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ABSTRACT 

Images containing faces are essential to intelligent vision-based human computer 

interaction, and research efforts in face processing include face recognition, face tracking, 

pose estimation, and expression recognition. Given a single image, the goal of face detection 

is to identify all image regions which contain a face regardless of its position, orientation, and 

lighting conditions. Such a problem is challenging because faces are nonrigid and have a high 

degree of variability in size, shape, color, and texture. The faces in a given image are detected 

by using a neural network and Gabor filter features. 

Numerous techniques have been developed to detect faces in a single image and are 

classified into four categories; Knowledge-based methods, Feature invariant approaches, 

Template matching methods and Appearance-based methods. In case of Appearance-based 

method the models are learned from a set of training images which should capture or identify 

the variations of facial appearance. These learned models are then used for detection. These 

methods are designed mainly for face detection. 

The dissertation work consists of two parts; Image processing and Neural Network. 

The given image is processed using Gabor filters for extracting the facial features by using 

the image processing tool box. The extracted facial features are applied to the feed forward 

neural network by using neural network tool box. Considering the desirable characteristics of 

spatial locality and orientation selectivity of the Gabor filter, the filters had been designed for 

extracting facial features from the local image. The goal of facial feature extraction is to 

detect the presence and location of features such as eyes, nose, nostrils, eyebrow, mouth, lips, 

ears, etc. The feature vector based on Gabor filters is used as the input of the classifier, which 

is a Feed Forward neural network. The given image convolved with Gabor filters by 

multiplying the image by Gabor filters in frequency domain. 

Feature extraction algorithm for the method has two main steps; feature point 

localization and feature vector computation. Feature vectors are extracted from points with 

high information content on the face image. In most feature-based methods, facial features 

are assumed to be the eyes, nose and mouth. From the responses of the face image to Gabor 

filters, peaks are found by searching the locations in a window WO of size W x W. Feature 

vectors are generated at the feature Points as a composition of Gabor wavelet transform 
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coefficients. This architecture was implemented using Matlab in a graphical environment 

allowing face detection in a database. It has been evaluated using the training data and test 

data of 150 images containing faces and non faces, on this test set I obtained a good detection 

which is shown in chapter 6. 

Face detection and recognition has many applications in a variety of fields such as 

security system, videoconferencing and identification. The objective of this work is to 

implement a classifier based on neural networks and Gabor feature extraction for face 

detection. The ANN is used to classify face and non-face patterns. 

iv 



LIST OF FIGURES 

Figure No. Figure Caption Page No. 

2.1 A typical face used in knowledge based top down method 5 
2.2 Face and non face clusters 10 
3.1 Gabor filter kernels with values of the wavelength 

parameter of 5, 10 and 15 14 
3.2 Gabor filter kernels with values of the orientation 

parameter of 0, 45 and 90 15 
3.3 Gabor filter kernels with values of the phase offset 

parameter of 0, 180, -90 and 90 degrees 16 
3.4 Gabor filter kernels with values of the aspect ratio 

parameter of 0.5 and 1 16 
3.5 Gabor filter kernels with values of the bandwidth 

parameter of 0.5, 1, and 2 17 
3.6 Gabor filters correspond to 5 spatial frequencies 

and 8 orientations 21 
3.7 Facial feature points found as the high-energized 

points of Gabor wavelet responses 22 
3.8 Flowchart of the feature extraction stage of the 

facial images 23 
3.9 Finding the center of each region 25 
3.10 Filtering above pattern for values above threshold (xy) 25 
3.11 Final Result of the detection 25 
4.1 Single Neuron without Bias 28 
4.2 Single Neuron with Bias 29 
4.3 Multi-Layer Artificial Neural Network 30 
4.4 Threshold Function 32 
4.5 Linear Transfer Function 33 
4.6 Sigmoid Transfer Function 34 
4.7 Single Layer Network 35 
4.8 Multi Layer Network 35 
4.9 The neuron of supervised training 41 
4.10 Architecture of proposed system 42 



5.1 	Main GUI executed by main.m 	 44 

5.2 	Training process 	 48 

6.1 	The training performance with learning rate 0.8 and 

scaled conjugate gradient training algorithm 	 51 

6.2 	The training performance with learning rate 0.1 
and scaled conjugate gradient training algorithm 	 52 

6.3 	The training performance for the scaled conjugate gradient 

training algorithm with 0.8 learning rate, which shows that 

the target is reached at 127 Epochs. 	 54 

6.4 	The training performance for the Resilient Backpropagation 

training algorithm with 0.8 learning rate, which shows that 

the target is reached at 73 Epochs 	 55 

6.5 	The training performance for the Gradient descent with 

adaptive learning rate Backpropagation training algorithm 

with 0.8 learning rate, which shows that the target is not 

reached for 5000 Epochs 	 56 

6.6 	The training performance for the Gradient descent with 

momentum and adaptive learning rate Backpropagation 

training algorithm with 0.8 learning rate, which shows that 

the target is not reached for 5000 Epochs 	 57 

6.7 	Output obtained from the system which is taken from 
the digital camera 	 58 

6.8 	Output obtained from the system which is collected from 

the interne 	 59 
6.9 	Output obtained from the system 	 60 
6.10 	Output obtained from the system 	 61 

6.11 	Output obtained from the system in which false detections 

6.12 

6.13 

are present. 62 

Output obtained from the existing method 63 

Output obtained from the existing method with false detection 64 

vi 



CONTENT 

Candidate's Declaration and Certificate 	  

Acknowledgements 	  ii 

Abstract 	  iii 

List of Figures 	  

Content 	  vii 
1. Introduction 	1 

2. Face Detection in Image 	  3 
2.1. Knowledge - Based Methods 	  4 

2.2. Feature — Based Methods 	  6 

2.2.1 Facial Features 	  6 
2.2.2 Texture 	  7 
2.2.3 Multiple Features 	  7 

2.3. Template matching 	  8 
2.3.1 Predefined Templates 	  8 

2.4. Appearance Based Methods 	  9 
2.4.1 Eigenfaces 	  9 
2.4.2 Distribution Based Methods 	  10 

2.4.3 Support Vector Machines 	  11 
3. Digital Image Processing 	  12 

3.1. Image Enhancement 	  12 

3.1.1. Point Operation 	  12 
3.1.2. Mask Operation 	  12 

3.2. Gabor filter 	  12 

3.2.1. Explanation of Parameters 	  13 
3.3. 2D Gabor Wavelet Representation of Faces 	  20 

3.3.1. Feature Extraction 	  21 
3.3.2. Feature Point Localization 	  21 
3.3.3. Feature Vector Generation 	  22 

4. Neural Networks 	  26 
4.1. Advantages of Artificial Neural Networks 	  27 
4.2. Artificial Neural Networks for Image Processing 	  27 
4.3. Feed-Forward Neural Network Model 	  28 

vii 



4.4. Network Model for the System 	29 
4.5. Transfer Functions 	32 
4.6. Network Layers 	34 
4.7. Neural network architecture designing 	36 
4.8. Platform 	37 
4.9. Optimization of Neural Network Parameters 	37 

4.9.1. Weight Initialization 	37 
4.9.2. Weight Adaptation 	38 
4.9.3. Learning Constant 	38 
4.9.4. Inputs and Outputs 	39 
4.9.5. The Hidden Layer 	39 
4.9.6. Choice of Activation Function 	40 
4.9.7. Generalization Problems 	40 
4.9.8. Stopping Criterion 	40 

4.10. Neural Network Architecture 	40 
5. Implementation of the Neural Network Model 	  44 

5.1. Program Components 	44 
5.2. Selection of Face Database 	47 
5.3. Image Resizing 	47 
5.4. Training Parameters and Weight Initialization 	47 
5.5. Training 	48 

6. Interpretation of Results 	49 
6.1. Image Allocation 	49 
6.2. Evaluation of parameters 	50 
6.3. Fixed and Variable Parameters 	50 
6.4. Learning Rate 	 OOO •• 	51 
6.5. Number of Hidden Neurons 	52 
6.6 Learning Algorithm 	52 

7. Conclusion 	65 
References 	  66 
Appendix-1 	  71 
Appendix-2 	  73 

viii 



CHAPTER-1 

INTRODUCTION 

The objective of the face detection problem described in this thesis is to identify 

the presence of a human face in a given image. In image analysis, there is always a need 

for a technique to model the human vision. An artificial neural network classifier is 

designed to solve the face detection problem similar to the human brain, which can 

differentiate between human faces and non-faces. 

Pattern recognition covers a wide range of information processing problems of a 

great practical significance. Pattern recognition is a branch of artificial intelligence 

concerned with the identification of visual patterns by computers. For the computer to 

recognize the pattern, the patterns must be converted into digital signals and compared 

with patterns already stored in memory. Pattern recognition is an integral part of machine 

vision and image processing, and finds its applications in many fields such as biometric 

and biomedical image diagnostics, remote sensing, fault detection in machinery, and 

handwritten character recognition. These problems can quite often be solved by humans in 

a seemingly effortless fashion. However, designing a system for automatic image content 

recognition is a challenging task [16]. 

The objective of pattern recognition is to recognize objects in the scene from a set 

of measurements of the object. Each object is a pattern and measured values are the 

features of the pattern. Recognition is the concept of learning from sample patterns. A set 

of similar objects possessing more or less identical features are said to belong to a certain 

pattern class [17]. 

Techniques used to measure the features are known as feature extraction 

techniques. Patterns may be described by a set of features, all of which may not have 

enough discriminatory power to single out one class of patterns from another. The 

selection and extraction of appropriate features from patterns pose is the first major 

challenge in pattern recognition. 

1 



Numerous techniques have been developed to detect faces in a colour and gray 

scale images and they are classified into four categories [2]; Knowledge-based methods, 

Feature invariant approaches, Template matching methods and Appearance-based 

methods. In case of Appearance-based method the models are learned from a set of 

training images which should capture or identify the variations of facial appearance. These 

learned models are then used for detection. 

In this work MATLAB is used to implement the algorithm to detect the presence of 

human faces in the given images. The results of this thesis work can be used for important 

applications such as automated security systems, indexing and retrieval of video images, 

and for face detection in crowded images. The main contribution of the work presented in 

this thesis is the implementation of neural network algorithm using scaled conjugate 

gradient training method and Gabor filter facial feature extraction. 

Chapter II contains a brief description of the existing face detection techniques. 

Chapter III contains introduction to the digital image processing and also this chapter 

discusses about the Gabor filters and feature extraction of the images. Chapter IV explains 

the Artificial Neural Network, the architecture used, the threshold functions and also 

discusses the design of the feedforward neural network. Chapter V summarizes the 

implementation of the neural network model for the proposed method. Chapter VI contains 

the results and their interpretation. Conclusions and suggestions for future work are made 

in chapter VII. 
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CHAPTER-2 

FACE DETECTION IN IMAGE 

In this section we review existing techniques to detect faces from a single intensity 

or colour image and classified into four categories [2]; 

1. Knowledge-based methods: It dependence on using the rules about human facial 

feature. It is easy to come up with simple rules to describe the features of a face and their 

relationships. For example, a face often appears in an image with two eyes that are 

symmetric to each other, a nose, and a mouth. , and features relative distance and position 

represent relationships between feature. After detecting features, verification is done to 

reduce false detection. This approach is good for frontal images but the difficulty of this 

method is how to translate human knowledge into known rules and to detect faces in 

different poses. 

2. Feature based method: This approach depends on extraction of facial features that are 

not affected by variations in lighting conditions, pose, and other factors. These methods 

are classified according to the extracted features [18]. Feature-based techniques depend on 

feature derivation and analysis to gain the required knowledge about faces. Features may 

be skin colour, face shape, or facial features like eyes, nose, etc.... Feature based methods 

are preferred for real time systems where the multi-resolution window scanning used by 

image based methods are not applicable. 

Human skin colour is an effective feature used to detect faces, although different 

people have different skin colour, several studies have shown that the basic difference 

based on their intensity rather than their chrominance. Textures of human faces have a 

special texture that can be used to separate them from different objects. Facial Features 

method depends on detecting features of the face. Some users use the edges to detect the 

features of the face, and then grouping the edges. Some others use the blobs and the 

streaks instead of edges. For example, the face model consists of two dark blobs and three 

light blobs to represent eyes, cheekbones, and nose. The model uses streaks to represent 

the outlines of the faces like, eyebrows, and lips .Multiple Features methods use several 

combined facial features to locate or detect faces. First find the face by using features like 
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skin colour, size and shape and then verifying these candidates using detailed features such 

as eye brows, nose, and hair. 

3. Template matching methods: Template matching methods use the correlation between 

pattern in the input image and stored standard patterns of a whole face or face features to 

determine the presence of a face or face features. Predefined templates as well as 

deformable templates can be used. Several standard patterns of a faces are stored to 

describe the face as a whole or the facial features separately. The correlations between an 

input image and the stored patterns are computed for detection. These methods have been 

used for both face localization and detection. 

4. Appearance-based methods: In this approach, there is a predefined standard face 

pattern which is used to match with the segments in the image to determine whether they 

are faces or not. It uses training algorithms to classify regions into face or non-face classes. 

In contrast to template matching, the models (or templates) are learned from a set of 

training images which should capture the representative variability of facial appearance. 

These learned models are then used for detection. These methods are designed mainly for 

face detection. 

2.1 Knowledge-Based Methods 

In this approach, face detection methods are developed based on the rules derived 

from the knowledge of human faces. It is easy to come up with simple rules to describe the 

features of a face and their relationships. For example, a face often appears in an image 

with two eyes that are symmetric to each other, a nose, and a mouth. The relationships 

between features can be represented by their relative distances and positions. Facial 

features in an input image are extracted first, and face candidates are identified based on 

the coded rules. A verification process is usually applied to reduce false detections. One 

problem with this approach is the difficulty in translating human knowledge into well-

defined rules. If the rules are strict, they may fail to detect faces that do not pass all the 

rules. If the rules are too general, they may give many false positives. Moreover, it is 

difficult to extend this approach to detect faces in different poses. 



Fig 2.1: A typical face used in knowledge-based top-down methods: Rules are coded based 

on human knowledge about the characteristics (e.g., intensity distribution and difference) 

of the facial regions 

The system consists of three levels of rules. At the highest level, all possible face 

candidates are found by scanning a window over the input image and applying a set of 

rules at each location. The rules at a higher level are general descriptions of what a face 

looks like while the rules at lower levels rely on details of facial features. A 

multiresolution hierarchy of images is created by averaging and subsampling. Examples of 

the coded rules used to locate face candidates in the lowest resolution include: "the center 

part of the face (the dark shaded parts which are shown in Fig. 2.1) has four cells with a 

basically uniform intensity," "the upper round part of a face (the light shaded parts which 

are shown in Fig. 2.1) has a basically uniform intensity," and "the difference between the 

average gray values of the center part and the upper round part is significant." The lowest 

resolution (Level 1) image is searched for face candidates and these are further processed 

at finer resolutions. At Level 2, local histogram equalization is performed on the face 

candidates received from Level 2, followed by edge detection. Surviving candidate regions 

are then examined at Level 3 with another set of rules that respond to facial features such 

as the eyes and mouth. 
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2.2 Feature-Based Methods 
In contrast to the knowledge-based approach, this method is based on finding 

invariant features of faces for detection. The observation is made based on the assumption 

that humans can effortlessly detect faces and objects in different poses and lighting 

conditions so, there must exist properties or features which are invariant over these 

variabilities. Numerous methods have been proposed to first detect facial features and then 

to infer the presence of a face. Facial features such as eyebrows, eyes, nose, mouth, and 

hair-line are commonly extracted using edge detectors. Based on the extracted features, a 

statistical model is built to describe their relationships and to verify the existence of a face. 

One problem with these feature-based algorithms is that the image features can be severely 

corrupted due to illumination, noise, and occlusion. Feature boundaries can be weakened 

for faces, while shadows can cause numerous strong edges which together render 

perceptual grouping algorithms useless. 

2.2.1 Facial Features 
This method is based on segmenting a face from a cluttered background for face 

identification. It uses an edge map and heuristics to remove and group edges so that only 

the ones on the face contour are preserved. An ellipse is then fit to the boundary between 

the head region and the background. This algorithm achieves 80 percent accuracy on a 

database of 48 images with cluttered backgrounds. Instead of using edges, blobs and 

streaks (linear sequences of similarly oriented edges) can be used for a simple face 

detection method. The face model consists of two dark blobs and three light blobs to 

represent eyes, cheekbones, and nose. The model uses streaks to represent the outlines of 

the faces, eyebrows, and lips. Two triangular configurations are utilized to encode the 

spatial relationship among the blobs. Next, the image is scanned to find specific triangular 

occurrences as candidates. A face is detected if streaks are identified around a candidate. 

There is another method to locate facial features and faces in gray scale images. 

After band pass filtering, morphological operations are applied to enhance regions with 

high intensity that have certain shapes (e.g., eyes). The histogram of the processed image 

typically exhibits a prominent peak. Based on the peak value and its width, adaptive 

threshold values are selected in order to generate two binarized images. Connected 

components are identified in both binarized images to identify the areas of candidate facial 

features. Combinations of such areas are then evaluated with classifiers, to determine 
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whether and where a face is present. This method has been tested with head-shoulder 

images of 40 individuals and with five video sequences where each sequence consists of 

100 to 200 frames. However, it is not clear how morphological operations are performed 

and how the candidate facial features are combined to locate a face. 

2.2.2 Texture 
Human faces have a distinct texture that can be used to separate them from 

different objects. This method is developed that infers the presence of a face through the 

identification of face-like textures. The textures are computed using second-order 

statistical features (SGLD) on sub images of 16x16 pixels. Three types of features are 

considered: skin, hair, and others. This method uses a cascade correlation neural network 

for supervised classification of textures and a self-organizing feature map to form clusters 

for different texture classes. To infer the presence of a face from the texture labels, they 

suggest using votes of the occurrence of hair and skin textures. However, only the result of 

texture classification is reported, not face localization or detection. 

2.2.3 Multiple Features 

Recently, numerous methods that combine several facial features have been 

developed to locate or detect faces. Most of them utilize global features such as skin 

colour, size, and shape to find face candidates, and then verify these candidates using 

local, detailed features such as eye brows, nose, and hair. Atypical approach begins with 

the detection of skin-like regions. Next, skin-like pixels are grouped together using 

connected component analysis or clustering algorithms. If the shape of a connected region 

has an elliptic or oval shape, it becomes a face candidate. Finally, local features are used 

for verification. 

There is another method to detect faces in colour images based on fuzzy theory. 

The method uses two fuzzy models to describe the distribution of skin and hair colour in 

CIE XYZ colour space. Five (one frontal and four side views) head-shape models are used 

to abstract the appearance of faces in images. Each shape model is a 2D pattern consisting 

of m x n square cells where each cell may contain several pixels. Two properties are 

assigned to each cell: the skin proportion and the hair proportion, which indicate the ratios 

of the skin area (or the hair area) within the cell to the area of the cell. In a test image, each 

pixel is classified as hair, face, hair/face, and hair/background based on the distribution 

7 



models, thereby generating skin-like and hair-like regions. The head shape models are then 

compared with the extracted skin-like and hair-like regions in a test image. If they are 

similar, the detected region becomes a face candidate. For verification, eye-eyebrow and 

nose-mouth features are extracted from a face candidate using horizontal edges. 

2.3 Template Matching 

In template matching, a standard face pattern is manually predefined or 
parameterized by a function. Given an input image, the correlation values with the 

standard patterns are computed for the face contour, eyes, nose, and mouth independently. 

The existence of a face is determined based on the correlation values. This approach has 

the advantage of being simple to implement. However, it has proven to be inadequate for 

face detection since it cannot effectively deal with variation in scale, pose, and shape. 

Multiresolution, multiscale, subtemplates, and deformable templates have subsequently 

been proposed to achieve scale and shape invariance. 

2.3.1 Predefined Templates 

The method uses several subtemplates for the eyes, nose, mouth, and face contour 

to model a face. Each subtemplate is defined in terms of line segments. Lines in the input 

image are extracted based on greatest gradient change and then matched against the 

subtemplates. The correlations between subimages and contour templates are computed 

first to detect candidate locations of faces. Then, matching with the other subtemplates is 

performed at the candidate positions. In other words, the first phase determines focus of 

attention or region of interest and the second phase examines the details to determine the 
existence of a face. 

There is another method which is a two stage face detection method in which face 

hypotheses are generated and tested. A face model is built in terms of features defined by 

the edges. These features describe the curves of the left side, the hair-line, and the right 

side of a frontal face. The Marr-Hildreth edge operator is used to obtain an edgemap of an 

input image. A filter is then used to remove objects whose contours are unlikely to be part 

of a face. Pairs of fragmented contours are linked based on their proximity and relative 

orientation. Corners are detected to segment the contour into feature curves. These feature 

curves are then labeled by checking their geometric properties and relative positions in the 

neighborhood. Pairs of feature curves are joined by edges if their attributes are compatible. 
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The ratio of the feature pairs forming an edge is compared with the golden ratio 

and a cost is assigned to the edge. If the cost of a group of three feature curves (with 

different labels) is low, the group becomes a hypothesis. When detecting faces in 

newspaper articles, collateral information, which indicates the number of persons in the 

image, is obtained from the caption of the input image to select the best hypotheses. The 

system reports a detection rate of approximately 70 percent based on a test set of 50 

photographs. However, the faces must be upright, unoecluded, and frontal. 

2.4 Appearance-Based Methods 

In contrast to the template matching methods where templates are predefined by 

experts, the "templates" in appearance- based methods are learned from examples in 

images. In general, appearance-based methods rely on techniques from statistical analysis 

and machine learning to find the relevant characteristics of face and nonface images. The 

learned characteristics are in the form of distribution models or discriminant functions that 

are consequently used for face detection. Meanwhile, dimensionality reduction is usually 

carried out for the sake of computation efficiency and detection efficacy. Many 

appearance-based methods can be understood in a probabilistic framework. An image or 

feature vector derived from an image is viewed as a random variable x, and this random 

variable is characterized for faces and nonfaces by the class-conditional density functions 

p(xlface) and p(x]nonface). Bayesian classification or maximum likelihood can be used to 

classify a candidate image location as face or nonface. Unfortunately, a straightforward 

implementation of Bayesian classification is infeasible because of the high dimensionality 

of x, because p(xjface) and p(xlnonface) are multimodal, and because it is not yet 

understood if there are natural parameterized forms for p(x]face) and p(xlnonface). Hence, 

much of the work in an appearance-based method concerns empirically validated 

parametric and nonparametric approximations to p(xlface) and p(xlnonface). 

2.4.1 Eigenfaces 

A simple neural network is demonstrated to perform face recognition for aligned 

and normalized face images. The neural network computes a face description by 

approximating the eigenvectors of the image's autocorrelation matrix. These eigenvectors 

are later known as Eigenfaces. Given a collection of n x m pixel training images 

represented as a vector of size m x n, basis vectors spanning an optimal subspace are 
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determined such that the mean square error between the projection of the training images 

onto this subspace and the original images is minimized. They call the set of optimal basis 

vectors eigenpictures since these are simply the eigenvectors of the covariance matrix 

computed from the vectorized face images in the training set. Experiments with a set of 

100 images show that a face image of 91x50 pixels can be effectively encoded using only 

50 eigenpictures, while retaining a reasonable likeness (i.e., capturing 95 percent of the 

variance). 

2.4.2 Distribution-Based Methods 
Distribution-based system for face detection demonstrates how the distributions of 

image patterns from one object class can be learned from positive and negative examples 

(i.e., images) of that class. The system consists of two components, distribution-based 

models for face/nonface patterns and a multilayer perceptron classifier. Each face and 

nonface example is first normalized and processed to a 19x19 pixel image and treated as a 

361 dimensional vector or pattern. Next, the patterns are grouped into six face and six 

nonface clusters using a modified k-means algorithm, as shown in Fig. 2.2. 

Fig 2.2: Face and nonface clusters 
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Each cluster is represented as a multidimensional Gaussian function with a mean 

image and a covariance matrix. Two distance metrics are computed between an input 

image pattern and the prototype clusters. The first distance component is the normalized 

distance between the test pattern and the cluster centroid, measured within a lower-

dimensional subspace spanned by the cluster's 75 largest eigenvectors. The second 

distance component is the Euclidean distance between the test pattern and its projection 

onto the 75-dimensional subspace. This distance component accounts for pattern 

differences not captured by the first distance component. The last step is to use a 

multilayer perceptron (MLP) network to classify face window patterns from nonface 

patterns using the twelve pairs of distances to each face and nonface cluster. The classifier 

is trained using standard backpropagation from a database of 47,316 window patterns. 
There are.  4,150 positive examples of face patterns and the rest are nonface patterns. Note 

that it is easy to collect a representative sample face patterns, but much more difficult to 

get a representative sample of nonface patterns. This problem is alleviated by a bootstrap 

method that selectively adds images to the training set as training progress. Starting with a 

small set of nonface examples in the training set, the MLP classifier is trained with this 

database of examples. Then, they run the face detector on a sequence of random images 

and collect all the nonface patterns that the current system wrongly classifies as faces. 

These false positives are then added to the training database as new nonface examples. 

2.4.3 Support Vector Machines 

Support Vector Machines (SVMs) can be considered as a newparadigm to train 

polynomial function, neural networks, or radial basis function (RBF) classifiers. While 

most methods for training a classifier (e.g., Bayesian, neural networks, and RBF) are based 

on of minimizing the training error, i.e., empirical risk, SVMs operates on another 

induction principle, called structural risk minimization, which aims to minimize an upper 

bound on the expected generalization error. An SVM classifier is a linear classifier where 

the separating hyperplane is chosen to minimize the expected classification error of the 

unseen test patterns. This optimal hyperplane is defined by a weighted combination of a 

small subset of the training vectors, called support vectors. Estimating the optimal 

hyperplane is equivalent to solving a linearly constrained quadratic programming problem. 
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CHAPTER-3 

DIGITAL IMAGE PROCESSING 

The purpose of face detection is to examine and extract information from a set of 
images and try to find the exact location of the face in an image. For such a system to 

detect well, any extracted feature has to be accurate. Image processing is there-fore used to 

eliminate unwanted information and extract useful features from an image. Machine vision 

systems make use of image processing technique to carry out object identification and 

categorization. 

3.1. Image enhancement 

Image enhancement [19] improves the detect-ability of important image details or 

objects. It is normally performed in the first stage of digital image processing. Image 

enhancement operations transform an input image into another image, which is an 

improved version of the input. Examples of such operations include histogram stretching, 

convolution, noise reduction, smoothing, and edge enhancement. 

3.1.1. Point operations 

Point operations are based on histogram modification techniques [19]. Common 

histogram operations are sliding, stretching, and equalization. 

3.1.2. Mask operations 

Discrete convolution is used to build any linear and shift invariant filter. According 

to (20), the equation for the convolution g(x) of the sequence f(x) with the convolution 
mask h(x) is 

G(x)=f(x)*h(x)=Eh(x-k)*f(k) 	 (3.1) 

3.2 Gabor filter 

A Gabor filter is a linear filter used in image processing for edge detection. 
Frequency and orientation representations of Gabor filter are similar to those of human 

visual system, and it has been found to be particularly appropriate for texture 
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representation and discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian 

kernel function modulated by a sinusoidal plane wave. The Gabor filters are self-similar -

all filters can be generated from one mother wavelet by dilation and rotation. 

Its impulse response is defined by a harmonic function multiplied by a Gaussian 

function. Because of the multiplication-convolution property (Convolution theorem), the 

Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier 

transform of the harmonic function and the Fourier transform of the Gaussian function [6]. 

x, y; A,, 0 , v, a, 	
2cr2 

	

= exp( 
xt2 ± y2 
	 x' e 	 )/2 

 ) COS(271-  — ty) 	 (3.2) 

Where 

x'=xcos0+ysin0 

And 

y'  = –xsin0+y cos° 

In this equation, A, represents the wavelength of the cosine factor, 0 represents the 

orientation of the normal to the parallel stripes of a Gabor function, v is the phase offset, a 

is the sigma of the Gaussian envelope and y is the spatial aspect ratio, and specifies the 

ellipticity of the support of the Gabor function. 

3.2.lExplanation of parameters 

Gabor filtering 
This block implements one or multiple convolutions of an input image with a two-

dimensional Gabor function: 

x,2 ±r2y,2 	
x' 

2o
-2 (x, y) = exp( 	  cos(2ff 

A 
— + ty) (3.3) 

x'=xcos0+ysint9 

y'  = –x sin 0 y cos 0 

To visualize a Gabor function select the option "Gabor function"  under "Output 

image". The Gabor function for the specified values of the parameters "wavelength", 
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"orientation", "phase offset", "aspect ratio", and "bandwidth" will be calculated and 

displayed as an intensity map image in the output window. The image in the output 

window has the same size as the input image: select, for instance, input image octagon.jpg 

to get an output image of size 100 by 100. If lists of values are specified under 

"orientation(s)" and "phase offset(s)", only the first values in these lists will be used. 

Two-dimensional Gabor functions were proposed by Daugman to model the spatial 

summation properties (of the receptive fields) of simple cells in the visual cortex. They are 

widely used in image processing, computer vision, neuroscience and psychophysics. 

Wavelength (I) 

This is the wavelength of the cosine factor of the Gabor filter kernel and herewith 

the preferred wavelength of this filter. Its value is specified in pixels. Valid values are real 

numbers equal to or greater than 2. The value ?=2 should not be used in combination with 

phase offset (1)=-90 or 9=90 because in these cases the Gabor function is sampled in its 

zero crossings. In order to prevent the occurrence of undesired effects at the image 

borders, the wavelength value should be smaller than one fifth of the input image size. 

(a) 
	

(b) 
	

(c) 

Fig 3.1: The images (of size 100 x 100) on the above shows Gabor filter kernels with 

values of the wavelength parameter of 5, 10 and 15, from left to right, respectively. The 

values of the other parameters are as follows: orientation 0, phase offset 0, aspect ratio 0.5, 

and bandwidth 1. 
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Orientation(s) (0) 

This parameter specifies the orientation of the normal to the parallel stripes of a 

Gabor function. Its value is specified in degrees. Valid values are real numbers between 0 

and 360. 

(a) 
	

(b) 
	

(c) 

Fig 3.2: The images (of size 100 x 100) on the above shows Gabor filter kernels with 

values of the orientation parameter of 0, 45 and 90, from left to right, respectively. The 

values of the other parameters are as follows: wavelength 10, phase offset 0, aspect ratio 

0.5, and bandwidth 1. 

For one single convolution, enter one orientation value and set the value of the last 

parameter in the block "number of orientations" to 1. If "number of orientations" is set to 

an integer value N, N >= 1, then N convolutions will be computed. The orientations of the 

corresponding Gabor functions are equidistantly distributed between 0 and 360 degrees in 

increments of 360/N, starting from the value specified under "orientation(s)". An 

alternative way of computing multiple convolutions for different orientations is to specify 

under "orientation(s)" a list of values separated by commas (e.g. 0,45,110). In this case, the 

value of the parameter "number of orientations" is ignored. 

Phase offset(s) ((p) 

The phase offset cp in the argument of the cosine factor of the Gabor function is 

specified in degrees. Valid values are real numbers between -180 and 180. The values 0 

and 180 correspond to center-symmetric 'center-on' and 'center-off functions, respectively, 

while -90 and 90 correspond to anti-symmetric functions. All other cases correspond to 

asymmetric functions. 
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(a) 
	

(b) 
	

(c) 
	

(d) 

Fig 3.3: The images (of size 100 x 100) on the above shows Gabor filter kernels with 

values of the phase offset parameter of 0, 180, -90 and 90 degrees, from left to right, 

respectively. The values of the other parameters are as follows: wavelength 10, orientation 

0, aspect ratio 0.5, and bandwidth 1. 

If one single value is specified, one convolution per orientation will be computed. 

If a list of values is given (e.g. 0,90 which is default), multiple convolutions per orientation 

will be computed, one for each value in the phase offset list. 

Aspect ratio (y) 

This parameter, called more precisely the spatial aspect ratio, specifies the 

ellipticity of the support of the Gabor function. For y = 1, the support is circular. For y < 1 

the support is elongated in orientation of the parallel stripes of the function. Default value 

is y = 0.5. 

(a) 
	

(b) 

Fig 3.4: The images (of size 100 x 100) on the above shows Gabor filter kernels with 

values of the aspect ratio parameter of 0.5 and 1, from left to right, respectively. The 

values of the other parameters are as follows: wavelength 10, orientation 0, phase offset 0, 

and bandwidth 1. 
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Bandwidth (b) 

The half-response spatial frequency bandwidth b (in octaves) of a Gabor filter is 

related to the ratio a / X, where a and A, are the standard deviation of the Gaussian factor of 

the Gabor function and the preferred wavelength, respectively, as follows: 

TC+ 
Vln 2  

b = loge 	2  a1 \I In 2 2b  +1 
•	 a 	V112 	= rc.  2 2b  —1 

rc 
2 	2 

(2.4) 

The value of a cannot be specified directly. It can only be changed through the 

bandwidth b. The bandwidth value must be specified as a real positive number. Default is 

1, in which case a and X are connected as follows: a = 0.56 X. The smaller the bandwidth, 

the larger a, the support of the Gabor function and the number of visible parallel excitatory 

and inhibitory stripe zones. 

(a) 
	

(b) 
	

(c) 

Fig 3.5: The images (of size 100 x 100) on the above shows Gabor filter kernels with 

values of the bandwidth parameter of 0.5, 1, and 2, from left to right, respectively. The 

values of the other parameters are as follows: wavelength 10, orientation 0, phase offset 0, 

and aspect ratio 0.5. 

Number of orientations 

Default value is 1. If an integer value N, N >= 1, is specified then N convolutions 

will computed. The orientations of the corresponding Gabor functions are equidistantly 

distributed between 0 and 360 degrees, with increments of 360/N, starting from the value 

specified in "orientation(s)". For this option to work, one single value must be specified for 

the parameter "orientation(s)". 
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Half-wave rectification (HWR) 
Enable HWR 

If this option is enabled, all values in the convolution results below a certain 

threshold value will be set to zero (HWR is disabled by default). 

HWR threshold (%) 

The threshold value can be specified as a percentage of the maximum value in a 

given convolution result. If this percentage is set to 0, all negative values in that 

convolution result will be changed to 0. 

Superposition of phases 
If a list of multiple values is entered under parameter "Phase offset(s)" of the 

"Gabor filtering" block, multiple convolutions will be computed for each orientation value 

specified, one convolution for each phase offset value in the list. The convolution results 

for the different phase offset values of a given orientation can be combined in one single 

output image for that orientation. This combination can be done in different ways, using 

the L2, Ll or L-infinity norms. If the L2 norm is used, the squared values of the 

convolution results for the concerned orientation will be added together pixel-wise and 

followed by a pixel-wise square root computation to produce the combined result. The L1 

and the L-infinity norms correspond to the pixel-wise sum and maximum of the absolute 

values, respectively. Default is the L2 norm. This choice, together with the default (0,90) 

of the "Phase offset(s)" of the "Gabor filtering" block, implements the Gabor energy filter 

that is widely uses in image processing and computer vision. One can also choose not to 

apply superposition of phases ("None"). 

Surround inhibition 
The Gabor filter can be augmented with surround inhibition which suppresses 

texture edges while leaving relativley unaffected the contours of objects and region 

boundaries. This biologically motivated mechanism is particularly useful for contour-

based object recognition. In that case, texture edges play the role of noise that obscures 

object contours and region boundaries and should preferably be eliminated. One can best 

observe the effect of surround inhibition on different types of oriented features, such as 
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edges in texture vs. isolated edges and lines, by taking the default input image 

"syntheticl.png". 

Select inhibition type 

Default is "no surround inhibition". 

If "isotropic surround inhibition" is selected, edges in the surroundings of a given 

edge have a suppression effect on that edge. The relative orientation of these edges has no 

influence on the suppression effect. 

If "anisotropic surround inhibition" is selected, the suppression effect of edges 

surrounding a given edge depends on their relative orientation: edges parallel to the 

considered edge have stronger suppression effect than oblique edges, and orthogonal edges 

have no such effect. 

Superposition for isotropic inhibition 

If "isotropic inhibition" is selected, a superposition of the convolution results for all 

used orientations is computed and deployed for surround suppression. Different types of 

superposition can be used: LI, L2 and L-infinity norms (see the explanations of these 

terms under "Superposition of phases" in the "Gabor filtering" block). 

Alpha (a) 

This parameter controls the strength of surround suppression. Default is 1 but one 

may need larger values in order to completely suppress texture edges. 

K1 and K2 

The surround that has a suppression effect on an edge in a given point has annular 

form with inner radius controlled by the combination of values of the parameters K1  and 
K2. The contribution of points in the annular surround is defined by a weighting function 

which is a half-wave rectified difference of Gaussian functions with standard deviations of 

Kia and Kea where a is the standard deviation of the Gaussian factor of the Gabor 
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function(s) used. One can visualize the weighting function by selecting option "inhibition 

kernel" under parameter "Output image". 

The inner radius of the annular surround increases with K1. The size of the annual 

surround which has substantial contribution to the suppression increases with K2. 

Default values are K1  = 1 and K2  = 4. 

Thinning and thresholding 

These are post-processing techniques standardly used in image processing. 

Thinning thins edges in the output to one-pixel wide edges by non-maxima suppression. 

Hysteresis thresholding results in a binary output image. If it is enabled, two 

threshold values must be specified: T-high and T-low. These are given as fractions 

(between 0 and 1) of the maximum response value. 

Pixels with responses higher than T-high are assigned the binary value 1 in the 

output, while pixels with responses below T-low are assigned the binary value 0. Pixels 

with responses between T-low and T-high are assigned the value 1 in the binary output if 

they can be connected to any pixel with a response larger than T-high through a chain of 

other pixels with responses larger than T-low. 

3.2.2 2D GABOR WAVELET REPRESENTATIONS OF FACES 

Since face recognition is not a difficult task for human beings, selection of 

biologically motivated Gabor filters is well suited to this problem. Gabor filters, modelling 

the responses of simple cells in the primary visual cortex, are simply plane waves 

restricted by a Gaussian envelope function. 	corfRAL t/8 
60Lo11? k11,6  z' ACC No 

Date 	  

ROOF( 
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Fig 3.6: Gabor filters correspond to 5 spatial frequencies and 8 orientations 

Orientation (Gabor filters in Time domain) an image can be represented by the 

Gabor wavelet transform allowing the description of both the spatial frequency structure 

and spatial relations. Convolving the image with complex Gabor filters with 5 spatial 

frequency (v = 0,...,4) and 8 orientation (p. = 0,...,7) captures the whole frequency 

spectrum, both amplitude and phase Fig 3.6. 

One of the techniques used in the literature for Gabor based face recognition is 

based on using the response of a grid representing the facial topography for coding the 

face. Instead of using the graph nodes, high-energized points can be used in comparisons 

which form the basis of thig work. This approach not only reduces computational 

complexity, but also improves the performance in the presence of occlusions. 

3.3.1. Feature extraction 

Feature extraction algorithm for the proposed method has two main steps in Fig 8; 

(1) Feature point localization,(2) Feature vector computation. 

3.3.2. Feature point localization 

In this step, feature vectors are extracted from points with high information content 

on the face image. In most feature-based methods, facial features are assumed to be the 
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eyes, nose and mouth. However, we do not fix the locations and also the number of feature 

points in this work. The number of feature vectors and their locations can vary in order to 

better represent diverse facial characteristics of different faces, such as dimples, moles, 

etc., which are also the features that people might use for recognizing faces Fig 7. 

Fig 3.7: Facial feature points found as the high-energized points of Gabor wavelet 

responses 

From the responses of the face image to Gabor filters, peaks are found by searching 

the locations in a window WO of size Wx W by the following procedure: 

A feature point is located at (x0, y0), if 

R.1(xo ,Y0)= max(R,(x,Y)) 
	

(2.5) 
(x,y)-=wo  

R (x 0, y) > 	1 NI, 	
(x, y), 

N N I 2 1=1 Y=1 
(2.6) 

j=1,...,40 

Where Ri  is the response of the face image to theft', Gabor filter N1 N2 is the size of 

face peaks of the responses. In our experiments a 9x9 window is used to search feature 

points on Gabor filter responses. A feature map is constructed for the face by applying 

above process to each of 40 Gabor filters. 

3.3.3. Feature vector generation 

Feature vectors are generated at the feature Points as a composition of Gabor 

wavelet transform coefficients. Km  feature vector of id, reference face is defined as, 
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Vi k  = 	 yk ,R,,j (xk , yk )j =1, 	,40} 
	

(2.7) 

While there are 40 Gabor filters, feature Vectors have 42 components. The first two 

components represent the location of that feature point by storing (x, y) coordinates. Since 

we have no other information about the locations of the feature vectors, the first two 

components of feature vectors are very important during matching process. The remaining 

40 components are the samples of the Gabor filter responses at that point. Although one 

may use some edge information for feature point selection, here it is important to construct 

feature vectors as the coefficients of Gabor wavelet transform. 

Start \  

Image 

GWT 

V 
Find feature points 

Feature 
vectors 

Fig 3.8: Flowchart of the feature extraction stage of the facial images. 
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Feature vectors, as the samples of Gabor wavelet transform at feature points, allow 

representing both the spatial frequency structure and spatial relations of the local image 

region around the corresponding feature point. 

In this section the algorithm will check all potential face contained windows and 

the windows around them using neural network. The given image is convolved with the 

templates then the locations of the peaks of both the templates are saved. Then make a list 

of all the centre of the windows that should be checked. Yellow pixels shown in the fig 3.7 

has to be tested for the presence of the face. The centres of the each window are cut and 

send it to Neural Network. If the answer of the NN (neural network) is near -1, it means 

that no face is near this Black status location, if the answer of the NN is near 1, it really 

contains a face around the Blue status location and all the neighbours of this location not to 

be checked because there is already a face cantered on this location. The Green status 

indicates that the face is detected in this location and marks the neighbours to be checked. 

Then convert the yellow to green on this location. Then finally draw a rectangle around the 

green status location which indicates the presence of the face. 

This architecture was implemented using Matlab in a graphical environment 

allowing face detection in a database. It has been evaluated using the test data of 50 images 

containing faces on this test set a good detection faces is obtained. 

The proposed method has good detection quality even if there are sunglasses in the 

input image. This algorithm compares faces in terms of mouth, nose and any other features 

rather than eyes. This method also has a simple matching procedure, low computational 

cost, robust to illumination changes as a property of Gabor wavelets and faster than 

existing methods. A new facial image can also be simply added to database by attaching 

new feature vectors to training images. 
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Fig 3.9: Finding the centre of each region 

Fig 3.10: Filtering above pattern for values above threshold 

Fig 3.11: Final Result will be like this 
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CHAPTER-4 

NEURAL NETWORKS 

According to Haykins [23], "A Neural Network is a massively parallel distributed 

processor made up of simple processing units, which has a natural propensity for storing 

experiential knowledge and making it available for use". It resembles the brain in two 

respects. 

1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 

The term artificial neural networks also referred to in literature as neurocomputers, 

connectionist network, and parallel distributed processors is used to describe various 

topologies of highly interconnected simple processing elements that offer an alternative to 

traditional approaches to computing[23]. The topic of neural networks has received much 

attention in the past decade. This fact is reflected in the range of publications containing 

related articles. Researchers from such diverse area as neuroscience, mathematics, 

psychology, engineering, and computer science are attempting to relate underlying models 

for pattern recognition, the computation that is desired, the potential parallelism that 

emerges, and the operation of biological neural systems. 

The idea of neural networks was inspired by the structure of the human brain. 

Biological systems, such as the human brain, implement pattern or speech recognition 

computations through interconnections of physical cells called neurons. A neuron is the 

most basic component of a neural network [23]. There have been several models proposed 

to describe the behaviour of neurons in actual nervous systems [16, 23]. 

Artificial Neural Network (ANN), is a massively parallel-distributed processor that 

has a natural propensity for storing experiential knowledge and making it available for use. 

The behaviour of a neural network is defined by the way its individual computing elements 

are connected and by the strength of those connections or weights. ANNs are mainly 

applicable to problems requiring a nonlinear solution such as high-level tasks in image 
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processing chain (for example object recognition) rather than low-level tasks [24, 25]. 

Multilayer perceptron neural networks are good tools for classification purposes. These 

networks can approximate almost any regularity between input and output [26]. 

4.1 Advantages of Artificial Neural Networks 

A neural network has the ability to learn through its massively parallel distributed 

structure, and, therefore, to generalize. Generalization refers to the neural network 

producing reasonable outputs for inputs not encountered during training [23]. These 

capabilities help the neural network to solve complex problems that are currently 

intractable. The use of neural networks [16, 23] offers the following useful properties and 

capabilities: 

• Nonlinearity: An artificial neuron can be linear or nonlinear. Since the neural 

network is made up of nonlinear neurons, nonlinearity is distributed throughout the 

network. 

• Input-output mapping: The neural network model consists of input signal and a 

corresponding desired response. The network is presented with a random set, and 

the synaptic weights of the network are modified to minimize the difference 

between the desired response and actual response of the network produced by the 

input signal in accordance with an appropriate statistical criterion. 

• Adaptivity: It is the ability of a network to perform efficiently in any 

environment. A neural network trained to operate in a specific environment can be 

easily retrained to deal with minor changes in the operating environmental 

conditions. 

4.2 Artificial Neural Networks for Image Processing 

ANNs are very useful tools for nonlinear image processing, nonlinearity still being 

a major problem in image processing. Nonlinearity issues can be listed as follows: 

• The network input can consist of pixels or measurements in images; the output can 

contain pixels, decisions, labels, etc., as long as all these can be coded numerically. 

• Instead of designing an algorithm, one could construct an example data set and an 

error criterion, and train ANNs to perform the desired input-output mapping. 

• ANNs can themselves be highly nonlinear 
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In this thesis, ANN was used to identify the faces in the images as those containing 

human faces and other objects. ANN solution was chosen because of the non linear nature 

of the problem. Many learning procedures have been proposed for neural networks over 

time. All the procedures, try to adjust the weights in the network model so that the models 

performance improves over time [27]. Currently two classes of learning procedures exist, 

namely, supervised and unsupervised. 

In supervised learning [23], also referred to as learning with a teacher, network 

models are presented with a set of training patterns one by one. The outputs, generated by 

the networks based on the current inputs, are then compared with the desired output for 

that particular training pattern. The difference between the actual outputs and desired 

outputs, also called error, is used to update the weights so that the error will be minimized. 

In unsupervised learning, also known as learning without a teacher, there is no teacher to 

observe the learning process. That is to say, there are no labelled examples of the function 

to be learned by the network. 

For the work described in this thesis, a supervised learning algorithm was 

implemented; since the label of the training set images (images with human faces vs. 

images without human faces) were known. 

4.3 Feed-Forward Neural Network 

As suggested earlier, neural networks are composed of simple elements operating 

in parallel. The network function is determined largely by the connections between 

elements. We can train a neural network to perform a particular function by adjusting the 

values of the weights between elements [28]. The model that I have chosen for training 

images is a feed-forward network because the problem at hand is a two class problem, 

where the output is a single image that indicates the faces in the image. 

A simple neuron consists of scalar input, p, which is transmitted through a 

connection that multiplies its strength by the scalar weight, w, to form the product, wp, 

which is again a scalar as shown in Fig 4.1 below. 
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( input Transfer Function 

p 

 Jl   
Fig 4.1: Single Neuron without Bias 

The weighted input, wp along with the transfer function, f produces the scalar output, a. 

The neuron may also have a scalar bias, b, which is simply being added to the 

product, wp, as shown by the summing function or as shifting the function, f, to the left by 

an amount b. The bias is much like a weight, except that it has a constant input (weight) of 

1. A neuron with bias is shown below in Fig 4.2. 
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Fig 4.2: Single Neuron with Bias 

The w and b are both adjustable scalar parameters of the neuron and f is a transfer 

function, typically a step function or a sigmoid function, which takes the argument n and 

produces the output a. 

4.4 Network Model for the System 

To perform the face detection, artificial neural network as shown in Fig 4.3, is 

used. The inputs to the model are the features from the given image, and the output is an 

image indicating the presence or absence of human faces. The parameters of this model 

were optimized by trial and error method [33]. 
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Fig 4.3: Multi-Layer Artificial Neural Network 

The training data set consists of a set of input vectors X, with corresponding output 

Y. The input layer X consists of input data from the images. The summation of all the 

information from the input nodes results in the output Y. The actual training consists of 
adjusting the weights so that, for each input X, the output, YTARGET,  computed by the 
network closely matches the desired output, YACTUAL. The main aim is to find the 
collection of weights that minimize IIY - TARGET - YACTUALII2, where II 112 stands for the 
normalization over the input-output pairs in the training set. 

Training is expensive computationally, since the determination of the weights must 

be done simultaneously for all the data in the training set. The training set is chosen to 

represent the entire space of possible inputs, so that an input similar to one in the training 

set results in a similar output. The representation of faces is done by selecting a variety of 

images with different skin tones. After the training is complete, the computation of the 

output Y, for a given input X, is obtained. 

For the model used in this face detection problem, input vector X consists of 

features obtained from the given gray scale image. The output Y is related to the image 

with the faces are marked by a rectangle box which determines the presence of faces. 

Hence the output Y for a given input image X can be interpreted as: 
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> 0.9 	> X contains a human face 

< 0.9 => X does not contains a human face 

= 0.9 ,=> unclear if X contains a human face 

A network with one hidden layer consists of 100 nodes is chosen in order to 

represent the interrelationship among input features from images. The sigmoid function a 

(t), is chosen as the output threshold function because the sigmoid function takes the input, 

which may have any value between plus and minus infinity, and squashes the output into 

the range zero to one. 

a(t) = 1+e-:  

Inputs entering a neuron not only get multiplied by the weights, but they also get 

multiplied by the neurons characteristic equation, or transfer function. The sigmoid 

function is a typical neuronal non-linear transfer function that helps make outputs 

reachable. In other words, the sigmoid function helps a system reach desired outputs. The 

sigmoid transfer function is used as a suitable transfer function in this case, since the 

output has to be between zero and one. 

The training algorithm chosen was scaled conjugate gradient algorithm, which 

minimizes the error IY I , , - TARGET YACTUAL II 2 by multi-dimensional steepest descent. On 

function approximation problems, for networks that contain up to a few hundred weights, 

the scaled conjugate gradient algorithm will have the fastest convergence. This advantage 

is especially noticeable if very accurate training is required. 

The training data set, as shown in Appendix 1 & 2 consists of 68 face images and 

55 non face images. The face images chosen represent a variety of ages, gender, with 

glasses, without glasses. All the non face images were random objects taken from the 

internet that were for free usage. Under ideal circumstances each face would have a 

corresponding output Y = 1, while non face images would have output Y = 0; however, as 

mentioned before, IYI > 0.9 was considered to represent a face image, and IYI < 0.9 meant 

a non face image. 

31 



4.5 Transfer Functions 

Three basic types of transfer functions commonly used are [231: 

• Threshold function: The threshold function, as shown in the Fig 4.4, limits the 

output of the neuron to either 0, if the net input argument n is less than 0 or 1, if n 

is greater than or equal to 0 having the same name. 

Fig 4.4: Threshold Function 

• Linear Transfer function: Neurons of this type, as shown in Fig 4.5, are used as 

linear approximations in linear filters. The network output can take any value by 

using linear output neurons. 
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Fig 4.5: Linear Transfer Function 

• Sigmoid Transfer Function: This type of function, as shown in Fig 4.6, takes the 

input, which may have any value between plus and minus infinity and squashes the 

output into the range 0 to 1. 
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Fig 4.6: Sigmoid Transfer Function 

The central idea of a neural network is that it can be adjusted so that the network 

exhibits desired behaviour. Thus, we can train the network itself will adjust these 

parameters to achieve some desired output [29]. In this thesis, tan sigmoid function was 

used as the transfer function, as the problem at hand was a two-class problem involving the 

presence (1) or absence (0) of a human face in an image. 

4.6 Network Layers 

In the neural network terminology, a layer is defined as a group of neurons 

arranged at various hierarchies [33]. So the Fig 4.7 would represent a single-layer network 

and Fig 4.8 would represent a two-layer network, with the middle layer called a hidden 

layer. There can be any number of hidden layers, and each hidden layer can have any 

number of nodes. Each layer has a number of properties, the most important being the 

transfer functions of the neurons in that layer, and the function that defines the net input of 

each neuron gives its weights and the output of the previous layer. 
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4.7 Neural network architecture designing 

Requirements 

During planning stage, following requirements for the software was laid. 

a. It should have a GUI through which the user can execute each task; 

b. The interface should be simple, clear, and systematic: one button, one function; 

c. It should allow the user to select the test image; 

d. Each subprogram should be straightforward and should not contain functions that 

overlap; 

e. It should display both the input image and the detected image at the end of the 

detection process; 

f. It should display the training process for observation purposes; 

g. It should display detection results so that we are able to evaluate and analyse. 

The things considered next were the image processing tasks. Internally, all pattern 

recognition systems have the following processes. Each operation must complete its 

task before the next one can begin: 

1. Image acquisition 

2. Image enhancement 

3. Feature extraction 

4. Neural network and classification 

5. Detection 

Since the output of each operation is the input to the next, the functional parts (1-5) 

must execute in sequence. The size of image (input and output) is to be kept standard so 

that there is better control and accuracy during matrix computation and parameter training. 
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4.8 Platform 
MATLAB (30) is used in project because it has an integrated technical computing 

environment that is suitable for algorithm design and development. It is a high-level 

programming language that includes hundreds of functions. 

4.9 Optimization of the Neural Network Parameters 
Every supervised training algorithm involves the reduction of an error value. For 

assessing the quality and success of training, the cumulative error for the entire batch of 

training patterns must be computed. Mentioned in the previous chapter, the two most 

common performance measures used are [11]. 

1. Mean square error 

MSE = 0.5 EE (d-o)2  

2. Root Mean Square Error 

ERMS = SQRT [(EE (C1-0)2)/ PK] 

Where P stand for all the training patterns, and K stands for all the neuron outputs. 

For a simple network using the gradient descent, the plotting of errors (MSE or RMS) 

against weight vectors will us the error surface of the network. This error profile will 

provide information on the network's behaviour during training. One major problem faced 

by error minimization is the entrapment of weights under a local of learning parameters 

should guarantee a good quality solution within a reasonable amount of computing time. 

Insertion of noise and randomness to the training set may be able to pull the process out of 
a local minimum. 

Training a network is not an easy task. Each choice of any parameter will affect the 

other. An appropriate choice of any parameter will affect the other. An appropriate choice 

of learning parameters should guarantee that a good quality solution is found within a 

reasonable period of computing time. Generally, it is important to pay attention to a few 

aspects [32]: 

4.9.1 Weight Initialization 

Initialization strongly affects the classifying solution. There are now many new 

methods of doing it using statistics. It is necessary to reset the weights if an unsuccessful 

training occurs. A good convergence is also determined by the values of weights that are 

initialized: that is, whether they are randomly initialized or zero-initialized. The choice of 
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random • or zero weights for the hidden and output layers affects the network's 
performance. 

4.9.2 Weight Adaptation 

Cumulative weight adjustment refers to the implementation of weight adjustments 

at the conclusion of a complete learning cycle. During incremental training, the weights 

continue to be modified as each is computed. If the network is capable and the learning 

rate is set correctly, the error will eventually be driven to zero. In batch mode, the weights 

and biases of the network are updated only after the entire training set has been applied to 

the network. The gradients calculated at each training examples are added together to 

determine the change in the weights and biases. For on-line operations, pattern-by-pattern 

updating rather than batch updating should be used for weight adjustment. 

4.9.3 Learning Constant 

Its optimum value depends on the problem to be solved and is normally chosen 

experimentally (with values ranging from 0.1 to 0.8). Only small learning rate guarantees a 

true smooth gradient descent. Too large a value leads to fast convergence but poor 

stability. Too small a value results in slow convergence. An adaptive rate may be more 

suited for exploratory work. The addition of a momentum will also accelerate 

convergence. It is done by supplementing the current weight adjustment parameter with a 

momentum term kAw(t-1): 

Aw(t) = 'goy + ?Aw(t-1) 

Where X, is the momentum constant (0.1 to 0.9) during the tth  change in weight. The 

momentum constant is greater than 0 and to ensure convergence problems because the 

learning-rate parameter is maintained constant throughout the computation. One may us 

the search-then-converge schedule defined in 

ri(n) = 1(0)4 1 +nit) 

Where 11(0) and r are user selected constants. In the early stages of adaptation involving a 

number of iterations n, the learning-rate parameter ri(n) is small compared to the search 

time constant '1, and is approximately equal to TKO). Hence, a high value for ii(0) within 

permissible range will help find a set of weights that hovers about a 'good' set of values. 

One common modification to the algorithm is to gradually reduce the value of ti as the 

number of gradient descent steps grows. This stochastic approximation is described by 
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n(n) = c / n, where c is a constant. Such an adaptive learning rate is sufficient to guarantee 

convergence. 

4.9.4 Inputs and Outputs 

The training set must contain enough information to reveal the mapping structure. 

Its size depends on the user's decision on the number of inputs, hidden neurons, and output 

neurons. The number of inputs is usually determined by the dimension or the size of the 

data to be classified. The size of an input vector often corresponds to the number of 

features extracted from the previous stage. The number of output neurons is generally less 

than the input size. Training examples presented to the network should be randomized 

from one epoch to another for faster convergence. In our algorithm, a random permutation 

of the face input vector is fed into the backpropagation network each time. All the vectors 

are presented once, but their order is random in every iteration. This technique encourages 

greater diversity of possible paths across the error-weight surface, which tends to favour 

escape from local minima. 

4.9.5 The hidden layer 

In most situations, the best number of hidden units is determined by experimenting 

with several network settings and estimating the generalization error of each. The size of 

the hidden layer is always worth some level of consideration. Using too underfitting and 

high statistical bias. Using too many will increase training time. An excessive number of 

hidden neurons may cause overfitting, which means the network will learn the 

insignificant aspects of the training set, resulting in high generalization error. A rule of 

thumb, known as the Baum-Haussler rule (thesis 16), may be used to determine the 

number of hidden neurons: 

Nhidden < V (Ntrain Etoterance) (Npoints + Noutput) 

Where Nhidden is the number of hidden neurons; Ntrain  is the number of training example; 

Etolerence is the error tolerance; Npoints  is the number of data points (or pixels) Per training 

example; and Noutput is the number of output neurons. This rule generally ensures that the 

neural network generalizes, rather than memorizes. The number of hidden layers is 

determined by trial and error. Usually, a network with one hidden layer is sufficient for 

face detection. For large images, more hidden layers are needed to extract more 

information. Excessive use of layers may also result in overtraining. 
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4.9.6 Choice of Activation Function 

It is important to choose an activation function that is suitable for the nature of the 

input pattern. A discrete function will perform poorly in a nonlinear pattern classification. 

The combination of the types of transfer functions in individual layers also affects the 

quality of training. It is advisable to try several combinations interchangeably. 

4.9.7 Generalization problems 

A network is said to generalize well when the input-output mapping computed by 

the network is correct for test data that have not been used in creating or training the 

network, or when the input is slightly different from the examples used to train the 

network. However, when the network learns too many input-output examples, the network 

may end up memorizing the training data. It may do so by finding a feature (due to noise, 

for example) that is present in the training data but not true of the underlying function that 

is to be modelled. When a network is overtrained, it loses the ability to generalize weight 

similar input-output patterns. Controlling the number of epochs and fording an optimum 

learning rate are good ways to avoid it. 

4.9.8 Stopping Criterion 

A variety of termination criteria can be used to halt the training process: 
1. Stop after a fixed number of iterations; 

2. Stop when the mean square error falls below some threshold; 

3. Stop when the error on a separate validation set of examples meets some criterion; 

4. Stop when the rate of change of error surface becomes shallower, so the change in 

error at each epoch becomes even smaller; 

5. Stop when the generalization error is acceptable. 

4.10 Neural Network Architecture 

The MLP neural network has feed forward architecture within input layer, a hidden 

layer, and an output layer. The input layer of this network has N units for an N 

dimensional input vector. The input units are fully connected to the I hidden layer units, 

which are in turn, connected to the J output layers units, where J is the number of output 

classes. A Multi-Layers Perceptron (MLP) is a particular of artificial neural network. We 

40 



will assume that we have access to a training dataset of 1 pairs (xi, yi) where xi is a vector 

containing the pattern, while yi  is the class of the corresponding pattern. In our case a 2-

class task, y, can be coded 1 and -1. 

Fig 4.9: The neuron of supervised training 

The Multi-Layers Perceptron consists of 3 layers, the input layer is a vector 

constituted by n2 units of neurons (n x n pixel input images). The hidden layer has n 

neurons, and the output layer is a single neuron which is active to 1 if the face is presented 

and to otherwise. The activity of a particular neuron] in the hidden layer is written by 

w fix, x, = f(s f )(1), f 	 (4.1) 
ieinput 

a sigmoid function. Where Wli is the set of weights of neuron i, bl(i) is the threshold and 

x, is an input of the neuron. Similarly the output layer activity is 

S; = E  w jixi 
	 (4.2) 

ieinput 

In our system, the dimension of the retina is 27x18 pixels represent human faces and non-

face, the input vector is constituted by 2160 neurons, the hidden layer has 100 neurons. 
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Fig 4.10: Architecture of detection system 

The feed forward neural network is designed with one hundred neurons in the 

hidden layer and one neuron in the output layer. All data from both "face" and "non-face" 

folders will be gathered in a large cell array. Each column will represent the features of an 

image, which could be a face, or not. Rows are as follows: 
Row 1: File name 

Row 2: Desired output of the network corresponded to the feature vector. 

Row 3: Prepared vector for the training phase 

We will adjust the histogram of the image for better contrast. Then the image will 

be convolved with Gabor filters by multiplying the image by Gabor filters in frequency 

domain. To save time they have been saved in frequency domain before Features is a cell 

array contains the result of the convolution of the image with each of the forty Gabor 

filters. These matrices have been concatenated to form a bif 135x144 matrix of complex 

numbers. We only need the magnitude of the result. That is why "abs" is used.135x144 has 

10,400 pixels. It means that the input vector of the network would have 19,400 values, 

which means a large amount of computation. So we have reduced the matrix size to one-

third of its original size by deleting some rows and columns. Deleting is not the best way 
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but it save more time compare to other methods like PCA. We should optimize this 

function as possible as we can. 

First training the neural network and then it will return the trained network. The 

examples were taken from the Internet database. The MLP will be trained on 70 face and 

60 non-face examples. 

The Neural Network Architecture obtained from the MATLAB which consists of 

one input layer, one output layer and one hidden layer. The hidden layer consists of 100 
neurons. 
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CHAPTER-5 

IMPLEMENTATION OF THE NEURAL NETWORK MODEL 

This chapter is dedicated to description of program execution. The entire face 

detection system is composed of eleven-files. In the following sections, the GUI and the 

software structure of the program are shown, including a list of all the subprograms 

together with a description of their tasks. How the face images were acquired, how certain 

decisions were taken for training, and most importantly, how this system works. 

5.1 Program Components 

Fig. 6.1 is the main menu of our face detection system. The program consists of 

eleven component files, each performing a different task. The lists labelled "functions" and 

"sub-functions" are the m-files created using MATLAB. As a lot of investigations and 

frequent testing are conducted, the program is designed in such a way that one can perform 

each operation step by step. A complex program that links every function together is going 

to give many problems; therefore, each execution is kept simple. In this particular GUI, 

one button executes one process. A description of all the functions is given in below. The 

complete source codes are given in Appendix 1. 

Fig 5.1: Graphical User Interface (GUI) executed by main.m 
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a. Create Database: The images containing faces and non faces had been created 

for 	 training the network. 

b. Initialize Network: The Neural Network is initialized with input, output and 

hidden layers and also with training parameters such as 

learning rate, training algorithm, number of epochs and 

performance function. 

c. Train Network: The Neural Network is trained with the training face and non 

face 	 images as per the Network initializations. 

d. Test on Photos: The input images are selected from the folders for detection of 

the faces. 

e. Exit: After completion of the detection process the system will exit. 

The description of program components is given below 

1. main.m 

User interface for accessing all operations. 

2. loadimages.m 

This function prepares images for training phase. All data from both "face" and 

"non-face" folders will be gathered in a large cell array. Each column represents the 

features of an image which could be a face or not. Rows are as follows: Row 1: File name 

Row 2: Desired output of the network corresponded to the feature vector. Row 3: Prepared 

vector for the training phase, Also this script saves the database to a file named 

"imgdb.mat". So we do not need to create the database more than once unless we add or 

delete some photos to/from "face" and "non-face" folders. Every time we do this, after 

recreating a database, we should initialize and train the network again. This script uses 

"im2vec.m" to extract features from images and vectorize them for the database. 

3. createffnn.m 

This function creates a feed forward neural network with one hundred neurons in 

the hidden layer and one neuron in the input and output layer. The network will be saved 

in "net.mat" for further use. 
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4. trainnet.m 

This function trains the neural network with the face and non face images and then 

returns the trained network 

5. create_gabor.m 

This script uses gabor.m to generate forty 32x32 gabor filters and save them in a 

cell array matrix called "G" and in a file named " gabor.mat". This script will be inkoved 

only once unless we delete "gabor.mat". 

6. im2vec.m 

This function takes a 27x18 image. It adjusts the histogram of the image for better 

contrast. Then the image will be convolved with gabor filters by multiplying the image by 

gabor filters in frequency domain. Gabor filters are stored in "gabor.m". To save time they 

have been saved in frequency domain before. Features135x144 is a cell array contains the 

result of the colvolution of the image with each of the forty gabor filters. These matrixes 

will be concated to form a bif 135x144 matrix of complex numbers. we only need the 

magnitude of the result. That is why "abs" is used. 135x144 has 10,400 pixels. It means 

that the input vector of the network should have 19,400 values which mean a large amount 

of computation. So we reduce the matrix size to one-third of its original size by deleting 

some rows and columns. Deleting is not the best way but it save more time compare to 

other methods like PCA. 

7. imscan.m 

In the first section the given image is convolved with the predefined template. Then 

imregionimax is used to detect the centre of potential face contained window. In the 

second section the algorithm checks all potential face-contained windows and the windows 

around them using neural network. The result will be the output of the neural network for 

checked regions. 

46 



8. drawrec.m 

This script is used to draw the rectangle around the face in the detected images 

which indicates that the presence of faces in the given images. 

5.2 Selection of Face Database 

During planning, some research was carried out on the Internet and a few face and 

non face images were found. Most were freely available and had a rich variety of faces and 

non faces, but in accordance to the objective to test the system passport size photos with 

27x18 are required for training the network. We are clear that training and analyzing too 

many images is a waste of precious time, so 68 face images and 55 non face images were 

taken for training. Each of them varies in orientation and expression, some with glasses, 

and some without glasses. For testing the system different images are collected. Some of 

them are taken from the interne and some of them are taken from the digital camera. 

5.3 Image Resizing 

The original images are found with different dimensions such as 112x92 pixels, 

which mean each has a total pixel size of 10304 if it is placed in a single array row. This 

size is not efficient for normal training; especially there are large training sets. To avoid 

increased computation and long training times, it is necessary to resize the face images. 

The images are therefore resized to 27x18 which means each has a total pixel of 486. The 

input image given for testing also resized such that the faces in the images are must be 

approximately in the size of 27x18. 

5.4 Training Parameters and Weight Initialization 

A good set of training parameters ensures the learnability of the network. Network 

learnability relates to the ability of a learning algorithm to find a set of weights that can 

give the accuracy needed for a good mapping approximation. In other words, the network 

must find weights that can produce good generalization. An optimum set of parameters, 

was found, for the network after several tests. The validation set was used to perform cross 

validation with the training set. The first thing tested for was the maximum training epoch. 

Started out with 500 epochs, but the network seemed to be overtrained. Hence, the epochs 

were reduced and the performance goal met at 177 epochs. The performance was relatively 
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fine after that. The network was stable and convergence was smooth. Next, proceeded to 

determine the learning rate. Started out with 0.1, but it is showed signs of undertraining, 

continued with other values, each time increasing the learning constant by 0.1. It was 

finally decided on 0.8, as this value produced outputs that were stable even after the set of 

weights were reinitialized. 

A range of hidden neuron sizes on the network was tried out and found that a 

neuron size weight 100 to 106 is best. The network uses the least mean square method. 

5.5 Training 

This program displays real-time training parameters as they go through each 

iteration. Knowledge of the current epoch and the corresponding error gradient enables us 

to keep check on the training progress. If the training error suddenly drops or increases in 

value, it is known that the network is facing problems and can terminate the training 

process immediately. The network training process is shown below. 

Fig 5.2: Training process 

48 



CHAPTER-6 

INTERPRETATION OF RESULTS 

In this chapter Experimental results of the existing methods and the proposed 

method are presented, which are implemented using Matlab Version 7.0.1. The output 

images of the existing methods and the proposed method are shown in the fig 6.12 and 

fig 6.7 respectively. The results show that the proposed face detection system has high 

detection accuracy as compared to the existing methods. From the fig 6.12 & 6.13 of the 

existing method we can observe that some of the faces are not detected. The output images 

of the proposed method are shown in fig 6.7 and have very good detection quality but in 

fig 6.11 the detection is poor since the selected parameters of Neural Network are not 

optimized. The training images (face and non face images) are initially pre-processed by 

Gabor filters for feature extraction. Later the extracted features of the images are applied 

for training the neural network. Then the unknown test image is also pre-processed and 

Gabor features are extracted. Now the extracted features are fed and tested with the trained 

neural networks of the dataset of images and classified to see if the part containing a face 

or not. 

There are virtually no tools to select an appropriate architecture and learning 

parameters for a neural network. In most cases, learning parameters are determined by 

experience or based on the trial and error method. In this chapter the learning rate, optimal 

number of neurons for the hidden layer and the learning algorithm are decided for training 

the neural network. 

6.1. Image Allocation 

In this experiment, 68 face images and 55 non face images are used for the training 

of the feed forward Neural Network shown in the Appendixl . All the training images are 

resized to have a dimension of 27x18 for minimizing the learning time. Different sizes of 

the images were used for testing the system. Some of the testing images were collected 

from the digital camera, web camera and some of them are collected from interne. 
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6.2. Evaluation of the parameters 

In this section the experiments are conducted to investigate the feasibility and 

effectiveness of the appearance-based face detection system, which are shown in table 6.1. 

Table 6.1: Areas of investigation 

Evaluation Areas Variable Parameters 

Learning rate 0.1 to 0.8 

Number of Hidden Neurons 100 to 106 

Sigmoid function Tansig, logsig 

Training algorithm Scg, rp, gda 

6.3. Fixed and Variable Parameters 

The network is structured with one hidden layer of 100 neurons it is decided by 

trial and error method. The sigmoid function is used in both the hidden and output layers. 

Initial weights for the hidden layer are set at 0. The optimized parameters for Neural 

Network are shown in table 6.2. 

Table 6.2: Regularized Parameters 

Parameters Standardized and Optimized Value 

Hidden Layer 1 

Hidden Neurons 100 

Sigmoid function logistic 

Training Algorithm Scaled Conjugate Algorithm 
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6.4. Learning Rate 

The performance of the system is very sensitive to the proper setting of the learning 

rate. The learning rate is held constant throughout training. If the learning is set too high, 

the algorithm may oscillate and become unstable. If the learning rate is too small, the 

algorithm will take too long to converge. It is not practical to determine the optimal setting 

for the learning rate before training. Several trainings should be performed using a variety 

of learning rates before determining the optimum value. 

Experiments were conducted with learning rates ranging from 0.1 to 0.8, each time 

increasing by 0.1. Detection accuracy increases with the learning constant until it reaches 

full detection at 0.6 or 0.8, after or before which the performance starts to deteriorate. The 

training with TRAINSCG and 0.1 learning rate is shown in the fig 6.1 and the training 

with 0.8 learning rate is shown in fig 6.2. 

101 
	Performance is 000t -9 174, Goat is 
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2 
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Fig 6.1: The training performance with learning rate 0.8 and scaled conjugate gradient 

training algorithm 
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Fig 6.2: The training performance with learning rate 0.1 and scaled conjugate gradient 

training algorithm 

6.5. Number of Hidden Neurons 

How to determine the number of hidden neurons is always a discussion topic in 

neural networks. Baum and Haussler rule was discussed in the previous chapter, but that 

does not mean the equation will work for every network. But the trial and error is the best 

way to work out the optimal number of hidden units. The Baum and Haussler rule should 

be used as an estimator. In this experiment, the network was trained with different number 

of hidden units (90 to 150) and verified their detection performance. For a network with 

100 to 106 hidden neurons, the recognition accuracy is 99%. Any number of hidden units 

beyond 106 will experience a gradual decrease in performance. 

6.6 Learning Algorithm 

Once the network weights and biases have been initialized, the network is ready 

for training. The network can be trained for function approximation (nonlinear regression), 

pattern association, or pattern classification. The training process requires a set of 
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examples of proper network behaviour - network inputs p and target outputs t. During 

training the weights and biases of the network are iteratively adjusted to minimize the 

network performance function. The default performance function for feedforward 

networks is mean square error mse - the average squared error between the networks 

output a and the target outputs t. 

There are several different training algorithms for feedforward networks. All of 

these algorithms use the gradient of the performance function to determine how to adjust 

the weights to minimize performance. Gradient Descent (traingd), Gradient Descent with 

Momentum (traingdm), Variable Learning Rate (traingda, traingdx), Resilient 

Backpropagation (trainrp) and Scaled Conjugate Gradient (trainscg) are the different 

training algorithms used for feed forward networks. In this experiment different training 

algorithms are used and their training rate and detection rate is recorded. For this system 

scaled conjugate gradient algorithm will give the best performance and the results are 

shown in the fig 6.7 which shows the complete detection. The Resilient Back Propagation 

will take the less time for training as compared to scaled conjugate algorithm but the 

detection is poor as shown in fig 6.11. The training of the network for different training 

algorithm with 0.8 learning rate is shown in the figures below. 
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Fig 6.3: The training performance for the scaled conjugate gradient training algorithm with 

0.8 learning rate, which shows that the target is reached at 127 Epochs. 
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Fig 6.4: The training performance for the Resilient Backpropagation training algorithm 

with 0.8 learning rate, which shows that the target is reached at 73 Epochs. 
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Fig 6.5: The training performance for the Gradient descent with adaptive learning rate 

Backpropagation training algorithm with 08 learning rate, which shows that the target is 

not reached for 5000 Epochs. 
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Fig 6.6: The training performance for the Gradient descent with momentum and adaptive 

learning rate Backpropagation training algorithm with 0.8 learning rate, which shows that 

the target is not reached for 5000 Epochs. 
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(a)  

(b)  

Fig 6.7: (a) Original image which is taken from the digital camera, (b) Output obtained 
from the system. The total faces in the image are six and the detected faces are six hence 
no false detection. 
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(a) 

(b) 

File Edit Vjsw Insert Tools Desktop Window Help 

Fig 6.8: (a) Original image which is taken from the internet, (b) Output obtained from the 
system in which there is no false detection. 
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(b)  

Fig 6.9: (a) Original image, (b) Output obtained from the system. Totally there are eight 
faces but only seven faces are detected due to blurriness. 
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(a) 

(b) 

Fig 6.10: (a) Original image taken from the web camera, (b) Output obtained from the 
system 
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(a) 

(b) 

Fig 6.11: (a) Original image, (b) Output obtained from the system in which false detections 
are present. 
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(a)  

(b)  

Fig 6.12: (a) Original image, (b) output image from the system which has false detections 

63 



(a)  

(b)  

Fig 6.13: (a) Original image, (b) Output image from the system which has maximum false 
detection due to blurriness. 
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CHAPTER-7 

CONCLUSION AND FUTURE WORK 

In this thesis, a new approach to face detection with Gabor filters & feed forward 
neural network is presented. The method uses Gabor feature extraction & feed forward 
neural network for both finding feature points and extracting feature vectors. From the 
experimental results, it is seen that proposed method achieves better results compared to 
the graph matching and eigenface methods. Feature points are obtained from the special 
characteristics of each individual face automatically, instead of fitting a graph that is 

constructed from the general face idea. In the proposed algorithm, since the facial features 
are compared locally, instead of using a general structure, it allows us to make a decision 
from the parts of the face. 

Future Work 
Although detection performance of the proposed method is very good, the main 

limitation of the system is that it only detects upright faces looking at the camera. So 
further it can be improved by training the separate versions of the system for each head 

orientation, and the results could be combined to get the detection of faces for different 
poses and orientations. 
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Appendix-1: Face Data Base for Training 
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Appendix-2: Non Face Data Base for Training 
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