the fusion 

center. In [16] SIR particle filter is applied for tracking the target in BSN in the 

presence of fading environment. To reduce the computational complexity a new CRPF 

algorithm is proposed for the above environment. We next consider the application of 

APF particle filter for improving the RMSE performance of the tracking system in the 

presence of fading environment. From the simulation results, it can be seen that APF 

outperforms the CRPF considerably in the presence of fading environment. 

Future work 

The optimal design of local sensor thresholds can be considered as design parameters 

for improving the tracking performance. Failure of sensors while tracking the target is a 

topic of significant interest. The channel aware particle filtering approach can be 

extended for 'multiple targets tracking in WSN [16]. The channel aware particle 

filtering approach can be applied to the problem of information-driven dynamic sensor 

collaboration in clutter environments with cost of increased power. In land vehicle 

navigation application the channel aware particle filtering approach along with Kalman 



filter can be used for solving the fusion problem of the GPS, odometer, and digital road 

map measurements in the presence of GPS outages, and it may significantly improve 

the performance of the system compared to the Hybrid filter [18]. 
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