
FACE DETECTION FOR TWO DIMENSIONAL
IMAGES USING GABOR FEATURE EXTRACTION

AND NEURAL NETWORKS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
ELECTRONICS AND COMMUNICATION ENGINEERING

(With Specialization in Control and Guidance)

By

S.LINGAMAIAH

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

CANDIDATE'S DECLARATION

I hereby declare that the work, which is presented in this dissertation report entitled,

"Face Detection for two Dimensional images using Gabor feature extraction and Neural

Networks" towards the partial fulfillment of the requirements for the award of the degree of
Master of Technology with specialization in Control & Guidance, submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my own work carried out during the

period from July 2009 to June 2010, under the guidance of Dr.M.J.Nigam, Professor,

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

Degree or Diploma.

Date: 8-- jet / id 	 ("AA3,9~,,Cotivi
Place: Roorkee 	 S.LINGAMAIAH

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge and belief

Date: .2. 8 . 6. 2®1 0
Place: Roorkee Dr. M. J. NIGAM,

Professor, E&C Department,

IIT Roorkee,

Roorkee —247 667 (India).

ACKNOWLEDGEMENTS

I would like to extend gratitude and indebtedness to my guide, Dr. M. J. NIGAM for

his guidance, attention and constant encouragement that inspired me throughout my

dissertation work.

I would also like to thank the Lab staff of Control Systems Lab, Department of

Electronics and Communication Engineering, IIT Roorkee for providing necessary facilities.

I gratefully acknowledge my sincere thanks to my family members for their

inspirational impetus and moral support during course of this work.

I am greatly indebted to all my friends, who have graciously applied themselves to the

task of helping me with ample morale support and valuable suggestions. Finally, I would like

to extend my gratitude to all those persons who directly or indirectly contributed towards this

work.

S.LINGAMAIAH

ii

ABSTRACT

Images containing faces are essential to intelligent vision-based human computer

interaction, and research efforts in face processing include face recognition, face tracking,

pose estimation, and expression recognition. Given a single image, the goal of face detection

is to identify all image regions which contain a face regardless of its position, orientation, and

lighting conditions. Such a problem is challenging because faces are nonrigid and have a high

degree of variability in size, shape, color, and texture. The faces in a given image are detected

by using a neural network and Gabor filter features.

Numerous techniques have been developed to detect faces in a single image and are

classified into four categories; Knowledge-based methods, Feature invariant approaches,

Template matching methods and Appearance-based methods. In case of Appearance-based

method the models are learned from a set of training images which should capture or identify

the variations of facial appearance. These learned models are then used for detection. These

methods are designed mainly for face detection.

The dissertation work consists of two parts; Image processing and Neural Network.

The given image is processed using Gabor filters for extracting the facial features by using

the image processing tool box. The extracted facial features are applied to the feed forward

neural network by using neural network tool box. Considering the desirable characteristics of

spatial locality and orientation selectivity of the Gabor filter, the filters had been designed for

extracting facial features from the local image. The goal of facial feature extraction is to

detect the presence and location of features such as eyes, nose, nostrils, eyebrow, mouth, lips,

ears, etc. The feature vector based on Gabor filters is used as the input of the classifier, which

is a Feed Forward neural network. The given image convolved with Gabor filters by

multiplying the image by Gabor filters in frequency domain.

Feature extraction algorithm for the method has two main steps; feature point

localization and feature vector computation. Feature vectors are extracted from points with

high information content on the face image. In most feature-based methods, facial features

are assumed to be the eyes, nose and mouth. From the responses of the face image to Gabor

filters, peaks are found by searching the locations in a window WO of size W x W. Feature

vectors are generated at the feature Points as a composition of Gabor wavelet transform

iii

coefficients. This architecture was implemented using Matlab in a graphical environment

allowing face detection in a database. It has been evaluated using the training data and test

data of 150 images containing faces and non faces, on this test set I obtained a good detection

which is shown in chapter 6.

Face detection and recognition has many applications in a variety of fields such as

security system, videoconferencing and identification. The objective of this work is to

implement a classifier based on neural networks and Gabor feature extraction for face

detection. The ANN is used to classify face and non-face patterns.

iv

LIST OF FIGURES

Figure No. Figure Caption Page No.

2.1 A typical face used in knowledge based top down method 5
2.2 Face and non face clusters 10
3.1 Gabor filter kernels with values of the wavelength

parameter of 5, 10 and 15 14
3.2 Gabor filter kernels with values of the orientation

parameter of 0, 45 and 90 15
3.3 Gabor filter kernels with values of the phase offset

parameter of 0, 180, -90 and 90 degrees 16
3.4 Gabor filter kernels with values of the aspect ratio

parameter of 0.5 and 1 16
3.5 Gabor filter kernels with values of the bandwidth

parameter of 0.5, 1, and 2 17
3.6 Gabor filters correspond to 5 spatial frequencies

and 8 orientations 21
3.7 Facial feature points found as the high-energized

points of Gabor wavelet responses 22
3.8 Flowchart of the feature extraction stage of the

facial images 23
3.9 Finding the center of each region 25
3.10 Filtering above pattern for values above threshold (xy) 25
3.11 Final Result of the detection 25
4.1 Single Neuron without Bias 28
4.2 Single Neuron with Bias 29
4.3 Multi-Layer Artificial Neural Network 30
4.4 Threshold Function 32
4.5 Linear Transfer Function 33
4.6 Sigmoid Transfer Function 34
4.7 Single Layer Network 35
4.8 Multi Layer Network 35
4.9 The neuron of supervised training 41
4.10 Architecture of proposed system 42

5.1 	Main GUI executed by main.m 	 44

5.2 	Training process 	 48

6.1 	The training performance with learning rate 0.8 and

scaled conjugate gradient training algorithm 	 51

6.2 	The training performance with learning rate 0.1
and scaled conjugate gradient training algorithm 	 52

6.3 	The training performance for the scaled conjugate gradient

training algorithm with 0.8 learning rate, which shows that

the target is reached at 127 Epochs. 	 54

6.4 	The training performance for the Resilient Backpropagation

training algorithm with 0.8 learning rate, which shows that

the target is reached at 73 Epochs 	 55

6.5 	The training performance for the Gradient descent with

adaptive learning rate Backpropagation training algorithm

with 0.8 learning rate, which shows that the target is not

reached for 5000 Epochs 	 56

6.6 	The training performance for the Gradient descent with

momentum and adaptive learning rate Backpropagation

training algorithm with 0.8 learning rate, which shows that

the target is not reached for 5000 Epochs 	 57

6.7 	Output obtained from the system which is taken from
the digital camera 	 58

6.8 	Output obtained from the system which is collected from

the interne 	 59
6.9 	Output obtained from the system 	 60
6.10 	Output obtained from the system 	 61

6.11 	Output obtained from the system in which false detections

6.12

6.13

are present. 62

Output obtained from the existing method 63

Output obtained from the existing method with false detection 64

vi

CONTENT

Candidate's Declaration and Certificate 	

Acknowledgements 	 ii

Abstract 	 iii

List of Figures 	

Content 	 vii
1. Introduction 	1

2. Face Detection in Image 	 3
2.1. Knowledge - Based Methods 	 4

2.2. Feature — Based Methods 	 6

2.2.1 Facial Features 	 6
2.2.2 Texture 	 7
2.2.3 Multiple Features 	 7

2.3. Template matching 	 8
2.3.1 Predefined Templates 	 8

2.4. Appearance Based Methods 	 9
2.4.1 Eigenfaces 	 9
2.4.2 Distribution Based Methods 	 10

2.4.3 Support Vector Machines 	 11
3. Digital Image Processing 	 12

3.1. Image Enhancement 	 12

3.1.1. Point Operation 	 12
3.1.2. Mask Operation 	 12

3.2. Gabor filter 	 12

3.2.1. Explanation of Parameters 	 13
3.3. 2D Gabor Wavelet Representation of Faces 	 20

3.3.1. Feature Extraction 	 21
3.3.2. Feature Point Localization 	 21
3.3.3. Feature Vector Generation 	 22

4. Neural Networks 	 26
4.1. Advantages of Artificial Neural Networks 	 27
4.2. Artificial Neural Networks for Image Processing 	 27
4.3. Feed-Forward Neural Network Model 	 28

vii

4.4. Network Model for the System 	29
4.5. Transfer Functions 	32
4.6. Network Layers 	34
4.7. Neural network architecture designing 	36
4.8. Platform 	37
4.9. Optimization of Neural Network Parameters 	37

4.9.1. Weight Initialization 	37
4.9.2. Weight Adaptation 	38
4.9.3. Learning Constant 	38
4.9.4. Inputs and Outputs 	39
4.9.5. The Hidden Layer 	39
4.9.6. Choice of Activation Function 	40
4.9.7. Generalization Problems 	40
4.9.8. Stopping Criterion 	40

4.10. Neural Network Architecture 	40
5. Implementation of the Neural Network Model 	 44

5.1. Program Components 	44
5.2. Selection of Face Database 	47
5.3. Image Resizing 	47
5.4. Training Parameters and Weight Initialization 	47
5.5. Training 	48

6. Interpretation of Results 	49
6.1. Image Allocation 	49
6.2. Evaluation of parameters 	50
6.3. Fixed and Variable Parameters 	50
6.4. Learning Rate 	 OOO •• 	51
6.5. Number of Hidden Neurons 	52
6.6 Learning Algorithm 	52

7. Conclusion 	65
References 	 66
Appendix-1 	 71
Appendix-2 	 73

viii

CHAPTER-1

INTRODUCTION

The objective of the face detection problem described in this thesis is to identify

the presence of a human face in a given image. In image analysis, there is always a need

for a technique to model the human vision. An artificial neural network classifier is

designed to solve the face detection problem similar to the human brain, which can

differentiate between human faces and non-faces.

Pattern recognition covers a wide range of information processing problems of a

great practical significance. Pattern recognition is a branch of artificial intelligence

concerned with the identification of visual patterns by computers. For the computer to

recognize the pattern, the patterns must be converted into digital signals and compared

with patterns already stored in memory. Pattern recognition is an integral part of machine

vision and image processing, and finds its applications in many fields such as biometric

and biomedical image diagnostics, remote sensing, fault detection in machinery, and

handwritten character recognition. These problems can quite often be solved by humans in

a seemingly effortless fashion. However, designing a system for automatic image content

recognition is a challenging task [16].

The objective of pattern recognition is to recognize objects in the scene from a set

of measurements of the object. Each object is a pattern and measured values are the

features of the pattern. Recognition is the concept of learning from sample patterns. A set

of similar objects possessing more or less identical features are said to belong to a certain

pattern class [17].

Techniques used to measure the features are known as feature extraction

techniques. Patterns may be described by a set of features, all of which may not have

enough discriminatory power to single out one class of patterns from another. The

selection and extraction of appropriate features from patterns pose is the first major

challenge in pattern recognition.

1

Numerous techniques have been developed to detect faces in a colour and gray

scale images and they are classified into four categories [2]; Knowledge-based methods,

Feature invariant approaches, Template matching methods and Appearance-based

methods. In case of Appearance-based method the models are learned from a set of

training images which should capture or identify the variations of facial appearance. These

learned models are then used for detection.

In this work MATLAB is used to implement the algorithm to detect the presence of

human faces in the given images. The results of this thesis work can be used for important

applications such as automated security systems, indexing and retrieval of video images,

and for face detection in crowded images. The main contribution of the work presented in

this thesis is the implementation of neural network algorithm using scaled conjugate

gradient training method and Gabor filter facial feature extraction.

Chapter II contains a brief description of the existing face detection techniques.

Chapter III contains introduction to the digital image processing and also this chapter

discusses about the Gabor filters and feature extraction of the images. Chapter IV explains

the Artificial Neural Network, the architecture used, the threshold functions and also

discusses the design of the feedforward neural network. Chapter V summarizes the

implementation of the neural network model for the proposed method. Chapter VI contains

the results and their interpretation. Conclusions and suggestions for future work are made

in chapter VII.

2

CHAPTER-2

FACE DETECTION IN IMAGE

In this section we review existing techniques to detect faces from a single intensity

or colour image and classified into four categories [2];

1. Knowledge-based methods: It dependence on using the rules about human facial

feature. It is easy to come up with simple rules to describe the features of a face and their

relationships. For example, a face often appears in an image with two eyes that are

symmetric to each other, a nose, and a mouth. , and features relative distance and position

represent relationships between feature. After detecting features, verification is done to

reduce false detection. This approach is good for frontal images but the difficulty of this

method is how to translate human knowledge into known rules and to detect faces in

different poses.

2. Feature based method: This approach depends on extraction of facial features that are

not affected by variations in lighting conditions, pose, and other factors. These methods

are classified according to the extracted features [18]. Feature-based techniques depend on

feature derivation and analysis to gain the required knowledge about faces. Features may

be skin colour, face shape, or facial features like eyes, nose, etc.... Feature based methods

are preferred for real time systems where the multi-resolution window scanning used by

image based methods are not applicable.

Human skin colour is an effective feature used to detect faces, although different

people have different skin colour, several studies have shown that the basic difference

based on their intensity rather than their chrominance. Textures of human faces have a

special texture that can be used to separate them from different objects. Facial Features

method depends on detecting features of the face. Some users use the edges to detect the

features of the face, and then grouping the edges. Some others use the blobs and the

streaks instead of edges. For example, the face model consists of two dark blobs and three

light blobs to represent eyes, cheekbones, and nose. The model uses streaks to represent

the outlines of the faces like, eyebrows, and lips .Multiple Features methods use several

combined facial features to locate or detect faces. First find the face by using features like

3

skin colour, size and shape and then verifying these candidates using detailed features such

as eye brows, nose, and hair.

3. Template matching methods: Template matching methods use the correlation between

pattern in the input image and stored standard patterns of a whole face or face features to

determine the presence of a face or face features. Predefined templates as well as

deformable templates can be used. Several standard patterns of a faces are stored to

describe the face as a whole or the facial features separately. The correlations between an

input image and the stored patterns are computed for detection. These methods have been

used for both face localization and detection.

4. Appearance-based methods: In this approach, there is a predefined standard face

pattern which is used to match with the segments in the image to determine whether they

are faces or not. It uses training algorithms to classify regions into face or non-face classes.

In contrast to template matching, the models (or templates) are learned from a set of

training images which should capture the representative variability of facial appearance.

These learned models are then used for detection. These methods are designed mainly for

face detection.

2.1 Knowledge-Based Methods

In this approach, face detection methods are developed based on the rules derived

from the knowledge of human faces. It is easy to come up with simple rules to describe the

features of a face and their relationships. For example, a face often appears in an image

with two eyes that are symmetric to each other, a nose, and a mouth. The relationships

between features can be represented by their relative distances and positions. Facial

features in an input image are extracted first, and face candidates are identified based on

the coded rules. A verification process is usually applied to reduce false detections. One

problem with this approach is the difficulty in translating human knowledge into well-

defined rules. If the rules are strict, they may fail to detect faces that do not pass all the

rules. If the rules are too general, they may give many false positives. Moreover, it is

difficult to extend this approach to detect faces in different poses.

Fig 2.1: A typical face used in knowledge-based top-down methods: Rules are coded based

on human knowledge about the characteristics (e.g., intensity distribution and difference)

of the facial regions

The system consists of three levels of rules. At the highest level, all possible face

candidates are found by scanning a window over the input image and applying a set of

rules at each location. The rules at a higher level are general descriptions of what a face

looks like while the rules at lower levels rely on details of facial features. A

multiresolution hierarchy of images is created by averaging and subsampling. Examples of

the coded rules used to locate face candidates in the lowest resolution include: "the center

part of the face (the dark shaded parts which are shown in Fig. 2.1) has four cells with a

basically uniform intensity," "the upper round part of a face (the light shaded parts which

are shown in Fig. 2.1) has a basically uniform intensity," and "the difference between the

average gray values of the center part and the upper round part is significant." The lowest

resolution (Level 1) image is searched for face candidates and these are further processed

at finer resolutions. At Level 2, local histogram equalization is performed on the face

candidates received from Level 2, followed by edge detection. Surviving candidate regions

are then examined at Level 3 with another set of rules that respond to facial features such

as the eyes and mouth.

5

2.2 Feature-Based Methods
In contrast to the knowledge-based approach, this method is based on finding

invariant features of faces for detection. The observation is made based on the assumption

that humans can effortlessly detect faces and objects in different poses and lighting

conditions so, there must exist properties or features which are invariant over these

variabilities. Numerous methods have been proposed to first detect facial features and then

to infer the presence of a face. Facial features such as eyebrows, eyes, nose, mouth, and

hair-line are commonly extracted using edge detectors. Based on the extracted features, a

statistical model is built to describe their relationships and to verify the existence of a face.

One problem with these feature-based algorithms is that the image features can be severely

corrupted due to illumination, noise, and occlusion. Feature boundaries can be weakened

for faces, while shadows can cause numerous strong edges which together render

perceptual grouping algorithms useless.

2.2.1 Facial Features
This method is based on segmenting a face from a cluttered background for face

identification. It uses an edge map and heuristics to remove and group edges so that only

the ones on the face contour are preserved. An ellipse is then fit to the boundary between

the head region and the background. This algorithm achieves 80 percent accuracy on a

database of 48 images with cluttered backgrounds. Instead of using edges, blobs and

streaks (linear sequences of similarly oriented edges) can be used for a simple face

detection method. The face model consists of two dark blobs and three light blobs to

represent eyes, cheekbones, and nose. The model uses streaks to represent the outlines of

the faces, eyebrows, and lips. Two triangular configurations are utilized to encode the

spatial relationship among the blobs. Next, the image is scanned to find specific triangular

occurrences as candidates. A face is detected if streaks are identified around a candidate.

There is another method to locate facial features and faces in gray scale images.

After band pass filtering, morphological operations are applied to enhance regions with

high intensity that have certain shapes (e.g., eyes). The histogram of the processed image

typically exhibits a prominent peak. Based on the peak value and its width, adaptive

threshold values are selected in order to generate two binarized images. Connected

components are identified in both binarized images to identify the areas of candidate facial

features. Combinations of such areas are then evaluated with classifiers, to determine

6

whether and where a face is present. This method has been tested with head-shoulder

images of 40 individuals and with five video sequences where each sequence consists of

100 to 200 frames. However, it is not clear how morphological operations are performed

and how the candidate facial features are combined to locate a face.

2.2.2 Texture
Human faces have a distinct texture that can be used to separate them from

different objects. This method is developed that infers the presence of a face through the

identification of face-like textures. The textures are computed using second-order

statistical features (SGLD) on sub images of 16x16 pixels. Three types of features are

considered: skin, hair, and others. This method uses a cascade correlation neural network

for supervised classification of textures and a self-organizing feature map to form clusters

for different texture classes. To infer the presence of a face from the texture labels, they

suggest using votes of the occurrence of hair and skin textures. However, only the result of

texture classification is reported, not face localization or detection.

2.2.3 Multiple Features

Recently, numerous methods that combine several facial features have been

developed to locate or detect faces. Most of them utilize global features such as skin

colour, size, and shape to find face candidates, and then verify these candidates using

local, detailed features such as eye brows, nose, and hair. Atypical approach begins with

the detection of skin-like regions. Next, skin-like pixels are grouped together using

connected component analysis or clustering algorithms. If the shape of a connected region

has an elliptic or oval shape, it becomes a face candidate. Finally, local features are used

for verification.

There is another method to detect faces in colour images based on fuzzy theory.

The method uses two fuzzy models to describe the distribution of skin and hair colour in

CIE XYZ colour space. Five (one frontal and four side views) head-shape models are used

to abstract the appearance of faces in images. Each shape model is a 2D pattern consisting

of m x n square cells where each cell may contain several pixels. Two properties are

assigned to each cell: the skin proportion and the hair proportion, which indicate the ratios

of the skin area (or the hair area) within the cell to the area of the cell. In a test image, each

pixel is classified as hair, face, hair/face, and hair/background based on the distribution

7

models, thereby generating skin-like and hair-like regions. The head shape models are then

compared with the extracted skin-like and hair-like regions in a test image. If they are

similar, the detected region becomes a face candidate. For verification, eye-eyebrow and

nose-mouth features are extracted from a face candidate using horizontal edges.

2.3 Template Matching

In template matching, a standard face pattern is manually predefined or
parameterized by a function. Given an input image, the correlation values with the

standard patterns are computed for the face contour, eyes, nose, and mouth independently.

The existence of a face is determined based on the correlation values. This approach has

the advantage of being simple to implement. However, it has proven to be inadequate for

face detection since it cannot effectively deal with variation in scale, pose, and shape.

Multiresolution, multiscale, subtemplates, and deformable templates have subsequently

been proposed to achieve scale and shape invariance.

2.3.1 Predefined Templates

The method uses several subtemplates for the eyes, nose, mouth, and face contour

to model a face. Each subtemplate is defined in terms of line segments. Lines in the input

image are extracted based on greatest gradient change and then matched against the

subtemplates. The correlations between subimages and contour templates are computed

first to detect candidate locations of faces. Then, matching with the other subtemplates is

performed at the candidate positions. In other words, the first phase determines focus of

attention or region of interest and the second phase examines the details to determine the
existence of a face.

There is another method which is a two stage face detection method in which face

hypotheses are generated and tested. A face model is built in terms of features defined by

the edges. These features describe the curves of the left side, the hair-line, and the right

side of a frontal face. The Marr-Hildreth edge operator is used to obtain an edgemap of an

input image. A filter is then used to remove objects whose contours are unlikely to be part

of a face. Pairs of fragmented contours are linked based on their proximity and relative

orientation. Corners are detected to segment the contour into feature curves. These feature

curves are then labeled by checking their geometric properties and relative positions in the

neighborhood. Pairs of feature curves are joined by edges if their attributes are compatible.

8

The ratio of the feature pairs forming an edge is compared with the golden ratio

and a cost is assigned to the edge. If the cost of a group of three feature curves (with

different labels) is low, the group becomes a hypothesis. When detecting faces in

newspaper articles, collateral information, which indicates the number of persons in the

image, is obtained from the caption of the input image to select the best hypotheses. The

system reports a detection rate of approximately 70 percent based on a test set of 50

photographs. However, the faces must be upright, unoecluded, and frontal.

2.4 Appearance-Based Methods

In contrast to the template matching methods where templates are predefined by

experts, the "templates" in appearance- based methods are learned from examples in

images. In general, appearance-based methods rely on techniques from statistical analysis

and machine learning to find the relevant characteristics of face and nonface images. The

learned characteristics are in the form of distribution models or discriminant functions that

are consequently used for face detection. Meanwhile, dimensionality reduction is usually

carried out for the sake of computation efficiency and detection efficacy. Many

appearance-based methods can be understood in a probabilistic framework. An image or

feature vector derived from an image is viewed as a random variable x, and this random

variable is characterized for faces and nonfaces by the class-conditional density functions

p(xlface) and p(x]nonface). Bayesian classification or maximum likelihood can be used to

classify a candidate image location as face or nonface. Unfortunately, a straightforward

implementation of Bayesian classification is infeasible because of the high dimensionality

of x, because p(xjface) and p(xlnonface) are multimodal, and because it is not yet

understood if there are natural parameterized forms for p(x]face) and p(xlnonface). Hence,

much of the work in an appearance-based method concerns empirically validated

parametric and nonparametric approximations to p(xlface) and p(xlnonface).

2.4.1 Eigenfaces

A simple neural network is demonstrated to perform face recognition for aligned

and normalized face images. The neural network computes a face description by

approximating the eigenvectors of the image's autocorrelation matrix. These eigenvectors

are later known as Eigenfaces. Given a collection of n x m pixel training images

represented as a vector of size m x n, basis vectors spanning an optimal subspace are

9

Pace ple 	x3 Appr
Di tri tion 	 qussias

Non-P esctaxi
Distibution

x3 Appro4roadon with
aussiati clusters

9

9

Special Non-Fone Fv.nem
son Ales to refiet vector
subspaoe boundaries of

gam** face views

.41,44,std,R.

determined such that the mean square error between the projection of the training images

onto this subspace and the original images is minimized. They call the set of optimal basis

vectors eigenpictures since these are simply the eigenvectors of the covariance matrix

computed from the vectorized face images in the training set. Experiments with a set of

100 images show that a face image of 91x50 pixels can be effectively encoded using only

50 eigenpictures, while retaining a reasonable likeness (i.e., capturing 95 percent of the

variance).

2.4.2 Distribution-Based Methods
Distribution-based system for face detection demonstrates how the distributions of

image patterns from one object class can be learned from positive and negative examples

(i.e., images) of that class. The system consists of two components, distribution-based

models for face/nonface patterns and a multilayer perceptron classifier. Each face and

nonface example is first normalized and processed to a 19x19 pixel image and treated as a

361 dimensional vector or pattern. Next, the patterns are grouped into six face and six

nonface clusters using a modified k-means algorithm, as shown in Fig. 2.2.

Fig 2.2: Face and nonface clusters

10

Each cluster is represented as a multidimensional Gaussian function with a mean

image and a covariance matrix. Two distance metrics are computed between an input

image pattern and the prototype clusters. The first distance component is the normalized

distance between the test pattern and the cluster centroid, measured within a lower-

dimensional subspace spanned by the cluster's 75 largest eigenvectors. The second

distance component is the Euclidean distance between the test pattern and its projection

onto the 75-dimensional subspace. This distance component accounts for pattern

differences not captured by the first distance component. The last step is to use a

multilayer perceptron (MLP) network to classify face window patterns from nonface

patterns using the twelve pairs of distances to each face and nonface cluster. The classifier

is trained using standard backpropagation from a database of 47,316 window patterns.
There are. 4,150 positive examples of face patterns and the rest are nonface patterns. Note

that it is easy to collect a representative sample face patterns, but much more difficult to

get a representative sample of nonface patterns. This problem is alleviated by a bootstrap

method that selectively adds images to the training set as training progress. Starting with a

small set of nonface examples in the training set, the MLP classifier is trained with this

database of examples. Then, they run the face detector on a sequence of random images

and collect all the nonface patterns that the current system wrongly classifies as faces.

These false positives are then added to the training database as new nonface examples.

2.4.3 Support Vector Machines

Support Vector Machines (SVMs) can be considered as a newparadigm to train

polynomial function, neural networks, or radial basis function (RBF) classifiers. While

most methods for training a classifier (e.g., Bayesian, neural networks, and RBF) are based

on of minimizing the training error, i.e., empirical risk, SVMs operates on another

induction principle, called structural risk minimization, which aims to minimize an upper

bound on the expected generalization error. An SVM classifier is a linear classifier where

the separating hyperplane is chosen to minimize the expected classification error of the

unseen test patterns. This optimal hyperplane is defined by a weighted combination of a

small subset of the training vectors, called support vectors. Estimating the optimal

hyperplane is equivalent to solving a linearly constrained quadratic programming problem.

11

CHAPTER-3

DIGITAL IMAGE PROCESSING

The purpose of face detection is to examine and extract information from a set of
images and try to find the exact location of the face in an image. For such a system to

detect well, any extracted feature has to be accurate. Image processing is there-fore used to

eliminate unwanted information and extract useful features from an image. Machine vision

systems make use of image processing technique to carry out object identification and

categorization.

3.1. Image enhancement

Image enhancement [19] improves the detect-ability of important image details or

objects. It is normally performed in the first stage of digital image processing. Image

enhancement operations transform an input image into another image, which is an

improved version of the input. Examples of such operations include histogram stretching,

convolution, noise reduction, smoothing, and edge enhancement.

3.1.1. Point operations

Point operations are based on histogram modification techniques [19]. Common

histogram operations are sliding, stretching, and equalization.

3.1.2. Mask operations

Discrete convolution is used to build any linear and shift invariant filter. According

to (20), the equation for the convolution g(x) of the sequence f(x) with the convolution
mask h(x) is

G(x)=f(x)*h(x)=Eh(x-k)*f(k) 	 (3.1)

3.2 Gabor filter

A Gabor filter is a linear filter used in image processing for edge detection.
Frequency and orientation representations of Gabor filter are similar to those of human

visual system, and it has been found to be particularly appropriate for texture

12

representation and discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian

kernel function modulated by a sinusoidal plane wave. The Gabor filters are self-similar -

all filters can be generated from one mother wavelet by dilation and rotation.

Its impulse response is defined by a harmonic function multiplied by a Gaussian

function. Because of the multiplication-convolution property (Convolution theorem), the

Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier

transform of the harmonic function and the Fourier transform of the Gaussian function [6].

x, y; A,, 0 , v, a, 	
2cr2

	

= exp(
xt2 ± y2
	 x' e)/2

) COS(271- — ty) 	 (3.2)

Where

x'=xcos0+ysin0

And

y' = –xsin0+y cos°

In this equation, A, represents the wavelength of the cosine factor, 0 represents the

orientation of the normal to the parallel stripes of a Gabor function, v is the phase offset, a

is the sigma of the Gaussian envelope and y is the spatial aspect ratio, and specifies the

ellipticity of the support of the Gabor function.

3.2.lExplanation of parameters

Gabor filtering
This block implements one or multiple convolutions of an input image with a two-

dimensional Gabor function:

x,2 ±r2y,2 	
x'

2o
-2 (x, y) = exp(cos(2ff

A
— + ty) (3.3)

x'=xcos0+ysint9

y' = –x sin 0 y cos 0

To visualize a Gabor function select the option "Gabor function" under "Output

image". The Gabor function for the specified values of the parameters "wavelength",

13

"orientation", "phase offset", "aspect ratio", and "bandwidth" will be calculated and

displayed as an intensity map image in the output window. The image in the output

window has the same size as the input image: select, for instance, input image octagon.jpg

to get an output image of size 100 by 100. If lists of values are specified under

"orientation(s)" and "phase offset(s)", only the first values in these lists will be used.

Two-dimensional Gabor functions were proposed by Daugman to model the spatial

summation properties (of the receptive fields) of simple cells in the visual cortex. They are

widely used in image processing, computer vision, neuroscience and psychophysics.

Wavelength (I)

This is the wavelength of the cosine factor of the Gabor filter kernel and herewith

the preferred wavelength of this filter. Its value is specified in pixels. Valid values are real

numbers equal to or greater than 2. The value ?=2 should not be used in combination with

phase offset (1)=-90 or 9=90 because in these cases the Gabor function is sampled in its

zero crossings. In order to prevent the occurrence of undesired effects at the image

borders, the wavelength value should be smaller than one fifth of the input image size.

(a)
	

(b)
	

(c)

Fig 3.1: The images (of size 100 x 100) on the above shows Gabor filter kernels with

values of the wavelength parameter of 5, 10 and 15, from left to right, respectively. The

values of the other parameters are as follows: orientation 0, phase offset 0, aspect ratio 0.5,

and bandwidth 1.

14

Orientation(s) (0)

This parameter specifies the orientation of the normal to the parallel stripes of a

Gabor function. Its value is specified in degrees. Valid values are real numbers between 0

and 360.

(a)
	

(b)
	

(c)

Fig 3.2: The images (of size 100 x 100) on the above shows Gabor filter kernels with

values of the orientation parameter of 0, 45 and 90, from left to right, respectively. The

values of the other parameters are as follows: wavelength 10, phase offset 0, aspect ratio

0.5, and bandwidth 1.

For one single convolution, enter one orientation value and set the value of the last

parameter in the block "number of orientations" to 1. If "number of orientations" is set to

an integer value N, N >= 1, then N convolutions will be computed. The orientations of the

corresponding Gabor functions are equidistantly distributed between 0 and 360 degrees in

increments of 360/N, starting from the value specified under "orientation(s)". An

alternative way of computing multiple convolutions for different orientations is to specify

under "orientation(s)" a list of values separated by commas (e.g. 0,45,110). In this case, the

value of the parameter "number of orientations" is ignored.

Phase offset(s) ((p)

The phase offset cp in the argument of the cosine factor of the Gabor function is

specified in degrees. Valid values are real numbers between -180 and 180. The values 0

and 180 correspond to center-symmetric 'center-on' and 'center-off functions, respectively,

while -90 and 90 correspond to anti-symmetric functions. All other cases correspond to

asymmetric functions.

15

(a)
	

(b)
	

(c)
	

(d)

Fig 3.3: The images (of size 100 x 100) on the above shows Gabor filter kernels with

values of the phase offset parameter of 0, 180, -90 and 90 degrees, from left to right,

respectively. The values of the other parameters are as follows: wavelength 10, orientation

0, aspect ratio 0.5, and bandwidth 1.

If one single value is specified, one convolution per orientation will be computed.

If a list of values is given (e.g. 0,90 which is default), multiple convolutions per orientation

will be computed, one for each value in the phase offset list.

Aspect ratio (y)

This parameter, called more precisely the spatial aspect ratio, specifies the

ellipticity of the support of the Gabor function. For y = 1, the support is circular. For y < 1

the support is elongated in orientation of the parallel stripes of the function. Default value

is y = 0.5.

(a)
	

(b)

Fig 3.4: The images (of size 100 x 100) on the above shows Gabor filter kernels with

values of the aspect ratio parameter of 0.5 and 1, from left to right, respectively. The

values of the other parameters are as follows: wavelength 10, orientation 0, phase offset 0,

and bandwidth 1.

16

Bandwidth (b)

The half-response spatial frequency bandwidth b (in octaves) of a Gabor filter is

related to the ratio a / X, where a and A, are the standard deviation of the Gaussian factor of

the Gabor function and the preferred wavelength, respectively, as follows:

TC+
Vln 2

b = loge 	2 a1 \I In 2 2b +1
•	 a 	V112 	= rc. 2 2b —1

rc
2 	2

(2.4)

The value of a cannot be specified directly. It can only be changed through the

bandwidth b. The bandwidth value must be specified as a real positive number. Default is

1, in which case a and X are connected as follows: a = 0.56 X. The smaller the bandwidth,

the larger a, the support of the Gabor function and the number of visible parallel excitatory

and inhibitory stripe zones.

(a)
	

(b)
	

(c)

Fig 3.5: The images (of size 100 x 100) on the above shows Gabor filter kernels with

values of the bandwidth parameter of 0.5, 1, and 2, from left to right, respectively. The

values of the other parameters are as follows: wavelength 10, orientation 0, phase offset 0,

and aspect ratio 0.5.

Number of orientations

Default value is 1. If an integer value N, N >= 1, is specified then N convolutions

will computed. The orientations of the corresponding Gabor functions are equidistantly

distributed between 0 and 360 degrees, with increments of 360/N, starting from the value

specified in "orientation(s)". For this option to work, one single value must be specified for

the parameter "orientation(s)".

17

Half-wave rectification (HWR)
Enable HWR

If this option is enabled, all values in the convolution results below a certain

threshold value will be set to zero (HWR is disabled by default).

HWR threshold (%)

The threshold value can be specified as a percentage of the maximum value in a

given convolution result. If this percentage is set to 0, all negative values in that

convolution result will be changed to 0.

Superposition of phases
If a list of multiple values is entered under parameter "Phase offset(s)" of the

"Gabor filtering" block, multiple convolutions will be computed for each orientation value

specified, one convolution for each phase offset value in the list. The convolution results

for the different phase offset values of a given orientation can be combined in one single

output image for that orientation. This combination can be done in different ways, using

the L2, Ll or L-infinity norms. If the L2 norm is used, the squared values of the

convolution results for the concerned orientation will be added together pixel-wise and

followed by a pixel-wise square root computation to produce the combined result. The L1

and the L-infinity norms correspond to the pixel-wise sum and maximum of the absolute

values, respectively. Default is the L2 norm. This choice, together with the default (0,90)

of the "Phase offset(s)" of the "Gabor filtering" block, implements the Gabor energy filter

that is widely uses in image processing and computer vision. One can also choose not to

apply superposition of phases ("None").

Surround inhibition
The Gabor filter can be augmented with surround inhibition which suppresses

texture edges while leaving relativley unaffected the contours of objects and region

boundaries. This biologically motivated mechanism is particularly useful for contour-

based object recognition. In that case, texture edges play the role of noise that obscures

object contours and region boundaries and should preferably be eliminated. One can best

observe the effect of surround inhibition on different types of oriented features, such as

18

edges in texture vs. isolated edges and lines, by taking the default input image

"syntheticl.png".

Select inhibition type

Default is "no surround inhibition".

If "isotropic surround inhibition" is selected, edges in the surroundings of a given

edge have a suppression effect on that edge. The relative orientation of these edges has no

influence on the suppression effect.

If "anisotropic surround inhibition" is selected, the suppression effect of edges

surrounding a given edge depends on their relative orientation: edges parallel to the

considered edge have stronger suppression effect than oblique edges, and orthogonal edges

have no such effect.

Superposition for isotropic inhibition

If "isotropic inhibition" is selected, a superposition of the convolution results for all

used orientations is computed and deployed for surround suppression. Different types of

superposition can be used: LI, L2 and L-infinity norms (see the explanations of these

terms under "Superposition of phases" in the "Gabor filtering" block).

Alpha (a)

This parameter controls the strength of surround suppression. Default is 1 but one

may need larger values in order to completely suppress texture edges.

K1 and K2

The surround that has a suppression effect on an edge in a given point has annular

form with inner radius controlled by the combination of values of the parameters K1 and
K2. The contribution of points in the annular surround is defined by a weighting function

which is a half-wave rectified difference of Gaussian functions with standard deviations of

Kia and Kea where a is the standard deviation of the Gaussian factor of the Gabor

19

function(s) used. One can visualize the weighting function by selecting option "inhibition

kernel" under parameter "Output image".

The inner radius of the annular surround increases with K1. The size of the annual

surround which has substantial contribution to the suppression increases with K2.

Default values are K1 = 1 and K2 = 4.

Thinning and thresholding

These are post-processing techniques standardly used in image processing.

Thinning thins edges in the output to one-pixel wide edges by non-maxima suppression.

Hysteresis thresholding results in a binary output image. If it is enabled, two

threshold values must be specified: T-high and T-low. These are given as fractions

(between 0 and 1) of the maximum response value.

Pixels with responses higher than T-high are assigned the binary value 1 in the

output, while pixels with responses below T-low are assigned the binary value 0. Pixels

with responses between T-low and T-high are assigned the value 1 in the binary output if

they can be connected to any pixel with a response larger than T-high through a chain of

other pixels with responses larger than T-low.

3.2.2 2D GABOR WAVELET REPRESENTATIONS OF FACES

Since face recognition is not a difficult task for human beings, selection of

biologically motivated Gabor filters is well suited to this problem. Gabor filters, modelling

the responses of simple cells in the primary visual cortex, are simply plane waves

restricted by a Gaussian envelope function. 	corfRAL t/8
60Lo11? k11,6 z' ACC No

Date 	

ROOF(

20

Spatial frequency varies

E MEREEME
O 1111EMEMEN
MMIEEEMEN

yEEINEEENN

Orientation varies

Fig 3.6: Gabor filters correspond to 5 spatial frequencies and 8 orientations

Orientation (Gabor filters in Time domain) an image can be represented by the

Gabor wavelet transform allowing the description of both the spatial frequency structure

and spatial relations. Convolving the image with complex Gabor filters with 5 spatial

frequency (v = 0,...,4) and 8 orientation (p. = 0,...,7) captures the whole frequency

spectrum, both amplitude and phase Fig 3.6.

One of the techniques used in the literature for Gabor based face recognition is

based on using the response of a grid representing the facial topography for coding the

face. Instead of using the graph nodes, high-energized points can be used in comparisons

which form the basis of thig work. This approach not only reduces computational

complexity, but also improves the performance in the presence of occlusions.

3.3.1. Feature extraction

Feature extraction algorithm for the proposed method has two main steps in Fig 8;

(1) Feature point localization,(2) Feature vector computation.

3.3.2. Feature point localization

In this step, feature vectors are extracted from points with high information content

on the face image. In most feature-based methods, facial features are assumed to be the

21

eyes, nose and mouth. However, we do not fix the locations and also the number of feature

points in this work. The number of feature vectors and their locations can vary in order to

better represent diverse facial characteristics of different faces, such as dimples, moles,

etc., which are also the features that people might use for recognizing faces Fig 7.

Fig 3.7: Facial feature points found as the high-energized points of Gabor wavelet

responses

From the responses of the face image to Gabor filters, peaks are found by searching

the locations in a window WO of size Wx W by the following procedure:

A feature point is located at (x0, y0), if

R.1(xo ,Y0)= max(R,(x,Y))
	

(2.5)
(x,y)-=wo

R (x 0, y) > 	1 NI, 	
(x, y),

N N I 2 1=1 Y=1
(2.6)

j=1,...,40

Where Ri is the response of the face image to theft', Gabor filter N1 N2 is the size of

face peaks of the responses. In our experiments a 9x9 window is used to search feature

points on Gabor filter responses. A feature map is constructed for the face by applying

above process to each of 40 Gabor filters.

3.3.3. Feature vector generation

Feature vectors are generated at the feature Points as a composition of Gabor

wavelet transform coefficients. Km feature vector of id, reference face is defined as,
22

Vi k = 	 yk ,R,,j (xk , yk)j =1, 	,40}
	

(2.7)

While there are 40 Gabor filters, feature Vectors have 42 components. The first two

components represent the location of that feature point by storing (x, y) coordinates. Since

we have no other information about the locations of the feature vectors, the first two

components of feature vectors are very important during matching process. The remaining

40 components are the samples of the Gabor filter responses at that point. Although one

may use some edge information for feature point selection, here it is important to construct

feature vectors as the coefficients of Gabor wavelet transform.

Start \

Image

GWT

V
Find feature points

Feature
vectors

Fig 3.8: Flowchart of the feature extraction stage of the facial images.

23

Feature vectors, as the samples of Gabor wavelet transform at feature points, allow

representing both the spatial frequency structure and spatial relations of the local image

region around the corresponding feature point.

In this section the algorithm will check all potential face contained windows and

the windows around them using neural network. The given image is convolved with the

templates then the locations of the peaks of both the templates are saved. Then make a list

of all the centre of the windows that should be checked. Yellow pixels shown in the fig 3.7

has to be tested for the presence of the face. The centres of the each window are cut and

send it to Neural Network. If the answer of the NN (neural network) is near -1, it means

that no face is near this Black status location, if the answer of the NN is near 1, it really

contains a face around the Blue status location and all the neighbours of this location not to

be checked because there is already a face cantered on this location. The Green status

indicates that the face is detected in this location and marks the neighbours to be checked.

Then convert the yellow to green on this location. Then finally draw a rectangle around the

green status location which indicates the presence of the face.

This architecture was implemented using Matlab in a graphical environment

allowing face detection in a database. It has been evaluated using the test data of 50 images

containing faces on this test set a good detection faces is obtained.

The proposed method has good detection quality even if there are sunglasses in the

input image. This algorithm compares faces in terms of mouth, nose and any other features

rather than eyes. This method also has a simple matching procedure, low computational

cost, robust to illumination changes as a property of Gabor wavelets and faster than

existing methods. A new facial image can also be simply added to database by attaching

new feature vectors to training images.

24

Fig 3.9: Finding the centre of each region

Fig 3.10: Filtering above pattern for values above threshold

Fig 3.11: Final Result will be like this

25

CHAPTER-4

NEURAL NETWORKS

According to Haykins [23], "A Neural Network is a massively parallel distributed

processor made up of simple processing units, which has a natural propensity for storing

experiential knowledge and making it available for use". It resembles the brain in two

respects.

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

The term artificial neural networks also referred to in literature as neurocomputers,

connectionist network, and parallel distributed processors is used to describe various

topologies of highly interconnected simple processing elements that offer an alternative to

traditional approaches to computing[23]. The topic of neural networks has received much

attention in the past decade. This fact is reflected in the range of publications containing

related articles. Researchers from such diverse area as neuroscience, mathematics,

psychology, engineering, and computer science are attempting to relate underlying models

for pattern recognition, the computation that is desired, the potential parallelism that

emerges, and the operation of biological neural systems.

The idea of neural networks was inspired by the structure of the human brain.

Biological systems, such as the human brain, implement pattern or speech recognition

computations through interconnections of physical cells called neurons. A neuron is the

most basic component of a neural network [23]. There have been several models proposed

to describe the behaviour of neurons in actual nervous systems [16, 23].

Artificial Neural Network (ANN), is a massively parallel-distributed processor that

has a natural propensity for storing experiential knowledge and making it available for use.

The behaviour of a neural network is defined by the way its individual computing elements

are connected and by the strength of those connections or weights. ANNs are mainly

applicable to problems requiring a nonlinear solution such as high-level tasks in image

26

processing chain (for example object recognition) rather than low-level tasks [24, 25].

Multilayer perceptron neural networks are good tools for classification purposes. These

networks can approximate almost any regularity between input and output [26].

4.1 Advantages of Artificial Neural Networks

A neural network has the ability to learn through its massively parallel distributed

structure, and, therefore, to generalize. Generalization refers to the neural network

producing reasonable outputs for inputs not encountered during training [23]. These

capabilities help the neural network to solve complex problems that are currently

intractable. The use of neural networks [16, 23] offers the following useful properties and

capabilities:

• Nonlinearity: An artificial neuron can be linear or nonlinear. Since the neural

network is made up of nonlinear neurons, nonlinearity is distributed throughout the

network.

• Input-output mapping: The neural network model consists of input signal and a

corresponding desired response. The network is presented with a random set, and

the synaptic weights of the network are modified to minimize the difference

between the desired response and actual response of the network produced by the

input signal in accordance with an appropriate statistical criterion.

• Adaptivity: It is the ability of a network to perform efficiently in any

environment. A neural network trained to operate in a specific environment can be

easily retrained to deal with minor changes in the operating environmental

conditions.

4.2 Artificial Neural Networks for Image Processing

ANNs are very useful tools for nonlinear image processing, nonlinearity still being

a major problem in image processing. Nonlinearity issues can be listed as follows:

• The network input can consist of pixels or measurements in images; the output can

contain pixels, decisions, labels, etc., as long as all these can be coded numerically.

• Instead of designing an algorithm, one could construct an example data set and an

error criterion, and train ANNs to perform the desired input-output mapping.

• ANNs can themselves be highly nonlinear
27

In this thesis, ANN was used to identify the faces in the images as those containing

human faces and other objects. ANN solution was chosen because of the non linear nature

of the problem. Many learning procedures have been proposed for neural networks over

time. All the procedures, try to adjust the weights in the network model so that the models

performance improves over time [27]. Currently two classes of learning procedures exist,

namely, supervised and unsupervised.

In supervised learning [23], also referred to as learning with a teacher, network

models are presented with a set of training patterns one by one. The outputs, generated by

the networks based on the current inputs, are then compared with the desired output for

that particular training pattern. The difference between the actual outputs and desired

outputs, also called error, is used to update the weights so that the error will be minimized.

In unsupervised learning, also known as learning without a teacher, there is no teacher to

observe the learning process. That is to say, there are no labelled examples of the function

to be learned by the network.

For the work described in this thesis, a supervised learning algorithm was

implemented; since the label of the training set images (images with human faces vs.

images without human faces) were known.

4.3 Feed-Forward Neural Network

As suggested earlier, neural networks are composed of simple elements operating

in parallel. The network function is determined largely by the connections between

elements. We can train a neural network to perform a particular function by adjusting the

values of the weights between elements [28]. The model that I have chosen for training

images is a feed-forward network because the problem at hand is a two class problem,

where the output is a single image that indicates the faces in the image.

A simple neuron consists of scalar input, p, which is transmitted through a

connection that multiplies its strength by the scalar weight, w, to form the product, wp,

which is again a scalar as shown in Fig 4.1 below.

28

(input Transfer Function

p

 Jl
Fig 4.1: Single Neuron without Bias

The weighted input, wp along with the transfer function, f produces the scalar output, a.

The neuron may also have a scalar bias, b, which is simply being added to the

product, wp, as shown by the summing function or as shifting the function, f, to the left by

an amount b. The bias is much like a weight, except that it has a constant input (weight) of

1. A neuron with bias is shown below in Fig 4.2.

If input 	(Transfer Function

(Output

	IL 	

Jl

Fig 4.2: Single Neuron with Bias

The w and b are both adjustable scalar parameters of the neuron and f is a transfer

function, typically a step function or a sigmoid function, which takes the argument n and

produces the output a.

4.4 Network Model for the System

To perform the face detection, artificial neural network as shown in Fig 4.3, is

used. The inputs to the model are the features from the given image, and the output is an

image indicating the presence or absence of human faces. The parameters of this model

were optimized by trial and error method [33].

29

Input Layer 	 Hidden Layer 	 Output Layer Output

X
	

Y

Fig 4.3: Multi-Layer Artificial Neural Network

The training data set consists of a set of input vectors X, with corresponding output

Y. The input layer X consists of input data from the images. The summation of all the

information from the input nodes results in the output Y. The actual training consists of
adjusting the weights so that, for each input X, the output, YTARGET, computed by the
network closely matches the desired output, YACTUAL. The main aim is to find the
collection of weights that minimize IIY - TARGET - YACTUALII2, where II 112 stands for the
normalization over the input-output pairs in the training set.

Training is expensive computationally, since the determination of the weights must

be done simultaneously for all the data in the training set. The training set is chosen to

represent the entire space of possible inputs, so that an input similar to one in the training

set results in a similar output. The representation of faces is done by selecting a variety of

images with different skin tones. After the training is complete, the computation of the

output Y, for a given input X, is obtained.

For the model used in this face detection problem, input vector X consists of

features obtained from the given gray scale image. The output Y is related to the image

with the faces are marked by a rectangle box which determines the presence of faces.

Hence the output Y for a given input image X can be interpreted as:

30

> 0.9 	> X contains a human face

< 0.9 => X does not contains a human face

= 0.9 ,=> unclear if X contains a human face

A network with one hidden layer consists of 100 nodes is chosen in order to

represent the interrelationship among input features from images. The sigmoid function a

(t), is chosen as the output threshold function because the sigmoid function takes the input,

which may have any value between plus and minus infinity, and squashes the output into

the range zero to one.

a(t) = 1+e-:

Inputs entering a neuron not only get multiplied by the weights, but they also get

multiplied by the neurons characteristic equation, or transfer function. The sigmoid

function is a typical neuronal non-linear transfer function that helps make outputs

reachable. In other words, the sigmoid function helps a system reach desired outputs. The

sigmoid transfer function is used as a suitable transfer function in this case, since the

output has to be between zero and one.

The training algorithm chosen was scaled conjugate gradient algorithm, which

minimizes the error IY I , , - TARGET YACTUAL II 2 by multi-dimensional steepest descent. On

function approximation problems, for networks that contain up to a few hundred weights,

the scaled conjugate gradient algorithm will have the fastest convergence. This advantage

is especially noticeable if very accurate training is required.

The training data set, as shown in Appendix 1 & 2 consists of 68 face images and

55 non face images. The face images chosen represent a variety of ages, gender, with

glasses, without glasses. All the non face images were random objects taken from the

internet that were for free usage. Under ideal circumstances each face would have a

corresponding output Y = 1, while non face images would have output Y = 0; however, as

mentioned before, IYI > 0.9 was considered to represent a face image, and IYI < 0.9 meant

a non face image.

31

4.5 Transfer Functions

Three basic types of transfer functions commonly used are [231:

• Threshold function: The threshold function, as shown in the Fig 4.4, limits the

output of the neuron to either 0, if the net input argument n is less than 0 or 1, if n

is greater than or equal to 0 having the same name.

Fig 4.4: Threshold Function

• Linear Transfer function: Neurons of this type, as shown in Fig 4.5, are used as

linear approximations in linear filters. The network output can take any value by

using linear output neurons.

32

Fig 4.5: Linear Transfer Function

• Sigmoid Transfer Function: This type of function, as shown in Fig 4.6, takes the

input, which may have any value between plus and minus infinity and squashes the

output into the range 0 to 1.

33

Fig 4.6: Sigmoid Transfer Function

The central idea of a neural network is that it can be adjusted so that the network

exhibits desired behaviour. Thus, we can train the network itself will adjust these

parameters to achieve some desired output [29]. In this thesis, tan sigmoid function was

used as the transfer function, as the problem at hand was a two-class problem involving the

presence (1) or absence (0) of a human face in an image.

4.6 Network Layers

In the neural network terminology, a layer is defined as a group of neurons

arranged at various hierarchies [33]. So the Fig 4.7 would represent a single-layer network

and Fig 4.8 would represent a two-layer network, with the middle layer called a hidden

layer. There can be any number of hidden layers, and each hidden layer can have any

number of nodes. Each layer has a number of properties, the most important being the

transfer functions of the neurons in that layer, and the function that defines the net input of

each neuron gives its weights and the output of the previous layer.

34

• • •
Input Layer

Input Layer

Output Layer 	
Output

Fig 4.7:
Single Layer Network

Hidden Layer

Output Layer 	Output

Fig 4.8:1t4ulti
Layer Network

35

4.7 Neural network architecture designing

Requirements

During planning stage, following requirements for the software was laid.

a. It should have a GUI through which the user can execute each task;

b. The interface should be simple, clear, and systematic: one button, one function;

c. It should allow the user to select the test image;

d. Each subprogram should be straightforward and should not contain functions that

overlap;

e. It should display both the input image and the detected image at the end of the

detection process;

f. It should display the training process for observation purposes;

g. It should display detection results so that we are able to evaluate and analyse.

The things considered next were the image processing tasks. Internally, all pattern

recognition systems have the following processes. Each operation must complete its

task before the next one can begin:

1. Image acquisition

2. Image enhancement

3. Feature extraction

4. Neural network and classification

5. Detection

Since the output of each operation is the input to the next, the functional parts (1-5)

must execute in sequence. The size of image (input and output) is to be kept standard so

that there is better control and accuracy during matrix computation and parameter training.

36

4.8 Platform
MATLAB (30) is used in project because it has an integrated technical computing

environment that is suitable for algorithm design and development. It is a high-level

programming language that includes hundreds of functions.

4.9 Optimization of the Neural Network Parameters
Every supervised training algorithm involves the reduction of an error value. For

assessing the quality and success of training, the cumulative error for the entire batch of

training patterns must be computed. Mentioned in the previous chapter, the two most

common performance measures used are [11].

1. Mean square error

MSE = 0.5 EE (d-o)2

2. Root Mean Square Error

ERMS = SQRT [(EE (C1-0)2)/ PK]

Where P stand for all the training patterns, and K stands for all the neuron outputs.

For a simple network using the gradient descent, the plotting of errors (MSE or RMS)

against weight vectors will us the error surface of the network. This error profile will

provide information on the network's behaviour during training. One major problem faced

by error minimization is the entrapment of weights under a local of learning parameters

should guarantee a good quality solution within a reasonable amount of computing time.

Insertion of noise and randomness to the training set may be able to pull the process out of
a local minimum.

Training a network is not an easy task. Each choice of any parameter will affect the

other. An appropriate choice of any parameter will affect the other. An appropriate choice

of learning parameters should guarantee that a good quality solution is found within a

reasonable period of computing time. Generally, it is important to pay attention to a few

aspects [32]:

4.9.1 Weight Initialization

Initialization strongly affects the classifying solution. There are now many new

methods of doing it using statistics. It is necessary to reset the weights if an unsuccessful

training occurs. A good convergence is also determined by the values of weights that are

initialized: that is, whether they are randomly initialized or zero-initialized. The choice of

37

random • or zero weights for the hidden and output layers affects the network's
performance.

4.9.2 Weight Adaptation

Cumulative weight adjustment refers to the implementation of weight adjustments

at the conclusion of a complete learning cycle. During incremental training, the weights

continue to be modified as each is computed. If the network is capable and the learning

rate is set correctly, the error will eventually be driven to zero. In batch mode, the weights

and biases of the network are updated only after the entire training set has been applied to

the network. The gradients calculated at each training examples are added together to

determine the change in the weights and biases. For on-line operations, pattern-by-pattern

updating rather than batch updating should be used for weight adjustment.

4.9.3 Learning Constant

Its optimum value depends on the problem to be solved and is normally chosen

experimentally (with values ranging from 0.1 to 0.8). Only small learning rate guarantees a

true smooth gradient descent. Too large a value leads to fast convergence but poor

stability. Too small a value results in slow convergence. An adaptive rate may be more

suited for exploratory work. The addition of a momentum will also accelerate

convergence. It is done by supplementing the current weight adjustment parameter with a

momentum term kAw(t-1):

Aw(t) = 'goy + ?Aw(t-1)

Where X, is the momentum constant (0.1 to 0.9) during the tth change in weight. The

momentum constant is greater than 0 and to ensure convergence problems because the

learning-rate parameter is maintained constant throughout the computation. One may us

the search-then-converge schedule defined in

ri(n) = 1(0)4 1 +nit)

Where 11(0) and r are user selected constants. In the early stages of adaptation involving a

number of iterations n, the learning-rate parameter ri(n) is small compared to the search

time constant '1, and is approximately equal to TKO). Hence, a high value for ii(0) within

permissible range will help find a set of weights that hovers about a 'good' set of values.

One common modification to the algorithm is to gradually reduce the value of ti as the

number of gradient descent steps grows. This stochastic approximation is described by

38

n(n) = c / n, where c is a constant. Such an adaptive learning rate is sufficient to guarantee

convergence.

4.9.4 Inputs and Outputs

The training set must contain enough information to reveal the mapping structure.

Its size depends on the user's decision on the number of inputs, hidden neurons, and output

neurons. The number of inputs is usually determined by the dimension or the size of the

data to be classified. The size of an input vector often corresponds to the number of

features extracted from the previous stage. The number of output neurons is generally less

than the input size. Training examples presented to the network should be randomized

from one epoch to another for faster convergence. In our algorithm, a random permutation

of the face input vector is fed into the backpropagation network each time. All the vectors

are presented once, but their order is random in every iteration. This technique encourages

greater diversity of possible paths across the error-weight surface, which tends to favour

escape from local minima.

4.9.5 The hidden layer

In most situations, the best number of hidden units is determined by experimenting

with several network settings and estimating the generalization error of each. The size of

the hidden layer is always worth some level of consideration. Using too underfitting and

high statistical bias. Using too many will increase training time. An excessive number of

hidden neurons may cause overfitting, which means the network will learn the

insignificant aspects of the training set, resulting in high generalization error. A rule of

thumb, known as the Baum-Haussler rule (thesis 16), may be used to determine the

number of hidden neurons:

Nhidden < V (Ntrain Etoterance) (Npoints + Noutput)

Where Nhidden is the number of hidden neurons; Ntrain is the number of training example;

Etolerence is the error tolerance; Npoints is the number of data points (or pixels) Per training

example; and Noutput is the number of output neurons. This rule generally ensures that the

neural network generalizes, rather than memorizes. The number of hidden layers is

determined by trial and error. Usually, a network with one hidden layer is sufficient for

face detection. For large images, more hidden layers are needed to extract more

information. Excessive use of layers may also result in overtraining.

39

4.9.6 Choice of Activation Function

It is important to choose an activation function that is suitable for the nature of the

input pattern. A discrete function will perform poorly in a nonlinear pattern classification.

The combination of the types of transfer functions in individual layers also affects the

quality of training. It is advisable to try several combinations interchangeably.

4.9.7 Generalization problems

A network is said to generalize well when the input-output mapping computed by

the network is correct for test data that have not been used in creating or training the

network, or when the input is slightly different from the examples used to train the

network. However, when the network learns too many input-output examples, the network

may end up memorizing the training data. It may do so by finding a feature (due to noise,

for example) that is present in the training data but not true of the underlying function that

is to be modelled. When a network is overtrained, it loses the ability to generalize weight

similar input-output patterns. Controlling the number of epochs and fording an optimum

learning rate are good ways to avoid it.

4.9.8 Stopping Criterion

A variety of termination criteria can be used to halt the training process:
1. Stop after a fixed number of iterations;

2. Stop when the mean square error falls below some threshold;

3. Stop when the error on a separate validation set of examples meets some criterion;

4. Stop when the rate of change of error surface becomes shallower, so the change in

error at each epoch becomes even smaller;

5. Stop when the generalization error is acceptable.

4.10 Neural Network Architecture

The MLP neural network has feed forward architecture within input layer, a hidden

layer, and an output layer. The input layer of this network has N units for an N

dimensional input vector. The input units are fully connected to the I hidden layer units,

which are in turn, connected to the J output layers units, where J is the number of output

classes. A Multi-Layers Perceptron (MLP) is a particular of artificial neural network. We

40

will assume that we have access to a training dataset of 1 pairs (xi, yi) where xi is a vector

containing the pattern, while yi is the class of the corresponding pattern. In our case a 2-

class task, y, can be coded 1 and -1.

Fig 4.9: The neuron of supervised training

The Multi-Layers Perceptron consists of 3 layers, the input layer is a vector

constituted by n2 units of neurons (n x n pixel input images). The hidden layer has n

neurons, and the output layer is a single neuron which is active to 1 if the face is presented

and to otherwise. The activity of a particular neuron] in the hidden layer is written by

w fix, x, = f(s f)(1), f 	 (4.1)
ieinput

a sigmoid function. Where Wli is the set of weights of neuron i, bl(i) is the threshold and

x, is an input of the neuron. Similarly the output layer activity is

S; = E w jixi
	 (4.2)

ieinput

In our system, the dimension of the retina is 27x18 pixels represent human faces and non-

face, the input vector is constituted by 2160 neurons, the hidden layer has 100 neurons.

41

Matrix 27* 18

japut Layer

Fig 4.10: Architecture of detection system

The feed forward neural network is designed with one hundred neurons in the

hidden layer and one neuron in the output layer. All data from both "face" and "non-face"

folders will be gathered in a large cell array. Each column will represent the features of an

image, which could be a face, or not. Rows are as follows:
Row 1: File name

Row 2: Desired output of the network corresponded to the feature vector.

Row 3: Prepared vector for the training phase

We will adjust the histogram of the image for better contrast. Then the image will

be convolved with Gabor filters by multiplying the image by Gabor filters in frequency

domain. To save time they have been saved in frequency domain before Features is a cell

array contains the result of the convolution of the image with each of the forty Gabor

filters. These matrices have been concatenated to form a bif 135x144 matrix of complex

numbers. We only need the magnitude of the result. That is why "abs" is used.135x144 has

10,400 pixels. It means that the input vector of the network would have 19,400 values,

which means a large amount of computation. So we have reduced the matrix size to one-

third of its original size by deleting some rows and columns. Deleting is not the best way

42

but it save more time compare to other methods like PCA. We should optimize this

function as possible as we can.

First training the neural network and then it will return the trained network. The

examples were taken from the Internet database. The MLP will be trained on 70 face and

60 non-face examples.

The Neural Network Architecture obtained from the MATLAB which consists of

one input layer, one output layer and one hidden layer. The hidden layer consists of 100
neurons.

43

CHAPTER-5

IMPLEMENTATION OF THE NEURAL NETWORK MODEL

This chapter is dedicated to description of program execution. The entire face

detection system is composed of eleven-files. In the following sections, the GUI and the

software structure of the program are shown, including a list of all the subprograms

together with a description of their tasks. How the face images were acquired, how certain

decisions were taken for training, and most importantly, how this system works.

5.1 Program Components

Fig. 6.1 is the main menu of our face detection system. The program consists of

eleven component files, each performing a different task. The lists labelled "functions" and

"sub-functions" are the m-files created using MATLAB. As a lot of investigations and

frequent testing are conducted, the program is designed in such a way that one can perform

each operation step by step. A complex program that links every function together is going

to give many problems; therefore, each execution is kept simple. In this particular GUI,

one button executes one process. A description of all the functions is given in below. The

complete source codes are given in Appendix 1.

Fig 5.1: Graphical User Interface (GUI) executed by main.m

44

a. Create Database: The images containing faces and non faces had been created

for 	 training the network.

b. Initialize Network: The Neural Network is initialized with input, output and

hidden layers and also with training parameters such as

learning rate, training algorithm, number of epochs and

performance function.

c. Train Network: The Neural Network is trained with the training face and non

face 	 images as per the Network initializations.

d. Test on Photos: The input images are selected from the folders for detection of

the faces.

e. Exit: After completion of the detection process the system will exit.

The description of program components is given below

1. main.m

User interface for accessing all operations.

2. loadimages.m

This function prepares images for training phase. All data from both "face" and

"non-face" folders will be gathered in a large cell array. Each column represents the

features of an image which could be a face or not. Rows are as follows: Row 1: File name

Row 2: Desired output of the network corresponded to the feature vector. Row 3: Prepared

vector for the training phase, Also this script saves the database to a file named

"imgdb.mat". So we do not need to create the database more than once unless we add or

delete some photos to/from "face" and "non-face" folders. Every time we do this, after

recreating a database, we should initialize and train the network again. This script uses

"im2vec.m" to extract features from images and vectorize them for the database.

3. createffnn.m

This function creates a feed forward neural network with one hundred neurons in

the hidden layer and one neuron in the input and output layer. The network will be saved

in "net.mat" for further use.

45

4. trainnet.m

This function trains the neural network with the face and non face images and then

returns the trained network

5. create_gabor.m

This script uses gabor.m to generate forty 32x32 gabor filters and save them in a

cell array matrix called "G" and in a file named " gabor.mat". This script will be inkoved

only once unless we delete "gabor.mat".

6. im2vec.m

This function takes a 27x18 image. It adjusts the histogram of the image for better

contrast. Then the image will be convolved with gabor filters by multiplying the image by

gabor filters in frequency domain. Gabor filters are stored in "gabor.m". To save time they

have been saved in frequency domain before. Features135x144 is a cell array contains the

result of the colvolution of the image with each of the forty gabor filters. These matrixes

will be concated to form a bif 135x144 matrix of complex numbers. we only need the

magnitude of the result. That is why "abs" is used. 135x144 has 10,400 pixels. It means

that the input vector of the network should have 19,400 values which mean a large amount

of computation. So we reduce the matrix size to one-third of its original size by deleting

some rows and columns. Deleting is not the best way but it save more time compare to

other methods like PCA.

7. imscan.m

In the first section the given image is convolved with the predefined template. Then

imregionimax is used to detect the centre of potential face contained window. In the

second section the algorithm checks all potential face-contained windows and the windows

around them using neural network. The result will be the output of the neural network for

checked regions.

46

8. drawrec.m

This script is used to draw the rectangle around the face in the detected images

which indicates that the presence of faces in the given images.

5.2 Selection of Face Database

During planning, some research was carried out on the Internet and a few face and

non face images were found. Most were freely available and had a rich variety of faces and

non faces, but in accordance to the objective to test the system passport size photos with

27x18 are required for training the network. We are clear that training and analyzing too

many images is a waste of precious time, so 68 face images and 55 non face images were

taken for training. Each of them varies in orientation and expression, some with glasses,

and some without glasses. For testing the system different images are collected. Some of

them are taken from the interne and some of them are taken from the digital camera.

5.3 Image Resizing

The original images are found with different dimensions such as 112x92 pixels,

which mean each has a total pixel size of 10304 if it is placed in a single array row. This

size is not efficient for normal training; especially there are large training sets. To avoid

increased computation and long training times, it is necessary to resize the face images.

The images are therefore resized to 27x18 which means each has a total pixel of 486. The

input image given for testing also resized such that the faces in the images are must be

approximately in the size of 27x18.

5.4 Training Parameters and Weight Initialization

A good set of training parameters ensures the learnability of the network. Network

learnability relates to the ability of a learning algorithm to find a set of weights that can

give the accuracy needed for a good mapping approximation. In other words, the network

must find weights that can produce good generalization. An optimum set of parameters,

was found, for the network after several tests. The validation set was used to perform cross

validation with the training set. The first thing tested for was the maximum training epoch.

Started out with 500 epochs, but the network seemed to be overtrained. Hence, the epochs

were reduced and the performance goal met at 177 epochs. The performance was relatively

47

fine after that. The network was stable and convergence was smooth. Next, proceeded to

determine the learning rate. Started out with 0.1, but it is showed signs of undertraining,

continued with other values, each time increasing the learning constant by 0.1. It was

finally decided on 0.8, as this value produced outputs that were stable even after the set of

weights were reinitialized.

A range of hidden neuron sizes on the network was tried out and found that a

neuron size weight 100 to 106 is best. The network uses the least mean square method.

5.5 Training

This program displays real-time training parameters as they go through each

iteration. Knowledge of the current epoch and the corresponding error gradient enables us

to keep check on the training progress. If the training error suddenly drops or increases in

value, it is known that the network is facing problems and can terminate the training

process immediately. The network training process is shown below.

Fig 5.2: Training process

48

CHAPTER-6

INTERPRETATION OF RESULTS

In this chapter Experimental results of the existing methods and the proposed

method are presented, which are implemented using Matlab Version 7.0.1. The output

images of the existing methods and the proposed method are shown in the fig 6.12 and

fig 6.7 respectively. The results show that the proposed face detection system has high

detection accuracy as compared to the existing methods. From the fig 6.12 & 6.13 of the

existing method we can observe that some of the faces are not detected. The output images

of the proposed method are shown in fig 6.7 and have very good detection quality but in

fig 6.11 the detection is poor since the selected parameters of Neural Network are not

optimized. The training images (face and non face images) are initially pre-processed by

Gabor filters for feature extraction. Later the extracted features of the images are applied

for training the neural network. Then the unknown test image is also pre-processed and

Gabor features are extracted. Now the extracted features are fed and tested with the trained

neural networks of the dataset of images and classified to see if the part containing a face

or not.

There are virtually no tools to select an appropriate architecture and learning

parameters for a neural network. In most cases, learning parameters are determined by

experience or based on the trial and error method. In this chapter the learning rate, optimal

number of neurons for the hidden layer and the learning algorithm are decided for training

the neural network.

6.1. Image Allocation

In this experiment, 68 face images and 55 non face images are used for the training

of the feed forward Neural Network shown in the Appendixl . All the training images are

resized to have a dimension of 27x18 for minimizing the learning time. Different sizes of

the images were used for testing the system. Some of the testing images were collected

from the digital camera, web camera and some of them are collected from interne.

49

6.2. Evaluation of the parameters

In this section the experiments are conducted to investigate the feasibility and

effectiveness of the appearance-based face detection system, which are shown in table 6.1.

Table 6.1: Areas of investigation

Evaluation Areas Variable Parameters

Learning rate 0.1 to 0.8

Number of Hidden Neurons 100 to 106

Sigmoid function Tansig, logsig

Training algorithm Scg, rp, gda

6.3. Fixed and Variable Parameters

The network is structured with one hidden layer of 100 neurons it is decided by

trial and error method. The sigmoid function is used in both the hidden and output layers.

Initial weights for the hidden layer are set at 0. The optimized parameters for Neural

Network are shown in table 6.2.

Table 6.2: Regularized Parameters

Parameters Standardized and Optimized Value

Hidden Layer 1

Hidden Neurons 100

Sigmoid function logistic

Training Algorithm Scaled Conjugate Algorithm

50

6.4. Learning Rate

The performance of the system is very sensitive to the proper setting of the learning

rate. The learning rate is held constant throughout training. If the learning is set too high,

the algorithm may oscillate and become unstable. If the learning rate is too small, the

algorithm will take too long to converge. It is not practical to determine the optimal setting

for the learning rate before training. Several trainings should be performed using a variety

of learning rates before determining the optimum value.

Experiments were conducted with learning rates ranging from 0.1 to 0.8, each time

increasing by 0.1. Detection accuracy increases with the learning constant until it reaches

full detection at 0.6 or 0.8, after or before which the performance starts to deteriorate. The

training with TRAINSCG and 0.1 learning rate is shown in the fig 6.1 and the training

with 0.8 learning rate is shown in fig 6.2.

101
	Performance is 000t -9 174, Goat is

10
2

10

10-4
a 20 40
	

80 100 120 140
	

180
189 Epochs

Fig 6.1: The training performance with learning rate 0.8 and scaled conjugate gradient

training algorithm

51

Performance is 00009 	4, Goal is :0.001

0 	20: 	eta 	60 	Bfl 	100 	120: 	140 	160
177 Epochs

Fig 6.2: The training performance with learning rate 0.1 and scaled conjugate gradient

training algorithm

6.5. Number of Hidden Neurons

How to determine the number of hidden neurons is always a discussion topic in

neural networks. Baum and Haussler rule was discussed in the previous chapter, but that

does not mean the equation will work for every network. But the trial and error is the best

way to work out the optimal number of hidden units. The Baum and Haussler rule should

be used as an estimator. In this experiment, the network was trained with different number

of hidden units (90 to 150) and verified their detection performance. For a network with

100 to 106 hidden neurons, the recognition accuracy is 99%. Any number of hidden units

beyond 106 will experience a gradual decrease in performance.

6.6 Learning Algorithm

Once the network weights and biases have been initialized, the network is ready

for training. The network can be trained for function approximation (nonlinear regression),

pattern association, or pattern classification. The training process requires a set of

52

U

C9

ID

1:0

examples of proper network behaviour - network inputs p and target outputs t. During

training the weights and biases of the network are iteratively adjusted to minimize the

network performance function. The default performance function for feedforward

networks is mean square error mse - the average squared error between the networks

output a and the target outputs t.

There are several different training algorithms for feedforward networks. All of

these algorithms use the gradient of the performance function to determine how to adjust

the weights to minimize performance. Gradient Descent (traingd), Gradient Descent with

Momentum (traingdm), Variable Learning Rate (traingda, traingdx), Resilient

Backpropagation (trainrp) and Scaled Conjugate Gradient (trainscg) are the different

training algorithms used for feed forward networks. In this experiment different training

algorithms are used and their training rate and detection rate is recorded. For this system

scaled conjugate gradient algorithm will give the best performance and the results are

shown in the fig 6.7 which shows the complete detection. The Resilient Back Propagation

will take the less time for training as compared to scaled conjugate algorithm but the

detection is poor as shown in fig 6.11. The training of the network for different training

algorithm with 0.8 learning rate is shown in the figures below.

53

io°

-2
10

Performance is 0.000973217, Goal is 0.001

100 120

-3
1 0

2
	

40 	60 	BO
127 Epochs

Fig 6.3: The training performance for the scaled conjugate gradient training algorithm with

0.8 learning rate, which shows that the target is reached at 127 Epochs.

54

101
Perfofmance is 0.000995552, Goal is 0.001

60 50 70 10
	

30 	40
73 Epochs

10
°

0-

Fig 6.4: The training performance for the Resilient Backpropagation training algorithm

with 0.8 learning rate, which shows that the target is reached at 73 Epochs.

55

-4o 5000 3500 4000 4600 600 1000 1500 2000 2500 3000
5000 Epochs

Performance is 0.00344088, poal s 0.001

0

0

Fig 6.5: The training performance for the Gradient descent with adaptive learning rate

Backpropagation training algorithm with 08 learning rate, which shows that the target is

not reached for 5000 Epochs.

56

\0
4000 4500 5000 500 1000 1500 2000 2500 3000 3500

5000 Epochs

Performance is 0.00165947, oal 	001
101

100

Fig 6.6: The training performance for the Gradient descent with momentum and adaptive

learning rate Backpropagation training algorithm with 0.8 learning rate, which shows that

the target is not reached for 5000 Epochs.

57

(a)

(b)

Fig 6.7: (a) Original image which is taken from the digital camera, (b) Output obtained
from the system. The total faces in the image are six and the detected faces are six hence
no false detection.

58

(a)

(b)

File Edit Vjsw Insert Tools Desktop Window Help

Fig 6.8: (a) Original image which is taken from the internet, (b) Output obtained from the
system in which there is no false detection.

59

(a)

414-417,71, -
Thole DeAt*

43. 'k"7 	WI 0

(b)

Fig 6.9: (a) Original image, (b) Output obtained from the system. Totally there are eight
faces but only seven faces are detected due to blurriness.

60

(a)

(b)

Fig 6.10: (a) Original image taken from the web camera, (b) Output obtained from the
system

61

(a)

(b)

Fig 6.11: (a) Original image, (b) Output obtained from the system in which false detections
are present.

62

(a)

(b)

Fig 6.12: (a) Original image, (b) output image from the system which has false detections

63

(a)

(b)

Fig 6.13: (a) Original image, (b) Output image from the system which has maximum false
detection due to blurriness.

64

CHAPTER-7

CONCLUSION AND FUTURE WORK

In this thesis, a new approach to face detection with Gabor filters & feed forward
neural network is presented. The method uses Gabor feature extraction & feed forward
neural network for both finding feature points and extracting feature vectors. From the
experimental results, it is seen that proposed method achieves better results compared to
the graph matching and eigenface methods. Feature points are obtained from the special
characteristics of each individual face automatically, instead of fitting a graph that is

constructed from the general face idea. In the proposed algorithm, since the facial features
are compared locally, instead of using a general structure, it allows us to make a decision
from the parts of the face.

Future Work
Although detection performance of the proposed method is very good, the main

limitation of the system is that it only detects upright faces looking at the camera. So
further it can be improved by training the separate versions of the system for each head

orientation, and the results could be combined to get the detection of faces for different
poses and orientations.

65

REFERENCES

1. H. A. Rowley, S. Baluja, T. Kanade, "Neural Network-Based Face Detection",

IEEE Trans. On Pattern Analysis and Machine Intelligence, vol.20, No. 1, Page(s).

39-51, 1998

2. Y. Ming-Hsuan, D. J. Kriegman, and N. Ahuja, "Detecting faces in images: a
survey," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.

24, pp. 34-58, 2002.

3. H. Rein-Lien, M. Abdel-Mottaleb, and A. K. Jain, "Face detection in color

images," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.

24, pp. 696-706, 2002.

4. Lamiaa Mostafa,Sharif Abdelazeem " Face Detection Based on Skin Color Using

Neural Networks" in GVIP 05 Conference, pp19-21 ,Dec 2006, CICC, Cairo,

Egypt

5. F.Smach,M.Atri,J.Miteran and M.Abid " Design of a Neural Networks Classifier

for Face Detection" in Journal of computer Science 2(3):pp257- 260,2006

6. XuewenWang, Xiaoqing Ding Li, Changsong Liu "Gabor filters-based feature

extraction for character recognition" in journal of pattern recognition 38 (2005) 369

—379.

7. Antonio J. Colmenarez and Thomas S. Huang. Face detection with information-

based maximum discrimination. In Computer Vision and Pattern Recognition,
pages 782-787, 1997.

8. Baback Moghaddam and Alex Pentland. Probabilistic visual learning for object
detection. In Fifth International Conference on Computer Vision, pages 786-793,
Cambridge, Massachusetts, June 1995. IEEE Computer Society Press.

66

9. Baback Moghaddam and Alex Pentland. Probabilistic visual learning for object

detection. In Fifth International Conference on Computer Vision, pages 786-793,

Cambridge, Massachusetts, June 1995. IEEE Computer Society Press.

10. S. H. Lin, S. Y. Kung, and L. J. Lin. Face recognition/detection by probabilistic

decisionbased neural network. IEEE Transactions on Neural Networks, Special

Issue on Artificial Neural Networks and Pattern Recognition, 8(1), January 1997.

11. Gilles Burel and Dominique Carel. Detection and localization of faces on digital

images. Pattern Recognition Letters, 15:963-967, October 1994.

12. Edgar Osuna, Robert Freund, and Federico Girosi. Training support vector

machines: an application to face detection. In Computer Vision and Pattern
Recognition, pages 130-136,1997.

13. R. Vaillant, C. Monrocq, and Y. Le Cun. Original approach for the localisation of

objects in images. IEE Proceedings on Vision, Image, and Signal Processing,
141(4), August 1994.

14. Gaungzheng Yang and Thomas S. Huang. Human face detection in a complex

background. Pattern Recognition, 27(1):53-63,1994.

15. Kin Choong Yow and Roberto Cipolla. Feature-based human face detection.

Technical Report CUED/F-INFENGT1R 249, Department of Engineering,

University of Cambridge, England, 1996.

16. C.M. Bishop, Neural Networks for Pattern Recognition, Oxford United Press,
NewYork, 1995.

17. T. Acharya and A. Ray, Image Processing: Principles and Applications, Wiley
Publications, 2005.

67

18. Lamiaa Mostafa,Sharif Abdelazeem " Face Detection Based on Skin Color Using

Neural Networks" in GVIP 05 Conference, pp19-21 ,Dec 2006, CICC, Cairo,

Egypt.

19. R. Gonzalez and R. Woods, "Digital Image Processing" (Second Edition), Pearson

Education.,2005

20. F. Lin, X, Yu, S. Gregor, and R. Irons, "Time Series Forecasting with Neural

Networks", Central Queensland University, Australia, 1995. Scientific Papers,

Complexity International, Monash University, Australia, 1996.

21. Zhang ZhenQiu, Zhu Long, S.Z. Li, Zhang Hong Jiang, "Real-time multi-view

face detection" Proceeding of the Fifth IEEE International Conference on

automatic Faceand Gesture Recognition, Page(s): 142-147, 20-21 May 2002.

22. M. Sadiku and M. Mazzara, "Computing with Neural Networks," IEEE Potentials,

October 1993, pp. 14

23. S. Haykin, Neural Networks: A Comprehensive Foundation, Pearson Education

1994.

24. M. Ibnkkahla, "Application of Neural Networks to digital communications- a

survey," Signal Processing, Published by Elsevier Science, pp. 1185-1215,

November 2000.

25. M. H. Ahmad Fadzil and H. Abu Bakar, "Human Face Recognition using Neural

Networks," IEEE, 0-8186-6950-0, 1994.

26. M. Zhang and J. Fulcher, "Face Recognition using Artificial Neural Network

Group-Based Adaptive Tolerance (GAT)," IEEE Transactions on Neural

Networks, Vol. 7, No. 3, may 1996.

68

27. J. Dalton and A. Deshmane, "Artificial neural networks," IEEE Potentials, pp. 34,
April 1991.

28. A. Doulamis, N. Doulamis, and S. Koffias, "On-line Retrainable Neural Networks:

Improving the performace of Neural Networks in Image Analysis Problem," IEEE
Transactions on Neural Networks, Vol. II, No. 1, January 2000.

29. R.P. Lippmann, "An Introduction to computing with neural nets," IEEE ASSP

Magazine, Vol.4, pp. 4-22, 1987.

30. Howard Demuth, Mark Beale, "Neural Network Toolbox for use with MATLAB,"

The Mathworks Inc.

31. Fan Yang and Michel Paindavoine,"Prefiltering for pattern Recognition Using

Wavelet Transform and Neural Networks", Adavances in imaging and Electron

physics,Vol. 127, 2003.

32. Sqn Ldr Prashant Srinivastava,"A Neural Network Based Face Recognition

System" a dissertation report at IIT Roorkee, 2007.

33. Rajesh Reddy Kalwakuntla,"Face Recognition of Color Images Using Artificial

Neural Networks" a thesis report at Texas A&M University,Kingsville,2005

69

Paper submitted for conference:

S.Lingamiah, M.J.Nigam,"Face detection for two dimensional images using Gabor

feature extraction and Neural Networks" International conference on Neural Networks,

Amsterdam The Netherlands. Sept 28-30. 2010. (under review)

70

Appendix-1: Face Data Base for Training

1
	

2 	3
	

4 	5 	6 	7 	8
	

9

10
	

11
	

12 	13 	14
	

15 	16 	17 	18

19 	20 	21
	

22 	23 	24 	25 	26
	

27

28 	29
	

30 	31 	32 	33 	34 	35 	36

37 	38
	

39 	40 	41 	42 	43 	44 	45

71

46 	47
	

48 	49 	50 	51 	52 	53 	54

55 	56
	

57 	58 	59 	60 	61 	62 	63

64 	65
	

66
	

67
	

68

72

Appendix-2: Non Face Data Base for Training

1
	

2
	

3
	

4
	

5
	

6
	

7
	

8

9 	10
	

11
	

12
	

13
	

14
	

15
	

16

1 1
17
	

18
	

19
	

20
	

21
	

22
	

23
	

24

25
	

26
	

27
	

28
	

29
	

30
	

31
	

32

33
	

34
	

35
	

36
	

37
	

38
	

39
	

40

73

41
	

42
	

43
	

44
	

45
	

46
	

47
	

48

49
	

50
	

51
	

52
	

53
	

54
	

55

74

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

